
X/Open Snapshot

Distributed I18N Framework

X/Open Company Ltd.

 December 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Snapshot

Distributed I18N Framework

ISBN: 1-85912-079-2
X/Open Document Number: S503

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open Snapshot (1994)

Contents

Chapter 1 Introduction... 1

Chapter 2 The Global Locale Model ... 3
 2.1 What is a Locale?... 3
 2.2 The setlocale() Function.. 4
 2.3 Object-oriented Software .. 5
 2.4 Layered Software .. 6
 2.5 Threaded Software ... 6
 2.6 Stateful Encodings.. 7
 2.7 Summary .. 7

Chapter 3 The Multi-locale Model... 9
 3.1 Overview .. 9
 3.2 Terms and Definitions.. 10
 3.3 Program Flow .. 11
 3.4 Multi-locale Functions ... 12
 3.4.1 Locale Management Functions ... 13
 3.4.2 Locale Information Functions ... 15
 3.4.3 Classification Functions.. 17
 3.4.4 Transliteration Functions ... 19
 3.4.5 String Searching Functions .. 20
 3.4.6 String Comparison Functions ... 21
 3.4.7 Date, Monetary and Time Formatting Functions.............................. 22
 3.4.8 Number Conversion Functions .. 23
 3.4.9 Text Scanning and Parsing Functions.. 23
 3.4.10 Formatted I/O Functions ... 24
 3.4.11 Extended Wide-character Conversion Functions 25

Chapter 4 Advanced Text Handling... 27
 4.1 Background.. 27
 4.2 Complex Text... 28
 4.2.1 Codesets... 28
 4.2.2 Composite Sequences ... 29
 4.3 Directional and Context-sensitive Text.. 31
 4.4 Composite Sequence Functions ... 32

Chapter 5 Distributed Internationalisation.. 35
 5.1 The Problem... 36
 5.2 Locale Naming .. 38
 5.2.1 String Network Locale Specifications ... 38
 5.2.2 Token Network Locale Specifications ... 39
 5.2.3 LocaleSpec Functions.. 39

Distributed I18N Framework iii

Contents

 5.2.4 NetSpec Functions ... 41
 5.3 Locale Registration ... 42

Appendix A ISO MSE Changes ... 43
 A.1 Data Types.. 43
 A.2 Functions .. 44

 Glossary ... 47

 Index... 51

iv X/Open Snapshot (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Distributed I18N Framework v

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

vi X/Open Snapshot (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a Snapshot (see above). Its aim is to describe a framework for the
development of APIs in a distributed computing environment, based on work done by the Joint
X/Open-Uniforum working group during production of specifications for distributed
internationalisation services and complex text handling.

Other, related aspects of program internationalisation are considered first, including multi-
locale, multi-lingual, multi-threading, single-byte, multi-byte and universal codeset (UCS)
working. Particular attention is paid to the requirements of rich text formats and stateful
encodings.

Structure

This document is structured as follows:

• Chapter 1 is a brief introduction

• Chapter 2 discusses the global locale model

• Chapter 3 provides a rationale and overview of the multi-locale model

• Chapter 4 considers the requirements of advanced text handling in detail

• Chapter 5 examines the requirements of a distributed internationalisation environment

• Appendix A describes the proposed MSE changes to the ISO C standard.

• A glossary and index are provided.

Intended Audience

This Snapshot is aimed in general at all users and suppliers who wish to understand the issues
surrounding internationalisation and how these can be solved. In particular, it addresses the
specific issues associated with the increasingly important subject of distributed
internationalisation.

Distributed I18N Framework vii

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. In syntax ellipses (...) are used to show that additional arguments are optional.

• Variables within syntax statements are shown in italic fixed width font .

viii X/Open Snapshot (1994)

Trademarks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of the X/Open
Company Ltd.

Distributed I18N Framework ix

Referenced Documents

The following standards or draft standards are referenced in this document:

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO 2022
ISO 2022: 1986 Information Processing — ISO 7-bit and 8-bit Coded Character Sets — Coded
Extension Techniques.

ISO 2375
ISO 2375: 1985 Data Processing — Procedure for Registration of Escape Sequences.

ISO 6937
ISO 6937: 1983, Information Processing — Coded Character Sets for Text Communication.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 10646
ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO POSIX-1
ISO/IEC 9945-1: 1990, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
IEEE Std 1003.1-1990).

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992).

MSE
ISO/IEC 9899: 1990/Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.

The following X/Open documents are referenced in this document:

Distributed Internationalisation Services
X/Open Snapshot, December 1994, Distributed Internationalisation Services, Version 2
(ISBN: 1-85912-033-4, S308).

Layout Services
X/Open Snapshot, December 1994, Portable Layout Services: Context-dependent and
Directional Text (ISBN: 1-85912-075-X, S425).

FSS-UTF
X/Open Preliminary Specification, May 1993, File System Safe UCS Transformation Format
(FSS-UTF) (ISBN: 1-872630-96-0, P316).

x X/Open Snapshot (1994)

Referenced Documents

Internationalisation Guide
X/Open Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

Locale Registry
X/Open Electronic Publication, October 1993, Locale Registry Procedures (ISBN: 1-872630-
94-4, G303).

XPG2
X/Open Portability Guide, five volumes, January 1987 (ISBN: 0-444-70179-6).

XPG3
X/Open Specification, 1988, 1989, February 1992 (ISBN: 1-872630-43-X, T921); this
specification was formerly X/Open Portability Guide, seven volumes, January 1989
(ISBN: 0-13-685819-8, XO/XPG/89/000).

XPG4
X/Open Systems and Branded Products: XPG4, October 1994 (ISBN: 1-872630-52-9, X924).

Distributed I18N Framework xi

Referenced Documents

xii X/Open Snapshot (1994)

Chapter 1

Introduction

Internationalisation facilities first appeared in Issue 2 of the X/Open Portability Guide (XPG2).
This was published ahead of similar facilities defined in the ANSI C standard, and contained a
rudimentary set of interfaces necessary for the development of internationalised applications;
that is, applications that were free of specific codeset, language or cultural operation.

The initial XPG2 definition was derived from the Native Language Support System developed
by the Hewlett-Packard Company of Palo Alto, California, enhanced by X/Open and modified
in certain areas to converge with the proposed ANSI C standard. Specifically, XPG2 provided a
definition of:

• transparent single-byte codeset operation

• internationalised versions of standard C library functions

• new functions that enabled applications to determine the format and setting of cultural data
items

• message catalogues

• an announcement mechanism.

Most significantly, this and the proposed ANSI C standard first introduced the concept of a
locale : an opaque object that contained all the information necessary to achieve program
localisation. Also, the model that one locale equals one language, territory and codeset
combination became entrenched.

XPG3 followed in December 1988. This issue of the Portability Guide was fully aligned with the
POSIX.1 and ANSI C standards, except in the area of multi-byte codeset operation and the
localeconv () function. The focus of XPG3 was to satisfy internationalisation requirements in
Europe and North America, hence single-byte codeset operation still predominated. XPG3
branding also mandated that internationalisation support was to be included in all conforming
systems.

New features introduced in XPG3 included:

• an improved announcement mechanism

• internationalised regular expressions

• an optional internationalised utility environment

• a new utility for codeset conversion (iconv).

The fundamental locale model remained unchanged. Initialisation of the locale was linked to the
environment, and its scope was widened, but the global nature of the locale object became ever
more cast in tablets of stone.

The parochial nature of XPG internationalisation was abandoned in XPG4 (July 1992), which
sought to address the requirements of more complex languages, such as those manifest in Asia
and the Far East. Specifically, XPG4 included:

• the Worldwide Portability Interfaces, which enabled applications to work with either single-
byte or multi-byte codesets

• extended support for the Internationalised Utility Environment

Distributed I18N Framework 1

Introduction

• additional interfaces for date and time conversion (strptime()), monetary value conversion
(strfmon()), and codeset conversion (iconv_open (), iconv() and iconv_close ())

• full conformance to the ANSI/ISO C standard

• the localedef and locale utilities.

For applications that were happy to work with one language at a time, and were only concerned
with simple terminal input and output, this model was and still is adequate. However, other
groups were now considering internationalisation within more complex programming
paradigms, for example:

• object-oriented software

• layered software

• distributed software

• threaded software

• multi-user software

• advanced text handling software.

It became obvious immediately that the global locale model published in XPG4 was too limiting
to satisfy the requirements of these groups. Some required to manipulate multiple locales
simultaneously, some required more precise management over such things as stateful
encodings, context sensitive or bidirectional text, while others required a model that supported
distributed internationalisation.

This then was the basic set of problems that the X/Open-Uniforum Joint Internationalisation
Group (JIG) set out to address in the Distributed Internationalisation Services Specification
(Distributed Internationalisation Services snapshot), in the Layout Services Specification
(Layout Services snapshot), and Locale Registry documents. These documents are
specifications of functional interfaces and procedures for meeting the above requirements. This
document is a framework that provides a context for those specifications and hopefully provides
some insight into how and why the specifications emerged the way they have.

Chapter 2 revisits the global locale model and examines both its strengths and weaknesses,
drawing towards a set of requirements for a distributed, multi-locale model of a type needed to
meet the above objectives. Chapter 3 provides a rationale and overview of the multi-locale
model presented in the Distributed Internationalisation Services snapshot, complete with a
top-level introduction to its many functional interfaces. Chapter 4 considers the requirements of
advanced text handling in detail, including state handling requirements in a multi-locale
environment, context sensitive and bidirectional text handling. Finally, Chapter 5 examines the
requirements of a distributed internationalisation environment, including distributed locale
announcement, common naming procedures and locale registration.

2 X/Open Snapshot (1994)

Chapter 2

The Global Locale Model

This chapter revisits the global locale model and examines both its strengths and weaknesses,
drawing towards a set of requirements for a distributed, multi-locale model.

2.1 What is a Locale?
XPG4 defines a locale as ‘‘the definition of the subset of the user’s environment that depends on
language and cultural conventions. It is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behaviour of the components of the
system.’’

In less formal terms, a locale is a repository for control information that directs the operation of
certain functions that are sensitive to the processing and presentation of data. For example, the
sorting and classification of text data depends on:

• the encoding of the data

• the language of the current user.

Similarly, functions that process or present data containing such things as date and time strings
need to understand prevailing cultural conventions to produce the correct results.

How this data is processed in a locale-specific way is transparent to the user and to the
programmer. In the latter case, to sort strings correctly, a program simply initialises the locale
with the required localisation data and then calls one of the string collation functions defined to
perform locale-sensitive ordering (for example, strcoll(), wcscoll(), ...). The user merely has to
announce which localisation data they wish to be associated with the locale.

This model is fully described in the Internationalisation Guide. Suffice it to state here that both
the announcement mechanism and the locale initialisation procedures defined in XPG4
perpetuate the paradigm that one locale equals one language, territory and codeset combination.
This is referred to as the global locale model, which in structural terms permits that each process
environment will contain one and only one locale object.

Distributed I18N Framework 3

The setlocale() Function The Global Locale Model

2.2 The setlocale() Function
Locales are created by means of the localedef utility, which converts source definitions for locale
categories into a localised form suitable for loading into a program locale at run time. The
program locale itself is loaded by calling the setlocale () function, which in formal language terms
is defined as:

char *setlocale(int category , const char * locale);

The value of category names all or part of the program locale and may be one of LC_ALL,
LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC or LC_TIME.
LC_ALL names the program’s entire locale, other settings name a specific locale category.

The locale argument is a pointer to a character string naming the required setting of category.
This is the name of a locale created by the localedef utility. A null pointer directs setlocale () to
query the current locale and return its name. A pointer to a null string (" ") indicates that the
locale should be initialised from the corresponding value of the associated environment
variables. Thus:

setlocale(LC_ALL, "");

tells setlocale () to initialise the entire program locale from settings of the environment variables
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
LC_TIME and LANG. If LC_ALL is set in the environment, this takes precedence and no other
environment variable settings are used. If LC_ALL is not set, the category-specific variables are
used, with LANG providing a default setting for unset variables. If LANG is not set, an
implementation specific default is used instead.

This mechanism provides considerable flexibility in the setting, querying and general
manipulation of a program’s locale. Typically, an application will start by initialising the locale
from the environment, as this provides a link between the user and the program, and then
manipulate it either in its entirety or at the category level as best befits the applications needs.
For example, a menu-driven or windowing application may provide an option that allows the
user to change his or her codeset, language or cultural requirements dynamically.

There is also limited multi-locale support inherent in this model. For example:

/*
* Sample code showing how a locale may be saved,
* modified and subsequently restored. In a real
* program, all return values should be checked
* for success, but for the sake of brevity this
* is not done here.
*/

char *OldLocale, *SavedLocale;
...
OldLocale = setlocale(LC_ALL, NULL);
SavedLocale = malloc(strlen (OldLocale) + 1);
strcpy(SavedLocale, OldLocale);
setlocale(LC_ALL, "");
...
setlocale(LC_ALL, SavedLocale);
...

The first call to setlocale () in this example queries its current setting. As this name may be
overwritten by a subsequent call, it must be saved elsewhere if it is to be reused at a later point

4 X/Open Snapshot (1994)

The Global Locale Model The setlocale() Function

in the program, hence calls to malloc () to allocate space to hold the string, strlen() to determine
its length, and strcpy() to copy it locally. The next call to setlocale () initialises the program locale
from the environment. The original locale can be restored by calling setlocale () with locale set to
the original locale name, as indicated.

This mechanism is adequate for one-layered, single-threaded applications that have complete
control over their environment and the order in which locale-specific actions are performed.
However, the above example is awkward in appearance and may be expensive if, for example,
the locale needs to be reloaded from filestore each time setlocale () is called.

2.3 Object-oriented Software
The locale object managed by setlocale () is a global object in every sense; that is, there is only one
per program instance (process), that operates independently of program block structure. This is
the antithesis of object-oriented programming, where it is far more natural to want to be able to
associate a locale object with one or more other program objects.

In C++, for example, the locale object might emerge as a base class that can be inherited by other
classes, which would allow an implementation to associate locale-specific behaviour with other
standard classes. However, such a mechanism would require that a locale object is a visible
program object in its own right, of which there may be many in existence at one time, each
describing potentially diverse localisations. It further requires that calls to locale sensitive
functions explicitly identify which locale object to use.

Clearly, neither of these requirements are met by the global locale model.

Distributed I18N Framework 5

Layered Software The Global Locale Model

2.4 Layered Software
Problems associated with layered software are not dissimilar to those described above, with the
added complication that each software layer requiring to manipulate the global locale object
must protect all possible entry and exit points to and from the layer.

Consider the case of a windowing layer that supports different language, territory and codeset
combinations in each of its windows. To manage this mechanism, the software will need to re-
initialise the global locale each time it is called, with all the attendant performance overheads
implied above. It must also ensure that on return to the caller, the global locale is reset to its
calling state.

Thus entry points must save the calling locale, and exit points must reinstate it. This is sufficient
overhead in itself to make using the global locale for this purpose an unattractive proposition,
but the software layer must also protect against asynchronous returns to the calling layer, by
means of signals for example. The layer is therefore faced with either masking all signals or
saving all extant signal dispositions on entry, installing its own signal catching functions, and
restoring the original dispositions on return to the caller. Should a signal occur while the layer is
active, the software must either hold the signal pending or reset the locale and signal
dispositions to their original values and manually raise the signal again.

While it is just conceivable that such an implementation could be provided using the global
locale model, it would be inefficient in the extreme, error prone and difficult to manage. Again,
having discrete locale objects that could be managed directly by the application provides a far
more attractive and workable alternative.

2.5 Threaded Software
The requirements of multi-threaded software bring yet another set of problems. In this model
multiple threads of execution can proceed at the same time within a single process, which is
clearly untenable in the global locale model if different threads have conflicting localisation
requirements. The model is also invalidated if the global local object is used to hold state
information of any kind.

While the requirements of object-oriented software and layered software could theoretically be
catered for in the global locale model, as unattractive and costly as that might be, the
requirements of threaded software seem to fundamentally undermine a global solution of any
kind. In this model, each thread must be able to manage its own locale, without interference
from or reference to co-existing program threads.

6 X/Open Snapshot (1994)

The Global Locale Model Stateful Encodings

2.6 Stateful Encodings
Problems associated with stateful encodings are as much a weakness in the XPG4 API as in the
global locale model itself. Nevertheless they must be considered at the same time as the specific
global locale problems described above.

As an example, the mbtowc() function converts a multi-byte character sequence to a wide-
character code. Ostensibly, this interface purports to cope with stateful encodings by retaining
state information between successive calls, within the limitation that any changes to the
LC_CTYPE category of the global locale causes the shift state of the function to be
indeterminate. Thus:

int mbtowc(wchar_t * pwc, const char * s, size_t n);

For a state-dependent encoding, this function is placed into its initial shift state by a call with s
set to the null pointer. Subsequent calls with s set to other than the null pointer, cause the
internal state of the function to be altered according to the prevailing shift state of the multi-byte
stream pointed to by s.

Neither state introducers nor the current shift state are visible to applications that use this
interface, and any change to LC_CTYPE may invalidate existing state information. Thus, were a
software layer, thread or object class to change the global locale in a manner indicated in
previous sections, then it could invalidate any retained state information associated with that
locale, which in turn could precipitate incorrect program behaviour in the calling layer.

State information is also managed implicitly by other interfaces; for example, the stream I/O
functions. Within a stateful text stream, character context is determined from the previous state
introducer, or possibly introducers. In the XPG4 API, this is managed by the stream I/O
functions transparently, without any possible influence by or interaction with the calling
application.

And so on... The important point here is that state information associated with the global locale
object complicates the situation further when considering the requirements of object-oriented,
layered and multi-threaded software. In a better world, both the locale object itself and retained
state information would be explicit, visible objects that an application could manage itself.

2.7 Summary
The global locale model presented in XPG4 is adequate to meet the needs of function-oriented,
single-layer, single-threaded applications that are common today and will remain significant for
the foreseeable future. The integrity of this model must therefore be preserved to facilitate the
continued development, support and maintenance of these applications.

A new model is required to meet the needs of more complex object-oriented, multi-layered or
multi-threaded software, which requires locale objects to be visible entities that can be managed
by the software directly. State information should be divorced from such a locale object and
presented as a separate object in its own right. All APIs that are sensitive to locale-based
operations should be updated to accept a locale object as an argument, rather than using the
global locale implicitly, as well as managing state objects where appropriate.

This then sets down the basic requirements for a multi-locale model of a type described in the
next chapter, and in an informal way documents the rationale by which the X/Open-Uniforum
Joint Internationalisation Group arrived at its requirements for producing the Distributed
Internationalisation Services snapshot.

Distributed I18N Framework 7

The Global Locale Model

8 X/Open Snapshot (1994)

Chapter 3

The Multi-locale Model

This chapter provides a rationale and overview of the multi-locale model presented in the
Distributed Internationalisation Services snapshot, complete with a top-level introduction to
its many functional interfaces.

3.1 Overview
The multi-locale model presented in the Distributed Internationalisation Services snapshot
addresses all the requirements identified in the previous section. In particular, the associated
API defines a visible object to hold localisation data. This can be created, initialised and
destroyed by the program, and passed as an argument to the multi-locale functions.

Note that the global locale and functions that work on this entity still exist. The multi-locale
functions coexist with and complement this model by providing additional locale handling
capabilities more suited to the needs of complex applications that require to handle multiple
languages simultaneously, or are multi-layered or multi-threaded.

The locale object defined in the multi-locale model is in fact wrapped within another program
object known as an Attribute Object. This is an implementation-defined type, other than an
array type, that can hold locale specific information for the various defined locale categories.
This abstraction is introduced to allow other types of information to be associated with layer or
thread operation in the future (for example, security information), without necessitating the
introduction of yet another program object.

The multi-locale model also defines a state object, of type mbstate_t, which is used to retain state
information between successive calls of state sensitive interface functions. Again, this object is
implementation-defined and can be any data type other than an array type. For example, this is
used when converting between a coded character string and a wide-character string.

One further type is introduced, wctrans_t, which is a scalar type that can hold values
representing locale-specific transliteration mappings. The transliteration functions are described
later in this section.

Distributed I18N Framework 9

Terms and Definitions The Multi-locale Model

3.2 Terms and Definitions
A complete glossary of terms is provided before the index. However, a number of terms new to
X/Open specifications are introduced in the Distributed Internationalisation Services snapshot
and it is worth providing a brief introduction here. This is in addition to terms like global locale
and locale object, which have already been described in earlier sections. Terms specific to
distributed internationalisation are defined in Chapter 5.

coded character
A code value encoded as one or more objects of type char that corresponds to a member of the
codeset of the locale.

null coded character
A coded character with code value zero.

coded character string
A contiguous sequence of coded characters terminated by and including the first null coded
character.

code element
Refers to a character encoded as either a wide-character code (of type wchar_t) or a coded
character (of type char*).

code element string
A contiguous sequence of code elements all having the same type and terminated by and
including the first null code element. A pointer to a code element string is a pointer to its initial
(lowest addressed) code element. The length of a code element string is the number of code element
objects preceding the null code element.

10 X/Open Snapshot (1994)

The Multi-locale Model Program Flow

3.3 Program Flow
The previous chapter included sample code that showed how to change the contents of the
global locale; that is, by saving the current contents of the locale, initialising a new state, and
restoring the original contents at a later time. In the multi-locale model, this sequence of events
is replaced by:

/*
* Sequence of calls indicating how to create,
* initialise and destroy an attribute object.
*/

#include <mlocale.h>
...

AttrObject locale;
char *str;

locale = m_createattrobj ();
str = m_setlocale (&locale, LC_ALL, "");
...
m_destroyattrobj (locale);

...

The <mlocale.h> header provides a definition of an AttrObject, and prototypes for all the
multi-locale functions.

An attribute object is created by calling the m_createattrobj() function. Many such objects may be
in existence at the same time without interfering with one another. The locale object within an
attribute object is initialised by calling the m_setlocale() function, which is similar to setlocale ()
except that it takes a pointer to an AttrObject as its first argument.

From this example, it is readily apparent how an application can manage multiple locales in
parallel; that is, by creating and manipulating multiple concurrent attribute objects. The
multiple locale functions mostly accept an attribute object as their first argument, and localise
their behaviour according to the settings of locale categories defined therein. For example:

m_wcscoll(locale, ws1, ws2);

will compare the contents of the wide-character strings pointed to by ws1 and ws2, according to
ordering rules defined in the LC_COLLATE category of the locale object associated with the
attribute object identified by locale. This paradigm holds true for most of the m_*() functions,
which in the main parallel their global locale counterparts (however, see later in this chapter for
further details).

As already stated, concurrent attribute objects cannot interfere with one another, although a
single attribute object is not safe against concurrent usage within a multi-threaded application;
that is, problems can result from simultaneous m_setlocale() modifications of the same attribute
object, concurrent with calling any multi-locale function dependent on that object. In this case,
threads should use separate attribute objects to guard against outside interference.

Finally, an attribute object can be destroyed by calling m_destroyattrobj (). This destroys the
attribute object itself and any embedded objects, including the locale object.

Distributed I18N Framework 11

Multi-locale Functions The Multi-locale Model

3.4 Multi-locale Functions
This section provides an introduction to the multi-locale functions specified in the Distributed
Internationalisation Services Specification. Rationales are included, where appropriate,
describing reasons why interfaces emerged the way they have, alternatives that may have been
considered, and any other background information of a relevant nature.

The interfaces are grouped into functional units, with each group being introduced by a table
identifying:

• the global locale function or functions used as an archetype for the multi-locale function.
This may be omitted if no global locale function defines equivalent capability.

• the name or names of the multi-locale functions

• an indication of how the global locale and multi-locale interfaces differ, in terms of
differences in the multi-locale version.

New functions, for which there is no equivalent in the global locale model, are explained in more
detail. Examples are provided as appropriate, mainly to illustrate possible uses of novel
functions.

12 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.1 Locale Management Functions

These functions provide control over attribute objects, multi-byte state objects, and the
orientation of I/O streams.

Global-locale Multi-locale Comments
m_createattrobj() (see above)
m_destroyattrobj () (see above)

setlocale () m_setlocale() AttrObject added
m_creatembstate() (see below)
m_destroymbstate() (see below)
m_fattr() (see below)

Multi-byte State Objects

The m_creatembstate() function returns an object of type mbstate_t, placed in a codeset-
dependent initial state, which is used to retain state information between successive calls of
certain context-sensitive functions. For example:

AttrObject attrobj;
mbstate_t state;
char *str;
...
attrobj = m_createattrobj();
str = m_setlocale(attrobj, LC_ALL, "");
state = m_creatembstate(attrobj)
...
while (p) {

p = m_strtok (SomeString, "\t", state);
SomeProcessing ();

}
...

The encoding of SomeString may be single-byte, multi-byte or multi-byte with state encodings.
In the latter case, it is necessary to retain shift state information between successive calls to the
string tokenising function m_strtok(). This is needed to allow other threads to use the function
concurrently, or to allow multiple uses of m_strtok() to tokenise different strings.

Note that because an attribute object, and hence a locale object, can be associated with an
mbstate_t object by means of the m_creatembstate() function, interfaces that accept an mbstate_t
object as an argument do not usually have an explicit AttrObject argument as well.

The m_destroymbstate() function is used to destroy an mbstate_t object and takes no arguments
other than the mbstate_t value returned by a previous successful call to m_creatembstate().

Distributed I18N Framework 13

Multi-locale Functions The Multi-locale Model

Stream Orientation

The ISO/IEC 9899:1990 Amendment 1:1994, Multibyte Support Extensions for ISO C fwide()
function can be used to determine the orientation of an I/O stream; that is, whether it is byte-
oriented or wide-oriented. This function is defined as:

int fwide(FILE * stream ,
int mode);

If mode is greater than zero, the fwide() function first attempts to make stream wide-oriented. If
mode is less than zero, the function first attempts to make the stream byte oriented.

Note that if the orientation of stream has already been determined, the fwide() function does not
change it.

If mode is zero, the function does not change the orientation of stream and the return value from
the call indicates its current orientation.

After a stream is associated with an external file, but before any operations have been performed
on it, the stream is without orientation. Once a wide-character I/O function has been applied to
a stream without orientation, the stream becomes wide-oriented. Similarly, once a byte I/O
operation has been applied to a stream without orientation, the stream becomes byte-oriented.
Only a call to the freopen() function or fwide() function can otherwise alter the orientation of a
stream.

Wide-orientation does not automatically imply that code elements will be stored in the external
file as wide-character codes. For example, an implementation may choose instead to employ a
multi-byte encoding (for example, FSS-UTF1), as doing so would still allow the file to be read as
a byte stream, with the correct line terminators and no embedded null bytes. When read as a
wide-oriented stream, the implementation would then be responsible for converting between
FSS-UTF and the locale process code, as determined by the locale object associated with the
stream used to access the file. Conversely, a universal multiple-octet coded character set (UCS)
implementation (ISO/IEC 10646 for example), might and probably would elect to store file
codes as wide-character values directly.

The m_fattr() function is provided to associate an explicit mbstate_t object with an I/O stream,
irrespective of its orientation. After such an association, the stream is capable of locale specific
processing in a multi-locale environment.

The m_fattr() function is defined as:

int m_fattr (FILE * stream ,
const AttrObject attrobj);

A successful call to this function causes an mbstate_t object to be created as if
m_creatembstate(attrobj) had been called. This object is then associated with the I/O stream
identified by stream.

If the m_fattr() function is not called explicitly, a wide-oriented stream will have an implicit
mbstate_t object associated with it. In this case, locale specific processing will be performed
using the global locale.

A call to m_fattr() with attrobj set to (AttrObject)NULL can be used to query the AttrObject of
the mbstate_t associated with the stream.

1. File System Safe UCS Transformation Format, or UTF-8.

14 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.2 Locale Information Functions

These functions provide access to a locale object for querying the the settings of locale-specific
information in the LC_TIME, LC_MONETARY, LC_NUMERIC and LC_MESSAGE categories.

Global-locale Multi-locale Comments
localeconv () m_localeconv () AttrObject added
nl_langinfo () m_nl_langinfo () (see below)
MB_CUR_MAX m_mb_cur_max() (see below)
strerror() m_strerror() AttrObject added

The m_nl_langinfo() Function

In the global model, nl_langinfo () is defined to accept one argument, nl_item, and to return a
pointer to a string containing the associated locale data. The area pointed to by this string is
controlled by the nl_langinfo () function itself, should not be modified by the program and may
be modified by subsequent calls to nl_langinfo (). In addition, calls to setlocale () may also
overwrite this area.

Such a definition is inherently unsafe in the world of object oriented, multi-layered or multi-
threaded applications, and is another reason why the global locale model is unsuited to meet the
needs of these applications. Hence, in the multi-locale model, the program itself is made
responsible for storage management, as follows:

char *m_nl_langinfo(const AttrObject attrobj ,
nl_item item ,
char * buf ,
size_t bufsize);

The m_nl_langinfo () function is defined to return locale-specific data, as identified by the value
of nl_item, in the storage area pointed to by buf, of no more than bufsize bytes. The
m_nl_langinfo () function returns a pointer to a null string if a call is unsuccessful.

Values returned in buf will be encoded in the codeset of the locale identified by attrobj as a byte
stream. If a wide-character form of the data is required, the program itself is responsible for
doing this by means of calls to the ISO/IEC 9899:1990 Amendment 1:1994, Multibyte Support
Extensions for ISO C function mbsrtowcs(). Thus no wide-character form of the nl_langinfo ()
function is defined in the multi-locale API.

A new limit value is also introduced, MAX_INFO_MSG_LEN, which gives the maximum size of
a string (in bytes) that can be returned by the m_nl_langinfo () function, including the terminating
null byte. This value is added to <limits.h>.

The m_mb_cur_max() Function

The number of bytes that can be used to hold the characters of a locale is defined by the values of
<mb_cur_min> and <mb_cur_max> in a Character Set Description File, which is input to the
localedef utility when a locale is created. On XPG4 systems, <mb_cur_min> is always 1;
<mb_cur_max> can be a value greater than or equal to 1 (which is the default).

The maximum number of bytes in a character in any supported locale is given by the value of
the <limits.h> constant MB_LEN_MAX. In the global locale model, a program can determine the
maximum number of bytes in any character of the current locale by means of the
MB_CUR_MAX macro defined in <stdlib.h>, which is defined as an integer expression.

Distributed I18N Framework 15

Multi-locale Functions The Multi-locale Model

Clearly, this mechanism is not applicable to the multi-locale model, where the mb_cur_max value
may vary between coexisting locales. Hence, a new function is defined that operates on a
specific locale object, as follows:

int m_mb_cur_max(const AttrObject * attrobj);

which returns the maximum number of bytes in any character specified in the locale associated
with attrobj.

Note that the issues of multi-byte codeset support and multi-locale support should not be
confused. The requirement for multi-locale support applies even in territories where multi-byte
support is not necessarily relevant. In Europe, for example, a system may be delivered with a set
of locales for the European languages (using ISO 8859 encodings), none of which support multi-
byte operation, but which an application may still require to manage concurrently. Indeed,
neither XPG4 nor the Distributed Internationalisation Services snapshot do or can mandate
support for multi-byte codesets, which is a business decision on the part of individual vendors.

16 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.3 Classification Functions

These functions provide for the classification of code elements.

Global-locale Multi-locale Comments
wctype() m_wctype() AttrObject added
iswctype() m_iswctype() AttrObject added

m_isctype() (see below)
m_strscanfor() (see below)
m_wcsscanfor() (see below)

The is*() and isw*() functions of the global locale model are not reproduced in the multi-locale
model. These interfaces increase the size of the API without providing any extra capability.
Also their capability is easily reproduced using the m_iswctype() function. For example:

iswalnum (wc);

is equivalent to:

m_iswctype(attrobj, wc, m_wctype (attrobj, "alnum"));

when the current locale is set to the locale defined by attrobj.

The m_isctype() Function

This function is similar to the m_iswctype() function, except that it provides for the classification
of code elements in character strings, rather than wide-characters. Thus:

int m_isctype(const AttrObject attrobj ,
char * s,
wctype_t desc);

The m_isctype() function determines whether the first coded character in the string pointed to by
s has the character class of desc. For example:

...
wctype_t desc = m_wctype(attrobj, "space");
mbstate_t ps;
char *s;
...
ps = m_creatembstate(attrobj);
while(*s && m_isctype(attrobj, s, desc))

s += mbrlen(s, strlen (s), &ps);
...

This code will step along the characters in the string pointed to by s, until a non-space character
is found or a null character is detected. Note that the m_mblen() function allows state
information to be retained between successive calls by means of the mbstate_t object ps.

The only thing that could interfere with the integrity of this code is if the locale associated with
attrobj were changed or modified between the m_wctype() and m_isctype() calls. This danger
could be obviated by changing the m_isctype() call to:

m_isctype(attrobj, s, m_wctype (attrobj, "space"));

But this might prove costly in the context of the above code sequence.

Distributed I18N Framework 17

Multi-locale Functions The Multi-locale Model

The m_*scanfor() Functions

The m_*scanfor() functions provide another dimension to character classification not present in
the standard API. These functions allow a coded character string or a wide-character string to be
scanned for the presence or non-presence of a particular character type, as follows:

size_t m_strscanfor(const AttrObject attrobj ,
const char * s,
size_t num_chars ,
size_t position ,
ScanDirection direction ,
ScanCondition condition ,
Boolean inverse);

size_t m_wcsscanfor(const AttrObject attrobj ,
const wchar_t * ws,
size_t num_chars ,
size_t position ,
ScanDirection direction ,
ScanCondition condition ,
Boolean inverse);

where the Boolean type is defined as:

typedef enum {False, True} Boolean;

The m_strscanfor() (m_wcsscanfor()) function scans the coded character (wide-character) string
pointed to by s (ws), starting at the offset indicated by position, for the first coded character
(wide-character) code that matches or does not match the classification criteria specified by
condition. If inverse is set to False, the function searches for the first coded character (wide-
character) that matches the search criteria. Otherwise, if inverse is True, it searches for the first
coded character (wide-character) that does not match the search criteria.

The direction argument determines the direction in which scanning takes place, and is an integer
type defined as:

typedef enum {Forw, Back} ScanDirection;

If direction is Forw, the function scans from position to the end of the coded character (wide-
character) string. If direction is Back, the functions scans from position to the beginning of the
coded character (wide-character) string.

The condition is defined as a bitwise OR of one or more classification criterion specified in
<mlocale.h>. Using the m_wcsscanfor() interface, scanning for a non-space wide-character,
similar to the example given in the previous section, could be rewritten as:

...
wchar_t *ws;
size_t offset;
...

offset = m_wcsscanfor (attrobj, ws, wcslen (ws),
0, Forw, WhiteSpace, True);

...

There is a condition criterion associated with each of the standard character classes, plus some
more esoteric criterion for detecting such things as line breaks, word, sentence and paragraph
boundaries, and so on. Consult the Distributed Internationalisation Services Specification for
more details.

18 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.4 Transliteration Functions

These functions provide conversion operations similar to, but more comprehensive than, the
to*() and tow*() conversion functions defined in the standard API.

Global-locale Multi-locale Comments

m_wctrans() (see below)

m_tombstrans() (see below)
m_towcstrans() (see below)

These functions work together in a manner similar to the m_wctype() function and the
m_is[w]ctype() functions described in the previous section, where the m_wctrans() function is
defined as:

wctrans_t m_wctrans(const AttrObject attrobj ,
const char * property);

The property is character string identifying the required transliteration. Only upper and lower are
defined in all locales; additional transliteration names may by defined in a locale definition file
for category LC_CTYPE.

int m_tombstrans (const AttrObject attrobj ,
wctrans_t desc ,

char ** inbuf ,
size_t * inbufleft ,
char ** outbuf ,
size_t * outbufleft);

int m_towcstrans(const AttrObject attrobj ,
wctrans_t desc ,
wchar_t ** inbuf ,
size_t * inbufleft ,
wchar_t ** outbuf ,
size_t * outbufleft);

These functions transform the characters in the multi-byte (wide-character) string inbuf, as
directed by the setting of desc, and write the results to the multi-byte (wide-character) string
outbuf.

On input, inbufleft specifies the number of code elements to be transformed, or -1, which
indicates that the input is delimited by a null code element. On return, the value pointed to by
inbufleft will contain the number of code elements still to be processed.

On input, outbufleft specifies the size of the output buffer in terms of bytes (wide-character
codes). On return, the value pointed to by outbufleft will contain the actual number of bytes
(wide-character codes) placed in the output buffer. If this value is zero on input, no
transformation takes place and the size of the outbufleft needed to transform the contents of inbuf
is returned.

Distributed I18N Framework 19

Multi-locale Functions The Multi-locale Model

For example:

wchar_t inbuf [BUFSIZ];
wchar_t outbuf [BUFSIZ];
wctrans_t desc;
size_t ibl, obl;
...
desc = m_wctrans (attrobj, "lower");

while (fgetws (inbuf, BUFSIZ, Istream)) {
ibl = -1, obl = BUFSIZ;
m_towcstrans (attrobj, desc, &inbuf, &ibl,

&outbuf, &obl);
fputws (outbuf, Ostream);

}
...

This will transform the contents of the file referenced by Istream to lower case and write the
output to the file referenced by Ostream. All case conversion will be done according to the
LC_CTYPE category of the locale associated with attrobj.

3.4.5 String Searching Functions

These functions provide facilities for searching code element strings for specific code elements or
substrings.

Global-locale Multi-locale Comments
strpbrk() m_strpbrk() AttrObject added
strspn() m_strspn() AttrObject added
strcspn() m_strcspn() AttrObject added
strstr() m_strstr() AttrObject added
wcspbrk() m_wcspbrk() AttrObject added
wcsspn() m_wcsspn() AttrObject added
wcscspn() m_wcscspn() Attrobject added
wcswcs() m_wcswcs() AttrObject added

These functions closely match the standard functions defined in XPG4, except that searching is
done according to the locale object associated with attrobj, rather than the global locale. Also
comparisons performed by the m_str*() functions are only done on complete coded characters
and at coded character boundaries. Thus, in locales that support multi-byte encodings,
comparisons will never be done on incomplete character codes.

20 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.6 String Comparison Functions

These functions provide for the comparison of code elements within code element strings.

Global-locale Multi-locale Comments
strcoll() m_strcoll() AttrObject added
strxfrm() m_strxfrm() AttrObject added
wcscoll() m_wcscoll() AttrObject added
wcsxfrm() m_wcsxfrm() AttrObject added

The multi-locale string compare functions behave the same as the global locale functions when
called with a locale object equal to the current global locale.

Distributed I18N Framework 21

Multi-locale Functions The Multi-locale Model

3.4.7 Date, Monetary and Time Formatting Functions

These functions provide for conversion to or from locale-specific monetary, date and time code
element strings.

Global-locale Multi-locale Comments
strftime() m_strftime() AttrObject added
strptime() m_strptime() AttrObject added
strfmon() m_strfmon() AttrObject added
wcsftime() m_wcsftime() AttrObject added

m_wcsptime() (see below)
m_wcsfmon() (see below)

The wcsptime() Function

The m_wcsptime() function is added to the API to provide a wide-character equivalent of the
m_strptime() function.

wchar_t *m_wcsptime(const AttrObject attrobj ,
const wchar_t * ws,
const char * format ,
struct tm * timptr);

This function converts the wide-character string pointed to by ws to a tm structure pointed to by
timptr, using the format specified by format.

The format string is encoded in the file code of the locale associated with attrobj.

The wcsfmon() Function

The wcsfmon() function provides a wide-character equivalent to the m_strfmon() function:

size_t m_wcsfmon(const AttrObject attrobj ,
wchar_t * ws,
size_t maxsize ,
const char * format ,

...);

The m_wcsfmon() function behaves the same as the strfmon() function when called with the
current locale set to the locale of attrobj, except that a wide-character string is produced instead
of a multi-byte string.

22 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.8 Number Conversion Functions

These functions provide conversion between code element strings and internal number
representations.

Global-locale Multi-locale Comments
strtod() m_strtod() AttrObject added
strtol() m_strtol() AttrObject added
strtoul() m_strtoul() AttrObject added
wcstod() m_wcstod() AttrObject added
wcstol() m_wcstol() AttrObject added
wcstoul() m_wcstoul() AttrObject added

As can be seen, the only difference between these functions and their global locale counterparts
is the addition of an attribute object.

3.4.9 Text Scanning and Parsing Functions

These functions allow applications to scan and parse localised code element strings into tokens.

Global-locale Multi-locale Comments
strtok() m_strtok() mbstate_t added
wcstok() m_wcstok() mbstate_t added

In all cases an mbstate_t object is added to the argument list. This allows state information to be
retained between calls to the function, and also associates an attribute object with the call. In all
other respects, these functions are equivalent to their global locale counterparts.

Distributed I18N Framework 23

Multi-locale Functions The Multi-locale Model

3.4.10 Formatted I/O Functions

The Distributed Internationalisation Services snapshot provides the printf() and scanf() family
of functions with the capability of supporting various classes of encodings, including single-
byte, multi-byte, stateful and contextual codesets.

Any locale-specific processing done within a stream depends on the stream having an mbstate_t
object associated with it, which stores the current state of the stream.

Although both text and binary wide-oriented streams are conceptually sequences of code
elements, the external file associated with a wide-oriented stream is a sequence of multi-byte
characters, generalised as follows:

• encodings within files may contain embedded null bytes (unlike internal multi-byte
encodings)

• a file need not begin or end in the initial state. Moreover, the encodings used for encoding
text in internal files may differ between files. An mbstate_t object allows different streams to
be associated with different locale objects having different encodings. Both the nature and
the choice of such encodings are implementation defined.

The following functions may be used in a multi-locale environment when the streams mbstate_t
object is associated with a specific locale object:

fwprintf()
swprintf()
fwscanf()
swscanf()
fgetpos()
fsetpos()
fgetwc()
fgetws()
fputwc()
fputws()
ungetwc()

All locale specific processing (conversion, parsing, numeric formatting) is associated with the
locale object contained in the stream’s associated mbstate_t object.

A successful call to the fgetpos() function stores a representation of the value of the stream’s
mbstate_t object as part of the value of the fpos_t object. A later call to fsetpos() using the same
value of fpos_t will restore the associated mbstate_t object as well as the position within the
stream.

A number of global locale functions may also be used to access I/O streams in a multi-locale
environment, but when and only when the current locale matches the locale associated with a
stream’s mbstate_t object (see the Distributed Internationalisation Services snapshot for
details).

24 X/Open Snapshot (1994)

The Multi-locale Model Multi-locale Functions

3.4.11 Extended Wide-character Conversion Functions

These functions allow code element strings to be converted from one type of encoding to
another; for example, from multi-byte character strings to wide-character strings, and vice versa.

Global-locale Multi-locale Comments
mblen() mbrlen() mbstate_t added
mbtowc() mbrtowc() mbstate_t added
mbstowc() mbsrtowcs() mbstate_t added
wctomb() wcrtomb() mbstate_t added
wcstombs() wcsrtombs() mbstate_t added

Compared to their global locale counterparts, each of these functions has an additional
argument of type mbstate_t, used to hold state and locale information between successive calls.
Their are also a number of other differences that should be noted:

• For mbsrtowcs(), the input string argument src is defined as a char** rather than a char*. On
return, and assuming the output wide-character string argument dst is not null, the object
pointed to by src will contain either a null pointer (processing stopped due to reaching a
terminating null character), or the address just past the last coded character converted (if
any).

• For mbsrtowcs(), if the output wide-character string pointer dst contains the null wide-
character pointer, the function returns the number of elements required to hold the converted
code element string.

• For wcsrtombs(), the input wide-character string src is defined as a wchar_t** rather than a
wchar_t*. On return, and assuming the output string argument dst is not null, the object
pointed to by src will contain either a null wide-character pointer (processing stopped due to
reaching a terminating null wide-character), or the address just past the last wide-character
code converted (if any).

• For wcsrtombs(), if the output character string pointer dst contains the null pointer, the
function returns the number of elements required to hold the converted code element string.

For all the above functions, if the mbstate_t object refers to the global locale, the function
behaves as defined in the ISO/IEC 9899:1990 Amendment 1:1994, Multibyte Support
Extensions for ISO C (see Appendix A). If the mbstate_t object refers to a valid locale object,
conversions are performed as defined by that locale object rather than the global locale. In this
way, these functions can operate either in a global locale or a multi-locale environment.

Distributed I18N Framework 25

The Multi-locale Model

26 X/Open Snapshot (1994)

Chapter 4

Advanced Text Handling

This chapter considers the requirements of advanced text handling in detail, including state
handling requirements in a multi-locale environment, context sensitive and bidirectional text
handling.

4.1 Background
The XPG4 specification perpetuates the ISO and ANSI paradigm of presenting basic text entities
that are closely associated with a glyph or display cell; that is, one coded character in the
underlying codeset is assumed to equal one display character. There is no provision for dealing
with, or even recognising, the existence of composite sequences, where multiple text elements
are combined to form a single character for the purposes of collation, character classification,
passing through the I/O system, and so on.

Both ISO 6937 and ISO/IEC 10646 define floating diacritics, which are context sensitive
characters that may or may not be combined with a preceding base character to form a
composite sequence. To satisfy this requirement necessitates functions that can handle
characters represented by composite sequences, just as the XPG4 specification was enhanced to
handle multi-byte characters.

Text directionality presents further problems in this area. Certain languages require that text
objects can be processed either left-to-right or right-to-left, depending on the character class of
the text object (letters as opposed to numbers). Directionality can change in mid-string and
should be correct in both the processing case and the presentation case.

Another issue arises with the text shaping aspects in scripts of languages such as Arabic. When
presented, each character may assume one of up to four different shapes, depending on the
context; that is, the connectivity characteristics of the character itself and of its neighbour
characters. In most of the cases, mainly because of keyboard limitations when entering data and
also because of lack of enough code points in some encoding schemes, such texts are processed
with all characters in a basic shape, which has to be shaped by a shaping transformation before
the text is presented.

These issues need to be addressed when considering new APIs associated with program
internationalisation. It is too late to retrofit this capability to the XPG4 API, but it would be
remiss to propose a multi-locale API that still made no provisions for handling composite
sequences and text directionality.

Distributed I18N Framework 27

Complex Text Advanced Text Handling

4.2 Complex Text
First, some terms commonly used when referring to this subject:

composite sequence
A sequence of graphic characters consisting of a non-combining character followed by one or
more combining characters.

Notes:

1. A graphic symbol for a composite sequence generally consists of the combination
of the graphic symbols of each character in the sequence.

2. A composite sequence is not a character and therefore is not a member of the
repertoire of ISO/IEC 10646.

combining character
A member of an identified subset of the coded character set of ISO/IEC 10646 intended for
combination with the preceding non-combining graphic character, or with a sequence of
combining characters preceded by a non-combining character.

diacritic
(1) A mark applied or attached to a symbol in order to create a new symbol that represents an
entirely new value; (2) a mark applied to a symbol irrespective of whether it changes the value of
that symbol. In the latter case, the diacritic usually represents an independent value (for
example, an accent, tone, or some other linguistic information). Also called diacritical mark, or
diacritical.

complex-text languages
A collective name used to designate those languages that have different layouts for processing
the text and for presenting it. The complex-text languages include the bidirectional languages
(such as Arabic, Farsi, Urdu, Hebrew, Yiddish), and Asian languages such as Thai, Lao, Korean
and the Indian ones. Because they are dealt with separately, the languages that use mainly an
ideographic script, such as Chinese and Japanese, are excluded from this definition.

4.2.1 Codesets

Commonly used codesets and encoding methods, such as ASCII, ISO 8859-1, and Japanese EUC,
include characters for a single language (writing system) or small group of languages. Because
of this, users are limited to the languages their current codeset supports. If they use ISO 8859-1,
which supports Western European languages only, it is not possible to include, say, Japanese,
Greek, or Arabic characters in their text.

Some applications and users need mixtures of languages that current codesets do not support.
The goal in creating ISO 10646 was to include all characters from all significant languages; that
is, to be what the standard calls a ‘‘Universal Multi-Octet Coded Character Set’’ (UCS). The
initial version of 10646 contains 34,168 characters covering a long list of languages, including
European, Asian ideographic, Middle Eastern, Indian, and others. It also reserves 6,400 code
spaces for private use.

ISO 10646 specifies the same codeset as Unicode (1.1)2. Unicode was developed, and is
maintained by, the Unicode Consortium, which has a wide membership base of information
technology companies. People often use ‘‘10646’’ and ‘‘Unicode’’ interchangeably, although

2. Technically speaking, Unicode (1.1) in BMP is a usage profile of ISO 10646.

28 X/Open Snapshot (1994)

Advanced Text Handling Complex Text

there are differences between the two sets.

ISO 10646 differs in some ways from codesets currently used on XPG-compliant systems. Many
currently supported codesets include portable characters as single-octet entities and with code
values matching either ISO 646 IRV:1991 or a form of EBCDIC. The ISO 646 IRV values are in
the range 0x00-0x7f (0-127 decimal). It is common for existing software to depend on one or
more ISO 646 IRV values (particularly control characters), and on the fact that such characters
are always one octet each (the de facto standard size of a byte).

Characters in ISO 10646, in contrast, are encoded in multiple octets. Code space is organised
into 128 groups of 256 planes each.

10646 allows two basic forms for characters:

• Universal Coded Character Set-2 (UCS-2). Also known as the Basic Multilingual Plane (BMP).
Characters are encoded in the lower two octets (row and cell). Predictions are that this will be
the most commonly used form of 10646.

• Universal Coded Character Set-4 (UCS-4). Characters are encoded in the full four octets.

As an example, the following table shows encodings of uppercase A in ISO 646 IRV, UCS-2, and
UCS-4:

Binary Hex
ISO 646 01000001 0x41
UCS-2 0000000001000001 0x0041
UCS-4 00000000000000000000000001000001 0x00000041

At present, the repertoire of characters available in UCS-2 and UCS-4 are exactly the same, but
that is expected to change over time.

4.2.2 Composite Sequences

In addition to the UCS-2 and UCS-4 forms, ISO 10646 also includes an encoding technique in
which multiple characters can be combined to form composite sequences. These are already
present in other standards and are designed to allow a nearly infinite variety of character
combinations. Examples of other codesets using composite sequences include ISO 6937 and
Arabic National Standards.

For example, suppose you want to encode the letter <a-acute> (lowercase a with acute accent).
This letter-with-diacritic exists in ISO 10646 (code value 0x00 0xe1), but it is also possible to
encode it as the plain ‘‘a’’ followed by an acute accent; that is:

+--------+--------+
| a | ’ | = <a-acute>
+--------+--------+

In this case, the code value of <a-acute> is:

Character: a ’
UCS-2 Code Value: 0x00 0x61 0x03 0x01

The resulting composite sequence consumes four octets; that is, two for the ‘‘a’’ and two for the
acute accent. In ISO 10646, certain characters are defined as combining marks; it is permissible to
combine these marks with any non-combining character. Any number of combining marks can
follow a base character. For example, although the following ‘‘character’’ does not exist in any
language, it is a permissible encoding in ISO 10646:

Distributed I18N Framework 29

Complex Text Advanced Text Handling

+--------+--------+--------+--------+-------+
| p | ’ | ˜ | ˆ | ‘ |
+--------+--------+--------+--------+-------+

that is, <p-acute-tilde-circumflex-grave>.

Some languages are only fully supportable in ISO 10646 through the use of combining
characters. Examples include Arabic and Thai.

Although combining characters give ISO 10646 great flexibility, they also create programming
challenges that do not exist in many commonly used codesets. Because not all suppliers want to
revise software to handle composite character sequences, ISO 10646 has three conformance
levels:

Level 1: Combining characters are not allowed.

Level 2: Combining characters are allowed for Arabic, Hebrew, Indic, and Thai scripts
only.

Level 3: Combining characters are allowed with no restrictions.

Thus, with ISO 10646, it is possible for an implementation to support one or more of the
following:

UCS-2, Level 1: Two-octet form, no combining characters

UCS-2, Level 2: Two-octet form, combining characters allowed with restrictions

UCS-2, Level 3: Two-octet form, combining characters allowed, no restrictions

UCS-4, Level 1: Four-octet form, no combining characters

UCS-4, Level 2: Four-octet form, combining characters allowed with restrictions

UCS-4, Level 3: Four-octet form, combining characters allowed, no restrictions

Unicode code elements are two octets each. Unicode has no concept of levels and is equivalent
to UCS-2, Level 3.

ISO 10646 is only used here as an example of a codeset that supports combining sequences. A
multi-locale compliant system that required to support (say) UCS-2, Level 3 or Unicode R1.1
could do so by defining these codesets as the process code in appropriate locales; that is, where
the size of wchar_t would be at least two bytes and m_mb_cur_max() would return a value of 2.
Representation on file storage could be either directly as wide characters, or encoded in one of
the Universal Transformation Formats (for example, UTF-8). Either way, to fully support these
codesets, the implementation would also require to support composite sequences.

Certain multi-locale functions are therefore defined to work correctly in locales that support
composite sequences, including:

• the m_wcsscanfor() function, for classification

• the m_towcstrans() function, for transliteration.

In addition, a completely new set of functions are included in the API to operate on code
element strings that may contain composite sequences. These functions are described in detail
later in this chapter.

30 X/Open Snapshot (1994)

Advanced Text Handling Directional and Context-sensitive Text

4.3 Directional and Context-sensitive Text
This refers to languages with a script that is directional or which may have different shaping
forms for its characters. From a directional point of view, the text is said to be in a physical order
when presented on a presentation device such as a printer or a display. In physical order, some
parts of the text (called segments) may appear to be written in a direction opposed to the general
direction of the text. For some languages, the shapes of the characters, when presented on a
presentation device, may differ according to their ability to connect with neighbouring letters.
As opposed to the physical order, text strings of such scripts have a logical order that is the order
in which the coded elements are pronounced when read or the order in which the text is usually
entered. In those languages whose script has shaping forms, the logical stream may contain
coded elements that have an encoding with a shape different to the shape rendered on a
presentation device. Sometimes the logical character streams may contain directional control
coded elements and shaping control coded elements that may be used in order to transform
between the logical stream and the physical stream. In many cases the transformation between
the logical stream and the physical stream is done based not on embedded controls but on the
context of the coded elements. Hence the term ‘‘context-sensitive text’’.

Once these external encodings are mapped to a code element string, directional introducers are
viewed as any other code elements that are primarily intended for use by presentation services.
Hence, functions based on a locale object treat these encodings just like any other code element
within a text string.

The important point being made here is that the multi-locale functions will only process text
strings correctly if they are presented in logical order. For example, any text that is in visual
order (the order presented externally) needs to be transformed into logical order before any
collation function can operate on the text.

Functions for transformation between the logical and visual ordering of text are not currently
presented in the multi-locale API. They are covered in the Layout Services snapshot. Within the
current definition, such introducers are not excluded but they are not catered for implicitly by
the multi-locale functions. Work is continuing in this and related areas.

Distributed I18N Framework 31

Composite Sequence Functions Advanced Text Handling

4.4 Composite Sequence Functions
These functions are defined to work on strings that may consist of either a composite sequence
or a single code element.

Global Locale Multi-locale
m_wcscnt()
m_wcsnext()
m_wcsquery()

wcwidth()
wcswidth() m_wcswidth()

The m_wcscnt() Function

This function counts the number of wide-character codes in a composite sequence.

size_t m_wcscnt(const AttrObject attrobj ,
const wchar_t * ptr);

If ptr points to a non-combining wide-character, this function returns the number of wide-
character codes making up the addressed code element, including the non-combining character
and all following combining characters (if any). If ptr points to a null wide-character or a
combining character, m_wcscnt() returns zero.

The m_wcsnext() Function

This function locates the next non-combining wide-character in a wide-character string.

size_t m_wcsnext(const AttrObject attrobj ,
const wchar_t * ptr);

If ptr points to a null wide-character or a combining character, this function returns zero.
Otherwise, if ptr points to a non-combining wide-character, it returns the offset to the start of the
next non-combining wide-character in the string.

The m_wcsquery() Function

This function determines the number of composite sequences in a wide-character string.

size_t m_wcsquery(const AttrObject attrobj ,
const wchar_t * ptr);

The m_wcsquery() function will return zero if either ptr points to a null wide-character, or the
wide-character string referenced by ptr does not contain any composite sequences (that is, a
non-combining character followed by one or more combining characters). Otherwise,
m_wcsquery() returns the number of composite sequences present in the string.

32 X/Open Snapshot (1994)

Advanced Text Handling Composite Sequence Functions

The m_wcswidth() Function

This function determines the width of a composite sequence in terms of column positions.

size_t m_wcswidth(const AttrObject attrobj ,
const wchar_t * ptr ,
size_t n);

It is assumed that graphic symbols are a fixed presentation column width, where the column
width of any graphic symbol is an integral multiple of a unit column width graphic symbol.

The m_wcswidth() function returns the number of column positions required by n composite
sequences in the wide-character string pointed to by ptr. If ptr points to a null wide-character or
a combining character, the function returns zero.

Distributed I18N Framework 33

Advanced Text Handling

34 X/Open Snapshot (1994)

Chapter 5

Distributed Internationalisation

This chapter deals with the requirements and proposed solutions for internationalisation within
distributed applications. This applies both to local distribution within the same system and
distribution in a hetrogeneous network.

As an example, for a client-server application to provide consistent behaviour in both its client-
part and its server-part, it must be able to replicate locale-specific behaviour in both parts. This
requires that:

• it must have some means of identifying the required locale

• it must have a mechanism for re-creating the locale

• there must be a common definition of locales that all systems in the network understand.

This misleadingly simple statement of requirements gives rise to a whole set of problems and
issues not addressed by existing standards. These and solutions proposed by a combination of
the Distributed Internationalisation Services snapshot and procedures for locale registration
are discussed in the following sections.

Distributed I18N Framework 35

The Problem Distributed Internationalisation

5.1 The Problem
Consider the the requirements of a remote procedure call (RPC) mechanism that must export its
calling locale to the server environment. It would probably want to do something like the
following:

1. announce to the server the locale of its calling environment

2. in the server, either accept the clients locale, if it can be re-created locally, or negotiate for
some other common locale, or fail if no common working method can be established

3. negotiate a common encoding and data type.

The first problem to surface is one of naming. Neither XPG4, POSIX nor ISO C define standard
locale names, other than for the default C and POSIX locales. XPG4 does include a naming
syntax as follows:

language[_territory][.codeset][@option]

However, it does not define semantics of the element settings nor any standard values. No
specific codeset support is mandated either. Collation and character classification rules are
defined in the C or POSIX locale (ASCII), and the minimum character set is also specified (the
Portable Character Set).

Secondly, not only are there no standard names for locales. there are no standard locale
definitions either. By long tradition and common practise, most implementations provide a US
ASCII locale that supports US English, US customs and either ASCII or some 8-bit codeset that
incorporates the ASCII codeset within it (for example, ISO 8859-1). This is a long way from
standard locale definitions of a type required by client-server applications.

Next come problems concerned with encodings and data types. There are no standard
encodings mandated for XPG, POSIX or ISO C conformance and the size and orientation of data
types is implementation-specific. For example, XPG4 defines that wchar_t can be an integral
value of any size, including a single-byte. This may sound incongruous, but the supply of
machines in Europe (for example) does not obviously require multi-byte support, so one or more
8-bit codesets is probably adequate.

At an even more fundamental level, the size of a byte and the char type are not fixed either. ISO
C defines a byte as a unit of data storage large enough to hold any member of the execution
environment’s basic character set, where it must be possible to express the address of each
individual byte of an object uniquely. It further defines that a byte is composed of a contiguous
sequence of bits, the length of which is implementation-defined. An object of type char is
defined to be large enough to store any member of the basic execution set (minimum 8-bits).

Being optimistic and assuming the above problems could be overcome somehow, there are
higher-level issues that also need to be considered. Imagine, for example, a multi-threaded
server trying to cope with multifarious RPC requests from a host of clients, all having different
localisation requirements. The poor old global locale would never cope, although of course we
already have an answer to this problem in the form of the multi-locale model. Indeed, the
multi-locale model is fundamental to distributed internationalisation, which is why the previous
chapters of this document have been almost exclusively devoted to describing it, and why
distributed internationalisation (the subject of this document) has not been mentioned until now.

The multi-locale functions enable a server of the type described above to manage locale and
possibly state information on a per client basis. This also works if the server is multi-layered or
object oriented.

36 X/Open Snapshot (1994)

Distributed Internationalisation The Problem

However, that does still leave one or two other not insignificant problems to be solved, namely:

• locale naming conventions

• common locale definitions

• some way of exporting locale specifications in a network-independent manner.

Distributed I18N Framework 37

Locale Naming Distributed Internationalisation

5.2 Locale Naming
The Distributed Internationalisation Services snapshot introduces the concept of a network
locale specification, which is an abstraction used for representing the name of a particular locale
as a network object. On a host system, a network locale specification is encapsulated in a
program object of type LocaleSpec. On a network, a network locale specification may be
represented as a network locale specification token of type LocaleNetToken, or as a network
locale specification string of type LocaleNetString.

Functions are provided for creating and destroying LocaleSpecs, for converting between host
locale specifications and network locale specifications, and for mapping between host
LocaleSpecs and network independent LocaleNetTokens and LocaleNetStrings (see later in this
chapter for further details).

5.2.1 String Network Locale Specifications

A network locale specification string provides a name for each category that exists within a
given locale, although not all categories from the standard list must be present. The network
locale specification string does not specify LC_ALL, which may refer to locales containing
optional categories and is therefore ambiguous, but calls out each specific locale category
instead. For example:

CTYPE=ANSI;en_US;01_00;XFN-001001;/
COLLATE=ANSI;en_US;01_00;XFN-001001;/
MESSAGES=ANSI;en_US;01_00;XFN-001001;/
MONETARY=ANSI;en_US;01_00;XFN-001001;/
NUMERIC=ANSI;en_US;01_00;XFN-001001;/
TIME=ANSI;en_US;01_00;XFN-001001;/

where:

CTYPE
COLLATE
MESSAGES
MONETARY
NUMERIC
TIME

Indicates the locale category to which the line relates.

ANSI
Indicates the registration authority for the locale specification.

en_US
Indicates the locale name.

01_00
Indicates the version and revision number of the locale specification.

XFN-001001
Indicates the registered encoding defined in the Federated Naming specification.

The full syntax of string network locale specifications is given in the Distributed
Internationalisation Services snapshot. For the purposes of this document, it is sufficient to
know that such a string can uniquely identify a locale and its contents.

38 X/Open Snapshot (1994)

Distributed Internationalisation Locale Naming

5.2.2 Token Network Locale Specifications

The size and complexity of a network locale specification string may be prohibitive in terms of
size or performance. Each locale specification, therefore, may also have associated with it a four
octet, unsigned integer value known as a Network Locale Specification Token. A token for a
given locale implies that all standard categories have the same locale name.

The four octets of a network locale specification token can broken up into two parts:

• the first two octets denote the registration authority for the token

• the last two octets give the individual token number.

This scheme permits 65,535 registration authorities, each with a registration space of 65,535
individual tokens.

5.2.3 LocaleSpec Functions

These functions provide for the generation and manipulation of host-dependent network locale
specifications (LocaleSpecs).

LocaleSpec Functions
m_createlocspec()
m_locspec_to_host ()
m_locspec_from_host ()
m_destroylocspec()

The m_createlocspec() function, defined as:

LocaleSpec *m_createlocspec(void);

returns an object of type LocaleSpec that contains an empty network locale specification. A
LocaleSpec is an object type other than an array type that can hold values representing a locale
specification. Although the content of a LocaleSpec is opaque to an application, it can be thought
of as consisting of a LocaleNetToken or LocaleNetString, and is the principle object used by
client-server programs for announcing locales in a distributed environment.

A LocaleSpec object is released by calling the m_destroylocspec() function:

int m_destroylocspec(LocaleSpec * locspec);

The m_locspec_to_host () and m_locspec_form_host () functions are used to convert between a
network locale specification and a host locale specification of the type used for calls to setlocale ()
and m_setlocale().

char *m_locspec_to_host(const LocaleSpec locspec);

int m_locspec_from_host(LocaleSpec * locspec ,
const char * s);

Thus a client application might use these functions to generate locale specifications as follows:

void foo_operation(AttrObject client_locale,
CLIENT *client_handle)

{
LocaleSpec LocSpec;

LocSpec = m_createlocspec();

Distributed I18N Framework 39

Locale Naming Distributed Internationalisation

if (m_locspec_from_host(LocSpec,
m_setlocale(client_locale, LC_ALL, NULL))

== -1) {

/*
* Client’s locale is not representable as
* a locale specification. Return an error
*/

return;
}

rpc_foo_operation(LocSpec, client_handle);
m_destroylocspec(LocSpec);

}

The client_handle is assumed to be some RPC-specific object that uniquely identifies each client
with current access to the RPC server.

The call to m_setlocale() with the locale argument set to NULL, and category set to LC_ALL,
causes the current locale settings of all locale categories associated with the locale identified by
client_locale to be returned. This is then converted to a network locale specification (LocaleSpec)
by the call to m_locspec_from_host (), and passed across the network to a matching remote server
function.

On the server side, the rpc_foo_operation () function can re-establish the client’s locale as follows:

rpc_foo_operation(localeSpec LocSpec,
struct svc_reqd *req)

{
char *host_spec;
AttrObject host_locale;

if ((host_spec = m_locspec_to_host (LocSpec))
== NULL) {

/*
* Locale is NOT known to the server.

* return an error.
*/

}

host_locale = m_createattrobj();

if (m_setlocale(host_locale, LC_ALL, host_spec)
== NULL) {

/*
* Locale is NOT supported by the server.
* Return an error.
*/

}
free(host_spec);

40 X/Open Snapshot (1994)

Distributed Internationalisation Locale Naming

m_foo(host_locale); /* do real work */
m_destroyattrobj(host_locale);

}

5.2.4 NetSpec Functions

These functions provide for conversion between host-dependent network locale specifications of
type LocaleSpec and network-independent network locale specification strings of type
LocaleNetString and network locale specification tokens of type LocaleNetToken.

NetSpec Functions
m_locspec_to_nettoken ()
m_locspec_to_netstring ()
m_locspec_from_nettoken ()
m_locspec_from_netstring()

As already stated, a LocaleSpec is a host-dependent, opaque data type that cannot safely be
communicated over a network. The m_locspec_to_nettoken () and m_locspec_to_netstring ()
functions are provided to convert a locale specification to a form that may be communicated
over a network. Conversely, the m_locspec_from_nettoken () and m_locspec_from_netstring()
functions are provided to convert from a network format (token or string) to a locale
specification.

These functions are intended for use by communication software needing to manage network
independent data mappings. The m_locspec_to_* () functions are expected to be used by client
software (for example) when transmitting locale requirements, and the m_locspec_from_*()
functions might be used by server software to re-establish a locale in the server environment.

Distributed I18N Framework 41

Locale Registration Distributed Internationalisation

5.3 Locale Registration
Currently, there is no way to specify portably which locale a user or application requires to use.
There are no standards for naming locales, other than the simple C and POSIX locales, and there
is no common agreement about which locales refer to what language, territory and codeset
combinations. Without such agreement, the distributed locale model described in the previous
section is clearly untenable.

The main aim of the X/Open Locale Registry is to obviate this shortcoming by providing a
repository where locales can be registered by appropriate bodies and implemented by suppliers
for distribution with their products. A locale registry, which both defines unique names and the
contents of locales, is vital in a distributed environment so that locale-sensitive operations on
different systems can guarantee to produce the same results.

The stated goals of the X/Open Locale Registry are therefore:

• to guarantee the same behaviour (of APIs and utilities) across different systems, with respect
to locale-sensitive operations

• to resolve the namespace collisions that can currently occur with respect to the naming of
locales by different suppliers

• to support locale-sensitive operations in a hetrogeneous network of computers

• to provide an initial set of locale definitions that support the above goals

• to promote the migration of this registry into the appropriate JTC1 authority

• to encourage the careful growth of the registry through consensus.

Within this broad set of guidelines, it is not mandated that X/Open members must supply any
published locale specifications, nor is it an aim to register every conceivable locale from every
conceivable source. Which locales are made available on any particular system is a business
decision for the supplier, although locales with registered names should produce predictable
results on any system.

The means by which the Locale Registry was established, the acceptance criteria for locale
submissions, and the syntax for locale specifications are documented in the Locale Registry
Procedures. Readers are referred to this document for further information.

42 X/Open Snapshot (1994)

Appendix A

ISO MSE Changes

ISO/IEC 9899:1990 Amendment 1:1994, Multibyte Support Extensions for ISO C, more
familiarly known as the ISO MSE, proposes a set of library extensions that provide a complete
and consistent set of utilities for application programming using multi-byte and wide characters.
Much of what is proposed in the ISO/IEC 9899:1990 Amendment 1:1994, Multibyte Support
Extensions for ISO C is similar to extensions proposed in the Distributed Internationalisation
Services snapshot, with the one important difference that the ISO/IEC 9899:1990 Amendment
1:1994, Multibyte Support Extensions for ISO C only addresses extensions to the global locale
model.

The ISO MSE working group and the X/Open-Uniforum Joint Internationalisation Working
Group have been cognizant of one another’s activities, and there have been joint meetings to
attempt to address differences between the two proposed sets of interfaces. Thus many of the
principles are common, and there is even recognizable similarities in terms of function and type
names, interface layout, and so on.

This appendix provides a brief comparison of the two sets of interfaces, highlighting both
similarities and differences. It should also be assumed that a future issue of the Portability
Guide will be aligned with the ISO MSE for global locale working.

A.1 Data Types
The ISO MSE and the Distributed Internationalisation Services snapshot define that the
following data types are defined in the header <wctype.h>,

wint_t
wctrans_t
wctype_t

and that the object type mbstate_t is added to <wchar.h>. All other Distributed
Internationalisation Services snapshot types, constants, macros and function prototypes are
included in the header <mlocale.h>. None of these are present in the MSE. In particular, the
MSE has no equivalent to the object types AttrObject, LocaleSpec, LocaleNetToken or
LocaleNetString.

Distributed I18N Framework 43

Functions ISO MSE Changes

A.2 Functions
In many cases, a multi-locale equivalent to an MSE function is obtained simply by adding m_ to
the MSE name. For example, wctrans() in the MSE is equivalent to m_wctrans() in the
Distributed Internationalisation Services snapshot, although the argument lists of an m_
function reflect multi-locale operational requirements.

The following table lists the MSE functions, followed by an indication of equivalent functions in
XPG4 and the Distributed Internationalisation Services snapshot (DISS). Again it should be
remembered that while DISS functions may appear similar to MSE functions, they are defined to
work in a multi-locale rather than a global locale environment. Hence they are normally defined
to accept a locale object argument of some kind (either associated with an AttrObject or an
mbstate_t object).

MSE XPG4 DISS
iswalnum() iswalnum()
iswalpha () iswalpha ()
iswcntrl() iswcntrl()
iswdigit () iswdigit ()
iswgraph() iswgraph()
iswlower() iswlower()
iswprint() iswprint()
iswpunct() iswpunct()
iswspace() iswspace()
iswupper() iswupper()
iswxdigit () iswxdigit ()
towlower() towlower()
towupper() towupper()
wctrans() m_wctrans()
towctrans() m_towctrans()
fwprintf()†
fwscanf()†
wprintf()
wscanf()
swprintf()†
swscanf()†
vfwprintf ()
vwprintf()
vswprintf()
fgetwc() fgetwc()
fgetws() fgetws()
fputwc() fputwc()
fputws() fputws()
getwc() getwc()
getwchar() getwchar()
putwc() putwc()
putwchar() putwchar()
ungetwc() ungetwc()
fwide()

44 X/Open Snapshot (1994)

ISO MSE Changes Functions

MSE XPG4 DISS
wcstod() wcstod() m_wcstod()
wcstol() wcstol() m_wcstol()
wcstoul() wcstoul() m_wcstoul()
wcscpy() wcscpy()
wcsncpy() wcsncpy()
wcscat() wcscat()
wcsncat() wcsncat()
wcscmp() wcscmp()
wcscoll() wcscoll() m_wcscoll()
wcsncmp() wcsncmp()
wcsxfrm() wcsxfrm() m_wcsxfrm()
wcschr() wcschr()
wcscspn() wcscspn() m_wcscspn()
wcspbrk() wcspbrk() m_wcspbrk()
wcsrchr() wcsrchr()
wcsspn() wcsspn() m_wcsspn()
wcsstr()
wcstok() wcstok() m_wcstok()
wcslen() wcslen()
wmemchr()
wmemcmp()
wmemcpy()
wmemmove()
wmemset()
wcsftime() wcsftime() m_wcsftime()
btowc()
wctob()
mbsinit()
mbrlen()#
mbrtowc()#
wcrtomb()#
mbsrtowcs()#
wcsrtombs()#

MSE functions marked with a dagger (†) in the above list are defined in the Distributed
Internationalisation Services snapshot to support multi-locale operation when the mbstate_t
object associated with the stream has been set by means of m_fattr() and has a valid locale object
associated with it. Otherwise, these functions behave as defined in the MSE.

Functions marked with a hash (#) are similarly defined; that is, MSE behaviour results if the
mbstate_t object passed as an argument refers to the global locale, multi-locale operation results
if the mbstate_t object refers to a valid locale object.

Distributed I18N Framework 45

ISO MSE Changes

46 X/Open Snapshot (1994)

Glossary

basic multilingual plane
In ISO/IEC 10646, Plane 00 of Group 00.

canonical form
In ISO 10646, the form with which characters of the coded character set are specified using four
octets to represent each character.

character
A member of a set of elements used for the organisation, control or representation of data.

character string
A contiguous sequence of characters terminated by and including the first null byte.

coded character
A code value encoded as one or more objects of type char that corresponds to a member of the
codeset of the locale.

coded character string
A contiguous sequence of coded characters terminated by and including the first null coded
character.

code element
Refers to a character encoded as either a wide-character code (of type wchar_t) or a coded
character (of type char*).

code element string
A contiguous sequence of code elements all having the same type and terminated by and
including the first null code element. A pointer to a code element string is a pointer to its initial
(lowest addressed) code element. The length of a code element string is the number of code element
objects preceding the null code element.

coded character set (codeset)
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

codeset
The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values to elements of a character set may be further controlled by state information. The
character set may contain fewer elements than the total number of possible numeric code values;
that is, some code values may be unassigned. The mapping of a unique numeric value to each
character in a particular character set.

character set
A finite set of different characters used for the representation, organisation or control of data.

combining character
A member of an identified subset of the coded character set of ISO/IEC 10646 intended for
combination with the preceding non-combining graphic character, or with a sequence of
combining characters preceded by a non-combining character.

Distributed I18N Framework 47

Glossary

composite sequence
A sequence of graphic characters consisting of a non-combining character followed by one or
more combining characters.

Notes:

1. A graphic symbol for a composite sequence generally consists of the combination
of the graphic symbols of each character in the sequence.

2. A composite sequence is not a character and therefore is not a member of the
repertoire of ISO/IEC 10646.

control character
A character, other than a graphic character, that affects the recording, processing, transmission
or interpretation of text.

diacritic
(1) A mark applied or attached to a symbol in order to create a new symbol that represents an
entirely new value; (2) a mark applied to a symbol irrespective of whether it changes the value of
that symbol. In the latter case, the diacritic usually represents an independent value (for
example, an accent, tone, or some other linguistic information). Also called diacritical mark, or
diacritical.

empty string
A string whose first byte is a null byte.

file code
The representation of text when it is stored on some external storage medium (for example,
magnetic disk). File codes are implementation-defined.

graphic character
A character, other than a control character, that has a visual representation when handwritten,
printed or displayed.

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions.

localisation
The process of establishing information within a computer system specific to the operation of
particular languages, local customs and coded character sets.

network locale specification
The abstraction for representing the name of a particular locale that is known as a network
object. On a host system, a network locale specification is of type LocaleSpec. A network locale
specification cane be either a string network locale specification or a token network locale specification.

non-spacing characters
A character, such as a character representing a diacritical mark in the ISO 6937: 1983 standard
coded character set, which is used in combination with other characters to form composite
graphic symbols.

null byte
A byte with all bits set to zero.

48 X/Open Snapshot (1994)

Glossary

null coded character
A coded character with code value zero.

null pointer
The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value does not match that of any legitimate pointer, so it is
used by many functions that return pointers to indicate an error.

null string
See empty string on page 48.

octet
An ordered sequence of eight bits considered as a unit.

portable character set
The collection of characters that are required to be present in all locales supported by X/Open-
compliant systems:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 ! # % ˆ & * () _ + - = { } []
: " ˜ ; ’ ‘ < > ? , . | \ / @ $

Also included are <alert>, <backspace>, <tab>, <newline>, <vertical-tab>, <form-feed>,
<carriage-return>, <space> and the null character, NUL.

This term is contrasted with the smaller portable filename character set.

portable filename character set
The set of characters from which portable filenames are constructed. For a filename to be
portable across implementations conforming to the XBD specification and the ISO POSIX-1
standard, it must consist only of the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore and hyphen characters, respectively. The
hyphen must not be used as the first character of a portable filename. Upper- and lower-case
letters retain their unique identities between conforming implementations. In the case of a
portable pathname, the slash character may also be used.

process code
The representation of text when it is manipulated by a program (for example, for classification,
conversion, comparison, and so on). Process codes are implementation-defined.

script
A set of graphic characters used for the written form of one or more languages.

string
A contiguous sequence of bytes terminated by and including the first null byte.

string network locale specification
A character string of type LocaleNetString that unambiguously represents the contents of any
locale across the network. The string network locale specification of a locale is invariant across
the network and is encoded using the ISO 646 International Reference Version (IRV) codeset.

token network locale specification
A shorthand way of identifying a string network locale specification. A token network locale
specification is of type LocaleNetToken. Not every possible locale has a token network locale

Distributed I18N Framework 49

Glossary

specification allocated. A token network locale specification for a locale that has been allocated a
token, is invariant across the network.

wide-character code
An integer value corresponding to a single graphic symbol or control code.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

50 X/Open Snapshot (1994)

Index

basic multilingual plane..47
canonical form...47
character ...47
character set ...47
character string..47
classification function..17
code element..10, 47
code element string..10, 47
coded character...10, 47
coded character set (codeset)47
coded character string10, 47
codeset ..28, 47
combining character ..28, 47
complex text ..28

codesets ..28
composite sequence ...29

complex-text languages ..28
composite sequence28-29, 48
composite sequence function.................................32
context-sensistive text ...31
control character ...48
data type...43
date formatting function...22
diacritic ...28, 48
directional text ..31
distributed internationalisation.............................35
empty string...48
extended wide-character conversion function...25
file code...48
formatted I/O function ...24
function...44
global locale ...3

layered software ...6
object-oriented software5
stateful encodings...7
summary ..7
threaded software...6

graphic character ..48
internationalisation ..48
introduction ...1
layered software..6
locale..48

definition ..3
locale information function15
locale management function..................................13
locale naming ..38

locale registration ...42
LocaleSpec function ...39
localisation ...48
monetary formatting function22
MSE change..43

data types ...43
functions...44

multi-locale function
classification ..17
date formatting ...22
extended wide-character conversion25
formatted I/O ...24
locale information ..15
locale management ..13
monetary formatting ...22
number conversion ..23
string comparison...21
string searching...20
text parsing ..23
text scanning..23
time formatting...22
transliteration..19

multi-locale model..9
definitions ..10
program flow...11
terms..10

NetSpec function ..41
network locale specification.............................38, 48

string ...38
token..39

non-spacing characters..48
null byte..48
null coded character...10, 49
null pointer...49
null string ...49
number conversion function..................................23
object-oriented software..5
octet ...49
portable character set...49
portable filename character set..............................49
process code...49
script..49
setlocale() ...4
stateful encodings...7
string..49
string comparison function21

Distributed I18N Framework 51

Index

string network locale specification49
string searching function ..20
text parsing function..23
text scanning function ...23
threaded software...6
time formatting function...22
token network locale specification49
transliteration function..19
wide-character code...50
wide-character string...50

52 X/Open Snapshot (1994)

