
Snapshot

Distributed Transaction Processing: The XA+ Specification

Version 2

The Open Group

 June 1994, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Snapshot

Distributed Transaction Processing: The XA+ Specification Version 2

ISBN: 1-85912-046-6
Document Number: S423

Published in the U.K. by The Open Group, June 1994.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Snapshot (1994)

Contents

Chapter 1 Introduction... 1
 1.1 X/Open DTP Model... 1
 1.2 XA Interface ... 2

Chapter 2 Model and Definitions.. 3
 2.1 X/Open DTP Model... 3
 2.1.1 Functional Components ... 4
 2.1.2 Interfaces between Functional Components...................................... 5
 2.2 Definitions .. 7
 2.2.1 Transaction .. 7
 2.2.2 Transaction Properties .. 7
 2.2.3 Distributed Transaction Processing ... 7
 2.2.4 Global Transactions ... 8
 2.2.5 Transaction Branches .. 8
 2.2.6 Data Interfaces.. 8
 2.2.7 Thread of Control .. 9
 2.2.8 Tightly- and Loosely-coupled Threads ... 9
 2.3 Transaction Completion and Recovery.. 10
 2.3.1 Rolling Back the Global Transaction.. 10
 2.3.2 Protocol Optimisations ... 10
 2.3.3 Heuristic Branch Completion.. 11
 2.3.4 Failures and Recovery... 11

Chapter 3 Interface Overview.. 13
 3.1 Index to Services in the XA and XA+ Interfaces 14
 3.2 Opening and Closing Resource Managers .. 16
 3.3 Association of Threads with Transaction Branches............................. 17
 3.3.1 Transaction Context .. 19
 3.3.2 Registration of Resource Managers ... 19
 3.4 Branch Creation... 20
 3.4.1 Transaction Manager Managed Transaction Branches 20
 3.4.2 Communication Resource Manager Managed Transaction

 Branches... 20
 3.5 Branch Completion... 22
 3.5.1 Transaction Chaining.. 23
 3.5.2 Communication Resource Manager Managed Transaction

 Branches... 23
 3.5.3 Transaction Commitment and Rollback in Subordinates 23
 3.6 Synchronous, Non-blocking and Asynchronous Modes.................... 24
 3.6.1 Synchronous ... 24
 3.6.2 Non-blocking.. 24
 3.6.3 Asynchronous... 24

Distributed Transaction Processing: The XA+ Specification Version 2 iii

Contents

 3.7 Failure Recovery ... 25
 3.8 Shutdown Processing... 25

Chapter 4 The <xa.h> Header .. 27
 4.1 Naming Conventions... 27
 4.2 Transaction Identification ... 28
 4.3 XA Options... 29
 4.4 Resource Manager Switch... 29
 4.5 Transaction Manager Switch .. 31
 4.6 Flag Definitions ... 33
 4.7 Maximum Values.. 34
 4.8 Return Codes ... 34

Chapter 5 Reference Manual Pages.. 39
 ax_add_branch () .. 40
 ax_commit() ... 41
 ax_done().. 44
 ax_end().. 46
 ax_forget_branch () .. 49
 ax_get_branch_info () .. 50
 ax_prepare() ... 51
 ax_ready () .. 53
 ax_recover().. 55
 ax_reg() .. 57
 ax_rollback () .. 60
 ax_set_branch_info ()... 63
 ax_start ().. 65
 ax_unreg().. 68
 xa_close ().. 69
 xa_commit() ... 71
 xa_complete () ... 75
 xa_done().. 77
 xa_end().. 79
 xa_forget ().. 82
 xa_open().. 84
 xa_prepare() ... 86
 xa_ready () .. 89
 xa_recover().. 91
 xa_rollback () .. 93
 xa_start ().. 96
 xa_wait () .. 100
 xa_wait_recovery ().. 102

Chapter 6 State Tables.. 103
 6.1 Resource Manager Initialisation.. 104
 6.2 Association of Threads of Control with Transactions......................... 105
 6.2.1 Dynamic Registration of Threads... 106
 6.3 Transaction States ... 107

iv Snapshot (1994)

Contents

 6.4 Asynchronous Operations .. 110

Chapter 7 Implementation Requirements ... 111
 7.1 Application Program Requirements... 111
 7.2 Resource Manager Requirements.. 112
 7.2.1 The Application Program (Native) Interface 114
 7.3 Transaction Manager Requirements... 115

Appendix A Complete Text of <xa.h>.. 117

Appendix B Scenarios.. 125
 B.1 Single-step Client/Server Interaction... 126
 B.2 Peer-to-Peer Transaction Mandatory Propagation 129
 B.3 Peer-to-Peer Two-Phase Commit Chained Transaction 132
 B.4 Network Failure - Client Decided, Subordinate Initiated

 Recovery ... 135
 B.5 Network Failure - Client Decided, Coordinator Initiated

 Recovery ... 138
 B.6 Network Failure - Heuristic Damage During Subordinate

 Initiated Recovery... 140

 Index... 145

List of Figures

2-1 Functional Components and Interfaces .. 3
3-1 The XA and XA+ Interfaces ... 13

List of Tables

6-1 State Table for Resource Manager Initialisation...................................... 104
6-2 State Table for Transaction Branch Association 105
6-3 State Table for Transaction Branch Association

(Dynamic Registration) .. 106
6-4 State Table for Transaction Branches ... 108
6-5 State Table for Asynchronous Operations.. 110

Distributed Transaction Processing: The XA+ Specification Version 2 v

Contents

vi Snapshot (1994)

Preface

The Open Group

The Open Group is an international open systems organization that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organizations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organizations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Distributed Transaction Processing: The XA+ Specification Version 2 vii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

viii Snapshot (1994)

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Distributed Transaction Processing: The XA+ Specification Version 2 ix

Preface

This Document

This document is a Snapshot (see above), which is an updated, working version of the CAE
Specification, Distributed Transaction Processing: The XA Specification issued in December,
1991. The XA interface is the bidirectional interface between a transaction manager and resource
managers. This specification reflects work in progress to extend the XA interface to support
communication resource managers.

The extensions allow a communication resource manager to create transaction branches, to
propagate transaction branches to a subordinate component consisting of an application
program, a transaction manager, and one or more resource managers, and to propagate the
transaction completion protocol to a subordinate transaction manager.

This specification is structured as follows:

• Chapter 1 is an introduction.

• Chapter 2 provides fundamental definitions for the remainder of the document.

• Chapter 3 is an overview of the XA interface.

• Chapter 4 discusses the data structures that are part of the XA interface.

• Chapter 5 contains reference manual pages for each routine in the XA interface.

• Chapter 6 contains state tables.

• Chapter 7 summarises the implementation requirements and identifies optional features.

• Appendix A is the code of the header file required by XA routines.

• Appendix B provides some example scenarios.

There is an index at the end.

Intended Audience

This document is of interest to implementors of the XA interface including transaction manager
implementors, resource manager implementors, and communication resource manager
implementors.

All readers are expected to be familiar with the X/Open documents Distributed Transaction
Processing: Reference Model, Version 2 and Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

x Snapshot (1994)

Preface

• The notation <file.h> indicates a C-language header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values, which may be declared in appropriate C-language header files by
means of the C #define construct.

• The notation [ABCD] is used to identify a coded return value.

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

Superseded Documents

This Version 2 Snapshot supersedes the previous version of the X/Open Distributed
Transaction Processing XA+ Specification published in 1993. Since that version, X/Open has
added the Transaction Manager Switch, added facilities to pass timeout values, and aligned the
introductory chapters of the specification with the revised guide: Distributed Transaction
Processing: Reference Model, Version 2

Distributed Transaction Processing: The XA+ Specification Version 2 xi

Trademarks

Motif, OSF/1 and UNIX are registered trademarks and the ‘‘X Device’’TM and The Open
GroupTM are trademarks of The Open Group.

xii Snapshot (1994)

Referenced Documents

The following standards are referenced in this specification:

ASN.1
ISO 8824: 1987, Information Processing Systems — Open Systems Interconnection —
Specification of Abstract Syntax Notation One (ASN.1).

ASN.1 Extensions
ISO/IEC 8824/DAD 1: 1988, Information Processing Systems — Open Systems
Interconnection — Specification of Abstract Syntax Notation One (ASN.1), Addendum
1:ASN.1 Extensions.

BER
ISO 8825: 1987, Information Processing Systems — Open Systems Interconnection —
Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including:
Amendment 1: 1995 (E), C Integrity (Multibyte Support Extensions (MSE) for ISO C).

OSI CCR

ISO/IEC 9804
ISO/IEC 9804: 1990, Information Technology — Open Systems Interconnection —
Service Definition for the Commitment, Concurrency, and Recovery Service Element,
together with:

Technical Corrigendum 1: 1991 to ISO/IEC 9804: 1990
Amendment 2: 1992 to ISO/IEC 9804: 1990 Session mapping changes.

ISO/IEC 9805
ISO/IEC 9805: 1990, Information Technology — Open Systems Interconnection —
Protocol Specification for the Commitment, Concurrency, and Recovery Service
Element, together with:

Technical Corrigendum 1: 1991 to ISO/IEC 9805: 1990
Technical Corrigendum 2: 1992 to ISO/IEC 9805: 1990
Amendment 2: 1992 to ISO/IEC 9805: 1990 Session mapping changes.

OSI TP Model
ISO/IEC 10026-1: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 1: OSI TP Model.

OSI TP Service
ISO/IEC 10026-2: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 2: OSI TP Service.

OSI TP Protocol
ISO/IEC 10026-3: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 3: Protocol Specification.

The following X/Open documents are referenced in this specification:

CPI-C
Forthcoming X/Open Specification, expected to be published in 1994, Common
Programming Interface Communications Specification. This document is expected to have

Distributed Transaction Processing: The XA+ Specification Version 2 xiii

Referenced Documents

the same technical content as the CPI-C Implementors’ Workshop specification of the same
title.

This information is currently documented in the X/Open CAE Specification, February 1992,
CPI-C (ISBN: 1-872630-35-9, C210) and the X/Open Snapshot, December 1992, Distributed
Transaction Processing: The Peer-to-Peer Specification (ISBN: 1-872630-79-0, S214).

DTP
Guide, February 1996,, Distributed Transaction Processing: Reference Model, Version 3
(ISBN: 1-85912-170-5, G504).

Peer-to-Peer
Snapshot, December 1992, Distributed Transaction Processing: The Peer-to-Peer
Specification (ISBN: 1-872630-79-0, S214).

SQL
CAE Specification, August 1992, Structured Query Language (SQL) (ISBN: 1-872630-58-8,
C201).

TX
CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN: 1-85912-094-6, C504).

TxRPC
Preliminary Specification, July 1993, Distributed Transaction Processing: The TxRPC
Specification (ISBN: 1-85912-000-8, P305).

XA
CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193).

XAP-TP
The XAP-TP Transaction Processing API is a forthcoming X/Open Preliminary Specification
that is expected to be published in 1993 (ISBN: 1-872630-8-55, P216)

XATMI
Preliminary Specification, July 1993, Distributed Transaction Processing: The XATMI
Specification (ISBN: 1-872630-99-5, P306).

xiv Snapshot (1994)

Chapter 1

Introduction

This document represents the interim results of X/Open’s technical activity to extend the XA
interface, principally to address the requirements of communication resource managers. The
extended XA interface includes all of the capability described in the referenced XA specification
and additional functions. X/Open technical activity may result in a new XA specification based
on this snapshot. In this document, all references to the XA interface mean the extended
interface described herein.

1.1 X/Open DTP Model
The X/Open Distributed Transaction Processing (DTP) model is a software architecture that
allows multiple application programs to share resources provided by multiple resource
managers, and allows their work to be coordinated into global transactions.

The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and specifies actions
that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which provide access to
resources

• a Transaction Manager (TM), which assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and for coordinating failure
recovery

• Communication Resource Managers (CRMs), which control communication between
distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication services used by
distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable Application Programming
Interfaces (APIs) and system-level interfaces that facilitate:

• portability of application program source code to any X/Open environment that offers those
APIs

• interchangeability of TMs, RMs and CRMs from various sources

• interoperability of diverse TMs, RMs and CRMs in the same global transaction.

Chapter 2 defines each component in more detail and illustrates the flow of control.

Distributed Transaction Processing: The XA+ Specification Version 2 1

XA Interface Introduction

1.2 XA Interface
The XA interface is the bidirectional interface between a transaction manager and a resource
manager. The XA interface is not an ordinary Application Programming Interface (API). It is a
system-level interface between DTP software components. This specification addresses the
model presented in Section 2.1 on page 3, and discusses aspects of the model that pertain to a
resource manager, such as a communication resource manager, acting as a superior as well as a
subordinate to the transaction manager. X/Open anticipates that heterogeneous TMs will use a
communication resource manager (by means of the extended XA specification) for
communication of DTP information and application data. Such communication involves
extensions to the XA specification and involves a more detailed explanation of the DTP model.

Other DTP interfaces for direct use by an application program are the subject of other
publications (see Section 2.1 on page 3 for an overview).

Relevant definitions and other important concepts are discussed in Chapter 2. This chapter also
defines the AP, TM and RM in more detail, and describes their interaction. For an overview of
the XA interface, describing the situations in which each of the services is used, refer to Chapter
3. The data structures that are part of the XA interface are discussed in Chapter 4. Reference
manual pages for each function in the XA interface are presented in Chapter 5; state tables
follow in Chapter 6. For information about the implications of this specification on the
implementors of RMs and TMs refer to Chapter 7, which also identifies features that are
optional. The contents of an <xa.h> header file, in both ISO C and Common Usage C, are given
in Appendix A. There are some example scenarios in Appendix B.

2 Snapshot (1994)

Chapter 2

Model and Definitions

This chapter discusses the XA interface in general terms and provides necessary background
material for the rest of the specification. The chapter shows the relationship of the interface to
the X/Open DTP model. The chapter also states the design assumptions that the interface uses
and shows how the interface addresses common DTP concepts.

2.1 X/Open DTP Model
The boxes in the figure below are the functional components and the connecting lines are the
interfaces between them. The arrows indicate the directions in which control may flow.

Figure 2-1 Functional Components and Interfaces

Descriptions of the functional components shown can be found in Section 2.1.1 on page 4. The
numbers in brackets in the above figure represent the different X/Open interfaces that are used
in the model. They are described in Section 2.1.2 on page 5.

For more details on this model and diagram, including detailed definitions of each component,
see the referenced DTP guide.

Distributed Transaction Processing: The XA+ Specification Version 2 3

X/Open DTP Model Model and Definitions

2.1.1 Functional Components

Application Program (AP)

The application program (AP) implements the desired function of the end-user enterprise. Each
AP specifies a sequence of operations that involves resources such as databases. An AP defines
the start and end of global transactions, accesses resources within transaction boundaries, and
normally makes the decision whether to commit or roll back each transaction.

Where two or more APs cooperate within a global transaction, the X/Open DTP model supports
three paradigms for AP to AP communication. These are the TxRPC, XATMI and Peer-to-Peer
interfaces.

Transaction Manager (TM)

TMs manage global transactions, coordinate the decision to commit them or roll them back, and
coordinate failure recovery. The AP defines the start and end of a global transaction by calling a
TM. The TM assigns an identifier (XID) to the global transaction (see Section 2.2.6 on page 8).
The TM manages global transactions and informs each RM of the XID on behalf of which the RM
is doing work. Although RMs can manage their own recoverable work units as they see fit, each
RM must accept XIDs and associate them with those work units. In this way, an RM knows
what recoverable work units to complete when the TM completes a global transaction. If the
RM is a Communication Resource Manager (CRM), it passes XIDs to partner, subordinate CRMs
when performing communication between two APs.

Resource Manager (RM)

The resource manager (RM) manages a defined part of the computer’s shared resources. These
may be accessed using services that the RM provides. Examples for RMs are database
management systems (DBMSs), a file access method such as X/Open ISAM, and a print server.

In the X/Open DTP model, RMs structure all changes to the resources they manage as
recoverable and atomic transactions. They let the TM coordinate completion of these
transactions atomically with work done by other RMs.

A single RM may divide its resources into separate resource partitions called resource domains. If
these resource domains need and support independent transaction completion, the concept of
RM instances is used. An RM instance is known to the TM by the address of its xa_switch_t
structure (see Section 4.4 on page 29). Multiple RM instances may share the same xa_switch_t
structure; but its address is made known to the TM multiple times. (See also Section 3.2 on page
16.) Unless specified otherwise, operations this specification allows on an RM are allowed on
each RM instance.

4 Snapshot (1994)

Model and Definitions X/Open DTP Model

Communication Resource Manager (CRM)

A CRM allows an instance of the model to access another instance either inside or outside the
current TM Domain. Within the X/Open DTP model, CRMs use OSI TP services to provide a
communication layer across TM Domains. CRMs aid global transactions by supporting the
following interfaces:

• the communication paradigm (TxRPC, XATMI or Peer-to-Peer) used between an AP and
CRM

• XA+ communication between a TM and CRM

• XAP-TP communication between a CRM and OSI TP.

A CRM may support more than one type of communication paradigm, or a TM Domain may use
different CRMs to support different paradigms. The XA+ interface provides global transaction
information across different instances and TM Domains. The CRM allows a global transaction to
extend to another TM Domain, and allows TMs to coordinate global transaction commit and
abort requests from (usually) the superior AP. Using the above interfaces, information flows
from superior to subordinate and vice versa.

2.1.2 Interfaces between Functional Components

There are six interfaces between software components in the X/Open DTP model. The numbers
correspond to the numbers in Figure 2-1 on page 3.

(1) AP-RM. The AP-RM interfaces give the AP access to resources. X/Open interfaces, such as
SQL and ISAM, provide AP portability. The X/Open DTP model imposes few constraints
on native RM APIs. The constraints involve only those native RM interfaces that define
transactions. (See the referenced XA specification.)

(2) AP-TM. The AP-TM interface (the TX interface) provides the AP with an Application
Programming Interface (API) by which the AP coordinates global transaction management
with the TM. For example, when the AP calls tx_begin() the TM informs the participating
RMs of the start of a global transaction. After each request is completed, the TM provides a
return value to the AP reporting back the success or otherwise of the TX call.

For details of the AP-TM interface, see the referenced TX specification.

(3) TM-RM. The TM-RM interface (the XA interface) lets the TM structure the work of RMs
into global transactions and coordinate completion or recovery. The XA interface is the
bidirectional interface between the TM and RM.

The functions that each RM provides for the TM are called the xa_*() functions. For
example, the TM calls xa_start () in each participating RM to start an RM-internal
transaction as part of a new global transaction. Later, the TM may call in sequence xa_end(),
xa_prepare() and xa_commit() to coordinate a (successful in this case) two-phase commit
protocol. The functions that the TM provides for each RM are called the ax_*() functions.
For example, an RM calls ax_reg() to register dynamically with the TM.

For details of the TM-RM interface, see the referenced XA specification.

Distributed Transaction Processing: The XA+ Specification Version 2 5

X/Open DTP Model Model and Definitions

(4) TM-CRM. The TM-CRM interface (the XA+ interface) supports global transaction
information flow across TM Domains. In particular TMs can instruct CRMs by use of xa_*()
function calls to suspend or complete transaction branches, and to propagate global
transaction commitment protocols to other transaction branches. CRMs pass information to
TMs in subordinate branches by use of ax_*() function calls. CRMs also use ax_*() function
calls to request the TM to create subordinate transaction branches, to save and retrieve
recovery information, and to inform the TM of the start and end of blocking conditions.

The XA+ interface is a superset of the XA interface and supersedes its purpose. Since the
XA+ interface is invisible to the AP, the TM and CRM may use other methods to
interconnect without affecting application portability.

(5) AP-CRM. X/Open provides portable APIs for DTP communication between APs within a
global transaction. The API chosen can significantly influence (and may indeed be
fundamental to) the whole architecture of the application. For this reason, these APIs are
frequently referred to in this document and elsewhere as communication paradigms . In
practice, each paradigm has unique strengths, so X/Open offers the following popular
paradigms:

• the TxRPC interface (see the referenced TxRPC specification)

• the XATMI interface (see the referenced XATMI specification)

• the Peer-to-Peer interface (see the referenced Peer-to-Peer specification).

Note: The Peer-to-Peer interface is expected to be aligned with the referenced CPI-C
specification.

X/Open interfaces, such as the CRM APIs listed above, provide application portability. The
X/Open DTP model imposes few constraints on native CRM APIs.

(6) CRM-OSI TP. This interface (the XAP-TP interface) provides a programming interface
between a CRM and Open Systems Interconnection Distributed Transaction Processing (OSI
TP) services. XAP-TP interfaces with the OSI TP Service and the Presentation Layer of the
seven-layer OSI model. X/Open has defined this interface to support portable
implementations of application-specific OSI services. The use of OSI TP is mandatory for
communication between heterogeneous TM domains. For details of this interface, see the
referenced XAP-TP specification and the OSI TP standards.

6 Snapshot (1994)

Model and Definitions Definitions

2.2 Definitions
For additional definitions see the DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks, which
may include user interface, data retrieval and communication. A typical transaction modifies
shared resources. (The OSI TP standard (model) defines transactions more precisely.)

Transactions must be able to be rolled back . A human user may roll back the transaction in
response to a real-world event, such as a customer decision. A program can elect to roll back a
transaction. For example, account number verification may fail or the account may fail a test of
its balance. Transactions also roll back if a component of the system fails, keeping it from
retrieving, communicating or storing data. Every DTP software component subject to
transaction control must be able to undo its work in a transaction that is rolled back at any time.

When the system determines that a transaction can complete without failure of any kind, it
commits the transaction. This means that changes to shared resources take permanent effect.
Either commitment or rollback results in a consistent state. Completion means either
commitment or rollback.

2.2.2 Transaction Properties

Transactions typically exhibit the following properties:

Atomicity This means that the results of the transaction’s execution are either all
committed or all rolled back.

Consistency This means that a completed transaction transforms a shared resource from
one valid state to another valid state.

Isolation This means that changes to shared resources that a transaction effects do not
become visible outside the transaction until the transaction commits.

Durability This means the changes that result from transaction commitment survive
subsequent system or media failures.

These properties are known by their initials as the ACID properties. In the X/Open DTP model,
the TM coordinates Atomicity at global level whilst each RM is responsible for the Atomicity,
Consistency, Isolation and Durability of its resources.

2.2.3 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a single
transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work done
anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work done
anywhere on behalf of the transaction. The decision must have uniform effect throughout
the DTP system.

Even though an RM may have an X/Open-compliant interface such as Structured Query
Language (SQL), it must also address these two items to be useful in the DTP environment.

Distributed Transaction Processing: The XA+ Specification Version 2 7

Definitions Model and Definitions

2.2.4 Global Transactions

Every RM in the DTP environment must support transactions as described in Section 2.2.1 on
page 7. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work. This unit
of work is a global transaction . For example, an AP might request updates to several different
databases. Work occurring anywhere in the system must be committed atomically. Each RM
must let the TM coordinate the RM’s recoverable units of work that are part of a global
transaction.

Commitment of an RM’s internal work depends not only on whether its own operations can
succeed, but also on operations occurring at other RMs, perhaps remotely. If any operation fails
anywhere, every participating RM must roll back all operations it did on behalf of the global
transaction. A given RM is typically unaware of the work that other RMs are doing. A TM
informs each RM of the existence, and directs the completion, of global transactions. An RM is
responsible for mapping its recoverable units of work to the global transaction.

2.2.5 Transaction Branches

A global transaction has one or more transaction branches (or branches). A branch is a part of the
work in support of a global transaction for which the TM and the RM engage in a separate but
coordinated transaction commitment protocol (see Section 2.3 on page 10). Each of the RM’s
internal units of work in support of a global transaction is part of exactly one branch.

A global transaction might have more than one branch when, for example, the AP uses a CRM to
communicate with remote applications. The CRM asks the TM to create a new transaction
branch prior to accessing a remote AP for the first time. Subsequent accesses to the same remote
AP are typically done within the same transaction branch. Accesses to different remote APs are
typically done in separate transaction branches.

After the TM begins the transaction commitment protocol, the RM receives no additional work
to do on that transaction branch. The RM may receive additional work on behalf of the same
transaction, from different branches. The different branches are related in that they must be
completed atomically. However, the TM directs the commitment protocol for each branch
separately. That is, an RM receives a separate commitment request for each branch.

Each transaction branch identifier (or XID — see Section 2.2.6) that the TM gives the RM
identifies both a global transaction and a specific branch. The RM may use this information to
optimise its use of shared resources and locks.

2.2.6 Data Interfaces

Transaction Identifier

A transaction identifier (XID) is a data structure that a TM assigns. It represents the unique
relationship between an AP, the work it issues to RMs, and the global transaction which the TM
manages on behalf of the AP.

The XID lets the TM track and coordinate all of the work associated with a global transaction.
Each RM maps the XID to the RM-internal work it does for the global transaction. To ensure
global uniqueness, the XID should contain atomic action identifiers as specified in the referenced
OSI CCR standard. For more information on XIDs, see Section 3.4 on page 20. For details of the
structure itself, see Section 4.2 on page 28.

8 Snapshot (1994)

Model and Definitions Definitions

XA Switch Structure

Each RM provides a set of pointers to the functions that the TM calls, in a data structure known
as the XA Switch structure.

2.2.7 Thread of Control

A thread of control (or a thread) is the entity, with all its context, that is currently in control of a
processor. The context may include locks on shared resources and open files. For portability
reasons, the notion of thread of control must be common among the AP, TM and RM.

The thread concept is central to the TM’s coordination of RMs. APs call RMs to request work,
while TMs call RMs to delineate transaction branches. The way the RM knows that a given
work request pertains to a given branch is that the AP and the TM both call it from the same
thread of control . For example, an AP thread calls the TM to declare the start of a global
transaction. The TM records this fact and informs RMs. After the AP regains control, it uses the
native interface of one or more RMs to do work. The RM receives the calls from the AP and TM
in the same thread of control.

Certain XA functions, therefore, must be called from a particular thread. The reference manual
pages in Chapter 5 indicate which functions require this.

2.2.8 Tightly- and Loosely-coupled Threads

Many application threads of control can participate in a single global transaction. All the work
done in these threads is atomically completed. Within a single global transaction, the
relationship between any pair of participating threads is either tightly-coupled or loosely-coupled :

• A tightly-coupled relationship is one where a pair of threads are designed to share resources.
In addition, with respect to an RM’s isolation policies, the pair are treated as a single entity
because they share a common transaction branch. Thus, for a pair of tightly-coupled threads,
the RM must guarantee that resource deadlock does not occur within the transaction branch.

• A loosely-coupled relationship provides no such guarantee since the threads are assigned to
separate transaction branches. With respect to an RM’s isolation policies, the pair may be
treated as if they were in separate global transactions even though the work is atomically
completed.

Within a single global transaction, a set of tightly-coupled threads may consist of more than just
a pair. Moreover, many sets of tightly-coupled threads may exist within the same global
transaction and each set is loosely coupled with respect to the others. The reference manual
pages in Chapter 5 indicate how a TM communicates these relationships to an RM.

Distributed Transaction Processing: The XA+ Specification Version 2 9

Transaction Completion and Recovery Model and Definitions

2.3 Transaction Completion and Recovery
TMs and RMs use two-phase commit with presumed rollback, as defined by the OSI TP
standard (model).

In Phase 1, the TM asks all RMs to prepare to commit (or prepare) transaction branches. This asks
whether the RM can guarantee its ability to commit the transaction branch. An RM may have to
query other entities internal to that RM. CRMs are asked to prepare transaction branches that
they created. (See Section 2.2.5 on page 8.) This involves sending the prepare request to the
remote site and receiving the outcome.

If an RM can commit its work, it records stably the information it needs to do so, then replies
affirmatively. CRMs usually do not need to stably record the results of their operations because
of the way the two-phase commit protocol with presumed rollback works. The TM must stably
record information about transaction branches created by CRMs when it decides to commit after
Phase 1.

A negative reply from an RM reports failure for any reason. After making a negative reply and
rolling back its work, the RM can discard any knowledge it has of the transaction branch.

In Phase 2, the TM issues all RMs an actual request to commit or roll back the transaction
branch, as the case may be. CRMs are asked to commit or roll back transaction branches that
they created. (See Section 2.2.5 on page 8.) This involves sending the commit or rollback request
to the remote site and receiving the outcome. (Before issuing requests to commit, the TM stably
records the fact that it decided to commit, as well as a list of all involved RMs and any
subordinate transaction branches that they created.) All RMs commit or roll back changes to
shared resources and then return status to the TM. The TM can then discard its knowledge of
the global transaction.

2.3.1 Rolling Back the Global Transaction

The TM rolls back the global transaction if any RM responds negatively to the Phase 1 request,
or if the AP directs the TM to roll back the global transaction. Therefore, any negative response
vetoes the global transaction. A negative response concludes an RM’s involvement in the global
transaction.

The TM effects Phase 2 by telling all RMs to roll back transaction branches. They must not let
any changes to shared resources become permanent. The TM does not issue Phase 2 requests to
RMs that responded negatively in Phase 1. The TM does not need to record stably the decision
to roll back nor the participants in a rolled back global transaction.

2.3.2 Protocol Optimisations

• Read-only
An RM can respond to the TM’s prepare request by asserting that the RM was not asked to
update shared resources in this transaction branch. This response concludes the RM’s
involvement in the transaction; the Phase 2 dialogue between the TM and this RM does not
occur. The TM need not stably record, in its list of participating RMs, an RM that asserts a
read-only role in the global transaction.

However, if the RM returns the read-only optimisation before all work on the global
transaction is prepared, global serialisability1 cannot be guaranteed. This is because the RM

1. Serialisability is a property of a set of concurrent transactions. For a serialisable set of transactions, at least one serial sequence of
the transactions exists that produces identical results, with respect to shared resources, as does concurrent execution of the
transaction.

10 Snapshot (1994)

Model and Definitions Transaction Completion and Recovery

may release transaction context, such as read locks, before all application activity for that
global transaction is finished.

A CRM can assert that it is not a participant in the transaction branch active in a particular
thread when the TM suspends or ends the thread’s association with the transaction branch.
The CRM is not considered a participant unless it becomes reassociated with the transaction
branch. This assertion may allow a TM to make a One-Phase Commit optimisation described
below.

• One-Phase Commit
A TM can use one-phase commit if it knows that there is only one RM anywhere in the DTP
system that is making changes to shared resources. In this optimisation, the TM makes its
Phase 2 commit request without having made a Phase 1 prepare request. Since the RM
decides the outcome of the transaction branch and forgets about the transaction branch
before returning to the TM, there is no need for the TM to record stably these global
transactions and, in some failure cases, the TM may not know the outcome.

2.3.3 Heuristic Branch Completion

Some RMs may employ heuristic decision-making: an RM that has prepared to commit a
transaction branch may decide to commit or roll back its work independently of the TM. It
could then unlock shared resources. This may leave them in an inconsistent state. When the TM
ultimately directs an RM to complete the branch, the RM may respond that it has already done
so. The RM reports whether it committed the branch, rolled it back, or completed it with mixed
results (committed some work and rolled back other work).

An RM that reports heuristic completion to the TM must not discard its knowledge of the
transaction branch. The TM calls the RM once more to authorise it to forget the branch. This
requirement means that the RM must notify the TM of all heuristic decisions, even those that
match the decision the TM requested.

The OSI TP standards (Model) and (Service) define heuristics more precisely.

2.3.4 Failures and Recovery

A useful DTP system must be able to recover from a variety of failures. A storage device or
medium, a communication path, a node or a program could fail.

Failures that a node can correct internally may not affect a global transaction.

Failures that do not disrupt the commitment protocol let the DTP system respond by rolling
back appropriate global transactions. For example, an RM recovering from a failure responds
negatively to a prepare request based on the fact that it does not recognise the XID.

More significant failures may disrupt the commitment protocol. The TM typically senses the
failure when an expected reply does not arrive.

Failure and recovery processing in an X/Open DTP system is compatible with the OSI TP
standards, which define the presumed-rollback protocol. The X/Open DTP model makes these
assumptions:

• TMs and RMs (except for CRMs) have access to stable storage.

• TMs coordinate and control recovery.

• RMs (except for CRMs) provide for their own restart and recovery of their own state. On
request, an RM must give a TM a list of XIDs that the RM has prepared for commitment or
has heuristically completed. Also on request, a TM must give a CRM a list of XIDs for which
the TM has information logged on behalf of the CRM.

Distributed Transaction Processing: The XA+ Specification Version 2 11

Transaction Completion and Recovery Model and Definitions

12 Snapshot (1994)

Chapter 3

Interface Overview

This chapter gives an overview of the XA and XA+ interfaces. In an X/Open DTP system, XA is
the interface between a TM and an RM, and XA+ is the interface between a TM and a CRM.
Chapter 5 contains reference manual pages for each function in alphabetical order. These pages
contain C-language function prototypes.

AP

RM TM CRM
XA XA+

OSI TP

Figure 3-1 The XA and XA+ Interfaces

Distributed Transaction Processing: The XA+ Specification Version 2 13

Index to Services in the XA and XA+ Interfaces Interface Overview

3.1 Index to Services in the XA and XA+ Interfaces
The ax_*() functions let an RM call a TM. All TMs must provide these functions. These
functions let an RM dynamically control its participation in a transaction branch. Additionally,
CRMs use the ax_ interface to create transaction branches, to suspend or complete transaction
branches, and to propagate the commitment protocol to transaction branches. The ax_()
functions are listed in the following table:

Name Description See
Generate a new branch for an existing global
transaction.

Section 3.4.1 on page 20ax_add_branch†

Propagate transaction branch commitment to
a transaction manager.

Section 3.5 on page 22ax_commit†

Report that recovery associated with a
transaction branch is complete.

Section 3.7 on page 25ax_done†

Notify the transaction manager to end work
performed on behalf of a transaction branch.

Section 3.3 on page 18ax_end†

Remove a branch from an existing global
transaction.

Section 3.4.1 on page 20ax_forget_branch†

Access information for a transaction branch. Section 3.4 on page 20ax_get_branch_info†

Propagate transaction prepare to commit to a
transaction branch.

Section 3.5 on page 22ax_prepare†

Find out if a subordinate should commit or
roll back.

Section 3.7 on page 25ax_ready†

Get a list of XIDs for which the CRM has
logged information with the TM.

Section 3.4.1 on page 20ax_recover†

Register an RM with a TM. Section 3.3.2 on page 19ax_reg
Register an RM with a TM, and pass options
information to the TM.

Section 3.3.2 on page 19ax_reg_2

Propagate transaction rollback to a
transaction manager.

Section 3.5 on page 22ax_rollback†

Save information for a transaction branch. Section 3.4 on page 20ax_set_branch_info†

Notify the transaction manager to propagate
or resume a transaction branch association
with this thread of control.

Section 3.3 on page 17ax_start†

Notify the transaction manager to propagate
or resume a transaction branch association
with this thread of control, and pass options
information to the TM.

Section 3.3 on page 18ax_start_2†

Unregister an RM with a TM. Section 3.3.2 on page 19ax_unreg

† The functions marked with a dagger sign are applicable to the XA+ interface only. Unmarked
functions apply to both XA+ and XA.

Note: The ax_*() function names are only templates.

The actual names of the functions are internal to the TM. The TM inserts a pointer to the TM
switch structure into the location pointed to by a field in the RM’s switch structure prior to
making any calls to the RM.

14 Snapshot (1994)

Interface Overview Index to Services in the XA and XA+ Interfaces

The xa_*() functions are supplied by RMs operating in the DTP environment and called by TMs.
When an AP calls a TM to start a global transaction, the TM may use the xa_ interface to inform
RMs of the transaction branch. After the AP uses the RM’s native interface to do work in
support of the global transaction, the TM calls xa_() functions to commit or roll back branches.
One other xa_() function helps the TM coordinate failure recovery. The xa_() functions are
listed in the following table:

Name Description See
Terminate the AP’s use of an RM. Section 3.2 on page 16xa_close
Tell the RM to commit a transaction branch. Section 3.5 on page 22xa_commit
Test an asynchronous xa_ operation for
completion.

Section 3.6.3 on page 24xa_complete

Report that a transaction branch has been
committed.

Section 3.7 on page 25xa_done†

Dissociate the thread from a transaction
branch.

Section 3.3 on page 17xa_end

Permit the RM to discard its knowledge of a
heuristically-completed transaction branch.

Section 3.7 on page 25xa_forget

Initialise an RM for use by an AP. Section 3.2 on page 16xa_open
Ask the RM to prepare to commit a
transaction branch.

Section 3.5 on page 22xa_prepare

Report that a transaction branch has been
prepared.

Section 3.7 on page 25xa_ready†

Get a list of XIDs the RM has prepared or
heuristically completed.

Section 3.7 on page 25xa_recover

Tell the RM to roll back a transaction branch. Section 3.5 on page 22xa_rollback
Start or resume a transaction branch —
associate an XID with future work that the
thread requests of the RM.

Section 3.3 on page 17xa_start

Start or resume a transaction branch —
associate an XID with future work that the
thread requests of the RM, and return options
status to the RM.

Section 3.3 on page 18xa_start_2

Give control to a CRM so that it can report
status from superiors.

Section 3.8 on page 25xa_wait†

Give control to a CRM so that it can report
status from subordinates.

Section 3.7 on page 25xa_wait_recovery†

† The functions marked with a dagger sign are applicable to the XA+ interface only. Unmarked
functions apply to both XA+ and XA.

A TM must call the xa_*() functions in a particular sequence (see the state tables in Chapter 6).
When a TM invokes more than one RM with the same xa_*() function, it can do so in an
arbitrary sequence.

Note: The xa_*() function names are only templates.

The actual names of these functions are internal to the RM. The RM publishes the name of a
structure (see Section 4.4 on page 29) that specifies the entry points to the RM.

Distributed Transaction Processing: The XA+ Specification Version 2 15

Opening and Closing Resource Managers Interface Overview

3.2 Opening and Closing Resource Managers
In each thread of control, the TM must call xa_open() for each RM directly accessible by that
thread before calling any other xa_*() function. The TM must eventually call xa_close () to
dissociate the AP from the RM.

If an RM needs to take start-up actions (such as opening files, opening paths to a server, or
resynchronising a node on the network), then it could do so when called by xa_open(). X/Open
does not specify the actual meaning of xa_open() and xa_close () to an RM, but the effect must be
internal to the RM and must not affect transaction processing in either the calling TM or in other
RMs.

If an RM requires or accepts parameters to govern its operation (for example, a directive to open
files for reading only), or to identify a target resource domain, then a string argument to
xa_open() conveys this information. If the RM does not require initialisation parameters, the
string is typically an empty string. The xa_close () call likewise takes a string.

TMs typically read the initialisation string from a configuration file. The xa_open() function, and
the string form of its argument, support portability. A TM can give the administrator control
over every run-time option that any RM provides through xa_open() with no reprogramming or
relinking. The administrator must only edit a configuration file or perform a comparable,
system-specific procedure.

The TM calls xa_open() with an identifier that the TM uses subsequently to identify the RM
instance. A single RM may service multiple resource domains using multiple RM instances, if
each instance supports independent transaction completion. For example, a single database
system might access several data domains, or a single printer spooler might service multiple
printers. The TM calls such an RM’s xa_open() function several times, once for each instance,
using string parameters that identify the respective resource. It must generate a different RM
identifier for each call.

To enhance portability, RMs in the DTP environment should rely on use of xa_open() in place of
any non-standard open service the RM may provide in its native interface. If an RM lets DTP
applications call the native open function, the effect must not conflict with the TM’s use of
xa_open().

16 Snapshot (1994)

Interface Overview Association of Threads with Transaction Branches

3.3 Association of Threads with Transaction Branches
Several threads may participate in a single transaction branch, some more than once. The
xa_start () and xa_end() functions pass an XID to an RM to associate or dissociate the calling
thread with a branch. The association is not necessarily the thread’s initial association with the
branch; its dissociation is not necessarily the final one.

A thread’s association with a transaction branch can be active or suspended:

• A thread is actively associated with a transaction branch if it has called xa_start () and has not
made a corresponding call to xa_end(). A thread is allowed only one active association with
each RM at a time.

• Certain calls to xa_end() suspend the thread’s association (see Suspend below). The call may
indicate that the association can migrate ; that is, that any thread may resume the association.
In this case, the calling thread is no longer associated. (An RM may indicate that it does not
support association migration.)

If a thread calls xa_end() to suspend its association but the association cannot migrate to another
thread, the calling thread retains a suspended association with the transaction branch.

Several uses of xa_start () and xa_end() are considered below:

• Start
The primary use of xa_start () is to register a new transaction branch with the RM. This
marks the start of the branch. Subsequently, the AP, using the same thread of control , uses the
RM’s native interface to do useful work. All requests for service made by the same thread
are part of the same branch until the thread dissociates from the branch (see below).

The return code from xa_start () may indicate that the RM has already vetoed commitment of
the transaction branch. This return code is not an error; rolled back global transactions may
be function, while actual errors deserve the administrator’s attention.

A CRM primarily uses ax_start () to register a propagated transaction branch with the TM.
The TM, in turn, issues xa_start () calls to the applicable local RMs (that is, those that do not
use dynamic registration). The return code from ax_start () reflects those returned to the TM
from the RMs on xa_start ().

• Join
Another use of xa_start () is to join an existing transaction branch. TMs must use a certain
form of xa_start () so that RMs can validate that they recognise the passed XID.

RMs in the DTP environment should anticipate that many threads try to use them
concurrently. If multiple threads use an RM on behalf of the same XID, the RM is free to
serialise the threads’ work in any way it sees fit. For example, an RM may block a second or
subsequent thread while one is active.

Another use of ax_start () by a CRM is to inform a TM to join or reuse an existing transaction
branch. CRMs must use a certain form of ax_start () so that the TM can validate that it
recognises the passed XID.

• Resume
A special form of xa_start () is used by a TM to inform an RM to associate a thread with an
existing transaction branch that has been suspended (see below).

A special form of ax_start () is used by a CRM to inform a TM to associate a thread with an
existing transaction branch that has been suspended (see below).

Distributed Transaction Processing: The XA+ Specification Version 2 17

Association of Threads with Transaction Branches Interface Overview

• End
A typical call to xa_end() dissociates the calling thread from the transaction branch and lets
the branch be completed (see Section 3.5 on page 22). Alternatively, a thread may use
xa_start () to rejoin the branch.

A CRM typically uses ax_end() to inform a TM to dissociate the calling thread from the
transaction branch to let the branch be completed (see Section 3.5 on page 22). Alternatively,
a CRM may use ax_start () to rejoin the branch.

• Suspend
A form of xa_end() suspends, instead of ending, a thread’s association with the transaction
branch. This indicates that the thread has left the branch in an incomplete state. By using the
resume form of xa_start (), it or another thread resumes its association with the branch.
Another thread may resume a suspended association only if the RM has indicated that it
supports association migration. Instead of resuming, the TM may completely end the
suspended association by using xa_end().

A form of ax_end() requests a TM to suspend, instead of ending, a thread’s association with
the transaction branch. This indicates that the thread has left the branch in an incomplete
state. By using the resume form of ax_start (), the CRM can resume the thread’s association
with the branch. A CRM in another thread may resume a suspended association only if the
TM has indicated that it supports association migration. Instead of resuming, the CRM may
completely end the suspended association by using ax_end().

• Rollback-only
An RM need not wait for global transaction completion to report an error. The RM can
return rollback-only as the result of any xa_start () or xa_end() call. The TM can use this
knowledge to avoid starting additional work on behalf of the global transaction. An RM can
also unilaterally roll back and forget a transaction branch any time before it prepares it. A
TM detects this when an RM subsequently indicates that it does not recognise the XID.

A TM need not wait for global transaction completion to report an error. The TM can return
rollback-only as the result of any ax_start () or ax_end() call if an RM indicates rollback-only
on the corresponding xa_*() call. A TM can also unilaterally roll back and forget a
transaction branch any time before it prepares it. A CRM detects this when a TM
subsequently indicates that it does not recognise the XID.

• Transaction branch states
Several state tables appear in Chapter 6. Each call to xa_start () or xa_end() may affect the
status of the thread’s association with a transaction branch (see Table 6-2 on page 105 and
Table 6-3 on page 106) and the status of the branch itself (see Table 6-4 on page 108). A TM
must use these functions so that each thread of control makes calls in a sequence that
complies with both tables.

Note: The functions ax_start_2 () and xa_start_2 () are upward-compatible versions of
ax_start () and xa_start () respectively. Besides acting as described above, they also
allow the passing of transaction-timeout information between a CRM and RM
(respectively) and the TM. In future versions of this specification, ax_start_2 () and
xa_start_2 () may be extended to allow other options to be passed as well.

18 Snapshot (1994)

Interface Overview Association of Threads with Transaction Branches

3.3.1 Transaction Context

Transaction context is RM-specific information visible to the AP. The RM should preserve certain
transaction context on xa_end() so that the RM can restore context in the join or resume cases
(defined above). In the join case, the RM should make available enough transaction context so
that tightly-coupled threads are not susceptible to resource deadlock within the transaction
branch. In the resume case, the RM should make available at least that RM-specific transaction
context present at the time of the suspend, as if the thread had effectively never been suspended,
except that other threads in the global transaction may have affected this context.

3.3.2 Registration of Resource Managers

Normally, a TM involves all associated RMs in a transaction branch. (The TM’s set of RM
switches, described in Section 4.4 on page 29, tells the TM which RMs are associated with it.)
The TM calls all these RMs with xa_start (), xa_end() and xa_prepare(), although an RM that is not
active in a branch need not participate further (see Section 2.3.2 on page 10). A technique to
reduce overhead for infrequently-used RMs is discussed below.

Dynamic Registration

Certain RMs, especially those involved in relatively few global transactions, may ask the TM to
assume they are not involved in a transaction. These RMs must register with the TM before they
do application work, to see whether the work is part of a global transaction. The TM never calls
these RMs with any form of xa_start (). An RM declares dynamic registration in its switch (see
Section 4.4 on page 29). An RM can make this declaration only on its own behalf, and doing so
does not change the TM’s behaviour with respect to other RMs.

When an AP requests work from such an RM then, before doing any work, the RM contacts the
TM by calling ax_reg(). The RM must call ax_reg() from the same thread of control that the AP
would use if it called ax_reg() directly. The TM returns to the RM the appropriate XID if the AP
is in a global transaction.

If the thread ends its involvement in the transaction branch (using xa_end()), then the RM must
re-register (using ax_reg()) with the TM if the AP calls it for additional work in the global
transaction. If the RM does not resume its participation, then the TM does not call the RM again
for that branch until the TM completes the branch.

If the RM calls ax_reg() and the AP is not in a global transaction, the TM informs the RM, and
remembers that the RM is doing work outside any global transaction. In this case, when the AP
completes its work with the RM, the RM must notify the TM by calling ax_unreg(). The RM
must call ax_unreg() from the same thread of control from which it called ax_reg(). Until then —
that is, as long as the AP thread involves the RM outside a global transaction — the TM neither
lets the AP start a global transaction, nor lets any RM register through the same thread to
participate in one.

Note: The function ax_reg_2() is an upward-compatible version of ax_reg(). Besides acting as
described above, it also allows an RM to pass transaction-timeout information to the
TM. In future versions of this specification, ax_reg_2() may be extended to allow other
options to be passed as well.

Distributed Transaction Processing: The XA+ Specification Version 2 19

Branch Creation Interface Overview

3.4 Branch Creation
When an AP requests a CRM to send a message to a remote AP, the CRM has to create a
subordinate transaction branch if one does not already exist for the dialogue with that remote
AP. There are two methods of creating and managing transaction branches. One is called
transaction manager managed transaction branches, and the other is called communication
resource manager managed transaction branches.

3.4.1 Transaction Manager Managed Transaction Branches

The transaction manager can create and manage transaction branches. The CRM requests the
TM to create a branch by using the ax_add_branch () call. The TM returns an XID containing the
global transaction identifier and a new branch qualifier. The TM also retains knowledge of the
branch so that it is included in the transaction completion procedure. The CRM passes the
branch’s XID to its counterpart at the remote site. That CRM informs the TM that a new branch
is being propagated to it by using the ax_start () call.

In some cases, the CRM at the remote site may realise that it can join an existing transaction
branch rather than propagate the new one. It informs its counterpart at the superior site of this
fact. The CRM at the superior site can use the ax_forget_branch () call to inform the TM to discard
knowledge of the transaction branch so that it is not included in the transaction completion
procedure.

When a CRM creates a transaction branch, it can request the TM to save information about the
branch using the ax_set_branch_info () call. The TM logs this information when it records the
positive (ready) votes after the first phase of the two-phase commitment procedure. When a
branch is propagated to a remote site, the CRM can use the ax_set_branch_info () call to save
information about the superior. The TM logs this information during the commitment
procedure also. This logging service of the TM can relieve a CRM of any logging responsibility
of its own. This provides for higher performance by combining logging steps.

A CRM can retrieve information that it has saved using ax_set_branch_info () at any time using
the ax_get_branch_info () call. A CRM can retrieve a list of XIDs for which it has saved
information by means of ax_set_branch_info () at any time using the ax_recover() call.

3.4.2 Communication Resource Manager Managed Transaction Branches

If the communication resource manager creates and manages its transaction branches without
the aid of the transaction manager, it does not involve the transaction manager in the branch
creation process. Such a communication resource manager appears to be an ordinary resource
manager to the transaction manager in the process that creates the transaction branch.

The CRM assigns an XID for the transaction branch (see Section 4.2 on page 28). The CRM must
follow the rules for assigning a unique branch qualifier. The CRM passes the branch’s XID to its
counterpart at the remote site. That CRM informs the TM that a new branch is being propagated
by using the ax_start () call.

20 Snapshot (1994)

Interface Overview Branch Creation

The CRM can request the TM to save information for it using the ax_set_branch_info () call.
Information is saved using the local XID known to the TM. Unlike the transaction manager
managed transaction branches, the TM does not know about the existence of transaction
branches. Therefore, the TM can only save one record of information associated with the local
XID for the CRM. The TM logs this information when it records the positive (ready) votes after
the first phase of the two-phase commitment procedure. When a branch is propagated to a
remote site, the CRM can use ax_set_branch_info () to save information about the superior. The
TM logs this information during the commitment procedure also. This logging service of the TM
can relieve a CRM of any logging responsibility of its own. This provides for higher
performance by combining logging steps.

The CRM can retrieve information that it has saved via ax_set_branch_info () at any time using
the ax_get_branch_info () call.

Distributed Transaction Processing: The XA+ Specification Version 2 21

Branch Completion Interface Overview

3.5 Branch Completion
A TM calls xa_prepare() to ask the RM to prepare to commit a transaction branch. The RM
places any resources it holds in a state such that it can either make any changes permanent if the
TM subsequently calls xa_commit(), or nullify any changes if the TM calls xa_rollback (). An
affirmative return from xa_prepare() guarantees that a subsequent xa_commit() or xa_rollback ()
succeeds, even if the RM experiences a failure after responding to xa_prepare().

A CRM propagates the prepare command to its counterpart at a remote site. The CRM at the
remote site uses ax_prepare() to inform the TM that the transaction branch is being prepared.
The TM prepares local RMs and subordinate branches and returns the outcome to the CRM. The
CRM reports the outcome to the CRM at the superior site which, in turn, reports the outcome to
the TM.

A TM calls xa_commit() to direct the RM to commit a transaction branch. The RM applies
permanently any changes it has made to shared resources, and releases any resources it held on
behalf of the branch. A TM calls xa_rollback () to ask the RM to roll back a branch. The RM
undoes any changes that it applied to shared resources, and releases any resources it held.

The CRM propagates the commit or rollback command to its counterpart at a remote site. The
CRM at the remote site uses ax_commit() to inform the TM that the transaction branch is being
committed or ax_rollback () to inform the TM that the transaction branch is being rolled back.
The TM commits or rolls back local RMs and subordinate branches as indicated and returns the
outcome to the CRM. The CRM reports the outcome to the CRM at the superior site which, in
turn, reports the outcome to the TM.

Before a TM can call xa_prepare() for a transaction branch, all associations must be completely
ended with xa_end() (see Section 3.3 on page 17). Any thread can then initiate branch
completion. That is, the TM may supervise branch completion with a separate thread from the
AP threads that did work on behalf of the global transaction.

A CRM may issue ax_prepare() to a TM for an association that is suspended. The TM ensures
that the association with local RMs is completed by using a form of xa_end() before issuing
xa_prepare(). If the suspended association cannot be migrated, the CRM must issue the
ax_prepare() call in the thread of control that was suspended and indicated it could not migrate.
Alternatively, the CRM can dissociate a suspended non-migratable thread by issuing a form of
the ax_end() call in that thread of control. The CRM is then free to issue ax_prepare() in any
thread.

Optimisations

This section describes the use of xa_*() functions in the standard two-phase commit protocol.
See Section 2.3.2 on page 10 for other permissible sequences of these calls.

Heuristic Decision

The X/Open DTP model lets RMs complete transaction branches heuristically (see Section 2.3.3
on page 11). The RM cannot discard its knowledge of such a branch until the TM permits this by
calling xa_forget () for each branch.

22 Snapshot (1994)

Interface Overview Branch Completion

3.5.1 Transaction Chaining

Transaction chaining can be selected by the application program using the TX interface.
Transaction chaining means that the application is always in transaction mode. That is, the
completion of one transaction, commit or rollback, automatically creates a new one.

CRMs that support chaining need to keep subordinate branches in transaction mode too. An
option of xa_commit() and xa_rollback () allow the TM to pass along the identification of the new
transaction branch to the CRM. Similarly, an option of ax_commit() and ax_rollback () allow the
CRM to propagate the identification of the new transaction branch to the TM at the remote site.

The completion of one transaction branch and the creation of a new one are handled in one
function so that the CRM can propagate transaction completion and the beginning of a new one
in one logical communications operation (or PDU: protocol data unit). Creation of a new
transaction branch does not actually start processing for it. Processing for the new transaction
starts in the transaction originator when the TM calls RMs to start processing in the application
thread of control. Processing for new transaction branches starts in subordinate application
threads of control when the CRM calls the TM to start processing.

3.5.2 Communication Resource Manager Managed Transaction Branches

Since the TM does not know about subordinate transaction branches created by the
communication resource manager when the CRM is managing its own branches, the TM issues
xa_prepare(), xa_commit(), or xa_rollback () only once for the local transaction branch to the CRM
using the local XID known to the TM. It is up to the CRM to propagate the correct
corresponding protocol to each subordinate branch created by the CRM. It is also up to the
CRM to direct the two-phase commitment procedure, if necessary, when called with a one-phase
commit optimisation. The CRM may request the TM to change one-phase commit into two-
phase commit using a return code on xa_commit(). This is necessary if the CRM expects the TM
to log CRM recovery information. A TM can optionally support changing a one-phase commit
into a two-phase commit at the request of a CRM.

3.5.3 Transaction Commitment and Rollback in Subordinates

The CRM propagating a subordinate branch determines whether the subordinate AP can issue
tx_commit() or tx_rollback (). The rules are controlled by flag settings in the CRM’s switch
structure. These flag settings are ignored for other RMs in the thread of control.

Distributed Transaction Processing: The XA+ Specification Version 2 23

Synchronous, Non-blocking and Asynchronous Modes Interface Overview

3.6 Synchronous, Non-blocking and Asynchronous Modes

3.6.1 Synchronous

The xa_*() functions typically operate synchronously: control does not return to the caller until
the operation is complete. Some functions, notably xa_start () (see Section 3.3 on page 17), may
block the calling thread.

Two other calling modes help the TM schedule its work when dealing with several RMs, as
described in the following sections.

3.6.2 Non-blocking

Certain xa_*() calls direct the RM to operate synchronously with the caller but without blocking
it. If the RM cannot complete the call without blocking, it reports this immediately.

3.6.3 Asynchronous

Most xa_()* functions have a form by which the caller requests asynchrony. Asynchronous calls
should return immediately. The caller can subsequently call xa_complete () to test the
asynchronous operation for completion.

A TM might give an RM an asynchronous request (particularly a request to prepare to commit a
transaction branch) so that the TM could do other work in the meantime. Within the same
thread of control, a TM cannot use asynchrony to give additional work to the same RM for the
same branch; the only xa_*() call a TM can give to the RM for the same branch is xa_complete () to
test that operation’s completion. However, for xa_forget (), and for the branch-completion
functions, xa_commit(), xa_prepare() and xa_rollback (), the TM may issue multiple commands to
the same RM from within the same thread of control. Each of these commands must be for a
different branch.

24 Snapshot (1994)

Interface Overview Failure Recovery

3.7 Failure Recovery
A TM must ensure orderly completion of all transaction branches. A TM calls xa_recover()
during failure recovery to get a list of all branches that an RM has prepared or heuristically
completed. If a TM does not have a record of a branch returned by xa_recover(), it normally
orders the RM to roll the branch back by issuing xa_rollback ().

When a TM is undergoing recovery processing, it may find one or more transaction branches in
the prepared state for which it is not the commitment coordinator. In this case, the TM requests
the superior-side CRM to find out the transaction branch’s disposition from the immediate
superior. The TM does this by issuing an xa_ready () call to the CRM. The CRM in the superior
reports this to the TM by issuing ax_ready ().

During recovery situations, a TM may be informed that a subordinate has, in fact, committed a
transaction branch when it receives an ax_done() call from a CRM. This event fixes a previous
problem due to a communications failure during the second phase of the two-phase commit
procedure. If this TM, in turn, has a superior, it calls the superior-side CRM using xa_done() to
request that the CRM pass this information on to the superior. The CRM in the superior reports
this to the TM by issuing ax_done().

A special process can be set up at each node to handle ax_ready () and ax_done() calls. The TM in
this process passes control to the CRM by issuing xa_wait_recovery (). The CRM may never
respond to this call, but it is free to issue the ax_ready () and ax_done() calls at any time.

Unilateral RM Action

An RM can mark a transaction branch as rollback-only any time except after a successful
prepare. A TM detects this when the RM returns a rollback-only return code. An RM can also
unilaterally roll back and forget a branch any time except after a successful prepare. A TM
detects this when a subsequent call indicates that the RM does not recognise the XID. The
former technique gives the TM more information.

If a thread of control terminates, an RM must dissociate and roll back any associated transaction
branch. If an RM experiences machine failure or termination, it must also unilaterally roll back
all branches that have not successfully prepared.

3.8 Shutdown Processing
A TM may need to shut down a thread of control prior to the completion of the two-phase
commit protocol for transaction branches for which it is responsible and for which it is a
subordinate. The TM instructs the CRM to wait for commands from superiors by issuing the
xa_wait () call. The CRM calls the TM with ax_commit() or ax_rollback () as appropriate.

Distributed Transaction Processing: The XA+ Specification Version 2 25

Interface Overview

26 Snapshot (1994)

Chapter 4

The <xa.h> Header

This chapter specifies structure definitions, flags and error codes to which conforming products
must adhere. It also declares the functions by which RMs call a TM. (Entry points to an RM are
contained in the RM’s switch; see Section 4.4 on page 29.) This is the minimum content of an
include file called <xa.h>. Fully standardising this information lets RMs be written
independently of the TMs that use them. It also lets users interchange TMs and RMs without
recompiling.

Appendix A contains an <xa.h> header file with #define statements suitable for ISO C (see the
ISO C standard) and Common Usage C implementations. This chapter contains excerpts from
the ISO C code in <xa.h>. The synopses in Chapter 5 also use ISO C.

4.1 Naming Conventions
The XA interface uses certain naming conventions to name its functions, flags and return codes.
All names that appear in <xa.h> are part of the XA name space. This section describes the XA
naming conventions.

• The negative (error) codes returned by the xa_ functions all begin with XAER_. Their non-
negative return codes all begin with XA_.

• The names of all TM functions that RMs call begin with ax_ (for example, ax_reg()). Their
negative (error) return codes all begin with TMER_. Their non-negative return codes all
begin with TM_.

• Names of flags passed to XA functions, and of flags in the RM switch, begin with TM.

Distributed Transaction Processing: The XA+ Specification Version 2 27

Transaction Identification The <xa.h> Header

4.2 Transaction Identification
The <xa.h> header defines a public structure called an XID to identify a transaction branch. RMs
and TMs both use the XID structure. This lets an RM work with several TMs without
recompilation.

The XID structure is specified in the C code below in struct xid_t. The XID contains a format
identifier, two length fields and a data field. The data field comprises at most two contiguous
components: a global transaction identifier (gtrid) and a branch qualifier (bqual).

The gtrid_length element specifies the number of bytes (1-64) that constitute gtrid , starting at the
first byte of the data element (that is, at data [0]). The bqual_length element specifies the number
of bytes (1-64) that constitute bqual, starting at the first byte after gtrid (that is, at
data[gtrid_length]). Neither component in data is null-terminated. The TM need not initialise any
unused bytes in data .

Although <xa.h> constrains the length and byte-alignment of the data element within an XID, it
does not specify the data’s contents. The only requirement is that both gtrid and bqual , taken
together, must be globally unique. The recommended way of achieving global uniqueness is to
use the naming rules specified for OSI CCR atomic action identifiers (see the OSI CCR standard).
If OSI CCR naming is used, then the XID’s formatID element should be set to 0; if some other
format is used, then the formatID element should be greater than 0. A value of −1 in formatID
means that the XID is null.

The RM must be able to map the XID to the recoverable work it did for the corresponding
branch. RMs may perform bitwise comparisons on the data components of an XID for the
lengths specified in the XID structure. Most XA functions pass a pointer to the XID. These
pointers are valid only for the duration of the call. If the RM needs to refer to the XID after it
returns from the call, it must make a local copy before returning.

/*
* Transaction branch identification: XID and NULLXID:
*/

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64 /* maximum size in bytes of bqual */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value 1-64 */
long bqual_length; /* value 1-64 */
char data[XIDDATASIZE];
};

typedef struct xid_t XID;
/*

* A value of -1 in formatID means that the XID is null.
*/

28 Snapshot (1994)

The <xa.h> Header XA Options

4.3 XA Options
A structure of type XACTL (see below) is defined to pass optional information from TMs to RMs
and CRMs, and from CRMs to TMs. A flag value tells whether a structure element contains a
valid value. Structure elements are defined to contain optional values. Currently, a timeout
value is the only structure element defined. In future versions of this specification, other
elements and corresponding flags may also be defined.

/*
* XA Options
*/

typedef long TRANSACTION_TIMEOUT; /* type of transaction timeouts */
/*

* Structure for optional XA information
*/

struct xactl_t {
long flags; /* valid element flags */
TRANSACTION_TIMEOUT timeout; /* timeout value */

};
typedef struct xactl_t XACTL;
#define XAOPTS_NOFLAGS 0x00000000L /* no optional values */
#define XAOPTS_TIMEOUT 0x00000001L /* timeout value present */
};

4.4 Resource Manager Switch
The TM administrator can add or remove an RM from the DTP system by simply controlling the
set of RMs linked to executable modules. Each RM must provide a switch that gives the TM
access to the RM’s xa_ functions. This lets the administrator change the set of RMs linked with
an executable module without having to recompile the application. A different set of RMs and
their switches may be linked into each separate application-executable module in the DTP
system. Several instances of an RM can share the RM’s switch structure.

An RM’s switch uses a structure called xa_switch_t. The switch contains the RM’s name, non-
null pointers to the RM’s entry points, and a flag and a version word. The flags tell whether the
RM uses dynamic registration (see Section 3.3.2 on page 19), whether the RM operates
asynchronously (see Section 3.6 on page 24) and whether the RM supports the migration of
associations (see Section 3.3 on page 17). Section 4.6 on page 33 defines constants used as these
flags. The RM cannot change these declarations during the operation of the DTP system.

Distributed Transaction Processing: The XA+ Specification Version 2 29

Resource Manager Switch The <xa.h> Header

/*
* XA Switch Data Structure
*/

#define RMNAMESZ 32 /* length of resource manager name */
/* including the null terminator */

#define MAXINFOSIZE 256 /* maximum size in bytes of xa_info strings */
/* including the null terminator */

struct xa_switch_t {
char name[RMNAMESZ]; /* name of resource manager */
long flags; /* options specific to the resource manager */
long version; /* must be 1 */
int (*xa_open_entry)(char *, int, long);

/* xa_open function pointer */
int (*xa_close_entry)(char *, int, long);

/* xa_close function pointer */
int (*xa_start_entry)(XID *, int, long);

/* xa_start function pointer */
int (*xa_end_entry)(XID *, int, long);

/* xa_end function pointer */
int (*xa_rollback_entry)(XID *, int, long);

/* xa_rollback function pointer */
int (*xa_prepare_entry)(XID *, int, long);

/* xa_prepare function pointer */
int (*xa_commit_entry)(XID *, int, long);

/* xa_commit function pointer */
int (*xa_recover_entry)(XID *, long, int, long);

/* xa_recover function pointer */
int (*xa_forget_entry)(XID *, int, long);

/* xa_forget function pointer */
int (*xa_complete_entry)(int *, int *, int, long);

/* xa_complete function pointer */
int (*xa_ready_entry)(XID *, int, long);

/* xa_ready function pointer */
int (*xa_done_entry)(XID *, int, long);

/* xa_done function pointer */
int (*xa_wait_recovery_entry)(int, long);

/* xa_wait_recovery function pointer */
int (*xa_wait_entry)(int, long);

/* xa_wait function pointer */
int (*xa_start_2_entry)(XID *, int, XACTL *, long);

/* xa_start_2 function pointer */
struct ax_switch_t **xa_tmswitch;

/* Location of TM switch pointer */
};

30 Snapshot (1994)

The <xa.h> Header Transaction Manager Switch

4.5 Transaction Manager Switch
The TM provides a switch structure for RMs to access the TM’s ax_*() functions. If the flag
TMSWITCHOK is set in the RM’s switch, the TM places a pointer to the TM’s switch structure in
the location pointed to by the xa_tmswitch pointer field in the RM’s switch structure.

A TM’s switch uses a structure called ax_switch_t. The switch contains pointers to the TM’s
entry points, a flag word and a version word. The pointers are undefined for functions not
supported by the TM. The flags tell whether the TM supports threads and the subordinate set of
ax_*() functions including:

• ax_add_branch ()

• ax_commit()

• ax_done()

• ax_end()

• ax_forget_branch ()

• ax_get_branch_info ()

• ax_prepare()

• ax_ready ()

• ax_recover()

• ax_rollback ()

• ax_set_branch_info ()

• ax_start ().

The TM cannot change these flag settings during the operation of the DTP system.

Distributed Transaction Processing: The XA+ Specification Version 2 31

Transaction Manager Switch The <xa.h> Header

/*
* AX Switch Data Structure
*/

struct ax_switch_t {
long flags; /* transaction manager options */
long version; /* must be 0 */
int (*ax_reg_entry)(int, XID *, long);

/* ax_reg function pointer */
int (*ax_unreg_entry)(int, long);

/* ax_unreg function pointer */
int (*ax_start_entry)(int, XID *, long);

/* ax_start function pointer */
int (*ax_end_entry)(int, XID *, long);

/* ax_end function pointer */
int (*ax_rollback_entry)(int, XID *, long);

/* ax_rollback function pointer */
int (*ax_prepare_entry)(int, XID *, long);

/* ax_prepare function pointer */
int (*ax_commit_entry)(int, XID *, long);

/* ax_commit function pointer */
int (*ax_recover_entry)(int, XID *, long, long);

/* ax_recover function pointer */
int (*ax_add_branch_entry)(int, XID *, long);

/* ax_add_branch function pointer */
int (*ax_forget_branch_entry)(int, XID *, long);

/* ax_forget_branch function pointer */
int (*ax_set_branch_info_entry)(int, XID *, char *, long, long);

/* ax_set_branch_info function pointer */
int (*ax_get_branch_info_entry)(int, XID *, char *, long *, long);

/* ax_get_branch_info function pointer */
int (*ax_ready_entry)(int, XID *, long);

/* ax_ready function pointer */
int (*ax_done_entry)(int, XID *, long);

/* ax_done function pointer */
int (*ax_reg_2_entry)(int, XID *, XACTL *, long);

/* ax_reg_2_entry function pointer */
int (*ax_start_2_entry)(int, XID *, XACTL *, long);

/* ax_start_2_entry function pointer */
};

32 Snapshot (1994)

The <xa.h> Header Flag Definitions

4.6 Flag Definitions
The XA interface uses the following flag definitions. For a TM to work with different RMs
without change or recompilation, each RM uses these flags, defined in the <xa.h> header.

The <xa.h> header defines a constant, TMNOFLAGS, for use in situations where no other flags
are specified. An RM that does not use any flags to specify special features in its switch (see
Section 4.4 on page 29) should specify TMNOFLAGS. In addition, TMs and RMs should use the
same TMNOFLAGS constant as the flag argument in any xa_ or ax_ call in which they do not use
explicit options.

Flag definitions for the XA interface are as follows:

/*
* Flag definitions for the RM switch
*/

#define TMNOFLAGS 0x00000000L /* no resource manager features
selected */

#define TMREGISTER 0x00000001L /* resource manager dynamically
registers */

#define TMNOMIGRATE 0x00000002L /* resource manager does not support
association migration */

#define TMUSEASYNC 0x00000004L /* resource manager supports
asynchronous operations */

#define TMUSECHAIN 0x00000008L /* resource manager
supports transaction chaining */

#define TMUSEOPTS 0x00000010L /* resource manager supports
xa_start_2() */

#define TMUSE2PHASE 0x00000020L /* The RM might force upgrading
one-phase commit to two-phase commit*/

#define TMSWITCHOK 0x00000040L /* resource manager has provided
location for address of
transaction manager switch */

#define TMNOROLLALLOWED 0x00000080L /* tx_rollback() is not permitted
in subordinates */

#define TMNOCOMALLOWED 0x00000100L /* tx_commit() is not permitted
in subordinates */

#define TMUSETHREADS 0x00000200L /* resource manager can use threads
as thread of control */

/*
* Flag definitions for the TM switch
*/

#define TMSUPPORTSTHREADS 0x00000001L /* The TM is prepared to use
threads as thread of control */

#define TMSUBORDINATE 0x00000002L /* The subordinate set of ax_()
functions can be called */

/*
* Flag definitions for xa_ and ax_ functions
*/

/* use TMNOFLAGS, defined above, when not specifying other flags */
#define TMASYNC 0x80000000L /* perform function asynchronously */
#define TMONEPHASE 0x40000000L /* caller is using one-phase

commit optimisation */
#define TMFAIL 0x20000000L /* dissociates caller and marks

transaction branch rollback-only */

Distributed Transaction Processing: The XA+ Specification Version 2 33

Flag Definitions The <xa.h> Header

#define TMNOWAIT 0x10000000L /* return if blocking condition
exists */

#define TMRESUME 0x08000000L /* caller is resuming association
with suspended transaction branch */

#define TMSUCCESS 0x04000000L /* dissociate caller from
transaction branch */

#define TMSUSPEND 0x02000000L /* caller is suspending, not ending,
association */

#define TMSTARTRSCAN 0x01000000L /* start a recovery scan */
#define TMENDRSCAN 0x00800000L /* end a recovery scan */
#define TMMULTIPLE 0x00400000L /* wait for any asynchronous

operation */
#define TMJOIN 0x00200000L /* caller is joining existing

transaction branch */
#define TMMIGRATE 0x00100000L /* caller intends to perform

migration */
#define TMRECOVER 0x00080000L /* call is in recovery mode */
#define TMCHAINED 0x00040000L /* call is in transaction

chaining mode */
#define TMDEFERRED 0x00020000L /* start is pending acceptance by

the application program */

4.7 Maximum Values
The following values are the maximum sizes permitted on the referenced ax_*() calls. A TM
must support at least these maximums. A TM may optionally support higher values.

/*
* Maximum values for ax_* functions
*/

#define TMMAXBLOBLEN 1024 /* maximum blob_len for
ax_set_branch_info() */

#define TMMAXBLOBTOT 8192 /* maximum total blob data created
using ax_set_branch_info() for all
branches created at this node for a
given transaction */

4.8 Return Codes
As with flag definitions, all TMs and RMs must ensure interchangeability by using these return
codes, defined in the <xa.h> header.

/*
* ax_() return codes (transaction manager reports to resource manager)
*/

#define TM_RBBASE 100 /* the inclusive lower bound
of the rollback codes */

#define TM_RBROLLBACK TM_RBBASE /* the rollback was caused by
an unspecified reason */

34 Snapshot (1994)

The <xa.h> Header Return Codes

#define TM_RBCOMMFAIL TM_RBBASE+1 /* the rollback was caused
by a communication failure */

#define TM_RBDEADLOCK TM_RBBASE+2 /* a deadlock was detected */
#define TM_RBINTEGRITY TM_RBBASE+3 /* a condition that violates

the integrity of the
resources was detected */

#define TM_RBOTHER TM_RBBASE+4 /* the resource manager rolled
back the transaction branch
for a reason not on this list */

#define TM_RBPROTO TM_RBBASE+5 /* a protocol error occurred
in the resource manager */

#define TM_RBTIMEOUT TM_RBBASE+6 /* a transaction branch took
too long */

#define TM_RBTRANSIENT TM_RBBASE+7 /* may retry the transaction
branch */

#define TM_RBEND TM_RBTRANSIENT /* the inclusive upper bound
of the rollback codes */

#define TM_DEFERRED 11 /* the commit decision has not been
made */

#define TM_RETRY_COMMFAIL 10 /* ax_commit could not be completed
due to communication failure */

#define TM_NOMIGRATE 9 /* resumption must occur where
suspension occurred */

#define TM_HEURHAZ 8 /* the transaction branch may have
been heuristically completed */

#define TM_HEURCOM 7 /* the transaction branch has been
heuristically committed */

#define TM_HEURRB 6 /* the transaction branch has been
heuristically rolled back */

#define TM_HEURMIX 5 /* the transaction branch has been
heuristically committed and rolled
back */

#define TM_RDONLY 3 /* the transaction branch was read-only
and has been committed */

#define TM_JOIN 2 /* caller is joining existing
transaction branch */

#define TM_RESUME 1 /* caller is resuming association
with suspended transaction branch */

#define TM_OK 0 /* normal execution */

#define TMER_TMERR -1 /* an error occurred in the
transaction manager */

#define TMER_INVAL -2 /* invalid arguments were given */
#define TMER_PROTO -3 /* function invoked in an improper

context */
#define TMER_NOTA -4 /* the XID is not valid */
#define TMER_DUPID -8 /* the XID already exists */

Distributed Transaction Processing: The XA+ Specification Version 2 35

Return Codes The <xa.h> Header

/*
* xa_() return codes (resource manager reports to transaction manager)
*/

#define XA_RBBASE 100 /* the inclusive lower bound of
the rollback codes */

#define XA_RBROLLBACK XA_RBBASE /* the rollback was caused by an
unspecified reason */

#define XA_RBCOMMFAIL XA_RBBASE+1 /* the rollback was caused by a
communication failure */

#define XA_RBDEADLOCK XA_RBBASE+2 /* a deadlock was detected */
#define XA_RBINTEGRITY XA_RBBASE+3 /* a condition that violates the

integrity of the resources
was detected */

#define XA_RBOTHER XA_RBBASE+4 /* the resource manager rolled
back the transaction branch for
a reason not on this list */

#define XA_RBPROTO XA_RBBASE+5 /* a protocol error occurred in
the resource manager */

#define XA_RBTIMEOUT XA_RBBASE+6 /* a transaction branch took
too long */

#define XA_RBTRANSIENT XA_RBBASE+7 /* may retry the transaction
branch */

#define XA_RBEND XA_RBTRANSIENT /* the inclusive upper bound of
the rollback codes */

#define XA_TWOPHASE 13 /* Use two-phase commit */
#define XA_PROMOTED 12 /* AP promoted to initiator */
#define XA_DEFERRED 11 /* the commit decision has not

been made */
#define XA_RETRY_COMMFAIL 10 /* xa_commit could not be completed

due to communication failure */
#define XA_NOMIGRATE 9 /* resumption must occur where

suspension occurred */
#define XA_HEURHAZ 8 /* the transaction branch may have

been heuristically completed */
#define XA_HEURCOM 7 /* the transaction branch has been

heuristically committed */
#define XA_HEURRB 6 /* the transaction branch has been

heuristically rolled back */
#define XA_HEURMIX 5 /* the transaction branch has been

heuristically committed and rolled
back */

#define XA_RETRY 4 /* function returned with no effect
and may be re-issued */

#define XA_RDONLY 3 /* the transaction branch was read-only
and has been committed */

#define XA_OK 0 /* normal execution */

36 Snapshot (1994)

The <xa.h> Header Return Codes

#define XAER_ASYNC -2 /* asynchronous operation already
outstanding */

#define XAER_RMERR -3 /* a resource manager error occurred in the
transaction branch */

#define XAER_NOTA -4 /* the XID is not valid */
#define XAER_INVAL -5 /* invalid arguments were given */
#define XAER_PROTO -6 /* function invoked in an improper context */
#define XAER_RMFAIL -7 /* resource manager unavailable */
#define XAER_DUPID -8 /* the XID already exists */
#define XAER_OUTSIDE -9 /* resource manager doing work outside

global transaction */

Distributed Transaction Processing: The XA+ Specification Version 2 37

The <xa.h> Header

38 Snapshot (1994)

Chapter 5

Reference Manual Pages

This chapter describes the interfaces to the XA service set. Reference manual pages appear, in
alphabetical order, for each service in the XA interface. The ax_ functions are provided by a TM
for use by RMs. The xa_ functions are provided by each RM for use by the TM.

The symbolic constants and error names are described in the <xa.h> header (see Chapter 4). The
state tables referred to in the reference manual pages appear in Chapter 6.

Distributed Transaction Processing: The XA+ Specification Version 2 39

ax_add_branch() Reference Manual Pages

NAME
ax_add_branch — generate a new branch for an existing global transaction

SYNOPSIS
#include <xa.h>

int ax_add_branch(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager to create a transaction branch.

The ax_add_branch () function allows a communication resource manager to request the
transaction manager to generate a new branch for the current global transaction. The resource
manager calls the transaction manager with this function when it needs to propagate an existing
global transaction to a different thread of control that is loosely coupled to the current thread of
control. The resource manager calls this function multiple times within the same thread of
control to create multiple, separate, transaction branches of the same global transaction.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The xid argument returned to the communication resource manager is a pointer to the XID that
identifies the transaction branch. The communication resource manager uses this XID when
propagating this global transaction. The transaction manager guarantees the XID to be unique
for different transaction branches by generating a new branch qualifier when ax_add_branch () is
called.

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_add_branch () has the following return values:

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error in generating a new XID.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), ax_get_branch_info (), ax_set_branch_info ().

40 Snapshot (1994)

Reference Manual Pages ax_commit()

NAME
ax_commit — propagate transaction branch commitment to a transaction manager

SYNOPSIS
#include <xa.h>

int ax_commit(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager that can propagate the two-phase
commit protocol for transaction branches. The ax_commit() function notifies the transaction
manager that a commit indication has been received from a superior. The transaction manager,
in turn, issues an xa_commit() to all local resource managers registered for the transaction branch
and all branches subordinate to XID that were created with ax_add_branch (). Any thread of
control may invoke ax_commit().

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The xid argument is a pointer to the XID that identifies the transaction branch being committed.

If the communication resource manager is committing a transaction branch while transaction
chaining is in effect, the communication resource manager sets the TMCHAINED flag. xid[0] is
the transaction branch to commit, and xid[1] is the chained transaction branch to assign. If the
transaction manager returns any [TMER_*] negative return value, the new transaction branch is
not assigned.

The communication resource manager begins local work on the new transaction later by issuing
ax_start () to the transaction manager in the application thread of control. The transaction
manager then issues xa_start () to statically registering resource managers. Dynamically
registering resource managers need to register using ax_reg() in the application thread of control
when application work in the resource manager begins.

The following are valid settings of flags:

TMONEPHASE
The communication resource manager must set this flag if it is using the one-phase commit
optimisation for the specified transaction branch.

TMCHAINED
This flag indicates that processing is in chained transaction mode, and in addition to
committing the existing transaction branch, a new XID is provided for the next transaction.
xid[0] is the XID to commit. xid[1] is the XID to assign for the next transaction.

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.
The transaction manager sets this same flag when it calls xa_commit() for subordinate
branches.

TMNOFLAGS
This flag must be used when no other flags are set in flags .

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

Distributed Transaction Processing: The XA+ Specification Version 2 41

ax_commit() Reference Manual Pages

RETURN VALUE
The function ax_commit() has the following return values:

[TM_HEURHAZ]
Due to some failure, it is not known whether all subordinates in the transaction branch
performed the same operation (commit or rollback). One or more may be in danger of
making an inconsistent heuristic decision.

[TM_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
committed.

[TM_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
rolled back.

[TM_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
partially committed and partially rolled back.

[TM_OK]
Normal execution.

[TM_RB*]
The transaction manager did not commit the work on behalf of the transaction branch.
Upon return, the transaction manager has rolled back the branch’s work and released all
held resources. The following values may be returned only if TMONEPHASE is set in flags :

[TM_RBROLLBACK]
The transaction manager marked the transaction branch rollback-only for an
unspecified reason.

[TM_RBCOMMFAIL]
A communication failure occurred within a resource manager.

[TM_RBDEADLOCK]
A resource manager detected a deadlock.

[TM_RBINTEGRITY]
The transaction manager or a resource manager detected a violation of the integrity of
its resources.

[TM_RBOTHER]
The transaction manager or a resource manager marked the transaction branch
rollback-only for a reason not on this list.

[TM_RBPROTO]
A protocol error occurred within a resource manager.

[TM_RBTIMEOUT]
The work represented by this transaction branch took too long.

[TM_RBTRANSIENT]
A resource manager detected a transient error.

[TMER_TMERR]
The transaction manager encountered an error while trying to commit the transaction
branch.

42 Snapshot (1994)

Reference Manual Pages ax_commit()

[TMER_NOTA]
The specified XID is not known by the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_prepare(), xa_commit(), xa_rollback (), ax_add_branch (), ax_prepare(), ax_rollback ().

Distributed Transaction Processing: The XA+ Specification Version 2 43

ax_done() Reference Manual Pages

NAME
ax_done — report that recovery associated with a transaction branch is complete

SYNOPSIS
#include <xa.h>

int ax_done(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager to inform a transaction manager
that recovery is complete with a transaction branch after a disruption, and to report the outcome
of the recovery.

The ax_done() function allows the transaction manager to mark the branch as completed. The
communication resource manager calls the transaction manager when requested by a
subordinate during recovery processing after a communication failure.

If heuristic decisions are detected during recovery processing initiated either by the subordinate
or by a communication resource manager using the presumed-nothing protocol, the function
ax_done() may be called after the transaction manager has rolled back the transaction and
forgotten the transaction branch. The TM is assumed to know the outcome of the transaction, so
this function only reports discrepancies that occurred in the transaction branch.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The second argument, xid, is a pointer to the XID that identifies the transaction branch. The XID
must be the same as one generated by the transaction manager when the communication
resource manager issued an ax_add_branch ().

The function’s last argument, flags, must be set to the following value:

TMRECOVER
This flag indicates that this operation is being performed because of recovery at a
subordinate branch.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_done() has the following return values:

[TM_HEURHAZ]
Due to some failure, it is not known whether all subordinates in the transaction branch
performed the same operation (commit or rollback). One or more may be in danger of
making an inconsistent heuristic decision.

[TM_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
committed. This may or may not be consistent with the outcome at the coordinator.

[TM_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
rolled back. This may or may not be consistent with the outcome at the coordinator.

44 Snapshot (1994)

Reference Manual Pages ax_done()

[TM_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
partially committed and partially rolled back.

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_done(), xa_open(), xa_ready (), ax_add_branch (), ax_commit(), ax_ready (), ax_rollback ().

Distributed Transaction Processing: The XA+ Specification Version 2 45

ax_end() Reference Manual Pages

NAME
ax_end — notify a transaction manager to end work performed on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int ax_end(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager that can propagate transaction
branches. The ax_end() function notifies a transaction manager that the thread of control has
finished, or needs to suspend work on, a transaction branch. This occurs when the application
completes a portion of its work, either in its entirety or partially (for example, before blocking on
some event in order to let other threads of control work on the branch). When ax_end()
successfully returns, the calling thread of control is dissociated from the branch.

The communication resource manager must be superior to the transaction manager to
completely end an association either successfully or unsuccessfully. A communication resource
manager that is subordinate to a transaction manager suspends an association before blocking
on a communication event.

The transaction manager notifies the resource manager that the transaction branch is being
dissociated from the thread of control (by calling xa_end()).

The function’s first argument, rmid, is the integer that the the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The second argument, xid, is a pointer to the XID that identifies the transaction branch. If the
communication resource manager is acting as a subordinate, xid must point to the same XID that
was either passed on the xa_start () call or returned from the ax_reg() call. If the communication
resource manager is acting as a superior, xid must point to the same XID passed to the
transaction manager on the original ax_start () call that established the thread’s association.
Otherwise, the transaction manager returns an error ([TMER_NOTA]).

The function’s last argument, flags, must be set to one of the following values:

TMSUSPEND
Suspend a transaction branch on behalf of the calling thread of control. For a resource
manager that allows multiple threads of control, but only one at a time working on a
specific global transaction, the xa_end() call generated by this command gives the resource
manager a chance to allow another thread of control to work on the global transaction at
this point. If this flag is not accompanied by the TMMIGRATE flag, then the
communication resource manager issuing ax_end() must resume the association in the
current thread. TMSUSPEND cannot be used in conjunction with either TMSUCCESS or
TMFAIL.

TMMIGRATE
If this flag is used with TMSUSPEND, the communication resource manager intends (but is
not required) to resume the association in a thread different from the calling one. If this flag
is used with TMSUCCESS, the communication resource manager intends (but is not
required) either to perform an ax_start () with TMJOIN, or ax_prepare(), ax_commit() or
ax_rollback () in a different thread from the calling one. Setting TMMIGRATE in flags, while
another thread’s association for *xid is currently suspended with TMMIGRATE, makes
ax_end() fail, returning [TMER_PROTO]. If this flag is not used, a communication resource
manager is required to resume the association or perform transaction completion in the
current thread.

46 Snapshot (1994)

Reference Manual Pages ax_end()

TMSUCCESS
The portion of work has succeeded. This flag cannot be used in conjunction with
TMSUSPEND or TMFAIL.

TMFAIL
The portion of work has failed. The transaction manager marks the transaction branch as
rollback-only and passes the TMFAIL flag to the resource managers on the xa_end() call. In
effect, the global transaction is marked for rollback-only at this point. This flag cannot be
used in conjunction with TMMIGRATE, TMSUSPEND or TMSUCCESS.

TMSUCCESS and TMFAIL mark the completion of the association of a transaction branch.
These flags are used only by communication resource managers that are superior to the
transaction manager.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_end() has the following return values:

[TM_NOMIGRATE]
A resource manager was unable to prepare the transaction context for migration. However,
the transaction manager successfully suspended the association if TMSUSPEND was set in
flags. In this case, the calling communication resource manager can resume the association
only in the current thread. This code may be returned when both TMSUSPEND and
TMMIGRATE are set in flags.

If the transaction manager (due to some resource manager restrictions) is unable to perform
xa_prepare(), xa_commit() or xa_rollback () for this transaction in any other thread, it returns
TM_NOMIGRATE when TMSUCCESS is set in flags. The transaction manager successfully
ended the current association.

[TM_RDONLY]
No resource managers statically or dynamically registered for this transaction branch which
was begun with ax_start () with TMNOFLAGS set in flags and ended with ax_end() with
TMSUCCESS set in flags. Or, this transaction branch was begun with ax_start () with
TMDEFERRED set in flags, ended with ax_end() with TMSUCCESS or TMFAIL set in flags,
and the application program did not issue tx_begin(). The transaction manager has
removed all record of the transaction branch as if ax_start () were never issued by the
communication resource manager.

[TM_OK]
Normal execution.

[TM_RB*]
The transaction manager has dissociated the transaction branch from the thread of control
and has marked rollback-only the work done on behalf of *xid. The following values may
be returned regardless of the setting of flags:

[TM_RBROLLBACK]
The transaction manager marked the transaction branch rollback-only for an
unspecified reason.

[TM_RBCOMMFAIL]
A communication failure occurred within a resource manager.

Distributed Transaction Processing: The XA+ Specification Version 2 47

ax_end() Reference Manual Pages

[TM_RBDEADLOCK]
A resource manager detected a deadlock.

[TM_RBINTEGRITY]
The transaction manager or a resource manager detected a violation of the integrity of
its resources.

[TM_RBOTHER]
The transaction manager or a resource manager marked the transaction branch
rollback-only for a reason not on this list.

[TM_RBPROTO]
A protocol error occurred within a resource manager.

[TM_RBTIMEOUT]
The work represented by this transaction branch took too long.

[TM_RBTRANSIENT]
A resource manager detected a transient error.

[TMER_TMERR]
An error occurred in dissociating the transaction branch from the thread of control.

[TMER_NOTA]
The specified XID is not known to the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), xa_end(), ax_start ().

48 Snapshot (1994)

Reference Manual Pages ax_forget_branch()

NAME
ax_forget_branch — remove a branch from an existing global transaction

SYNOPSIS
#include <xa.h>

int ax_forget_branch(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager to remove an unused transaction
branch.

The ax_forget_branch () function allows a communication resource manager to request the
transaction manager to remove a branch from the current global transaction. The
communication resource manager calls the transaction manager with this function when it
propagates the existing global transaction to a different thread of control that runs loosely
coupled with the current thread of control, but the transaction branch (generated by the
transaction manager when the communication resource manager called ax_add_branch ()) was
not used.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The second argument, xid, is a pointer to the XID that identifies the transaction branch. The XID
must be the same as one generated by the transaction manager when the communication
resource manager issued an ax_add_branch ().

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_forget_branch () has the following return values:

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error deleting the XID.

[TMER_NOTA]
The specified XID is not known to the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), ax_add_branch ().

Distributed Transaction Processing: The XA+ Specification Version 2 49

ax_get_branch_info() Reference Manual Pages

NAME
ax_get_branch_info — access information for a transaction branch

SYNOPSIS
#include <xa.h>

int ax_get_branch_info(int rmid , XID * xid , char * blob ,
long * blob_len , long flags)

DESCRIPTION
This function is called by a communication resource manager that can create transaction
branches. The ax_get_branch_info () function allows the communication resource manager to
access information for a specific transaction branch that was saved by a transaction manager.
The communication resource manager requests information to be saved using the
ax_set_branch_info () call. The communication resource manager may call ax_get_branch_info ()
multiple times for the same xid.

The first argument, rmid, is the integer that the communication resource manager received when
the transaction manager called xa_open(). It identifies the communication resource manager in
the thread of control.

xid must point to an XID passed to the transaction manager on an ax_set_branch_info () call.
Otherwise, the transaction manager returns an error ([TMER_NOTA]).

The blob argument is a pointer to an area to receive the previously saved information. It is the
communication resource manager’s responsibility to ensure that the area is big enough to hold
the information.

The blob_len argument is a pointer to an area in which the transaction manager returns the size
of blob.

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_get_branch_info () has the following return values:

[TM_OK]
Normal execution.

[TMER_TMERR]
An error occurred in the transaction manager.

[TMER_NOTA]
The specified XID is not known by the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in the improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), ax_set_branch_info ().

50 Snapshot (1994)

Reference Manual Pages ax_prepare()

NAME
ax_prepare — propagate transaction branch prepare to commit to the transaction manager

SYNOPSIS
#include <xa.h>

int ax_prepare(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager that can propagate transaction
branches. The ax_prepare() function notifies a transaction manager that a prepare to commit
indication has been received from a superior. The transaction manager, in turn, issues an
xa_prepare() to all local resource managers registered for the transaction branch and all branches
subordinate to XID that were created with ax_add_branch (). Any thread of control may invoke
ax_prepare().

The first argument, rmid, is the integer that the communication resource manager received when
the transaction manager called xa_open(). It identifies the communication resource manager in
the thread of control.

The xid argument is a pointer to the XID that identifies the transaction branch being prepared for
commitment.

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_prepare() has the following return values:

[TM_RDONLY]
The transaction branch was read-only. The branch does not need to be included in the
second phase of the commit operation. On return, the resource manager has released all
held resources.

[TM_OK]
Normal execution.

[TM_RB*]
The transaction manager did not prepare to commit the work done on behalf of the
transaction branch. Upon return, the transaction manager has rolled back the branch’s work
and has released all held resources. The following values may be returned:

[TM_RBROLLBACK]
The transaction manager rolled back the transaction branch for an unspecified reason.

[TM_RBCOMMFAIL]
A communication failure occurred within a resource manager.

[TM_RBDEADLOCK]
A resource manager detected a deadlock.

[TM_RBINTEGRITY]
The transaction manager or a resource manager detected a violation of the integrity of
its resources.

Distributed Transaction Processing: The XA+ Specification Version 2 51

ax_prepare() Reference Manual Pages

[TM_RBOTHER]
The transaction manager or a resource manager rolled back the transaction branch for a
reason not on this list.

[TM_RBPROTO]
A protocol error occurred within a resource manager.

[TM_RBTIMEOUT]
The work represented by this transaction branch took too long.

[TM_RBTRANSIENT]
A resource manager detected a transient error.

[TMER_TMERR]
The transaction manager encountered an error while trying to prepare to commit the
transaction branch.

[TMER_NOTA]
The specified XID is not known by the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), xa_prepare(), xa_commit(), xa_rollback (), ax_commit(), ax_rollback ().

52 Snapshot (1994)

Reference Manual Pages ax_ready()

NAME
ax_ready — find out if a subordinate should commit or rollback

SYNOPSIS
#include <xa.h>

int ax_ready(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager to get the status of a transaction
branch at the request of a subordinate that is attempting recovery from the disruption of the
two-phase commit process.

The ax_ready () function allows the communication resource manager to request a transaction
manager to report the status of a global transaction. The communication resource manager calls
the transaction manager with this function when it receives a query from a subordinate. The
transaction manager responds with either an order to commit or rollback the subordinate or an
indication that the outcome of the prepare phase of the two-phase commit process is not yet
known.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The second argument, xid, is a pointer to the XID that identifies the transaction branch. The XID
must be the same as one generated by the transaction manager when the communication
resource manager issued an ax_add_branch ().

The function’s last argument, flags, must be set to the following value:

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_ready () has the following return values:

[TM_RBROLLBACK]
The transaction manager marked the transaction branch rollback-only . The transaction
manager is instructing the CRM to roll back the transaction branch at the subordinate.

[TM_DEFERRED]
A decision has not yet been made. The transaction manager completes the two-phase
commit process later. The subordinate has no need for immediate action.

[TM_OK]
Normal execution. The transaction manager has marked the transaction branch decided .
The transaction manager is instructing the CRM to commit the transaction branch at the
subordinate.

[TMER_TMERR]
The transaction manager encountered an error.

[TMER_INVAL]
Invalid arguments were specified.

Distributed Transaction Processing: The XA+ Specification Version 2 53

ax_ready() Reference Manual Pages

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), xa_ready (), ax_add_branch (), ax_commit(), ax_rollback ().

54 Snapshot (1994)

Reference Manual Pages ax_recover()

NAME
ax_recover — obtain a list of transaction branches from a transaction manager

SYNOPSIS
#include <xa.h>

int ax_recover(int rmid , XID * xids , long count , long flags)

DESCRIPTION
A communication resource manager calls ax_recover() to obtain a list of transaction branches
known by a transaction manager for which the communication resource manager has previously
issued ax_set_branch_info (). The caller points *xids to an array into which the transaction
manager places the XIDs, and sets count to the maximum number of XIDs that fit into that array.

The transaction manager responds to ax_recover() as though it maintained an ordered list of
transaction branches for which it has saved information on behalf of the communication
resource manager. Each such branch appears only once in this list, and removal of a branch from
the list does not change the relative order of the remaining branches in the list.

Depending on the setting of flags, certain calls to ax_recover() denote the start and/or end of a
recovery scan. During a recovery scan, the transaction manager defines a cursor marking the
current position in the list of transaction branches. The start of a recovery scan moves the cursor
to the start of the list. Each call advances the cursor past the set of XIDs returned.

Two consecutive complete recovery scans return the same list of transaction branches unless an
intervening event allows the transaction manager to forget some transaction branches.

The communication resource manager may call this function from any thread of control, but all
calls in a given recovery scan must be made from the same thread.

Upon success, ax_recover() places zero or more XIDs in the space pointed to by *xids. The
function returns the number of XIDs it has placed there. If this value is less than count, there are
no more XIDs to recover and the current scan ends. (That is, the communication resource
manager need not call ax_recover() again with TMENDRSCAN set in flags.) Multiple invocations
of ax_recover() are used to retrieve all the transaction branches for which the transaction
manager has information saved on behalf of the communication resource manager.

The function’s first argument, rmid, is the integer the communication resource manager received
when the transaction manager called xa_open(). It identifies the communication resource
manager in the thread of control.

The following are valid settings of flags:

TMSTARTRSCAN
This flag indicates that ax_recover() should start a recovery scan for the thread of control
and position the cursor to the start of the list. XIDs are returned from that point. If a
recovery scan is already open, the effect is as if the recovery scan were ended and then
restarted.

TMENDRSCAN
This flag indicates that ax_recover() should end the recovery scan after returning the XIDs. If
this flag is used in conjunction with TMSTARTRSCAN, the single ax_recover() call starts
and then ends a scan.

TMNOFLAGS
This flag must be used when no other flags are set in flags. A recovery scan must already be
started. XIDs are returned starting at the current cursor position.

Distributed Transaction Processing: The XA+ Specification Version 2 55

ax_recover() Reference Manual Pages

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_recover() has the following return values:

[≥ 0]
As a return value, ax_recover() normally returns the total number of XIDs it returned in
*xids .

[TMER_TMERR]
An error occurred in determining the XIDs to return.

[TMER_INVAL]
xids is null and count is greater than 0; count is negative; an invalid flags was specified; or
the thread of control does not have a recovery scan open and did not specify
TMSTARTRSCAN in flags.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
ax_set_branch_info (), ax_get_branch_info ().

WARNINGS
If xids points to a buffer that cannot hold all of the XIDs requested, then ax_recover() may
overwrite the caller’s data space.

56 Snapshot (1994)

Reference Manual Pages ax_reg()

NAME
ax_reg, ax_reg_2 — dynamically register a resource manager with a transaction manager

SYNOPSIS
#include <xa.h>

int ax_reg(int rmid , XID * xid, long flags)

int ax_reg_2(int rmid , XID * xid, XACTL *ctl, long flags)

DESCRIPTION
A resource manager calls ax_reg() to inform a transaction manager that it is about to perform
work on behalf of an application thread of control. The transaction manager, in turn, replies to
the resource manager with an indication of whether or not that work should be performed on
behalf of a transaction branch. If the transaction manager determines that the calling thread of
control is involved in a branch then, upon successful return, xid points to a valid XID. If the
resource manager’s work is outside any global transaction, then xid points to NULLXID. The
caller is responsible for allocating the space to which xid points.

The resource manager must call this function from the same thread of control from which the
application accesses the resource manager. A resource manager taking advantage of this facility
must have TMREGISTER set in the flags element of its xa_switch_t structure (see Chapter 4).
Moreover, ax_reg() returns failure [TMER_TMERR] when issued by a resource manager that has
not set TMREGISTER.

When the resource manager calls ax_reg() for a new thread of control association (that is, when
[TM_RESUME] is not returned; see below), the transaction manager may generate a unique
branch qualifier within the returned XID.

If the transaction manager elects to reuse within *xid a branch qualifier previously given to the
resource manager, it informs the resource manager of this by returning [TM_JOIN]. If the
resource manager receives [TM_JOIN] and does not recognise *xid , it must return a failure
indication to the application.

If the resource manager is resuming work on a suspended transaction branch, it informs the
resource manager of this by returning [TM_RESUME]. When [TM_RESUME] is returned, xid
points to the same XID that was passed to the xa_end() call that suspended the association. If
the resource manager receives [TM_RESUME] and does not recognise *xid , it must return a
failure indication to the application.

If the transaction manager generated a new branch qualifier within the returned XID, this thread
is loosely-coupled in relation to the other threads in this same global transaction. That is, the
resource manager may treat this thread’s work as a separate transaction with respect to its
isolation policies. If the transaction manager reuses a branch qualifier within the returned XID,
this thread is tightly-coupled to the other threads in the same transaction branch. The resource
manager must guarantee that tightly-coupled threads are treated as a single entity with respect
to its isolation policies and that no resource deadlock can occur within the transaction branch
among these tightly-coupled threads.

The implications of dynamically registering are as follows: when a thread of control begins
working on behalf of a transaction branch, the transaction manager calls xa_start () for all
resource managers known to the thread except those having TMREGISTER set in their
xa_switch_t structure. Thus, those resource managers with this flag set must explicitly join a
branch with ax_reg(). Secondly, when a thread of control is finished working on behalf of a
branch, the transaction manager calls xa_end() for all resource managers known to the thread
that either do not have TMREGISTER set in their xa_switch_t structure or have dynamically

Distributed Transaction Processing: The XA+ Specification Version 2 57

ax_reg() Reference Manual Pages

registered with ax_reg().

The function’s first argument, rmid, is the integer that the resource manager received when the
transaction manager called xa_open(). It identifies the resource manager in the thread of control.

The function’s last argument, flags, is reserved for future use and must be set to TMNOFLAGS.

In order to promote migration to future extensions, the resource manager should not set any
unused flags, and the transaction manager should not validate the unused settings of flags.

On input to ax_reg_2(), the resource manager sets flag bits in ctl→flags to inform the transaction
manager of the options in which it is interested. The following settings are valid:

XAOPTS_NOFLAGS
No flags or values are set. The resource manager is not interested in finding out any extra
information from the transaction manager. This is equivalent to calling ax_reg().

XAOPTS_TIMEOUT
Setting this flag indicates that the resource manager wants the transaction manager to set in
ctl→timeout the number of seconds before which the transaction can be timed out and rolled
back.

On output, the transaction manager populates the items that the resource manager has
requested. If the transaction manager does not have a value for a setting that the resource
manager requested, it turns that setting off on output. In this way, the resource manager can
determine exactly which values the transaction manager returned.

RETURN VALUE
The function ax_reg() has the following return values:

[TM_JOIN]
The resource manager is joining the work of an existing transaction branch. The resource
manager should make available enough transaction context so that tightly-coupled threads
are not susceptible to resource deadlock within the branch. If the resource manager does
not recognise *xid, it must return a failure indication to the application.

[TM_RESUME]
The resource manager should resume work on a previously-suspended transaction branch.
The resource manager should make available at least the transaction context that is specific
to the resource manager, present at the time of the suspend, as if the thread had effectively
never been suspended, except that other threads in the global transaction may have affected
this context.

If the resource manager does not recognise *xid, then it must return a failure indication to
the application. If the resource manager allows an association to be resumed in a different
thread from the one that suspended the work, and the transaction manager expressed its
intention to migrate the association (by means of the TMMIGRATE flag on xa_end()), then
the current thread may be different from the one that suspended the work. Otherwise, the
current thread must be the same, or the resource manager must return a failure indication to
the application.

If *xid contains a reused branch qualifier, and the transaction manager has multiple
outstanding suspended thread associations for *xid, the following rules apply:

• The transaction manager can have only one of them outstanding at any time with
TMMIGRATE set in flags.

58 Snapshot (1994)

Reference Manual Pages ax_reg()

• Moreover, the transaction manager cannot resume this association in a thread that
currently has a non-migratable suspended association.

These rules prevent ambiguity as to which context is restored.

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error in registering the resource manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
ax_unreg(), xa_end(), xa_open(), xa_start ().

WARNINGS
If xid does not point to a buffer that is at least as large as the size of an XID, then ax_reg() may
overwrite the caller’s data space. In addition, the buffer must be properly aligned (on a long
word boundary) in the event that structure assignments are performed.

Distributed Transaction Processing: The XA+ Specification Version 2 59

ax_rollback() Reference Manual Pages

NAME
ax_rollback — propagate transaction branch rollback to a transaction manager

SYNOPSIS
#include <xa.h>

int ax_rollback(int rmid , XID * xid, long flags)

DESCRIPTION
This function is called by a communication resource manager that can propagate the two-phase
commit protocol for transaction branches. The ax_rollback () function notifies a transaction
manager that a rollback indication has been received from a superior. The transaction manager,
in turn, issues an xa_rollback () to all local resource managers registered for the transaction
branch and all branches subordinate to the XID pointed to by xid that were created with
ax_add_branch (). Any thread of control may invoke ax_rollback ().

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The xid argument is a pointer to the XID that identifies the transaction branch being rolled back.

If the communication resource manager is rolling back a transaction branch while transaction
chaining is in effect, the communication resource manager sets the TMCHAINED flag. xid[0] is
the transaction branch to roll back, and xid[1] is the chained transaction branch to assign. If the
transaction manager returns any [TMER_*] negative return value, the new transaction branch is
not assigned.

The communication resource manager begins local work on the new transaction later by issuing
ax_start () to the transaction manager in the application thread of control. The transaction
manager then issues xa_start () to statically registering resource managers. Dynamically
registering resource managers need to register using ax_reg() in the application thread of control
when application work in the resource manager begins.

The function’s last argument, flags, must be set to one of the following values:

TMCHAINED
This flag indicates that processing is in chained transaction mode, and in addition to rolling
back the existing transaction branch, a new XID is provided for the next transaction. xid[0]
is the XID to roll back. xid[1] is the XID to assign for the next transaction.

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.
The transaction manager sets this same flag when it calls xa_rollback () for subordinate
branches.

TMNOFLAGS
This flag must be used when no other flags are set in flags .

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_rollback () has the following return values:

[TM_HEURHAZ]
Due to some failure, the work done on behalf of the specified transaction branch may have
been heuristically completed.

60 Snapshot (1994)

Reference Manual Pages ax_rollback()

[TM_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
committed.

[TM_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
rolled back.

[TM_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
partially committed and partially rolled back.

[TM_OK]
Normal execution.

[TM_RB*]
The transaction manager has rolled back the transaction branch’s work releasing all held
resources. These values are typically returned when the branch was already marked
rollback-only. The following values may be returned:

[TM_RBROLLBACK]
The transaction manager or a resource manager rolled back the transaction branch for
an unspecified reason.

[TM_RBCOMMFAIL]
A communication failure occurred within a resource manager.

[TM_RBDEADLOCK]
A resource manager detected a deadlock.

[TM_RBINTEGRITY]
The transaction manager or a resource manager detected a violation of the integrity of
its resources.

[TM_RBOTHER]
The transaction manager or a resource manager rolled back the transaction branch for a
reason not on this list.

[TM_RBPROTO]
A protocol error occurred within a resource manager.

[TM_RBTIMEOUT]
The work represented by this transaction branch took too long.

[TM_RBTRANSIENT]
A resource manager detected a transient error.

[TMER_TMERR]
The transaction manager encountered an error while trying to roll back the transaction
branch.

[TMER_NOTA]
The specified XID is not known to the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

Distributed Transaction Processing: The XA+ Specification Version 2 61

ax_rollback() Reference Manual Pages

SEE ALSO
xa_open(), xa_prepare(), xa_commit(), xa_rollback (), ax_prepare(), ax_commit(), ax_add_branch ().

62 Snapshot (1994)

Reference Manual Pages ax_set_branch_info()

NAME
ax_set_branch_info — save information for a transaction branch

SYNOPSIS
#include <xa.h>

int ax_set_branch_info(int rmid , XID * xid , char * blob , long blob_len ,
long flags)

DESCRIPTION
This function is called by a communication resource manager that can create transaction
branches.

The ax_set_branch_info () function allows the communication resource manager to request a
transaction manager to save information for a specific transaction branch. A communication
resource manager that is subordinate to the transaction manager can save information for
branches it creates from ax_add_branch () calls, and a communication resource manager that is
superior to the transaction manager can save information for the transaction branch that is
currently active in the thread of control. The communication resource manager can retrieve this
information later (for example, during recovery) by calling ax_get_branch_info (). The
communication resource manager may call this function multiple times for the same XID. Each
subsequent call requests the transaction manager to replace previously saved information for
the transaction branch.

The transaction manager records this information stably at the completion of the prepare-to-
commit process for the superior transaction branch. This service is not intended to provide a
general-purpose logging facility for resource managers. It simply provides a mechanism to save
information for communication resource managers that would ordinarily not require any other
logging service.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The xid argument is a pointer to the XID that identifies the transaction branch for which this
information is to be saved. xid must point to the same XID received when the communication
resource manager called ax_reg(), ax_add_branch (), or when the transaction manager called the
communication resource manager function, xa_start (), or the same XID passed to the transaction
manager when the communication resource manager called ax_start ().

The blob argument points to a character string of information to be saved.

The blob_len argument contains the size of blob. The function returns [TMER_INVAL] if blob_len
is greater than TMMAXBLOBLEN. The function returns [TMER_TMERR] if this blob_len forces
TMMAXBLOBTOT to be exceeded.

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

RETURN VALUE
The function ax_set_branch_info () has the following return values:

[TM_OK]
Normal execution.

Distributed Transaction Processing: The XA+ Specification Version 2 63

ax_set_branch_info() Reference Manual Pages

[TMER_TMERR]
An error occurred in the transaction manager.

[TMER_NOTA]
The specified XID is not known by the transaction manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in the improper context. See Chapter 6 for details.

SEE ALSO
xa_start (), ax_start (), ax_add_branch (), ax_reg(), ax_get_branch_info ().

64 Snapshot (1994)

Reference Manual Pages ax_start()

NAME
ax_start, ax_start_2 — notify a transaction manager to propagate a transaction branch
association or to resume the branch association in this thread of control

SYNOPSIS
#include <xa.h>

int ax_start(int rmid , XID * xid, long flags)

int ax_start_2(int rmid , XID * xid, XACTL *ctl, long flags)

DESCRIPTION
This function is called by a communication resource manager that can propagate transaction
branches.

When ax_start () is called with TMNOFLAGS, the communication resource manager is
propagating a new transaction branch to this thread of control. The transaction manager accepts
the XID passed by the communication resource manager, but the transaction manager may map
the branch qualifier portion of the XID to one of its own. The communication resource manager
finds out about the mapping when its xa_start () function is subsequently called or when it calls
ax_reg().

When ax_start () is called with the TMRESUME flag, the communication resource manager is
resuming the association of a transaction branch that was previously suspended by an ax_end()
call with the TMSUSPEND flag set. The association is being resumed in the same thread of
control where the suspension occurred if TMMIGRATE was set on ax_end(), and migration was
not permitted by the transaction manager (that is, TM_NOMIGRATE was returned). Otherwise,
the resumption may be in a different thread of control.

When ax_start () is called with the TMJOIN flag, the communication resource manager is
beginning an association with a transaction branch that was previously begun in this or another
thread of control under the supervision of the transaction manager. TMJOIN allows threads of
control to share the same XID serially or in parallel. XID-sharing can be among an application
and one or more subordinate applications it calls or among a set of subordinate applications
independent of the calling application.

When ax_start () is called with the TMDEFERRED flag, the communication resource manager is
deferring the propagation of a new transaction branch in this thread of control pending the
agreement of the AP. The AP agrees to participate in the transaction by issuing tx_begin() later.
When this happens, the transaction manager proceeds as if ax_start () were called with
TMNOFLAGS set in flags.

The communication resource manager calls ax_start () to instruct the transaction manager to
notify resource managers that an application may do work on behalf of a transaction branch.
The transaction manager does so by calling xa_start () for resource managers that do not have
TMREGISTER set in the flags element of their xa_switch_t structure. The transaction manager
passes on the flags settings it received on the ax_start () call when it issues xa_start () calls.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The xid argument is a pointer to the XID that identifies the transaction branch whose association
is being started or resumed in the thread of control. The XID must not have been previously
associated with a thread by the transaction manager if a new branch is being propagated (the
flags argument set to TMNOFLAGS). The XID must have been previously associated with a
thread by the transaction manager if the setting of flags is either TMRESUME or TMJOIN.

Distributed Transaction Processing: The XA+ Specification Version 2 65

ax_start() Reference Manual Pages

The following are valid settings of flags:

TMJOIN
This flag indicates that a transaction branch that has previously been associated with this or
another thread of control under the supervision of the transaction manager is being
propagated to this thread. This thread is joining a set of tightly-coupled threads sharing a
common XID. This flag cannot be used in conjunction with TMRESUME.

TMRESUME
This flag indicates that an operation which suspended the previously associated transaction
branch is complete and the association is being resumed. This flag cannot be used in
conjunction with TMJOIN.

TMDEFERRED
This flag indicates that the propagation of a new transaction branch to this thread of control
is pending acceptance by the application program.

TMNOFLAGS
This flag value is used when other settings of flags do not apply.

In order to promote migration to future extensions, the communication resource manager
should not set any unused flags, and the transaction manager should not validate the unused
settings of flags.

On input to ax_start_2 (), the communication resource manager sets flag bits in ctl→flags to
inform the transaction manager of the options that are being passed. The following settings are
valid:

XAOPTS_NOFLAGS
No flags or values are set. The communication resource manager has passed no
information to control the transaction manager. This is equivalent to calling ax_start ().

XAOPTS_TIMEOUT
Setting this flag indicates that the communication resource manager has placed in
ctl→timeout the number of seconds before which the transaction manager can timeout and
rollback the transaction branch.

RETURN VALUE
The function ax_start () has the following return values:

[TM_OK]
Normal execution.

[TM_RB*]
The transaction manager has not associated the transaction branch with the thread of
control and has marked *xid rollback-only. The following values may be returned
regardless of the setting of flags:

[TM_RBROLLBACK]
The transaction manager marked the transaction branch rollback-only for an
unspecified reason.

[TM_RBCOMMFAIL]
A communication failure occurred within a resource manager.

[TM_RBDEADLOCK]
A resource manager detected a deadlock.

66 Snapshot (1994)

Reference Manual Pages ax_start()

[TM_RBINTEGRITY]
The transaction manager or a resource manager detected a violation of the integrity of
its resources.

[TM_RBOTHER]
The transaction manager or a resource manager marked the transaction branch
rollback-only for a reason not on this list.

[TM_RBPROTO]
A protocol error occurred within a resource manager.

[TM_RBTIMEOUT]
The work represented by this transaction branch took too long.

[TM_RBTRANSIENT]
A resource manager detected a transient error.

[TMER_TMERR]
The transaction manager encountered an error while trying to associate *xid with the thread
of control.

[TMER_NOTA]
Either TMJOIN or TMRESUME was set in flags, and the specified XID has not been
previously associated by the transaction manager with this or another thread of control.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[TMER_DUPID]
Neither TMJOIN nor TMRESUME was set in flags, but the transaction manager has
previously associated *xid with this or another thread of control. The transaction manager
did perform the association of this thread with the transaction branch.

SEE ALSO
xa_open(), xa_start (), xa_end(), ax_end(), ax_reg().

Distributed Transaction Processing: The XA+ Specification Version 2 67

ax_unreg() Reference Manual Pages

NAME
ax_unreg — dynamically unregister a resource manager with a transaction manager

SYNOPSIS
#include <xa.h>

int ax_unreg(int rmid , long flags)

DESCRIPTION
A resource manager calls ax_unreg() to inform a transaction manager that it has completed
work, outside any global transaction, that it began after receiving the NULLXID from ax_reg().
In addition, the resource manager is informing the transaction manager that the accessing thread
of control is free to participate (from the resource manager’s perspective) in a global transaction.
So long as any resource manager in a thread of control is registered with a transaction manager
and is performing work outside any global transaction, that application thread cannot
participate in a global transaction.

A resource manager must call this function from the same thread of control that originally called
ax_reg(). A resource manager taking advantage of this facility must have TMREGISTER set in
the flags element of its xa_switch_t structure (see Chapter 4). Moreover, ax_unreg() returns
failure [TMER_TMERR] when issued by a resource manager that has not set TMREGISTER.

The function’s first argument, rmid, is the integer that the resource manager received when the
transaction manager called xa_open(). It identifies the resource manager in the thread of control.

The function’s last argument, flags, is reserved for future use and must be set to TMNOFLAGS.

In order to promote migration to future extensions, the resource manager should not set any
unused flags, and the transaction manager should not validate the unused settings of flags.

RETURN VALUE
The function ax_unreg() has the following return values:

[TM_OK]
Normal execution.

[TMER_TMERR]
The transaction manager encountered an error in unregistering the resource manager.

[TMER_INVAL]
Invalid arguments were specified.

[TMER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
ax_reg().

68 Snapshot (1994)

Reference Manual Pages xa_close()

NAME
xa_close — close a resource manager

SYNOPSIS
#include <xa.h>

int xa_close(char * xa_info , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_close () to close a currently open resource manager in the calling
thread of control. Once closed, the resource manager cannot participate in global transactions
on behalf of the calling thread until it is re-opened.

The argument xa_info points to a null-terminated character string that may contain instance-
specific information for the resource manager. The maximum length of this string is 256 bytes
(including the null terminator). The argument xa_info may point to an empty string if the
resource manager does not require instance-specific information to be available. The argument
xa_info must not be a null pointer.

The transaction manager must call this function from the same thread of control that accesses
the resource manager. In addition, attempts to close a resource manager that is already closed
have no effect and return success, [XA_OK].

It is an error [XAER_PROTO] for the transaction manager to call xa_close () within a thread of
control that is associated with a transaction branch (that is, the transaction manager must call
xa_end() before calling xa_close ()). In addition, if the transaction manager calls xa_close () while
an asynchronous operation is pending at a resource manager, an error [XAER_PROTO] is
returned.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags, must be set to one of the following values:

TMASYNC
This flag indicates that xa_close () shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager, this function fails,
returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_close () has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

Distributed Transaction Processing: The XA+ Specification Version 2 69

xa_close() Reference Manual Pages

[XAER_RMERR]
An error occurred when closing the resource.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_complete (), xa_end(), xa_open().

WARNINGS
From the resource manager’s perspective, the pointer xa_info is valid only for the duration of the
call to xa_close (). That is, once the function completes, either synchronously or asynchronously,
the transaction manager is allowed to invalidate where xa_info points. Resource managers are
encouraged to use private copies of *xa_info after the function completes.

70 Snapshot (1994)

Reference Manual Pages xa_commit()

NAME
xa_commit — commit work done on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int xa_commit(XID * xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_commit() to commit the work associated with *xid. Any changes
made to resources held during the transaction branch are made permanent. The transaction
manager may call this function from any thread of control. All associations for *xid must have
been ended by using xa_end() with TMSUCCESS set in flags.

If a resource manager already completed the work associated with *xid heuristically, this
function merely reports how the resource manager completed the transaction branch. The
resource manager cannot forget about a heuristically completed branch until the transaction
manager calls xa_forget ().

The transaction manager must issue a separate xa_commit() for each transaction branch that
accessed the resource manager.

If the transaction manager is committing a transaction branch while transaction chaining is in
effect and the resource manager supports chained transactions, the transaction manager sets the
TMCHAINED flag. xid[0] is the transaction branch to commit, and xid[1] is the chained
transaction branch to assign. If the resource manager returns any [XAER_*] negative return
value, or [XA_RETRY] or [XA_RETRY_COMMFAIL], the new transaction branch is not
assigned.

The transaction manager begins local work on the new transaction later by issuing xa_start () in
the application thread of control for statically registering resource managers. Dynamically
registering resource managers need to register using ax_reg() in the application thread of control
when application work in the resource manager begins.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags (note that at most one of TMNOWAIT and TMASYNC
may be set):

TMNOWAIT
When this flag is set and a blocking condition exists, xa_commit() returns [XA_RETRY] and
does not commit the transaction branch (that is, the call has no effect). The function
xa_commit() must be called at a later time to commit the branch. TMNOWAIT is ignored if
TMONEPHASE is set.

TMASYNC
This flag indicates that xa_commit() shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
this function fails, returning [XAER_ASYNC].

TMONEPHASE
The transaction manager must set this flag if it is using the one-phase commit optimisation
for the specified transaction branch.

Distributed Transaction Processing: The XA+ Specification Version 2 71

xa_commit() Reference Manual Pages

TMCHAINED
This flag indicates that processing is in chained transaction mode, and in addition to
committing the existing transaction branch, a new XID is provided for the next transaction.
xid[0] is the XID to commit. xid[1] is the XID to assign for the next transaction.

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_commit() has the following return values:

[XA_TWOPHASE]
The communication resource manager requires the use of two-phase commit. The
transaction manager must restart the commit procedure using two-phase commit by calling
xa_prepare().

[XA_RETRY_COMMFAIL]
The resource manager is not able to commit the transaction branch at this time. This value
is returned when a subordinate cannot be contacted due to communications failure. If
previously prepared, all resources held on behalf of *xid remain in a prepared state until
commitment is possible. The transaction manager should re-issue xa_commit() at a later
time. The subordinate may query the transaction manager using ax_ready () when
communications are re-established in order to finish the commit process.

When [XA_RETRY_COMMFAIL] is returned to the TM, it returns [TX_HAZARD] to the
application.

[XA_HEURHAZ]
Due to some failure, it is not known whether all subordinates in the transaction branch
performed the same operation (commit or rollback). One or more may be in danger of
making an inconsistent heuristic decision.

[XA_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
committed.

[XA_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
rolled back.

[XA_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
partially committed and partially rolled back.

[XA_RETRY]
The resource manager is not able to commit the transaction branch at this time. This value
may be returned when a blocking condition exists and TMNOWAIT was set. Note,
however, that this value may also be returned even when TMNOWAIT is not set (for
example, if the necessary stable storage is currently unavailable). This value cannot be
returned if TMONEPHASE is set in flags. All resources held on behalf of *xid remain in a
prepared state until commitment is possible. The transaction manager should re-issue
xa_commit() at a later time.

72 Snapshot (1994)

Reference Manual Pages xa_commit()

[XA_OK]
Normal execution.

[XA_RB*]
The resource manager did not commit the work done on behalf of the transaction branch.
Upon return, the resource manager has rolled back the branch’s work and has released all
held resources. These values may be returned only if TMONEPHASE is set in flags:

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in committing the work performed on behalf of the transaction branch
and the branch’s work has been rolled back. Note that returning this error signals a
catastrophic event to the transaction manager since other resource managers may
successfully commit their work on behalf of this branch. This error should be returned only
when a resource manager concludes that it can never commit the branch and that it cannot
hold the branch’s resources in a prepared state. Otherwise, [XA_RETRY] should be
returned.

[XAER_NOTA]
The specified XID is not known to the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

Distributed Transaction Processing: The XA+ Specification Version 2 73

xa_commit() Reference Manual Pages

SEE ALSO
ax_ready (), xa_complete (), xa_forget (), xa_open(), xa_prepare(), xa_rollback ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_commit(). That is, once the function completes, either synchronously or asynchronously,
the transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

74 Snapshot (1994)

Reference Manual Pages xa_complete()

NAME
xa_complete — wait for an asynchronous operation to complete

SYNOPSIS
#include <xa.h>

int xa_complete(int * handle , int * retval , int rmid ,
long flags)

DESCRIPTION
A transaction manager calls xa_complete () to wait for the completion of an asynchronous
operation. By default, this function waits for the operation pointed to by handle to complete.
The argument *handle must have previously been returned by a function that had TMASYNC
set. In addition, the transaction manager must call xa_complete () from the same thread of control
that received *handle.

Upon successful return, [XA_OK], retval points to the return value of the asynchronous
operation and *handle is no longer valid. If xa_complete () returns any other value, *handle, *retval,
and any outstanding asynchronous operation are not affected. The caller is responsible for
allocating the space to which handle and retval point.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags :

TMMULTIPLE
When this flag is set, xa_complete () tests for the completion of any outstanding
asynchronous operation. Upon success, the resource manager places the handle of the
completed asynchronous operation in the area pointed to by *handle.

TMNOWAIT
When this flag is set, xa_complete () tests for the completion of an operation without
blocking. That is, if the operation denoted by *handle (or any operation, if TMMULTIPLE is
also set) has not completed, xa_complete () returns [XA_RETRY] and does not wait for the
operation to complete.

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_complete () has the following return values:

[XA_RETRY]
TMNOWAIT was set in flags and no asynchronous operation has completed.

[XA_OK]
Normal execution.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

Distributed Transaction Processing: The XA+ Specification Version 2 75

xa_complete() Reference Manual Pages

SEE ALSO
xa_close (), xa_commit(), xa_end(), xa_forget (), xa_open(), xa_prepare(), xa_rollback (), xa_start ().

76 Snapshot (1994)

Reference Manual Pages xa_done()

NAME
xa_done — report that a transaction branch has been committed

SYNOPSIS
#include <xa.h>

int xa_done(XID * xid , int rmid , long flags)

DESCRIPTION
This function is called by a transaction manager to inform a communication resource manager
that a transaction branch has performed the commit phase of the two-phase commit process
after a disruption.

The xa_done() function orders the communication resource manager to inform the superior
transaction manager that the branch was committed after a disruption during recovery
processing.

The first argument, xid, is a pointer to the XID that identifies the transaction branch. The XID
must be the same as one generated by the transaction manager when the communication
resource manager issued an ax_start ().

The function’s second argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

Following are the valid settings of flags:

TMRECOVER
This flag indicates that this operation is being performed because of recovery at a
subordinate branch.

Note: TMNOFLAGS is not valid.

TMASYNC
This flag indicates that xa_done() shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
then this function fails, returning XAER_ASYNC.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the communication resource manager should not validate the unused settings
of flags.

RETURN VALUE
The function xa_done() has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
The resource manager encountered an error.

[XAER_INVAL]
Invalid arguments were specified.

Distributed Transaction Processing: The XA+ Specification Version 2 77

xa_done() Reference Manual Pages

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_open(), xa_ready (), ax_done(), ax_ready (), ax_rollback (), ax_start ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_done(). That is, once the function completes, either synchronously or asynchronously, the
transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

78 Snapshot (1994)

Reference Manual Pages xa_end()

NAME
xa_end — end work performed on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int xa_end(XID * xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_end() when a thread of control finishes, or needs to suspend
work on, a transaction branch. This occurs when the application completes a portion of its
work, either partially or in its entirety (for example, before blocking on some event in order to let
other threads of control work on the branch). When xa_end() successfully returns, the calling
thread of control is dissociated from the branch but the branch still exists. The transaction
manager must call this function from the same thread of control that accesses the resource
manager.

The transaction manager always calls xa_end() for those resource managers that do not have
TMREGISTER set in the flags element of their xa_switch_t structure. Unlike xa_start (), xa_end()
is also issued to those resource managers that have previously registered with ax_reg(). After
the transaction manager calls xa_end(), it should no longer consider the calling thread associated
with that resource manager (although it must consider the resource manager part of the
transaction branch when it prepares the branch.) Thus, a resource manager that dynamically
registers must re-register after an xa_end() that suspends its association (that is, after an xa_end()
with TMSUSPEND set in flags) but before the application thread of control continues to access
the resource manager.

The first argument, xid, is a pointer to an XID. The argument xid must point to the same XID
that was either passed to the xa_start () call or returned from the ax_reg() call that established the
thread’s association; otherwise, an error [XAER_NOTA] is returned.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags (note that one and only one of TMSUSPEND,
TMSUCCESS or TMFAIL must be set):

TMSUSPEND
Suspend a transaction branch on behalf of the calling thread of control. For a resource
manager that allows multiple threads of control, but only one at a time working on a
specific branch, it might choose to allow another thread of control to work on the branch at
this point. If this flag is not accompanied by the TMMIGRATE flag, the transaction manager
must resume or end the suspended association in the current thread. TMSUSPEND cannot
be used in conjunction with either TMSUCCESS or TMFAIL.

TMMIGRATE
The transaction manager intends (but is not required) to resume the association in a thread
different from the calling one. This flag may be used only in conjunction with TMSUSPEND
and only if a resource manager does not have TMNOMIGRATE set in the flags element of its
xa_switch_t structure. Setting TMMIGRATE in flags, while another thread’s association for
*xid is currently suspended with TMMIGRATE, makes xa_end() fail, returning
[XAER_PROTO]. This is because the transaction manager can have at any given time at
most one suspended thread association migrating for a particular transaction branch. If this
flag is not used, the transaction manager is required to resume the association in the current
thread.

Distributed Transaction Processing: The XA+ Specification Version 2 79

xa_end() Reference Manual Pages

TMSUCCESS
The portion of work has succeeded. This flag cannot be used in conjunction with either
TMSUSPEND or TMFAIL.

TMFAIL
The portion of work has failed. A resource manager might choose to mark a transaction
branch as rollback-only at this point. In fact, the transaction manager does so for the global
transaction. If a resource manager chooses to do so also, then xa_end() returns one of the
[XA_RB*] values. TMFAIL cannot be used in conjunction with either TMSUSPEND or
TMSUCCESS.

TMASYNC
This flag indicates that xa_end() shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager, this function fails,
returning [XAER_ASYNC].

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_end() has the following return values:

[XA_NOMIGRATE]
The resource manager was unable to prepare the transaction context for migration.
However, the resource manager has suspended the association. The transaction manager
can resume the association only in the current thread. This code may be returned when
both TMSUSPEND and TMMIGRATE are set in flags. A resource manager that sets
TMNOMIGRATE in the flags element of its xa_switch_t structure need not return
[XA_NOMIGRATE].

If a resource manager is unable to perform xa_prepare(), xa_commit() and xa_rollback () for
this transaction in any other process, it returns [XA_NOMIGRATE] if flags is set to
TMSUCCESS regardless of the setting of flags in its xa_switch_t structure.

[XA_RDONLY]
The communication resource manager does not need to participate in the two-phase
commit procedure for *xid. The communication resource manager usually needs to
participate only in the two-phase commit procedure for the transaction branches it created
by means of ax_add_branch (). By returning this value, the communication resource
manager is permitting an optimisation in the two-phase commit procedure by the
transaction manager. It may even result in the transaction manager being able to use the
one-phase commit optimisation.

[XA_OK]
Normal execution.

[XA_RB*]
The resource manager has dissociated the transaction branch from the thread of control and
has marked rollback-only the work performed on behalf of *xid. The following values may
be returned regardless of the setting of flags:

[XA_RBROLLBACK]
The resource manager marked the transaction branch rollback-only for an unspecified
reason.

80 Snapshot (1994)

Reference Manual Pages xa_end()

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager marked the transaction branch rollback-only for a reason not on
this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in dissociating the transaction branch from the thread of control.

[XAER_NOTA]
The specified XID is not known to the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
ax_reg(), xa_complete (), xa_open(), xa_start ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_end(). That is, once the function completes, either synchronously or asynchronously, the
transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

Distributed Transaction Processing: The XA+ Specification Version 2 81

xa_forget() Reference Manual Pages

NAME
xa_forget — forget about a heuristically completed transaction branch

SYNOPSIS
#include <xa.h>

int xa_forget(XID * xid , int rmid , long flags)

DESCRIPTION
A resource manager that heuristically completes work done on behalf of a transaction branch
must keep track of that branch along with the decision (that is, heuristically committed, rolled
back or mixed) until told otherwise. The transaction manager calls xa_forget () to permit the
resource manager to erase its knowledge of *xid. Upon successful return [XA_OK], *xid is no
longer valid (from the resource manager’s point of view). The transaction manager may call this
function from any thread of control.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags, must be set to one of the following values:

TMASYNC
This flag indicates that xa_forget () shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
then this function fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_forget () has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in the resource manager and the resource manager has not forgotten the
transaction branch.

[XAER_NOTA]
The specified XID is not known to the resource manager as a heuristically completed XID.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

82 Snapshot (1994)

Reference Manual Pages xa_forget()

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_commit(), xa_complete (), xa_open(), xa_recover(), xa_rollback ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_forget (). That is, once the function completes, either synchronously or asynchronously, the
transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

Distributed Transaction Processing: The XA+ Specification Version 2 83

xa_open() Reference Manual Pages

NAME
xa_open — open a resource manager

SYNOPSIS
#include <xa.h>

int xa_open(char * xa_info , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_open() to initialise a resource manager for the calling thread of
control and prepare it for use in a distributed transaction processing environment. It applies to
resource managers that support the notion of open and must be called before any other resource
manager (xa_*()) calls are made.

The argument xa_info points to a null-terminated character string that may contain instance-
specific information for the resource manager. The maximum length of this string is 256 bytes
(including the null terminator). The argument xa_info may point to an empty string if the
resource manager does not require instance-specific information to be available. The argument
xa_info must not be a null pointer.

The argument rmid, an integer assigned by the transaction manager, uniquely identifies the
called resource manager instance within the thread of control. The transaction manager passes
the rmid on subsequent calls to XA functions to identify the resource manager. This identifier
remains constant until the transaction manager in this thread closes the resource manager.

If the resource manager supports multiple instances, the transaction manager can call xa_open()
more than once for the same resource manager. The transaction manager generates a new rmid
value for each call, and must use different values for *xa_info on each call, typically to identify
the respective resource domain.

The transaction manager must call this function from the same thread of control that accesses
the resource manager. In addition, attempts to open a resource manager instance that is already
open have no effect and return success [XA_OK].

The function’s last argument, flags, must be set to one of the following values:

TMASYNC
This flag indicates that xa_open() shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager, then this function
fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_open() has the following return values:

[XA_OK]
Normal execution.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

84 Snapshot (1994)

Reference Manual Pages xa_open()

[XAER_RMERR]
An error occurred when opening the resource.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_close (), xa_complete ().

WARNINGS
From the resource manager’s perspective, the pointer xa_info is valid only for the duration of the
call to xa_open(). That is, once the function completes, either synchronously or asynchronously,
the transaction manager is allowed to invalidate where xa_info points. Resource managers are
encouraged to use private copies of *xa_info after the function completes.

Distributed Transaction Processing: The XA+ Specification Version 2 85

xa_prepare() Reference Manual Pages

NAME
xa_prepare — prepare to commit work done on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int xa_prepare(XID * xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_prepare() to request a resource manager to prepare for
commitment any work performed on behalf of *xid. The resource manager places any resources
it held or modified in such a state that it can make the results permanent when it receives a
commit request (that is, when the transaction manager calls xa_commit()). If the transaction
branch has already been prepared with xa_prepare(), subsequent calls to xa_prepare() return
[XAER_PROTO]. The transaction manager may call this function from any thread of control.
All associations for *xid must have been ended by using xa_end() with TMSUCCESS set in flags.

Once this function successfully returns, the resource manager must guarantee that the
transaction branch may be either committed or rolled back regardless of failures. A resource
manager cannot erase its knowledge of a branch until the transaction manager calls either
xa_commit() or xa_rollback () to complete the branch.

As an optimisation, the resource manager may indicate either that the work performed on behalf
of a transaction branch was read-only or that the resource manager was not accessed on behalf
of a branch (that is, xa_prepare() may return [XA_RDONLY]). In either case, the resource
manager may release all resources and forget about the branch.

The transaction manager must issue a separate xa_prepare() for each transaction branch that
accessed the resource manager on behalf of the global transaction.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags, must be set to one of the following values:

TMASYNC
This flag indicates that xa_prepare() shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
this function fails, returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_prepare() has the following return values:

[XA_RDONLY]
The transaction branch was read-only. The branch does not need to be included in the
second phase of the commit operation. On return, the resource manager has released all
held resources.

[XA_OK]
Normal execution.

86 Snapshot (1994)

Reference Manual Pages xa_prepare()

[XA_RB*]
The resource manager did not prepare to commit the work done on behalf of the transaction
branch. Upon return, the resource manager has rolled back the branch’s work and has
released all held resources. The following values may be returned:

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
The resource manager encountered an error in preparing to commit the transaction branch’s
work. The specified XID may or may not have been prepared.

[XAER_NOTA]
The specified XID is not known to the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable. The specified XID may or
may not have been prepared.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_commit(), xa_complete (), xa_open(), xa_rollback ().

Distributed Transaction Processing: The XA+ Specification Version 2 87

xa_prepare() Reference Manual Pages

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_prepare(). That is, once the function completes, either synchronously or asynchronously,
the transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

88 Snapshot (1994)

Reference Manual Pages xa_ready()

NAME
xa_ready — report that a transaction branch has been prepared

SYNOPSIS
#include <xa.h>

int xa_ready(XID * xid , int rmid , long flags)

DESCRIPTION
This function is called by a transaction manager to inform a communication resource manager
that a transaction branch has been marked ready , but the two-phase commit process was
disrupted by a failure.

The xa_ready () function orders the communication resource manager to request the superior
transaction manager to report the status of a global transaction. The transaction manager calls
this function during recovery processing. The communication resource manager responds with
either an order to commit or rollback the subordinate or an indication that the outcome of the
prepare phase of the two-phase commit process is not yet known.

The first argument, xid, is a pointer to the XID that identifies the transaction branch. The XID
must be the same as one given to the transaction manager when the communication resource
manager issued an ax_start ().

The function’s second argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

Following are the valid settings of flags :

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.

Note: TMNOFLAGS is not valid.

TMASYNC
This flag indicates that xa_ready () shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
then this function fails, returning [XAER_ASYNC].

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the communication resource manager should not validate the unused settings
of flags.

RETURN VALUE
The function xa_ready () has the following return values:

[XA_RBROLLBACK]
The superior transaction manager marked the transaction branch rollback-only . Perform a
rollback.

[XA_DEFERRED]
A decision has not yet been made. The superior transaction manager completes the two-
phase commit process later. This is the normal return value for the client/server style of
communication.

Distributed Transaction Processing: The XA+ Specification Version 2 89

xa_ready() Reference Manual Pages

[XA_OK]
Normal execution, which indicates that the superior transaction manager has marked the
transaction branch decided and that the commit phase should be performed.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
The resource manager encountered an error.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_open(), ax_add_branch (), ax_commit(), ax_ready (), ax_rollback (), ax_start ().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_ready (). That is, once the function completes, either synchronously or asynchronously, the
transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

90 Snapshot (1994)

Reference Manual Pages xa_recover()

NAME
xa_recover — obtain a list of prepared transaction branches from a resource manager

SYNOPSIS
#include <xa.h>

int xa_recover(XID * xids , long count , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_recover() during recovery to obtain a list of transaction branches
that are currently in a prepared or heuristically completed state. The caller points *xids to an
array into which the resource manager places XIDs for these transactions, and sets count to the
maximum number of XIDs that fit into that array.

So that all XIDs may be returned irrespective of the size of the array xids , one or more
xa_recover() calls may be used within a single recovery scan. The flags parameter to xa_recover()
defines when a recovery scan should start or end, or start and end. The start of a recovery scan
moves a cursor to the start of a list of prepared and heuristically completed transactions.
Throughout the recovery scan the cursor marks the current position in that list. Each call
advances the cursor past the set of XIDs it returns.

Two consecutive complete recovery scans return the same list of transaction branches unless the
transaction manager calls xa_commit(), xa_forget (), xa_prepare() or xa_rollback () for that resource
manager, or unless that resource manager heuristically completes some branches, between the
two recovery scans.

The transaction manager may call this function from any thread of control, but all calls in a
given recovery scan must be made by the same thread.

Upon success, xa_recover() places zero or more XIDs in the space pointed to by *xids. The
function returns the number of XIDs it has placed there. If this value is less than count, there are
no more XIDs to recover and the current scan ends. (That is, the transaction manager need not
call xa_recover() again with TMENDRSCAN set in flags.) Multiple invocations of xa_recover()
retrieve all the prepared and heuristically completed transaction branches.

It is the transaction manager’s responsibility to ignore XIDs that do not belong to it.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags:

TMSTARTRSCAN
This flag indicates that xa_recover() should start a recovery scan for the thread of control
and position the cursor to the start of the list. XIDs are returned from that point. If a
recovery scan is already open, the effect is as if the recovery scan were ended and then
restarted.

TMENDRSCAN
This flag indicates that xa_recover() should end the recovery scan after returning the XIDs.
If this flag is used in conjunction with TMSTARTRSCAN, the single xa_recover() call starts
and then ends a scan.

TMNOFLAGS
This flag must be used when no other flags are set in flags. A recovery scan must already be
started. XIDs are returned starting at the current cursor position.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

Distributed Transaction Processing: The XA+ Specification Version 2 91

xa_recover() Reference Manual Pages

RETURN VALUE
The function xa_recover() has the following return values:

[≥ 0]
As a return value, xa_recover() normally returns the total number of XIDs it returned in
*xids .

[XAER_RMERR]
An error occurred in determining the XIDs to return.

[XAER_INVAL]
The pointer xids is NULL and count is greater than 0, count is negative, an invalid flags was
specified, or the thread of control does not have a recovery scan open and did not specify
TMSTARTRSCAN in flags.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

SEE ALSO
xa_commit(), xa_forget (), xa_open(), xa_rollback ().

WARNINGS
If xids points to a buffer that cannot hold all of the XIDs requested, then xa_recover() may
overwrite the caller’s data space.

92 Snapshot (1994)

Reference Manual Pages xa_rollback()

NAME
xa_rollback — roll back work done on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int xa_rollback(XID * xid , int rmid , long flags)

DESCRIPTION
A transaction manager calls xa_rollback () to roll back the work performed at a resource manager
on behalf of the transaction branch. A branch must be capable of being rolled back until it has
successfully committed. Any resources held by the resource manager for the branch are released
and those modified are restored to their values at the start of the branch. The transaction
manager may call this function from any thread of control.

The resource manager can forget a rolled back transaction branch either after it has notified all
associated threads of control of the branch’s failure (by returning [XAER_NOTA] or [XA_RB*] on
a call to xa_end()), or after the transaction manager calls it using xa_start () with TMRESUME set
in flags . The transaction manager must ensure that no new threads of control are allowed to
access a resource manager with a rolled back (or marked rollback-only) XID.

In addition, xa_rollback () must guarantee that forward progress can be made in releasing
resources and restoring them to their initial values. That is, because this function may be used
by the transaction manager to resolve deadlocks (defined in a manner dependent on the
transaction manager), xa_rollback () must not itself be susceptible to indefinite blocking.

If the resource manager already completed the work associated with *xid heuristically, this
function merely reports how the resource manager completed the transaction branch. A
resource manager cannot forget about a heuristically completed branch until the transaction
manager calls xa_forget ().

The transaction manager must issue a separate xa_rollback () for each transaction branch that
accessed the resource manager on behalf of the global transaction.

If the transaction manager is rolling back a transaction branch while transaction chaining is in
effect and the resource manager supports chained transactions, the transaction manager sets the
TMCHAINED flag. xid[0] is the transaction branch to roll back, and xid[1] is the chained
transaction branch to assign. If the resource manager returns any [XAER_*] negative return
value, or [XA_RETRY_COMMFAIL], the new transaction branch is not assigned.

The transaction manager begins local work on the new transaction later by issuing xa_start () in
the application thread of control for statically registering resource managers. Dynamically
registering resource managers need to register using ax_reg() in the application thread of control
when application work in the resource manager begins.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

The function’s last argument, flags, must be set to one of the following values:

TMASYNC
This flag indicates that xa_rollback () shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager for the same XID,
this function fails, returning [XAER_ASYNC].

Distributed Transaction Processing: The XA+ Specification Version 2 93

xa_rollback() Reference Manual Pages

TMCHAINED
This flag indicates that processing is in chained transaction mode, and in addition to rolling
back the existing transaction branch, a new XID is provided for the next transaction. xid[0]
is the XID to roll back. xid[1] is the XID to assign for the next transaction.

TMRECOVER
This flag indicates that this operation is being performed to recover a subordinate branch.

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

RETURN VALUE
The function xa_rollback () has the following return values:

[XA_RETRY_COMMFAIL]
The resource manager is not able to roll back the transaction branch at this time. This value
is returned when a subordinate cannot be contacted due to communication failure. If
previously prepared, all resources held on behalf of *xid remain in a prepared state until roll
back is possible. The transaction manager should reissue xa_rollback () at a later time. The
subordinate may query the transaction manager using ax_ready () when communications
are re-established in order to find out about the roll back condition.

[XA_HEURHAZ]
Due to some failure, the work done on behalf of the specified transaction branch may have
been heuristically completed. A resource manager may return this value only if it has
successfully prepared *xid .

[XA_HEURCOM]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
committed. A resource manager may return this value only if it has successfully prepared
*xid .

[XA_HEURRB]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
rolled back. A resource manager may return this value only if it has successfully prepared
*xid .

[XA_HEURMIX]
Due to a heuristic decision, the work done on behalf of the specified transaction branch was
partially committed and partially rolled back. A resource manager may return this value
only if it has successfully prepared *xid .

[XA_OK]
Normal execution.

[XA_RB*]
The resource manager has rolled back the transaction branch’s work and has released all
held resources. These values are typically returned when the branch was already marked
rollback-only. The following values may be returned:

[XA_RBROLLBACK]
The resource manager rolled back the transaction branch for an unspecified reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

94 Snapshot (1994)

Reference Manual Pages xa_rollback()

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager rolled back the transaction branch for a reason not on this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in rolling back the transaction branch. The resource manager is free to
forget about the branch when returning this error as long as all accessing threads of control
have been notified of the branch’s state.

[XAER_NOTA]
The specified XID is not known by the resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
xa_commit(), xa_complete (), xa_forget (), xa_open(), xa_prepare().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_rollback (). That is, once the function completes, either synchronously or asynchronously,
the transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

Distributed Transaction Processing: The XA+ Specification Version 2 95

xa_start() Reference Manual Pages

NAME
xa_start, xa_start_2 — start work on behalf of a transaction branch

SYNOPSIS
#include <xa.h>

int xa_start (XID * xid , int rmid , long flags)

int xa_start_2(XID * xid , int rmid , XACTL * ctl, long flags)

DESCRIPTION
A transaction manager calls xa_start () to inform a resource manager that an application may do
work on behalf of a transaction branch. Since many threads of control can participate in a
branch and each one may be invoked more than once, xa_start () must recognise whether or not
the XID exists. If another thread is accessing the calling thread’s resource manager for the same
branch, xa_start () may block and wait for the active thread to release control of the branch (by
means of xa_end()). The transaction manager must call this function from the same thread of
control that accesses the resource manager. If the resource manager is doing work outside any
global transaction on behalf of the application, xa_start () returns [XAER_OUTSIDE].

The transaction manager calls xa_start () only for those resource managers that do not have
TMREGISTER set in the flags element of their xa_switch_t structure. Resource managers with
TMREGISTER set must use ax_reg() to join a transaction branch (see ax_reg() for details).

The first argument, xid, is a pointer to the XID that a resource manager must associate with the
calling thread of control. The transaction manager guarantees the XID to be unique for different
transaction branches. The transaction manager may generate a new branch qualifier within the
XID when it calls xa_start () for a new thread of control association (that is, when TMRESUME is
not set in flags; see TMRESUME below). If the transaction manager elects to reuse a branch
qualifier previously given to the resource manager for the XID, the transaction manager must
inform the resource manager that it is doing so (by setting TMJOIN in flags; see TMJOIN below).

If the transaction manager generates a new branch qualifier in the XID, then this thread is
loosely-coupled to the other threads in the same branch. That is, the resource manager may treat
this thread’s work as a separate global transaction with respect to its isolation policies. If the
transaction manager reuses a branch qualifier in the XID, then this thread is tightly-coupled to
the other threads that share the branch. An RM must guarantee that tightly-coupled threads are
treated as a single entity with respect to its isolation policies and that no deadlock occurs within
the branch among these tightly-coupled threads.

The argument rmid, the same integer that the transaction manager generated when calling
xa_open(), identifies the resource manager called from the thread of control.

Following are the valid settings of flags:

TMJOIN
This flag indicates that the thread of control is joining the work of an existing transaction
branch. The resource manager should make available enough transaction context so that
tightly-coupled threads are not susceptible to resource deadlock within the branch.

If a resource manager does not recognise *xid, the function fails, returning [XAER_NOTA].
Note that this flag cannot be used in conjunction with TMRESUME.

TMRESUME
This flag indicates that a thread of control is resuming work on the specified transaction
branch. The resource manager should make available at least the transaction context that is
specific to the resource manager, present at the time of the suspend, as if the thread had

96 Snapshot (1994)

Reference Manual Pages xa_start()

effectively never been suspended, except that other threads in the global transaction may
have affected this context.

If a resource manager does not recognise *xid, the function fails, returning [XAER_NOTA].
If the resource manager allows an association to be resumed in a different thread from the
one that suspended the work, and the transaction manager expressed its intention to
migrate the association (by means of the TMMIGRATE flag on xa_end()), the current thread
may be different from the one that suspended the work. Otherwise, the current thread must
be the same, or the resource manager returns [XAER_PROTO]. When TMRESUME is set,
the transaction manager uses the same XID it used in the xa_end() call that suspended the
association.

If *xid contains a reused branch qualifier, and the transaction manager has multiple
outstanding suspended thread associations for *xid, the following rules apply:

• The transaction manager can have only one of them outstanding at any time with
TMMIGRATE set in flags.

• Moreover, the transaction manager cannot resume this association in a thread that
currently has a non-migratable suspended association.

These rules prevent ambiguity as to which context is restored.

TMNOWAIT
When this flag is set and a blocking condition exists, xa_start () returns [XA_RETRY] and the
resource manager does not associate the calling thread of control with *xid (that is, the call
has no effect). Note that this flag cannot be used in conjunction with TMASYNC.

TMASYNC
This flag indicates that xa_start () shall be performed asynchronously. Upon success, the
function returns a positive value (called a handle) that the caller can use as an argument to
xa_complete () to wait for the operation to complete. If the calling thread of control already
has an asynchronous operation pending at the same resource manager, this function fails,
returning [XAER_ASYNC].

TMNOFLAGS
This flag must be used when no other flags are set in flags.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the resource manager should not validate the unused settings of flags.

On input to xa_start_2 (), the transaction manager sets flag bits in ctl→flags to inform the
resource manager of the options that are being passed. The following settings are valid:

XAOPTS_NOFLAGS
No flags or values are set. The transaction manager has passed no information in the
control structure to the resource manager. This is equivalent to calling xa_start ().

XAOPTS_TIMEOUT
Setting this flag indicates that the TM has placed in ctl→timeout the number of seconds
before which the resource manager can timeout and rollback the transaction.

On output, the resource manager may change the flags word. The significance of changing any
particular flag is defined under the description of that option.

RETURN VALUE
The function xa_start () has the following return values:

[XA_RETRY]
TMNOWAIT was set in flags and a blocking condition exists.

Distributed Transaction Processing: The XA+ Specification Version 2 97

xa_start() Reference Manual Pages

[XA_OK]
Normal execution.

[XA_RB*]
The resource manager has not associated the transaction branch with the thread of control
and has marked *xid rollback-only. The following values may be returned regardless of the
setting of flags:

[XA_RBROLLBACK]
The resource manager marked the transaction branch rollback-only for an unspecified
reason.

[XA_RBCOMMFAIL]
A communication failure occurred within the resource manager.

[XA_RBDEADLOCK]
The resource manager detected a deadlock.

[XA_RBINTEGRITY]
The resource manager detected a violation of the integrity of its resources.

[XA_RBOTHER]
The resource manager marked the transaction branch rollback-only for a reason not on
this list.

[XA_RBPROTO]
A protocol error occurred within the resource manager.

[XA_RBTIMEOUT]
The work represented by this transaction branch took too long.

[XA_RBTRANSIENT]
The resource manager detected a transient error.

[XAER_ASYNC]
TMASYNC was set in flags, and either the maximum number of outstanding asynchronous
operations has been exceeded, or TMUSEASYNC is not set in the flags element of the
resource manager’s xa_switch_t structure.

[XAER_RMERR]
An error occurred in associating the transaction branch with the thread of control.

[XAER_NOTA]
Either TMRESUME or TMJOIN was set in flags, and the specified XID is not known by the
resource manager.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

[XAER_RMFAIL]
An error occurred that makes the resource manager unavailable.

[XAER_DUPID]
If neither TMRESUME nor TMJOIN was set in flags (indicating the initial use of *xid) and the
XID already exists within the resource manager, then the resource manager must return
[XAER_DUPID]. The resource manager failed to associate the transaction branch with the
thread of control.

98 Snapshot (1994)

Reference Manual Pages xa_start()

[XAER_OUTSIDE]
The resource manager is doing work outside any global transaction on behalf of the
application.

The function returns a positive value upon success if the caller set TMASYNC (see above) in
flags .

SEE ALSO
ax_reg(), xa_complete (), xa_end(), xa_open().

WARNINGS
From the resource manager’s perspective, the pointer xid is valid only for the duration of the call
to xa_start (). That is, once the function completes, either synchronously or asynchronously, the
transaction manager is allowed to invalidate where xid points. Resource managers are
encouraged to use private copies of *xid after the function completes.

Similarly, the data pointed to by ctl is good only for the duration of the call to xa_start_2 ().

Distributed Transaction Processing: The XA+ Specification Version 2 99

xa_wait() Reference Manual Pages

NAME
xa_wait — give control to a communication resource manager so that it can report status from
superiors

SYNOPSIS
#include <xa.h>

int xa_wait(int rmid , long flags)

DESCRIPTION
This function is called by a transaction manager to inform a communication resource manager
that a subordinate AP issued tx_commit() or tx_rollback (). That transaction-completion sequence
executed by the communication resource manager is ax_prepare() followed by ax_commit() for
successful transactions, ax_rollback () for transactions rolled back by the superior or the
subordinate, or ax_prepare() followed by ax_rollback () for transactions that fail in the prepare
phase. A call to ax_start () may be issued after the transaction-completion sequence to start a
chained transaction.

This function is also called by a transaction manager (with flags set to TMNOFLAGS) to inform a
communication resource manager that the AP issued tx_close() and there are still some two-
phase commit messages from superiors to receive before closing all resource managers. The
communication resource manager waits for the receipt of a message from a superior. Receipt of
a two-phase commit protocol message from a superior causes the communication resource
manager to issue ax_prepare(), ax_commit() or ax_rollback ().

The xa_wait () function gives control of the thread of control to a communication resource
manager so that the communication resource manager can receive a message from a superior
that directs the two-phase commit protocol. The transaction manager issues this call in a thread
of control to a communication resource manager so that the communication resource manager
can receive messages from superiors. After the communication resource manager finishes
processing two-phase commit protocol from a superior, the communication resource manager
responds to the xa_wait () call by returning [XA_OK]. If the transaction manager determines that
there are more messages to receive, the transaction manager reissues the xa_wait () call to the
communication resource manager.

Because the application program has indicated that it will not process any more messages from
superiors by issuing tx_commit(), tx_rollback () or tx_close(), receipt of any messages that are not
part of the two-phase commit protocol must be rejected. If a message that is not part of the
two-phase commit protocol is received for a transaction in progress, the communication
resource manager must roll the transaction back by issuing ax_rollback (). It must also inform the
superior about the rollback. If a message is an attempt to start a new transaction, the
communication resource manager must reject it and inform the superior.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The function’s last argument, flags, may be set to one of the following values:

TMSUCCESS
The portion of work has succeeded. This flag cannot be used in conjunction with TMFAIL.

TMFAIL
The portion of work has failed. The communication resource manager marks the
transaction branch as rollback-only and informs the superior, This flag cannot be used in
conjunction with TMSUCCESS.

100 Snapshot (1994)

Reference Manual Pages xa_wait()

TMNOFLAGS
This flag value is used when other settings of flags do not apply.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the communication resource manager should not validate the unused settings
of flags.

RETURN VALUE
The function xa_wait () has the following return values:

[XA_PROMOTED]
The two-phase commit process has been completed, and the application program has been
promoted to transaction initiator.

[XA_OK]
Normal execution. This value indicates that a two-phase commit protocol message has been
received and processed. The communication resource manager is returning control to the
transaction manager to see if any more messages are expected.

[XAER_RMERR]
The resource manager encountered an error.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), ax_commit(), ax_prepare(), ax_rollback ().

Distributed Transaction Processing: The XA+ Specification Version 2 101

xa_wait_recovery() Reference Manual Pages

NAME
xa_wait_recovery — give control to a communication resource manager so that it can report
status from subordinates

SYNOPSIS
#include <xa.h>

int xa_wait_recovery(int rmid , long flags)

DESCRIPTION
This function is called by a transaction manager to inform a communication resource manager
that the transaction manager is available to process ax_ready () and ax_done() requests from the
communication resource manager.

The xa_wait_recovery () function gives control of the thread of control to a communication
resource manager so that the communication resource manager can inquire about the status of
global transactions and report completion of subordinate branches. The transaction manager
calls this function in a thread of control once. The communication resource manager responds
with [XA_OK] during system shutdown.

The function’s first argument, rmid, is the integer that the communication resource manager
received when the transaction manager called xa_open(). It identifies the communication
resource manager in the thread of control.

The function’s last argument, flags, is reserved for future use and is ordinarily set to
TMNOFLAGS.

In order to promote migration to future extensions, the transaction manager should not set any
unused flags, and the communication resource manager should not validate the unused settings
of flags.

RETURN VALUE
The function xa_wait_recovery () has the following return values:

[XA_OK]
Normal execution, which indicates that the communication resource manager is shutting
down.

[XAER_RMERR]
The resource manager encountered an error.

[XAER_INVAL]
Invalid arguments were specified.

[XAER_PROTO]
The function was invoked in an improper context. See Chapter 6 for details.

SEE ALSO
xa_open(), ax_add_branch (), ax_ready (), ax_done().

102 Snapshot (1994)

Chapter 6

State Tables

This chapter contains state tables that show legal calling sequences for the XA functions. TMs
must sequence their use of the XA functions so that the calling thread of control makes legal
transitions through each applicable table in this chapter. That is, any TM must, on behalf of each
AP thread of control:

• open and close each RM as shown in Table 6-1 on page 104

• associate itself with, and dissociate itself from, transaction branches as shown in Table 6-2 on
page 105 or Table 6-3 on page 106, whichever applies

• advance any transaction branch toward completion through legal transitions as shown in
Table 6-4 on page 108

• make legal transitions through Table 6-5 on page 110, whenever the TM calls XA functions in
asynchronous mode.

For some examples, see Appendix B on page 125.

CRMs initiate state transitions as shown in Table 6-2 on page 105 and Table 6-4 on page 108.
CRMs must sequence their use of the XA functions so that the calling thread of control makes
legal transitions through each applicable table in this chapter.

Table 6-5 on page 110 is the only table that addresses the asynchronous mode of XA functions.
The other tables also describe functions that can be called asynchronously. In this case, the
tables view the XA call that initiates an operation, and the xa_complete () call that shows that the
operation is complete, as a single event.

Interpretation of the Tables

A single call may make transitions in more than one of the state tables. Services that are not
pertinent to a given state table are omitted from that table.

All the tables describe the state of a thread of control with respect to a particular RM. That is,
the tables indicate the validity of a sequence of XA calls only if the calls all pertain to the same
RM. The thread of control could be dealing with other RMs at the same time, which might be in
entirely different states. Each state table indicates the valid initial state or states for such a
sequence; it is not always the leftmost state (the state with the zero subscript).

Table 6-2 on page 105, Table 6-3 on page 106 and Table 6-4 on page 108 describe the sequence of
calls with respect to the progress of a particular XID. Other XIDs within the same RM thread of
control may be in different states as they progress from initial creation through completion,
except that a thread can have only one active association at a time. Thus, while one XID may be
actively associated in a thread of control, the same thread of control may make branch
completion calls for other XIDs.

An entry under a particular state in the table asserts that an XA function can be called in that
state, and shows the resulting state. A blank entry asserts that it is an error to call the function in
that state. The function should return the protocol error [XAER_PROTO] or [TMER_PROTO],
unless another error code that gives more specific information also applies.

Note: For the purposes of the state tables in this chapter, the functions ax_reg_2(),
ax_start_2 () and xa_start_2 () are equivalent to ax_reg(), ax_start () and xa_start ()
respectively.

Distributed Transaction Processing: The XA+ Specification Version 2 103

State Tables

Notation

Sometimes a function makes a state transition only when the caller gives it certain input, or only
when the function returns certain output (such as a return code). Specific state table entries
describe these cases. The tables describe input to the function in parentheses, even though that
may not be the exact syntax used; for example, xa_end(TMFAIL) describes a call to xa_end() in
which the caller sets the TMFAIL bit in the flags argument. The tables denote output from the
function, including return status, using an arrow (→) followed by the specific output.

For example, the legend:

xa_end → [XA_RB]

describes the case where a call to xa_end() returns one of the [XA_RB*] codes.

A general state table entry (one that does not show flags or output values) describes all
remaining cases of calls to that function. These general entries assume the function returns
success. (The xa_ functions return the [XA_OK] code; the ax_ functions return [TM_OK].) Calls
that return failure do not make state transitions, except where described by specific state table
entries.

The notation xa_* refers to all applicable xa_ functions.

6.1 Resource Manager Initialisation
For each thread of control, each RM is either open or closed. The initial state is closed (R0). The
xa_open() and xa_close () functions move an RM between these states. Redundant uses of these
functions are valid, as Table 6-1 shows:

Table 6-1 State Table for Resource Manager Initialisation

Resource Manager States
XA Routines Not Initialised Initialised

R0 R1

xa_open() R1 R1
xa_close R0 R0

A transition to R1 enables the use of Table 6-2 on page 105 to Table 6-4 on page 108 inclusive.
The state R0 appears in these tables to illustrate that closing an RM precludes its use in global
transactions. At this point, Table 6-1 governs legal sequences.

In Table 6-2 on page 105 to Table 6-4 on page 108 a return of [XAER_RMFAIL] on any function
causes a state transition in that thread to state R0.

104 Snapshot (1994)

State Tables Association of Threads of Control with Transactions

6.2 Association of Threads of Control with Transactions
Table 6-2 shows the state of an association between a thread of control and a transaction branch.
(See Table 6-3 on page 106 for RMs that dynamically register with a TM.) Valid initial states of
association for a thread of control are T0 and T2. (The Association Suspended state, T2, includes
the case where a thread has suspended an association migratably. After returning to T0, any
thread can re-enter this table in column T2 to resume or end that other association.)

Table 6-2 makes the following assumptions: the calling thread remains in state R1; the RM does
not have TMREGISTER set in its switch; and the caller passes the same rmid and XID as
arguments to each applicable function listed below.

Table 6-2 shows the effect of xa_start () and xa_end() on the thread of control’s association with a
single transaction branch. These functions may also change the state of the branch itself.
Therefore, Table 6-4 on page 108 further constrains their use. If a thread suspends its association,
it can perform work on behalf of other transaction branches before resuming the suspended
association.

Table 6-2 State Table for Transaction Branch Association

Transaction Branch Association States
XA Routines Not Association

Associated Associated Suspended
T0 T1 T2

Resource Manager Calls
ax_start () T1
ax_start (TMRESUME) T1
ax_start (TMRESUME) → [TM_RB] T0
ax_start (TMJOIN) T1
ax_start (TMJOIN) → [TM_RB] T0
ax_end(TMSUSPEND) T2
ax_end(TMSUSPEND) → [TM_RB] T0
ax_end(TMSUCCESS) T0 T0
ax_end(TMFAIL) T0 T0
ax_*() → [TMER_TMERR] R0 R0 R0
Transaction Manager Calls
xa_start () T1
xa_start (TMRESUME) T1
xa_start (TMRESUME) → [XA_RB] T0
xa_start (TMJOIN) T1
xa_start (TMJOIN) → [XA_RB] T0
xa_end(TMSUSPEND) T2
xa_end(TMSUSPEND) → [XA_RB] T0
xa_end(TMSUCCESS) T0 T0
xa_end(TMFAIL) T0 T0
xa_open() T0 T1 T2
xa_recover() T0 T1 T2
xa_close () R0 R0
xa_*() → [XAER_RMFAIL] R0 R0 R0

Distributed Transaction Processing: The XA+ Specification Version 2 105

Association of Threads of Control with Transactions State Tables

6.2.1 Dynamic Registration of Threads

Table 6-3 shows the state of an association between a thread of control and a transaction branch.
This table is for RMs that dynamically register with a TM. Valid initial states in Table 6-3 are D0
and D2. (The Association Suspended state, D2, includes the case where a thread has suspended
an association migratably. After returning to D0, any thread can re-enter this table in column D2
to resume or end that other association.)

The top half of the table shows the legal sequence of calls for an RM thread of control. The
bottom half of the table shows the legal sequence of calls for a TM thread of control. The thread
of control calling these functions must comply with the applicable half of the table.

Table 6-3 makes the following assumptions:

• The TM calling thread remains in state R1.

• The RM has TMREGISTER set in its switch.

• The caller passes the same rmid and XID as arguments to each applicable function listed
below.

• The same RM and XID are used for the dynamic registration functions.

Table 6-3 defines the behaviour of a single transaction branch in a thread. If a thread suspends its
association, it can perform work on behalf of other branches before resuming the suspended
association.

Table 6-3 State Table for Transaction Branch Association (Dynamic Registration)

Transaction Branch Association States
Registered

XA Routines Not with Registration Registered with
Registered Valid XID Suspended NULLXID

D0 D1 D2 D3

Resource Manager Calls
ax_reg → valid XID D1
ax_reg → NULLXID D3
ax_reg → [TM_RESUME] D1
ax_unreg D0

Transaction Manager Calls
xa_end(TMSUSPEND) D2
xa_end(TMSUSPEND) → [XA_RB] D0
xa_end(TMSUCCESS) D0 D0
xa_end(TMFAIL) D0 D0
xa_open() D0 D1 D2 D3
xa_recover() D0 D1 D2 D3
xa_close () R0 R0
xa_*() → [XAER_RMFAIL] R0 R0 R0 R0

106 Snapshot (1994)

State Tables Transaction States

6.3 Transaction States
Table 6-4 on page 108 shows the commitment protocol for a transaction branch. Any state listed
in Table 6-4 on page 108 except state S1 is a valid initial state for a thread of control. The table
applies to sequential calls by a thread of control that:

• remains in state R1

• passes the same XID in each xa_ call that requires an XID.

Table 6-4 on page 108 shows the effect of xa_start () and xa_end() on the state of a transaction
branch. These functions may also change the thread’s association with the branch. Therefore,
Table 6-2 on page 105 and Table 6-3 on page 106 further constrain their use.

Table 6-4 on page 108 does not apply to uses of xa_end(TMSUSPEND), xa_start (TMRESUME) or
ax_reg in which [TM_RESUME] is returned; the uses of these are constrained by Table 6-2 on
page 105 and Table 6-3 on page 106 and the following rules:

• xa_end(TMSUSPEND|TMMIGRATE) may be used only if no other thread association for this
branch was suspended with the TMMIGRATE flag. (This rule ensures that there exists at
most one migratable suspended association for a branch.)

• xa_start (TMRESUME) may be used, and ax_reg may return [TM_RESUME], only on a branch
that has at least one suspended association. That suspended association must either have
been suspended non-migratably by the acting thread or suspended migratably by any thread.
If both conditions are true, the association which was suspended non-migratably by the
acting thread is the one resumed.

• xa_end(TMSUCCESS) may be used only on a branch that is associated with the current
thread or that has at least one suspended association. If the branch is associated with the
current thread, it is that association which is ended. Otherwise, a suspended association
ends, as though an implicit xa_start (TMRESUME) were performed (see above) before the
xa_end(TMSUCCESS).

• In Table 6-4 on page 108, a branch is considered Idle only if all associations for the branch
have been successfully ended by using xa_end() with TMSUCCESS set in flags. However, a
special case exists for rollback. xa_rollback () may be used for an active branch from any
thread except the one currently associated with it, and for a suspended branch from any
thread including the one which suspended.

Distributed Transaction Processing: The XA+ Specification Version 2 107

Transaction States State Tables

Table 6-4 State Table for Transaction Branches

Transaction Branch States
XA Routines Non-existent Rollback Heuristically

Transaction Active Idle Prepared Only Completed
S0 S1 S2 S3 S4 S5

Resource Manager Calls
ax_start () S1 S1

† ax_start () → [TM_RB] S4
ax_reg() S1 S1
ax_end() S2

† ax_end() → [TM_RB] S4
ax_prepare() S3
ax_prepare() → S0

† [TM_RDONLY] or
[TM_RB]

ax_prepare() → S2
[TMER_RMERR]

ax_commit() → S0 S0
[TM_OK] or
[TMER_TMERR]

† ax_commit() → [TM_RB] S0
ax_commit() → S5 S5 S5

† [TM_HEUR]
ax_rollback () → S0 S0 S0

† [TM_OK] or
[TM_RB] or
[TMER_TMERR]

ax_rollback () → S5 S5 S5
† [TM_HEUR]

ax_add_branch () S1
ax_forget_branch () S1 S2
ax_recover() S0 S1 S2 S3 S4 S5
ax_done() S0 S0 S5
ax_ready () S0 S3 S4 S5
ax_set_branch_info () S1 S2
ax_get_branch_info () S1 S2 S3 S4 S5

Transaction Manager Calls
xa_start () S1 S1

‡ xa_start () → [XA_RB] S4
xa_wait () S2 S2
xa_wait_recovery () S0 S2 S3 S4 S5
xa_ready () S3
xa_done() S0
xa_end() S2

‡ xa_end() → [XA_RB] S4
xa_prepare() S3

108 Snapshot (1994)

State Tables Transaction States

Transaction Branch States
XA Routines Non-existent Rollback Heuristically

Transaction Active Idle Prepared Only Completed
S0 S1 S2 S3 S4 S5

xa_prepare() → S0
‡ [XA_RDONLY] or

[XA_RB]
xa_prepare() → S2

[XAER_RMERR]
xa_commit() → S0 S0

[XA_OK] or
[XAER_RMERR]

‡ xa_commit() → [XA_RB] S0
xa_commit() → S3

[XA_RETRY]
xa_commit() → S5 S5 S5

‡ [XA_HEUR]
xa_rollback () → S0 S0 S0

‡ [XA_OK] or [XA_RB] or
[XAER_RMERR]

xa_rollback () → S5 S5 S5
‡ [XA_HEUR]

xa_forget () S0
xa_forget () → S5

[XAER_RMERR]
xa_open() S0 S1 S2 S3 S4 S5
xa_recover() S0 S1 S2 S3 S4 S5
xa_close () R0 R0 R0 R0 R0
xa_*() → R0 R0 R0 R0 R0 R0

[XAER_RMFAIL]

Notes:

† [TM_HEUR] denotes any of [TM_HEURCOM], [TM_HEURRB], [TM_HEURMIX]
or [TM_HEURHAZ]. [TM_RB] denotes any return value with a prefix [TM_RB.

‡ [XA_HEUR] denotes any of [XA_HEURCOM], [XA_HEURRB], [XA_HEURMIX]
or [XA_HEURHAZ]. [XA_RB] denotes any return value with a prefix [XA_RB.

Distributed Transaction Processing: The XA+ Specification Version 2 109

Asynchronous Operations State Tables

6.4 Asynchronous Operations
Table 6-5 describes asynchronous operations. The preceding tables do not take into account
asynchronous operations.

Table 6-5 illustrates that once a TM thread makes an asynchronous request to an RM on behalf of
an XID, the only valid request the TM thread can give the same RM for that XID is the
corresponding xa_complete (). For those functions that do not take an XID, the thread must wait
for the operation’s completion before issuing another request to that same RM. The only
functions by which the TM can give additional work to the same RM are xa_commit(),
xa_forget (), xa_prepare() and xa_rollback ().

The valid initial state for a thread of control is A0.

The asynchronous calls (with TMASYNC) achieve a state transition in Table 6-5 when the
function returns a valid handle (a positive value). The table entries describing xa_complete ()
assume that the caller passes this same, valid handle to xa_complete ().

Table 6-5 State Table for Asynchronous Operations

Asynchronous Operation States
XA Routines Initial Call Operation Pending

A0 A1

Any synchronous xa_* call A0
xa_rollback (TMASYNC) A1
xa_close (TMASYNC) A1
xa_commit(TMASYNC) A1
xa_end(TMASYNC) A1
xa_forget (TMASYNC) A1
xa_open(TMASYNC) A1
xa_prepare(TMASYNC) A1
xa_start (TMASYNC) A1
xa_done(TMASYNC) A1
xa_ready (TMASYNC) A1
xa_complete () A0
xa_complete (TMNOWAIT) A0
xa_complete (TMNOWAIT) → [XA_RETRY] A1

110 Snapshot (1994)

Chapter 7

Implementation Requirements

This chapter summarises the implications for implementors of this specification. It also
identifies features of this specification that implementors of RMs or TMs can regard as optional.

These requirements are designed to facilitate portability — specifically, the ability to move a
software component to a different DTP system without modifying the source code. It is
anticipated that DTP products will be delivered as object modules and that the administrator
will control the mix and operation of components at a particular site by:

• re-linking object modules

• supplying text strings to the software components (or executing a vendor-supplied
procedure that generates suitable text strings).

7.1 Application Program Requirements
Any AP in a DTP system must use a TM and delegate to it responsibility to control and
coordinate each global transaction. X/Open will specify a TX interface separately.

The AP is not involved in either the commitment protocol or the recovery process. An AP
thread can have only one global transaction active at a time.

The AP may ask for work to be done by calling one or more RMs. It uses the RM’s native
interface exactly as it would if no TM existed, except that it calls the TM to define global
transactions (see Section 7.2.1 on page 114).

Distributed Transaction Processing: The XA+ Specification Version 2 111

Resource Manager Requirements Implementation Requirements

7.2 Resource Manager Requirements
The X/Open DTP model affects only RMs operating in the DTP environment. The model puts
these constraints on the architecture or implementation of the RM.

Interfaces

RMs must provide all the xa_ functions specified in Chapter 3 for use by TMs, even if a
particular function requires no real action by that RM. RMs must also provide a native
application program interface (see Section 7.2.1 on page 114). As this is the second version of the
XA interface, RMs must also set to 1 the version element of their switches.

An RM in an executable is linked to at most one TM.

Ability to Recognise XIDs

RMs must accept XIDs from TMs. They must associate with the XID all the work they do for an
AP. For example, if an RM identifies a thread of control using a process identifier, the RM must
map the process identifier to the XID.

An important attribute of the XID is global uniqueness, based on the exact order of the bits in the
data portion of the XID for the lengths specified. Therefore, RMs must not alter in any way the
bits in the data portion of the XID. For example, if an RM remotely communicates an XID, it
must ensure that the data bits of the XID are not altered by the communication process. That is,
the data part of the XID should be treated as an OCTET STRING (opaque data) using
terminology defined in the ASN.1 standard and the BER standard.

Transaction Identifiers

If the RM generates XIDs for transaction branches, it must use the gtrid portion generated by the
TM. The RM generates the bqual portion of the XID following the same rules for TMs as
described in Section 7.3 on page 115.

Calling Protocol

A single instance of an RM must allow multiple threads to logically gain access to it on behalf of
the same transaction branch, although it has the option of actually implementing single-
threaded access (for example, blocking a thread at the call to xa_start () or channeling all accesses
through a single back-end process). An RM can use whatever it wishes from the AP’s
environment (for example, process ID, task ID or user ID) to identify the calling thread.

An RM must ensure that each calling thread makes xa_ calls in a legal sequence, and must return
[XAER_PROTO] or other suitable error if the caller violates the state tables (see Chapter 6).

Commitment Protocol

The RM must support the commitment protocol specified in Section 2.3 on page 10. This has the
following implications:

• An RM must provide an xa_prepare() function, and must be able to report whether it can
guarantee its ability to commit the transaction branch. If it reports that it can, it must reserve
all the resources needed to commit the branch. It must hold those resources until the TM
directs it to either commit or roll back the branch. CRMs need not stably record their
decision.

• An RM must support the one-phase commit optimisation (see Section 2.3.2 on page 10). That
is, it must allow xa_commit() (specifying TMONEPHASE) even if it has not yet received
xa_prepare() for the transaction branch in question.

112 Snapshot (1994)

Implementation Requirements Resource Manager Requirements

Support for Recovery

An RM must track the status of all transaction branches in which it is involved. After
responding affirmatively to the TM’s xa_prepare() call, the RM cannot erase its knowledge of the
branch, or of the work it has done in support of that branch, until it receives and successfully
performs the TM’s order to commit or roll back the branch. CRMs need not stably record their
decision. If an RM heuristically completes a branch, it cannot forget the branch until explicitly
permitted to by the TM. On command, an RM must return a list of all its branches that it has
prepared to commit or has heuristically completed.

When an RM recovers from its own failure, it recovers prepared and heuristically completed
transaction branches. It forgets all other branches. CRMs rely on information saved by the TM
to perform recovery after system failure.

Public Information

An RM product must publish the following information:

• the name of its xa_switch_t structure

This switch gives RM entry points and other information; Section 4.4 on page 29 specifies its
structure. Multiple RMs may share the same xa_switch_t structure. Each pointer must point
to an actual function, even pointers that are theoretically unused on that RM. These
functions must return in an orderly way, in case they are mistakenly called. (The RM does
not need to publish the names of the individual functions.) RMs that are not CRMs need not
supply the xa_()* functions added at the end of the xa_switch_t structure that only apply to
CRMs. In that way, xa_switch_t structures with version 0 are still upwardly compatible.

• the text of the string, within the RM switch, that specifies the name of the RM

• the forms of the information strings that its xa_open() and xa_close () functions accept, and
the way that different xa_open() strings specify different resource domains for different RM
instances.

• the names of libraries or object files, in the correct sequence, that the administrator must use
when linking APs with the RM

• any semantics in the native interface that affect global transaction processing; for example,
specifying isolation level, transaction completion, or effects that differ from non-DTP
operation

• the operating system entity that is considered to be a thread of control, and any restrictions
on use of multiple-threading facilities of the operating system.

X/Open will specify how an RM provider can guarantee that its names do not conflict with the
name of any other RM product or version produced by that or another organisation.

Implementor Options

Each RM has the option of implementing these features:

• Open/close informational strings
Any RM may accept a null string in place of the informational string argument on calls to its
xa_open() and xa_close () functions. (If it does so, it must publish this fact.)

• Protocol optimisations
The read-only optimisation discussed in Section 2.3.2 on page 10 is optional.

Distributed Transaction Processing: The XA+ Specification Version 2 113

Resource Manager Requirements Implementation Requirements

• Association migration
An RM can require a TM to resume a suspended association in a thread of control other than
the one where the suspension occurred.

• Branch identification
An RM can use the bqual component of the XID structure to let different branches of the same
global transaction prepare to commit at different times, and to avoid deadlock (see Section
4.2 on page 28).

• Dynamic registration
This feature, as described in Section 3.3.2 on page 19, is optional.

• Asynchrony
Support for the asynchronous mode discussed in Section 3.6 on page 24 is optional. If the
TMUSEASYNC flag is set in the RM’s switch, then the RM must support the asynchronous
mode. It may still complete some requests synchronously, either when the TM makes the
original asynchronous call or when the TM calls xa_complete (). If the TMUSEASYNC flag is
not set in the RM’s switch and the TM makes an asynchronous call, the RM must return
[XAER_ASYNC].

• Heuristics
As described in the xa_commit() and xa_rollback () reference manual pages, an RM can report
that it has heuristically completed the transaction branch. This feature is optional.

• Receiving Timeouts
Support for the xa_start_2 () function is optional.

7.2.1 The Application Program (Native) Interface

RMs must provide a well-defined native interface that APs can use to request work. To
maximise portability, all AP-RM interfaces should adhere to any applicable X/Open publication.
For example, a relational DBMS RM should use the SQL defined in the X/Open SQL
specification.

In the DTP environment, RMs must rely on the TM to manage global transactions. Some RMs,
such as some Indexed Sequential Access Method (ISAM) file managers, have no concept of
transactions. So this is a new requirement, but it does not change the native interface. In other
RMs, such as SQL RDBMSs, the native interface defines transactions. An AP must not use these
services in a DTP context, since TMs have no knowledge of an RM’s transaction. For example,
the application program interface for an SQL RM in the DTP environment must not let use of
these statements affect the global transaction:

EXEC SQL COMMIT WORK
EXEC SQL ROLLBACK WORK

In addition, any service in the native AP-RM interface that affects its own commitment, or any
non-standard service that has an effect on transactions, must not be used within a global
transaction.

114 Snapshot (1994)

Implementation Requirements Transaction Manager Requirements

7.3 Transaction Manager Requirements

Service Interfaces

TMs must use the xa_ functions the RM provides (see Chapter 3 on page 13) to coordinate the
work of all the local RMs that the AP uses. TMs must call xa_open() and xa_close () on any local
RM associated with the TM. Each TM must ensure that each of its xa_*() calls addresses the
correct RM.

TMs must be written to handle consistently any information or status that an RM can legally
return. A TM must assume that it may be linked with RMs that use any RM options that this
specification allows, including multiple RMs in a single AP object program, dynamic registration
of RMs, RMs that make heuristic decisions, and RMs that use the read-only protocol
optimisation.

Transaction Identifiers

A TM must generate XIDs conforming to the structure described in Section 4.2 on page 28. They
must be globally unique and must adequately describe the transaction branch. To guarantee
global uniqueness, the TM should use an ISO OBJECT IDENTIFIER (see the ASN.1 standard and
the BER standard) that the TM knows is unique within the gtrid component of the XID. The TM
should also use an ISO OBJECT IDENTIFIER within the bqual field, but the same OBJECT
IDENTIFIER can be used for all XIDs that a given TM generates. The bqual fields identify the TM
that generated them, and identify the transaction branch with which they are associated.

Failure to use the ISO OBJECT IDENTIFIER format for XIDs could cause interoperability
problems when multiple TMs are either involved in the same global transaction or affect shared
resources.

Public Information

A TM product must publish the following information:

• linking directions for producing an application object program — these directions must
describe how to link RM and TM libraries, and how to incorporate the switch from each RM

• instructions for generating or locating appropriate informational strings that the TM uses
when it calls xa_open() or xa_close () for each RM

• the operating system entity that is considered to be a thread of control, and any restrictions
on use of multiple-threading facilities of the operating system.

Implementor Options

The one-phase commit protocol optimisation (see Section 2.3.2 on page 10) and the
asynchronous and non-blocking modes for calling RMs (see Section 3.6 on page 24) are optional.

Distributed Transaction Processing: The XA+ Specification Version 2 115

Implementation Requirements

116 Snapshot (1994)

Appendix A

Complete Text of <xa.h>

This appendix specifies the complete text of an <xa.h> file in both ISO C (see the ISO C standard)
and Common Usage C.

/*
* Start of xa.h header
*
* Define a symbol to prevent multiple inclusions of this header file
*/

#ifndef XA_H
#define XA_H
/*

* Transaction branch identification: XID and NULLXID:
*/

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64 /* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64 /* maximum size in bytes of bqual */
struct xid_t {

long formatID; /* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bqual_length; /* value not to exceed 64 */
char data[XIDDATASIZE];
};

typedef struct xid_t XID;
/*

* A value of -1 in formatID means the XID is null.
*/

/*
* Declarations of functions by which RMs call TMs:
*/

#ifdef __STDC__
extern int ax_reg(int, XID *, long);
extern int ax_unreg(int, long);
#else /* ifndef __STDC__ */
extern int ax_reg();
extern int ax_unreg();
#endif /* ifndef __STDC__ */
/*

* XA Options
*/

typedef long TRANSACTION_TIMEOUT; /* type of transaction timeouts */
/*

* Structure for optional XA information
*/

struct xactl_t {
long flags; /* valid element flags */
TRANSACTION_TIMEOUT timeout; /* timeout value */

};
typedef struct xactl_t XACTL;
#define XAOPTS_NOFLAGS 0x00000000L /* no optional values */

Distributed Transaction Processing: The XA+ Specification Version 2 117

Complete Text of <xa.h>

#define XAOPTS_TIMEOUT 0x00000001L /* timeout value present */
};
/*

* XA Switch Data Structure
*/

#define RMNAMESZ 32 /* length of resource manager name */
struct xa_switch_t {

char name[RMNAMESZ]; /* name of resource manager */
long flags; /* resource manager specific options */
long version; /* must be 1 */

#ifdef __STDC__
int (*xa_open_entry)(char *, int, long);

/* xa_open function pointer */
int (*xa_close_entry)(char *, int, long);

/* xa_close function pointer*/
int (*xa_start_entry)(XID *, int, long);

/* xa_start function pointer */
int (*xa_end_entry)(XID *, int, long);

/* xa_end function pointer */
int (*xa_rollback_entry)(XID *, int, long);

/* xa_rollback function pointer */
int (*xa_prepare_entry)(XID *, int, long);

/* xa_prepare function pointer */
int (*xa_commit_entry)(XID *, int, long);

/* xa_commit function pointer */
int (*xa_recover_entry)(XID *, long, int, long);

/* xa_recover function pointer*/
int (*xa_forget_entry)(XID *, int, long);

/* xa_forget function pointer */
int (*xa_complete_entry)(int *, int *, int, long);

/* xa_complete function pointer */
int (*xa_ready_entry)(XID *, int, long);

/* xa_ready function pointer */
int (*xa_done_entry)(XID *, int, long);

/* xa_done function pointer */
int (*xa_wait_recovery_entry)(int, long);

/* xa_wait_recovery function pointer */
int (*xa_wait_entry)(int, long);

/* xa_wait function pointer */
int (*xa_start_2_entry)(XID *, int, XACTL *, long);

/* xa_start_2 function pointer */
#else /* ifndef __STDC__ */

int (*xa_open_entry)(); /* xa_open function pointer */
int (*xa_close_entry)(); /* xa_close function pointer */
int (*xa_start_entry)(); /* xa_start function pointer */
int (*xa_end_entry)(); /* xa_end function pointer */
int (*xa_rollback_entry)(); /* xa_rollback function pointer */
int (*xa_prepare_entry)(); /* xa_prepare function pointer */
int (*xa_commit_entry)(); /* xa_commit function pointer */
int (*xa_recover_entry)(); /* xa_recover function pointer */
int (*xa_forget_entry)(); /* xa_forget function pointer */
int (*xa_complete_entry)(); /* xa_complete function pointer */

118 Snapshot (1994)

Complete Text of <xa.h>

int (*xa_ready_entry)(); /* xa_ready function pointer */
int (*xa_done_entry)(); /* xa_done function pointer */
int (*xa_wait_recovery_entry)();

/* xa_wait_recovery function pointer */
int (*xa_wait_entry)(); /* xa_wait function pointer */
int (*xa_start_2_entry)(); /* xa_start_2 function pointer */

#endif /* ifndef __STDC__ */
struct ax_switch_t **xa_tmswitch;

/* Location of TM switch pointer */
};

/*
* AX Switch Data Structure
*/

struct ax_switch_t {
long flags; /* transaction manager options */
long version; /* must be 0 */

#ifdef _STDC_
int (*ax_reg_entry)(int, XID *, long);

/* ax_reg function pointer */
int (*ax_unreg_entry)(int, long);

/* ax_unreg function pointer */
int (*ax_start_entry)(int, XID *, long);

/* ax_start function pointer */
int (*ax_end_entry)(int, XID *, long);

/* ax_end function pointer */
int (*ax_rollback_entry)(int, XID *, long);

/* ax_rollback function pointer */
int (*ax_prepare_entry)(int, XID *, long);

/* ax_prepare function pointer */
int (*ax_commit_entry)(int, XID *, long);

/* ax_commit function pointer */
int (*ax_recover_entry)(int, XID *, long, long);

/* ax_recover function pointer */
int (*ax_add_branch_entry)(int, XID *, long);

/* ax_add_branch function pointer */
int (*ax_forget_branch_entry)(int, XID *, long);

/* ax_forget_branch function pointer */
int (*ax_set_branch_info_entry)(int, XID *, char *, long, long);

/* ax_set_branch_info function pointer */
int (*ax_get_branch_info_entry)(int, XID *, char *, long *, long);

/* ax_get_branch_info function pointer */
int (*ax_ready_entry)(int, XID *, long);

/* ax_ready function pointer */
int (*ax_done_entry)(int, XID *, long);

/* ax_done function pointer */
int (*ax_reg_2_entry)(int, XID *, XACTL *, long);

/* ax_reg_2_entry function pointer */
int (*ax_start_2_entry)(int, XID *, XACTL *, long);

/* ax_start_2_entry function pointer */
#else /* #ifndef _STDC_ */

int (*ax_reg_entry)(); /* ax_reg function pointer */
int (*ax_unreg_entry)(); /* ax_unreg function pointer */

Distributed Transaction Processing: The XA+ Specification Version 2 119

Complete Text of <xa.h>

int (*ax_start_entry)(); /* ax_start function pointer */
int (*ax_end_entry)(); /* ax_end function pointer */
int (*ax_rollback_entry)(); /* ax_rollback function pointer */
int (*ax_prepare_entry)(); /* ax_prepare function pointer */
int (*ax_commit_entry)(); /* ax_commit function pointer */
int (*ax_recover_entry)(); /* ax_recover function pointer */
int (*ax_add_branch_entry)();

/* ax_add_branch function pointer */
int (*ax_forget_branch_entry)();

/* ax_forget_branch function pointer */
int (*ax_set_branch_info_entry)();

/* ax_set_branch_info function pointer */
int (*ax_get_branch_info_entry)();

/* ax_get_branch_info function pointer */
int (*ax_ready_entry)(); /* ax_ready function pointer */
int (*ax_done_entry)(); /* ax_done function pointer */
int (*ax_reg_2_entry)(); /* ax_reg_2_entry function pointer */
int (*ax_start_2_entry)(); /* ax_start_2_entry function pointer */

#endif /* #ifndef _STDC_ */
};
/*

* Flag definitions for the RM switch
*/

#define TMNOFLAGS 0x00000000L /* no resource manager features
selected */

#define TMREGISTER 0x00000001L /* resource manager dynamically
registers */

#define TMNOMIGRATE 0x00000002L /* resource manager does not support
association migration */

#define TMUSEASYNC 0x00000004L /* resource manager supports
asynchronous operations */

#define TMUSECHAIN 0x00000008L /* resource manager
supports transaction chaining */

#define TMUSEOPTS 0x00000010L /* resource manager supports
xa_start_2() */

#define TMUSE2PHASE 0x00000020L /* resource manager might force
upgrading 1-phase commit to
2-phase commit */

#define TMSWITCHOK 0x00000040L /* resource manager has provided
location for address of
transaction manager switch */

#define TMNOROLLALLOWED 0x00000080L /* tx_rollback() is not permitted
in subordinates */

#define TMNOCOMALLOWED 0x00000100L /* tx_commit() is not permitted
in subordinates */

#define TMUSETHREADS 0x00000200L /* resource manager can use threads
as thread of control */

120 Snapshot (1994)

Complete Text of <xa.h>

/*
* Flag definitions for the TM switch
*/

#define TMSUPPORTSTHREADS 0x00000001L /* transaction manager is prepared to
use threads as thread of control */

#define TMSUBORDINATE 0x00000002L /* The subordinate set of ax_()
functions can be called */

/*
* Flag definitions for xa_ and ax_ functions
*/

/* use TMNOFLAGS, defined above, when not specifying other flags */
#define TMASYNC 0x80000000L /* perform function asynchronously */
#define TMONEPHASE 0x40000000L /* caller is using one-phase commit

optimisation */
#define TMFAIL 0x20000000L /* dissociates caller and marks

transaction branch rollback-only */
#define TMNOWAIT 0x10000000L /* return if blocking condition

exists */
#define TMRESUME 0x08000000L /* caller is resuming association

with suspended transaction branch */
#define TMSUCCESS 0x04000000L /* dissociate caller from transaction

branch*/
#define TMSUSPEND 0x02000000L /* caller is suspending, not ending,

association */
#define TMSTARTRSCAN 0x01000000L

/* start a recovery scan */
#define TMENDRSCAN 0x00800000L /* end a recovery scan */
#define TMMULTIPLE 0x00400000L /* wait for any asynchronous

operation */
#define TMJOIN 0x00200000L /* caller is joining existing

transaction branch */
#define TMMIGRATE 0x00100000L /* caller intends to perform

migration */
#define TMRECOVER 0x00080000L /* call in recovery mode */
#define TMCHAINED 0x00040000L /* call is in transaction chaining

mode */
#define TMDEFERRED 0x00020000L /* start is pending acceptance by

the application program */
/*

* Maximum values for ax_* functions
*/

#define TMMAXBLOBLEN 1024 /* maximum blob_len for
ax_set_branch_info() */

#define TMMAXBLOBTOT 8192 /* maximum total blob data created using
ax_set_branch_info() for all branches
created at this node for a given
transaction */

Distributed Transaction Processing: The XA+ Specification Version 2 121

Complete Text of <xa.h>

/*
* ax_() return codes (transaction manager reports to resource manager)
*/

#define TM_RBBASE 100 /* the inclusive lower bound of
the rollback codes */

#define TM_RBROLLBACK TM_RBBASE /* the rollback was caused by an
unspecified reason */

#define TM_RBCOMMFAIL TM_RBBASE+1
/* the rollback was caused by a
communication failure */

#define TM_RBDEADLOCK TM_RBBASE+2 /* a deadlock was detected */
#define TM_RBINTEGRITY TM_RBBASE+3 /* a condition that violates the

integrity of the resources was
detected */

#define TM_RBOTHER TM_RBBASE+4 /* the resource manager rolled
back the transaction branch for
a reason not on this list */

#define TM_RBPROTO TM_RBBASE+5 /* a protocol error occurred in
in the resource manager */

#define TM_RBTIMEOUT TM_RBBASE+6 /* a transaction branch took
too long */

#define TM_RBTRANSIENT TM_RBBASE+7 /* may retry the transaction
branch */

#define TM_RBEND TM_RBTRANSIENT /* the inclusive upper bound of the
rollback codes */

#define TM_DEFERRED 11 /* the commit decision has not
been made */

#define TM_RETRY_COMMFAIL 10 /* ax_commit could not be completed
due to communication failure */

#define TM_NOMIGRATE 9 /* resumption must occur where
suspension occurred */

#define TM_HEURHAZ 8 /* the transaction branch may have
been heuristically completed */

#define TM_HEURCOM 7 /* the transaction branch has been
heuristically committed */

#define TM_HEURRB 6 /* the transaction branch has been
heuristically rolled back */

#define TM_HEURMIX 5 /* the transaction branch has been
heuristically committed and rolled
back */

#define TM_RDONLY 3 /* the transaction branch was read-only
and has been committed */

#define TM_JOIN 2 /* caller is joining existing
transaction branch */

#define TM_RESUME 1 /* caller is resuming association
with suspended transaction branch */

#define TM_OK 0 /* normal execution */
#define TMER_TMERR -1 /* an error occurred in the

transaction manager */
#define TMER_INVAL -2 /* invalid arguments were given */
#define TMER_PROTO -3 /* function invoked in an improper

context */

122 Snapshot (1994)

Complete Text of <xa.h>

#define TMER_NOTA -4 /* the XID is not valid */
#define TMER_DUPID -8 /* the XID already exists */
/*

* xa_() return codes (resource manager reports to transaction manager)
*/

#define XA_RBBASE 100 /* the inclusive lower bound of
the rollback codes */

#define XA_RBROLLBACK XA_RBBASE /* the rollback was caused by
an unspecified reason */

#define XA_RBCOMMFAIL XA_RBBASE+1 /* the rollback was caused by a
communication failure */

#define XA_RBDEADLOCK XA_RBBASE+2 /* a deadlock was detected */
#define XA_RBINTEGRITY XA_RBBASE+3 /* a condition that violates

the integrity of the resources
was detected */

#define XA_RBOTHER XA_RBBASE+4 /* the resource manager rolled
back the transaction branch for
a reason not on this list */

#define XA_RBPROTO XA_RBBASE+5 /* a protocol error occurred
in the resource manager */

#define XA_RBTIMEOUT XA_RBBASE+6 /* a transaction branch took
too long */

#define XA_RBTRANSIENT XA_RBBASE+7 /* may retry the transaction
branch */

#define XA_RBEND XA_RBTRANSIENT /* the inclusive upper bound
of the rollback codes */

#define XA_TWOPHASE 13 /* Use two-phase commit */
#define XA_PROMOTED 12 /* AP promoted to initiator */
#define XA_DEFERRED 11 /* the commit decision has not been

made */
#define XA_RETRY_COMMFAIL 10 /* xa_commit could not be completed

due to communication failure */
#define XA_NOMIGRATE 9 /* resumption must occur where

suspension occurred */
#define XA_HEURHAZ 8 /* the transaction branch may have

been heuristically completed */
#define XA_HEURCOM 7 /* the transaction branch has been

heuristically committed */
#define XA_HEURRB 6 /* the transaction branch has been

heuristically rolled back */
#define XA_HEURMIX 5 /* the transaction branch has been

heuristically committed and rolled
back */

#define XA_RETRY 4 /* function returned with no effect
and may be re-issued */

#define XA_RDONLY 3 /* the transaction branch was read-only
and has been committed */

Distributed Transaction Processing: The XA+ Specification Version 2 123

Complete Text of <xa.h>

#define XA_OK 0 /* normal execution */
#define XAER_ASYNC -2 /* asynchronous operation already

outstanding */
#define XAER_RMERR -3 /* a resource manager error occurred in

the transaction branch */
#define XAER_NOTA -4 /* the XID is not valid */
#define XAER_INVAL -5 /* invalid arguments were given */
#define XAER_PROTO -6 /* function invoked in an improper

context */
#define XAER_RMFAIL -7 /* resource manager unavailable */
#define XAER_DUPID -8 /* the XID already exists */
#define XAER_OUTSIDE -9 /* resource manager doing work outside

global transaction */

#endif /* ifndef XA_H */
/*

* End of xa.h header
*/

124 Snapshot (1994)

Appendix B

Scenarios

This appendix contains examples of the usage of XA+.

Distributed Transaction Processing: The XA+ Specification Version 2 125

Single-step Client/Server Interaction Scenarios

B.1 Single-step Client/Server Interaction
This scenario shows a client beginning a global transaction, sending a message to a remote
server, receiving the response, and committing the global transaction.

The following notes describe the flows in the scenario opposite:

1. The client AP begins a transaction.

2. The RM receives xa_start () because it is statically registered. The CRM does not because it
is a dynamically registering RM.

3. The CRM registers with the TM in response to the call from the AP.

4. The CRM requests the TM to add a transaction branch and add a unique branch qualifier to
the XID the TM returns. The CRM uses this XID for the message to be sent to the server.

5. The CRM requests the TM to save necessary information to keep track of the branch. This
might include the name of the remote location and any other information that the CRM
needs, especially during recovery.

6. The request is sent.

7. The CRM in the client asks the TM to suspend the RMs in the thread of control because of
the blocking receive call from the AP.

8. The TM issues xa_end(TMSUSPEND) to the local RM.

9. The TM issues xa_end(TMSUSPEND) to the CRM because it was registered.

10. The CRM informs the TM in the server that a transaction branch is about to begin.

11. The TM passes the transaction branch’s XID to the statically registering local RM. The TM
does not issue xa_start () to the CRM because it has selected dynamic registration.

12. The CRM in the server requests the TM to save necessary information to keep track of the
superior. This might include routing information and any other information that the CRM
needs, especially during recovery.

13. The message is delivered to the service.

14. The service sends a reply, and the CRM transmits the reply to the client.

126 Snapshot (1994)

Scenarios Single-step Client/Server Interaction

tx_open

TX_OK

tx_begin

TX_OK

client send

client receive

xa_open

XA_OK

xa_open

XA_OK

1

AP RMTM RM APCRM CRM TM

xa_start

XA_OK

3

2

ax_reg

XID

ax_add_branch

XID

ax_set_branch_info (XID)

TM_OK

0

1

4

5

7ax_end (TMSUSPEND, XID)

xa_end (TMSUSPEND, XID)

XA_OK

xa_end (TMSUSPEND, XID)

XA_OK

8

9

TM_OK

tx_open

xa_open

XA_OK

xa_open

XA_OK

TX_OK

server receive

request

ax_start (XID ,TMNOFLAGS)

xa_start (TMNOFLAGS, XID)

XA_OK

ax_set_branch_info (XID)

TM_OK

message

SQL

data

server send

server receive

response

6

10 1

TM_OK

12

13

11

CLIENT SERVER

14

1

0

0

0

1

1

Distributed Transaction Processing: The XA+ Specification Version 2 127

Single-step Client/Server Interaction Scenarios

AP RMTM RM APCRM CRM TM

CLIENT SERVER

20 tx_commit

xa_end (TMSUCCESS, XID)

XA_OK

xa_end (TMSUCCESS, XID)

XA_RDONLY

xa_prepare (XID ,TMASYNC)

handle

xa_prepare (XID)

XA_OK

xa_complete

XA_OK, handle

xa_commit (XID ,TMASYNC)

handle

xa_commit (XID)

XA_OK

xa_complete

XA_OK, handle

TX_OK

prepare

ax_prepare (XID)

TM_OK

ready

commit

ax_commit (XID)

TM_OK

done

xa_prepare (XID)

XA_OK

xa_commit (XID)

XA_OK

1

0

1

1

2

0

2

1

1

21

22

23

25

30

32

37

24

26

29

31

33

36

27

28

34

35

1

0

0

1

1

response

SQL

data

ax_end (TMSUCCESS, XID)

xa_end (TMSUCCESS, XID)

XA_OK

15

16

TM_OK

ax_start (TMRESUME, XID)

xa_start (TMRESUME, XID)

XA_OK

TM_OK

17

18

19

1

1

0

0

128 Snapshot (1994)

Scenarios Single-step Client/Server Interaction

15. The service blocks on a receive. The CRM terminates the association of the thread of
control with the transaction branch.

16. The TM terminates the association with the local RM.

17. The CRM in the client calls the TM to resume the association with the thread of control.

18. The TM resumes the association with the local RM. The TM does not resume the
association with the CRM because it has selected dynamic registration.

19. The response is returned to the client AP.

20. The client AP calls the TM to commit the transaction.

21. The TM ends the association with the local RM.

22. The TM ends the suspended association with the CRM. The CRM responds read-only so
that it will not be included further for the root XID.

23. The TM in the client asks the CRM to prepare the transaction branch in the server.

24. The CRM sends the prepare message to the subordinate (server).

25. The TM prepares the local RM.

26. The CRM propagates the prepare to the remote TM.

27. The TM prepares the transaction branch in the local RM in the server. The CRM is not
prepared because it never registered for the transaction branch.

28. The TM in the server logs the ready decision.

29. The ready response is sent to the superior.

30. The coordinator TM logs the ready decision and asks the CRM to commit the transaction
branch in the server.

31. The commit message is sent by the CRM to the subordinate (server).

32. The TM commits the local RM.

33. The CRM propagates the commit decision to the TM.

34. The TM commits the transaction branch in the local RM in the server.

35. The TM logs the commit decision in the server. This is a forget transaction branch
decision.

36. The commit response is sent to the superior.

37. The coordinator TM logs the commit decision. This is a forget transaction decision. The
TM responds to the AP informing it that tx_commit() was successful.

B.2 Peer-to-Peer Transaction Mandatory Propagation
This scenario shows peer-to-peer communications between a transaction initiator and a
subordinate using a transaction mandatory dialogue. The initiator begins the global transaction.

The following notes describe the flows in this scenario:

1. The superior AP begins a transaction.

Distributed Transaction Processing: The XA+ Specification Version 2 129

Peer-to-Peer Transaction Mandatory Propagation Scenarios

tx_open

TX_OK

tx_begin

TX_OK

cm_begin_dialog

xa_open

XA_OK

xa_open

XA_OK

1

AP RMTM RM APCRM CRM TM

xa_start
XA_OK

6

2

ax_reg

XID

ax_add_branch

XID

ax_set_branch_info (XID)

TM_OK

0

1
7

8

tx_open

xa_open

XA_OK
xa_open

XA_OK

TX_OK

tp_begin_dialog_ind9

INITIATOR SUBORDINATE

cm_bind_recipient
3

cm_listen 4

CM_OK

5

CM_OK
cm_accept

18
CM_OK10

cm_send11
ax_start (XID ,TMNOFLAGS)19

xa_start (TMNOFLAGS, XID)

XA_OK
20

TM_OK

ax_set_branch_info (XID)

TM_OK
21

CM_OK22

12 tp_data cm_receive

message
23

SQL

data

13 CM_OK

14
cm_receive

16

17

ax_end (TMSUSPEND, XID)

xa_end (TMSUSPEND, XID)

XA_OK

xa_end (TMSUSPEND, XID)

XA_OK

TM_OK

ax_start (TMRESUME, XID)

xa_start (TMRESUME, XID)

XA_OK

TM_OK
response

15

tp_data 25

cm_send
24

CM_OK
29

cm_receive26

27 30
ax_end (TMSUSPEND, XID)

xa_end (TMSUSPEND, XID)

XA_OK
31

TM_OK

1

28

1

1

1

0

0

0

0

0 1

1

130 Snapshot (1994)

Scenarios Peer-to-Peer Transaction Mandatory Propagation

2. The RM receives xa_start () because it is statically registered. The CRM does not because it
is a dynamically registering RM.

3. The subordinate AP registers with the CRM.

4. The subordinate AP listens for a connection with a superior.

5. The superior AP starts a dialogue with a subordinate.

6. The CRM registers with the TM in response to the call from the superior AP.

7. The CRM requests the TM to add a transaction branch and add a unique branch qualifier to
the XID the TM returns. The CRM uses this XID for the message to be sent to the
subordinate.

8. The CRM requests the TM to save necessary information to keep track of the branch. This
might include the name of the remote location and any other information that the CRM
needs, especially during recovery.

9. The begin dialog indication is (logically) sent.

10. The CRM returns success to the superior AP.

11. The superior AP calls the CRM to send a message to the subordinate.

12. The CRM sends the message.

13. The CRM returns success to the superior AP.

14. The superior AP issues a receive that blocks.

15. The CRM in the superior asks the TM to suspend the RMs in the thread of control because
of the blocking receive call from the AP.

16. The TM issues xa_end(TMSUSPEND) to the local RM.

17. The TM issues xa_end(TMSUSPEND) to the CRM because it was registered.

18. The CRM in the subordinate responds to the cm_listen() issued by the AP, and the
subordinate AP accepts the dialogue.

19. The CRM informs the TM in the subordinate that a transaction branch is about to begin.

20. The TM passes the transaction branch’s XID to the statically registering local RM. The TM
does not issue xa_start () to the CRM because it has selected dynamic registration.

21. The CRM in the subordinate requests the TM to save necessary information to keep track
of the superior. This might include routing information and any other information that the
CRM needs, especially during recovery.

22. The CRM returns success to the subordinate AP’s cm_accept() call.

23. The subordinate AP receives the message from the superior.

24. The subordinate AP sends a message to the superior.

25. The response is sent by the CRM to the superior.

26. The CRM in the superior calls the TM to resume the association with the thread of control.

27. The TM resumes the association with the local RM. The TM does not resume the
association with the CRM because it has selected dynamic registration.

28. The response is returned to the superior AP.

Distributed Transaction Processing: The XA+ Specification Version 2 131

Peer-to-Peer Transaction Mandatory Propagation Scenarios

29. The subordinate blocks on a receive.

30. The CRM in the subordinate calls the TM to suspend the transaction’s association in the
thread of control because of a blocking receive done by the subordinate AP.

31. The TM in the subordinate suspends the association with the local RM in the thread of
control. The TM does not call the CRM because it uses dynamic registration and it has not
registered.

B.3 Peer-to-Peer Two-Phase Commit Chained Transaction
This scenario shows peer-to-peer transaction commitment for a transaction mandatory (chained
transaction) dialogue.

The following notes describe the flows in the scenario opposite:

1. The CRM in the subordinate calls the TM to suspend the transaction’s association in the
thread of control because of a blocking receive done by the subordinate AP.

2. The TM in the subordinate suspends the association with the local RM in the thread of
control. The TM does not call the CRM because it uses dynamic registration and it has not
registered.

3. The AP in the superior calls the TM to commit the transaction.

4. The TM in the superior ends the association with the local RM.

5. The TM ends the suspended association with the CRM. The CRM responds read-only so
that it will not be included further for the root XID.

6. The TM in the superior asks the CRM to prepare the transaction branch in the subordinate.

7. The CRM sends the prepare message to the subordinate.

8. The TM in the superior prepares the local RM.

9. The CRM in the subordinate calls the TM to resume the association with the thread of
control.

10. The TM in the subordinate resumes the association with the local RM. The TM does not
resume the association with the CRM because it has selected dynamic registration.

11. The CRM gives a take commit indication to the subordinate AP.

12. The AP in the subordinate calls the TM to commit the transaction.

13. The TM in the subordinate ends the association with the local RM. The TM does not call
the CRM because it never registered.

14. The TM in the subordinate calls the CRM to wait for the prepare indication.

15. The CRM in the subordinate propagates the prepare to the TM.

16. The TM prepares the transaction branch in the local RM in the subordinate. The CRM is
not prepared because it never registered for the transaction branch.

17. The TM in the subordinate logs the ready decision.

18. The ready response is sent to the superior.

132 Snapshot (1994)

Scenarios Peer-to-Peer Two-Phase Commit Chained Transaction

AP RMTM RM APCRM CRM TM

INITIATOR SUBORDINATE

cm_receive

ax_end (TMSUSPEND, XID)
1

xa_end (TMSUSPEND, XID)

XA_OK 2

TM_OK

3 tx_commit
xa_end (TMSUCCESS, XID)

XA_OK

xa_end (TMSUCCESS, XID)

XA_RDONLY

4

5

xa_prepare (XID ,TMASYNC)
1

6

prepare 7

handle
1

ax_start (TMRESUME, XID)

xa_start (TMRESUME, XID)

XA_OK

9

10

xa_prepare (XID)

XA_OK
08

TM_OK 11

take_commit

tx_commit

xa_end (TMSUCCESS, XID)

XA_OK
13

xa_wait (TMSUCCESS, XID)
14

ax_prepare (XID)
115

xa_prepare (XID)

XA_OK
16

TM_OK 17

xa_complete

ready
18

XA_OK, handle
1

12

1

1

0

0

0

1

1

1

1

Distributed Transaction Processing: The XA+ Specification Version 2 133

Peer-to-Peer Two-Phase Commit Chained Transaction Scenarios

AP RMTM RM APCRM CRM TM

INITIATOR SUBORDINATE

xa_commit (XID)

XA_OK 23

TM_OK

28TX_OK

xa_commit (X + X ,TMASYNC + TMCHAINED)
119

commit 20

handle
2

22

xa_commit (XID)

XA_OK
021

TX_OK 30

XA_OK (xa_wait)29

done
26

xa_start (TMNOFLAGS, XID)
2

XA_OK
25

xa_complete

XA_OK, handle

XA_OK
27

2

xa_commit (X + X , TMCHAINED)
1 2

2

xa_start (XID)
3

1

TM_OK24

ax_start (TMNOFLAGS, XID)
2

134 Snapshot (1994)

Scenarios Peer-to-Peer Two-Phase Commit Chained Transaction

19. The coordinator TM logs the ready decision and asks the CRM to commit the transaction
branch in the subordinate. The TM passes the branch’s XID and a new XID for the chained
transaction in the subordinate.

20. The commit message is sent by the CRM to the subordinate.

21. The TM in the superior commits the local RM.

22. The CRM in the subordinate propagates the commit decision to the TM. The CRM passes
the branch’s XID and the new one for the chained transaction.

23. The TM commits the transaction branch in the local RM in the subordinate.

24. The TM in the subordinate logs the commit decision. This is a forget transaction branch
decision. The TM returns to the CRM. The CRM starts the chained transaction branch in
the TM in the subordinate.

25. The TM starts the chained transaction’s association with the local RM in the subordinate.

26. The commit response is sent to the superior.

27. The coordinator TM logs the commit decision. This is a forget transaction decision. The
TM starts the association for the chained transaction in the local RM.

28. The TM responds to the superior AP informing it that tx_commit() was successful.

29. The CRM in the subordinate responds to the TM’s xa_wait () call.

30. The TM responds to the subordinate AP informing it that tx_commit() was successful.

B.4 Network Failure - Client Decided, Subordinate Initiated Recovery
This scenario shows client/server interaction global transaction commitment with a
communication failure after the prepare phase of the two-phase commit procedure is complete.
In this example, the server initiates recovery when communications are re-established.

The following notes describe the flows in this scenario:

1. The client AP calls the TM to commit the transaction.

Distributed Transaction Processing: The XA+ Specification Version 2 135

Network Failure - Client Decided, Subordinate Initiated Recovery Scenarios

AP RMTM RM APCRM CRM TM

CLIENT SERVER

xa_prepare (XID)

XA_OK 8

TM_OK

1 tx_commit
xa_end (TMSUCCESS, XID)

XA_OK
xa_end (TMSUCCESS, XID)

XA_RDONLY

2

3

xa_prepare (XID ,TMASYNC)
14

prepare
5

handle
2

xa_prepare (XID)
06

xa_complete

XA_OK, handle
1

ax_prepare (XID)
17

XA_OK

ready
10

xa_commit (XID ,TMASYNC)
111

server receive

(failure)X

xa_commit (XID)
012

xa_complete

XA_OK

13
XA_RETRY_COMMFAIL, handle

2

14TX_HAZARD

Recovery Process Communications Recovery

xa_wait_recovery xa_ready (TMRECOVER, XID)
1

1615

ax_get_branch_info (XID)
17info

recover-ready
18

TM_OK
20

ax_ready (TMRECOVER, XID)1

info
21

ax_get_branch_info (XID)

commit
22

handle
1

19XA_DEFERRED

ax_commit (XID ,TMRECOVER)123

xa_commit (XID)

XA_OK 24

done
26

9

TM_OK 25

TM_OK

27 ax_done (XID)
1

28

0

0

1

1

1

1

136 Snapshot (1994)

Scenarios Network Failure - Client Decided, Subordinate Initiated Recovery

2. The TM ends the association with the local RM.

3. The TM ends the suspended association with the CRM. The CRM responds read-only so
that it will not be included further for the root XID.

4. The TM in the client asks the CRM to prepare the transaction branch in the server.

5. The CRM sends the prepare message to the subordinate (server).

6. The TM in the client prepares the local RM.

7. The CRM propagates the prepare to the remote TM.

8. The TM prepares the transaction branch in the local RM in the server. The CRM is not
prepared because it never registered for the transaction branch.

9. The TM in the server logs the ready decision.

10. The ready response is sent to the superior.

11. The coordinator TM logs the ready decision and asks the CRM to commit the transaction
branch in the server.

12. The TM in the client commits the local RM.

13. The CRM in the client indicates that it cannot commit now because of communications
failure.

14. The coordinator TM does not log the commit decision because it is incomplete. The TM
returns a heuristic hazard to the client AP because the TM cannot guarantee commitment.

15. The CRM in the recovery process in the client node is given control by the TM.

16. The TM initiates recovery in the server for the prepared transaction.

17. The CRM in the server requests its saved information from the TM.

18. The CRM sends a recover-ready message to the superior.

19. The CRM in the server informs the TM that the recovery decision is deferred.

20. The CRM in the superior asks the TM for the status of the transaction. The TM responds
that it should be committed.

21. The CRM retrieves its saved information for the transaction branch.

22. The commit message is sent by the CRM to the subordinate (server).

23. The CRM in the server propagates the commit decision to the TM.

24. The TM commits the transaction branch in the local RM in the server.

25. The TM in the server logs the commit decision. This is a forget transaction branch
decision.

26. The commit response is sent to the superior.

27. The CRM in the client informs the TM that the commit was successful in the subordinate
branch.

28. The coordinator TM logs the commit decision because the transaction is now fully
committed. This is a forget transaction decision.

Distributed Transaction Processing: The XA+ Specification Version 2 137

Network Failure - Client Decided, Coordinator Initiated Recovery Scenarios

B.5 Network Failure - Client Decided, Coordinator Initiated Recovery
This scenario shows client/server interaction global transaction commitment with a
communication failure after the prepare phase of the two-phase commit procedure is complete.
In this example, the client initiates recovery when communications are re-established.

The following notes describe the flows in the scenario opposite:

1. The client AP calls the TM to commit the transaction.

2. The TM ends the association with the local RM.

3. The TM ends the suspended association with the CRM. The CRM responds read-only so
that it will not be included further for the root XID.

4. The TM in the client asks the CRM to prepare the transaction branch in the server.

5. The CRM sends the prepare message to the subordinate (server).

6. The TM in the client prepares the local RM.

7. The CRM propagates the prepare to the remote TM.

8. The TM prepares the transaction branch in the local RM in the server. The CRM is not
prepared because it never registered for the transaction branch.

9. The TM in the server logs the ready decision.

10. The ready response is sent to the superior.

11. The coordinator TM logs the ready decision and asks the CRM to commit the transaction
branch in the server.

12. The TM in the client commits the local RM.

13. The CRM in the client indicates that it cannot commit now because of communications
failure.

14. The coordinator TM does not log the commit decision because it is incomplete. The TM
returns a heuristic hazard to the client AP because the TM cannot guarantee commitment.

15. The TM initiates recovery in the superior for the prepared transaction.

16. The CRM requests its saved information from the TM.

17. The commit message is sent by the CRM to the subordinate (server).

18. The CRM propagates the commit decision to the remote TM.

19. The TM commits the transaction branch in the local RM in the server.

20. The TM in the server logs the commit decision. This is a forget transaction branch
decision.

21. The commit response is sent to the superior.

22. The CRM informs the coordinator TM that the commit was successful in the subordinate
branch. The coordinator TM logs the commit decision because the transaction is now fully
committed. This is a forget transaction decision.

138 Snapshot (1994)

Scenarios Network Failure - Client Decided, Coordinator Initiated Recovery

AP RMTM RM APCRM CRM TM

CLIENT SERVER

xa_prepare (XID)

XA_OK 8

TM_OK

1 tx_commit
xa_end (TMSUCCESS, XID)

XA_OK

xa_end (TMSUCCESS, XID)

XA_RDONLY

2

3

xa_prepare (XID ,TMASYNC)
14

prepare
5

handle
2

xa_prepare (XID)
06

xa_complete

XA_OK, handle
1

ax_prepare (XID)
17

XA_OK

ready
10

xa_commit (XID ,TMASYNC)
111

server receive

(failure)X

xa_commit (XID)
012

xa_complete

XA_OK

13
XA_RETRY_COMMFAIL, handle

2

14TX_HAZARD

Recovery Process - Communications Recovery

xa_commit (TMRECOVER, TMASYNC, XID)
15

info
16

ax_get_branch_info (XID)

commit
17

handle
1

ax_commit (XID ,TMRECOVER)118

xa_commit (XID)

XA_OK 19

done
21

9

TM_OK 20

handle
1

xa_complete

XA_OK, handle
122

0

0

1

1

1

1

Distributed Transaction Processing: The XA+ Specification Version 2 139

Network Failure - Client Decided, Coordinator Initiated Recovery Scenarios

B.6 Network Failure - Heuristic Damage During Subordinate Initiated
Recovery
This scenario shows a recovery following a network failure during the prepare phase. After
propagating the outcome at the coordinator to the subordinate, the CRM detects heuristic
damage in the transaction branch.

The following notes describe the flows in the scenario opposite:

1. The CRM in the subordinate calls the TM to suspend the transaction’s association in the
thread of control because of a blocking receive done by the subordinate AP.

2. The TM in the subordinate suspends the association with the local RM in the thread of
control. The TM does not call the CRM because it uses dynamic registration and it has not
registered.

3. The AP in the superior calls the TM to commit the transaction.

4. The TM in the superior ends the association with the local RM.

5. The TM ends the suspended association with the CRM. The CRM responds read-only so
that it will not be included further for the root XID.

6. The TM in the superior asks the CRM to prepare the transaction branch in the subordinate.

7. The CRM sends the prepare message to the subordinate.

8. The TM in the superior prepares the local RM.

9. The CRM in the subordinate calls the TM to resume the association with the thread of
control.

10. The TM in the subordinate resumes the association with the local RM. The TM does not
resume the association with the CRM because it has selected dynamic registration.

11. The CRM gives a take commit indication to the subordinate AP.

12. The AP in the subordinate calls the TM to commit the transaction.

13. The TM in the subordinate ends the association with the local RM. The TM does not call
the CRM because it never registered.

14. The TM in the subordinate calls the CRM to wait for the prepare indication.

15. The CRM in the subordinate propagates the prepare to the TM.

16. The TM prepares the transaction branch in the local RM in the subordinate. The CRM is
not prepared because it never registered for the transaction branch.

17. The TM in the subordinate logs the ready decision.

18. The CRM in the superior indicates that it cannot commit now because of a communication
failure.

140 Snapshot (1994)

Scenarios Network Failure - Heuristic Damage During Subordinate Initiated Recovery

AP RMTM RM APCRM CRM TM

INITIATOR SUBORDINATE

cm_receive

ax_end (TMSUSPEND, XID)
1

xa_end (TMSUSPEND, XID)

XA_OK 2

TM_OK

3 tx_commit
xa_end (TMSUCCESS, XID)

XA_OK

xa_end (TMSUCCESS, XID)

XA_RDONLY

4

5

xa_prepare (XID ,TMASYNC)
16

prepare 7

handle
1

ax_start (TMRESUME, XID)

xa_start (TMRESUME, XID)

XA_OK

9

10

xa_prepare (XID)

XA_OK
08

TM_OK 11

take_commit

tx_commit

xa_end (TMSUCCESS, XID)

XA_OK
13

xa_wait (TMSUCCESS, XID) 14

ax_prepare (XID)115

xa_prepare (XID)

XA_OK
16

TM_OK 17

xa_complete

12

1

1

0

0

0

1

1

1

1

(failure)X

18 XA_RETRY_COMMFAIL, handle
1

Distributed Transaction Processing: The XA+ Specification Version 2 141

Network Failure - Heuristic Damage During Subordinate Initiated Recovery Scenarios

AP RMTM RM APCRM CRM TM

INITIATOR SUBORDINATE

server receive

19
XA_OK

20TX_ROLLBACK

12221

23info

24

TM_RBROLLBACK
26 ax_ready (TMRECOVER, XID)

info
27 ax_get_branch_info (XID)

rollback
28

25XA_DEFERRED

ax_rollback (XID ,TMRECOVER)29

30

34

31

TM_OK

35 1

36

1

1

xa_rollback (XID)
0

ax_done (TMHEURMIX, XID)

xa_wait_recovery

Recovery Process Communications Recovery

done (heurmix)

XA_HEURMIX
xa_rollback (XID)

recover-ready

ax_get_branch_info (XID)

xa_ready (TMRECOVER, XID)

321
XA_OK
xa_forget (XID)

1

1

1

33TM_HEURMIX

142 Snapshot (1994)

Scenarios Network Failure - Heuristic Damage During Subordinate Initiated Recovery

19. The TM in the superior instructs the local RM to roll back.

20. The TM returns the rollback outcome to the AP.

21. The CRM in the recovery process in the superior is given control by the TM.

22. The TM initiates recovery in the subordinate for the prepared transaction.

23. The CRM in the subordinate requests its saved information from the TM.

24. The CRM sends a recover-ready message to the superior.

25. The CRM in the subordinate informs the TM that the recovery decision is deferred.

26. The CRM in the superior asks the TM for the status of the transaction. The TM responds
that it should be rolled back.

27. The CRM retrieves its saved information for the transaction branch.

28. The rollback message is sent by the CRM to the subordinate.

29. The CRM in the subordinate propagates the rollback decision to the TM.

30. The TM rolls back the transaction branch in the local RM in the subordinate. The RM
reports back a mixed heuristic outcome.

31. The TM in the subordinate logs the heuristic decision.

32. The TM permits the RM to erase its knowledge of the heuristically completed transaction
branch.

33. The TM reports the mixed heuristic outcome to the CRM.

34. The rollback response (mixed heuristic outcome) is sent to the superior.

35. The CRM in the superior informs the TM that the rollback resulted in a mixed heuristic
outcome.

36. The superior TM logs the heuristic decision.

Distributed Transaction Processing: The XA+ Specification Version 2 143

Scenarios

144 Snapshot (1994)

Index

ability to commit
guaranteeing..10

absence of expected reply.......................................11
access to resources..1
account verification..7
ACID properties..7

atomicity...7
consistency...7
coordination by TM ...7
durability..7
isolation ..7
responsibility of RM...7

addressing correct RM...115
administrative procedures29, 111
administrator

errors worth notifying...17
ANSI C

use of ...27
AP...1

component ...4
CRM ..6
dissociating from RM ..16
environment ..3
requirement ...111

AP-CRM interface...6
AP-RM interface..5
AP-TM interface..5
API

portability...1
application

communication ...1
distribution ..1
portability...1
program..1

application executables
linking...29

application program ..4
component ...4
environment ..3
interface to CRM...6
interface to RM..5
interface to TM..5
sharing resources..1

Application Program Interface2
association

with transaction, start of17

of threads with transaction17
of threads, state table...105
of transaction...112

asynchronous
calling mode ..24
operations, state table..110

asynchrony
RM option ..114
use of RM flag word...29

atomic action identifier (OSI CCR)8
use in XID...28

atomicity ...7
of commitment..8

authorisation to forget transaction11
autonomous transaction completion11
autonomy of RMs ...8
awareness

lack of between RMs..8
ax_ functions..14
ax_ prefix ..27
ax_add_branch() ..14, 40
ax_commit()..14, 22, 41
ax_done() ...14, 44
ax_end() ...14, 18, 46
ax_forget_branch() ..14, 49
ax_get_branch_info() ..14, 50
ax_prepare()..14, 51
ax_ready()..14, 53
ax_recover() ..14, 55
ax_reg() ..14, 19, 57
ax_reg_2() ..14, 57

state table ...103
ax_rollback() ...14, 22, 60
ax_set_branch_info()...14, 63
ax_start()..14, 18, 65

primary use..17
ax_start_2()..14, 65

state table ...103
ax_unreg() ...14, 19, 68
blocking control thread ...24
branch ID

RM option ..114
branch identifier

component of XID..28
byte exchange in communicating XID...............112

Distributed Transaction Processing: The XA+ Specification Version 2 145

Index

calling protocol
RM requirement..112

calling sequence..103
changes

making permanent...22
Classic C

use of ...27
commit

and rollback in subordinates..............................23
atomic..8
decision...4
decision to ..4
guaranteeing ability to ..10
one-phase ...11
prepare to ...10
two-phase and one-phase...................................23

commitment protocol ..10
alternate..11
disruptions from error...11
optimisations of ..10
phases of...10
RM requirement..112
state table ...107

committing transaction7, 22
committing transaction branches..........................22
communication ...2
communication protocol...1
communication resource manager1

component ...5
interface to AP...6
interface to OSI-TP ...6
interface to TM..6
subordinate ..5
superior...5

completion
coordinate ..4
heuristic ..11
of transaction...7, 22
testing for ...24

component ...3
AP ..1, 4
AP-CRM interface ..6
AP-RM interface ...5
AP-TM interface..5
CRM ..1, 5
CRM-OSI TP interface ...6
interchangeability...1
interfaces between..5
interoperability ...1
RM ...1, 4
RM-TM interface...5

TM..1, 4
TM-CRM interface..6

computational task...7
concluding involvement ...10
concurrent access to RMs112
configuration file...16

editing...16
consistency ...7
consistent effect of decision......................................7
consistent handling of RM returns115
consistent state ..7
context...9
control ...3

thread of ...9
control returned to caller ..24
coordination of transaction4
copying XID...28
CPI-C interface ..6
creation of transaction branches............................20
CRM...1

component ...5
subordinate ..5
superior...5

CRM-AP interface...6
CRM-OSI TP interface ...6
CRM-TM interface..6
data structure

XID...8
database ..1
DBMS...4
decision to commit ...4
decision to commit or roll back7
declarations

changing...29
definition ..7

DTP model ...3
flags ...33
transaction properties..7

delivered products ...111
demarcation of transaction.......................................4
discarding knowledge of transaction10
dissociation

from RM ...16
from transaction ...18
of threads required before prepare...................22
of threads with transaction17
of threads, state table...105

distributed transaction processing (DTP)7
document organisation..2
DTP

implications of...7

146 Snapshot (1994)

Index

DTP model ...1, 3
definition ..3

durability..7
dynamic registration..19

RM option ..114
state table ...106
use of RM flag word...29

dynamic registration of RMs..................................19
ending involvement

dynamic RMs ..19
ending transaction association18
entry in state table ..104
entry point

for TM switch structure31
entry points

pointers to ..29
error

versus veto...17
executables

linking...29
expected reply

absence of...11
failure ..11

after prepare ..22
correctable..11
locally-detected...11
of system component...7
recovery..4, 25
to prepare to commit, reporting........................10

file access method...4
file access system ..1
flag

absence of...33
definitions ..33
naming..27

flag word ..29
for RM...29
for TM switch structure31

flow of control ...3
forgetting transaction ..22
formatID ...28
functional component

AP ..4
CRM ..5
RM ...4
TM..4

functional model...3
global transaction ...4
global uniqueness of XID contents28
guaranteeing ability to commit10
guaranteeing global serialisability........................10

header file...27
heterogeneous TMs ..2
heuristic completion

in state table...109
RM requirement..113

heuristic decision..11, 22
list of affected transactions25
matching...11
notification of ..11

heuristics
RM option ..114

identification of calling thread.............................112
immediate return mode ..24
implementation requirement...............................111

for TMs ...115
implementator options for RMs..........................113
implications of DTP ...7
incomplete state of transaction..............................18
independent transaction completion11
information

RM requirement to publish..............................113
information on transaction15
information string ..113

locating ...115
initialisation of RMs...16
initialisation string ...16, 113

locating ...115
initiation of completion...22
initiator name (OSI CCR)

use in XID...28
interchangeability...1

ensuring..34
interface ..3

AP-CRM ...6
AP-RM ..5
AP-TM...5
between components ...5
CPI-C...6
CRM-OSI TP ..6
data ..8
function...5
illustrated ...3
ISAM..4-5
level of...2
native ..114
Peer-to-Peer..4, 6
Peer-to-Peer interface...5
SQL ..5
system-level ...1
TM-CRM...6
TM-RM..5

Distributed Transaction Processing: The XA+ Specification Version 2 147

Index

TX...5
TxRPC ...4, 6
TxRPC interface ..5
XA ..5
XA+ ..5-6
XAP-TP..5-6
XATMI...4, 6
XATMI interface..5

interface overview..13
interoperability..1
involvement concluding ...10
involvement in transaction ending.......................10
involvement of RMs...19
ISAM..4

concept of transaction114
interface ..5

ISO object identifier..115
isolation ..7
joining transaction..17
knowledge of transaction

discarding...10
lack of update ..10
linking...29, 111

assumptions by TM ...115
linking information

RM requirement to publish..............................113
TM requirement to publish115

list of pre-committed transactions11
local failure

coping with..11
local recovery done by TMs11
locally-detected failure..11
location-independence of transaction work7
locks on shared resources ...9
logging

see stable recording..10
machine failure at RM ...25
mapping of XID ..28

RM requirement..112
matching heuristic decision....................................11
maximum values

TMMAXBLOBLEN ..34
TMMAXBLOBTOT ..34

method of referencing transaction7
migration

declaring RM support..29
model...1

functional ...3
modes of xa_calls..24
modifying shared resource.......................................7

multiple
state transitions...103

multiple access to RMs..112
multiple associations ...17
multiple threads using RM.....................................17
multiple-threading facility113, 115
name of RM ...29, 113
name registration..113
naming conventions...27
native interface ...5, 111, 114

constraints ..5
negative response to pre-commit..........................10
non-ANSI C

use of ...27
non-blocking calling mode24
non-standard native open.......................................16
non-standard native statements..........................114
notation, in state tables..104
notification of heuristic decision11
null string permitted..113
object modules ..111
octet string ...112
one-phase commit ..11

change to two-phase..23
failure implications when using........................11
TM option ..115

open
non-standard native...16

operations known within RM..................................8
optimisations ...22

RM option ..113
optimisations of commitment protocol10
optional feature...111
options

XA..29
orderly function

RM requirement..113
organisation of specification2
OSI CCR

compatibility with..11
use in XID...28

OSI CCR standards ..8
atomic action identifier ...8

OSI TP ...10
heuristic completion ..11

OSI TP protocol...2
OSI TP standards...5-6
OSI TP-CRM interface ...6
overview of interface ...13
paradigm

CPI-C interface..6

148 Snapshot (1994)

Index

Peer-to-Peer interface ...4-6
TxRPC interface...4-6
XATMI interface ..4-6

participation in transaction
dynamic control..14

Peer-to-Peer..4
Peer-to-Peer interface ...5-6
permanence of changes ...22
phases of commitment protocol............................10
pointer to XID..28
pointers to RM entry points29
portability...1, 111

enhancing...16
maximising ..114

pre-commit...10
negative response to ..10

pre-committed transactions
list of..11

prepare to commit ..10, 22
prepared transaction, list of....................................25
preserving XID..28
presumed rollback..10

defined by OSI...11
prolog file ...27
protocol...1

commitment ..10
error...103
OSI TP ...2
RM requirement..112
state table ...107

protocol optimisations ..10
RM option ..113

public information
RM requirement..113
TM requirement..115

publication of XID
TM option ..115

rarely-used RMs..19
RDBMS..114
re-registering RMs when re-involved19
read-only response ...10
read-only return

RM option ..113
Receiving Timeouts

RM option ..114
recompilation

avoiding ...27, 111
recovery ..4, 11

from failure ..25
list ..25
local by TMs ..11

RM requirement..113
referencing transaction

method of ...7
registration

dynamic..19
registration of product name113
registration of RMs...19
rejoining transaction ..17
releasing resources ...22
remote communication ...2
reporting failure to prepare to commit10
reporting transaction information15
requirements for implementors...........................111
resource...1

access to ..1
database..1
file access system..1
manager..1
releasing ...22
system ...9

resource manager
ACID properties responsibility7
component ...4
interface to AP...5
interface to TM..5
opening and closing...16

result codes ..34
resuming transaction association..........................17
return codes ...34
RM..1

access to stable storage..11
ACID properties responsibility7
component ...4
concurrent use of ..17
failure, state transition104
initialisation state table104
machine failure ...25
multiple-threading facility113
name..113
name of ...29
option..114
options ..113
pointers to entry points.......................................29
registration of ..19
requirements ...112
sequencing use of ...17
serialising use of ...17
start-up actions ...16
support for threads ..113
switch..115
unilateral action ..25

Distributed Transaction Processing: The XA+ Specification Version 2 149

Index

updating shared resources11
work done across..7

RM switch ..29
RM-AP interface..5
RM-TM interface...5
RMs

changing sets of ..29
rollback

in subordinates..23
rollback-only..18

RM option ..25
rolling back transaction.................................7, 10, 22
rolling back transaction branches22
sequence of ax_ functions15
sequence of calls ...103
sequence of xa_ functions15
sequencing access ...112
serialisability

guaranteeing..10
serialising access ...112
service interfaces

TM requirements..115
shared resource ...9

modifying...7
no update to...10
permanence of changes to7
RM ...4
unlocking..11

shared resources
changes to ..22

simultaneous updates across RMs..........................8
single asynchronous operation............................110
spanning RMs

distributed transaction ..7
specification

TX interface..5
XA interface ...5
XA+ interface...6
XAP-TP interface ..6

SQL
interface ..5

stable recording...10
stable storage

access assumed ...11
standards

OSI CCR ...8
OSI TP..5-6

start-up actions in RM ...16
state table ...103

closing RM ...104
failure return ...104

general entry..104
initial state in...103
opening RM ...104
specific entry ...104

state tables
RM requirement to enforce112

status of work done anywhere7
structure of specification...2
superior name (OSI CCR)

use in XID...28
support for recovery

RM requirement..113
suspending association with transaction18
switch

RM ...29
TM..31

switch name
RM requirement to publish..............................113

synchronous calling mode......................................24
syntax, in state tables...104
system component

failure of ...7
system-level interface...1-2
system-specific procedure..............................16, 111
table, state ..103
template names of xa_ functions14-15
terminated thread...25
termination string...16, 113

locating ...115
testing for completion..24
text string

configuration control with111
RM requirement to publish..............................113

thread ..31
RM support for ...113
TM support for..115

thread of control..9
association ...105
manner of identifying..112
same across calls...9
state transition ..103
termination ..25

threads
association with transaction17
supervising completion22

TM..1
access to stable storage..11
ACID properties coordination.............................7
API...5
component ...4
delegating responsibility to..............................111

150 Snapshot (1994)

Index

linking assumptions ..115
multiple-threading facility115
options ..115
performing local recovery11
requirements ...115
support for threads31, 115

TM prefix..27
TM switch...31
TM switch structure

entry point..31
flag word ..31
version word ...31

TM-AP interface..5
TM-CRM interface..6
TM-RM interface...5
TMER_ prefix...27
TMMAXBLOBLEN...34
TMMAXBLOBTOT...34
TMNOFLAGS..33
TM_ prefix..27
tracking transaction

RM requirement..113
transaction

actions ...1
association state table..105
boundary ..4
branch ...23
branch committing...22
chaining ..23
committing ..7, 22
completion ...1, 4, 22
context ..19
controlling RM participation14
creation ...20
defining boundaries ...1
definition of..7
demarcation ...4-5
dissociating from..18
ending involvement in ..10
failure ..1
forgetting..22
global...1, 5
identifier (XID) ..8
identifier assigning...1
identifiers ...112
in incomplete state ...18
information reporting..15
joining ...17
manager..1
properties ...7
recovery ..1

RM-internal..8
RMs must recognise...112
rollback-only..18
rolling back ..7, 10
state table ...107
suspending association with..............................18
work outside..19

transaction branch identifier8
transaction commitment and recovery................10
transaction commitment protocol10
transaction context ...9
transaction identifier

component of XID..28
transaction manager...4

ACID properties coordination.............................7
API...5
component ...4
interface to AP...5
interface to CRM...6
interface to RM..5

transaction work
location-independence of7

transition ..103
two-phase commit..10

change from one-phase23
TX interface ..5
TxRPC..4
TxRPC interface ...5-6
undoing changes...22
undoing work..7
uniform effect of decision ...7
unilateral RM action...25
unimplemented functions

RM requirement..113
uniqueness of XID..28, 115
unit of work ...7
unused functions

RM requirement..113
update

lack of..10
vendor options for RMs ..113
vendor requirement ...111

for TMs ...115
vendor-specific procedure....................................111
version word..29

for TM switch structure31
veto ..10

reporting by ax_start ...17
reporting by xa_start ...17

warning
one-phase commit optimisation10

Distributed Transaction Processing: The XA+ Specification Version 2 151

Index

work done ..7
across RMs ...7
anywhere, status of ..7

work outside transaction ..19
X/Open publications ...1
X/Open specification

TX interface..5
XA interface ...5
XA+ interface...6
XAP-TP interface ..6

X/Open-compliant interface....................................7
XA interface ...5
XA Options ..29
XA+ interface ...5-6
xa.h header...27
xactl_t ..29
XAER_ prefix ...27
XAER_PROTO ..103
XAP-TP interface...5-6
XATMI...4
XATMI interface ..5-6
xa_ functions..15

names of..14-15
order of use ..15
sequence of ..15

XA_ prefix ..27
xa_close() ...15, 69

redundant use ...104
state table ...104

xa_commit()..15, 22, 71
xa_complete() ...15, 24, 75
xa_done() ...15, 77
xa_end() ...15, 18, 79

RMs applied to..19
xa_forget() ...15, 82
xa_open() ...15, 84

redundant use ...104
RM parameters passed in16
state table ...104

xa_prepare()..15, 22, 86
required ..112
RMs applied to..19

xa_ready()..15, 89
xa_recover() ..15, 25, 91
xa_rollback() ...15, 22, 93
xa_start()..15, 18, 96

not used in dynamic registration19
primary use..17
RMs applied to..19
to resume..17

xa_start_2()..15, 96

state table ...103
xa_switch_t ..29
xa_tmswitch...31
xa_wait()..15, 100
xa_wait_recovery()..15, 102
XID...4, 8

global uniqueness...8
local copy ...28
mapping to local transaction28
structure and byte-alignment28
structure definition ..28
TMs required to manage...................................115
uniqueness ...112

152 Snapshot (1994)

