
X/Open Snapshot

Document Interchange

Reference Model

X/Open Company Ltd.

 September 1992, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Snapshot

Document Interchange Reference Model

ISBN: 1 872630 50 2
X/Open Document Number: S209

Set in Palatino by X/Open Company Ltd., U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open Snapshot (1992)

Contents

Chapter 1 Definition of a Document ... 1

Chapter 2 X/Open Document Models .. 3
 2.1 ODA Document Profiles.. 3
 2.2 SGML... 4
 2.3 Endorsed Document Models.. 4
 2.4 Method of Adding Document Models ... 4
 2.5 Typical Constraints... 5

Chapter 3 Object-Oriented Document Architecture 7
 3.1 Categories of Object Types ... 7
 3.2 Unrecognised or Unprocessable Objects ... 8
 3.3 Example .. 8
 3.4 Rationale for an Object-Based Architecture.. 9
 3.5 Typical Object Methods... 9

Chapter 4 Implicit Document Structure.. 11

Chapter 5 Document API Service Overview .. 13
 5.1 Goals and Requirements ... 13
 5.2 Document API Operations ... 13

Chapter 6 Example: ODA to CALS SGML... 15

Chapter 7 Implementation Possibilities ... 17

Appendix A Glossary ... 19

 Index... 21

Document Interchange Reference Model iii

Contents

iv X/Open Snapshot (1992)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable system environment, called the Common
Applications Environment (CAE). This environment covers the standards, above the hardware
level, that are needed to support open systems. It provides for portability and interoperability of
applications, and allows users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical application
programming interfaces (APIs), which significantly enhance portability of application programs
at the source code level, and definitions of, and references to, protocols and protocol profiles,
which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and a
distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be carried
only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is to
use formal approved de jure standards, where they exist, and to adopt widely supported de facto
standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications that
form the basis for conformant and branded X/Open systems. They are intended to be used
widely within the industry for product development and procurement purposes.

Document Interchange Reference Model v

Preface

Developers who base their products on a current CAE Specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future XPG brand (if not referenced already), and that a variety of compatible, XPG-branded
systems capable of hosting their products will be available, either immediately or in the near
future.

CAE Specifications are not published to coincide with the launch of a particular XPG brand,
but are published as soon as they are developed. By providing access to its specifications in
this way, X/Open makes it possible for products that conform to the CAE (and hence are
eligible for a future XPG brand) to be developed as soon as practicable, enhancing the value
of the XPG brand as a procurement aid to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that are
released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’ specification.
Indeed, it is as stable as X/Open can make it, and on publication has gone through the same
rigorous X/Open development and review procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop products
on the basis of them. However, because of the nature of the technology that a Preliminary
Specification is addressing, it is untried in practice and may therefore change before being
published as a CAE Specification. In such a case the CAE Specification will be made as
upwards-compatible as possible with the corresponding Preliminary Specification, but
complete upwards-compatibility in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to disseminate
information on its current direction and thinking to an interested audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A Snapshot represents the interim results of an X/Open technical activity. Although at the
time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and makes
no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to make
any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying or
claiming X/Open-conformance.

vi X/Open Snapshot (1992)

Preface

This Document

A document is a set of information, organised as a unit and intended for human perception.
Definitions have changed over time, to embrace the increasing complexity of printable
information, of all types and in electronic as well as paper form. The challenge for X/Open is to
specify interchange formats and APIs which accommodate the wide range of document models
that exist.

This document looks at existing internationally recognised Open Document Architecture (ODA)
document profiles, which specify what elements a document may comprise. It then introduces
the use of object-oriented programming for writing applications which can accommodate the
wide range of document types, and from this proceeds to examine implicit document structure
when a document is viewed as a set of objects. It then assesses the API Service goals and
requirements for document interchange, and considers some API implementation issues.

This specification relates to various international standards and recommendations which are
listed in Referenced Documents. It should be used in conjunction with those International
Standards or Recommendations.

This Snapshot is being published for information, and to stimulate comment and provide an
opportunity for wider review throughout the industry.

Document Interchange Reference Model vii

Trademarks

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

Palatino is a registered trademark of Linotype AG and/or its subsidiaries.

X/OpenTM and the ‘‘X’’ device are trademarks of X Company Ltd. in the U.K. and other
countries.

CDA is a trademark of Digital Equipment Corporation.

viii X/Open Snapshot (1992)

Referenced Documents

The following documents are referenced or are related to the content of this document:

CCITT T.4
CCITT Recommendation T.4 - Standardization of group 3 facsimile apparatus for document
transmission (1988).

CCITT T.6
CCITT Recommendation T.6 - Facsimile coding schemes and coding control functions for
group 4 facsimile apparatus (1988).

ECMA TC29/92/8
ECMA TC29/92/8 - Open Document Architecture (ODA) - Application Programming
Interface - Application Profile Interface for Handling Compound Documents.

ECMA TC29/92/9
ECMA TC29/92/9 - Open Document Architecture (ODA) - Application Programming
Interface - Constituent Level Interface for Handling Compound Documents.

ISO 8613-1
ISO 8613-1 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 1: Introduction and general principles.

ISO 8613-2
ISO 8613-2 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 2: Document Structures.

ISO 8613-4
ISO 8613-4 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 4: Document profile.

ISO 8613-5
ISO 8613-5 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 5: Office document interchange format.

ISO 8613-6
ISO 8613-6 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 6: Character content architectures.

ISO 8613-7
ISO 8613-7 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 7: Raster graphics content architectures.

ISO 8613-8
ISO 8613-8 : 1989, Information processing - Text and office systems; Office Document
Architecture (ODA) and interchange format - Part 8: Geometric graphics content
architectures.

ISO 8613-1 : (to be published)
ISO 8613-1 : (to be published), Information processing - Text and office systems; Office
Document Architecture (ODA) and interchange format - Part 1: DAD - A document
application profile proforma and notation.

ISO/IEC 646
ISO/IEC 646 : 1991, Information technology - ISO 7-bit coded character set for information
interchange.

Document Interchange Reference Model ix

Referenced Documents

ISO 8859-1
ISO 8859-1 : 1987, Information processing - 8-bit Single- byte coded graphic character sets -
Part 1: Latin alphabet No. 1.

ISO 6937-2
ISO 6937-2 : 1983, Information processing - Coded character sets for text communication -
Part 2: Latin alphabet and non-alphabetic characters.

ISO 2022
ISO 2022 : 1986, Information processing - ISO 7-bit and 8-bit coded character sets - Code
extension techniques.

ISO 7350
ISO 7350 : 1984, Text communication - Registration of graphic character subrepertoires.

ISO/IEC 8824
ISO/IEC 8824 : 1990, Information technology - Open Systems Interconnection - Astract
Syntax Notation One (ASN.1).

ISO/IEC 8825
ISO/IEC 8825 : 1990, Information technology - Open Systems Interconnection - Basic
encoding rules for abstract syntax notation one (ASN.1).

ISO 8632
ISO 8632 : 1987, Information processing systems - Computer graphics - Metafile for the
storage and transfer of picture description information.

Part 1: Functional specification
Part 3: Binary encoding.

ISO 8879
ISO 8879 : 1986, Information processing - Text and office systems - Standard Generalized
Markup Language (SGML).

ISO/IEC ISP 10610-1
ISO/IEC 10610-1, Information technology - International Standardized Profile FOD11 -
Office Document Format - Simple document structure - Character content architecture only
- Part 1: Document application profile.

ISO/IEC ISP 11181-1
ISO/IEC 11181-1, Information technology - International Standardized Profile FOD26 -
Office Document Format - Enhanced document structure - Character, raster graphics and
geometrical graphics content architectures - Part 1: Document application profile.

ISO/IEC ISP 11182-1
ISO/IEC 11182-1, Information technology - International Standardized Profile FOD36 -
Office Document Format - Extended document structure - Character, raster graphics and
geometric graphics content architectures - - Part 1: Document application profile.

XDIF
X/Open Document Interchange Format, Preliminary Specification, Part Number P217, 1992.

ISO 8613-7, ISO 8613-8, CCITT Recommendations T.4, T.6 and ISO 8632 are not applicable to the
FOD11 document model since they concern content types not present in FOD11.

x X/Open Snapshot (1992)

Chapter 1

Definition of a Document

Note: This document relates to various international standards and recommendations. These
are listed in Referenced Documents, and should be referenced wherever the need for
further definitive information arises.

A document is a set of information, organised as a unit and intended for human perception.
ISO 8613 defines documents more rigorously and X/Open endorses that definition.

The definition of document has changed over time based on available technology. Any concept
of document reflects one’s assumptions about what technology is available for processing that
document. Thus, a document might be:

• printed text on a series of sheets of paper (reflecting the implicit assumption that a typewriter
or similar device is used for input and output)

• an electronic text-based composition that reflects the abilities of current products, for
example to highlight text, to add structure to the text, and to include graphics (reflecting
current office system technologies)

• an electronic composition modelled after a book or magazine, in which text coexists with
photographs and anything else that might be represented on a page (reflecting desktop
publishing and advanced office systems technologies)

• an electronic composition based on future document models. It is widely accepted that such
future models will not necessarily assume that the information in a document is static, or that
a document could be represented on a series of pages, or even that the user’s perception of
the document is based on the sense of vision. Already, technology will let a computer system
associate with a document, or store in a document, a wide range of diverse information, such
as spreadsheets, sound recordings, or live video.

The only ultimate restriction on the scope of a document is that it is an amount of structured
information intended for human perception that a user wishes to create, file, retrieve,
manipulate or interchange as a unit. A document can contain any type of information that a user
wants stored in the document.

The challenge for X/Open is to specify interchange formats and APIs that accommodate this
wide range of document models, and accommodate future document models, in a unified way.

Document Interchange Reference Model 1

Definition of a Document

2 X/Open Snapshot (1992)

Chapter 2

X/Open Document Models

The application program must make assumptions about the range of elements that a document
may comprise. In doing so it defines the set of objects that it is prepared to process meaningfully.
Several industry and standards organisations have made progress in this area.

2.1 ODA Document Profiles
The Open Document Architecture (ODA) has the following as internationally standardised
profiles:

FOD11 ISO ISP FOD11 is the office document format profile for the interchange of basic-function,
character-content documents, in processable and formatted forms.

FOD11 documents contain only character text. They may range from memos and letters
to simple structured documents.

FOD26 ISO ISP FOD26 is the office document format profile for the interchange of enhanced-function,
mixed-content documents, in processable and formatted forms.

FOD26 documents can contain character text, raster graphics, or geometric graphics.
They may range from simple documents to highly structured technical reports, articles,
and typeset documents such as monochrome newsletters.

FOD36 ISO ISP FOD36 is the office document format profile for the interchange of extended-
function, mixed-content documents, in processable and formatted forms.

FOD36 documents include the capabilities of the FOD26 document model, as well as
monochrome documents prepared by personal publishing systems. The FOD36 profile
supports extended document structure such as table, form, reference and extended
layout capability. It also supports typographic features such as leading, kerning,
ligatures and ruby.

These three document models are strictly subsetted. Any valid document under the FOD11
model is valid under the FOD26 and FOD36 models; any valid document under FOD26 is valid
under FOD36.

The associated X/Open Document Interchange Formats Preliminary Specification (reference
XDIF), endorses these FOD specifications for interchange of documents between personal word
processing and publishing applications.

The Open Document Architecture Consortium (ODA Consortium) is developing a specification
for Application Programming Interfaces (APIs) for document access and manipulation. In the
process, the ODA Consortium has specified the abstract internal structure of documents at three
levels of complexity. These levels correspond directly to the three ISO International
Standardised Profiles (ISPs) for the use of ODA, described above. This specification work is
currently available through two ECMA documents (references ECMA TC29/92/8 and ECMA
TC29/92/9).

Document Interchange Reference Model 3

SGML X/Open Document Models

2.2 SGML
The Standard Generalized Markup Language (SGML) is a widely-used language for
implementing markup-based technical publishing systems. The CALS (Computer-aided
Acquisition and Logistics Support) project has specified a number of document types which
make use of the SGML language for encoding documents for interchange. X/Open endorses this
emerging form of specification as a method for interchanging documents between large-scale
technical publishing applications.

The use of SGML depends upon agreement on a document type definition. Such document type
definitions are separate from the three ISPs listed above but are not specified in the same format.
Once standards and conventions in this area are established, X/Open hopes to publish a
description of such SGML standard document type definitions in a format comparable to the
three ISPs listed above.

2.3 Endorsed Document Models
An application program using the X/Open Document API for document processing must
assume one of the following document models:

• ISP FOD11

• ISP FOD26

• ISP FOD36

• SGML/CALS - document type definition(s) to be identified

• other models that X/Open may define in the future.

X/Open intends to extend the reference model to add intrinsic support for spreadsheets in
documents, EDI (with messages adhering to the EDIFACT standard and UN-registered message
types), and the emerging STEP standard for CAD/CAM.

X/Open intends to prepare materials that help application writers understand which X/Open
document model or models are suitable for each application they intend to write.

2.4 Method of Adding Document Models
The architecture described in this chapter allows X/Open to define additional document models
with minimal impact on existing X/Open application programmes.

All X/Open documents have the same implicit document structure (see Chapter 4 on page 11).
This is true no matter what document model the application writer selects. A document is
modelled as a structured set of objects.

Each X/Open document model listed above, and any document model that X/Open
subsequently publishes, involves constraints. These are rules regarding the permitted use of
document objects.

Thus, an additional X/Open document model would involve specification of new objects, object
elements, and constraints. It would not result in any changes to currently-specified data
structures, nor change the syntax or effect of any service in the X/Open Document API when
applied to currently-specified objects.

4 X/Open Snapshot (1992)

X/Open Document Models Typical Constraints

2.5 Typical Constraints
A given document model may impose the following constraints on the use of document objects,
among others:

• object O1 that X/Open defines may not exist in documents under this model

• object O1 may exist in documents under this model, but O1 may not contain certain elements
that X/Open lists as valid elements of that object

• object O1 may contain objects of type O2, but the total number of O2 within any instance of
O1 is limited to N

• object O1 may contain objects of type O2 recursively, but the nesting of O2 within any
instance of O1 is limited to a depth of N levels.

Each object determines whether it meets any applicable constraint. The nature of this is
described in Chapter 4 on page 11 and Chapter 5 on page 13.

Document Interchange Reference Model 5

X/Open Document Models

6 X/Open Snapshot (1992)

Chapter 3

Object-Oriented Document Architecture

X/Open recommends the use of object-oriented programming to facilitate writing applications
that can accommodate wide varieties of present and future document types. Object-oriented
programming provides that:

• a given API service may perform different operations depending on the object to which the
service is applied

• procedure-like knowledge about objects resides with the objects themselves, not in the
library code that may implement the X/Open Document API.

This enables dynamic addition of new document models by defining new objects and new
constraints.

3.1 Categories of Object Types
Applications from different disciplines may have to maintain specialised types of objects,
specific to each discipline. For example, CAD/CAM documents may include circuit topologies;
programming documents may include source code statements. However, many types of
information are common to a large number of disciplines. For example, text documents,
multimedia documents, image documents, and hypermedia linkages may all make use of
paragraph-like text objects.

Effective communication between different applications requires a large common repertoire of
objects with standard semantics, plus standard generic and discipline-specific information types.
In addition, many applications need to be able to create their own private types of information
object.

There are thus three categories of object types:

• a core set of generic object types that are common to a wide range of applications and are
allowable in all documents that follow the X/Open reference model for documents

• discipline-specific object types, specified by X/Open but not supported in some documents -
notably, discipline-specific object types for particular disciplines and for document models
that X/Open has not yet published

• application-specific objects not specified by X/Open. The reference model must provide for
these objects because new, application-specific object types will continue to emerge as
technology advances.

Document Interchange Reference Model 7

Unrecognised or Unprocessable Objects Object-Oriented Document Architecture

3.2 Unrecognised or Unprocessable Objects
Making provision to accommodate an ever-expanding number of document objects means that:

• an application may encounter objects that it does not recognise or have a way to process
meaningfully

• an application may produce, or use internally, objects that cannot be carried by the chosen
interchange format

• an application may declare its support of a given X/Open document model for which some
objects cannot determine whether they satisfy the constraints

• in passing information from one application to another application of a different type,
information may be lost or may lose fidelity. For example, information that function as a
command at the source application might, at the destination application, preserve most of its
visual appearance but not function as a command.

X/Open hopes to minimise these problems in the following ways:

• by defining a large number of "core" object types, X/Open hopes to increase the likelihood
that a large number of applications use the same object in the same way

• by endorsing object-oriented programming, X/Open envisages that an intelligent response to
such problems will be stored within the object itself. For example, each object contains
knowledge about useful "fallback" representations of its information when it is transported to
more limited document models.

3.3 Example
Suppose an author uses a desktop publishing application to write a book. The application uses
the X/Open Document API to create text and graphic objects and arrange them in a structure
based on the author’s commands. At this point, the application is solely responsible for the
structure, contents, and appearance of the book. The application has not necessarily selected an
X/Open document model.

Writing the book to storage or to a communication interface requires that the application select
an interchange format. Selection of an X/Open document interchange format requires the book
to conform to the corresponding X/Open document model.

When the application makes this selection, it puts appropriate constraints into effect. If the
selection was made before the author began writing the book, the author’s selection of document
objects would have been constrained, and the resulting book is known to be interchangeable.
However, if the selection is made only after the book is written, each object in the document
must be checked against the constraint, in order to verify that the document is suitable for the
selected interchange.

If some objects then fail the constraints, the information they contain must be transformed into a
form that meets the constraints before the document can be interchanged.

8 X/Open Snapshot (1992)

Object-Oriented Document Architecture Rationale for an Object-Based Architecture

3.4 Rationale for an Object-Based Architecture
The X/Open concept of document objects does not mean that X/Open simply defines data types
and specifies them as a list of parameters in functions. The problem with this traditional,
procedural approach is that the industry’s concept of a document is only now maturing, and will
continue to evolve as customers require new forms of information to be included in documents.
For example, a document may include audio, video, or live spreadsheets, and the document user
may want to "edit" any or all of these components.

Object-oriented programming enables this growth with a minimum of recoding of existing
applications. An object includes methods, which are essentially procedures for operating on the
object. An X/Open document application can accommodate object types that were unknown at
the time the application was written. The object itself carries with it methods that relate it to the
application.

3.5 Typical Object Methods
Typically, an X/Open document object will have methods that:

• describe its attributes and capabilities to the application

• produce a visual representation of the information in the object

• given some X/Open document model that the application supports, produces a rendition of
the information in the object using only the standard object and element types X/Open
specifies for that document model

• test the information in the object to see whether it meets a specified constraint

• let the user manipulate the information in the object directly, without involvement of the
application program.

Document Interchange Reference Model 9

Object-Oriented Document Architecture

10 X/Open Snapshot (1992)

Chapter 4

Implicit Document Structure

The X/Open Document API presents documents, and information within documents, to the
application as a structured set of objects, adhering to the following description. X/Open does
not specify or restrict how a compliant implementation represents these data structures
internally, although an internal storage architecture with similarities to this document structure
may result in implementation efficiencies.

The application perceives the following pieces of information in a document:

• Objects

Application objects may be either:

— generic (core) objects

— discipline-specific objects

— instances of an application-defined type.

All such objects are structured aggregates of elements, defined below. For example, the
objects include:

— groups or sequences of content elements of a particular content type - either text, pictures,
or other media types

— attributes describing characteristics of the object

— pointers to other objects.

Each object contains a structured list of elements. The X/Open Document API allows the
application to add elements to, or remove elements from, objects in a way that is consistent
with the definition of the object type.

• Elements

An object is made up of elements. The intention is to define a large set of element types.
Generic object types and discipline-specific object types may use only these standard
elements. However, any application can define other elements for use by those objects it
defines.

A partial list of element types is:

— content portion elements (O1 contains content "...")

This element carries content of a single standardised type (such as text or graphics) to be
associated with an object.

— pointer (structure) elements

Pointer elements refer to an object elsewhere in the document. Pointer elements in a
document define the structure of the document.

Container elements (O1 contains O2, O3, ...) enable a hierarchical structure of objects in a
document. For example, sections may contain subsections; subsections may contain
paragraphs; and so on.

Other pointer elements have varying semantics. For example, O1 with hyper-link point to
O2 helps the document user quickly move to the specified destination in the document,
whereas O1 with cross-reference to O2 may instead retrieve text from the specified

Document Interchange Reference Model 11

Implicit Document Structure

destination (for example, a referenced section number or name) and make it appear at the
location of O1.

— attribute elements

O1 has semantic S1, S2, ...
A semantic attribute element describes what the object is (how it behaves).

O1 is formatted by ...
A formatting attribute element identifies an X/Open reference formatting
specification that describes how the object is to be formatted within the document.

O1 has appearance attributes ...
An appearance attribute element specifies the object’s layout and presentation.

The original version of O1 is ‘‘...’’
An original version attribute element keeps track of alternate versions of an object.
For example, when an object is received using an interchange format, and an
application reads it in assuming an X/Open document model which cannot
faithfully represent the total information in the object, this element refers to the
original version of the object, permitting restoration of the original at some later time.

Application-defined elements
Applications may define private object types and private elements. In particular,
private objects may use non-standard content types, semantic specifications,
formatting specifications, and appearance attributes. When an application defines a
private type for an object, attribute, or element, it may also specify an alternate
representation in terms of standard types.

• Views of Objects

A single object may contain alternate representations using different sets of elements. Each
set is called a view. One use of multiple views for an object is to describe how a single object
conforms to different constraints (see below).

• Constraints

Constraints specify the elements that can be used in certain object types, the permitted
structure of certain objects, and linkage among objects. In addition, constraints specify how a
document is formed from a set of objects. A set of constraints describe a single standard
interchange format. For example, if a set of objects conforms to the set of constraints X/Open
publishes for the X/Open FOD36 document model, then those objects constitute a valid
document under that X/Open document model.

By using views, a single set of objects may conform to many different, and perhaps
inconsistent, constraints.

12 X/Open Snapshot (1992)

Chapter 5

Document API Service Overview

5.1 Goals and Requirements
The major objectives of the X/Open Document API are to:

• provide a large set of standard generic object types and a large set of standard discipline-
specific object types

• let applications define private object types

• let X/Open define constraints that describe the interchange formats that it endorses

• let X/Open define other constraints and object types to extend the applicability of the
X/Open Document API to business graphics, EDI, and spreadsheet standards, as these
emerge

• let applications be constrained to choose to define only generic or generic and discipline-
specific object types, and to conform to one or more sets of constraints.

The Document API should also facilitate mapping onto conventions that are widely accepted in
the industry, such as the CDATM (Compound Document Architecture) information structures.
This requirement means that the API must:

• include a wide range of object types and attributes that allow documents to be represented
without information loss in the application object space

• let such documents be encoded using as many different standards as possible

• let the application test an object for adherence to constraints that represent these standards.

The API minimises the visibility of particular interchange formats and information
representations, replacing them with a generalised system of object types. The API therefore
does not favour one format over another nor preclude adding new standard formats into the
API. The restrictions imposed by a given format are codified as constraints on objects.

5.2 Document API Operations
Building on the object, element, and constraints described earlier, the X/Open Document API
provides the following abilities:

• Reading and Writing of Standard Encoded Files

Converting a document, received by an interchange format which X/Open endorses, into a
structured set of objects is a single API call. Similarly, writing a set of objects (or some view
of it) as a document under an X/Open interchange format is a single API call. If the
document already complies with the constraints imposed by that interchange format, the
application does not need to do any extra work.

• Creating, Deleting, and Cloning Objects

The application can use the API to create and manipulate objects, including creation of an
object that duplicates some other object.

Document Interchange Reference Model 13

Document API Operations Document API Service Overview

• Element Manipulation

The application can add elements to, or delete elements from, an object. For generic or
discipline-specific object types, only certain manipulations are permitted.

• Defining New Objects, Elements and Constraints

The application can extend the object space, and describe whether those extensions meet
particular sets of constraints.

• Applying Constraints

The application can apply constraints to single objects or groups of objects - for example, to
restrict a document to a form that can be conveyed over an X/Open interchange format. The
application has two options:

— the application can invoke constraints to remain implicitly in force, checked at the end of
any API call that creates or modifies objects. In this case, the set of objects under the
application’s control is always in conformance with the constraints, and can be sent using
an X/Open interchange format at any time.

— the application may test constraints only on command. This allows the flexibility of
creating non-conforming objects, but may require more work later to make those objects
conform to the constraints. Information may be lost or may lose fidelity when the
constraints are finally applied.

Constraint checking may be interactive, to let the user specify fallback representations and
thus control information loss.

• Using Constraint Rules to Guide Transformations

When an object space fails to meet a constraint, the object (or some view of it) must be
modified. The API includes a validation operation to confirm adherence to a specified set of
constraints. This service tells the application which objects do not meet the constraints, and
why. This allows non-conforming objects to change to come into conformance.

• Object Queries

The API allows an application to query objects in order to find information that may guide its
operations on them. For example, to format a specific object, the application may make a
query to determine the object’s parent. From that information, it may make another query to
find out formatting contexts such as indentations or fonts that the parent object defines.

14 X/Open Snapshot (1992)

Chapter 6

Example: ODA to CALS SGML

Consider an application written to translate an ODA Level 3 DAP encoded document into a
particular CALS SGML DTD. The X/Open API for document processing implicitly performs
most of the required work. The program consists of the following steps:

1. Read in the ODA document and create an object space that matches the document. This is
a single operation in the API.

2. Create a new view, perhaps called CALS, that contains the same objects and elements as
the existing (ODA) objects.

3. Apply the CALS constraints to the new view. The CALS constraints are a predefined part
of the API, so this step is also just a single operation in the API.

If the objects meet the constraints, then the translation is done, and the program proceeds
to Step 5.

4. For each object that does not pass the CALS constraints, take some specific action with that
object to bring it into conformance. Here the application delivers its added value.

The application defines various procedures for dealing with different constrain failures. For
features supported by ODA but not CALS, the application may delete from the CALS view
some objects or elements. For information types supported by ODA but not CALS, the
application may translate some fallback representation defined by the objects themselves.
For example, an ODA-processable object might in the CALS view, become a formatted
object.

5. Finally, write the conforming CALS view of the object space as a CALS document in a
single operation.

Document Interchange Reference Model 15

Example: ODA to CALS SGML

16 X/Open Snapshot (1992)

Chapter 7

Implementation Possibilities

Vendors of an X/Open-compliant Document API may implement additional APIs for document
processing. A call to a service in the X/Open Document API may map to one or more calls in
these other APIs in an implementation-dependent manner.

Two other levels of API are typical:

• an object-oriented API that allows manipulation of objects of a specific document
interchange model. Examples include APIs for access/manipulation of documents adhering
to the ODA FOD profiles or to SGML CALS profiles.

• a procedural API that allows manipulation of actual datastream elements of a specific
interchange format. Examples are ODIF elements, MicroSoft Rich Text Format (RTF), and
other proprietary formats. An API for a proprietary interchange format might be provided by
the owner of the format.

X/Open may specify one or more APIs. Use of the lower-level APIs by an application program
might result in more efficiency in a narrowly-defined task, such as generating or receiving a
document in one specific interchange format. However, a general-purpose application should
confine itself to the object-oriented API presented in this document in order to be adaptable to
newly-invented document types, document objects, and interchange formats.

The X/Open Document API is flexible enough to manipulate documents received from the
interchange formats that X/Open endorses. The exact method of implementing different views
of the same application object space involves an object-oriented approach using multiple
inheritances. This makes it possible to create appropriate document objects from all these
interchange formats and vice versa.

Document Interchange Reference Model 17

Implementation Possibilities

18 X/Open Snapshot (1992)

Appendix A

Glossary

API
Application Programming Interface

attribute
A defined property of an entity or object, usually defining a characteristic feature. An attribute is
named, and is often inplemented as fields with values.

CALS
Computer-aided Acquisition and Logistics Support. A US Department of Defense information
technology scheme to ensure open systems facility to interchange information between
computer systems, for the purpose of integrating all aspects of procurement, manufacturing and
maintenance information.

CCITT
Comite Consultatif Internationale de Telegraphique et Telephonique. A United Nations agency
which makes recommendations regarding telecommunications. Its technical recommendations
often become internationally recognised standards (V-series, X-series).

EDI
Electronic Data Interchange. The electronic exchange of structured information between
computer systems.

EDIFACT
EDI for Administration, Commerce and Transport

ISO
International Organization for Standardization. Body made up of committees of representatives
from the standards bodies of member countries, with particular interest in electronic interchange
of information.

ISP
ISO Internationally Standardized Profile

Object-oriented
Software approach in which everything (processes, files, etc.) is represented as objects. Objects
are data structures in memory that may be manipulated by the system; communication between
objects is achieved by passing messages. In this regard, an object is a package of information and
a description of its manipulation, and a message is a specification of one of an object’s
manipulations.

ODA
Office Document Architecture. More generally called Open Document Architecture, it is an
architecture of documents which is defined in a set of ISO standards (8613), aimed at enabling
interchange of information between computer systems.

SGML
Standard Generalized Markup Language. A family of ISO standards for labeling electronic
versions of text, enabling both sender and receiver of the text to identify its structure.

Document Interchange Reference Model 19

Glossary

20 X/Open Snapshot (1992)

Index

API ...19
attribute ..19
CALS ...19
CCITT..19
EDI ...19
EDIFACT ..19
ISO ...19
ISP ..19
Object-oriented..19
ODA...19
SGML ..19

Document Interchange Reference Model 21

Index

22 X/Open Snapshot (1992)

