
X/Open Snapshot

Distributed Internationalisation Services, Version 2

The Open Group

 December 1994, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

X/Open Snapshot

Distributed Internationalisation Services, Version 2

ISBN: 1-85912-033-4
Document Number: S308

Published in the U.K. by The Open Group, December 1994.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii X/Open Snapshot (1994)

Contents

Chapter 1 Introduction... 1
 1.1 Background.. 1
 1.2 Scope.. 3
 1.2.1 Areas Addressed.. 3
 1.2.2 Areas Not Addressed.. 4
 1.2.3 Issues .. 5
 1.3 Terminology... 6

Chapter 2 Overview of Problem Areas .. 7
 2.1 Locale Registry .. 7
 2.2 Multi-Locale Environments.. 8
 2.3 Distributed Processing... 9
 2.3.1 Single Thread, Single Locale, Global Locale State 9
 2.3.2 Multiple Threads, Multiple Locales, Global Locale State................ 10
 2.4 Advanced Text Handling and Encoding.. 11

Chapter 3 Locale Specification for Distributed Environments......... 13
 3.1 Purpose ... 13
 3.2 Terminology... 13
 3.3 Locale Usage for Host and Network .. 14
 3.4 String Network Locale Specification Syntax... 16
 3.4.1 Examples.. 18
 3.5 Token Network Locale Specifications .. 20
 3.6 Registration.. 20

Chapter 4 Multi-locale Support.. 21
 4.1 Definitions .. 22
 4.2 Text Model Overview .. 23
 4.2.1 Basic Text Entity... 23
 4.2.2 Composite Sequences ... 23
 4.2.3 Self Announcing Data... 23
 4.3 Data Types and Objects ... 25
 4.3.1 Program Flow Model .. 26
 4.3.2 Locale Object — AttrObject ... 26
 4.3.3 Text Context Object — mbstate_t... 27
 4.3.4 Classification Object — wctype_t .. 27
 4.3.5 Transliteration Object — wctrans_t ... 27
 4.3.6 Concurrency (Thread Safeness) .. 27
 4.4 Distributed Locale Functions ... 28
 4.5 Locale Management Functions .. 29
 4.6 Locale Information Functions .. 30
 4.7 Composite Character Sequence (CCS) Functions................................ 30

Distributed Internationalisation Services, Version 2 iii

Contents

 4.8 Classification Functions... 30
 4.9 Transliteration Functions .. 31
 4.10 String Searching Functions ... 31
 4.11 String Comparison Functions .. 31
 4.12 Date, Monetary and Time Formatting Functions................................. 32
 4.13 Number Conversion Functions ... 32
 4.14 Text Scanning and Parsing Functions... 32
 4.15 Text Formatted I/O Functions ... 33
 4.16 Extended Wide-character Conversion Functions 35

Chapter 5 Header File ... 37
 <mlocale.h> .. 38

Chapter 6 Reference Manual Pages.. 43
 m_createattrobj() ... 44
 m_createlocspec()... 45
 m_creatembstate().. 49
 m_destroyattrobj ()... 51
 m_destroylocspec() .. 52
 m_destroymbstate() ... 53
 m_fattr() ... 54
 m_isctype()... 55
 m_iswctype().. 56
 m_localeconv () ... 58
 m_locspec_from_host ().. 59
 m_locspec_from_netstring() ... 60
 m_locspec_from_nettoken () .. 61
 m_locspec_to_netstring ().. 62
 m_locspec_to_host () .. 63
 m_locspec_to_nettoken ()... 64
 m_mb_cur_max() .. 65
 m_nl_langinfo ()... 66
 m_setlocale() .. 68
 m_sprintf() ... 70
 m_sscanf() .. 72
 m_strcoll().. 74
 m_strcspn() .. 75
 m_strerror().. 76
 m_strfmon() ... 77
 m_strftime() ... 79
 m_strpbrk() .. 80
 m_strptime() .. 81
 m_strscanfor().. 82
 m_strspn().. 84
 m_strstr() ... 85
 m_strtod() .. 86
 m_strtok()... 87
 m_strtol() ... 89

iv X/Open Snapshot (1994)

Contents

 m_strtoul() ... 90
 m_strxfrm().. 92
 m_swprintf() .. 94
 m_swscanf() ... 98
 m_tombstrans().. 102
 m_towcstrans() .. 104
 m_wcscnt()... 106
 m_wcscoll() .. 107
 m_wcscspn() .. 108
 m_wcsfmon().. 109
 m_wcsftime().. 111
 m_wcsnext()... 113
 m_wcspbrk()... 114
 m_wcsptime()... 115
 m_wcsquery()... 116
 m_wcsscanfor() .. 117
 m_wcsspn() .. 120
 m_wcstod()... 121
 m_wcstok() ... 123
 m_wcstol().. 125
 m_wcstoul() ... 127
 m_wcswcs().. 129
 m_wcswidth() .. 130
 m_wcsxfrm() .. 131
 m_wctrans() ... 133
 m_wctype()... 134

Appendix A Locale Registry .. 135

Appendix B Alternatives Examined and Rationale....................................... 137
 B.1 Locale Object per Category... 137
 B.2 Locale Object Method .. 137
 B.3 No Change.. 138
 B.4 Locale Objects for Threads.. 138
 B.5 Linking Global Locale with Non-global Locale 139
 B.6 Opaque Data Functions ... 140
 B.6.1 Objectives .. 140
 B.6.2 Assumptions... 140
 B.6.3 Reasons for Rejection .. 140

 Glossary ... 141

 Index... 147

List of Examples

3-1 American English Locale.. 18
3-2 ISO Japanese Locale .. 18

Distributed Internationalisation Services, Version 2 v

Contents

3-3 French Canadian Locale ... 19
3-4 HP German Locale... 19
3-5 X/Open de_DE Registered Locale ... 19

vi X/Open Snapshot (1994)

Preface

This Document

This document is a Snapshot (see above).

The current model for producing internationalised software, as presented in issues of the
X/Open Portability Guide (XPG) up to and including Issue 4, was developed at a time when the
norm was stand-alone systems with terminals. For such environments, the current global
internationalisation model based on setlocale () is a reasonable solution, and will continue to be a
reasonable solution for software intended for these environments.

However, the current internationalisation model has limitations when applied to software
designed:

• to be distributed

• to work in heterogeneous networks

• to interact simultaneously with multiple users, each of which uses different language
customs and conventions

• to be part of a layered solution.

This was exposed during the X Consortium’s attempt to internationalise the release of X11R5.

This document represents the joint recommendation of the X/Open and UniForum Joint
Internationalisation Group to address limitations of the current internationalisation model.

Structure

This document is structured as follows:

• Chapter 1 is an introduction explaining the background to this snapshot.

• Chapter 2 summarises problem statements in the areas of locale registry, multi-locale
environments, multi-lingual applications, distributed processing and text objects; it then
proposes solutions to the problems identified.

• Chapter 3 describes the syntax and semantics of the naming scheme required to identify a
locale across a heterogeneous network.

• Chapter 4 describes functions for the creation and management of non-global locale objects,
and functions intended to overcome perceived drawbacks with existing methods of
internationalisation.

• Chapter 5 provides a specification for the header file.

• Chapter 6 provides detailed specifications for the functions introduced in Chapter 3 and
Chapter 4.

• Appendix A explains the scope of the X/Open Locale Registry.

• Appendix B describes other proposals for locale management and gives the rationale for their
rejection.

A glossary and index are provided.

Distributed Internationalisation Services, Version 2 vii

Preface

Intended Audience

This document is intended for system programmers and application programmers working on
distributed internationalised systems and applications.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify an error value or coded return value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. In syntax ellipses (...) are used to show that additional arguments are optional.

• Variables within syntax statements are shown in italic fixed width font.

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a.

• Hexadecimal numbers are denoted by a prefix of 0x or 0X.

viii X/Open Snapshot (1994)

Trade Marks

AT&T is a registered trademark of AT&T in the U.S.A. and other countries.

Hewlett-Packard, HP, HP-UX, and Openview are registered trademarks of Hewlett-
Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

OSFTM is a trademark of The Open Software Foundation, Inc.

Distributed Internationalisation Services, Version 2 ix

Acknowledgements

X/Open gratefully acknowledges the collaboration with and contributions from UniForum.

Many members of the X/Open and UniForum Joint Internationalisation Group have contributed
to this document by writing or reviewing drafts. In particular, thanks are due to Frank Rojas of
IBM for his work on this version.

Special thanks are due to Tom McFarland of HP for work on earlier drafts and continued
support of this effort. Also Tim Greenwood of Digital for his comments that help align the DIS
with the MSE functions.

Finally, thanks to Judy Chen of HP for some of the most thorough reviews of this and other
XoJIG specifications.

x X/Open Snapshot (1994)

Referenced Documents

The following standards are referenced in this snapshot:

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

UTF-8
CAE Specification, April 1995, File System Safe UCS Transformation Format (UTF-8)
(ISBN: 1-85912-082-2, C501), published by The Open Group.

ISO 639
ISO 639: 1988, Codes for the Representation of Names of Languages, Bilingual edition.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO 3166
ISO 3166: 1988, Codes for the Representation of Names of Countries, Bilingual edition.

ISO 4217
ISO 4217: 1987, Codes for the Representation of Currencies and Funds.

ISO 6937
ISO 6937: 1983, Information Processing — Coded Character Sets for Text Communication.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 10646
ISO/IEC 10646-1: 1993, Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including:
Amendment 1: 1995 (E), C Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO POSIX-1
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995 and 1003.1i-1995.

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992 as amended by IEEE
Std 1003.2a-1992).

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

Distributed Internationalisation Services, Version 2 xi

Referenced Documents

POSIX.1c
IEEE Std 1003.1c/D?, Threads Extension for Portable Operating Systems, <date>.

The following X/Open documents are referenced in this snapshot:

Issue 2
X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
(ISBN: 0-444-70175-3).

Issue 3
XSI Internationalisation, in Chapters 2 to 8 inclusive of: X/Open Specification, Issue 3, 1988,
1989, February 1992, Supplementary Definitions, Issue 3 (ISBN: 1-87263-38-3, C213); this
specification was formerly X/Open Portability Guide, December 1988, Volume 3,
(ISBN: 0-13-685850-3, XO/XPG/89/003).

and

X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

Issue 4
The XSH, Issue 4 specification (see below).

XBD, Issue 4
CAE Specification, July 1992, System Interface Definitions, Issue 4 (ISBN: 1-872630-46-4,
C204), published by The Open Group.

XSH, Issue 4
CAE Specification, July 1992, System Interfaces and Headers, Issue 4 (ISBN: 1-872630-47-2,
C202), published by The Open Group.

X11R4 X File Formats
CAE Specification, August 1991, Window Management: X Window System File Formats
and Application Conventions (ISBN: 1-872630-15-4, C170), published by The Open Group.

Version 1 of this document
X/Open Snapshot, November 1992, Distributed Internationalisation Services
(ISBN: 1-872630-75-8 S213).

Federated Naming
Preliminary Specification, August 1994, Federated Naming: The XFN Specification,
(ISBN: 1-85912-458-8, P403), published by The Open Group.

xii X/Open Snapshot (1994)

Chapter 1

Introduction

This chapter explains the background to the development of internationalisation services for
distributed systems, and defines the scope of this document.

1.1 Background
The current internationalisation model was first published in Issue 2 of the X/Open Portability
Guide (1987). Since then, it has undergone changes through subsequent issues, as follows:

Issue 3 (1988)
For the first time internationalisation facilities were defined as mandatory in the X/Open
System Interface. Issue 3 was also fully aligned with the POSIX.1 standard and ANSI C,
except in the area of multi-byte codeset operation and localeconv ().

Issue 3 included all the facilities presented in Issue 2, modified for alignment with the above
standards, plus:

• an improved announcement mechanism

• internationalised regular expressions

• an optional internationalised utility environment

• a new utility for codeset conversion.

Issue 4 (1992)
The main changes in this issue are support for Asian languages and a more comprehensive
definition of the internationalised utility environment. Interfaces are also added that
provide codeset conversion facilities at the program level.

In summary, Issue 4 includes all the facilities published in Issue 3 plus:

• Worldwide Portability Interfaces, which enable applications to work with either single-
byte or multi-byte codesets

• extended support of the internationalised utility environment

• additional system interfaces for date and time conversion (strptime()), monetary value
conversion (strfmon()) and codeset conversion (iconv*())

• full conformance to the ISO C standard

• the localedef and locale utilities.

A similar global internationalisation model has also been adopted in the referenced ISO POSIX-1
standard and the referenced ISO C standard, but the basic foundation of the model remains
unchanged; that is, one application equals one language, territory and codeset per instantiation.
This is achieved through use of an opaque application global structure — one per process. The
model was deemed adequate for current software technology when it was developed, and it has
been widely applied by many of the major software and hardware vendors.

Distributed Internationalisation Services, Version 2 1

Background Introduction

In 1990, the X Consortium members began pressuring for the X Window System to be
internationalised. Until then, it was designed only to work with a single codeset (as defined in
the ISO 8859-1 standard). To work with other codesets, or languages other than those used in
the Americas and Western Europe, it was left to the application to handle font management,
produce characters from the keyboard and to break strings into segments for rendering (one
segment per constituent character set in the codeset of the locale). The X Consortium’s mltalk
work group began a two year effort to define, specify and provide a sample implementation of X
that was in line with the current internationalisation model based on setlocale ().

During the mltalk work group’s investigations, it became apparent that while the
internationalisation model based on setlocale () worked well for terminal-based applications, it
became cumbersome, and even obstructive, when attempting to apply it to:

• object-oriented software

• layered software

• distributed software

• threaded software

• multi-user software

• advanced text handling (contextual or bidirectional) software.

The X Consortium applied what they could use of the setlocale () model. Several X/Open
members who were active in the development of the X11 release 5 specification presented to the
X/Open-UniForum Joint Internationalisation Group (JIG) the difficulties encountered in the
release 5 procedure.

The X Window System is just one example of many types of software that needs additional
distributed internationalisation services to be portable across various vendors’ systems. Since
the initial work on this document, other groups have identified needs for these services.
Recently, the WG21 C++ group started working on defining a set of locale objects that provide
similar services to those defined in this document.

The first version of this document (see Referenced Documents on page xi) was the result of
generating solutions to the problem areas identified above. This document is a revision based
on industry feedback. Chapter 2 offers a more detailed description of the problem statements.

2 X/Open Snapshot (1994)

Introduction Scope

1.2 Scope
After reviewing the problems outlined above, the X/Open-UniForum JIG felt that these were
pervasive and important enough to require the definition of new services. In short, the existing
XSH, Issue 4 specification internationalisation functions do not offer a sufficiently rich
environment for the development of new internationalised technologies expected to work in
distributed, threaded and object-oriented environments.

This document offers a method of announcing locale. It also provides functions that satisfy
multi-locale, multi-threading and multi-node processing.

This document does not provide a complete solution to all of the problems described in Chapter
2, but does establish the foundation for distributed internationalisation applications. This
document is one part of a complete solution. Successful application of the non-global locale
model for such software depends on further work to resolve issues such as those described in
Section 1.2.3 on page 5.

1.2.1 Areas Addressed

The proposed solutions are additions to the current internationalisation model as follows:

• A locale syntax — this is required for identifying a given locale across a network.

• A locale registry — this is required to supply semantics for certain well agreed upon locales.
Using the proposed new syntax, a name for each registered locale is defined ensuring that
language-sensitive operations using that locale on system A obtain the same results when
performing those operations on system B (where systems A and B may be from different
vendors). Refer to Chapter 3 for more information.

• Multi-locale and advanced text capability — these provide:

— functions that operate with a locale object or handle

A new set of APIs that operate on a per locale handle is defined. The new functions are
based on making it easier for software to manage and use multiple locales without
impacting other software layers. Further, these APIs also resolve the complaints against
the global nature of the existing XSH, Issue 4 specification or ISO C locale model voiced
by developers of object-oriented programs (global data is the antithesis of the object-
oriented programming paradigm).

— functions that support advanced text properties

In the new APIs, there is provision for the manipulation of advanced text properties,
meeting the requirements of both context-sensitive rendering and directionality. All
locale-based capability only processes mixed directional text that is in logical order (not in
its final presentation or visual order.)

— support for importing and exporting stateful encodings

An abstraction called a text context object (mbstate_t) is defined to allow text processing
that requires a context to be maintained across various function calls. The text context
object is primarily intended for the import and export of stateful data. Yet the text context
object may be extended for other specific cases where a context is needed, for example,
tokenising a string.

Refer to Chapter 3 for more information on all aspects of multi-locale and advanced text
capability.

Distributed Internationalisation Services, Version 2 3

Scope Introduction

• Clarification of existing XSH, Issue 4 specification capability:

— The existing setlocale () model is not designed to support stateful encodings, despite the
implications of functions such as mblen().

— A definition of setlocale () is provided that is suitable for a threaded environment as
defined in the POSIX.1c draft standard.

1.2.2 Areas Not Addressed

This document does not:

• Provide data tagging

— This document does not define specific data tagging encoding nor functions for handling
data tags. X/Open expects that higher-level subsystems will define the data tagging
handling that best fits their environments. This document makes no policy on data
tagging, but instead provides the functions that can operate on individual tagged data
segments on a per locale basis, independent of a global locale state.

— This document does not prohibit data tagging in the future.

• Obsolete existing capability — the non-global locale model does not obsolete the global
locale model; instead it provides an alternative method of internationalising applications.
The trade-offs in the use of each model, together with the requirement of the application,
determine the software developer’s choice. Future demand by software developers will
determine if either or both are required in the future.

• Provide a total solution for multi-lingual applications — the non-global locale model does
not provide a complete tool box for the developer of multi-lingual applications. However, it
does address one of the key problems for such software today.

This document does not provide new programmatic interfaces for message catalogue use. It
was felt that the existing global locale mechanism was more than sufficient. The locale affects
messaging only at message catalogue open time, and then only to determine which file to open.
It seemed wasteful to create a new catalogue open routine when the existing routine could be
used.

For example, if an application needs to open an attribute object-specific message catalogue, the
following sequence of functions can be used:

char * orig loc; /* to hold the original LC_MESSAGES locale value */
nl catd att catd; /* attribute object spec. catalogue descriptor */
orig loc = setlocale(LC_MESSAGES, NULL);
(void) setlocale(LC_MESSAGES, m_setlocale(AttrObject, LC_MESSAGES, NULL));
att catd = catopen("app name", NL_CAT_MESSAGES);
(void) setlocale(LC_MESSAGES, orig loc);

The host locale name for the LC_MESSAGES category of an attribute object can be retrieved
with m_setlocale(AttrObject, LC_MESSAGES, NULL). In the above code, it is used to initialise
the global locale’s LC_MESSAGES category so that catopen will find the attribute object-specific
message catalogue.

There is potential that the global locale could be changed by another object between the
setlocale () function and the catopen() function. But since the only part of the locale being
modified is LC_MESSAGES, since the window of time in which this would actually be a
problem is very small, and since the only procedure affected by the LC_MESSAGES category is
called only once or twice in a typical application, the risk was deemed too small to justify
creation of yet another new API.

4 X/Open Snapshot (1994)

Introduction Scope

1.2.3 Issues

When a language-sensitive remote procedure is executed, the results of that procedure on
system A should be the same as on system B. The important questions are:

• How does the application-side system convey the desired locale to the remote system?

• How can the application be sure that the remote system supports the desired locale?

At some point in the future, the issue of which locale is associated with which data must be
addressed. Currently, it is left to the software developer to design and implement his own
mechanism.

Distributed Internationalisation Services, Version 2 5

Terminology Introduction

1.3 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behavior available to the user or application; all
systems support such features or behavior as mandatory requirements.

implementation-dependent
The value or behavior is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behavior. When the value or behavior in the
implementation is designed to be variable or customizable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behavior.

legacy
Certain features are legacy , which means that they are being retained for compatibility with older
applications, but have limitations which make them inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality. Legacy features are marked LEGACY.

may
With respect to implementations, the feature or behavior is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

undefined
A value or behavior is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behavior, but such specifications are not guaranteed
to be consistent across all implementations. An application using such behavior is not fully
portable to all systems.

unspecified
A value or behavior is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behavior, but such specifications are not guaranteed to
be consistent across all implementations. An application requiring a specific behavior, rather
than tolerating any behavior when using that functionality, is not fully portable to all systems.

will
This means that the behavior described is a requirement on the implementation and applications
can rely on its existence.

6 X/Open Snapshot (1994)

Chapter 2

Overview of Problem Areas

This chapter is a summary of the problem statements generated by the X/Open-UniForum JIG
while analysing the complaints from the X Consortium. The proposals made to overcome the
problems are covered in the following chapters.

2.1 Locale Registry
The ISO C standard and the ISO POSIX-1 standard define a locale where a variety of culture-
dependent data is defined, including language-dependent specifications for date and time,
collating sequences, and numeric and monetary conventions. Many standard utilities in the ISO
POSIX-2 standard use these specifications to provide localised versions of the utility.

Currently, there is no general way to specify portably which locale a user wants to use with
these standard utilities. Only one, non-internationalised locale is standard: the C or POSIX
locale.

A registry that uniquely names all locales and distributes such information to users would be
useful.

Further, in distributed software, such as that using Remote Procedure Calls (RPCs), it is
imperative that the semantics of a given locale on one system are identical to the same locale on
a different system.

Distributed Internationalisation Services, Version 2 7

Multi-Locale Environments Overview of Problem Areas

2.2 Multi-Locale Environments
How should a system behave in an environment where multiple locales, in particular codesets,
are supported within a single system or network? What support is provided in the system to
detect and correct collisions in names of system resources due to codeset overlapping?
Specifically, consideration has to be given to how these names are used in a networking
environment as well as in a single host environment.

Consider the following environments:

• A window manager manages multiple clients, each with its own locale. When the window
manager displays a title for a client, it should use the locale of the client, not the locale of the
window manager.

• Print servers, which may get requests from various clients, each run their own locale. Any
error messages sent to the client should be in the locale of the client, not in the locale of the
print server.

• A database application needs to associate the date format with the date of each item in the
inventory.

The simplicity of the current global locale model makes it easy to write internationalised
programs. At the same time it makes it difficult to write applications that deal with many
different languages and territories simultaneously. Examples of such programs include:

• a spreadsheet program that uses multiple currencies and date formats

• ledger programs for international companies

• database programs merging and processing databases from different languages or codesets

• window managers

These are programs that control and label the windows of all applications displayed on a
workstation.

• Xt library

This is the portion of the library that creates the resource database for an application,
merging databases from several systems and sources, each of which could be created in a
different language and codeset.

• window-based process-control application

This is a single application that interacts with many different users. Each user wants to
interact in his own language. Each user expects data to be processed (for example, number
formats, time and date, sorted lists) in accordance with local rules.

• a word processing application for multi-language texts (such as translated documents,
international standards and annotated literature), with needs for language-sensitive
hyphenation, justification, and so on.

Such multi-locale applications need to be able to call functions that provide the current
internationalisation capability for data consisting of an arbitrary mixture of languages and
codesets. The procedure for doing this must not be so complex that programmers do not use it.
Ideally, there should be one standard way to identify the language or codeset of a data segment
instead of forcing applications to invent their own methods.

8 X/Open Snapshot (1994)

Overview of Problem Areas Distributed Processing

2.3 Distributed Processing
Consider two cases of remote procedure call (RPC) dealing with international text in a
heterogeneous network. The simple case (single thread, single locale, global locale state) allows
us to propose an approach for handling international text. The complicated case (multiple
threads, multiple locale, global locale state) illustrates RPC problems that cannot be resolved
with the current locale model.

Independent processes running in a heterogeneous network cannot communicate with each
other in a multi-lingual environment due to lack of coherent locale support in performing
remote procedure calls.

2.3.1 Single Thread, Single Locale, Global Locale State

The client-server paradigm is used for general Operating System (OS) discussion, not only for X
Windows. The basic approach proposed here applies to general operating system RPC usage:

1. Client announces to the server the locale it is running.

2. Server accepts the locale or negotiates some other common locale. If nothing in common,
server rejects the connection.

This requires a standardisation of locales, perhaps an ISO, POSIX or X registry.

3. If the locale can be supported by the client-server pair, the client-server pair is compatible.

4. Compatible client-server pairs then negotiate on encoding and data type.

Encoding:

— compound text encoding (or some equivalent) as least common denominator

— other recognised encoding (for example, ISO 8859-n, ISO 10646 as UCS-2 or UCS-4).

Clients and servers from the same vendor may not need to use compound text; it may
be possible to agree on a particular encoding suitable for both client and server.

Data type:

— multi-byte format as least common denominator

— wchar_t type, with a commonly agreed number of bytes.

Encoding and data types beyond the least common denominators are used for
optimisation purposes, to avoid the need to convert to multi-byte compound text for all
cases.

The same basic approach can be applied to X Windows client-server connections. Using Inter-
Client Communications Conventions (ICCCM),1 X text exchange is simpler. However, the need
for agreement of standard locales in a heterogeneous network still exists. Therefore steps 1 and
2 still need to be done.

1. The ICCCM specification is in Chapter 2 of the X File Formats specification.

Distributed Internationalisation Services, Version 2 9

Distributed Processing Overview of Problem Areas

2.3.2 Multiple Threads, Multiple Locales, Global Locale State

For a distributed application that uses multiple threads (for example, pthreads as in P1003.1c)
even on a uni-processor system there are some currently unresolved issues with the global locale
model. The problems encountered by remote procedure calls also exist in local function calls.
These issues fall into three categories.

Global State of the Locale

Explicit Argument (RPC)

For a function that is to be invoked remotely, the calling interface passed between the client and
server is an interchange definition of the arguments to the client stub (and also possibly the call
context handle). Since the current global locale is not an explicit argument to any functions, any
interface definition language that generates the client stub does not have enough information on
whether or not the locale should act as an argument to any or all functions.

Thread Interaction (Threads)

In a threaded environment, two or more threads may be in execution phase at any given time. If
either of these threads affects the default locale, any locale-sensitive operations in the other
thread are affected:

• Global state cannot be maintained by saving and restoring the locale without blocking other
threads.

• Locale-sensitive functions cannot be guaranteed to take place in a given locale without
blocking all other threads.

Locale Synchronisation

Even if it were possible to specify a locale as an additional argument to locale-sensitive
functions, it cannot be guaranteed that if a client passes some locale identifier to a server, that
the identifier can be used to reconstruct the original locale. Some type of locale agreement needs
to take place.

The setlocale () syntax allows the current locale to be interrogated and its name to be returned.
There is no guarantee that this locale could be replicated on the RPC server correctly. Compare
this to the situation where the locale could be identified as a handle to some locale structure,
which could be interchanged as an RPC object.

Type wchar_t in a Distributed Environment

Because the representation of type wchar_t is implementation defined, and the mapping of
multi-byte characters to wide-character codes is locale sensitive, a function with a type wchar_t
interface is not easily distributed. For example, performing an RPC call on a machine with a
4-octet type wchar_t to a machine that represents wchar_t as two octets, requires cooperation at
the application programming level for data representation, and at the system and locale level for
the multi-byte character to wide-character code mapping.

10 X/Open Snapshot (1994)

Overview of Problem Areas Advanced Text Handling and Encoding

2.4 Advanced Text Handling and Encoding
The XSH, Issue 4 specification perpetuates the ISO and ANSI paradigm of presenting basic text
entities that are closely associated with a glyph or display cell. This causes problems in
supporting languages and codesets that use combining characters. For example, both ISO 6937
and ISO/IEC 10646 define floating diacritics, which are context-sensitive characters that may or
may not be combined with a preceding base character to form a composite sequence. This
requires functions that can handle characters represented by composite sequences just as the
XSH, Issue 4 specification was enhanced to handle multi-byte characters. These functions must
handle any composite sequence as a single entity for classification, manipulation, passing
through the I/O system, and so on.

Another complication in this area concerns text directionality. Certain languages require that
text objects be processed left-to-right or right-to-left, depending on the character class of a text
object (letters as opposed to numbers). Directionality can change in mid-string, and should be
correct in both the processing case and the presentation case.

Distributed Internationalisation Services, Version 2 11

Overview of Problem Areas

12 X/Open Snapshot (1994)

Chapter 3

Locale Specification for Distributed Environments

This chapter describes the syntax and semantics of the naming scheme required to identify a
locale across a heterogeneous network.

3.1 Purpose
The purpose of defining a naming scheme is to allow locales to be replicated across a
heterogeneous network. For any form of distributed processing, and RPC in particular, the
distributed code must, by default, work in an environment replicated from the client. To
replicate this internationalised environment, the locale on the client must be unambiguously
identified so that it can be replicated in the server.

3.2 Terminology
The following new terms are used in this section:

host locale string
locale object
LocaleSpec (data type)
network locale specification (in either token or string form)
LocaleNetToken (data type)
LocaleNetString (data type)

The abstraction for representing the name of a particular locale on a host system is called a host
locale string.

The abstraction for representing the contents of a particular locale that is known as a host system
object is called a locale object. On a host system, a locale object is of type AttrObject.

The abstraction for representing the name of a particular locale that is known as a network
object is called a network locale specification. On a host system, a network locale specification is of
type LocaleSpec. On a network, a network locale specification may be a token network locale
specification (type LocaleNetToken) or a string network locale specification (type LocaleNetString).

Distributed Internationalisation Services, Version 2 13

Locale Usage for Host and Network Locale Specification for Distributed Environments

3.3 Locale Usage for Host and Network
The string currently returned as the result of:

setlocale(LC_ALL, NULL);

unambiguously identifies a given locale within a process, on a given implementation. However,
a host locale string is implementation dependent and therefore cannot be interchanged between
implementations.

To enable consistent localised behaviour of distributed applications a well known representation
is needed for the locales. The term network locale specification refers to an object that can be
exchanged across the network and is guaranteed to represent a set of well known locale
categories. An example of the expected flow of information is as follows:

User Service or Data

("Host_Locale_A") ("Host_Locale_B")

Application
(AttrObject)

Server
(AttrObject)

(LocaleSpec) (LocaleSpec)

RPC Client RPC Server(LocaleNetToken)== ==

In the figure, the host locales are represented as strings that may be implementation dependent:
"Host_Locale_A" and "Host_Locale_B". A distributed application can map the host locale string
into a LocaleSpec which is used to map the host locale string into a network locale specification.
The LocaleSpec provides an opaque representation of the network locale specification for
efficient communication with the host. Because the RPC run-time services need to communicate
with the locale specification, functions are provided to map the opaque LocaleSpec into a well
known format for communication (a LocaleNetToken or a LocaleNetString). More information
about LocaleSpec, LocaleNetToken, LocaleNetString and other programming data types are
provided in Section 4.3 on page 25.

The string network locale specification provides the name for each category that exists within
the locale. Not all categories from the standard category list must be present in the network
name. The string network locale specification does not specify the LC_ALL category but instead
calls out each specific category, since the specification of LC_ALL is itself ambiguous across
implementations that may support optional categories.

14 X/Open Snapshot (1994)

Locale Specification for Distributed Environments Locale Usage for Host and Network

Within an implementation, certain extended categories may be supported in a locale. The
support of such extended categories on a network-wide basis is optional. The string network
locale specification explicitly lists each optional category, denoting it as such by the use of the
prefix OPT_, followed by the implementation-defined name of the category.

Distributed Internationalisation Services, Version 2 15

String Network Locale Specification Syntax Locale Specification for Distributed Environments

3.4 String Network Locale Specification Syntax
Any given locale may be comprised of one or more categories, some of which are enumerated
and specified in various standards or industry specifications (ANSI C, ISO C, POSIX, XPG). A
given implementation may include optional categories over and above those specified in the
standards indicated.

To identify a locale, each of the standard categories and their values must be enumerated, along
with the names and values of each vendor-specific category supported in the locale. The
specification takes the form of a list of keyword-value pairs for each of the categories.

In all cases the string is composed of characters from the ISO/IEC 646 International Reference
Version (IRV): 1990 codeset, with the exception of codepoints in the range 0 to 32 (decimal) and
the codepoint 127 (decimal), which are reserved for syntax specification.

The following symbols are used in the proposed grammar for string network locale
specifications given below:

Character Value Description

, 44 Comma
- 45 Hyphen
/ 47 Solidus (Slash)
; 59 Semi-colon
= 61 Equals sign
_ 95 Low line (Underscore)

An ellipsis symbol (...) represents missing enumerated values of that type, and the string opt_
precedes optional segments.

charnum_list : charnum_list charnum
| charnum
;

charnum :’A’|’B’|’C’|’D’|’E’|’F’|’G’|’H’|’I’|’J’
|’K’|’L’|’M’|’N’|’O’|’P’|’Q’|’R’|’S’|’T’
|’U’|’V’|’W’|’X’|’Y’|’Z’
|’a’|’b’|’d’|’d’|’e’|’f’|’g’|’h’|’i’|’j’
|’k’|’l’|’m’|’n’|’o’|’p’|’q’|’r’|’s’|’t’
|’u’|’v’|’w’|’x’|’y’|’z’|’-’|’_’
| number
;

number : number digit
| digit
;

digit :’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’
;

network_locale_string : std_cat_specs opt_cat_specs
| std_cat_specs
;

std_cat_specs : std_cat_specs std_cat_spec
| std_cat_spec
;

std_cat_spec : ctype_spec | collate_spec | messages_spec
| monetary_spec | numeric_spec | time_spec
;

16 X/Open Snapshot (1994)

Locale Specification for Distributed Environments String Network Locale Specification Syntax

ctype_spec : ctype_keyword full_category_spec delimiter
;

collate_spec : collate_keyword full_category_spec delimiter
;

messages_spec : messages_keyword full_category_spec delimiter
;

monetary_spec : monetary_keyword full_category_spec delimiter
;

numeric_spec : numeric_keyword full_category_spec delimiter
;

time_spec : time_keyword full_category_spec delimiter
;

delimiter : ’/’
;

ctype_keyword : ’CTYPE=’
;

collate_keyword : ’COLLATE=’
;

messages_keyword : ’MESSAGES=’
;

monetary_keyword : ’MONETARY=’
;

numeric_keyword : ’NUMERIC=’
;

time_keyword : ’TIME=’
;

full_category_spec : registry_spec ’;’
name_spec ’;’
ver_spec ’;’
encoding_spec ’;’

;
registry_spec : charnum_list

;
name_spec : charnum_list

;
encoding_spec : charnum_list

| XFN_encoding
;

XFN_encoding : ’XFN_’hexnumber
;

hexnumber : hexnumber digit
| hexnumber charhex
| digit
| charhex
;

charhex : ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’
| ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’
;

ver_spec : major_ver ’_’ minor_ver
;

major_ver : number
;

Distributed Internationalisation Services, Version 2 17

String Network Locale Specification Syntax Locale Specification for Distributed Environments

minor_ver : number
;

opt_cat_specs : opt_cat_specs opt_cat_spec
| opt_cat_spec
;

opt_cat_spec : opt_cat_keyword opt_cat_value delimiter
;

opt_cat_keyword : ’OPT_’ charnum_list ’=’
;

opt_cat_value : charnum_list ’_’ charnum_list
| charnum_list
;

From the description above it is evident that there are several character string literal entries
whose values must be standardised for network naming to succeed. These are:

• registry_spec

• name_spec

• encoding_spec.

The hexnumber of an XFN_encoding should identify a registered encoding defined in the
Federated Naming specification.

Notes: While permitted by the above grammar, multiple codesets should not be mixed
within a single network locale specification. The syntax that allows this (that is,
full_category_spec) is retained for compatibility with the XSH, Issue 4
specification.

3.4.1 Examples

Note: Line breaks have been inserted at the end of each category for readability. They
should not appear in a valid string network locale specification.

Example 3-1 American English Locale

This is as stipulated by ANSI using the ISO 8859-1 (Latin alphabet No. 1) codeset. The XFN-
encoding used is defined in the Federated Naming specification:

CTYPE=ANSI;en_US;01_00;XFN-001001;/
COLLATE=ANSI;en_US;01_00;XFN-001001;/
MESSAGES=ANSI;en_US;01_00;XFN-001001;/
MONETARY=ANSI;en_US;01_00;XFN-001001;/
NUMERIC=ANSI;en_US;01_00;XFN-001001;/
TIME=ANSI;en_US;01_00;XFN-001001;/

Example 3-2 ISO Japanese Locale

This uses AJEC (Japanese EUC). The XFN-encoding used is defined in the Federated Naming
specification:

18 X/Open Snapshot (1994)

Locale Specification for Distributed Environments String Network Locale Specification Syntax

CTYPE=ISO;ja_JP;01_00;XFN-00030010;/
COLLATE=ISO;ja_JP;01_00;XFN-00030010;/
MESSAGES=ISO;ja_JP;01_00;XFN-00030010;/
MONETARY=ISO;ja_JP;01_00;XFN-00030010;/
NUMERIC=ISO;ja_JP;01_00;XFN-00030010;/
TIME=ISO;ja_JP;01_00;XFN-00030010;/

Example 3-3 French Canadian Locale

This is a mixed locale created in an IBM environment with an OSF North American time
category. The XFN-encoding used is defined in the Federated Naming specification:

CTYPE=IBM;fr_CA;01_00;XFN-001001;/
COLLATE=IBM;fr_CA;01_00;XFN-001001;/
MESSAGES=IBM;fr_CA;01_00;XFN-001001;/
MONETARY=IBM;fr_CA;01_00;XFN-001001;/
NUMERIC=IBM;fr_CA;01_00;XFN-001001;/
TIME=OSF;en_US;01_00;XFN-001001;/

Example 3-4 HP German Locale

This is created with only the CTYPE category:

CTYPE=HP;de_DE;01_00;XFN- number ;/

Example 3-5 X/Open de_DE Registered Locale

This is as stipulated by X/Open’s Locale Registry for a German in Germany locale using the ISO
8859-1 standard codeset. The XFN-encoding used is defined in the Federated Naming
specification:

CTYPE=XOPEN;de_DE;01_00;XFN-001001;/
COLLATE=XOPEN;de_DE;01_00;XFN-001001;/
MESSAGES=XOPEN;de_DE;01_00;XFN-001001;/
MONETARY=XOPEN;de_DE;01_00;XFN-001001;/
NUMERIC=XOPEN;de_DE;01_00;XFN-001001;/
TIME=XOPEN;de_DE;01_00;XFN-001001;/

Distributed Internationalisation Services, Version 2 19

Token Network Locale Specifications Locale Specification for Distributed Environments

3.5 Token Network Locale Specifications
The syntax defined in Section 3.4 on page 16 can identify any given locale at the expense of the
length of the specification itself (some 200+ bytes for a standard American English locale). In
some environments the length of this specification is not an issue. However in some cases it
may be, in particular for data tagging.

This proposal includes the notion of a network syntax that includes certain predefined
shorthand values, referred to as token network locale specifications. It is proposed that each
token be an unsigned integer value, representable within four octets, in the format described
below. In particular, a token value could possibly form the value field of an object identifier
within ASN.1 syntax, to describe a locale for data tagging (for example, within an ODA
document the tag could be at a text item level; within RPC it could be at the session connect
level).

The format of the token network locale specification is an unsigned integer of four octets. A
token for a given locale implies that all the standard categories have the same locale name.

The two most significant octets of the four-octet group represents the registration authority.
OSF is maintaining a codeset registry. National and international standards bodies, companies,
consortia, and so on, who wish to use network locale specification tokens are allocated unique
identifiers in the OSF registry. A block of values is reserved for private use between consenting
systems; the block of values will never be allocated by OSF.

This scheme allows some 65,535 registration authorities, with each registration authority having
a registration space of 65,535 individual tokens, each token representing a particular national
profile.

The Locale Number defined in the least significant two octets is a number assigned by the
registration authority to a particular national profile (or in the case of a manufacturer, to a
manufacturer-supported locale). No assumptions should be made about the value ranges of the
locale numbers assigned by any national or international body, unless explicitly stated to this
effect by the appropriate body.

Within a program a string network locale specification is described by the type LocaleNetString
(which must be a type char*). The 32-bit token network locale specification is described by the
type LocaleNetToken. Both forms are defined because different protocols may require different
forms. The tokens are intended for low-level communication layers, not for application
programs. Both types of network locale specification can be handled within the object of type
LocaleSpec. The type LocaleSpec is introduced to make it convenient for programs to represent
a network locale specification as a single form. Again, only low-level services need be concerned
with the type LocaleNetString and LocaleNetToken.

Refer to Section 4.4 on page 28 for information about mapping between these types.

3.6 Registration
X/Open has a registry for the storage of locales. Where possible, these locales are taken from
existing national profiles for the appropriate country (see Appendix A).

20 X/Open Snapshot (1994)

Chapter 4

Multi-locale Support

This chapter provides an overview of the functions defined to support multi-locale programs in
a distributed environment. These features address the major drawback with the setlocale ()
function and the ISO 3166 standard dependency on a single locale per program on a single
system, and help promote international portability of C programs.

Objectives

The objectives of the multi-locale support functions are to:

• define the base multi-locale processing needed for today’s distributed and object-oriented
internationalised environments; the processing must:

— satisfy internationalised object-based software

— satisfy layered internationalised software (for example, libraries)

— satisfy programs for multi-node processing in internationalised distributed networks

— satisfy multi-threaded internationalised programs

— satisfy the multi-locale support requirements encountered in the windowing environment

• address the limitations that reliance on global data places on object-oriented programming
paradigms

• co-exist with the global locale functions

• address the problem of stateful encodings

• provide management functions for new objects

• ensure the functions provided can support multi-lingual capability, for example: phrase or
word recognition, collation, subsetting of character sets, and so on

• support languages that may have mixed directional characters

• support languages that have composite sequences whose presentation is contextual

• ease transition of applications from the global locale model to the new non-global locale
model.

Assumptions

The multi-locale support functions are based on the assumption that the locale registry exists.

The descriptions and terms used in this chapter assume the reader is familiar with several extant
standards and specifications, including:

• the ISO C standard

• the MSE standard

• the ISO POSIX-1 standard

• the ISO POSIX-2 standard

• the XBD, Issue 4 specification

• the XSH, Issue 4 specification.

Distributed Internationalisation Services, Version 2 21

Definitions Multi-locale Support

4.1 Definitions
In addition to the terms introduced in Section 3.2 on page 13, the following terms are used
throughout the rest of this document.

The term global locale or current locale is used to refer to a particular locale on a host system
whose contents (information, data or processing) are visible to an entire process on a single host
system.

A wide-character code is a code value (a binary coded integer) of an object of type wchar_t that
corresponds to a member of the codeset of the locale on a host system.

A null wide-character code is a wide-character code with code value zero.

A wide-character string is a contiguous sequence of wide-character codes terminated by and
including the first null wide character. A pointer to a wide-character string is a pointer to its initial
(lowest addressed) wide-character code. The length of a wide-character string is the number of
wchar_t objects preceding the null wide-character code and the value of a wide-character string is
the sequence of code values of the contained wide-character codes, in order.

A coded character is a code value (a sequence of binary encoded bits) encoded as one or more
objects of type char that corresponds to a member of the codeset of the locale.

A null coded character is a coded character with code value zero.

A coded character string is a contiguous sequence of coded characters terminated by and including
the first null coded character. A pointer to a coded character string is a pointer to its initial (lowest
addressed) coded character code. The length of a coded character string is the number of objects of
type char (usually bytes) preceding the null coded character code. The value of a wide-character
string is the sequence of code values of the contained coded characters, in order.

The term code element refers to a character encoded as either a wide-character code (wchar_t) or a
coded character (char*) that corresponds to a member of the codeset of the locale. A null code
element is either a wide character (wchar_t) or a coded character (char*) with code value zero.

The term code element string is a contiguous sequence of code elements all having the same type
and terminated by and including the first null code element. A pointer to a code element string is a
pointer to its initial (lowest addressed) code element. The length of a code element string is the
number of code element objects preceding the null code element and the value of a code element
string is the sequence of code values of the contained code elements, in order.

22 X/Open Snapshot (1994)

Multi-locale Support Text Model Overview

4.2 Text Model Overview

4.2.1 Basic Text Entity

The multi-locale functions attempt to provide a complete model for the manipulation of generic
text entities that can be classified, converted, transferred to and from file store, and so on. The
capability of the interfaces is designed to parallel the capabilities that can be performed on char
types in the C language.

The multi-locale functions extend the ISO, ANSI and the XSH, Issue 4 specification paradigm of
dealing with character entities of specific classes of encodings (single-byte and multi-byte) to the
paradigm of dealing with any code element. As such, the multi-locale functions should be
viewed as operating on code element strings of any data type. While this document uses the
wchar_t or char* data types to describe the signature of functions, the intent is to describe the
functional capability independent of the data type used to encode code elements. Thus, for
example using C++, the multi-locale functions could be overloaded to operate on other data
types such as an opaque text object or UCS code elements in the future.

4.2.2 Composite Sequences

It is important to note that several of the multi-locale functions are intended to operate on code
element strings that may contain composite sequences and as such those functions, for example
m_wcsscanfor(), are defined to take arguments that define code element strings rather then a
single code element.

For example, representation of the classification unit may be either a precomposed accented
character, or a base character followed by one or more non-spacing diacritic characters. In both
cases the caller obtains the same results for a classification request, irrespective of the underlying
representation of the code element.

More importantly, functions that may potentially be transforming composite sequences from
one form to another may have a difference between the input and output code element count.
For this reason any classification request is defined to operate on code element strings rather
than individual code elements.

4.2.3 Self Announcing Data

The multi-locale functions are aligned with the functions defined in the MSE standard (see
Referenced Documents on page xi) and are capable of supporting encodings that may have
state introducers. In addition, the multi-locale functions serve as the basis for future utilities that
may be planning some form of language tagging. The different classes of encodings and how the
multi-locale functions address them are described in the following sections.

Character Set Context

There are many encodings that use character set introducers to support mixing multiple
character sets within a text data stream. Examples are ASN.1 and ISO 2022, which are in use
today. Some implementations claim that character set contexts are sufficient for multi-lingual
handling; others claim that this is not sufficient. For example, an encoding may use a Latin-1
(ISO 8859-1) character set introducer, which is not sufficient as a language introducer. On the
other hand, a Japanese character set introducer could be viewed as a valid language introducer.
In summary, a character set context cannot be used reliably for support of multi-lingual
processing. See Language Context on page 24 for information on an additional introducer
needed to support multi-lingual handling.

Distributed Internationalisation Services, Version 2 23

Text Model Overview Multi-locale Support

While there may be encodings that use character set introducers, any function that operates on
code elements is limited to the character set associated with a locale object. Therefore any
import or export of such encodings is ultimately limited to the repertoire of the locale object’s
character set.

Presentation Context

Many encodings use direction introducers (directional controls) as a means to handle scripts that
have mixed directional characters. In addition, other encodings have characters whose
presentation is said to be context sensitive, for example Arabic scripts and composite sequences
defined by FSS-UTF (UTF-8) require presentation services to consider surrounding code
elements.

Once these external encodings are mapped to a code element string, both directional introducers
and composite sequences are viewed as any other code elements that are primarily intended for
use by presentation services. Basically, functions based on a locale object just treat these as any
other code element within a text string.

For mixed-directional text, all functions based on a locale object are said to operate on a code
element string which must be in logical order (in the order keyed in). For example, a localised
collation function only behaves correctly if the incoming text is in logical order. Any text that is
in visual order (in the order presented) needs to be transformed back into logical order before any
collation function can operate on the text.

Given that all text is expected to be in logical order, any embedded directional introducers may
exist in a code element string and are treated as any other code element by the multi-locale
functions. It is only presentation-sensitive functions that transform between logical order text
and visual order text that need to be aware of the embedded introducers. Such layout
transformation functions are needed but are beyond the scope of this document.

In the future, multi-locale functions may need to be aware of the presentation order when
performing their operation. For example the scan for next word function may need to be aware
of the directionality of the text when doing its scanning; that is, the text may be in either visual
order or logical order. While such functions may need to account for both a locale object and the
layout directionality of the text; the multi-locale functions currently defined only operate on
logical order text.

Language Context

Future standard encodings may include the ability to include introducers that specify the
language of the following text. Handling of such encodings ultimately requires that the
language context in the form of a locale object identifier be stored with each specific data
segment Already, there are many applications (text editors) that associate a proprietary locale
object with each language-sensitive data segment within their structured files. By providing
support for multi-locales, the multi-locale functions allow applications to associate a locale
object with a specific language segment, thus enabling multi-lingual applications. Applications
are still responsible for segmenting any incoming text into whatever structured form they desire,
and for associating a locale object with the specific segment.

If, in the future, a standard encoding and a standard opaque data type are defined, the multi-
locale functions will still describe the proper set of capability needed to operate on that data
type.

24 X/Open Snapshot (1994)

Multi-locale Support Data Types and Objects

4.3 Data Types and Objects
The header <mlocale.h> declares all new data types, macros and multi-locale functions. The
types declared are:

AttrObject
This is an opaque object type other than an array type that can hold values that represent
the locale-specific information necessary for all locale categories.

LocaleSpec
This is an opaque object type other than an array type that can hold values that represent a
locale specification. The content of a LocaleSpec is opaque but may be thought of as
consisting of a LocaleNetToken or LocaleNetString. The LocaleSpec is the principle object
used by programs within a host to announce a locale.

LocaleNetToken
This is an integer type that can hold any value corresponding to members of the Locale
Registry as defined in Appendix A.

LocaleNetString
This is a char* type that can hold any values corresponding to members of the Locale
Registry as defined in Appendix A.

Other data types objects defined by ISO, ANSI and the MSE standard are:

mbstate_t
This is an opaque object type other than an array type that can hold the locale-dependent
stateful information necessary to convert, parse and tokenise code element strings. For
example, this is used when converting between a coded character string and a wide-
character string. The mbstate_t type is defined in the header <wchar.h>, as specified in the
MSE standard.

wctrans_t
This is a scalar type that can hold values that represent the locale-specific transliteration
mappings. The wctrans_t type is defined in the header <wctype.h>, as specified in the MSE
standard.

wctype_t
This is a scalar type that can hold values that represent the locale-specific character
classifications. The wctype_t type is defined in the header <wctype.h>, as specified in the
MSE standard.

wchar_t
This is an integral type whose range of values can represent distinct wide-character codes
for all members of the largest character set specified among the locales supported by the
compilation environment: the null character has the code value zero, and each member of
the Portable Character Set has a code value equal to its value when used as the lone
character in an integer character constant.

With multiple locales, the value of a wide character is locale specific; it depends on the
locale object (AttrObject) use to create the wide character. Wide character FOO created in
locale A may be different from wide character FOO created in locale B. Any operation on a
wide character is expected to use the same locale object used to create the wide character,
otherwise the result is implementation dependent.

Refer to the MSE standard for the definitions of these data types.

Distributed Internationalisation Services, Version 2 25

Data Types and Objects Multi-locale Support

4.3.1 Program Flow Model

The original global model of program flow is as follows:

1. Query locale.

2. Set locale to BAR if not already set.

3. Do operation FOO.

4. Restore locale.

This is replaced in the new model by:

1. Do operation FOO using locale BAR.

The fundamental programming paradigm is therefore altered to define localisation on a per-call
rather than a per-process basis. In fact the model is generalised further by the m_*() functions
through the inclusion of an even more generic object. A locale object provides a holder for all
manner of non-global data, of which the localised data is merely one example.

Note: All data types defined in this document are implementation defined, meaning that
application developers should make no assumptions about their size, contents or
capabilities.

4.3.2 Locale Object — AttrObject

The principal locale object is of type AttrObject, which is an opaque data structure that may
contain several attributes.

A locale object provides an opaque data type that can be used to identify specific localisation
requirements on a local (per-call) basis. This and the associated set of APIs that accept locale
objects as input arguments satisfy the fundamental requirement for a set of APIs that support
the operation of multi-lingual, multi-threaded applications in a distributed environment.

However, applications have other requirements for localised operation, such as security
controls, which are outside the scope of this specification, but which (when addressed in the
future) should not result in yet another set of APIs. Thus a locale object may be insufficient on
its own to satisfy the system-wide requirements of multi-threaded applications. Therefore the
data type AttrObject is proposed to be a generic object which is (or can be) a container of many
opaque objects. A locale is just one example of the type of object that can be attached to an
AttrObject; indeed, it is the only such object defined at present. Other objects may be defined,
and associated with an AttrObject, as other working groups address the threads issue in more
detail.

Throughout this document, several functions are defined to accept a locale object as an
argument. In some cases the need for a locale object may not be obvious, yet it is included for
consistency.

26 X/Open Snapshot (1994)

Multi-locale Support Data Types and Objects

4.3.3 Text Context Object — mbstate_t

The MSE standard introduces the concept of an mbstate_t data type, called here a text context
object. This is used with interfaces that need to retain state or other context-sensitive information
between calls (for example, the stream I/O functions). Within a stateful text stream, context for
characters are determined from the previous introducer, or possibly introducers (see Section
4.2.3 on page 23).

The MSE standard defines an mbstate_t object for the purpose of handling stateful encodings
within streams. Specifically, it claims:

... each wide-oriented stream has an associated mbstate_t object that stores the current parse
state of the stream ...

This specification extends the use of the mbstate_t object to enable it to be used with multi-
locale functions to perform stream operations independent of the global locale and allows
stream functions defined in the MSE standard to be associated with a locale object. If the
mbstate_t object is created with the m_creatembstate() function, then the MSE functions taking an
mbstate_t object use the locale associated with that mbstate_t instead of the global locale. When
the m_fattr() function is called to associate a stream with an attribute object, that attribute object
is used by I/O functions that take a FILE object.

Beyond conversion between coded characters and wide-character encodings, a text context
object is viewed as capable of handling other contextual processing, for example the m_wcstok()
function used to tokenise a string.

4.3.4 Classification Object — wctype_t

The classification object defines a set of locale-specific classifications at the time that it is created.
The m_wctype() function allows a classification object to be instantiated using a locale object.

4.3.5 Transliteration Object — wctrans_t

The transliteration object defines a set of locale-specific transliterations at the time that it is
created. The m_wctrans() function allows a transliteration object to be instantiated using a locale
object.

4.3.6 Concurrency (Thread Safeness)

The multi-locale functions are designed to function properly in the presence of concurrent tasks
sharing memory within an application, where more than one task is performing multi-locale
operations at the same time on the same object; for example, AttrObject. The definition of
m_setlocale() is to modify the locale object within the AttrObject and so it affects all threads
sharing the same AttrObject.

The expected model is :

locale = m_createattrobj();
str = m_setlocale(locale, LC_ALL, "");

... do localised work using locale, possibly passing ‘locale’
to helper threads

m_destroyattrobj(locale);

Distributed Internationalisation Services, Version 2 27

Distributed Locale Functions Multi-locale Support

4.4 Distributed Locale Functions
The multi-locale functions provide the ability to manage the localised behaviour of functions
across a network. Specifically, this document provides application developers with the
following:

• a network locale specification that may be communicated over a network as either a token or
string

• a locale specification that encapsulates the representation of a network locale specification on
a host system

• functions to map between a locale specification and a host locale name

• a registry of locales that are expected to be found in a distributed environment.

Distributed Locale Functions
m_createlocspec()
m_locspec_to_host ()
m_locspec_from_host ()
m_destroylocspec()
m_locspec_to_nettoken ()
m_locspec_to_netstring ()
m_locspec_from_nettoken ()
m_locspec_from_netstring()

Application developers are expected to use the locale specification (m_locspec_*())
communicating locales to underlying communication layers. The m_locspec_to_host () function
retrieves a host locale name (representing all categories, LC_ALL) from a locale specification.
The host locale name may be passed to either the m_setlocale() or setlocale () functions. The
m_locspec_from_host () function is used to get a locale specification from a host locale name.

The local type LocaleSpec is an opaque data type that cannot be communicated over a network.
The m_locspec_to_nettoken () and m_locspec_to_netstring () functions are used to convert a locale
specification to a format that may be communicated over a network. The
m_locspec_from_nettoken () and m_locspec_from_netstring() functions are used to convert from a
network format (token or string) into a locale specification.

The m_locspec_to_nettoken () and m_locspec_to_netstring () functions are expected to be managed
by underlying communication layers; for example, an RPC layer. The m_locspec_from_nettoken ()
and m_locspec_from_netstring() functions are used by any component needing to announce a host
locale. Refer to m_createlocspec() on page 45 for examples of how to use these functions. Refer to
Section 3.3 on page 14 for an overview of locale usage for the host and network.

The intended users of m_locspec_*() functions are as follows:

Used by Applications
→ LocaleNetToken

AttrObject ↔ host_string ↔ LocaleSpec ←L→ LocaleNetString
Used by Communication Services

28 X/Open Snapshot (1994)

Multi-locale Support Locale Management Functions

4.5 Locale Management Functions
A set of multi-locale functions are proposed that provide similar capabilities to those provided
in the existing ISO C standard, the ISO POSIX-1 standard and the XSH, Issue 4 specification.
The naming convention for multi-locale function is to prefix them with m_. In cases where new
capability is introduced, both a multi-locale and global-locale version is introduced.

There are sundry management functions associated with the creation and initialisation of objects
that contain locale information within a particular host system. The locale management
functions are as follows:

Global-locale Multi-locale
m_createattrobj()
m_destroyattrobj ()

setlocale () m_setlocale()
m_creatembstate()
m_destroymbstate()

mbsinit()† mbsinit()†
m_fattr()

Note: The function marked with a dagger (†) is defined by the MSE standard but is not
included in the XSH, Issue 4 specification.

The MSE standard does not define a method to initialise the object, whereas the functions
defined in this document do, because of the non-global nature of locale objects. The MSE
standard function mbsinit() allows you to query the initial state of an mbstate_t object. An
mbstate_t object in a multi-locale environment may be used as follows:

ParseForLocalisedComment(AttrObject mylocale, char *str)
{

mbstate_t mystate = m_creatembstate(my_locale);
char *p = m_strtok(str, "\t", &mystate);
p = m_strtok(str, "#", &mystate);
m_destroymbstate(mystate);
return(p);

}

The m_creatembstate() function is defined to allow a locale object to be associated within an
mbstate_t object and must be freed by calling the m_destroymbstate() function.

Distributed Internationalisation Services, Version 2 29

Locale Information Functions Multi-locale Support

4.6 Locale Information Functions
These functions provide access to locale-specific data associated with the LC_TIME,
LC_MONETARY, LC_NUMERIC and LC_MESSAGES categories of a locale object. The locale
information functions are as follows:

Global locale Multi-locale
char wchar_t char wchar_t
localeconv () m_localeconv ()
nl_langinfo () m_nl_langinfo ()
MB_CUR_MAX m_mb_cur_max()
strerror() m_strerror()

4.7 Composite Character Sequence (CCS) Functions
These functions manipulate composite sequences. A composite sequence consists of a non-
combining (base) character followed by one or more combining characters (floating diacritics).
The non-combining character and the combining characters of the composite sequence are
represented by corresponding code elements. The functions below are defined to work on
strings that may consist of a single code element (non-combining character) or a composite
sequence.

Global locale Multi-locale
char wchar_t char wchar_t

m_wcscnt()
m_wcsnext()
m_wcsquery()

wcwidth()
wcswidth()‡ m_wcswidth()‡

‡ This function may be used to determine the width of a single wide character.

4.8 Classification Functions
These functions provide for the classification of code elements. This includes a function similar
to the wctype() function in the XSH, Issue 4 specification, and a function similar to m_iswctype()
for locating code elements of a particular type. There is also a more general scanning function
(m_wcsscanfor()) for locating code elements that match one or a set of classification criteria.

Global locale Multi-locale
char wchar_t char wchar_t
wctype() wctype() m_wctype() m_wctype()

iswctype() m_isctype() m_iswctype()
is*() isw*() m_iswctype()‡

‡ This function may be used in place of the isw*() functions.

30 X/Open Snapshot (1994)

Multi-locale Support Transliteration Functions

4.9 Transliteration Functions
The function m_wctrans() provides conversion operations similar to the towupper() function and
towlower() functions in the XSH, Issue 4 specification. The m_towcstrans(), towcstrans() function
are introduced to allow for transliterations of encodings with composite sequences that may
alter the size of the output buffer size from the input buffer size.

Global locale Multi-locale
char wchar_t char wchar_t
wctrans()† wctrans()† m_wctrans() m_wctrans()

towctrans()†
m_tombstrans() m_towcstrans()

toupper() towupper()
tolower() towlower()

Note: The functions marked with a dagger (†) are defined by the MSE standard but are not
included in the XSH, Issue 4 specification.

4.10 String Searching Functions
These functions make it possible to search for code elements within a code element string. They
are similar to the standard string functions in the XSH, Issue 4 specification.

Global locale Multi-locale
char wchar_t char wchar_t
strpbrk() wcspbrk() m_strpbrk() m_wcspbrk()
strspn() wcsspn() m_strspn() m_wcsspn()
strcspn() wcscspn() m_strcspn() m_wcscspn()
strstr() wcswcs() m_strstr() m_wcswcs()

4.11 String Comparison Functions
These functions provide for the comparison of code elements within a code element string. They
are similar to the standard string functions in the XSH, Issue 4 specification.

Global locale Multi-locale
char wchar_t char wchar_t
strcoll() wcscoll() m_strcoll() m_wcscoll()
strxfrm() wcsxfrm() m_strxfrm() m_wcsxfrm()

Distributed Internationalisation Services, Version 2 31

Date, Monetary and Time Formatting Functions Multi-locale Support

4.12 Date, Monetary and Time Formatting Functions
The date and time functions operate on text objects. These directly parallel functions in the
XSH, Issue 4 specification.

Global locale Multi-locale
char wchar_t char wchar_t
strftime() wcsftime() m_strftime() m_wcsftime()
strptime() wcsptime() m_strptime() m_wcsptime()
strfmon() m_strfmon() m_wcsfmon()

4.13 Number Conversion Functions
The number conversion functions are as follows:

Global locale Multi-locale
char wchar_t char wchar_t
strtod() wcstod() m_strtod() m_wcstod()
strtol() wcstol() m_strtol() m_wcstol()
strtoul() wcstoul() m_strtoul() m_wcstoul()

4.14 Text Scanning and Parsing Functions
These functions enable applications to scan and parse localised strings (of code elements) into
tokens. If necessary, a text context object is used to preserve any needed context across multiple
calls to these functions.

The following text parsing functions are currently defined:

Global locale Multi-locale
char wchar_t char wchar_t
strtok() wcstok() m_strtok() m_wcstok()

m_strscanfor()‡ m_wcsscanfor()‡

‡ These functions do not have global versions. As with all m_() functions, they can be used
with the attrobj argument NULL.

32 X/Open Snapshot (1994)

Multi-locale Support Text Formatted I/O Functions

4.15 Text Formatted I/O Functions
This specification extends the printf and scanf utilities to enable them to use an explicit locale.

The MSE standard introduced the concept of wide and narrow I/O streams. A wide stream has
an implicit mbstate_t object associated with the stream. This object is used when parsing
strings. This specification introduces the m_fattr() function which enables an attribute object to
be explicitly associated with both wide and narrow streams. If the m_setlocale() function has
been successfully called to associate a locale with the attribute object and that attribute object is
associated with the stream with the m_fattr() function, then this explicit locale is used by I/O
functions operating on the stream. Otherwise, the behavior is as described by the existing ISO C
standard or MSE standard for narrow and wide streams respectively.

Although both text and binary wide-oriented streams are conceptually sequences of code
elements, the external file associated with a wide-oriented stream is a sequence of multi-byte
characters, generalised as follows:

• Encodings within files may contain embedded null bytes (unlike multi-byte encodings valid
for use internal to the program).

• A file need not begin or end in the initial state.2 Moreover, the encodings used for encoding of
text in external files may differ between files. An mbstate_t object allows different streams to
be associated with different locale objects having different encodings. Both the nature and
choice of such encodings are implementation defined.

The following functions may be used in multi-locale environments when the stream’s mbstate_t
object is associated with a specific locale object.

Global locale Multi-locale
char wchar_t char wchar_t
printf() wprintf()† printf()‡ wprintf()‡
scanf() wscanf()† scanf()‡ wscanf()‡
fprintf () fwprintf()† fprintf ()‡ fwprintf()‡
sprintf() swprintf()† m_sprintf() m_swprintf()
fscanf() fwscanf()† fscanf()‡ fwscanf()‡
sscanf() swscanf()† m_sscanf() m_swscanf()
fgetc() fgetwc() fgetc()‡ fgetwc()‡
fgets() fgetws() fgets()‡ fgetws()‡
fputc() fputwc() fputc()‡ fputwc()‡
fputs() fputws() fputs()‡ fputws()‡
ungetc() ungetwc() ungetc()‡ ungetwc()‡

Notes:

1. The functions marked with a dagger (†) are defined by the MSE standard but
are not included in the XSH, Issue 4 specification. It is assumed that they will
be included in a future issue, when XSH is aligned with the MSE standard.

2. Setting the file position indicator to end-of-file, as with fseek(file, 0, SEEK_END), has undefined behaviour for a binary stream
(because of possible trailing null characters) or for any stream with state-dependent encoding that does not assuredly end in the
initial shift state. For streams with state dependent encodings, if the file does not begin or end in the initial shift state, it is the
responsibility of the application to associated an mbstate_t whose state corresponds to the state of the position in the file.

Distributed Internationalisation Services, Version 2 33

Text Formatted I/O Functions Multi-locale Support

2. The functions marked with a double dagger (‡) indicate that the functions may
be used in a multi-locale fashion if the mbstate_t has been initialised using the
m_fattr() function.

For the multi-locale functions, all locale-specific processing (conversion, parsing, numeric
formatting) is associated with the locale object contained in the stream’s mbstate_t object.

34 X/Open Snapshot (1994)

Multi-locale Support Extended Wide-character Conversion Functions

4.16 Extended Wide-character Conversion Functions
These functions provide sufficient capability for converting a code element string from one class
of encoding to another class of encoding, for example, from coded character string to wide-
character strings. These functions are aligned with the corresponding functions described in the
MSE standard.

These functions differ from the corresponding XSH, Issue 4 specification functions (mblen(),
mbtowc(), wctomb()) in that they have an extra argument. This argument is ps, of type pointer to
mbstate_t, which points to an object that can completely describe the current conversion state of
the code element sequence.

Global locale Multi-locale
mblen() mbrlen()†
mbtowc() mbrtowc()†
mbstowcs() mbsrtowcs()†
wctomb() wcrtomb()†
wcstombs() wcsrtombs()†

Note: The functions marked with a dagger (†) are not currently published in the XSH, Issue
4 specification. It is assumed that they will be included in a future issue, when XSH
is aligned with the MSE standard.

If the mbstate_t object passed to one of the multi-locale functions was created with
m_creatembstate() using an attribute object which has a valid locale associated with it by
m_setlocale(), then that explicit locale is used. Otherwise, if the mbstate_t object was not created
by m_creatembstate(), or if the attribute object does not have an associated locale, then the global
locale is used.

Distributed Internationalisation Services, Version 2 35

Multi-locale Support

36 X/Open Snapshot (1994)

Chapter 5

Header File

This chapter defines the header file <mlocale.h>.

Distributed Internationalisation Services, Version 2 37

<mlocale.h> Header File

NAME
mlocale.h — multi-locale macros

SYNOPSIS
#include <mlocale.h>

DESCRIPTION
The <mlocale.h> header provides a definition for objects:

typedef struct _attr_object_t *AttrObject;
typedef struct _sil_spec_t LocaleSpec;
typedef unsigned int LocaleNetToken;
typedef char* LocaleNetString;

The structures _attr_object_t and _sil_spec_t are opaque data structures that are
implementation-dependent.

The <mlocale.h> header defines the following values for the text parsing function
m_wcsscanfor().

#define NoCondition 0L
#define Alphabetic (1L<<1) /* same as isalpha */
#define WhiteSpace (1L<<2) /* same as isspace */
#define Control (1L<<3) /* same as iscntrl */
#define Digit (1L<<4) /* same as isdigit */
#define Graphic (1L<<5) /* same as isgraph */
#define Lowercase (1L<<6) /* same as islower */
#define Uppercase (1L<<7) /* same as isupper */
#define Printing (1L<<8) /* same as isprint */
#define Punctuation (1L<<9) /* same as ispunct */
#define HexDigit (1L<<10) /* same as isxdigit */
#define LineBreakCharacter (1L<<11) /* a wide-character code that is

defined to cause a line
discontinuity */

#define LineBreakHyphen (1L<<12) /* the next wide-character code
after which a line discontinuity
may occur due to hyphenation */

#define LineBreakScript (1L<<13) /* the next wide-character code
after which a line discontinuity

#define WordBoundary (1L<<14) /* the next wide-character code
after which the current language

#define SentenceBoundary (1L<<15) /* the next wide-character code
after which the current sentence */

#define ParagraphBoundary (1L<<16) /* the next wide-character code
after which the current paragraph */

#define CharsetBoundary (1L<<17) /* the next wide-character code
after which the current charset */

#define ScriptBoundary (1L<<18) /* the next wide-character code
after which the current script */

#define CompositeBoundary (1L<<19) /* the next wide-character code
after which the current composite

The <mlocale.h> header defines the following value for the m_locspec_to_nettoken () function:

#define NoLocaleNetToken -1

38 X/Open Snapshot (1994)

Header File <mlocale.h>

The <mlocale.h> header defines the following types through typedef:

ScanCondition
ScanDirection
Boolean

The <mlocale.h> header declares the following functions:

AttrObject m_createattrobj(void);
LocaleSpec *m_createlocspec(void);
mbstate_t m_creatembstate(AttrObject attrobj);
int m_destroyattrobj(AttrObject attrobj);
int m_destroylocspec(LocaleSpec * locspec);
int m_destroymbstate(mbstate_t ps);
int m_sprintf(mbstate_t * ps , char * s, const char * format , ...);
int m_sscanf(mbstate_t * ps , const char * s, const char * format , ...);
AttrObject m_fattr(FILE * stream , const AttrObject attrobj);
int m_isctype(const AttrObject attrobj , char* s, wctype_t desc);
int m_iswctype(const AttrObject attrobj , wint_t wc, wctype_t desc);
struct lconv *m_localeconv(const AttrObject attrobj);
int m_locspec_from_host(LocaleSpec locspec , const char* s);
int m_locspec_from_netstring(LocaleSpec locspec ,

const LocaleNetString s);
int m_locspec_from_nettoken(LocaleSpec locspec ,

const LocaleNetToken token);
LocaleNetString m_locspec_to_netstring(const LocaleSpec locspec);
char* m_locspec_to_host(const LocaleSpec locspec);
LocaleNetToken m_locspec_to_nettoken(const LocaleSpec locspec);
int m_mb_cur_max(const AttrObject * attrobj);
char *m_nl_langinfo(const AttrObject attrobj , nl_item item , char* buf ,

size_t bufsize);
char *m_setlocale(AttrObject * attrobj , const int category ,

const char * locale);
int m_strcoll(const AttrObject attrobj , const char * s1 ,

const char * s2);
size_t m_strcspn(const AttrObject attrobj , const char ** str1 ,

const char ** str2);
char *m_strerror(const AttrObject attrobj , int errnum);
ssize_t m_strfmon(const AttrObject attrobj , char * s, size_t maxsize ,

const char * format , ...);
size_t m_strftime(const AttrObject attrobj , char * s, size_t maxsize ,

const char * format , const struct tm * timptr);
char *m_strpbrk(const AttrObject attrobj , const char* * str1 ,

const char * str2);
char *m_strptime(const AttrObject attrobj , const char * buf ,

const char * format , struct tm * tm);
size_t m_strscanfor(const AttrObject attrobj , const char* s,

size_t num_bytes , size_t position ,
ScanDirection direction , ScanCondition condition ,
Boolean inverse);

size_t m_strspn(const AttrObject attrobj , const char ** str1 ,
const char ** str2);

char *m_strstr(const AttrObject attrobj , const char * str1 ,
const char * str2);

Distributed Internationalisation Services, Version 2 39

<mlocale.h> Header File

double m_strtod(const AttrObject attrobj , const char * str ,
char ** endptr);

char *m_strtok(char * s1 , const char * s2 , mbstate_t * ps);
long int m_strtol(const AttrObject attrobj , const char * str ,

char * *endptr , int base);
unsigned long int m_strtoul(const AttrObject attrobj , const char * str ,

char * *endptr , int base);
size_t m_strxfrm(const AttrObject attrobj , char * s1 ,

const char * s2 , size_t n);
int m_tombstrans(const AttrObject attrobj , wctrans_t desc ,

char ** inbuf , size_t * inbufleft ,
char ** outbuf , size_t * outbufleft);

int m_towcstrans(const AttrObject attrobj , wctrans_t desc ,
wchar_t ** inbuf , size_t * inbufleft ,
wchar_t ** outbuf , size_t * outbufleft);

size_t m_wcscnt(const AttrObject attrobj , const wchar_t * ptr);
int m_wcscoll(const AttrObject attrobj , const wchar_t * ws1,

const wchar_t * ws2);
size_t m_wcscspn(const AttrObject attrobj , const wchar_t * ws1,

const wchar_t * ws2);
size_t m_wcsfmon(const AttrObject attrobj , wchar_t * ws,

size_t maxsize , const char * format , ...);
size_t m_wcsftime(const AttrObject attrobj , wchar_t * wcs,

size_t maxsize , wchar_t * format ,
const struct tm * timptr);

size_t m_wcsnext(const AttrObject attrobj , const wchar_t * ptr);
wchar_t *m_wcspbrk(const AttrObject attrobj , const wchar_t * ws1,

const wchar_t * ws2);
wchar_t *m_wcsptime(const AttrObject attrobj , const wchar_t * ws,

const char * format , struct tm * timptr);
size_t m_wcsquery(const AttrObject attrobj , const wchar_t * ptr);
size_t m_wcsscanfor(const AttrObject attrobj , const wchar_t* ws,

size_t num_chars , size_t position ,
ScanDirection direction , ScanCondition condition ,
Boolean inverse);

size_t m_wcsspn(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

double m_wcstod(const AttrObject attrobj , const wchar_t * src ,
wchar_t ** end_ptr);

wchar_t *m_wcstok(wchar_t * ws1, const wchar_t * ws2, mbstate_t* ps)
long m_wcstol(const AttrObject attrobj , const wchar_t * src ,

wchar_t ** end_ptr , int base)
unsigned long m_wcstoul(const AttrObject attrobj , const wchar_t * src ,

wchar_t * endptr , int base);
wchar_t *m_wcswcs(const AttrObject attrobj , const wchar_t * ws1,

const wchar_t * ws2);
size_t m_wcswidth(const AttrObject attrobj , const wchar_t * ptr ,

size_t n);
size_t m_wcsxfrm(const AttrObject attrobj , wchar_t * ptr1 ,

const wchar_t * ptr2 , size_t n);
wctrans_t m_wctrans(const AttrObject attrobj , const char * property);
wctype_t m_wctype(const AttrObject attrobj , const char * property);

40 X/Open Snapshot (1994)

Header File <mlocale.h>

SEE ALSO
m_localeconv (), m_setlocale(), the chapter on Environment Variables in the XBD, Issue 4
specification.

Distributed Internationalisation Services, Version 2 41

Header File

42 X/Open Snapshot (1994)

Chapter 6

Reference Manual Pages

This chapter contains reference manual pages for the m_*() functions and other wide-character
or multi-byte functions required by m_*() functions.

Distributed Internationalisation Services, Version 2 43

m_createattrobj() Reference Manual Pages

NAME
m_createattrobj — create locale attribute object

SYNOPSIS
#include <mlocale.h>

AttrObject m_createattrobj(void);

DESCRIPTION
The m_createattrobj() function returns an object of type AttrObject that contains the default
attributes to be used in a multi-locale program. The returned object is guaranteed to be
initialised with a locale attribute that identifies the appropriate pieces of an implementation-
dependent locale. A locale attribute consist of the following locale categories: LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC and LC_TIME.

The categories of a locale attribute may be changed and queried by using the m_setlocale()
function. Other attributes may be defined by implementations but are beyond the scope of this
specification.

RETURN VALUE
Upon successful completion, the m_createattrobj() function returns a locale attribute object for
use in subsequent calls to multi-locale, m_*(), functions. Otherwise m_createattrobj() returns
(AttrObject)0 and sets errno to indicate the error.

ERRORS
The m_createattrobj() function may fail if:

[ENOMEM]
Insufficient storage space is available.

SEE ALSO
m_destroyattrobj (), m_setlocale(), <mlocale.h>.

CHANGE HISTORY
Derived from Version 1 of this document.

44 X/Open Snapshot (1994)

Reference Manual Pages m_createlocspec()

NAME
m_createlocspec — allocates and returns a locale specification

SYNOPSIS
#include <mlocale.h>

LocaleSpec *m_createlocspec(void);

DESCRIPTION
The m_createlocspec() function returns an object of type LocaleSpec that contains the locale
specification in a system-independent form; this is used to distribute locales over a network.
The returned LocaleSpec object is defined to be empty and not associated with any locale. The
caller should call the m_locspec_from_netstring(), m_locspec_from_nettoken () or
m_locspec_from_host () functions to initialise the LocaleSpec object with a network locale
specification. The content of a LocaleSpec is implementation dependent but must be associated
with a network locale specification.

The m_fattr() function queries the locale of the AttrObj passed in, using the returned value to
create a clone of that AttrObj. The passed-in object is not bound to or modified by any stream
operation.

RETURN VALUE
Upon successful completion, the m_createlocspec() function returns an object of type LocaleSpec
for use in subsequent calls to distributed locale, m_locspec*(), functions. Otherwise the
m_createlocspec() function returns (LocaleSpec)0 and sets errno to indicate the error.

ERRORS
The m_createlocspec() function may fail if:

[ENOMEM] Insufficient storage space is available.

APPLICATION USAGE
The following is an example of a client program using a system-independent locale specification:

/*** CLIENT is application-dependent handle, ***/
/*** for example, clnt_create(...) ***/

void foo(AttrObject client_locale,
CLIENT* client_handle);

{
char* host_string = m_setlocale(client_locale, LC_ALL, NULL);
LocaleSpec* locspec = m_createlocspec();

if (m_locspec_from_host(locspec, host_string) == -1) {
/*

* Client’s locale is NOT known to the network,
* ... report error ...
*/

return ;
}
rpc_foo_operation(locspec, client_handle);
m_destroylocspec(locspec);

}

On the client side, the rpc_foo_operation () function is responsible for marshalling the LocaleSpec
into a protocol-defined network locale specification (LocaleNetToken or LocaleNetString) that
is passed to the server process. The m_locspec_to_nettoken () or m_locspec_to_netstring () functions

Distributed Internationalisation Services, Version 2 45

m_createlocspec() Reference Manual Pages

are used to obtain a well known data type depending on the protocol definition.

On the server side, the protocol-defined network locale specification is marshalled into a
LocaleSpec using the m_locspec_from_nettoken () or m_locspec_from_netstring() functions.

The following is an example of a server program using a system-independent locale
specification:

rpc_foo_operation(LocaleSpec locspec, struct svc_req *req)
{

char *host_string;
AttrObject host_locale;

if (! (host_string = m_locspec_to_host(locspec))) {
/*

* Network locale is NOT known to the host server
* ... report error ...
*/

}

host_locale = m_createattrobj();
if (m_setlocale(host_locale, LC_ALL,

host_string) == (AttrObject)NULL) {
/*

* Locale is NOT available to the server
* ... report error ...
*/

};
free(host_string);

foo(host_locale); /* do real work */
m_destroyattrobj(host_locale);

}

For clarity, the above examples are simple. Real distributed applications often need to specify
which locale category a particular operation must use. Consider that a LocaleSpec is made up
of a well defined locale where all the categories are registered as a whole for network
distribution. Thus a locale object made up of mixed categories needs to be broken down into
separate categories.

Application developers that need to use different locale categories within a locale object must
design their RPC calls to pass multiple locale specifications per category. For example, an RPC
may be defined to do the operation in locale FOO but to provide messages in locale BAR. A
server may construct a single AttrObject made up of multiple LocaleSpec types. The following
is an example of a server that takes two LocaleSpec types to perform operation bar.

rpc_bar_operation(LocaleSpec locspec, LocaleSpec msgspec,
struct svc_req *req)

{
char *host_string = m_locspec_to_host(locspec);
char *msg_string;
AttrObject host_locale;
AttrObject msg_locale;

/*

46 X/Open Snapshot (1994)

Reference Manual Pages m_createlocspec()

* Establish Message Locale first
*/

msg_string = m_locspec_to_host(msgspec);
msg_locale = m_createattrobj();
m_setlocale(msg_locale, LC_ALL, msg_string);

/*
* If m_setlocale fails, message locale is NOT available
* at the server, then fall back to implementation default...
*/

free(msg_string);

if (! host_string) {
/*

* Locale is NOT known to the server
* ... report error ...
*/

errstring = m_strerror(msg_locale, errno);
rpc_bar_error(msgspec, errstring, req);
m_destroyattrobj(msg_locale);
return;

}

host_locale = m_createattrobj();
if (m_setlocale(host_locale, LC_ALL,

host_string) == (AttrObject)NULL) {
/*

* Locale is NOT available to the server
* ... report error ...
*/

errstring = m_strerror(msg_locale, errno);
rpc_bar_error(msgspec, errstring, req);
m_destroyattrobj(msg_locale);
m_destroyattrobj(host_locale);
return;

};
free(host_string);

/*
* Set message category of host_locale to message locale
*/

m_setlocale(host_locale,
LC_MESSAGES,
m_setlocale(msg_locale, LC_MESSAGES, NULL));

foo(host_locale); /* do real work */
m_destroyattrobj(msg_locale);
m_destroyattrobj(host_locale);

}

Distributed Internationalisation Services, Version 2 47

m_createlocspec() Reference Manual Pages

SEE ALSO
m_locspec_to_host (), m_locspec_from_host (), m_locspec_to_nettoken (), m_locspec_from_nettoken (),
m_locspec_to_netstring (), m_locspec_from_netstring(), m_destroylocspec(), m_setlocale(),
<mlocale.h>.

48 X/Open Snapshot (1994)

Reference Manual Pages m_creatembstate()

NAME
m_creatembstate — create text context object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

mbstate_t m_creatembstate(const AttrObject attrobj);

DESCRIPTION
The m_creatembstate() function returns an object of type mbstate_t which may contain state
information associated with the locale attribute identified by attrobj for use with contextual text.
For state-dependent encodings, the text context object is placed into a codeset-dependent initial
state, ready for immediate use with functions requiring contextual state handling.

The returned text context object maintains an import conversion state when used with the
following functions defined in the MSE standard: mbsrtowcs(), mbrtowc(), mbrlen(), fgetwc(),
fgetws(), fwscanf() and m_swscanf(). These functions use the locale attribute associated with
attrobject.

The returned text context object may maintain an export conversion state when using the
following functions: wcsrtombs(), wcrtomb(), fputws(), fwprintf(), m_sprintf() and m_swprintf().
These functions use the locale attribute associated with attrobject.

The returned text context object maintains a tokenising context when using the m_wcstok()
function.

Other contextual states may be defined by implementations but are beyond the scope of this
specification.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_creatembstate() function returns a text context object that is
in the initial state for all the possible conversions and tokenisation. Otherwise, m_creatembstate()
returns (mbstate_t)0 and sets errno to indicate the error.

ERRORS
The m_creatembstate() function may fail if:

[EBADF]
The attribute object is invalid.

[ENOMEM]
Insufficient storage space is available.

APPLICATION USAGE
The MSE standard declares in clause 4.6.5 that if the mbstate_t object has been altered by any of
the functions described in this subclause of the MSE standard, and is then used with a different
multi-byte character sequence, or in the other conversion direction, or with a different LC_CTYPE
category setting from the earlier function calls, the behaviour is undefined. Yet, when an mbstate_t
is created using the m_creatembstate_t() function, the behaviour is well defined using the locale
attribute identified by attrobj.

The MSE standard may imply that the mbstate_t object can only maintain a single state (for
import or export) at any given time. For the XSH, Issue 4 specification, the behaviour is defined
that the returned object of type mbstate_t will be capable of handling multiple states (for import,
export or tokenising) within a single mbstate_t object.

Distributed Internationalisation Services, Version 2 49

m_creatembstate() Reference Manual Pages

SEE ALSO
m_createattrobj(), m_setlocale(), m_destroymbstate(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

50 X/Open Snapshot (1994)

Reference Manual Pages m_destroyattrobj()

NAME
m_destroyattrobj — destroy locale attribute object

SYNOPSIS
#include <mlocale.h>

int m_destroyattrobj(AttrObject * attrobj);

DESCRIPTION
The m_destroyattrobj () function deallocates the locale attribute object attrobj and all other
associated resources allocated by the m_createattrobj(), or m_setlocale() function.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise a value of −1 is returned and
errno is set to indicate the error.

ERRORS
The m_destroyattrobj () function may fail if:

[EBADF]
The attribute object is invalid.

SEE ALSO
m_createattrobj(), m_setlocale(), <mlocale.h>.

CHANGE HISTORY
Derived from Version 1 of this document.

Distributed Internationalisation Services, Version 2 51

m_destroylocspec() Reference Manual Pages

NAME
m_destroylocspec — allocates and returns a network locale specification

SYNOPSIS
#include <mlocale.h>

int m_destroylocspec(LocaleSpec * locspec);

DESCRIPTION
The m_destroyattrobj () function deallocates the LocaleSpec object and all other associated
resources allocated by the m_createlocspec() function.

RETURN VALUE
Upon successful completion, the m_destroylocspec() function returns a value of zero. Otherwise
a value of −1 is returned and errno is set to indicate the error.

ERRORS
The m_destroylocspec() function may fail if:

[EBADF]
The LocaleSpec object is invalid.

APPLICATION USAGE
Refer to m_createlocspec() for examples.

SEE ALSO
m_createlocspec(), m_setlocale(), <mlocale.h>.

52 X/Open Snapshot (1994)

Reference Manual Pages m_destroymbstate()

NAME
m_destroymbstate — destroy text context object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

int m_destroymbstate(mbstate_t * ps);

DESCRIPTION
The m_destroymbstate() function deallocates the text context object ps and all other associated
resources allocated by the m_creatembstate() function.

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise a value of −1 is returned and
errno is set to indicate the error.

ERRORS
The m_destroymbstate() function may fail if:

[EBADF]
The mbstate_t object is invalid.

SEE ALSO
m_creatembstate(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 53

m_fattr() Reference Manual Pages

NAME
m_fattr — query or set locale of a stream using a locale object

SYNOPSIS
AttrObject m_fattr(FILE * stream , const AttrObject attrobj);

DESCRIPTION
The m_fattr() function will associate an explicit mbstate_t object whose locale is defined by
attrobj with stream. If the mbstate_t is successfully created and associated with stream, then the
AttrObject used to create the mbstate_t is returned.

The returned AttrObject is a copy of the locale object in the mbstate_t of stream, and the
application should use the m_destroymbstate() function to free up the returned AttrObject.

If attrobj is defined as (AttrObject)NULL, the m_fattr() function will return an AttrObject of the
mbstate_t associated with stream.

RETURN VALUE
The m_fattr() function returns the AttrObject of the mbstate_t associated with stream. If
unsuccessful, (AttrObject)NULL is returned and errno is set.

ERRORS
The m_fattr() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
If attrobj is (AttrObject)NULL and stream has not been initialised with an mbstate_t, or if
attrobj is not (AttrObject)NULL and the stream has been previously initialised with an
mbstate_t.

APPLICATION USAGE
Since it is not known whether the returned AttrObject was created with the m_creatembstate()
function or declared initially as a zero-value mbstate_t object, the caller must always assume the
worst and issue the m_destroymbstate() function.

SEE ALSO
m_creatembstate(), m_setlocale(), m_destroymbstate(), <mlocale.h>.

54 X/Open Snapshot (1994)

Reference Manual Pages m_isctype()

NAME
m_isctype — test coded character for specified class using locale object

SYNOPSIS
#include <mlocale.h>
#include <wctype.h>

int m_isctype(const AttrObject attrobj , char* s, wctype_t desc);

DESCRIPTION
The m_isctype() function determines whether the first coded character, as if by a call to
mbrtowc(), pointed to by s has the character class desc, returning true or false. The setting of the
LC_CTYPE category in the attrobj shall be the same as during the call to m_wctype() or wctype()
that returned the value desc. Otherwise the result is implementation dependent.

The m_isctype() function is defined to operate on coded characters corresponding to the valid
character encodings in the locale defined in attrobj. If the coded character pointed to by the s
argument is not in the domain of the locale defined by attrobj, the result is undefined.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_isctype() function returns non-zero (true) if and only if the value of the coded character s
has the property described by desc, otherwise returns zero (false).

ERRORS
The m_isctype() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the iswctype() function when called with the
current locale set to the locale defined by attrobj.

The twelve strings — "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print", "punct",
"space", "upper" and "xdigit" — are reserved for the standard character classes. See m_iswctype()
for the semantics of the reserved strings.

SEE ALSO
m_wctype(), m_iswctype(), wctype(), isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(),
isprint(), ispunct(), isspace(), isupper(), isxdigit (), <mlocale.h>, <wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 55

m_iswctype() Reference Manual Pages

NAME
m_iswctype — test wide character for specified class using locale object

SYNOPSIS
#include <mlocale.h>
#include <wctype.h>

int m_iswctype(const AttrObject attrobj , wint_t wc, wctype_t desc);

DESCRIPTION
The m_iswctype() function determines whether the wide-character code wc has the character
class desc, returning true or false. The setting of the LC_CTYPE category in the attrobj shall be
the same as during the call to m_wctype() or wctype() that returned the value desc. Otherwise the
result is implementation dependent.

The m_iswctype() function is defined to operate on WEOF and wide-character codes
corresponding to the valid character encodings in the locale defined in attrobj. If the wc argument
is not in the domain of the locale defined by attrobj, the result is undefined.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_iswctype() function returns non-zero (true) if and only if the value of the wide character
wc has the property described by desc, otherwise returns zero (false).

ERRORS
The m_iswctype() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the iswctype() function when called with the
current locale set to the locale defined by attrobj. The twelve strings — "alnum", "alpha", "blank",
"cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper" and "xdigit" — are reserved for
the standard character classes. In the table below, the functions in the left column are equivalent
to the functions in the right column for the same LC_CTYPE category setting.

iswalnum(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("alnum")))
iswalpha(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("alpha")))
iswcntrl(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("cntrl")))
iswdigit(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("digit")))
iswgraph(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("graph")))
iswlower(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("lower")))
iswprint(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("print")))
iswpunct(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("punct")))
iswspace(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("space")))
iswupper(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("upper")))
iswxdigit(wc) m_iswctype(attrobj , wc, m_wctype(attrobj , wctype("xdigit")))

Note: The call:

m_iswctype(attrobj , wc, m_wctype(attrobj , "blank"))

does not have an equivalent isw*() function.

56 X/Open Snapshot (1994)

Reference Manual Pages m_iswctype()

SEE ALSO
m_wctype(), wctype(), iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(),
iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit (), <mlocale.h>. <wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 57

m_localeconv() Reference Manual Pages

NAME
m_localeconv — determine number formatting information using locale object

SYNOPSIS
#include <mlocale.h>

struct lconv *m_localeconv(const AttrObject attrobj);

DESCRIPTION
The m_localeconv () function sets the components of an object with the type struct lconv with the
values appropriate for the formatting of numeric quantities (monetary and otherwise) according
to the rules of the locale identified by attrobj.

The members of the structure with type char* are pointers to strings, any of which (except
decimal point) can point to "", to indicate that the value is not available in the locale identified by
attrobj or is zero length. The members with type char are non-negative numbers, any of which
can be {CHAR_MAX} to indicate that the value is not available in the locale identified by attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_localeconv () function returns a pointer to the filled-in object. The memory used for the
filled-in object is allocated and managed by the argument attrobj. The structure pointed to by the
return value must not be modified by the program. Its contents remain unchanged unless:

• The attrobj is modified by calling the m_setlocale() function with the categories LC_ALL,
LC_MONETARY or LC_NUMERIC with the same attrobj.

• The attrobj is destroyed.

In either case, the content of the structure is undefined.

ERRORS
The m_localeconv () function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the localeconv () function when called with the
program’s locale set to the locale identified by attrobj. The lconv structure contains the same
members as described for localeconv () in the XSH, Issue 4 specification.

Members of the structure with type char* are encoded in the codeset of the locale identified by
attrobj. If a wide-character form of the data is needed, it should be converted from file coded
characters form to wide-character form using the mbsrtowcs() function.

This function returns a pointer to a string managed by attrobj. This requires that applications
needing thread-specific data while sharing a single attrobj manage concurrent access to the
attrobj.

SEE ALSO
m_createattrobj(), strchr(), strcoll(), strftime(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(),
localeconv (), <langinfo.h>, <locale.h>, <mlocale.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

58 X/Open Snapshot (1994)

Reference Manual Pages m_locspec_from_host()

NAME
m_locspec_from_host — set locale specification using host locale string

SYNOPSIS
#include <mlocale.h>

int m_locspec_from_host(LocaleSpec * locspec , const char* s);

DESCRIPTION
The m_locspec_from_host () function matches the host locale string to a network locale
specification. If the host locale string is recognised as a network locale specification the locspec
object is set with implementation-dependent information (for example, LocaleNetToken).
When communicating the locale specification over a network use the m_locspec_to_nettoken () or
m_locspec_to_netstring () functions to convert the LocaleSpec into a well known type.

RETURN VALUE
Upon successful completion, the m_locspec_from_host () function returns zero. Otherwise the
m_locspec_from_host () function returns −1, sets errno to indicate the error, and locspec is
unchanged. If the host locale string is not recognised as a network locale specification, an error
is returned.

ERRORS
The m_locspec_from_host () function may fail if:

[EBADF]
The LocaleSpec object is invalid.

[EINVAL]
The host locale string s is not known as a network locale specification.

APPLICATION USAGE
If the host locale string is associated with a mixture of locale categories obtained from:

m_setlocale(attrobj, LC_ALL, NULL)

then all the categories specified by the host locale string, s, must be associated with the same
network locale specification.

SEE ALSO
m_locspec_to_host (), m_createlocspec(), m_destroylocspec(), m_setlocale(), <mlocale.h>.

Distributed Internationalisation Services, Version 2 59

m_locspec_from_netstring() Reference Manual Pages

NAME
m_locspec_from_netstring — set locale specification using host locale string

SYNOPSIS
#include <mlocale.h>

int m_locspec_from_netstring(LocaleSpec * locspec ,
const LocaleNetString s);

DESCRIPTION
The m_locspec_from_netstring() function converts the network locale specification defined by s
into a system-independent form that is stored in the locspec object. The internal form of the the
locspec object is implementation dependent.

The m_locspec_from_netstring() function is intended for low-level protocol communication
services, for example, RPC run-time services, that need to convert the locale specification into a
well known type. Most applications are expected to convert the locale specification into an
AttrObject locale object for processing.

RETURN VALUE
Upon successful completion, the m_locspec_from_netstring() function returns zero. Otherwise
the m_locspec_from_netstring() function returns −1, sets errno to indicate the error, and the locspec
is unchanged.

ERRORS
The m_locspec_from_netstring() function may fail if:

[EBADF]
The LocaleSpec object is invalid.

[EINVAL]
The supplied network locale specification s is invalid.

SEE ALSO
m_locspec_from_nettoken (), m_locspec_to_netstring (), m_locspec_to_nettoken (), m_createlocspec(),
m_destroylocspec(), m_setlocale(), <mlocale.h>.

60 X/Open Snapshot (1994)

Reference Manual Pages m_locspec_from_nettoken()

NAME
m_locspec_from_nettoken — set locale specification using locale token

SYNOPSIS
#include <mlocale.h>

int m_locspec_from_nettoken(LocaleSpec * locspec ,
const LocaleNetToken token);

DESCRIPTION
The m_locspec_from_nettoken () function converts the network locale specification defined by
token into a system-independent form that is stored in the locspec object. The internal form of the
locspec object is implementation dependent.

The m_locspec_from_nettoken () function is intended for low-level protocol communication
services, for example, RPC run-time services, that need to convert the locspec into a well known
type. Most applications are expected to convert the locspec into an AttrObject locale object for
processing.

RETURN VALUE
Upon successful completion, the m_locspec_from_nettoken () function returns zero. Otherwise the
m_locspec_from_nettoken () function returns −1, sets errno to indicate the error, and the locspec is
unchanged.

ERRORS
The m_locspec_from_nettoken () function may fail if:

[EBADF]
The LocaleSpec object is invalid.

[EINVAL]
The supplied network locale specification token is invalid.

SEE ALSO
m_locspec_from_netstring(), m_locspec_to_netstring (), m_locspec_to_nettoken (), m_createlocspec(),
m_destroylocspec(), m_setlocale(), <mlocale.h>.

Distributed Internationalisation Services, Version 2 61

m_locspec_to_netstring() Reference Manual Pages

NAME
m_locspec_to_netstring — get string network locale specification using locale specification

SYNOPSIS
#include <mlocale.h>

LocaleNetString m_locspec_to_netstring(const LocaleSpec locspec);

DESCRIPTION
The m_locspec_to_netstring () function returns the string network locale specification associated
with the object locspec of type LocaleSpec. The returned string corresponds to a network locale
specification associated with the LocaleSpec (as specified by category LC_ALL) that may be
distributed over networks.

The returned string should be freed using the free() function.

The m_locspec_to_netstring () function is intended for low-level protocol communication services,
for example, RPC run-time services, that need to convert the locale specification into a well
known type. Most applications are expected to convert the locale specification into an
AttrObject locale object for processing.

RETURN VALUE
Upon successful completion, the m_locspec_to_netstring () function returns a pointer to a string
representing the network locale specification. Otherwise the m_locspec_to_netstring () function
returns NULL and sets errno to indicate the error.

ERRORS
The m_locspec_to_netstring () function may fail if:

[EBADF]
The LocaleSpec object is invalid.

[EINVAL]
The LocaleSpec specified by locspec cannot be represented as a LocaleNetString. This can
occur when the LocaleSpec contains a network locale specification in a token form but the
corresponding string form cannot be found.

APPLICATION USAGE
Refer to the m_createlocspec() function for a description of the use of this function.

SEE ALSO
m_locspec_from_netstring(), m_createlocspec(), m_destorylocspec(), m_setlocale(), <mlocale.h>.

62 X/Open Snapshot (1994)

Reference Manual Pages m_locspec_to_host()

NAME
m_locspec_to_host — get host locale string using locale specification

SYNOPSIS
#include <mlocale.h>

char* m_locspec_to_host(const LocaleSpec locspec);

DESCRIPTION
The m_locspec_to_host () function matches the network locale specification to a host locale string.
If the network locale specification is recognised as a host locale, a fully qualified host locale
string (as specified by category LC_ALL) is returned. The returned host locale string may be
used locally with the setlocale () or m_setlocale() functions. The returned string should be freed
using the free() function.

RETURN VALUE
Upon successful completion, the m_locspec_to_host () function returns a pointer to a string
representing the host locale string. Otherwise the m_locspec_to_host () function returns NULL
and sets errno to indicate the error.

ERRORS
The m_locspec_to_host () function may fail if:

[EINVAL]
The LocaleSpec specified by locspec does not contain any network locale specification. This
occurs when the LocaleSpec is created but not set by any of the functions
m_locspec_from_nettoken (), m_locspec_from_netstring() or m_locspec_from_host ().

[ENOSYS]
The LocaleSpec specified by locspec is not supported as a locale on the host system.

APPLICATION USAGE
Refer to the m_createlocspec() function for an example of the use of this function.

SEE ALSO
m_locspec_from_host (), m_createlocspec(), m_destroylocspec(), m_setlocale(), <mlocale.h>.

Distributed Internationalisation Services, Version 2 63

m_locspec_to_nettoken() Reference Manual Pages

NAME
m_locspec_to_nettoken — get network locale specification token using locale specification

SYNOPSIS
#include <mlocale.h>

LocaleNetToken m_locspec_to_nettoken(const LocaleSpec locspec);

DESCRIPTION
The m_locspec_to_nettoken () function returns the network locale specification token associated
with the object locspec of type LocaleSpec. The returned token corresponds to a network locale
specification associated with the locspec (as specified by category LC_ALL) that may be
distributed over networks.

The m_locspec_to_nettoken () function is intended for low-level protocol communication services,
for example, RPC run-time services that need to convert the locspec into a well known type.
Most applications are expected to convert the locspec into an Attrobj locale object for
processing.

RETURN VALUE
Upon successful completion, the m_locspec_to_nettoken () function returns a token of type
LocaleNetToken representing the network locale specification. Otherwise the
m_locspec_to_nettoken () function returns [NoLocaleNetToken] and sets errno to indicate the error.

ERRORS
The m_locspec_to_nettoken () function may fail if:

[EBADF]
The LocaleSpec object is invalid.

[EINVAL]
The LocaleSpec specified by locspec cannot be represented as a LocaleNetToken. This can
occur when the LocaleSpec contains a network locale specification of string form but the
token form cannot be found.

APPLICATION USAGE
Refer to the m_createlocspec() function for a description of the use of this function.

SEE ALSO
m_locspec_from_nettoken (), m_createlocspec(), m_destroylocspec(), m_setlocale(),
m_localespec_from_nettoken (), m_localespec_to_nettoken (), <mlocale.h>.

64 X/Open Snapshot (1994)

Reference Manual Pages m_mb_cur_max()

NAME
m_mb_cur_max — get maximum number of bytes using a locale object

SYNOPSIS
#include <mlocale.h>
#include <stdlib.h>

int m_mb_cur_max(const AttrObject * attrobj);

DESCRIPTION
The m_mb_cur_max() function returns an integer value that is the maximum number of bytes in
any character specified by the locale defined by attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_mb_cur_max() function returns the maximum number of
bytes in any character associated with the locale defined by attrobj. Otherwise, the
m_mb_cur_max() function returns zero and may set errno.

ERRORS
The m_mb_cur_max() function may fail if:

[EBADF]
The attribute object is invalid.

SEE ALSO
mblen(), mbtowc(), m_setlocale(), wctomb(), <mlocale.h>. <stdlib.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 65

m_nl_langinfo() Reference Manual Pages

NAME
m_nl_langinfo — get language information using locale object

SYNOPSIS
#include <mlocale.h>
#include <langinfo.h>
#include <limits.h>

char *m_nl_langinfo(const AttrObject attrobj , nl_item item , char* buf ,
size_t bufsize);

DESCRIPTION
The m_nl_langinfo () function returns a pointer to the application supplied buffer buf into which
it places information relevant to the particular language or cultural area identified in the locale
identified by attrobj. No more than bufsize bytes are placed into the array pointed to by buf
including any null terminating byte. The size of string returned by m_nl_langinfo () (including
the terminating null byte) is guaranteed to never exceed MAX_INFO_MSG_LEN, defined in
<limits.h>. The manifest constant names and values of item are defined in <langinfo.h>, for
example:

AttrObject portuguese, english;
m_nl_langinfo(portuguese, ABDAY_1, buf, sizeof(buf))
m_nl_langinfo(english, ABDAY_1, buf, sizeof(buf))

would return a pointer to the string "Dom" in the first call with a Portuguese attrobj and "Sun" in
the second call with an English attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
In a locale where langinfo data is not defined, m_nl_langinfo () copies into the array pointed to by
buf the corresponding string in the POSIX locale. In all locales, m_nl_langinfo () returns a pointer
to an empty string if item contains an invalid string.

ERRORS

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the nl_langinfo () function when called with the
program’s locale set to the locale identified by attrobj.

The returned value of type char* is encoded in the codeset of the locale identified by attrobj. If a
wide-character form of the data is needed, it should be converted from coded characters form to
wide-character form using the mbsrtowcs() function.

The following shows how the code set of the locale defined by attrobj can be determined:

AttrObject locale;
char *buf[MAX_INFO_MSG_LEN];
char* codeset = m_nl_langinfo(locale, CODESET, &buf, MAX_INFO_MSG_LEN);

SEE ALSO
m_createattrobj(), m_mbstowcs(), m_setlocale(), nl_langinfo (), <langinfo.h>, <mlocale.h>.
<limits.h>.

66 X/Open Snapshot (1994)

Reference Manual Pages m_nl_langinfo()

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 67

m_setlocale() Reference Manual Pages

NAME
m_setlocale — set locale object

SYNOPSIS
#include <mlocale.h>
#include <locale.h>

char *m_setlocale(AttrObject * attrobj , const int category ,
const char * locale);

DESCRIPTION
The m_setlocale() function selects the appropriate piece of the locale attribute within attrobj, as
defined by the category and locale arguments, and may be used to change or query the entire
locale attribute or portions thereof.

The m_setlocale() function selects the same locale as the setlocale () function when called with the
same category and locale arguments; except that they are populated into attrobj rather than into
the program’s current locale. The category and locale arguments may be set to any value defined
by the setlocale () function to get similar behaviour. Refer to the setlocale () function for a
description of category and locale . Changes to the categories in the current locale do not affect the
categories in the locale attribute within attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_setlocale() function returns the string associated with the
specified category for the new locale. Otherwise, the m_setlocale() function returns a null pointer
and the locale attribute is not changed.

A null pointer for locale causes the m_setlocale() function to return a pointer to the string
associated with the category for the locale attribute within attrobj. The locale attribute within
attrobj is not changed.

The string returned by the m_setlocale() function is such that a subsequent call with that string
and its associated category restores that part of the locale attribute. The string returned must not
be modified by the program, but may be overwritten by a subsequent call to the m_setlocale()
function.

ERRORS
The m_setlocale() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
The following code illustrates how a program can initialise a locale object for two languages
simultaneously:

AttrObject loc1;
AttrObject loc2;
loc1 = m_createattrobj();
loc2 = m_createattrobj();
m_setlocale(&loc1, LC_ALL, "de_DE");
m_setlocale(&loc2, LC_ALL, "nl_NL");

The following code illustrates how a program can initialise both the program’s (current) locale
and a separate locale object. The current locale is set according to the native environment
corresponding to the LC_* and LANG environment variables. While the locale object, loc1 , is set

68 X/Open Snapshot (1994)

Reference Manual Pages m_setlocale()

to a specified locale "de_DE".

AttrObject loc1;
setlocale(LC_ALL, "");
m_setlocale(&loc1, LC_ALL, "de_DE");

Changing the program’s current locale by means of setlocale () has no effect on any locale
attributes that are already opened by calls to m_setlocale.() The following shows how the current
locale can be used in a multi-locale environment:

AttrObject default_locale;
default_locale = m_createattrobj();
m_setlocale(&default_locale, category, setlocale(category, NULL));

SEE ALSO
m_createattrobj(), <mlocale.h>, <locale.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 69

m_sprintf() Reference Manual Pages

NAME
m_sprintf — print formatted output to a buffer using locale object

SYNOPSIS
#include <stdio.h>

int m_sprintf(mbstate_t * ps , char * s, size_t n, const char * format , ..);

DESCRIPTION
The m_sprintf() function is equivalent to the sprintf() function, except that it uses an explicit
mbstate_t object. The mbstate_t object pointed to by ps stores the current parse state of the
stream. If the attribute object associated with the mbstate_t object has been associated with a
locale, then all locale-dependent formatting uses that locale.

In addition, all locale-dependent behaviour (conversion, radix formatting and character
classification) will be performed using the locale within the mbstate_t object ps. Any reference to
the global locale in the fprintf () function definition will apply to the locale of the mbstate_t
object. Specifically, the white space definition (see %s) shall use the multi-locale function
m_iswctype() (with Space attribute).

The m_sprintf() function places output followed by the null byte ’ ’, in consecutive bytes starting
at *s. No more than n bytes are written including the null byte (unless n is zero). It is the user’s
responsibility to ensure that enough space is available.

This function converts, formats and prints its arguments under control of the format string
pointed to by format. The format string is identical to that of the fprintf () function as defined by
the XSH, Issue 4 specification.

The following extends the XSH, Issue 4 specification of the format string to be in agreement with
the MSE standard.

Adjust the description of the qualifiers h, l and L to include the additional phrases:

‘‘an optional l specifying that a following c conversion specifier applies to a wint_t argument; an
optional l specifying that a following s conversion specifier applies to a pointer to a wchar_t
argument;’’

Replace the description of the c conversion specifier with:

c If no l qualifier is present, the int argument is converted to an unsigned char, and the
resulting character is written. Otherwise, the wint_t argument is converted as if by an ls
conversion specification with no precision and an argument that points to a two-element
array of wchar_t, the first element containing the wint_t argument to the lc conversion
specification and the second a null wide character.

Replace the description of the s conversion specifier with:

s If no l qualifier is present, the argument shall be a pointer to an array of character type.
Characters from the array are written up to (but not including) a terminating null character.
If the precision is specified, no more than that many characters are written. If the precision
is not specified or is greater than the size of the array, the array shall contain a null
character.

If an l qualifier is present, the argument shall be a pointer to an array of wchar_t type. Wide
characters from the array are converted to multi-byte characters (each as if by a call to the
wcrtomb() function, with the conversion state described by an mbstate_t object initialised to
zero before the first wide character is converted) up to and including a terminating null
wide character. The resulting multi-byte characters are written up to (but not including) the
terminating null character (byte). If no precision is specified, the array shall contain a null

70 X/Open Snapshot (1994)

Reference Manual Pages m_sprintf()

wide character. If a precision is specified, no more than that many characters (bytes) are
written (including shift sequences, if any), and the array shall contain a null wide character
if, to equal the multi-byte character sequence length given by the precision, the function
would need to access a wide character one past the end of the array. In no case is a partial
multi-byte character written.

RETURN VALUE
Upon successful completion, this function returns the number of bytes transmitted excluding the
terminating null, or a negative value if an output error is encountered.

ERRORS
The m_sprintf() function may fail if:

[EILSEQ]
A wide-character code that does not correspond to a valid character has been detected.

[EINVAL]
There are insufficient arguments.

[ENOMEM]
Insufficient storage space is available.

[EBADF]
The mbstate_t object is invalid or was not created by a call to m_creatembstate().

APPLICATION USAGE
The m_sprintf() function enables an application to produce the same result as a call to fprintf ()
on a stream which has been associated with an attribute object by a call to m_fattr().

SEE ALSO
m_swprintf(), m_sscanf(), m_swscanf().

CHANGE HISTORY
New for the DIS, with input from the MSE standard.

Distributed Internationalisation Services, Version 2 71

m_sscanf() Reference Manual Pages

NAME
m_sscanf — convert formatted input into an array using locale object

SYNOPSIS
#include <stdio.h>

int m_sscanf(mbstate_t * ps , const char * s, const char * format , ...);

DESCRIPTION
The m_sscanf() function is equivalent to the sscanf() function, except that it uses an explicit
mbstate_t object. The mbstate_t object pointed to by ps stores the current parse state of the
stream. If the attribute object associated with the mbstate_t object has been associated with a
locale, then all locale-dependent formatting uses that locale.

In addition, all locale-dependent behaviour (conversion, radix formatting and character
classification) will be performed using the locale within the mbstate_t object ps. Any reference to
the global locale in the fprintf () function definition will apply to the locale of the mbstate_t
object. Specifically, the white space definition (see %s) shall use the multi-locale function
m_iswctype() (with Space attribute).

The sscanf() function is equivalent to the fscanf() function, except that it reads from the character
array pointed to by s, rather than from a stream. Reaching the end of the string is equivalent to
encountering end-of-file for the fwscanf() function.

The format string is identical to that of the fprintf () function as modified by the XSH, Issue 4
specification.

The following extends the XSH, Issue 4 specification definition of the format string to be in
agreement with the MSE standard.

Adjust the description of the qualifiers h, l and L to include the additional sentences:

‘‘The conversion specifiers c, s and [shall be preceded by l if the corresponding argument is a
pointer to wchar_t rather than a pointer to a character type.’’

Replace the definition of directive failure (page 135, lines 34-36, beginning with, "If the length of
the input item is zero...") with:

‘‘If the length of the input item is zero, the execution of the directive fails; this condition is a
matching failure unless end-of-file, an encoding error, or a read error prevented input from the
stream, in which case it is an input failure.’’

Replace the description of the s conversion specifier with:

s Matches a sequence of non-white-space characters. 16) If no l qualifier is present, the
corresponding argument shall be a pointer to a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l qualifier is present, the input shall be a sequence of multibyte characters that begins
in the initial shift state. Each multibyte character is converted to a wide character as if by a
call to the mbrtowc() function, with the conversion state described by an mbstate_t object
initialised to zero before the first multi-byte character is converted. The corresponding
argument shall be a pointer to an array of wchar_t large enough to accept the sequence and
the terminating null wide character, which will be added automatically.

Replace the first two sentences of the description of the [conversion specifier with:

[Matches a non-empty sequence of characters from a set of expected characters (the scanset
). If no l qualifier is present, the corresponding argument shall be a pointer to a character
array large enough to accept the sequence and a terminating null character, which will be

72 X/Open Snapshot (1994)

Reference Manual Pages m_sscanf()

added automatically.

If an l qualifier is present, the input shall be a sequence of multibyte characters that begins
in the initial shift state. Each multi-byte character is converted to a wide character as if by a
call to the mbrtowc() function, with the conversion state described by an mbstate_t object
initialised to zero before the first multi-byte character is converted. The corresponding
argument shall be a pointer to an array of wchar_t large enough to accept the sequence and
the terminating null wide character, which will be added automatically.

Replace the description of the c conversion specifier with:

c Matches a sequence of characters of the number specified by the field width (1 if no field
width is present in the directive). If no l qualifier is present, the corresponding argument
shall be a pointer to a character array large enough to accept the sequence. No null character
is added.

If an l qualifier is present, the input shall be a sequence of multi-byte characters that begins
in the initial shift state. Each multi-byte character in the sequence is converted to a wide
character as if by a call to the mbrtowc() function, with the conversion state described by an
mbstate_t object initialised to zero before the first multi-byte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of wchar_t large
enough to accept the resulting sequence of wide characters. No null wide character is
added.

The above extension is applicable to all the formatted input functions specified in the XSH,
Issue 4 specification.

RETURN VALUE
The function returns the macro EOF if an input failure occurs before any conversion. Otherwise,
the m_sscanf() function returns the number of input items assigned, which can be fewer than
provided for, or even zero in the event of an early matching failure.

ERRORS
The m_sscanf() function may fail if:

[EBADF]
The mbstate_t object is invalid or was not created by a call to m_creatembstate().

[EILSEQ]
Input byte sequence does not form a valid character.

[EINVAL]
There are insufficient arguments.

APPLICATION USAGE
The m_sscanf() function enables an application to produce the same result as a call to fscanf() on
a stream which has been associated with an attribute object by a call to m_fattr().

SEE ALSO
m_sprintf(), m_swprintf(), m_swscanf().

CHANGE HISTORY
New for the DIS, with input from the MSE standard.

Distributed Internationalisation Services, Version 2 73

m_strcoll() Reference Manual Pages

NAME
m_strcoll — string comparison using locale object

SYNOPSIS
#include <mlocale.h>
#include <string.h>

int m_strcoll(const AttrObject attrobj , const char * s1 ,
const char * s2);

DESCRIPTION
The m_strcoll() function compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the locale defined in attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_strcoll() function returns an integer greater than, equal to or
less than zero, according to whether the string pointed to by s1 is greater than, equal to or less
than the string pointed to by s2 when both are interpreted as appropriate to the locale defined in
attrobj. On error, m_strcoll() may set errno, but no return value is reserved to indicate an error.

ERRORS
The m_strcoll() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The s1 or s2 arguments contain characters outside the domain of the collating sequence.

APPLICATION USAGE
This function behaves in the same manner as the strcoll() function when called with the current
locale set to the locale defined in attrobj.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

The m_strfxrm() and strcmp() functions should be used when doing many, repeated
comparisons of the same strings, such as sorting large lists.

SEE ALSO
m_strxfrm, m_wcscoll(), m_wcsxfrm, strcoll(), strcmp(), <mlocale.h>, <string.h>

CHANGE HISTORY
Derived from Version 1 of this document.

74 X/Open Snapshot (1994)

Reference Manual Pages m_strcspn()

NAME
m_strcspn — get length of complementary substring

SYNOPSIS
#include <mlocale.h>
#include <string.h>

size_t m_strcspn(const AttrObject attrobj , const char * str1 ,
const char * str2);

DESCRIPTION
The m_strcspn() function computes the length (in bytes) of the maximum initial segment of the
string of coded characters pointed to by str1 that consists entirely of coded characters not from
the string pointed to by str2. Comparisons are performed only on complete coded characters and
at coded character boundaries. If the locale defined by attrobj is defined with possible composite
sequences, then both str1 and str2 may contain composite sequences. In the case of composite
sequences occurring in either string, comparisons for matching are performed only on complete
composite sequences.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_strcspn() function returns the length (in bytes) of the segment; no return value is reserved
to indicate an error.

ERRORS
The m_strcspn() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the strcspn() function when called with the current
locale set to the locale defined by attrobj. The locale defined in attrobj may be used in matching
characters in cases where different sequences of combining character may be used to define a
character.

It is the caller’s responsibility to ensure the str1 and str2 are pointed to the beginning of the
coded character boundary; otherwise, the result might be undefined.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

SEE ALSO
m_wcsspn(), m_strspn(), wcscspn(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 75

m_strerror() Reference Manual Pages

NAME
m_strerror — get error message string using a locale object

SYNOPSIS
#include <mlocale.h>
#include <string.h>

char *m_strerror(const AttrObject attrobj , int errnum);

DESCRIPTION
The m_strerror() function maps the error number in errnum to a locale-dependent error message
string and returns a pointer thereto. The string pointed to must not be modified by the program,
but may be overwritten by a subsequent call to m_strerror() with the locale identified by attrobj.

The contents of the error message strings returned by m_strerror() should be determined by the
setting of the LC_MESSAGES category in the locale identified by attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, m_strerror() returns a pointer to the generated message string. On
error errno may be set, but no return value is reserved to indicate an error.

ERRORS
The m_strerror() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The value of errnum is not a valid error message number.

APPLICATION USAGE
This function behaves in the same manner as the strerror() function when called with the current
locale set to the locale identified by attrobj.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to zero, then call m_strerror(), then check errno and if it is non-zero,
assume an error has occurred.

This function returns a pointer to a string located in global process address space. This requires
applications that desire thread-specific data to manage concurrent access to the returned string.

SEE ALSO
strerror(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

76 X/Open Snapshot (1994)

Reference Manual Pages m_strfmon()

NAME
m_strfmon — convert monetary value to string using a locale object

SYNOPSIS
#include <mlocale.h>
#include <monetary.h>

ssize_t m_strfmon(const AttrObject attrobj , char * s, size_t maxsize ,
const char * format , ...);

DESCRIPTION
The m_strfmon() function places characters into the array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed into the array.

The format is a character string that contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which results in the
fetching of zero or more arguments which are converted and formatted. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are simply ignored.

This function behaves in the same manner as the strfmon() function when called with the current
locale set to the locale identified by attrobj. Refer to the strfmon() function for a description of the
conversion specification.

Locale Information

The LC_MONETARY category of the locale identified by attrobj affects the behaviour of this
function including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols
and formats. The international currency symbol should be conformant with the ISO 4217
standard.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, the m_strfmon() function returns the number of bytes placed into the array pointed to by
s, not including the terminating null byte. Otherwise, −1 is returned, the contents of the array are
indeterminate and errno is set to indicate the error.

ERRORS
The m_strfmon() function fails if:

[E2BIG]
Conversion stopped due to lack of space in the buffer.

The m_strfmon() function may fail if:

[EBADF]
The attribute object is invalid.

EXAMPLES
Refer to the strfmon() for examples of different formats.

Distributed Internationalisation Services, Version 2 77

m_strfmon() Reference Manual Pages

SEE ALSO
m_localeconv (), localeconv (), strfmon(), <mlocale.h>, <monetary.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

78 X/Open Snapshot (1994)

Reference Manual Pages m_strftime()

NAME
m_strftime — convert date and time to string using a locale object

SYNOPSIS
#include <mlocale.h>
#include <time.h>

size_t m_strftime(const AttrObject attrobj , char * s, size_t maxsize ,
const char * format , const struct tm * timptr);

DESCRIPTION
The m_strftime() function places bytes into the array pointed to by s as controlled by the string
pointed to by format. The format string consists of zero or more conversion specifications and
ordinary characters. A conversion specification consists of a % character and a terminating
conversion character that determines the conversion specification’s behaviour. All ordinary
characters (including the terminating null byte) are copied unchanged into the array. If copying
takes place between objects that overlap, the behaviour is undefined. No more than maxsize
bytes are placed into the array. Each conversion specification is replaced by appropriate
characters as described in the strftime function. The appropriate characters are determined by
the locale identified by attrob and by the values contained in the structure pointed to by timptr .

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If the total number of resulting bytes including the terminating null byte is not more than
maxsize, the m_strftime() function returns the number of bytes placed into the array pointed to by
s, not including the terminating null byte. Otherwise, zero is returned and the contents of the
array are indeterminate.

ERRORS
The m_strftime() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as if the strftime() function were called with the
current locale set to the locale identified by attrobj. Refer to the strftime() function for a
description of the conversion specification and application usage tips.

SEE ALSO
strftime(), asctime(), clock (), ctime(), difftime(), gmtime(), localtime (), m_strptime(), mktime(),
strptime(), time(), utime(), <mlocale.h>, <time.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 79

m_strpbrk() Reference Manual Pages

NAME
m_strpbrk — scan text object for one or more coded characters

SYNOPSIS
#include <mlocale.h>
#include <string.h>

char *m_strpbrk(const AttrObject attrobj , const char * str1 ,
const char * str2);

DESCRIPTION
The m_strpbrk() function locates the first occurrence of any coded character in the string pointed
to by str1 of any coded characters from the string pointed to by str2. Comparisons are
performed only on complete coded characters and at coded character boundaries.

If the locale defined by attrobj is defined with possible composite sequences, then both str1 and
str2 may contain composite sequences. In the case of composite sequences occurring in either
string, comparisons for matching are performed only on complete composite sequences.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
On successful completion, m_strpbrk() returns a pointer to a coded character in str1 or a null
pointer if no coded character from str2 occurs in str1.

ERRORS
The m_strpbrk() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
The locale defined in attrobj may be used in matching characters in cases where different
sequences of combining character may be used to define a character.

SEE ALSO
m_setlocale(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

80 X/Open Snapshot (1994)

Reference Manual Pages m_strptime()

NAME
m_strptime — date and time conversion using a locale object

SYNOPSIS
#include <mlocale.h>
#include <time.h>

char *m_strptime(const AttrObject attrobj , const char * buf ,
const char * format , struct tm * tm);

DESCRIPTION
The m_strptime() function converts the character string pointed to by buf to values which are
stored in the tm structure pointed to by tm, using the format specified by format.

This function behaves in the same manner as the strptime() function when called with the
current locale set to the locale identified by attrobj. Refer to the strptime() function for a
description of the format specification.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, m_strptime() returns a pointer to the character following the last
character parsed. Otherwise, a null pointer is returned.

ERRORS
The m_strptime() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
The LC_TIME category of the locale identified by attrobj affects the behaviour of this function
when references are made to locale-dependent information in the format specification.

SEE ALSO
m_strftime(), scanf(), strftime(), strptime(), time(), <time.h>, <mlocale.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 81

m_strscanfor() Reference Manual Pages

NAME
m_strscanfor — scans a coded character string for a specific character

SYNOPSIS
#include <mlocale.h>
#include <string.h>

size_t m_strscanfor(const AttrObject attrobj , const char* s,
size_t num_bytes , size_t position ,
ScanDirection direction , ScanCondition condition ,
Boolean inverse);

DESCRIPTION
The m_strscanfor() function scans the coded character string pointed to by s at the offset
specified by position for the first coded character that matches or does not match the set of
classification criteria specified by condition.

The argument condition specifies a set of classification criteria that can be ORed bitwise. The
following conditions are reserved for the standard classification criteria and are defined in the
APPLICATION USAGE section of the m_wcsscanfor() function.

typedef enum { Alphabetic, WhiteSpace, Control, Digit, Graphic,
Lowercase, Uppercase, Printing, Punctuation, HexDigit,
LineBreakCharacter, LineBreakHyphen, LineBreakScript,
WordBoundary, SentenceBoundary, ParagraphBoundary,
CharsetBoundary, ScriptBoundary, CompositeBoundary

} ScanCondition;

The argument inverse determines the rules for scanning, and is an integer type containing one of
the values defined for the following enumeration type:

typedef enum {False, True} Boolean;

If inverse is set to False, the function searches for the first coded character that matches the
specified condition; if inverse is set to True, the function searches for the first coded character that
does not match the condition.

The argument direction determines the direction in which the scanning takes place. It is an
integer type containing one of the values defined for the following enumeration type:

typedef enum {Forw, Back} ScanDirection;

If direction is set to Forw, the function scans from position to the end of the coded character string
s; if direction is set to Back, the function scans from position to the beginning of the coded
character string s.

The rules of any classification criteria are determined by the locale defined by attrobj.

The search begins from the coded character identified by s, and continues through the next
num_bytes bytes.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If all the criteria specified by condition are met, a non-negative integer identifying the location of
the first coded character meeting the criteria is returned. The non-negative integer value
returned indicates the offset number of bytes from the coded character identified by s, to the
coded character at which the condition is satisfied. If no coded character meets the specified
criteria, a (size_t)−1 is returned and errno is set to indicate the error.

82 X/Open Snapshot (1994)

Reference Manual Pages m_strscanfor()

ERRORS
The m_strscanfor() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The condition is invalid.

[EILSEQ] No condition could be found in the supplied coded character string.

APPLICATION USAGE
It is recommend that the position value be updated on subsequent calls since certain languages
(for example, Thai) may require viewing the code elements that precede the position point (when
direction = Forw).

Refer to the m_wcsscanfor() function for a description of the classification criteria.

SEE ALSO
m_wcsscanfor(), m_setlocale(), m_iswctype(), <mlocale.h>, <string.h>.

Distributed Internationalisation Services, Version 2 83

m_strspn() Reference Manual Pages

NAME
m_strspn — get length of substring using locale object

SYNOPSIS
#include <mlocale.h>
#include <string.h>

size_t m_strspn(const AttrObject attrobj , const char * str1 ,
const char * str2);

DESCRIPTION
The m_strspn() function computes the length (number of bytes) of the maximum initial segment
of the character string pointed to by str1 which consists entirely of coded characters from the
string pointed to by str2. Comparisons are performed only on complete coded characters and at
coded character boundaries.

If the locale defined by attrobj is defined with possible composite sequences, then both str1 and
str2 may contain composite sequences. In the case of composite sequences occurring in either
string, comparisons for matching are performed only on complete composite sequences.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_strspn() function returns the length (in bytes) of the segment; no return value is reserved
to indicate an error.

ERRORS
The m_strspn() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the strspn() function when called with the current
locale set to the locale defined by attrobj. The locale defined in attrobj may be used in matching
characters in cases where different sequences of combining character may be used to define a
character.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

SEE ALSO
wcscspn(), m_wcscspn(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

84 X/Open Snapshot (1994)

Reference Manual Pages m_strstr()

NAME
m_strstr — find substring

SYNOPSIS
#include <mlocale.h>
#include <string.h>

char *m_strstr(const AttrObject attrobj , const char * str1 ,
const char * str2);

DESCRIPTION
The m_strstr() function locates the first occurrence in the string of coded characters pointed to
by str1 of the sequence of coded characters (excluding the terminating null character code) in the
string pointed to by str2. Comparisons are performed only on complete coded characters and at
coded character boundaries.

If the locale defined by attrobj is defined with possible composite sequences, then both str1 and
str2 may contain composite sequences. In the case of composite sequences occurring in either
string, comparisons for matching are performed only on complete composite sequences.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_strstr() function returns a pointer to the located string or a
null pointer if the string of coded characters is not found.

If str2 points to a character string with zero length, the function returns str1.

ERRORS
The m_strstr() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the wcswcs() function when called with the current
locale set to the locale defined by attrobj, except that multi-byte strings are processed instead of
wide-character strings. The locale defined in attrobj may be used to match characters in cases
where different sequences of combining characters may be used to define a character.

SEE ALSO
wcschr(), wcswcs(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 85

m_strtod() Reference Manual Pages

NAME
m_strtod — convert string to double-precision number using a locale object

SYNOPSIS
#include <mlocale.h>
#include <stdlib.h>

double m_strtod(const AttrObject attrobj , const char * str ,
char ** endptr);

DESCRIPTION
The m_strtod() function converts the initial portion of the string pointed to by str to type double
representation.

The radix character is defined in the locale (category LC_NUMERIC) identified by attrobj.

Refer to the strtod() function for a description of the expected form of the input string.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_strtod() function returns the converted value. If no
conversion could be performed, zero is returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, ±HUGE_VAL is returned
(according to the sign of the value) and errno is set to [ERANGE].

If the correct value would cause an underflow, zero is returned and errno is set to [ERANGE].

ERRORS
The m_strtod() function fails if:

[ERANGE]
The value to be returned would cause overflow or underflow.

The m_strtod() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
No conversion could be performed.

APPLICATION USAGE
This function behaves in the same manner as the strtod() function when called with the current
locale set to the locale defined by attrobj.

Because zero is returned on error and is also a valid return on success, an application wishing to
check for error situations should set errno to 0, then call m_strtod(), then check errno and if it is
non-zero, assume an error has occurred.

SEE ALSO
isspace(), iswctype(), localeconv (), m_localeconv (), m_isctype(), m_setlocale(), m_strtol(),
m_wcstod(), m_iswctype(), scanf(), strtol(), wcstod(), wcstol(), wctype(), <mlocale.h>, <stdlib.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

86 X/Open Snapshot (1994)

Reference Manual Pages m_strtok()

NAME
m_strtok — split string into tokens using a text context object

SYNOPSIS
#include <mlocale.h>
#include <string.h>

char *m_strtok(char * s1 , const char * s2 , mbstate_t * ps);

DESCRIPTION
A sequence of calls to the m_strtok() function breaks the string pointed to by s1 into a sequence
of tokens, each of which is delimited by a coded character from the string pointed to by s2. The
ps argument points to a text context object of type mbstate_t that is used to store any tokenising
context necessary for it to continue scanning the same string.

For the first call in the sequence, s1 points to a coded character string, while in subsequent calls
for the same string, s1 shall be a null pointer. If s1 is a null pointer, the value pointed to by ps
shall match that stored by the previous call for the same string. The separator string pointed to
by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first coded character that
is not contained in the current separator string pointed to by s2. If no such coded character is
found, then there are no tokens in the string pointed to by s1 and the m_strtok() function returns
a null pointer. If such a coded character is found, it is the start of the first token.

The m_strtok() function then searches from there for a coded character that is contained in the
current separator string. If no such coded character is found, the current token extends to the
end of the string pointed to by s1, and subsequent searches in the same string for a token returns
a null pointer. If such a coded character is found, it is overwritten by a null coded character,
which terminates the current token.

In all cases, the m_strtok() function stores sufficient information in the mbstate_t pointed to by
ps so that subsequent calls, with a null pointer for s1, shall start searching just past the element
overwritten by a null coded character (if any).

If the locale defined by ps is defined with possible composite sequences, both s1 and s2 may
contain composite sequences. If composite sequences are contained in s2, the entire composite
sequence is used to delimit tokens. It is implementation dependent how composite sequence
matching is performed.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_strtok() function returns a pointer to the first coded
character of a token. Otherwise, if there is no token, m_strtok() returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
This function behaves in the same manner as the strtok() function when called with the current
locale set to the locale defined by attrobj.

Distributed Internationalisation Services, Version 2 87

m_strtok() Reference Manual Pages

The encoding of coded characters is defined by the locale associated with ps. An example of
searching for tokens in a multi-locale environment is as follows:

#include <mlocale.h>

static char_t str1[] = "?a???b,,,#c";
static char_t str2[] = " ";
char_t *t;
AttrObject foo_locale; /* previously initialised */
AttrObject C_locale; /* previously initialised */
mbstate_t ps1 = m_creatembstate(foo_locale);
mbstate_t ps2 = m_creatembstate(C_locale);

t = m_strtok(str1, "?", &ps1); /* t points to the token "a" */
t = m_strtok(NULL, ",", &ps1); /* t points to the token "??b" */
t = m_strtok(str2, " \t", &ps2); /* t is a null pointer */
t = m_strtok(NULL, "#", &ps1); /* t points to the token ",," */
t = m_strtok(NULL, "?", &ps2); /* t is a null pointer */
t = m_strtok(NULL, "?", &ps1); /* t is a null pointer */

m_destroymbstate(ps1);
m_destroymbstate(ps2);

SEE ALSO
m_creatembstate(), m_setlocale(), <mlocale.h>, <string.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

88 X/Open Snapshot (1994)

Reference Manual Pages m_strtol()

NAME
m_strtol — convert string to long integer using a locale object

SYNOPSIS
#include <mlocale.h>
#include <stdlib.h>

long int m_strtol(const AttrObject attrobj , const char * str ,
char * *endptr , int base);

DESCRIPTION
The m_strtol() function converts the initial portion of the string pointed to by str to a type long
int representation.

This function behaves in the same manner as the strtol() function when called with the current
locale set to the locale identified by attrobj. Refer to the strtol() function for a description of the
expected form of the input string.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion the m_strtol() function returns the converted value, if any. If no
conversion could be performed 0 is returned and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MAX} or {LONG_MIN}
is returned (according to the sign of the value) and errno is set to [ERANGE].

ERRORS
The m_strtol() function fails if:

[ERANGE]
The value to be returned is not representable.

The m_strtol() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The value of base is not supported.

APPLICATION USAGE
Because 0, {LONG_MIN} and {LONG_MAX} are returned on error and are also valid returns on
success, an application wishing to check for error situations should set errno to 0, then call
m_strtol(), then check errno, and if it is non-zero, assume an error has occurred.

SEE ALSO
isalpha (), m_isctype(), m_iswctype(), m_strtod(), m_wcstod(), scanf(), strtod(), wcstod(), wctype(),
<mlocale.h>, <stdlib.h>.

CHANGE HISTORY
Derived from Version 1 of this document.

Distributed Internationalisation Services, Version 2 89

m_strtoul() Reference Manual Pages

NAME
m_strtoul — convert string to unsigned long using a locale object

SYNOPSIS
#include <mlocale.h>
#include <stdlib.h>

unsigned long int m_strtoul(const AttrObject attrobj , const char * str ,
char * *endptr , int base);

DESCRIPTION
The m_strtoul() function converts the initial portion of the string pointed to by str to a type
unsigned long int representation.

This function behaves in the same manner as the strtoul() function when called with the current
locale set to the locale identified by attrobj. Refer to the strtoul() function for a description of the
expected form of the input string.

In other than the POSIX locale, additional implementation-dependent subject sequence forms
may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion the m_strtoul() function returns the converted value, if any. If no
conversion could be performed, zero is returned and errno may be set to [EINVAL]. If the correct
value is outside the range of representable values, {ULONG_MAX} is returned and errno is set to
[ERANGE].

ERRORS
The m_strtoul() function fails if:

[ERANGE]
The value to be returned is not representable.

The m_strtoul() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The value of base is not supported.

APPLICATION USAGE
Because zero and {ULONG_MAX} are returned on error and are also valid returns on success, an
application wishing to check for error situations should set errno to 0, then call m_strtoul(), then
check errno and if it is non-zero, assume an error has occurred.

Unlike m_strtod() and m_strtol(), m_strtoul() always returns a non-negative number; therefore,
using the return value of m_strtoul() for out-of-range numbers with m_strtoul() could cause
more severe problems than just loss of precision if those numbers can ever be negative.

90 X/Open Snapshot (1994)

Reference Manual Pages m_strtoul()

SEE ALSO
isalpha (), iswctype(), m_isctype(), m_iswctype(), m_strtod(), m_strtol(), m_wcstoul(), scanf(),
strtod(), strtol(), wcstoul(), wctype(), <mlocale.h>, <stdlib.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 91

m_strxfrm() Reference Manual Pages

NAME
m_strxfrm — string transformation using a locale object

SYNOPSIS
#include <mlocale.h>
#include <string.h>

size_t m_strxfrm(const AttrObject attrobj , char * s1 ,
const char * s2 , size_t n);

DESCRIPTION
The m_strxfrm() function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp() function is applied
to two transformed strings, it returns a value greater than, equal to or less than 0, corresponding
to the result of the m_strcoll() function applied to the same two original strings with the same
locale identified by attrobj. No more than n bytes are placed into the resulting array pointed to by
s1, including the terminating null byte. If n is zero, s1 is permitted to be a null pointer. If
copying takes place between objects that overlap, the behaviour is undefined.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_strxfrm() function returns the length of the transformed
string (not including the terminating null byte). If the value returned is n or more, the contents
of the array pointed to by s1 are indeterminate.

On error, the m_strxfm() function returns (size_t)−1 and sets errno to indicate the error.

ERRORS
The m_strxfrm() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The string pointed to by the s2 argument contains characters outside the domain of the
collating sequence.

APPLICATION USAGE
The transformation function is such that two transformed strings can be ordered by the strcmp()
function as appropriate to collating sequence information in the locale (category LC_COLLATE)
identified by attrobj.

This function behaves in the same manner as the strxfrm() function when called with the current
locale set to the locale identified by attrobj.

The fact that when n is zero, s1 is permitted to be a null pointer, is useful to determine the size of
the s1 array prior to making the transformation.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strxfrm(), then check errno, and if it is non-zero,
assume an error has occurred.

SEE ALSO
strcmp(), m_strcoll(), m_wcscoll(), strcoll(), strxfrm(), <mlocale.h>. <string.h>.

92 X/Open Snapshot (1994)

Reference Manual Pages m_strxfrm()

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 93

m_swprintf() Reference Manual Pages

NAME
m_swprintf — print formatted output to a buffer using locale object

SYNOPSIS
#include <stdio.h>

int m_swprintf(mbstate_t * ps , wchar_t * s, size_t n,
const wchar_t * format , ..);

DESCRIPTION
The m_swprintf() function is equivalent to the swprintf() function specified in the MSE standard
except that it uses an explicit mbstate_t object pointed to by ps, rather than an mbstate_t object
associated with the stream by a call to m_fattr(). The mbstate_t object pointed to by ps stores the
current parse state of the stream. If the attribute object associated with the mbstate_t object has
been associated with a locale, then all locale-dependent formatting uses that locale.

In addition, all locale-dependent behaviour (conversion, radix formatting and character
classification) will be performed using the locale within the mbstate_t object ps. Any reference to
the global locale in the fprintf () function definition will apply to the locale of the mbstate_t
object. Specifically, the white space definition (see %s) shall use the multi-locale function
m_iswctype() (with Space attribute).

The m_swprintfi() function writes output to the array of wide characters pointed to by s, under
control of the wide string pointed to by format that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored. The fwprintf() function returns when the end
of the format string is encountered.

The format string is identical to that of the m_sprintf() function and is extended to be in
agreement with the MSE standard of being represented using the wchar_t encoding.

The format is composed of zero or more directives: ordinary wide characters (not %), and
conversion specifications. The processing of conversion specifications is as if they were replaced
in the format string by wide-character strings that are each the result of fetching zero or more
subsequent arguments and converting them, if applicable, according to the corresponding
conversion specifier. The expanded wide-character format string is then written to the output
stream.

Each conversion specification is introduced by the wide character %. After the %, the following
appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.

• An optional minimum field width . If the converted value has fewer wide characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left adjustment
flag, described later, has been given) to the field width. The field width takes the form of an
asterisk * (described later) or a decimal integer.

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x
and X conversions, the number of digits to appear after the decimal-point character for e, E
and f conversions, the maximum number of significant digits for the g and G conversions, or
the maximum number of wide characters to be written from a string in s conversion. The
precision takes the form of a period (.) followed either by an asterisk * (described later) or by
an optional decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behaviour is undefined.

94 X/Open Snapshot (1994)

Reference Manual Pages m_swprintf()

• An optional l (ell) specifying that a following c conversion specifier applies to a wint_t
argument; an optional l specifying that a following s conversion specifier applies to a pointer
to a wchar_t argument; an optional h specifying that a following d, i, o, u, x or X conversion
specifier applies to a shortint" or unsigned short int argument (the argument is promoted
according to the integral promotions, and its value is converted to short int or unsigned
short int before printing); an optional h specifying that a following n conversion specifier
applies to a pointer to a short int argument; an optional l specifying that a following d, i , o,
u, x or X conversion specifier applies to a long int or unsigned long int argument; an
optional l specifying that a following n conversion specifier applies to a pointer to a long int
argument; or an optional L specifying that a following e, E, f, g or G conversion specifier
applies to a long double argument. If an h, l, or L appears with any other conversion
specifier, the behaviour is undefined.

• A wide character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or
precision, or both, shall appear (in that order) before the argument (if any) to be converted. A
negative field width argument is taken as a − flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag wide characters and their meanings are:

− The result of the conversion is left-justified within the field. (It is right-justified if this
flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It begins
with a sign only when a negative value is converted if this flag is not specified.)

space If the first wide character of a signed conversion is not a sign, or if a signed conversion
results in no wide characters, a space is prefixed to the result. If the space and + flags
both appear, the space flag is ignored.

The result is to be converted to an ‘‘alternate form’’. For o conversion, it increases the
precision to force the first digit of the result to be a zero, if necessary. For x (or X)
conversion, a non-zero result has 0x (or 0X) prefixed to it. For e, E, f, g and G
conversions, the result always contains a decimal-point wide character, even if no
digits follow it. (Normally, a decimal-point wide character appears in the result of these
conversions only if a digit follows it.) For g and G conversions, trailing zeros are not be
removed from the result. For other conversions, the behaviour is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the 0
and − flags both appear, the 0 flag is ignored. For d, i, o, u, x and X conversions, if a
precision is specified, the 0 flag is ignored. For other conversions, the behaviour is
undefined.

The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style [-]dddd . The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide characters.

o,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd ; the letters abcdef are used
for x conversion and the letters ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented

Distributed Internationalisation Services, Version 2 95

m_swprintf() Reference Manual Pages

in fewer digits, it is expanded with leading zeros. The default precision is 1. The result
of converting a zero value with a precision of zero is no wide characters.

f The double argument is converted to decimal notation in the style [-]ddd.ddd, where
the number of digits after the decimal-point wide character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal-point wide character appears. If a decimal-point wide
character appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

e,E The double argument is converted in the style [-]d.ddde 1 dd, where there is one digit
before the decimal-point wide character (which is non-zero if the argument is non-zero)
and the number of digits after it is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is zero and the # flag is not specified, no decimal-point wide
character appears. The value is rounded to the appropriate number of digits. The E
conversion specifier produces a number with E instead of e introducing the exponent.
The exponent always contains at least two digits. If the value is zero, the exponent is
zero.

g,G The double argument is converted in style f or e (or in style E in the case of a G
conversion specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value converted;
style e (or E) is used only if the exponent resulting from such a conversion is less than
−4 or greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point wide character appears only if it is
followed by a digit.

c If no l qualifier is present, the int argument is converted to a wide character as if by
calling btowc() and the resulting wide character is written. Otherwise, the wint_t
argument is converted to wchar_t and written.

s If no l qualifier is present, the argument shall be a pointer to a character array
containing a multibyte sequence beginning in the initial shift state. Characters from the
array are converted as if by repeated calls to the mbrtowc function, with the conversion
state described by the mbstate_t object pointed to by ps, and written up to (but not
including) the terminating null wide character. If the precision is specified, no more
than that many wide characters are written. If the precision is not specified or is greater
than the size of the converted array, the converted array shall contain a null wide
character.

If an l qualifier is present, the argument shall be a pointer to an array of wchar_t type.
Wide characters from the array are written up to (but not including) a terminating null
wide character. If the precision is specified, no more than that many wide characters are
written. If the precision is not specified or is greater than the size of the array, the array
shall contain a null wide character.

p The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable wide characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into which is written the number of wide
characters written to the output stream so far by this call to fwprintf(). No argument is
converted.

% A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

96 X/Open Snapshot (1994)

Reference Manual Pages m_swprintf()

If a conversion specification is invalid, the behaviour is undefined.

If any argument is, or points to, a union or an aggregate (except for an array of char
type using %s conversion, an array of wchar_t type using %ls conversion, or a pointer
using %p conversion), the behaviour is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

RETURN VALUE
The m_swprintf() function returns the number of wide characters transmitted, or a negative
value if an output error occurred.

ERRORS
The m_swprintf() function may fail if:

[EILSEQ]
A wide-character code that does not correspond to a valid character has been detected.

[ENOMEM]
Insufficient storage space is available.

[EBADF]
The mbstate_t object is invalid or was not created by a call to m_creatembstate().

APPLICATION USAGE
The m_swprintf() function enables an application to produce the same result as a call to
fwprintf() on a stream which has been associated with an attribute object by a call to m_fattr().

SEE ALSO
m_sprintf(), m_sscanf(), m_swscanf().

CHANGE HISTORY
New for the DIS, with input from the MSE standard.

Distributed Internationalisation Services, Version 2 97

m_swscanf() Reference Manual Pages

NAME
m_sscanf — convert formatted input into an wide character array using locale object

SYNOPSIS
#include <stdio.h>

int m_swscanf(mbstate_t * ps , const wchar_t * s,
const wchar_t * format , ...);

DESCRIPTION
The m_swscanf() function is equivalent to the swscanf() function in the MSE standard except that
it uses an explicit mbstate_t object. The mbstate_t object pointed to by ps stores the current
parse state of the stream. If the attribute object associated with the mbstate_t object has been
associated with a locale, then all locale-dependent formatting uses that locale.

The swscanf() function is equivalent to the fwscanf() function except that it reads from the
character array pointed to by s, rather than from a stream. Reaching the end of the string is
equivalent to encountering end-of-file for the fwscanf() function.

In addition, all locale-dependent behaviour (conversion, radix formatting and character
classification) will be performed using the locale within the mbstate_t object ps. Any reference to
the global locale in the fprintf () function definition will apply to the locale of the mbstate_t
object. Specifically, the white space definition (see %s) shall use the multi-locale function
m_iswctype() (with Space attribute).

The format string is identical to that of the m_sscanf() function and is extended to be in
agreement with the MSE standard of being represented using the wchar_t encoding.

The format is composed of zero or more directives: one or more white-space wide characters; an
ordinary wide character (neither % nor a white-space wide character); or a conversion
specification. Each conversion specification is introduced by a %. After the %, the following
appear in sequence:

• An optional assignment-suppressing wide character *.

• An optional non-zero decimal integer that specifies the maximum field width (in wide
characters).

• An optional h, l (ell) or L indicating the size of the receiving object. The conversion specifiers
c, s and [shall be preceded by l if the corresponding argument is a pointer to wchar_t rather
than a pointer to a character type. The conversion specifiers d, i and n shall be preceded by h
if the corresponding argument is a pointer to short int rather than a pointer to int, or by l if it
is a pointer to long int. Similarly, the conversion specifiers o, u and x shall be preceded by h
if the corresponding argument is a pointer to unsigned short int rather than a pointer to
unsigned int, or by l if it is a pointer to unsigned long int. Finally, the conversion specifiers
e, f and g shall be preceded by l if the corresponding argument is a pointer to double rather
than a pointer to float, or by L if it is a pointer to long double. If an h, l or L appears with any
other conversion specifier, the behaviour is undefined.

• A wide character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The m_swscanf() function executes each directive of the format in turn. If a directive fails, as
detailed below, the m_swscanf() function returns. Failures are described as input failures (if an
encoding error occurs or due to the unavailability of input characters), or matching failures (due
to inappropriate input).

A directive composed of white-space wide character(s) is executed by reading input up to the
first non-white-space wide character (which remains unread), or until no more wide characters

98 X/Open Snapshot (1994)

Reference Manual Pages m_swscanf()

can be read.

A directive that is an ordinary wide character is executed by reading the next wide character of
the stream. If the wide character differs from the directive, the directive fails, and the differing
and subsequent wide characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps.

Input white-space wide characters (as specified by the iswspace() function) are skipped, unless
the specification includes a c or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest sequence of input wide characters, not exceeding any specified
field width, which is, or is a prefix of, a matching sequence. The first wide character, if any, after
the input item remains unread. If the length of the input item is zero, the execution of the
directive fails: this condition is a matching failure, unless end-of-file, an encoding error, or a read
error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of
input wide characters) is converted to a type appropriate to the conversion specifier. If the input
item is not a matching sequence, the execution of the directive fails: this condition is a matching
failure. Unless assignment suppression was indicated by a *, the result of the conversion is
placed in the object pointed to by the first argument following the format argument that has not
already received a conversion result. If this object does not have an appropriate type, or if the
result of the conversion cannot be represented in the space provided, the behaviour is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstol() function with the value 10 for the base argument.
The corresponding argument shall be a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for the
subject sequence of the wcstol() function with the value 0 for the base argument. The
corresponding argument shall be a pointer to integer.

0 Matches an optionally signed octal integer, whose format is the same as expected for
the subject sequence of the wcstoul() function with the value 8 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the wcstoul() function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the wcstoul() function with the value 16 for the
base argument. The corresponding argument shall be a pointer to unsigned integer.

e,f,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject sequence of the wcstod function. The corresponding argument
shall be a pointer to floating.

s Matches a sequence of non-white-space wide characters. If no l qualifier is present,
characters from the input field are converted as if by repeated calls to the wcrtomb()
function, with the conversion state described by an the mbstate_t object pointed to by
ps. The corresponding argument shall be a pointer to a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

Distributed Internationalisation Services, Version 2 99

m_swscanf() Reference Manual Pages

Otherwise, the corresponding argument shall be a pointer to the initial element of an
array of wchar_t type large enough to accept the sequence and a terminating null wide
character, which will be added automatically.

[Matches a non-empty sequence of wide characters from a set of expected characters
(the scanset). If no l qualifier is present, characters from the input field are converted as
if by repeated calls to the wcrtomb() function, with the conversion state described by an
mbstate_t object initialised to zero before the first wide character is converted. The
corresponding argument shall be a pointer to a character array large enough to accept
the sequence and a terminating null character, which will be added automatically.

If an l qualifier is present, the corresponding argument shall be a pointer to the initial
element of an array of wchar_t type large enough to accept the sequence and a
terminating null wide character, which will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket wide character (]). The wide characters
between the brackets (the scanlist) comprise the scanset, unless the wide character
after the left bracket is a circumflex (ˆ), in which case the scanset contains all wide
characters that do not appear in the scanlist between the circumflex and the right
bracket. If the conversion specifier begins with [] or [ˆ], the right bracket wide
character is in the scanlist and the next right bracket wide character is the matching
right bracket that ends the specification; otherwise the first right bracket wide character
is the one that ends the specification. If a − wide character is in the scanlist and is not
the first, nor the second where the first wide character is a ˆ, nor the last character, the
behaviour is implementation-defined.

c Matches a sequence of wide characters of the number specified by the field width (1 if
no field width is present in the directive). If no l qualifier is present, characters from the
input field are converted as if by repeated calls to the wcrtomb() function, with the
conversion state described by an mbstate_t object initialised to zero before the first
wide character is converted. The corresponding argument shall be a pointer to a
character array large enough to accept the sequence. No null character is added.

If an l qualifier is present, the corresponding argument shall be a pointer to the initial
element of an array of wchar_t type large enough to accept the sequence. No null wide
character is added.

p Matches an implementation-defined set of sequences, which should be the same as the
set of sequences that may be produced by the %p conversion of the fwprintf function.
The corresponding argument shall be a pointer to a pointer to void. The interpretation
of the input item is implementation-defined. If the input item is a value converted
earlier during the same program execution, the pointer that results shall compare equal
to that value; otherwise the behaviour of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of wide characters read from the input stream so far
by this call to the m_swscanf() function. Execution of a %n directive does not affect the
assignment count returned at the completion of execution of the m_swscanf() function.

% Matches a single % ; no conversion or assignment occurs. The complete conversion
specification shall be %%

If a conversion specification is invalid, the behaviour is undefined. The conversion
specifiers E, G and X are also valid and behave the same as, respectively, e, g and x .

100 X/Open Snapshot (1994)

Reference Manual Pages m_swscanf()

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide characters matching the current directive have been read (other than
leading white space, where permitted), execution of the current directive terminates
with an input failure; otherwise, unless execution of the current directive is terminated
with a matching failure, execution of the following directive (other than %n, if any) is
terminated with an input failure.

Trailing white space (including new-line wide characters) is left unread unless matched
by a directive. The success of literal matches and suppressed assignments is not
directly determinable other than via the %n directive.

RETURN VALUE
The m_swscanf() function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the m_swscanf() function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

ERRORS
The m_swscanf() function may fail if:

[EBADF]
The mbstate_t object is invalid or was not created by a call to m_creatembstate().

APPLICATION USAGE
The m_swscanf() function enables an application to produce the same result as a call to fwscanf()
on a stream which has been associated with an attribute object by a call to m_fattr().

SEE ALSO
m_sprintf(), m_sscanf(), m_sscanf().

CHANGE HISTORY
New for the DIS, with input from the MSE standard.

Distributed Internationalisation Services, Version 2 101

m_tombstrans() Reference Manual Pages

NAME
m_tombstrans — transliterate a character string using locale object

SYNOPSIS
#include <mlocale.h>
#include <wctype.h>

size_t m_tombstrans(const AttrObject attrobj , wctrans_t desc ,
char ** inbuf , size_t * inbufleft ,
char ** outbuf , size_t * outbufleft);

DESCRIPTION
The m_tombstrans() function maps the character string inbuf using the transliteration mapping
described by desc into the array specified by outbuf. The setting of the LC_CTYPE category in the
attrobj shall be the same as during the call to m_wctrans() or wctrans() that returned the value
desc. Otherwise the result is implementation dependent.

The m_tombstrans() function is defined to operate on EOF and valid character encodings in the
locale defined in attrobj. If any character code in inbuf is not in the domain of the locale defined in
attrobj, the result is undefined. Any character code not included in the transliteration mapping
described by desc are moved to the output buffer unchanged.

The inbuf argument points to a variable that points to the first character in the input buffer.

The inbufleft argument, on input, specifies the number of bytes to be mapped. A value of −1
indicates that the input is delimited by a NULL character.

The outbuf argument points to a variable that points to the first available character code in the
output buffer.

The outbufleft argument is decremented to reflect the number of bytes still available in the output
buffer. On return, the value is modified to reflect the number of wide-character codes left
unfilled in the buffer. If the outbufleft argument is equal to zero, the m_towcstrans() function does
not perform any transformation and returns the size of outbufleft needed to transform the
contents of inbuf.

If the transliteration mapping encounters an invalid character code according to the locale
defined in attrobj, mapping stops after the previous successfully mapped character code. If the
input buffer ends with an incomplete composite sequence of character codes, conversion stops
after the previous successfully mapped character code. If the output buffer is not large enough
to hold the entire transliterated input, conversion stops just prior to the input character code that
would cause the output buffer to overflow. The variable pointed to by inbuf is updated to point
to the character code following the last character code used in the mapping. The value pointed
to by inbufleft is decremented to reflect the number of bytes still not mapped in the input buffer.
The variable pointed to by outbuf is updated to point to the character code following the last
character code of mapped output data. The value pointed to by outbufleft is decremented to
reflect the number of bytes still available in the output buffer. If m_tombstrans() encounters a
character code in the input buffer that is legal, but for which a transliterated character code does
not exist in the target mapping, m_tombstrans() copies the input character code into the output
buffer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

102 X/Open Snapshot (1994)

Reference Manual Pages m_tombstrans()

RETURN VALUE
The m_tombstrans() function updates the variables pointed to by the arguments to reflect the
extent of the mapping and returns the number of non-transliterated mappings performed. If the
entire string in the input buffer is mapped, the value pointed to by inbufleft is zero. If the
transliteration mapping is stopped due to any condition mentioned above, the value pointed to
by inbufleft is non-zero and errno is set to indicate the condition. If an error occurs
m_tombstrans() returns (size_t)−1 and sets errno.

ERRORS
The m_tombstrans() function fails if:

[EILSEQ]
Transliteration mapping stopped due to an invalid character code that is not in the domain
of the locale defined by attrobj.

[E2BIG]
Transliteration mapping stopped due to lack of space in the output buffer.

[EINVAL]
Transliteration mapping stopped due to an incomplete composite sequence of character
codes at the end of the input buffer.

The m_tombstrans() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the towcstrans() function when called with the
current locale set to the locale identified by attrobj, except that char* quantities are processed
instead of wide characters.

The two strings — "upper" and "lower" — are reserved for the standard transliteration mappings.

The m_tombstrans() function provides the same set of transliteration mappings as are available
from the m_wctrans() function for the same locale defined by attrobj. However, the reverse may
not be true.

Note that the number of characters in outbuf may be different from inbuf when performing
transliteration mapping on character strings containing composite sequences.

SEE ALSO
m_wctrans(), m_tombstrans(), m_towcstrans(), towlower(), towctrans(), towcstrans(), towupper(),
wctrans(), <mlocale.h>, <wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 103

m_towcstrans() Reference Manual Pages

NAME
m_towcstrans — transliterate a wide-character string using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>
#include <wctype.h>

size_t m_towcstrans(const AttrObject attrobj , wctrans_t desc ,
wchar_t ** inbuf , size_t * inbufleft ,
wchar_t ** outbuf , size_t * outbufleft);

DESCRIPTION
The m_towcstrans() function maps the wide-character string inbuf using the transliteration
mapping described by desc into the array specified by outbuf. The setting of the LC_CTYPE
category in the attrobj shall be the same as during the call to m_wctrans() or wctrans() that
returned the value desc. Otherwise the result is implementation dependent.

The m_towcstrans() function is defined to operate on WEOF and wide-character codes
corresponding to the valid character encodings in the locale defined in attrobj. If any wide-
character code in inbuf is not in the domain of the locale defined in attrobj, the result is undefined.
Any wide-character code not included in the transliteration mapping described by desc is moved
to the output buffer unchanged.

The inbuf argument points to a variable that points to the first wide-character in the input buffer.

The inbufleft argument, on input, specifies the number of wide-character codes to be mapped. A
value of −1 indicates that the input is delimited by a wchar_t NULL character.

The outbuf argument points to a variable that points to the first available wide-character code in
the output buffer.

The outbufleft argument, on input, specifies the size of the output buffer (number of wide-
character codes). On return, the value is modified to reflect the number of wide-character codes
left unfilled in the buffer. If the outbufleft argument is equal to zero, the m_towcstrans() function
does not perform any transformation and returns the size of outbufleft needed to transform the
contents of inbuf.

If the transliteration mapping encounters an invalid wide-character code according to the locale
defined in attrobj, mapping stops after the previous successfully mapped wide-character code. If
the input buffer ends with an incomplete composite sequence of wide-character codes,
conversion stops after the previous successfully mapped wide-character code. If the output
buffer is not large enough to hold the entire transliterated input, conversion stops just prior to
the input wide-character code that would cause the output buffer to overflow. The variable
pointed to by inbuf is updated to point to the wide-character code following the last wide-
character code used in the mapping. The value pointed to by inbufleft is decremented to reflect
the number of wide-character codes still not mapped in the input buffer. The variable pointed to
by outbuf is updated to point to the wide-character code following the last wide-character code
of mapped output data. The value pointed to by outbufleft is decremented to reflect the number
of wide-character codes still available in the output buffer. If m_towcstrans() encounters a wide-
character code in the input buffer that is legal, but for which a transliterated wide-character code
does not exist in the target mapping, m_towcstrans() copies the input wide-character code into
the output buffer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

104 X/Open Snapshot (1994)

Reference Manual Pages m_towcstrans()

RETURN VALUE
The m_towcstrans() function updates the variables pointed to by the arguments to reflect the
extent of the mapping and returns the number of wide characters which were not modified by
the transliteration mapping. If the entire string in the input buffer is mapped, the value pointed
to by inbufleft is zero. If the transliteration mapping is stopped due to any condition mentioned
above, the value pointed to by inbufleft is non-zero and errno is set to indicate the condition. If an
error occurs m_towcstrans() returns (size_t)−1 and sets errno.

If the outbufleft argument is equal to zero, the m_towcstrans() function does not perform any
transformation and returns the size of outbufleft needed to transform the contents of inbuf.

ERRORS
The m_towcstrans() function fails if:

[EILSEQ]
Transliteration mapping stopped due to an invalid wide-character code that is not in the
domain of the locale defined by attrobj.

[E2BIG]
Transliteration mapping stopped due to lack of space in the output buffer.

[EINVAL]
Transliteration mapping stopped due to an incomplete composite sequence of wide-
character codes at the end of the input buffer.

The m_towcstrans() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
The two strings — "upper" and "lower" — are reserved for the standard transliteration mappings.

The m_towcstrans() function provides the same set of transliteration mappings as are available
from the towcstrans() function for the same locale defined by attrobj. However, the reverse may
not be true.

Note that the number of characters in outbuf may be different from inbuf when performing
transliteration mapping on wide-character strings containing composite sequences.

SEE ALSO
m_wctrans(), m_tombstrans(), towlower(), towctrans(), towcstrans(), towupper(), wctrans(),
<mlocale.h>. <wchar.h>, <wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 105

m_wcscnt() Reference Manual Pages

NAME
m_wcscnt — count number of wide-character codes in a composite sequence using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcscnt(const AttrObject attrobj , const wchar_t * ptr);

DESCRIPTION
The m_wcscnt() function computes the number of wide-character codes in the composite
sequence pointed to by ptr.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If ptr is not a null pointer, the m_wcscnt() function returns 0 if ptr points to a null wide-character
code or a combining character; otherwise it returns the number of wide-character codes
including the non-combining wide-character code and zero or more following combining wide-
character codes up to, but not including, the next non-combining wide-character code or
terminating null wide-character code. If ptr is a null pointer, the m_wcscnt() function returns 0.

ERRORS
The m_wcscnt() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

SEE ALSO
m_createattrobj(), m_wcsnext(), m_wcsquery(), m_wcswidth(), <mlocale.h>, <wchar.h>.

106 X/Open Snapshot (1994)

Reference Manual Pages m_wcscoll()

NAME
m_wcscoll — wide-character string comparison using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

int m_wcscoll(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

DESCRIPTION
The m_wcscoll() function compares the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category
of the locale identified by attrobj.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_wcscoll() function returns an integer greater than, equal to or
less than zero, according to whether the wide-character string pointed to by ws1 is greater than,
equal to or less than the wide-character string pointed to by ws2 when both are interpreted as
appropriate to the locale identified by attrobj. On error, m_wcscoll() may set errno, but no return
value is reserved to indicate an error.

ERRORS
The m_wcscoll() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The ws1 or ws2 arguments contain wide-character codes outside the domain of the collating
sequence.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcscoll() function when called with the current
locale set to the locale identified by attrobj.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

The m_wcsfxrm() and wcscmp() functions should be used for sorting large lists.

SEE ALSO
wcscmp(), m_wcsxfrm(), m_strcoll(), m_strxfrm(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

Distributed Internationalisation Services, Version 2 107

m_wcscspn() Reference Manual Pages

NAME
m_wcscspn — get length of complementary wide substring

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcscspn(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

DESCRIPTION
The m_wcscspn() function computes the length of the maximum initial segment of the wide
character string pointed to by ws1 which consists entirely of wide-character codes not from the
wide string pointed to by ws2.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_wcscspn() function returns the length of the complementary wide substring ws1; no
return value is reserved to indicate an error.

ERRORS
The m_wcscspn() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcscspn() function when called with the
current locale set to the locale defined by attrobj.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

The locale defined in attrobj may be used in matching characters in cases where different
sequences of combining character may be used to define a character.

SEE ALSO
m_wcsspn(), wcscspn(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

108 X/Open Snapshot (1994)

Reference Manual Pages m_wcsfmon()

NAME
m_wcsfmon — convert monetary value to wide-character string using a locale object

SYNOPSIS
#include <mlocale.h>
#include <monetary.h>
#include <wchar.h>

size_t m_wcsfmon(const AttrObject attrobj , wchar_t * ws,
size_t maxsize , const char * format , ...);

DESCRIPTION
The m_wcsfmon() function places wide characters into the array pointed to by ws as controlled
by the string pointed to by format. No more than maxsize wide characters are placed into the
array.

The format is a character string that contains two types of objects: plain characters, which are
converted to wide-characters and copied to the output stream; and conversion specifications,
each of which results in the fetching of zero or more arguments which are converted and
formatted. The results are undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are simply ignored.

This function behaves in the same manner as the strfmon() function when called with the current
locale set to the locale identified by attrobj, except that a wide-character string is produced
instead of a multi-byte string. Refer to the strfmon() function for a description of the conversion
specification.

Locale Information

The LC_MONETARY category of the locale identified by attrobj affects the behaviour of this
function including the monetary radix character (which may be different from the numeric radix
character affected by the LC_NUMERIC category), the grouping separator, the currency symbols
and formats. The international currency symbol should be conformant with the ISO 4217
standard.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If the total number of resulting wide characters including the terminating null wide-character
code is not more than maxsize, the m_wcsfmon() function returns the number of wide-character
codes placed into the array pointed to by ws, not including the terminating null wide-character
code. Otherwise, −1 is returned, the contents of the array are indeterminate, and errno is set to
indicate the error.

ERRORS
The m_wcsfmon() function fails if:

[E2BIG]
Conversion stopped due to lack of space in the buffer.

[EILSEQ]
Invalid byte sequence is detected during conversion to wide character string.

Distributed Internationalisation Services, Version 2 109

m_wcsfmon() Reference Manual Pages

The m_wcsfmon() function may fail if:

[EBADF]
The attribute object is invalid.

EXAMPLES
Refer to the strfmon() for examples of different formats.

SEE ALSO
m_localeconv (), localeconv (), strfmon(), m_strfmon(), <mlocale.h>, <monetary.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

110 X/Open Snapshot (1994)

Reference Manual Pages m_wcsftime()

NAME
m_wcsftime — convert data and time to wide-character string

SYNOPSIS
#include <mlocale.h>
#include <time.h>
#include <wchar.h>

size_t m_wcsftime(const AttrObject attrobj , wchar_t * wcs,
size_t maxsize , wchar_t * format ,
const struct tm * timptr);

DESCRIPTION
The m_wcsftime() function places the wide-character codes into the array pointed to by wcs as
controlled by the string pointed to by format.

This function behaves as if the character string generated by the m_strftime() function (when
using the same locale identified by attrobj) is passed to the mbsrtowcs() function as the character
string argument, and the m_mbsrtowcs() function places the result in the wide-character string
argument of the m_wcsftime() function up to a limit of maxsize wide-character codes.

If copying takes place between objects that overlap, the behaviour is undefined.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If the total number of resulting wide-character codes including the terminating null wide-
character code is no more than maxsize , the m_wcsftime() function returns the number of wide-
character codes placed into the array pointed to by wcs, not including the terminating null
wide-character code. Otherwise zero is returned and the contents of the array are indeterminate.

ERRORS
The m_wcsftime() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcsftime() function when called with the
current locale set to the locale identified by attrobj. Refer to the strftime() function for a
description of the conversion specification and application usage tips.

The format string is encoded in the file code of the locale identified by attrobj. Date and time
formatting information is also extracted from this locale (category LC_TIME).

SEE ALSO
m_strftime(), m_strptime(), m_setlocale(), strftime(), wcsftime(), <mlocale.h>, <time.h>,
<wchar.h>.

Distributed Internationalisation Services, Version 2 111

m_wcsftime() Reference Manual Pages

CHANGE HISTORY
Derived from the XSH, Issue 4 specification and Version 1 of this document.

112 X/Open Snapshot (1994)

Reference Manual Pages m_wcsnext()

NAME
m_wcsnext — advance to next composite sequence using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

wchar_t* m_wcsnext(const AttrObject attrobj , const wchar_t* ptr);

DESCRIPTION
The m_wcsnext() function locates the next non-combining wide-character code in a wide-
character string.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If ptr is not a null pointer, the m_wcsnext() function either returns (wchar_t*)0 (if ptr points to a
null wide-character code or a combining character), or returns a pointer to the next non-
combining wide-character code in the string pointed to by ptr after skipping the composite
sequence at the head of the string.

If ptr is a null pointer, the m_wcsnext() function returns the null pointer; that is (wchar_t*)0.

ERRORS
The m_wcsnext() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

SEE ALSO
m_createattrobj(), <mlocale.h>, <wchar.h>.

Distributed Internationalisation Services, Version 2 113

m_wcspbrk() Reference Manual Pages

NAME
m_wcspbrk — scan text object for wide-character code

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

wchar_t *m_wcspbrk(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

DESCRIPTION
The m_wcspbrk() function locates the first occurrence in the wide-character string pointed to by
ws1 of any wide-character code from the wide-character string pointed to by ws2.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
On successful completion, m_wcspbrk() returns a pointer to a wide-character code in ws1 or a
null pointer if no wide-character code from ws2 occurs in ws1.

ERRORS
The m_wcspbrk() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

The locale defined in attrobj may be used in matching characters in cases where different
sequences of combining character may be used to define a character.

SEE ALSO
m_setlocale(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

114 X/Open Snapshot (1994)

Reference Manual Pages m_wcsptime()

NAME
m_wcsptime — convert text to date and time object using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

wchar_t *m_wcsptime(const AttrObject attrobj , const wchar_t * ws,
const char * format , struct tm * timptr);

DESCRIPTION
The m_wcsptime() function converts the wide-character string pointed to by ws to values that are
stored in the tm structure pointed to by timptr, using the format specified by format.

The format string is encoded in the file code of the locale associated with attrobj. Date and time
formatting information is also extracted from this locale (category LC_TIME).

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, m_wcsptime() returns a pointer to the wide-character string
following the last wide-character code parsed. Otherwise, a null pointer is returned.

ERRORS
The m_wcsptime() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the strptime() function when called with the
current locale set to the locale defined in attrobj. The m_wcsptime() function recognises the same
conversion specifications as defined for the strptime() function (see the XSH, Issue 4
specification).

SEE ALSO
m_setlocale(), m_strptime(), m_wcsftime(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 115

m_wcsquery() Reference Manual Pages

NAME
m_wcsquery — query number of composite sequences using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcsquery(const AttrObject attrobj , const wchar_t * ptr);

DESCRIPTION
The m_wcsquery() function computes the number of composite sequences in the wide-character
string pointed to by ptr.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If ptr is not a null pointer, the m_wcsquery() function either returns 0 if ptr points to a null wide-
character code or a combining character; otherwise it returns the number of composite
sequences that consist of a non-combining wide-character code followed by zero or more
combining wide-character codes up to, but not including, the terminating null wide-character
code.

If ptr is a null pointer the m_wcsquery() function returns 0.

ERRORS
The m_wcsquery() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

SEE ALSO
m_createattrobj(), <mlocale.h>, <wchar.h>.

116 X/Open Snapshot (1994)

Reference Manual Pages m_wcsscanfor()

NAME
m_wcsscanfor — scan a wide-character string for a wide-character code

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcsscanfor(const AttrObject attrobj , const wchar_t* ws,
size_t num_chars , size_t position ,
ScanDirection direction , ScanCondition condition ,
Boolean inverse);

DESCRIPTION
The m_wcsscanfor() function scans the wide-character string pointed to by ws at the offset
specified by position for the first wide-character code that matches or does not match the set of
classification criteria specified by condition .

The argument condition specifies a set of classification criteria that can be ORed bitwise. The
following conditions are reserved for the standard classification criteria and are defined below in
the APPLICATION USAGE section.

typedef enum { Alphabetic, WhiteSpace, Control, Digit, Graphic,
Lowercase, Uppercase, Printing, Punctuation, HexDigit,
LineBreakCharacter, LineBreakHyphen, LineBreakScript,
WordBoundary, SentenceBoundary, ParagraphBoundary,
CharsetBoundary, ScriptBoundary, CompositeBoundary

} ScanCondition;

The argument inverse determines the rules for scanning, and is an integer type containing one of
the values defined for the following enumeration type:

typedef enum {False, True} Boolean;

If inverse is set to False, the function searches for the first wide-character code that matches the
specified condition; if inverse is set to True, the function searches for the first wide-character code
that does not match the condition.

The argument direction determines the direction in which scanning takes place. It is an integer
type containing one of the values defined for the following enumeration type:

typedef enum {Forw, Back} ScanDirection;

If direction is set to Forw, the function scans from position to the end of the wide-character string
ws; if direction is set to Back, the function scans from position to the beginning of the wide-
character string ws.

The rules of any classification criteria are determined by the locale defined by attrobj.

The search begins from the wide-character code identified by ws, and continues through the next
num_chars wide-character code.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If all the criteria specified by condition are met, a non-negative integer identifying the location of
the first wide-character code meeting the criteria is returned. The non-negative integer value
returned indicates the offset number of wide-character codes from the wide-character code
identified by ws, to the wide-character code at which the condition is satisfied. If no wide
character meets the specified criteria, a (size_t)−1 is returned and errno is set to indicate the error.

Distributed Internationalisation Services, Version 2 117

m_wcsscanfor() Reference Manual Pages

ERRORS
The m_wcsscanfor() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The condition is invalid.

[EILSEQ]
No condition could be found in the supplied wide-character string.

APPLICATION USAGE
It is recommended that the position value be updated on subsequent calls since certain languages
(for example, Thai) may need to view the code elements that precede position (when direction =
Forw).

The set of classification criteria to be provided are defined as:

Alphabetic same as isalpha

WhiteSpace same as isspace

Control same as iscntrl

Digit same as isdigit

Graphic same as isgraph

Lowercase same as islower

Uppercase same as isupper

Printing same as isprint

Punctuation same as ispunct

HexDigit same as isxdigit

LineBreakCharacter a wide-character code that is defined to cause a line discontinuity.

LineBreakHyphen the next wide-character code after which a line discontinuity may occur
due to hyphenation

LineBreakScript the next wide-character code after which a line discontinuity may occur
due to script definitions

WordBoundary the next wide-character code after which the current language unit
(word)

SentenceBoundary the next wide-character code after which the current sentence

ParagraphBoundary the next wide-character code after which the current paragraph

CharsetBoundary the next wide-character code after which the current charset

ScriptBoundary the next wide-character code after which the current script

CompositeBoundary the next wide-character code after which the current composite sequence.

The WordBoundary identifies a language unit that is defined to be composed of one or more
morphemes with relative freedom to enter into syntactic constructions by a particular
implementation. The WordBoundary may be used by applications to determine sequences of
code elements that should be treated as a single unit and may not be broken up. In effect, a
language unit is either the smallest unit susceptible to independent use, or it consists of two or

118 X/Open Snapshot (1994)

Reference Manual Pages m_wcsscanfor()

three such units combined under certain linking conditions that are implementation dependent.
The language unit may be broken down into smaller elements by using the LineHyphenBoundary
condition. For example, the WordBoundary takes into account that black bird is different from
black-bird.

The conditions starting with Line are defined for identifying boundaries where lines may be
discontinued or broken when presented. The LineBreakCharacter condition is defined for specific
characters defined as line breaks, for example, the newline character. The LineHyphenBoundary
condition is defined for cases where a line discontinuity may occur but specifically where a
hyphen may be used or exist if a line discontinuity is performed. The LineBreakBoundary
condition is defined for linguistic cases that define line breakable conditions not defined by any
other condition. An example of a line breakable condition not covered by any of the other
conditions is that Japanese phrases consisting of Kinsoku characters may or may not appear at
the end of line or at the beginning of line. Such characters help to define boundary conditions
that are treated as a line discontinuity.

The CharsetBoundary and ScriptBoundary are intended for advance text processing across
multiple languages and writing systems. A charset boundary is used to segment [what?] based
the locale’s set of charset as defined by X11. The script boundary is to introduce the notion of
multiple languages and writing systems within a string of code elements. These two conditions
are viewed as different since the Japanese script can be considered to be made up of multiple
charsets (JIS 0201, JIS 0208 and user-defined characters).

The boundary conditions WordBoundary, SentenceBoundary, CharsetBoundary, ScriptBoundary,
ParagraphBoundary and CompositeBoundary use the wide-character pointed to by ws as the first
character of the current condition. The boundary is the wide character found that does or does not
match the current condition. In the case of ScriptBoundary and CharsetBoundary, where there
may be multiple sets per locale, it is left to other layers to determine the specific member using
the characters within the segment returned from the m_wcsscanfor() function.

SEE ALSO
m_strscanfor(), m_setlocale(), m_iswctype(), <mlocale.h>, <wchar.h>.

Distributed Internationalisation Services, Version 2 119

m_wcsspn() Reference Manual Pages

NAME
m_wcsspn — get length of wide substring using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcsspn(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

DESCRIPTION
The m_wcsspn() function computes the length of the maximum initial segment of the wide
character string pointed to by ws1 which consists entirely of wide-character codes from the wide
string pointed to by ws2.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_wcsspn() function returns the length of a wide substring, ws1, using a locale object; no
return value is reserved to indicate an error.

ERRORS
The m_wcsspn() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

Because no return value is reserved to indicate an error, an application wishing to check for error
situations should set errno to 0, then call m_strcspn(), then check errno and if it is non-zero,
assume an error has occurred.

This function behaves in the same manner as the wcsspn() function when called with the current
locale set to the locale defined by attrobj. The locale defined in attrobj may be used in matching
characters in cases where different sequences of combining character may be used to define a
character.

SEE ALSO
wcscspn(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

120 X/Open Snapshot (1994)

Reference Manual Pages m_wcstod()

NAME
m_wcstod — convert text to double-precision number using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

double m_wcstod(const AttrObject attrobj , const wchar_t * src ,
wchar_t ** end_ptr);

DESCRIPTION
The m_wcstod() function converts the initial portion of the wide-character string pointed to by
src to double representation. First, it decomposes the input into three parts: an initial (possibly
empty) sequence of white-space wide-character codes (as specified by the iswspace() function), a
subject sequence resembling a floating-point constant, and a final sequence of one or more
unrecognised wide-character codes, including the terminating null wide-character code. Then, it
attempts to convert the subject sequence to a floating point-number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then a non-empty
sequence of digits optionally containing a decimal-point, then an optional exponent part as
defined for the corresponding single-byte characters in subclause 6.1.3.1 of the ISO C standard,
but no floating suffix. The subject sequence is defined as the longest initial subsequence of the
input wide-character string, starting with the first wide-character code that is not white space
and that is of the expected form. The subject subsequence contains no wide-character codes if
the input wide-character string is empty or consists entirely of white space, or if the first wide-
character code that is not white space is other than a sign, a digit or a decimal-point.

If the subject sequence has the expected form, the sequence of wide-character codes starting
with the first digit or the decimal-point wide-character code (whichever occurs first) is
interpreted as a floating constant according to the rules of subclause 6.1.3.1 of the ISO C
standard, except that the decimal-point wide-character code is used in place of a period, and that
if neither an exponent part nor a decimal-point wide-character appears, a decimal point is
assumed to follow the last digit in the wide-character string. If the subject sequence begins with
a minus sign, the value resulting from the conversion is negated. A pointer to the final sequence
is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

Additional implementation-dependent subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of src is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_wcstod() function returns the converted value, if any. If no conversion could be
performed, zero is returned, and errno may be set to [EINVAL]. If the correct value is outside the
range of representable values, ±HUGE_VAL is returned (according to the sign of the value) and
[ERANGE] is returned as a status to indicate an out of range condition. If the correct value
would cause underflow, zero is returned and errno is set to [ERANGE].

ERRORS
The m_wcstod() function fails if:

[ERANGE]
The value to be returned would cause overflow or underflow.

Distributed Internationalisation Services, Version 2 121

m_wcstod() Reference Manual Pages

The m_wcstod() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
No conversion could be performed.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcstod() function when called with the current
locale set to the locale defined by attrobj.

Number formatting information is extracted from the locale associated with attrobj(category
LC_NUMERIC). In other than the POSIX locale, additional implementation-defined subject
sequence forms may be accepted.

SEE ALSO
m_createattrobj(), m_setlocale(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

122 X/Open Snapshot (1994)

Reference Manual Pages m_wcstok()

NAME
m_wcstok — split wide-character string into tokens using a text context object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

wchar_t *m_wcstok(wchar_t * ws1, const wchar_t * ws2, mbstate_t* ps)

DESCRIPTION
A sequence of calls to the m_wcstok() function breaks the wide-character string pointed to by
ws1 into a sequence of tokens, each of which is delimited by a wide-character code from the
wide-character string pointed to by ws2. The ps argument points to a text context object of type
mbstate_t that is used to store any tokenising context necessary for m_wcstok() to continue
scanning the same wide-character string.

For the first call in the sequence, ws1 shall point to a wide string, while in subsequent calls for the
same string, ws1 shall be a null pointer. If ws1 is a null pointer, the value pointed to by ps shall
match that stored by the previous call for the same wide-character string. The separator wide-
character string pointed to by ws2 may be different from call to call.

The first call in the sequence searches the wide-character string pointed to by ws1 for the first
wide-character code that is not contained in the current separator string pointed to by ws2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed
to by ws1 and the m_wcstok() function returns a null pointer. If such a wide-character code is
found, it is the start of the first token.

The m_wcstok() function then searches from there for a wide-character code that is contained in
the current separator wide-character string. If no such wide-character code is found, the current
token extends to the end of the wide-character string pointed to by ws1, and subsequently
searches in the same wide-character string for a token and returns a null pointer. If such a
wide-character code is found, it is overwritten by a null wide-character code, which terminates
the current token.

In all cases, the wcstok() function stores sufficient information in the type mbstate_t pointed to
by ps so that subsequent calls, with a null pointer for ws1, start searching just past the element
overwritten by a null wide-character code (if any).

RETURN VALUE
Upon successful completion, the m_wcstok() function returns a pointer to the first wide-
character code of a token. Otherwise, if there is no token, m_wcstok() returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcstok() function when called with the current
locale set to the locale defined by attrobj.

The encoding of wide-character codes is defined by the locale associated with ps. An example of
searching for tokens in a multi-locale environment is as follows:

Distributed Internationalisation Services, Version 2 123

m_wcstok() Reference Manual Pages

#include <mlocale.h>

static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t;
AttrObject foo_locale; /* previously initialised */
AttrObject C_locale; /* previously initialised */
mbstate_t ps1 = m_creatembstate(foo_locale);
mbstate_t ps2 = m_creatembstate(C_locale);

t = m_wcstok(str1, L"?", &ps1); /* t points to the token L"a" */
t = m_wcstok(NULL, L",", &ps1); /* t points to the token L"??b" */
t = m_wcstok(str2, L"\t", &ps2); /* t points to L */
t = m_wcstok(NULL, L"#", &ps1); /* t points to the token L",," */
t = m_wcstok(NULL, L"?", &ps2); /* t is a null pointer */
t = m_wcstok(NULL, L"?", &ps1); /* t is a null pointer */

m_destroymbstate(ps1);
m_destroymbstate(ps2);

SEE ALSO
m_creatembstate(), m_setlocale(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

124 X/Open Snapshot (1994)

Reference Manual Pages m_wcstol()

NAME
m_wcstol — convert text to long integer using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

long m_wcstol(const AttrObject attrobj , const wchar_t * src ,
wchar_t ** end_ptr , int base)

DESCRIPTION
The m_wcstol() function converts the initial portion of the wide-character string pointed to by src
to type long int representation. First, it decomposes the input into three parts: an initial
(possibly empty) sequence of white-space wide-character codes (as specified by the iswspace()
function), a subject sequence resembling an integer represented in some radix determined by the
value of base(), and a final sequence of one or more unrecognised wide-character codes,
including the terminating null wide-character code of the input wide-character string. Then, it
attempts to convert the subject sequence to an integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described for the corresponding single-byte characters in the ISO C standard
optionally preceded by a plus or minus sign, but not including an integer suffix. If the value of
base is between 2 and 36 (inclusive), the expected form of the subject sequence is a sequence of
letters and digits representing an integer with the radix specified by base, optionally preceded by
a plus or minus sign, but not including an integer suffix. The letters from a (or A) to z (or Z) are
ascribed the values 10 to 35; only letters and digits whose ascribed values are less than that of
base are permitted. If the value of base is 16, the wide-character codes 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first wide-character code that is not white space and that is of the expected form. The
subject sequence contains no data if the input wide-character string is empty or consists entirely
of white space, or if the first wide-character code that is not white space is other than a sign, or
permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
wide-character codes starting with the first digit is interpreted as an integer constant according
to the rules of the ISO C standard. If the subject sequence has the expected form and the value
of base is between 2 and 36, it is used as the base for conversion, ascribing to each letter its value
as given above. If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated. A pointer to the final sequence is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

Additional implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of src is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_wcstol() function returns the converted value, if any. If no conversion could be
performed, zero is returned, and errno may be set to [EINVAL].

If the correct value is outside the range of representable values, {LONG_MAX} or {LONG_MIN}
is returned (according to the sign of the value) and errno is set to [ERANGE] to indicate an out of

Distributed Internationalisation Services, Version 2 125

m_wcstol() Reference Manual Pages

range condition.

ERRORS
The m_wcstol() function fails if:

[ERANGE]
The value to be returned is not representable.

The m_wcstol() function may fail if:

[EINVAL]
The value of base is not supported.

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcstol() function when called with the current
locale set to the locale defined by attrobj.

Number formatting information is extracted from the locale associated with attrobj (category
LC_NUMERIC). In other than the POSIX locale, additional implementation-defined subject
sequence forms may be accepted.

SEE ALSO
m_createattrobj(), m_setlocale(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

126 X/Open Snapshot (1994)

Reference Manual Pages m_wcstoul()

NAME
m_wcstoul — convert text to unsigned long integer using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

unsigned long m_wcstoul(const AttrObject attrobj , const wchar_t * src ,
wchar_t * endptr , int base);

DESCRIPTION
The m_wcstoul() function converts the initial portion of the wide-character string pointed to by
src to type unsigned long int representation. First, it decomposes the input into three parts: an
initial (possibly empty) sequence of white-space wide-character codes (as specified by the
iswspace() function), a subject sequence resembling an integer represented in some radix
determined by the value of base(), and a final sequence of one or more unrecognised wide-
character codes, including the terminating null wide-character code of the input wide-character
string. Then, it attempts to convert the subject sequence to an unsigned long integer, and returns
the result.

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described for the corresponding single-byte characters in subclause 6.1.3.2 of the ISO
C standard optionally preceded by a plus or minus sign, but not including an integer suffix. If
the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base, optionally
preceded by a plus or minus sign, but not including an integer suffix. The letters from a (or A) to
z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values are less than that of
base are permitted. If the value of base is 16, the wide-character codes 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide-character
string, starting with the first wide-character code character that is not white space, that is of the
expected form. The subject sequence contains no wide-character codes if the input wide-
character string is empty or consists entirely of white space, or if the first wide-character code
that is not white space is other than a sign, or permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
wide-character codes starting with the first digit is interpreted as an integer constant according
to the rules of subclause 6.1.3.2 of the ISO C standard. If the subject sequence has the expected
form and the value of base is between 2 and 36, it is used as the base for conversion, ascribing to
each letter its value as given above. If the subject sequence begins with a minus sign, the value
resulting from the conversion is negated. A pointer to the final sequence is stored in the object
pointed to by endptr, provided that endptr is not a null pointer.

Additional implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of src is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
The m_wcstoul() function returns the converted value, if any. If no conversion could be
performed, zero is returned and errno may be set to [EINVAL]. If the correct value is outside the
range of representable values, {ULONG_MAX} is returned and errno is set to [ERANGE].

Distributed Internationalisation Services, Version 2 127

m_wcstoul() Reference Manual Pages

ERRORS
The m_wcstoul() function fails if:

[ERANGE]
The value to be returned is not representable.

The m_wcstoul() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The value of base is not supported.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcstoul() function when called with the current
locale set to the locale defined by attrobj.

Number formatting information is extracted from the locale associated with attrobj category
LC_NUMERIC). In other than the POSIX locale, additional implementation-defined subject
sequence forms may be accepted.

SEE ALSO
m_setlocale(), m_wcstod(), m_wcstol(), m_wcstoul(), wcstod(), wcstol(), wcstoul(), <mlocale.h>,
<wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

128 X/Open Snapshot (1994)

Reference Manual Pages m_wcswcs()

NAME
m_wcswcs — find wide substring

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

wchar_t *m_wcswcs(const AttrObject attrobj , const wchar_t * ws1,
const wchar_t * ws2);

DESCRIPTION
The m_wcswcs() function locates the first occurrence in the wide character string pointed to by
ws1 of the sequence of wide-character codes (excluding the terminating null wide-character
code) in the wide character string pointed to by ws2.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion, the m_wcswcs() function returns a pointer to the located wide
character string or a null pointer if the wide-character string is not found.

If ws2 points to a wide character string with zero length, the function returns ws1.

ERRORS
The m_wcswcs() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcswcs() function when called with the current
locale set to the locale defined by attrobj. The locale defined in attrobj may be used to match
characters in cases where different sequences of combining characters may be used to define a
character.

SEE ALSO
wcschr(), wcswcs(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 129

m_wcswidth() Reference Manual Pages

NAME
m_wcswidth — query width of a wide-character string using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcswidth(const AttrObject attrobj , const wchar_t * ptr ,
size_t n);

DESCRIPTION
The m_wcswidth() function determines the number of presentation column positions required
for n wide-character strings (or fewer wide-character strings if a null wide-character code is
encountered before the n wide-character strings are exhausted) in the string pointed to by ptr.

Note: This function assumes that the graphic symbols are a fixed presentation column
width where the column width of any graphic symbol is an integral multiple of a
unit column width graphic symbol.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If ptr is not a null pointer, the m_wcswidth() function either returns 0 if ptr points to a null wide-
character code or a combining character; otherwise it returns the number of display columns to
be occupied by the n or fewer wide-character strings of the string pointed to by ptr.

If ptr is a null pointer the m_wcswidth() function returns 0.

ERRORS
The m_wcswidth() function may fail if:

[EBADF]
The attribute object is invalid.

SEE ALSO
m_createattrobj(), <mlocale.h>, <wchar.h>.

130 X/Open Snapshot (1994)

Reference Manual Pages m_wcsxfrm()

NAME
m_wcsxfrm — associate collating weights with wide-character string using locale object

SYNOPSIS
#include <mlocale.h>
#include <wchar.h>

size_t m_wcsxfrm(const AttrObject attrobj , wchar_t * ptr1 ,
const wchar_t * ptr2 , size_t n);

DESCRIPTION
The m_wcsxfrm() function transforms the wide-character string pointed to by ptr2 and places the
resulting transformed wide string into the array pointed to by ptr1. The transformation is such
that if the wcsncmp() function is applied to two transformed wide strings, it returns a value
greater than, equal to or less than zero, corresponding to the result of the m_wcscoll() function
applied to the same two original wide-character strings. If n is zero, ptr1 is permitted to be a null
pointer.

No more than n elements are placed into the resulting array pointed to by ptr1, including the
terminating null wide-character code. If copying takes place between objects that overlap the
behaviour is undefined.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
Upon successful completion the m_wcsxfrm() function returns the length of the transformed
string (not including the terminating null wide-character code). If the value returned is equal to
or more than the input value of n, the contents of the wide-character codes pointed to by ptr1 are
indeterminate.

If ptr1 is a null pointer, the m_wcsxfrm() function returns the number of elements required to
contain the transformed character string.

On error, the m_wcsxfrm() function returns (size_t)−1, and sets errno to indicate the error.

ERRORS
The m_wcsxfrm() function may fail if:

[EBADF]
The attribute object is invalid.

[EINVAL]
The wide-character string pointed to by ptr2 contains wide-character codes outside the
domain of the collating sequence.

APPLICATION USAGE

Note: The value of a wide character FOO created in locale A may be different from wide
character FOO created in locale B. Therefore the locale of operation must match that
used to create the wide character; otherwise the results of the operation are
undefined.

This function behaves in the same manner as the wcsxfrm() function when called with the
current locale set to the locale defined by attrobj.

Distributed Internationalisation Services, Version 2 131

m_wcsxfrm() Reference Manual Pages

SEE ALSO
m_wcscoll(), m_setlocale(), wcscoll(), wcsxfrm(), wcsncmp(), <mlocale.h>, <wchar.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

132 X/Open Snapshot (1994)

Reference Manual Pages m_wctrans()

NAME
m_wctrans — define character transliteration using locale object

SYNOPSIS
#include <mlocale.h>
#include <wctype.h>

wctrans_t m_wctrans(const AttrObject attrobj , const char * property);

DESCRIPTION
The m_wctrans() function constructs a value with the type wctrans_t that describes a
transliteration of wide characters identified by the string argument property.

The setting of the LC_CTYPE category in the attrobj shall be the same as during subsequent calls
to m_tombstrans() or m_towcstrans. Otherwise the result is implementation dependent.

The two strings listed in the description of the m_towcstrans() and m_tombstrans() functions shall
be valid in all locales as the property argument to the m_wctrans() function.

Additional character transliteration names defined in the locale definition file (category
LC_CTYPE) can also be specified.

If attrobj is defined as (AttrObject)NULL, the behaviour of the function is defined by the current
(global) locale setting as defined by the setlocale ()function.

RETURN VALUE
If property identifies a valid transliteration of wide-character and multi-byte character codes
according to the LC_CTYPE category of the locale identified by attrobj, the m_wctrans() function
returns a non-zero value that is valid as the desc argument to subsequent calls of m_tombstrans()
or m_towcstrans(); otherwise, it returns zero.

ERRORS
The m_wctrans() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the wctrans() function when called with the
current locale set to the locale defined by attrobj.

The property argument is a string identifying a generic transliteration for which codeset-specific
information is required.

SEE ALSO
m_tombstrans(), m_towcstrans(), wctype(), isctype(), towupper(), towlower(), <mlocale.h>,
<wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

Distributed Internationalisation Services, Version 2 133

m_wctype() Reference Manual Pages

NAME
m_wctype — define character class using locale object

SYNOPSIS
#include <mlocale.h>
#include <wctype.h>

wctype_t m_wctype(const AttrObject attrobj , const char * property);

DESCRIPTION
The m_wctype() function constructs a value with the type wctype_t that describes a class of
characters identified by the string argument property.

The eleven strings listed in the description of the m_iswctype() function shall be valid in all
locales as property argument to the m_wctype() function.

Additional character class names defined in the locale definition file (category LC_CTYPE) can
also be specified.

RETURN VALUE
If property identifies a valid class of character according to the LC_CTYPE category of the locale
identified by attrobj, the m_wctype() function returns a non-zero value that is valid as the
argument of type wctype_t to subsequent calls of m_iswctype(), m_isctype(), iswctype();
otherwise, it returns zero.

ERRORS
The m_wctype() function may fail if:

[EBADF]
The attribute object is invalid.

APPLICATION USAGE
This function behaves in the same manner as the wctype() function when called with the current
locale set to the locale defined by attrobj.

The setting of the LC_CTYPE category in the attrobj shall be the same as during subsequent calls
to m_iswctype(), m_isctype() or iswctype()). Otherwise the result is implementation dependent.

The property argument is a string identifying a generic character class for which codeset-specific
information is required.

SEE ALSO
m_iswctype(), m_isctype(), wctype(), isctype(), iswalnum(), iswalpha (), iswcntrl(), iswdigit (),
iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit (), <mlocale.h>,
<wctype.h>.

CHANGE HISTORY
Derived from the XSH, Issue 4 specification, Version 1 of this document and the MSE standard.

134 X/Open Snapshot (1994)

Appendix A

Locale Registry

X/Open’s Locale Registry contains locales that have been accepted as conforming to the rules in
the Locale Registry Procedures guide. These locales are available from X/Open in electronic
form. An index of available locales is published in the Publications Price List.

The registration of private locales is permitted where a national standard locale is not available.
Any such registration is subject to withdrawal of the locale when a national standard becomes
available.

Values for the data type LocaleNetToken are defined in the X/Open Locale Registry.

Values for the data type LocaleNetString shall conform to the string network locale specification
syntax as described on Section 3.4 on page 16.

The corresponding convention shall be used for portions of a LocaleNetString whose locales has
been registered under the X/Open Locale Registry:

register_spec := ’XOPEN’
name_spec := name of locale in X/Open Registry
encoding_spec := XFN_encoding that corresponds to the

Federated Naming registry for encodings.

A few examples of values for HostLocaleString and it’s corresponding LocaleNetToken are
shown in the following table. The LocaleNetString for the German locale can be found in
Example 3-4 on page 19.

Locale HostLocaleString LocaleNetToken
German for Germany de_DE 003
Icelandic for Iceland is_IS 006
Japanese for Japan ja_JP 001

Distributed Internationalisation Services, Version 2 135

Locale Registry

136 X/Open Snapshot (1994)

Appendix B

Alternatives Examined and Rationale

This appendix describes other proposals considered for locale management, along with the
rationale for their rejection.

B.1 Locale Object per Category
It was proposed that a handle for each category in a locale object be visible to the application.
For example, the application might create an LC_CTYPE object in locale foo, an LC_COLLATE
object in locale bar, and the remaining locale objects in locale woof. The reasoning for this was
that some applications only need the capabilities represented by one or two categories; this
provided a way to have minimum data size impact on the application, as well as reducing
process time to initialise the locale object. For example, an application that only needs to parse
string data might only need to call a function like mblen(), and thus only needs the LC_CTYPE
portion of the locale. The specification included a procedure like mblen() that took as its
argument a pointer to an LC_CTYPE locale object.

This proposal was rejected because of the number of new APIs it introduced. The proposal
necessitated an API for each locale category object to be created, one API for each locale category
object to be destroyed, plus one new API for each existing locale-sensitive function in today’s
architecture. Given that there are currently seven LC_* categories, with the possibility for that
number to grow, this would force the addition of at least 14 new APIs and at least two APIs
every time a new category is added.

B.2 Locale Object Method
Another proposal required that the locale object be specified to contain at least one public
method; the method accepted a locale object handle, a token identifying which function was to
be performed, and a varargs argument with all the data necessary to perform the operation. The
proposal also used opaque data types in the varargs argument list, allowing for future expansion
to tagged data without an API change. The reasoning for the proposal was that it produced only
one new API for each internationalisation function, and did not require new APIs for future
capability.

The proposal was rejected because it was extremely C-language specific and because it would
force a severe change in current programming style (current internationalisation functions
return their results directly; this proposal would force them to be returned in an argument).

Distributed Internationalisation Services, Version 2 137

No Change Alternatives Examined and Rationale

B.3 No Change
The group discussed at length making no change at all. It was argued successfully that with the
changes necessary to handle stateful encodings, and with the proposed changes to setlocale () for
threads in POSIX.1c, it would be possible to implement multi-lingual or multi-locale
applications without any changes or additions to the current architecture.

The group decided that this was not acceptable. The current specifications had been loose
enough to permit vendors to implement setlocale () as a heavy-weight procedure. The group felt
that application developers needed a way to ensure light-weight operation. The group also felt
that forcing the application to manage global state was encouraging poor program design and
that it was incompatible with the object-oriented paradigm. Finally, the group was convinced
that publicly available locale handles will be necessary for handling tagged data.

B.4 Locale Objects for Threads
The group had originally proposed locale objects as a solution for the problem with a global
locale in threaded applications. However, members of the group felt that the thread problem
could be solved with a simple semantic alteration to the definition of setlocale () in the POSIX.1c
specification.

138 X/Open Snapshot (1994)

Alternatives Examined and Rationale Linking Global Locale with Non-global Locale

B.5 Linking Global Locale with Non-global Locale
In an effort to gain leverage from the existing internationalisation functions, the group
considered at length a proposal that allowed the current global locale to be swapped out and a
non-global locale object to be swapped in as the global locale. The functions that performed
these services were: locale_get_current () and locale_switch (). The former function looked at the
current global locale, created a locale object identical to the current global locale, and returned a
pointer to that new object; the latter function took a locale object and made it global (that is, so
that existing system interfaces would use its data to perform their operations). Combined, these
functions gave an application a guaranteed light-weight way to swap locales. An additional
benefit of this approach was that it allowed the locale management functions to be used
independently of any functions that might take a locale object as argument, or that might use a
locale object in a data tag.

In rejecting this approach, the group stated that the non-global locale model really was a new
model and that there was no need to link the two models. Additionally, in working on the
details of which categories would be affected, the idea of a simple swap became not so simple.
For example, suppose that the application’s global locale had been set with:

setlocale(LC_ALL,"");

using the environment variables to determine the settings of each of the LC_ categories. Now
further suppose that the application creates an incomplete locale object (that is, LC_CTYPE and
LC_COLLATE are specified, but other categories are allowed to default). The group ended up
with a very complicated model when they tried to define the semantics of locale_switch () when
applied to this environment; at least, there was no definition that was intuitively obvious to
everyone in the group. No-one in the group relished trying to describe the effects to those who
are not internationalisation experts.

The group decided that there was little gain in tying the two models together.
Internationalisation is a baffling technology for most people; if a group of internationalisation
experts had trouble trying to visualise and work with mixed models, it was felt that there was
little value for the typical application writer. Further, the group felt that there was significant
cost in trying to mix the models; backwards compatibility would constrain the ability to utilise
fully capabilities offered by the new model. The group felt it best simply to offer the two models
as different programming paradigms, emphasising the advantages and costs of each.

Distributed Internationalisation Services, Version 2 139

Opaque Data Functions Alternatives Examined and Rationale

B.6 Opaque Data Functions
The solution proposed in Version 1 of this document is a set of functions that provide similar
capabilities to those provided in the existing ISO C and POSIX standards, and the XSH, Issue 4
specification. The naming convention adopted is to prefix new interfaces with o_. Interfaces
have also been introduced in other areas, either to provide management functions for new
objects, or to replace standard interfaces with functions specific to the multi-locale model. In all
cases, the o_ prefix is used to indicate that the proposed functions are capable of dealing with
opaque text objects and multiple locales.

Also added to the arguments passed to the global locale functions is either a locale object handle
of type LocaleObject, or an attribute object handle of type AttrObject. Character or wide-
character types in the XSH, Issue 4 specification are replaced in the multi-locale model by
pointers to text objects of type txt_ptr.

B.6.1 Objectives

The objectives of the multi-locale support functions are to:

• satisfy multi-lingual, multi-threading, multi-node processing

• satisfy the multi-locale support requirements encountered in the windowing environment

• co-exist with the global locale functions

• address the problem of stateful encodings, context-sensitive rendering and multi-directional
text

• address the limitations that reliance on global data places on object-oriented programming
paradigms.

B.6.2 Assumptions

The multi-locale support functions are based on the assumption that the Locale Registry exists.

B.6.3 Reasons for Rejection

The opaque data concept proved unpopular. Implementors could see no demand for systems
using opaque data; application developers disliked the idea of not being able to access the data
directly. Many felt that the concept addressed the needs of a small percentage of the market, but
was too complex for the majority.

140 X/Open Snapshot (1994)

Glossary

byte
An individually addressable unit of data storage that is equal to or larger than an octet, used
to store a character or a portion of a character; see character. A byte is composed of a
contiguous sequence of bits, the number of which is implementation-dependent. The least
significant bit is called the low-order bit; the most significant is called the high-order bit. Note
that this definition of byte deviates intentionally from the usage of byte in some international
standards, where it is used as a synonym for octet (always eight bits). On a system based on
the ISO POSIX-2 DIS, a byte may be larger than eight bits so that it can be an integral
portion of larger data objects that are not evenly divisible by eight bits (such as a 36-bit
word that contains four 9-bit bytes).

character
A sequence of one or more bytes representing a single graphic symbol or control code. This
term corresponds to the ISO C standard term multibyte character (multi-byte character),
where a single-byte character is a special case of a multi-byte character. Unlike the usage in
the ISO C standard, character here has no necessary relationship with storage space, and byte
is used when storage space is discussed.

character class
A named set of characters sharing an attribute associated with the name of the class. The
classes and the characters that they contain are dependent on the value of the LC_CTYPE
category in the current locale.

character set
A finite set of different characters used for the representation, organisation or control of
data.

coded character
A code value encoded as one or more objects of type char that corresponds to a member of
the codeset of the locale.

coded character set (codeset)
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

coded character string
A contiguous sequence of coded characters terminated by and including the first null coded
character.

code element
Refers to a character encoded as either a wide-character code (of type wchar_t) or a coded
character (of type char*).

code element string
A contiguous sequence of code elements all having the same type and terminated by and
including the first null code element. A pointer to a code element string is a pointer to its initial
(lowest addressed) code element. The length of a code element string is the number of code
element objects preceding the null code element.

collating element
The smallest entity used to determine the logical ordering of character or wide character
strings. See collation sequence on page 142. A collating element consists of either a single

Distributed Internationalisation Services, Version 2 141

Glossary

character, or two or more characters collating as a single entity. The value of the
LC_COLLATE category in the current locale determines the current set of collating
elements.

collation
The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

collation sequence
The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The character order, as defined for the LC_COLLATE
category in the current locale, defines the relative order of all collating elements, such that
each element occupies a unique position in the order. This is the order used in ranges of
characters and collating elements in regular expressions and pattern matching. In addition,
the definition of the collating weights of characters and collating elements uses collating
elements to represent their respective positions within the collation sequence.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up
to the limit {COLL_WEIGHTS_MAX}; see <limits.h> in the XSH, Issue 4 specification. On
each level, elements may be given the same weight (at the primary level, called an
equivalence class; see equivalence class) or be omitted from the sequence. Strings that
collate equal using the first assigned weight (primary ordering) are then compared using the
next assigned weight (secondary ordering), and so on.

composite sequence
One or more code elements that together form 1 graphic or control code.

control character
A character, other than a graphic character, that affects the recording, processing,
transmission or interpretation of text.

current locale
See global locale on page 143.

current position index
The current position index indicates the absolute position of a text character within a text
object. Index 0 (zero) identifies the first text character in such an object.

empty string
A string whose first byte is a null byte.

equivalence class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such
as all accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

file code
The representation of text when it is stored on some external storage medium (for example,
magnetic disk). File codes are implementation-defined. Functions exist to convert between
file codes and process codes either implicitly (text stream I/O) or explicitly (o_mbstowcs(),
and so on).

142 X/Open Snapshot (1994)

Glossary

global locale
The particular locale on a host system whose contents (information, data or processing) are
visible to an entire process on a single host system.

graphic character
A character, other than a control character, that has a visual representation when
handwritten, printed or displayed.

host locale string
A character string that represents a given locale on a particular implementation. A host
locale string may be:

• an alias for a locale database

• the name for a locale database

• the string returned by:

setlocale(LC_ALL,NULL)

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

local customs
The conventions of a geographical area or territory for such things as date, time and
currency formats.

locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions.

locale object
The abstraction for representing the contents of a particular locale that is known as a host
system object. On a host system, a locale object is of type AttrObject.

localisation
The process of establishing information within a computer system specific to the operation
of particular languages, local customs and coded character sets.

message catalogue
A file or storage area containing program messages, command prompts and responses to
prompts for a particular native language, territory and codeset.

native language
A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian or Swedish.

network locale specification
The abstraction for representing the name of a particular locale that is known as a network
object. On a host system, a network locale specification is of type LocaleSpec. A network
locale specification cane be either a string network locale specification or a token network locale
specification.

non-spacing characters
A character, such as a character representing a diacritical mark in the ISO 6937: 1983
standard coded character set, which is used in combination with other characters to form
composite graphic symbols.

Distributed Internationalisation Services, Version 2 143

Glossary

null byte
A byte with all bits set to zero.

null coded character
A coded character with code value zero.

null pointer
The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value does not match that of any legitimate pointer, so
it is used by many functions that return pointers to indicate an error.

null string
See empty string on page 142.

portable character set
The collection of characters that are required to be present in all locales supported by
X/Open-compliant systems:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 ! # % ˆ & * () _ + - = { } []
: " ˜ ; ’ ‘ < > ? , . | \ / @ $

Also included are <alert>, <backspace>, <tab>, <newline>, <vertical-tab>, <form-feed>,
<carriage-return>, <space> and the null character, NUL.

This term is contrasted with the smaller portable filename character set.

portable filename character set
The set of characters from which portable filenames are constructed. For a filename to be
portable across implementations conforming to the XBD specification and the ISO POSIX-1
standard, it must consist only of the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore and hyphen characters, respectively.
The hyphen must not be used as the first character of a portable filename. Upper- and
lower-case letters retain their unique identities between conforming implementations. In
the case of a portable pathname, the slash character may also be used.

process code
The representation of text when it is manipulated by a program (for example, for
classification, conversion, comparison, and so on). Process codes are implementation-
defined.

radix character
The character that separates the integer part of a number from the fractional part.

string
A contiguous sequence of bytes terminated by and including the first null byte.

string network locale specification
A character string of type LocaleNetString that unambiguously represents the contents of
any locale across the network. The string network locale specification of a locale is invariant
across the network and is encoded using the ISO 646 International Reference Version (IRV)
codeset.

144 X/Open Snapshot (1994)

Glossary

text context object
An abstraction for representing stateful information that is used to convert, parse and
tokenise code element strings. On a host system, a text context object is of type mbstate_t.

token network locale specification
A shorthand way of identifying a string network locale specification. A token network
locale specification is of type LocaleNetToken. Not every possible locale has a token
network locale specification allocated. A token network locale specification for a locale that
has been allocated a token, is invariant across the network.

white space
A sequence of one or more characters that belong to the space character class as defined by
the LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more blank characters (space and tab
characters), newline characters, carriage-return characters, form-feed characters and
vertical-tab characters.

wide-character code
An integer value corresponding to a single graphic symbol or control code. The object is of
type wchar_t that corresponds to a member of the codeset of the locale on a host system.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null
wide-character code.

Distributed Internationalisation Services, Version 2 145

Glossary

146 X/Open Snapshot (1994)

Index

<mlocale.h> ...38
advanced text handling...11
alternative proposals ...137
announcement mechanism.......................................1
AttrObject...26
byte ..141
can..6
character ...141
character class ...141
character set ...141
Character Set Context ..23
classification functions ..30
classification object...27
code element..141
code element string ..141
coded character ...141
coded character set (codeset)141
coded character string ...141
codeset conversion ...1
collating element ..141
collation ..142
collation sequence ..142
composite function...30
composite sequence...23, 142
concurrency ...27
control character ...142
conversion specification

in m_strfmon()..77
in m_strftime()..79
in m_wcsfmon() ...109

current locale ...142
current position index ...142
data object

AttrObject...38
LocaleNetString ..38
LocaleNetToken..38
LocaleSpec ...38

data tagging ...4
data type

AttrObject...26
mbstate_t ..27
new ..25
wctrans_t ..27
wctype_t ...27

date and time functions...32
distributed environment ...10

distributed processing ...9
E2BIG

in m_strfmon()..77
in m_tombstrans() ...103
in m_towcstrans()..105
in m_wcsfmon() ...109

EBADF
in m_creatembstate() ..49
in m_destroyattrobj() ..51
in m_destroylocspec()...52
in m_destroymbstate()..53
in m_fattr() ..54
in m_isctype() ...55
in m_iswctype()..56
in m_localeconv() ..58
in m_locspec_from_host()59
in m_locspec_from_netstring().........................60
in m_locspec_from_nettoken()61
in m_locspec_to_netstring()62
in m_locspec_to_nettoken()64
in m_mb_cur_max() ..65
in m_nl_langinfo() ...66
in m_setlocale() ..68
in m_sprintf()..71
in m_sscanf()...73
in m_strcoll()...74
in m_strcspn()...75
in m_strerror() ..76
in m_strfmon()..77
in m_strftime()..79
in m_strpbrk()...80
in m_strptime()...81
in m_strscanfor()..83
in m_strspn()...84
in m_strstr()...85
in m_strtod() ...86
in m_strtol() ..89
in m_strtoul() ..90
in m_strxfrm() ..92
in m_swprintf() ..97
in m_swscanf() ...101
in m_tombstrans() ...103
in m_towcstrans()..105
in m_wcscnt() ...106
in m_wcscoll() ..107
in m_wcscspn() ..108

Distributed Internationalisation Services, Version 2 147

Index

in m_wcsfmon() ...110
in m_wcsftime() ...111
in m_wcsnext()...113
in m_wcspbrk() ..114
in m_wcsptime() ..115
in m_wcsquery() ..116
in m_wcsscanfor() ...118
in m_wcsspn() ..120
in m_wcstod()...122
in m_wcstol() ..126
in m_wcstoul() ...128
in m_wcswcs()..129
in m_wcswidth()..130
in m_wcsxfrm()..131
in m_wctrans() ...133
in m_wctype() ..134

EILSEQ
in m_sprintf()’...71
in m_sscanf()...73
in m_strscanfor()..83
in m_swprintf() ..97
in m_tombstrans() ...103
in m_towcstrans()..105
in m_wcsfmon() ...109
in m_wcsscanfor() ...118

EINVAL
in m_fattr() ..54
in m_locspec_from_host()59
in m_locspec_from_netstring().........................60
in m_locspec_from_nettoken()61
in m_locspec_to_host().......................................63
in m_locspec_to_netstring()62
in m_locspec_to_nettoken()64
in m_sprintf()..71
in m_sscanf()...73
in m_strcoll()...74
in m_strerror() ..76
in m_strscanfor()..83
in m_strtod() ...86
in m_strtol() ..89
in m_strtoul() ..90
in m_strxfrm() ..92
in m_tombstrans() ...103
in m_towcstrans()..105
in m_wcscoll() ..107
in m_wcsscanfor() ...118
in m_wcstod()...122
in m_wcstol() ..126
in m_wcstoul() ...128
in m_wcsxfrm()..131

empty string...142

encoding ...11
ENOMEM

in m_createattrobj() ...44
in m_creatembstate() ..49
in m_sprintf()..71
in m_swprintf() ..97

ENOSYS
in m_locspec_to_host().......................................63

equivalence class ..142
ERANGE

in m_strtod() ...86
in m_strtol() ..89
in m_strtoul() ..90
in m_wcstod()...121
in m_wcstol() ..126
in m_wcstoul() ...128

extended wide-character conversion function...35
file code...142
global locale ...143
global locale model ..4, 26
graphic character ..143
host locale string...143
HUGE_VAL

in m_strtod() ...86
I/O function...33
implementation-dependent......................................6
internationalisation ..143

model...1-3
regular expressions ..1
utility environment ..1

LC_COLLATE
in m_strcoll()...74
in m_strxfrm() ..92
in m_wcscoll() ..107

LC_CTYPE
in m_isctype() ...55
in m_iswctype()..56
in m_tombstrans() ...102
in m_towcstrans()..104
in m_wctrans() ...133
in m_wctype() ..134

LC_MESSAGES
in m_strerror() ..76

LC_MONETARY
in m_strfmon()..77
in m_wcsfmon() ...109

LC_NUMERIC
in m_strfmon()..77
in m_strtod() ...86
in m_wcsfmon() ...109

legacy...6

148 X/Open Snapshot (1994)

Index

local customs ...143
locale ...143

global ...9-10
global state ...10
multi ..8
multiple ..10
naming..13
registration...20
registry ...7, 21, 140
single ...9
specification...13
synchronisation...10
within a process ..14

locale information function30
locale management function..................................29
locale object ...26, 143
locale-dependent object...26
localisation ...143
may ..6
mbstate_t ..27
message catalogue..143
multi-lingual applications ..4
multi-locale application ..8
multi-locale model ...26
multi-locale support...21
must ...6
m_createattrobj()..44
m_createlocspec() ..45
m_creatembstate() ...49
m_destroyattrobj() ...51
m_destroylocspec() ...52
m_destroymbstate() ..53
m_fattr() ...54
m_isctype()..55
m_iswctype() ..56
m_localeconv() ...58
m_locspec_from_host() ..59
m_locspec_from_netstring()..................................60
m_locspec_from_nettoken()61
m_locspec_to_host()..63
m_locspec_to_netstring()62
m_locspec_to_nettoken()64
m_mb_cur_max()...65
m_nl_langinfo() ..66
m_setlocale() ...68
m_sprintf()...70
m_sscanf()..72
m_strcoll()..74
m_strcspn()..75
m_strerror() ...76
m_strfmon() ..77

m_strftime() ..79
m_strpbrk() ...80
m_strptime() ...81
m_strscanfor()...82
m_strspn() ...84
m_strstr() ...85
m_strtod() ..86
m_strtok() ..87
m_strtol() ...89
m_strtoul()...90
m_strxfrm() ...92
m_swprintf() ...94
m_swscanf() ..98
m_tombstrans() ..102
m_towcstrans()...104
m_wcscnt() ..106
m_wcscoll() ...107
m_wcscspn() ...108
m_wcsfmon()..109
m_wcsftime() ..111
m_wcsnext()..113
m_wcspbrk() ...114
m_wcsptime()...115
m_wcsquery() ...116
m_wcsscanfor() ..117
m_wcsspn() ...120
m_wcstod() ...121
m_wcstok()..123
m_wcstol()...125
m_wcstoul() ..127
m_wcswcs() ..129
m_wcswidth()...130
m_wcsxfrm()...131
m_wctrans() ..133
m_wctype() ...134
native language...143
network locale specification.................................143

shorthand ...20
string syntax ..16

non-spacing characters..143
null byte..144
null coded character...144
null pointer ..144
null string ...144
number conversion ..32
object ...25
parsing function..32
portable character set...144
portable filename character set............................144
Presentation Context..24
problems...7

Distributed Internationalisation Services, Version 2 149

Index

process code...144
radix character...144
registration...20
scanning function ...32
self announcing data..23

Character Set Context..23
Language Context ..24
Presentation Context ...24

should..6
string ...144
string comparison function31
string network locale specification144
string searching functions.......................................31
text context object ..27, 145
text entity..23
text formatted I/O function33
thread

multiple ..10
single ...9

token network locale specification20, 145
transliteration ..27
Transliteration function...31
undefined..6
unspecified...6
wctrans_t ..27
wctype_t ...27
white space ..145
wide-character code...145
wide-character string...145
will ...6

150 X/Open Snapshot (1994)

