
X/Open Snapshot

Interworking API Style Guide

X/Open Company, Ltd.

 1990, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open Snapshot

Interworking API Style Guide

X/Open Document Number: XO/SNAP/90/030

Set in Palatino by X/Open Company Ltd., U.K.
Printed by Maple Press, U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to
X/Open at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open Snapshot (1990)
Page : ii Interworking API Style Guide

Contents

INTERWORKING API STYLE GUIDE

Chapter 1 INTRODUCTION

1.1 OVERVIEW

1.2 LANGUAGE-INDEPENDENT SPECIFICATION

1.3 CONTENTS

1.4 TERMS AND ABBREVIATIONS

Chapter 2 LANGUAGE BINDINGS

2.1 INTRODUCTION

2.2 ORGANISATIONAL GUIDELINES

2.3 GENERAL TECHNICAL GUIDELINES

2.4 RECOMMENDATIONS FOR FUNCTIONAL SPECIFICATIONS

2.5 PROCEDURAL INTERFACE GUIDELINES

2.6 SUGGESTED ACTIONS FOR STANDARDS COMMITTEES

2.7 RECOMMENDATIONS FOR PROGRAMMING LANGUAGE COMMITTEES

2.8 PROCEDURAL LANGUAGE BINDING GENERIC ISSUES

Chapter 3 API CONTENT

3.1 INTRODUCTION

3.2 FUNCTIONAL INTERFACE

3.3 EVENT MANAGEMENT
3.3.1 Introduction
3.3.2 Background
3.3.3 System Facilities for Event Notification
3.3.4 Overview of Mechanism
3.3.5 Access Points
3.3.6 Events
3.3.7 Programming Examples

3.4 ERROR HANDLING
3.4.1 Introduction
3.4.2 Mechanism
3.4.3 Status Lifetime
3.4.4 Programming Examples

3.5 OBJECT MANAGEMENT

X/Open Snapshot (1990)
Interworking API Style Guide Page : iii

Contents

3.6 INTERNATIONALISATION

3.7 RESOURCE CONSTRAINTS

3.8 LEVEL OF API

3.9 EXTENSIONS

Chapter 4 BINDINGS TO APIS

4.1 INTRODUCTION

4.2 NAMING CONVENTIONS

4.3 INTERNAL AND EXTERNAL NAMES

4.4 ABSTRACT NAMES

4.5 GENERAL NAMING RULES

4.6 SIX-CHARACTER NAMING CONVENTION

4.7 SIXTEEN-CHARACTER NAMING CONVENTION

4.8 THIRTY-CHARACTER NAMING CONVENTION

4.9 FUNCTION NAMES

4.10 EXTERNAL VARIABLE NAMES

4.11 INTERNAL NAMES

4.12 ERROR NAMES

4.13 PARAMETER NAMES

4.14 PARAMETER PLACEMENT

4.15 AGGREGATE PARAMETERS

4.16 PARAMETER USAGE

4.17 GUIDELINES FOR OTHER LANGUAGES

Chapter 5 LAYOUT OF SPECIFICATIONS

5.1 BASIC PRINCIPLES

5.2 INTRODUCTION

5.3 TYPES

5.4 CONSTANTS

5.5 ERROR HANDLING

5.6 PARAMETERS

5.7 INDEX OF C LANGUAGE NAMES

5.8 OBJECT SPECIFICATIONS
5.8.1 Class Definitions
5.8.2 C Binding of Classes

X/Open Snapshot (1990)
Page : iv Interworking API Style Guide

Contents

5.8.3 Example Class Specification - Message

5.9 FUNCTION SPECIFICATIONS
5.9.1 Example Function Specification - Receive-Data

Receive_Data()

Chapter 6 RULES FOR C BINDINGS

6.1 INTRODUCTION

6.2 GENERAL RULES

6.3 IMPLEMENTATION CONSIDERATIONS

Appendix A NAME PREFIXES AND ABBREVIATIONS

A.1 APPLICATION SERVICE PREFIXES

A.2 ABBREVIATIONS

Appendix B RATIONALE

B.1 INTRODUCTION
B.1.1 Overview
B.1.2 Language-Independent Specification
B.1.3 Contents
B.1.4 Terms and Abbreviations

B.2 LANGUAGE BINDINGS
B.2.1 Introduction
B.2.2 Organisational Guidelines
B.2.3 General Technical Guidelines
B.2.4 Recommendations for Functional Specifications
B.2.5 Procedural Interface Guidelines
B.2.6 Suggested Actions For Standards Committees
B.2.7 Recommendations For Programming Language Committees
B.2.8 Procedural Language Binding Generic Issues

B.3 API CONTENT
B.3.1 Introduction
B.3.2 Functional Interface
B.3.3 Event Management
B.3.4 Error Handling
B.3.5 Object Management
B.3.6 Internationalisation
B.3.7 Resource Constraints
B.3.8 Level of API
B.3.9 Extensions

B.4 BINDINGS TO APIS
B.4.1 Introduction
B.4.2 Naming Conventions
B.4.3 Internal and External Names
B.4.4 Abstract Names

X/Open Snapshot (1990)
Interworking API Style Guide Page : v

Contents

B.4.5 General Naming Rules
B.4.6 Six-Character Naming Convention
B.4.7 Sixteen-Character Naming Convention
B.4.8 Thirty-Character Naming Convention
B.4.9 Function Names
B.4.10 External Variable Names
B.4.11 Internal Names
B.4.12 Error Names
B.4.13 Parameter Names
B.4.14 Parameter Placement
B.4.15 Aggregate Parameters
B.4.16 Parameter Usage
B.4.17 Guidelines for Other Languages

B.5 LAYOUT OF SPECIFICATIONS
B.5.1 Basic Principles
B.5.2 Introduction
B.5.3 Types
B.5.4 Constants
B.5.5 Error Mechanism and Error Codes
B.5.6 Parameters
B.5.7 Index of C Language Names
B.5.8 Object Specifications
B.5.9 Function Specifications
B.5.10 Example Function Specification - Receive_Data

B.6 RULES FOR C BINDINGS
B.6.1 General Rules
B.6.2 Implementation Considerations

Appendix C EXAMPLE SPECIFICATIONS

C.1 EXAMPLE ONE: REVISED XTI

C.2 EXAMPLE TWO: POSIX

C.3 EXAMPLE THREE: ISO GUIDELINES

C.4 EXAMPLE FOUR: X.400 API SPECIFICATION

C.5 EXAMPLE FIVE: MAP SPECIFICATION VERSION 3.0

X/Open Snapshot (1990)
Page : vi Interworking API Style Guide

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of
the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring greater value to users through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards
into a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers all the standards,
above the hardware level, that are needed to support open systems. It ensures portability
and connectivity of applications, and allows users to move between systems without
retraining.

The interfaces identified as components of the Common Applications Environment are
defined in the X/Open Portability Guide. This guide contains an evolving portfolio of
practical applications programming interface standards (APIs), which significantly
enhance portability of application programs at the source code level. The interfaces
defined in the X/Open Portability Guide are supported by an extensive set of
conformance tests and a distinct trademark - the X/Open brand - that is carried only on
products that comply with the X/Open definitions.

X/Open is thus primarily concerned with standards selection and adoption. The policy is
to use formal approved de jure standards, where they exist, and to adopt widely
supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organizations to encourage the creation of formal standards covering the
needed functionalities, and to make its own work freely available to such organizations.
Additionally, X/Open has a commitment to align its definitions with formal approved
standards.

The X/Open Product Family - XPG

There is a single family of X/Open products, which has the generic name ‘‘XPG’’.

XPG Versions

There are different numbered versions of XPG within the XPG family (XPG1, XPG2, XPG3).
Each XPG version is an integrated set of elements supporting the development,
procurement and implementation of open systems products, and each comprises its
own:

• XPG Specifications

• XPG Verification Suite

• XPG descriptive guides

X/Open Snapshot (1990)
Interworking API Style Guide Page : vii

Preface

• XPG trademark licensing materials

The XPG trademark (or ‘‘brand’’) licensed by X/Open always contains a particular XPG
version number (e.g., ‘‘XPG3’’) and, when associated with a vendor’s system,
communicates clearly and unambiguously to a procurer that the software bearing the
trademark correctly implements the corresponding XPG specifications. Users specifying
particular XPG versions in their procurements are therefore certain as to the XPG
specifications to which vendors’ systems conform.

XPG Specifications

There are four types of XPG specification:

• XPGn Formal Specifications

These are the long-life XPG specifications that form the basis for conformant/branded
X/Open systems, and are the only type of XPG specification released with an XPG
version number (e.g., ‘‘XPG3’’). They are intended to be used widely within the
industry for product development and procurement purposes. Currently, all XPG
Formal Specifications are included in Issue 3 of the X/Open Portability Guide.

Individual XPG specifications are released as Formal Specifications only as part of the
formal release of the complete XPG version to which they belong. However, prior to
the launch of that XPG version, they may be made available as:

• XPG Developers’ Specifications

These are specifically designed to allow developers to create X/Open-compliant
products and applications in advance of the formal launch of a future version of the
XPG.

Developers’ Specifications may be relied on by product developers as the final, base
specification that will appear in a future XPG. They are made available beforehand in
order to meet the need of product developers for advance notification of the contents
of XPG Formal Specifications, to assist in their product planning and development
activities.

By providing such advance notification, X/Open makes it possible for products
conforming to future XPG Formal Specifications to be developed as soon as
practicable, enhancing the value of XPG itself as a procurement aid to users.

• XPG Preliminary Specifications

These are XPG specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for validation purposes. A Preliminary
Specification is not a ‘‘draft’’ specification. Indeed, it is as stable as X/Open can make
it, and on publication will have gone through the same rigorous X/Open
development and review procedures as XPG Formal and Developers’ Specifications.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organizations, and product development teams are intended to
develop product on the basis of them. Because of the nature of the technology they
are addressing, they are untried in practice, and they may therefore change before
being published as an XPG Formal or Developers’ Specification.

X/Open Snapshot (1990)
Page : viii Interworking API Style Guide

Preface

• Snapshot Specifications

These are ‘‘draft’’ documents, that provide a mechanism for X/Open to disseminate
information on its current direction and thinking to a limited audience, in advance of
formal publication, with a view to soliciting feedback and comment.

This Document

This document is a Snapshot (see above). It provides guidelines for the style of
Interworking Application Program Interfaces (APIs) defined by X/Open. The present
version does not cover some aspects needed for a common Interworking API style, in
particular it omits:

• a semantic description of open/close, bind/unbind, data_transfer;

• security;

• Quality Of Service (QOS), and

• a requirement for use with Remote Procedure Call (RPC).

Some interworking APIs have already been defined, or are being finalised within X/Open
(i.e., XTI, XDS, X.400); differences exist between these APIs.

It is intended in a future edition of this guide to define all of what is missing today, in
order to ease harmonisation of Interworking API definitions.

Disclaimer:

This document represents the interim results of an X/Open technical activity. While
X/Open currently intends to progress this activity towards publication of an X/Open
Guide, X/Open is a consensus organisation, and makes no commitment regarding
publication.

Similarly, this document does not represent any commitment on behalf of any X/Open
member to make any specific products available now or in the future.

Do not specify or claim conformance to this document.

X/Open Snapshot (1990)
Interworking API Style Guide Page : ix

Preface

X/Open Snapshot (1990)
Page : x Interworking API Style Guide

Trademarks

X/Open and the ‘X’ device are trademarks of X/Open Company Limited in the U.K. and
other countries.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

Palatino is a trademark of Linotype AG and/or its subsidiaries.

X/Open Snapshot (1990)
Interworking API Style Guide Page : xi

Acknowledgements

X/Open is grateful to the following organisations for permission to reproduce extracts
from their respective publications:

• the IEEE TCOS POSIX 1003.1 Committee,

• the British Standards Institute,

• the X.400 API Association, and

• the MAP/TOP User Group and the TOP Vendor Group.

X/Open Snapshot (1990)
Page : xii Interworking API Style Guide

Referenced Documents

The following documents are referenced in this guide:

• ISO TC97/SC22 document N754, Proposed DTR 10182, Guidelines for Language
Bindings. (The final draft of a proposed ISO Draft Technical Report (DTR).)

• MAP 3.0 Interface Model and Specification Requirements, Manufacturing Automation
Protocol Specification Version 3.0., Appendix 7, Application Interface to Network
Services, Attachment 1, Application Interface Model and Specification Requirements,
Section 4, Interface Specification Requirements, Pages A7A1-4.1 to A7A1-4.28.
(Published by General Motors Corporation.)

• X/Open Portability Guide, Issue 3:

— Volume 1 - XSI: System Commands & Utilities

— Volume 2 - XSI: System Interfaces & Headers

— Volume 3 - XSI: Supplementary Definitions

— Volume 4 - Programming Languages

— Volume 5 - Data Management

— Volume 6 - Window Management

— Volume 7 - Networking Services

• IEEE Std 1003.1-1988, POSIX, IEEE Standard Portable Operating System Interface for
Computer Environments.

• Converting POSIX into a Language-Independent Specification (Draft Version 0.03,
August 89) by K.K. Barker, M.F. Connors Jr. and J.S. Kimmel.

This proposal describes selected steps in a model-based process used to convert the
C-based function interfaces described in the IEEE POSIX Standard (1003.1) into
abstract procedure interfaces that are independent of any specific programming
language. It is incomplete and will be revised as additional knowledge and review is
gained.

• ANSI C Standard, American National Standard for Information Systems,
Programming Language C (X3.159-1989).

There is also a closely related Draft International Standard (DIS 9899: Programming
Language C).

• Realtime Extension for Portable Operating Systems (IEEE Std 1003.4, Draft 9), Section
9, Asynchronous Event Notification. (A draft extension to the POSIX standard.)

• OSI Object Management API Specification, Draft 4.0 (April 1990). (To be published by
X/Open and the X.400 API Association.)

X/Open Snapshot (1990)
Interworking API Style Guide Page : xiii

Referenced Documents

X/Open Snapshot (1990)
Page : xiv Interworking API Style Guide

Chapter 1

Introduction

1.1 OVERVIEW

X/Open is in the process of defining Application Program Interfaces (APIs) for
Interworking, which will be documented in API specifications and published in the
X/Open Portability Guide. It is the purpose of this Style Guide to assist in the design of
the APIs and the preparation of their specifications. The benefits expected to accrue from
the use of a Style Guide include:

• reduced effort in designing and documenting individual APIs;

• greater consistency among APIs, making them easier for users (e.g., application
programmers) to learn, and

• reduced effort to implement APIs by sharing mechanisms between them.

Topics covered in this Style Guide in order to achieve these goals include:

• avoidance of conflict with other APIs, particularly over naming conventions;

• consistent choice of some essentially arbitrary decisions, such as the layout of
specification documents;

• reminders of requirements imposed by the X/Open Portability Guide and other
sources;

• the general style of an interface, and

• programming language-specific issues.

1.2 LANGUAGE-INDEPENDENT SPECIFICATION

Many standards-setting bodies are moving towards language-independent
specifications, where the functions are described in abstract and the C syntax, for
example, is given in a separate binding.

It is not yet appropriate to require X/Open specifications to be written in this way, and
this Style Guide recommends combining the functional specification with the C binding.

Writing language-independent functional specifications and separate bindings to specific
languages is likely to be introduced in the future.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 1

Contents Introduction

1.3 CONTENTS

Chapter 2, Language Bindings provides general guidelines derived from an ISO
Technical Report (see Referenced Documents). and is not specific to either the
application services defined by X/Open or to particular programming languages,
although some guidelines have been made more specific.

Chapter 3, API Content gives guidelines on the functional content of APIs. Topics
covered include functional interface, event management, support for national languages
(internationalisation), error handling and several other topics.

Chapter 4, Bindings to APIs gives guidance for the preparation of language bindings to
X/Open Interworking APIs. It is largely concerned with naming conventions and the
design of parameter lists.

Chapter 5, Layout of Specifications presents guidelines for the contents and layout of
specifications for APIs. Considerable flexibility is provided to ease the process of
adopting APIs from different sources and covering different service areas.

Chapter 6, Rules for C Bindings sets out rules for the preparation of bindings to the C
language.

Appendix A, Name Prefixes and Abbreviations is an initial list of abbreviations to be
used when forming function names according to the method given in Chapter 4,
Bindings to APIs.

Appendix B, Rationale is a rationale for the Style Guide.

Appendix C, Example Specifications is part of the rationale and consists of example
specifications from reference documents.

X/Open Snapshot (1990)
Page : 2 Interworking API Style Guide

Introduction Terms and Abbreviations

1.4 TERMS AND ABBREVIATIONS

ANSI American National Standards Institute

API Application Program Interface

APIA [X.400] Application Program Interface Association

BSD Berkeley System Distribution

CAE [X/Open] Common Applications Environment

GKS Graphical Kernel System

GW Gateway

IEEE Institution of Electrical and Electronic Engineers

ISO International Standards Organisation

MAP Manufacturing Automation Protocol

MD Management Domain

OM Object Management

OSI Open Systems Interconnection

POSIX Portable Operating System Interface for computer environments

UTC Co-ordinated Universal Time [French abbreviation]

XPG X/Open Portability Guide

XSI X/Open System Interface

XTI X/Open Transport Interface

X/Open Snapshot (1990)
Interworking API Style Guide Page : 3

Terms and Abbreviations Introduction

X/Open Snapshot (1990)
Page : 4 Interworking API Style Guide

Chapter 2

Language Bindings

2.1 INTRODUCTION

This Chapter presents a number of language binding guidelines which should be
followed by anyone who is binding the functional specification of an application service
to a particular programming language.

These guidelines are based on an ISO document (see Referenced Documents) and are
listed with the original reference numbers from that document. Guidelines which have
been modified appear in brackets (i.e., [modified like this], and deleted material thus []).

Where the guidelines refer to a system facility, they should be read as referring to an
application service.

2.2 ORGANISATIONAL GUIDELINES

1 Standard bindings of some form should be developed for all standard system
facilities that may be accessed from a standard programming language.

2 [The system facility committee] should have primary responsibility for the
language binding. []

3 [The language] committee needs to be consulted as early as possible. The two
committees have complementary responsibilities and concerns.

4 Specific guidelines should be produced alongside standards for particular
system facilities and particular programming languages.

[This Style Guide contains a set of guidelines for producing language bindings
for interworking system facilities defined by X/Open.]

5 [This guideline is not applicable, since it refers to the OSI standards
development cycle.]

2.3 GENERAL TECHNICAL GUIDELINES

6 Language bindings to the same system facility should be similar in those
respects where the languages are similar.

7 Different language bindings to a system facility should not be the cause of
substantial differences in program structure except where warranted by
substantial language differences.

8 All system functions should appear atomic to the application program.

2.4 RECOMMENDATIONS FOR FUNCTIONAL SPECIFICATIONS

9 [A functional specification may use an abstract description, or may be
described in terms of its C language binding.]

10 A data type in a functional specification is not intended to correspond with a
particular internal representation in the host computer, but rather is an abstract
entity intended to be mapped to the most appropriate type in the host language.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 5

Recommendations for Functional Specifications Language Bindings

11 Parameters that take values which have predefined meanings should be defined
in abstract terms, and not necessarily associated with numeric values. In certain
situations, however, an ordering may be needed.

12 The system facility should recover from errors wherever possible. A report on
the status of errors should be returned to the host program where that is
possible. It should be possible for the host program to determine where the
error arises in the system facility.

2.5 PROCEDURAL INTERFACE GUIDELINES

13 The language binding needs to specify, for each system function name, exactly
one identifier acceptable to the language.

14 The language binding needs to specify, for each of the system facility data types,
a corresponding data type acceptable to the language. Where convenient for the
host language, additional data types may be specified in terms of the system
facility data types.

15 The language binding needs to specify, for each system function, how the
corresponding language function is to be invoked, and the means whereby each
of the formal input parameters is transmitted to the language function and each
of the formal output parameters is received from the language function.

16 The language binding needs to specify a set of identifiers acceptable to the
language, which may be used by an implementation for internal
communication.

17 The documentation of a system facility implementation needs to include a list of
all identifiers for procedures, functions, global data aggregates and files that are
visible either to an application program or to the underlying operating system.

2.6 SUGGESTED ACTIONS FOR STANDARDS COMMITTEES

18 Lists of abbreviations for function names should be part of a guideline drawn
up by the developers of the system facility.

(See also Chapter 4, Bindings to APIs on naming.)

19 Each language should have guidelines for selecting the abbreviation list to use.

20 Whether a procedural binding or a native syntax binding is developed depends
on the host programming language, and is the decision of the language
committee.

21 How compound data types are bound depends on the host programming
language.

2.7 RECOMMENDATIONS FOR PROGRAMMING LANGUAGE COMMITTEES

22-24 [Guidelines 21 to 24 are not applicable, since they are design rules for future
language standards.]

X/Open Snapshot (1990)
Page : 6 Interworking API Style Guide

Language Bindings Procedural Language Binding Generic Issues

2.8 PROCEDURAL LANGUAGE BINDING GENERIC ISSUES

25 The binding of a system facility to a language should use appropriate facilities
of the basic level of the language standard, to assist in usability, performance,
etc. It should not attempt to simplify implementation by use of a restricted
subset of the basic language level. Facilities in higher optional levels of the
language standard, however, should be used only if necessary.

26 The reader of the binding specification should be assumed to be a programmer,
skilled both in the language and the system facility.

27 A system facility binding must be reviewed and, if necessary, updated each
time the system facility or the language standard is enhanced. (The forward
compatibility requirements of users must be identified and taken into
consideration when any of the standards are enhanced).

28 Bindings for each programming language for which a need exists must be
prepared. This does not preclude the development of a generic binding for less
used languages.

29-30 [Guidelines 29 and 30 are ignored.]

31 Within the stated goals, the facilities used should be as consistent throughout
the many language bindings to a functional interface standard as possible.

32 Bindings should take account of likely language processor limits. (A standard
conforming processor may fail to process a standard conforming program if it is
caused to exceed its limits on size, complexity, etc.). Approaches to handling
such limits may appear in guidelines to bindings implementors and working
papers.

33 If an error numbering scheme is used, the language-specific messages should be
clearly separate from the common messages. In addition, the messages should
be allocated separate ranges for each language.

34 Care must be taken to provide clear and logical mappings from the bound
functions to their source in the functional interface standard. In general, one-to-
one mappings provide such clarity. However, it is recognised that certain
constraints of the programming language (such as number of parameters, etc.)
as well as implementation considerations may suggest alternative
groupings/splittings of functions. These alternatives should be used
infrequently.

35 Parameters should be bound rigidly in the order they appear in the functional
interface standard description. Added parameters should follow the rule that
input parameters must precede output parameters.

36 Strict conformance to the functional interface standard must be maintained in
the definition of input and output parameters.

37 Related semantic parameters in the functional interface standard may be
combined into single syntactic parameters (e.g., records) when such grouping is
obvious. It is suggested that any grouping evident in the functional interface
standard be followed.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 7

Procedural Language Binding Generic Issues Language Bindings

38 The functional interface standard should be followed strictly when binding
enumerated types to enumerated types in a language. When binding
enumerated types to integers in a language, a consistent numbering scheme
should be used. It is suggested that consistent criteria be used in the
development of the functional description, since inconsistencies imply a run-
time conversion. Often there is a natural ordering implicit in the meaning of the
enumerated values (for example, LEFT, MIDDLE, RIGHT). Other schemes are to
put the default first or to always put values that map to ’null’ (i.e., =0) in the first
position.

39 There are some instances when a single data type from the functional interface
standard may be bound to more than one data type in the programming
language, if the language allows the definition of data types equivalent to, or
subsets of, the basic type.

40 Implementation-defined language types may be used if portability of
applications within the language is not affected.

41 In general, the standardised function calls must be distinguishable from user-
defined functions.

42 Abbreviations should be generated from the functional interface standard
names, with unnecessary words eliminated in a consistent manner. This
provides a relatively straightforward method of mapping binding identifiers
back to the functional interface standard.

[Refer to Chapter 4, Bindings to APIs for the specific rules to be followed.]

43 Due to differences in the practices of programmers as well as the
constraints/characteristics provided for different languages, the concatenation
character, if any, must be chosen separately for each programming language.

44 [A single approved abbreviation list should be used for all languages.]

45 Abbreviations of function names should be derived from an approved list that
contains a single abbreviation for each word. Either the single abbreviation or
the word in full may be used in the binding.

46 Data types should be abbreviated in a consistent manner. However, data types
are not constrained to the approved abbreviation list for abbreviations. Other
identifying abbreviations and conventions may be used in a consistent way
throughout the binding.

47 When system facility data types are bound to different languages in a similar
way, the identifiers to which they are bound should be similar.

48 [This Guideline refers to the contents and layout of specifications and is
deferred to Chapter 5, Layout of Specifications.]

49-55 [Guidelines 49-55 are for user-defined interfaces and extending programming
languages, and are not relevant.]

X/Open Snapshot (1990)
Page : 8 Interworking API Style Guide

Chapter 3

API Content

3.1 INTRODUCTION

This section gives guidelines on the functional content of X/Open Interworking APIs.
Topics covered include functional interface, event management, error handling, object
management, support for national languages (internationalisation), resource constraints,
the level of an API and extensions to an API.

3.2 FUNCTIONAL INTERFACE

A functional interface is preferred to a definition of data structures, since this permits
different implementations of the API, including vendor-specific implementations with
extensions.

As an example, consider that an error could be specified as an aggregate [structure]
containing an error_number, an error_class and a reference to the operation which caused
the error. Instead, it is preferable to specify functions to return the error_number,
error_class and reference when given a particular event as parameter.

This frees implementors to choose the best underlying representation, and enables
individual vendors to add extra information (e.g., a message) if required without
changing the standard interface. Additional functionality simply results in additional
functions, rather than changed aggregate definitions.

It also makes it easier to integrate errors arising in different parts of the implementation
(e.g., local system errors versus remote operation errors).

X/Open Snapshot (1990)
Interworking API Style Guide Page : 9

Event Management API Content

3.3 EVENT MANAGEMENT

3.3.1 Introduction

The basic requirement for event management in application programs which use
network services stems from the need to use remote services asynchronously, and to
invoke multiple concurrent operations. It must also be possible to combine these with
other sources of events such as file system pipes and window systems.

Event Management as used here is at a higher level than, for example, the Asynchronous
Event Notification proposal of POSIX 1003.4, and is concerned with management of the
data associated with the event as well as just signalling the occurrence of an event.

For the foreseeable future it is expected that applications will have to combine all event
sources themselves. They will need to use whatever underlying system facilities exist for
event notification and then separate the streams of events and route them to the
appropriate interface.

This section presents a model event management interface to be used by all APIs which
need one. A simple programming example is presented at the end of the section.

3.3.2 Background

This section contains some background material, intended to explain the particular
meaning given to terms in this proposal.

Some form of management is required to deal with events which occur asynchronously,
not in a process’s main flow of control. Suitable mechanisms are not presently available
in a system-independent way, so interim guidelines are presented together with an
overview of what is likely in the future.

Events are asynchronous significant changes in a process which may require a change in
the flow of control. They usually have some data associated with them and the term
event is used here to describe both the occurrence and the object which encompasses the
data. Examples of events include:

• asynchronous I/O completion (e.g., data arrives over communications link, user
presses a key, on-screen window is revealed);

• timer expiration;

• resource availability (e.g., memory, device), and

• program exception (e.g., arithmetic overflow).

The complexity and need for management of events derives from the diverse nature of
the events, which can arise from many disjoint sources in a single process. Event
management is viewed here as proceeding in three stages: notification, synchronisation
and manipulation.

Notification The means by which a process becomes aware that an event has
occurred.

Synchronisation To ensure that all process data is consistent before and after event
handling.

X/Open Snapshot (1990)
Page : 10 Interworking API Style Guide

API Content Event Management

Manipulation The mechanism used to recover data associated with the event and
process it.

These three stages can be combined and implemented in several ways, depending on the
combination of event sources, their frequency and application requirements. Availability
of the necessary system infrastructure is also a consideration. The three main paradigms
are polling, out-of-line and event-driven (though there are many other possibilities):

Polling The simplest technique which requires least support from the system.
The program calls in turn a function supplied by each API which may
give rise to events. These functions return either ‘no event has occurred
on this API’ or they return an event (an ID and the associated data). The
program usually processes each event as it is notified.

With polling, synchronisation is automatic since the program has a
single flow of control. System call overhead can be very low, making it
advantageous when event frequency is high. Its disadvantages are that
processor time is wasted in the polling loop when no events are
occurring, and that high priority events may be significantly delayed.
It is useful for simple applications or in combination with other
techniques.

Out-of-line Combines notification and manipulation and is exemplified by
interrupt or signal handlers. The main flow of the program is stopped
and a transfer is made to a specific event handling routine; this then
performs whatever manipulation of the event data is required and
finally relinquishes control, resuming the main flow.

The major disadvantage of out-of-line event handling is that
synchronisation must be explicitly provided by each event handling
routine. Such provision requires careful programming and in general
may require some means of converting the asynchronous event to a
synchronous one which is dealt with later by polling in the main flow
of control. Out-of-line event handling is appropriate for high-priority
events where the synchronisation requirements are simple and well-
defined.

Event-driven Programs which suspend on a system call and are resumed when any
event occurs. After processing this event they return to the central
suspension point. Thus they depend on the system mechanism for
notification and synchronisation, which become automatic from the
program’s viewpoint.

Event-driven programs are suitable where there are many sources of
events which must be integrated. The major problem is the reliance on
a system facility to suspend on a wide variety of event sources,
because this is not yet available in a portable way.

3.3.3 System Facilities for Event Notification

The system facilities to suspend and await notification of an event are presently system-
dependent although work is in progress to provide a portable mechanism.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 11

Event Management API Content

Many vendors provide either the System V poll() or BSD select() system calls which each
give the ability to suspend until there is activity on a member of a set of file descriptors or
a timeout. For this reason APIs must provide access to their underlying file descriptors,
where possible.

POSIX are working on a proposal for Asynchronous Event Notification, which provides a
much enhanced signal-like mechanism with the required functionality. It is not yet
known whether this proposal will be adopted and it could also be significantly changed.
They are also considering a threads facility.

The X/Open Kernel/Real Time Working Group are also looking at the requirements and
possible solutions in this area.

Implementations of APIs will require modification when this facility is standardised and
available; note in particular that the new event notification facility makes use of an
associated asynchronous I/O facility. These modifications will change the API slightly
since applications will suspend by using new event classes rather than file descriptors. It
will then be necessary for APIs to provide access to the event classes instead of the file
descriptor, using a function similar to file_number() explained below. Application
programs will also require changes to reflect the different underlying event mechanism.

3.3.4 Overview of Mechanism

The mechanism centres around an event object class. Events are associated with a
particular access_point to a service and are, or appear to be, held in a queue for that
access_point. The next two sections describe access_points and events in turn. See Section
3.4, Error Handling for full details of the status type which occurs as the result of the
operations.

3.3.5 Access Points

An access_point identifies a particular association between the application program and a
system facility or service provider. An application may have multiple access_points to the
same service, if this is supported by the particular service provider. The notion of an
access point corresponds to that of a file descriptor in the XSI file system.

In general, the operations provided on access_points will depend on the individual APIs.
Access-points are generally constructed as a result of operations such as bind or open and
destroyed by operations such as unbind or close . They are then passed as a parameter to
most other API functions.

We are only concerned here with one selector which returns a file_descriptor . This is
required to support the present system-dependent event notification facilities, and
similar selectors will be required in the future for any new event notification facilities
which are introduced.

Where system facilities permit, vendors may provide extensions to allow use of
additional notification mechanisms, such as semaphores.

X/Open Snapshot (1990)
Page : 12 Interworking API Style Guide

API Content file_number()

NAME
file_number - obtain the file descriptor associated with an access point (OPTIONAL)

SYNOPSIS
int file_number(

Access_Point_Type access_point
);

DESCRIPTION
file_number() obtains the file descriptor associated with an access_point. The file
descriptor may be used in subsequent calls to vendor-specific system facilities to
suspend the process (e.g., System V poll() or BSD select()). It should not be used for
any other purpose.

ARGUMENTS

access_point (access-point-type)
An established access point to the service.

RESULTS

file_descriptor (integer)
The file descriptor associated with the given access point.

ERRORS
Applications are not permitted to call file_number() with an access_point argument
which is invalid, and the result of doing so is undefined.

No errors are reported by file_number().

NOTE
This operation is optional and will only be provided if suitable underlying system
facilities such as poll() or select() are available.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 13

Event Management API Content

3.3.6 Events

Events are distinct occurrences which are usually the result of some preceding
asynchronous operations on the API.

Events are placed in a queue associated with a particular access_point when they occur,
and are held there until retrieved by the application. The event queue ordering discipline
must be defined by each API. Additional facilities provided by an API may include the
ability to examine the queue of pending events and select particular ones.

There is almost always some data which forms part of the event, often the results of some
asynchronous operation. Access to this data is by means of selectors, and two are
presented here which give access to the identity of the preceding asynchronous operation
and to the results of that operation as a whole. Individual APIs may wish to specify
selectors which give direct access to individual parts of the data, or to other attributes
such as the time at which the event occurred. Such matters should be resolved by each
individual API.

Every API must provide several standard operations on events and may provide
additional operations as desired. The standard operations include a constructor
event_wait, a destructor event_delete, and two selectors event_data and event_identity.

The application retains access to each event, once it has been returned as a result of
event_wait, until access is explicitly relinquished by calling event_delete.

There is a special constant no_event which can be returned by event_wait when the queue
is empty. The application can use this constant in equality tests after such a call, but it is
not permitted to use it as an argument to the other operations.

X/Open Snapshot (1990)
Page : 14 Interworking API Style Guide

API Content event_data()

NAME
event_data - retrieve data associated with an event

SYNOPSIS
API_dependent_type event_data(

Event_Type event
);

DESCRIPTION
event_data() retrieves the data associated with a given event.

ARGUMENTS

event (event-type)
A valid event (not no_event).

RESULTS

associated_data (API-dependent-type)
Definition of the data type depends on the particular API, which may
choose to expose a data structure or provide further functions to access
components of the data.

ERRORS
Applications are not permitted to call event_data() with an event argument which is
invalid or which has the value no_event, and the result of doing so is undefined.

No errors are reported by event_data().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 15

event_delete() API Content

NAME
event_delete - release resources associated with an event

SYNOPSIS
Status event_delete(

Event_Type event
);

DESCRIPTION
event_delete() releases storage and other resources associated with an event. The
application must call this operation for each event when it needs no further
reference to the event, and must not make any further reference to the given event
after calling this operation.

ARGUMENTS

event (event-type)
The event to which access is no longer required.

RESULTS

status (status-type)
Normally success, and otherwise an error.

ERRORS
Applications are not permitted to make any further reference to the given event
after calling this operation, and the result of doing so is not defined.

Possible errors returned in status are:

error_bad_event
The specified event does not refer to an outstanding event.

X/Open Snapshot (1990)
Page : 16 Interworking API Style Guide

API Content event_identity()

NAME
event_identity - identify the operation which was the source of an event

SYNOPSIS
API_Dependent_Type event_identity(

Event_Type event
);

DESCRIPTION
event_identity() identifies the preceding operation which was the source of the
event. Typically, the event will contain the results of asynchronous activity which
was initiated by the preceding operation.

ARGUMENTS

event (event-type)
A valid event (not no_event).

RESULTS

identity (API-dependent-type)
The identity of the operation which caused the given event.

Definition of the identity type depends on the particular API. It might be
the invoke_ID of a directory operation, for example. In any case it must
serve as a unique identifier of the particular event instance.

ERRORS
Applications are not permitted to call event_identity() with an event argument which
is invalid or which has the value no_event, and the result of doing so is undefined.

No errors are reported by event_identity().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 17

event_wait() API Content

NAME
event_wait - wait until an event occurs

SYNOPSIS
Status event_wait(

Access_Point_Type access_point,
Uint32 timeout,
Event_Type ∗ event_return

);

DESCRIPTION
event_wait() returns when an event has occurred on the given access point or after
the given time.

ARGUMENTS

access_point (access-point-type)
An established access point to the service.

timeout (unsigned-32)
The length of time in milliseconds to wait for an event before returning.

If millisecond timing accuracy is not available, timeout is rounded up to
the nearest legal value available on that system. Two special values can
also be used, no_wait and wait_forever. no_wait has the numerical value 0
and causes the operation to return immediately. wait_forever has the
numerical value 232 -1 and causes the operation to block indefinitely,
returning only when an event is available or when an error occurs.

RESULTS

event (event-type)
The first event in the queue.

If there is at least one event in the queue, then the next event is returned
immediately. Otherwise, if an event occurs before the timeout expires,
that is returned. In either case, the returned event is removed from the
queue.

If an error occurs or if the queue remains empty until the timeout expires,
the constant no_event is returned.

status (status-type)
Normally success even if there is no event in the queue, and otherwise
reports an error.

ERRORS
Possible errors returned in status are:

bad_access_point
The specified access_point is not active.

NOTE
This operation is designed to be easily implemented using either poll() or select() or
mechanisms such as the proposed POSIX event notification mechanism.

X/Open Snapshot (1990)
Page : 18 Interworking API Style Guide

API Content Event Management

3.3.7 Programming Examples

This section presents two examples of how the proposed event mechanism might be
used in the C language.

The first example is a simple application which processes a sequence of events from a
single source (a hypothetical OSI Directory). Details of the preceding operations which
give rise to the events are omitted. Errors are defaulted to terminate the process, no
checks are needed.

main()
{

DS_access_point dsap; /∗ Directory Service access point ∗/

.
ds_bind("a-directory", a_context, &dsap);
.
/∗
∗ do whatever setup is required
∗ and then do asynchronous operations
∗/
ds_some_operation(dsap,);
ds_another_operation(dsap,);
.
.
/∗ process resulting directory events ∗/
while (1)
{

DS_event event;

ds_event_wait(dsap, DS_WAIT_FOREVER, &event);
.
results = ds_event_data(event);
results_ID = ds_event_identity(event);
.
.
ds_event_delete(event);

}
.
.
/∗ close down and exit ∗/

}

Finally, below is the skeleton of an application program which uses the proposed
mechanism alongside the equivalent mechanisms of other system facilities. A
hypothetical interface to the OSI Directory has been used as an example of a networking
system facility. The other facilities illustrated are the file system and X Windows. Error
handling is ignored for simplicity; in reality the status which is returned as the C result of
ds_bind() and ds_event_wait() would need to be checked. The System V poll() call has
been used as an illustrative scheduling primitive.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 19

Event Management API Content

main()
{

/∗ declare access points ∗/
DS_access_point dsap; /∗ Directory Service access point ∗/
int file_descriptor; /∗ file system access point (pipe) ∗/
Display ∗ display; /∗ X Windows access point ∗/

DS_status status;
.
ds_error_fatal(FALSE); /∗ ensure errors are reported ∗/
.
/∗
∗ get access to facilities
∗/
status = ds_bind("a-directory", a_context, &dsap);
file_descriptor = open("a-pipe", O_RDONLY+O_NONBLOCK);
display = XOpenDisplay("a-display");
.
/∗ do whatever setup is required ∗/
.
/∗
∗ and prepare to wait for an event
∗ in this case using SysV poll()
∗/
pollfds[0].fd = ds_file_number(dsap);
pollfds[0].events = POLLIN;
pollfds[1].fd = file_descriptor;
pollfds[1].events = POLLIN;
pollfds[2].fd = ConnectionNumber(display);
pollfds[2].events = POLLIN;

while (1) /∗ MAIN EVENT LOOP ∗/
{

/∗
∗ wait indefinitely for an event. When one occurs
∗ check each source in turn to see which.
∗/
poll(pollfds, 3L, -1);

if (pollfds[0].revents != 0)
{

/∗ process directory events ∗/
while (1)
{

DS_event event;

status = ds_event_wait(dsap,
DS_NO_WAIT,
&event);

X/Open Snapshot (1990)
Page : 20 Interworking API Style Guide

API Content Event Management

if (event == DS_NO_EVENT) break;
.
results = ds_event_data(event);
invokeID = ds_event_identity(event);
.
.
ds_event_delete(event);

}
}

if (pollfds[1].revents != 0)
{

/∗ process pipe input ∗/
.
do
{

bytes_read = read(file_descriptor,
buffer,
NUM_BYTES);

.

.
}
while (bytes_read > 0);
.

}

if (pollfds[2].revents != 0)
{

/∗ process display events ∗/
.
while (XPending(display) > 0)
{

XEvent event;

XNextEvent(display, &event);
.
.

}
}

}
.
.
/∗ close down and exit ∗/

}

X/Open Snapshot (1990)
Interworking API Style Guide Page : 21

Error Handling API Content

3.4 ERROR HANDLING

3.4.1 Introduction

Errors as referred to in this document should be regarded as something which is
genuinely wrong, and not just a special case result. The definition of an Ada exception is
appropriate:

‘an exception is an event which causes suspension of normal program execution’.

It is desirable to present a common method of error handling whilst not preventing APIs
from exploiting individual opportunities to improve the facility. The API implementation
is at liberty to combine all error data in the standard model when they are detected, or to
convert them when the application program requires the data.

Note that some of the operations defined below are ‘partial’ in the sense that they are not
defined for all values of their arguments. Such operations are also not required to return
a status. This permits more efficient implementations of the operations. For example,
consider the case of a C implementation where an error is represented by a pointer to an
error structure, whilst a successful result is indicated by a NULL pointer. Then the
restriction of error_number (see below) to arguments which actually represent an error
means that it can be implemented as:

#define error_number(status) (((status_type)(status))->number)

with no concern for the dereferencing of a NULL pointer, since that is an application
programming mistake. Note that where specifications say ‘application programs may not ...
and the results of doing so are undefined’, the undefined behaviour may include immediate
termination (by bus error, illegal address error, etc.).

3.4.2 Mechanism

The mechanism centres around a status object which is present as a result (output
parameter) of all API operations, and which would typically be the function result in the
C binding of an API. A status has several standard operations defined and each API may
provide more as appropriate. It is not possible to access the value of a status object
except by means of these operations; the representation of the object is private to the API
and may differ from one vendor’s implementation to another.

There is a special value which represents success and other values representing all
possible errors.

The standard operations include a predicate failed , and three selectors error_class,
error_number, error_message . status objects are constructed implicitly by the API. In
addition the next section provides an explicit constructor error_copy and a destructor
error_delete .

3.4.3 Status Lifetime

The lifetime of a status object needs consideration during the design of an API language
binding and must be stated in its specification. The chief consideration is management of
the storage used to hold the representation of the status. Possible options include:

X/Open Snapshot (1990)
Page : 22 Interworking API Style Guide

API Content Error Handling

• A fixed lifetime, typically from the point where the status is returned by one API call
until the next call to the API (except for error handling operations, of course). This can
be implemented simply by global storage but is not easily extensible to
multithreading or multiple concurrent operations.

• An indefinite lifetime with unique storage allocated for each status works well for
multithreading and multiple concurrent operations, but requires explicit storage
release unless the programming language provides garbage disposal. If provided, the
storage release operation should be called error_delete.

The following interface is proposed for the C language and other languages with similar
memory management characteristics. Appropriate wording for multithreaded languages
is included between brackets [thus] :

A status object returned by an API function is accessible until the next (non-error
handling) call to the API [in that thread]. References after that point will produce
undefined results. Where access to a status object is required after that point [or in a
different thread] it can be obtained by making a copy using the error_copy function, but
such copies must be explicitly disposed of by the error_delete function.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 23

error_class() API Content

NAME
error_class - determine the class of an error

SYNOPSIS
int error_class(

Status error
);

DESCRIPTION
error_class() returns an integer which may be compared against a list of error
classes defined by the API. The list must include three standard classes, common
across all APIs, but may be extended. The standard classes are:

system_error
An XSI defined error was returned by a system call internal to the API. The
error_number below will be the same as returned by the macro errno
defined in <errno.h>.

language_binding_error
A language-dependent error occurred. For example, buffer overflow in
languages which cannot dynamically allocate buffers.

API_error
An error occurred within the API, such as invalid or inconsistent
arguments to an interface function.

OSI networking APIs will all extend the list, typically by a single additional error
class:

abstract_service_error
An error was reported by the service to which the API provides an
interface.

ARGUMENTS

error (status-type)
Erroneous result of some operation.

RESULTS

class (integer)
The class of error to which the given error belongs.

ERRORS
Applications are not permitted to call error_class() with an error argument which
represents success, and the result of doing so is undefined.

No errors are reported by error_class().

X/Open Snapshot (1990)
Page : 24 Interworking API Style Guide

API Content error_copy()

NAME
error_copy - make a copy of an error object

SYNOPSIS
Status error_copy(

Status original,
Status ∗ copy_return

);

DESCRIPTION
error_copy() takes a status object as an argument and returns an identical one with
indefinite lifetime.

ARGUMENTS

original (status-type)
Result of some operation.

RESULTS

copy (status-type)
A copy of the original status.

The copy is identical to the original in the sense that the selector
operations error_class and error_number produce the same results when
applied to the copy, and error_message produces a string which is
character-by-character the same.

status (status-type)
Normally success, and otherwise an error which occurred whilst copying.

If an error occurs, then both the copy and the original are undefined.

ERRORS
Possible errors returned in status are:

error_no_memory
There is not enough memory to complete the operation.

NOTE
error_copy() can be a null operation if the API implementation always provides
unique status objects and does not reuse global storage.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 25

error_delete() API Content

NAME
error_delete - release resources associated with an error object

SYNOPSIS
Status error_delete(

Status error
);

DESCRIPTION
error_delete() releases storage and other resources associated with an error object.
The application must not make any further reference to the original status after
calling this operation.

ARGUMENTS

error (status-type)
The error object to which access is no longer required.

RESULTS

status (status-type)
Normally success, and otherwise an error.

ERRORS
Applications are not permitted to make any further reference to the original status
after calling this operation, and the result of doing so is not defined.

Possible errors returned in status are:

error_bad_status
The specified status is not valid.

X/Open Snapshot (1990)
Page : 26 Interworking API Style Guide

API Content error_identity()

NAME
error_identity- identify the operation in which an error arose

SYNOPSIS
API_Dependent_Type error_identity(

Status error
);

DESCRIPTION
error_identity() identifies the preceding operation which was the source of the error.
Typically, the error will contain the results of asynchronous activity which was
initiated by the preceding operation.

ARGUMENTS

error (status-type)
Erroneous result of some operation.

RESULTS

identity (API-dependent-type)
The identity of the operation which caused the error.

Definition of the identity type depends on the particular API. It might be
the Invoke_ID of a directory operation, for example. In any case it must
serve as a unique identifier of the particular error instance.

ERRORS
Applications are not permitted to call error_identity() with an argument which
represents success, and the result of doing so is undefined.

No errors are reported by error_identity().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 27

error_fatal() API Content

NAME
error_fatal - determine program behaviour when errors occur

SYNOPSIS
void error_fatal(

bool terminate
);

DESCRIPTION
Any errors which arise after error_fatal() has been called with a true argument result
in a message being sent to the standard error output followed by process
termination. The message includes that which would be generated by
error_message.

Any errors which arise after error_fatal() has been called with a false argument are
reported in the status parameter of the operation.

The API initially behaves as though there has been a call to error_fatal() with a true
argument.

ARGUMENTS

terminate (boolean)
Whether the application should be terminated by an error.

RESULTS
No results.

ERRORS
No errors are reported by error_fatal().

X/Open Snapshot (1990)
Page : 28 Interworking API Style Guide

API Content error_message()

NAME
error_message - produce a message describing an error

SYNOPSIS
char ∗ error_message(

Status error
);

DESCRIPTION
error_message() produces a message describing the error represented by the given
status. The string is in the appropriate national language as discussed under
Internationalisation in the X/Open Portability Guide, Issue 3, Volume 3, XSI
Supplementary Definitions, and may contain details of the particular error as well
as a general message (e.g., a particular name which was not found).

ARGUMENTS

error (status-type)
Erroneous result of some operation.

RESULTS

message (string)
A message describing the given error.

The message may contain as much additional information about the
particular error as the API wishes to provide. The message returned for a
system_error will include that returned by the XSI function strerror().

ERRORS
Applications are not permitted to call error_message() with an argument which
represents success, and the result of doing so is undefined.

No errors are reported by error_message().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 29

error_number() API Content

NAME
error_number - determine the number of a particular error

SYNOPSIS
Sint error_number(

Status error
);

DESCRIPTION
error_number() takes an error as argument and returns an integer which may be
compared against a list of errors defined by the API.

ARGUMENTS

error (status-type)
Erroneous result of some operation.

RESULTS

number (integer)
The error number of the argument.

The error number returned for a system_error is the same as that returned
in errno by the system.

ERRORS
Applications are not permitted to call error_number() with an argument which
represents success, and the result of doing so is undefined.

No errors are reported by error_number().

X/Open Snapshot (1990)
Page : 30 Interworking API Style Guide

API Content failed()

NAME
failed - determine whether a status is success or an error

SYNOPSIS
bool failed(

Status status
);

DESCRIPTION
failed() returns false if the given status represents success and returns true
otherwise. This operation is the only method of testing for success.

ARGUMENTS

status (status-type)
Result of some operation.

RESULTS

result (boolean)
Whether the given status represents an error (result = true) or not (result =
false).

ERRORS
No errors are reported by failed().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 31

Error Handling API Content

3.4.4 Programming Examples

The examples are presented in the C programming language and use a prefix of ZZ on
identifiers to denote that they belong to the hypothetical API. There are skeletons of two
possible versions of the API header file, using different implementations of the status
object.

First is a possible implementation for a very simple API where the status consists simply
of an error number:

/∗ file: zzheader.h ∗/

#define ZZ_SYSTEM_ERROR 1
#define ZZ_LANGUAGE_BINDING_ERROR 2
#define ZZ_API_ERROR 3

typedef int ZZStatus;

#define ZZfailed(status) ((status) != 0)

#define ZZerror_class(status) \
((status) < SOME_NUMBER ? ZZ_SYSTEM_ERROR : \
((status) < A_BIGGER_NUMBER ? ZZ_LANGUAGE_BINDING_ERROR : \
ZZ_API_ERROR))

#define ZZerror_number(status) (status)

extern char ∗ZZerror_message(ZZstatus status);

X/Open Snapshot (1990)
Page : 32 Interworking API Style Guide

API Content Error Handling

Second is a more complicated, and commonplace implementation where the status
consists of an opaque pointer to a structure defined privately by the API:

/∗ file: zzheader.h ∗/

#define ZZ_SYSTEM_ERROR 1
#define ZZ_LANGUAGE_BINDING_ERROR 2
#define ZZ_API_ERROR 3

/∗ private structure ∗/
typedef struct
{

int class;
int number;
.. other structure members as required ..

}
_ZZStatus;

/∗ public definition - opaque pointer ∗/
typedef void ∗ ZZStatus;

/∗ standard operations ∗/
#define ZZfailed(status) ((status) != (ZZStatus)NULL)

#define ZZerror_class(status) (((_ZZStatus ∗)(status))->class)

#define ZZerror_number(status) (((_ZZStatus ∗)(status))->number)

extern char ∗ZZerror_message(ZZstatus status);

The next fragment is of a simple application program which relies on the API to
automatically detect and report any errors and terminate the process.

#include <zzheader.h>

main()
{

ZZaccess_point zzap;

ZZbind(..., &zzap);
ZZsome_operation(zzap, ...);
/∗ and so on with no visible error handling ∗/
ZZunbind(zzap);

}

X/Open Snapshot (1990)
Interworking API Style Guide Page : 33

Error Handling API Content

Finally there is a fragment of a more sophisticated application which takes control of the
error handling in order to provide tailored recovery at each API call:

#include <zzheader.h>

extern void send_to_error_log(char ∗ message);
extern void take_recovery_action(int class, int number);

main()
{

ZZStatus err;
ZZaccess_point zzap;

.

.
/∗ prevent simple-minded termination ∗/
ZZerror_fatal(FALSE);
.
.
if (ZZfailed(err = ZZbind(..., &zzap)))
{

send_to_error_log(ZZerror_message(err));
exit(1); /∗ don’t know how to recover ∗/

}
.
.
if (ZZfailed(err = ZZsome_operation(zzap, ...)))
{

send_to_error_log(ZZerror_message(err));
take_recovery_action(ZZerror_class(err),

ZZerror_number(err));
}
.
.

ZZunbind(zzap);
}

X/Open Snapshot (1990)
Page : 34 Interworking API Style Guide

API Content Object Management

3.5 OBJECT MANAGEMENT

APIs should use the Object Management facilities adopted in collaboration between
X/Open and the X.400 APIA, where this is appropriate. These facilities provide a method
of describing and structuring arbitrarily complex data in order to provide a functional
interface with data-hiding, and are defined in the OSI Object Management API
specification (see Referenced Documents).

3.6 INTERNATIONALISATION

APIs should be internationalised as described in the X/Open Portability Guide, Issue 3,
Volume 3, XSI Supplementary Definitions. In particular, all natural language text
should be separated from the program into message catalogues and manipulated using
international function extensions (see strcoll(), printf() in the X/Open Portability Guide,
Issue 3, Volume 2, XSI System Interface and Headers, for example).

It should be possible for knowledgeable users to generate translations into other
languages (using the gencat utility). This means the original message text source file must
be documented and/or present in a documented location, as well as the generated
catalogues.

3.7 RESOURCE CONSTRAINTS

Functions must guarantee to return all available status information. Specifically, they
should ensure that memory is reserved or allocated for any return aggregate parameters
before starting an operation which may return status information in the aggregate; they
should not wait until the operation completes. It is not acceptable to return a resource
error at completion time.

For the reason above, status information should not be returned in the same dynamically
allocated aggregate as variable sized data.

Implementations of APIs should specify upper bounds on resource usage.

3.8 LEVEL OF API

There are no guidelines concerning the level of the API, though it is possible to make
some related recommendations.

Whether an API should be high or low level in some sense must be judged individually
for each case, and will depend on the base documents.

It is wise to provide simple access to the basic features, with defaults for all options.

API specifications should not contain details of anything below the level of the API itself,
since this will constrain implementations.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 35

Extensions API Content

3.9 EXTENSIONS

It is likely that there will be extensions to many APIs. The guidelines for extensions
follow from classifying the functionality:

mandatory Specified in the API specification and present in all implementations of
the API.

optional Specified in the API specification but only present in some
implementations of the API.

vendor-private Specified by a particular vendor and only present in their
implementation of the API.

future Specified in a revision of the API specification with consequent
multiple implementations of the API (during the transition period).

reserved Present as a place-holder in the API specification to allow forward
compatibility.

In order to allow portable applications to exploit the API in the presence of these
variations, each API must provide means to allow the application to discover what
functionality is present.

The means to discover optional functionality is given in the rule quoted below from the
X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and Headers. This
rule should be followed, except that the error should be returned using the API’s own
error handling policy rather than errno.

"The interfaces to optional functionality exist on all implementations; however, on
implementations that do not support the functionality, the interface will merely return an error,
with errno set to [ENOSYS]."

Check also that the application will be able to discover the [lack of] functionality in such a
way as to enable it to recover, and take alternative action.

Reserved functionality can be treated exactly as unsupported optional functionality.

Vendor-private and future functionality can be discovered by the use of a version number,
and the recommended interface is presented below. The version number is a zero-
terminated string, informally defined by the following syntax and examples:

version ::= revision ‘;’ vendor ‘;’ release ‘;’ private

where revision is the issue number of the API specification vendor is an agreed string
identifying the vendor, release is the release number of the implementation from this
vendor and private is an arbitrary string. The content and purpose of private are defined
by the vendor and typically used to indicate additional features; it can be empty.

Below are two examples of version numbers, both for an API assumed to have revision
number 4. One is the first release of an implementation by IBM, while the other is release
2 of Hitachi’s implementation and contains some private extensions defined in their
documentation.

"4;IBM;1;"
"4;Hitachi;2;Kanji"

X/Open Snapshot (1990)
Page : 36 Interworking API Style Guide

API Content version()

NAME
version - discover the API version number

SYNOPSIS
Status version(

char ∗∗ version_return
);

DESCRIPTION
This function returns the version number of the API.

ARGUMENTS

version_number (string)
The API version in the format given above.

status (status-type)
Normally success, otherwise an error.

RESULTS
None.

ERRORS

error_no_memory
Dynamic memory allocation failed.

NOTE
The function should return a pointer to a string present in the API library (or copied
from it) since this shows correct linking as well as compilation. This also allows
APIs whose functionality is provided by a separate process to report correctly what
facilities are actually available.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 37

version() API Content

X/Open Snapshot (1990)
Page : 38 Interworking API Style Guide

Chapter 4

Bindings to APIs

4.1 INTRODUCTION

This section provides guidance for the preparation of language bindings to X/Open
Interworking APIs and is largely concerned with naming conventions. After a general
discussion of names, specific rules are presented for each type of name which occurs in
an API: functions, variables, types, constants and parameters. There is also additional
material on the design of parameter lists.

4.2 NAMING CONVENTIONS

Naming conventions are used to overcome differences between programming languages,
and to produce names which can easily be interpreted and remembered by
programmers. The overall technique is to choose an abstract name for each entity in an
API which needs a name. This is then bound, or converted, to a name in a particular
programming language by means of a set of derivation rules. The rules for each
language are designed to produce unique legal names in that language which are similar
to the abstract name and to those derived in other languages.

In general the choice of rules for binding to a particular programming language will
depend on the syntax and semantics of that language, but X/Open supports particular
dialects of C and COBOL in the X/Open Portability Guide, Issue 3 and this permits a
single set of rules to be used for both languages.

Some languages may need to adopt more restrictive rules because of their syntax, whilst
others may be able to be more liberal, for example, Ada scope rules allow prefix letters to
be dispensed with.

The common guidelines for C and COBOL presented here are based on two derivation
rules: the 16-character rule and the 30-character rule. These, and a 6-character rule, are
explained after a discussion of internal, external and abstract names.

4.3 INTERNAL AND EXTERNAL NAMES

Names can be divided into two classes which require different naming conventions:

• External names are those visible at link time and the rules for their construction are
determined to some extent by the system linker as well as by the programming
language and compiler. The naming convention must be applied to external names
which are private to the implementation of an application service as well as to those
which form part of the API.

• Internal names are those visible only at compile time, and which are resolved and
eliminated before linking. The naming convention is concerned with those internal
names which appear in the API and need not be applied to private internal names
within the implementation of an application service. They include the names of
constants, types, local variables and procedures which are typically defined in
headers provided by the API and which are included in programs using it.

Note that C and COBOL parameter names are private to the implementation, and so
do not form part of the external interface and are not subject to these restrictions.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 39

Internal and External Names Bindings to APIs

4.4 ABSTRACT NAMES

Abstract names are used in order to keep the names of functions and other entities
similar and understandable in all supported languages. A set of rules are defined which,
when applied to these standard name phrases, yields the identifier to be used in the
language-specific version of the library. Thus, in all programming language-specific
interface libraries, the name of any given function will be similar because of its common
origin in the standard function name phrase assigned to that function.

The following rules should be followed when forming abstract name phrases:

• The phrase should meaningfully describe what the function actually does. Every
effort should be made to avoid using terms which will have different meanings to
different users. Avoid jargon.

• No more than three words should be used (except ‘noise’ words).

• Check existing APIs and use identical names for corresponding entities.

• Where the API is being derived from an existing, abstract specification (e.g., an
International Standard) retain the names used there.

• As new functions or other names are added to a service, each identifier should be
generated for all existing language bindings.

• A check should then be made that the generated identifiers are not identical to any
others. If a collision does occur, a different abstract name phrase should be selected
which does yield a unique identifier in all languages.

4.5 GENERAL NAMING RULES

Identifiers are formed using a prefix denoting the application service name followed by
the abstract name. The prefix ensures that the names in one API are different to those in
all other APIs, and the prefix used for each application service should be recorded to
avoid possible conflicts. Prefixes should be two, three or four characters long, but when
the six-character convention is used they must be exactly two characters long.

It is sometimes necessary to abbreviate words in order to ensure unique identifiers, and
the abbreviations are standardised so as to increase familiarity for the programmer.
Three-character abbreviations are used for all words.

Initial lists of prefixes and abbreviations are given in Appendix A, Name Prefixes and
Abbreviations.

The abstract name is modified as prescribed by the particular naming convention and
then added to the application service prefix to produce an identifier. These identifiers
must be unique across the whole of the Common Applications Environment, and each
must be checked for conflict with:

• existing functions and variables whose names do not follow a prefix scheme, such as
most system calls and library functions;

• other functions and external variables in the new library, and

• reserved words in the programming language.

X/Open Snapshot (1990)
Page : 40 Interworking API Style Guide

Bindings to APIs General Naming Rules

Any conflicts should be resolved by changing the abstract name. The X/Open Portability
Guide should be used to check for conflicts with system facilities, and for C keywords
and library names. The X/Open Portability Guide, Issue 3 should be used together with
the ANS X3.23-1985 standard for COBOL reserved words.

4.6 SIX-CHARACTER NAMING CONVENTION

The six-character convention is designed for use with names in environments with very
small limits on identifier length. In this convention, the prefix denoting the application
service name must consist of two characters (t_ is used as an example). The abstract
name is added to the prefix in a manner which depends on the number of words in the
abstract name:

1. use prefix word where word is the entire abstract name. For example, listen becomes
t_listen.

2. use prefix abbreviation word where abbreviation is the standard 3-character
abbreviation of the first word in the abstract name and word is the entire second
word. For example, receive-connection becomes t_rcvconnection.

3. use prefix letter letter word where letter is the first letter of the first and second words
in the abstract name and word is the entire third word. For example, receive-unit-
data becomes t_rudata.

4.7 SIXTEEN-CHARACTER NAMING CONVENTION

In cases where more characters are significant in identifiers, the need for abbreviation is
not as great and so the following conventions can be used:

• The abstract name should be bound to a programming language identifier by
prefacing it with the application service prefix.

• The words in the name should be differentiated by a suitable technique for the
particular programming language. In COBOL, the hyphens in the abstract name
should be retained. In C, the hyphens may be converted to underscores or they may
be deleted and the first letter of the following word capitalised. The same technique
should be applied consistently throughout the API.

• Identifiers must be unique with no regard to case-sensitivity and must be unique
within sixteen characters.

• An identifier which is not unique may be disambiguated either by changing the
abstract name or by abbreviating one or more words using the standard
abbreviations. All occurrences of the word in all functions should be abbreviated in
the interests of consistency.

4.8 THIRTY-CHARACTER NAMING CONVENTION

The thirty-character naming convention is identical to the sixteen-character one except
that identifiers need only be unique in thirty characters rather than sixteen. Abbreviation
of the abstract name will be very rare using this convention.

4.9 FUNCTION NAMES

The sixteen-character naming convention should be followed by all functions included in
an application service interface, and the prefix should additionally be applied to any

X/Open Snapshot (1990)
Interworking API Style Guide Page : 41

Function Names Bindings to APIs

functions which are visible but not in the interface (e.g., private functions called across
compilation units).

Some functions in the X/Open Transport Interface (XTI) are presented as examples of
how the naming scheme works.

Abstract name Derived name Description
listen t_listen listen for a connect request
open t_open establish a transport endpoint
receive-connection t_receive_connection receive the confirmation from a connection request
receive-data t_receive_data receive data or expedited data sent over a connection
receive-unit-data t_receive_unit_data receive a data unit
receive-unit-error t_receive_unit_error receive a unit data error indication

4.10 EXTERNAL VARIABLE NAMES

The sixteen-character naming convention should be followed for all external variables
(globals) included in an application service interface, and the prefix should additionally
be applied to any variables which are visible but not in the interface (e.g., private
variables passed between compilation units).

For example, an abstract error_number implemented as a global variable would be bound
to the identifier t_error_number if the relevant prefix was t_.

4.11 INTERNAL NAMES

Constants, data types and any other internal names which appear in an API also have a
naming convention based on abstract names. However, the need for abbreviation is not
as great as for external names, and so the thirty-character convention should be followed.

4.12 ERROR NAMES

Error names should follow the convention for internal names, with the added constraint
that the first word of the abstract name should be error . This should be abbreviated to
upper-case E rather than lower-case e when a single letter abbreviation is required.

The scope of error names is deemed to be application service-wide and this is reflected in
the specification layout described in Chapter 5, Layout of Specifications. Error names
and their standard descriptions should be chosen carefully to match all of the functions
which can raise them. Each error should have a single meaning, and the meanings of
different errors should be clearly differentiated.

Error descriptions and abstract names should be the same as those in other application
services where possible (programming language identifiers will be distinguished by the
prefix).

Language-specific errors should be clearly separate from the common errors.

4.13 PARAMETER NAMES

There is no particular convention in parameter naming. However, within one application
service, parameters with the same semantic and syntactic definitions should have exactly
the same abstract name. Some of the very common parameter names will be the same
across all application services.

X/Open Snapshot (1990)
Page : 42 Interworking API Style Guide

Bindings to APIs Parameter Names

Parameter names should be derived from the abstract name by the same mechanism as
described above for internal names, without adding the prefix.

A further convention should be used for output parameters in C; this is presented in
Section 6.1, General Rules.

4.14 PARAMETER PLACEMENT

Parameters should be bound rigidly in the same order they appear in the functional
specification. Input parameters should precede output parameters. Additional
parameters required by a language binding which are not part of the functional
specification should also follow this rule (e.g., array or string lengths).

Where the same parameters are shared by several functions, they should occur in the
same order each time. For example, a file descriptor should generally appear as the first
parameter, and an x (coordinate) should appear before a y.

4.15 AGGREGATE PARAMETERS

In many programming languages it is possible to collect several variables into one
aggregate (e.g., a C structure). This may be done either to express a relationship between
the variables by collecting them into a single conceptual object, or because of
implementation considerations in the programming languages such as a restriction on
the number of parameters which can be passed. In the former case it is appropriate to
collect the variables into a language-independent abstract aggregate type.

Choices must be made as to which input and output parameters are directly exposed to
the user and which are aggregated. When the relationship between variables is not
strong the trade-offs to be considered are:

Exposed Aggregated
obvious to user not obvious to user
easy to read/set harder to read/set
lengthen parameter list shorten parameter list
complicate parameter list simplify parameter list

Parameters that are required, but not frequently modified by the user, can usefully be
aggregated into a composite state parameter.

Parameters which are required but have no meaningful default value should be exposed.

Parameters which would usually be set by the user are better left exposed.

Parameters which would usually not be set by the user are better aggregated.

The total exposed parameter list should be kept short. Less than eight parameters
excluding parameters common to all functions is appropriate.

References by the function to external visible data items (global variables) must be
included in the abstract parameter list in the specification. They should generally be
avoided and replaced by parameters in the programming language, perhaps aggregated
with other parameters.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 43

Parameter Usage Bindings to APIs

4.16 PARAMETER USAGE

Various details of the use which an application service may make of parameters are given
here in the interests of simple and consistent interfaces. Some details depend on whether
a function is synchronous or asynchronous in the following sense:

• A synchronous function is called, performs a job to completion, and then returns all
its results; there is no further activity visible to the user. Functions should be
synchronous wherever possible.

• An asynchronous function is called, performs some initial work and makes an
immediate return, performs the rest of the job to completion, and makes a final return.
Details of the return mechanisms are dependent on the particular application service
and programming language.

Note that functions may be able to behave in a synchronous or asynchronous way
dependent on a certain parameter (such parameters must appear in the function
specification even if implemented as a global mode or some such), or separate functions
may be provided instead.

Parameters identified as input only shall not be changed by the implementation of the
application service, regardless of the parameter passing mechanism used in the
programming language. This also applies to components such as array elements and
indirections.

The calling program is free to change or destroy variables passed as input parameters to
an interface function as soon as the function returns. That is, the implementation of an
API must not reference any parameters after the interface function returns. A copy must
be made of any data which must be referenced later.

An exception to the above paragraph is allowed for large parameters, such as buffers of
data, when (and only when) the function is asynchronous. Such parameters shall be
clearly identified in the parameter specification of the function, and all reference shall be
complete by the time of the final return.

All functions will have a return-code as an output parameter which will return the
constant success or one of the defined error codes.

Ideally, no changes to the contents of any output parameters except return-code shall be
made unless success is returned, but in any case it must be possible to discover exactly
which parameters have been changed by examining the function return-code and other
parameters.

4.17 GUIDELINES FOR OTHER LANGUAGES

Name derivation rules for other languages should use these rules as models, making any
desirable changes. They should also take into account any guidelines laid down by
standards organisations for the particular language. If and when developed, the rules,
together with any other advice and conventions, will be collected into an additional
section at the end of this Style Guide.

X/Open Snapshot (1990)
Page : 44 Interworking API Style Guide

Chapter 5

Layout of Specifications

5.1 BASIC PRINCIPLES

Guidelines for the contents and layout of specification documents for APIs are presented
in this Chapter. Considerable flexibility is provided to ease the process of adopting APIs
from different sources and covering different service areas.

No single overall structure is suggested for specifications, but details are given of a
number of sections which should appear in every specification. The remainder of this
Chapter discusses each of these specification sections in turn:

• introduction

• types

• constants

• error handling

• parameters

• C language names

• object specifications

• function specifications

The layout of the specification should follow ISO Guideline 48 as modified below. The
Guideline should be applied as indicated to any additional language bindings and to the
combined abstract functional specification and C language binding (which fulfils the
purpose of the ISO functional interface standard). In the following text, brackets [like
this] indicate a modification to the ISO text.

48 For readability and ease of maintenance, a single set of contents should be used for every
binding developed to a functional interface standard. Guidelines concerning the format
are:

• [Each function description in the functional interface standard should start on a
new page.] It is not necessary that there be one function description per page [for
additional language bindings.]

• Descriptive information should not be copied from the functional interface standard
[for additional language bindings.]

• The functional description schema should have titles for the sections relating to
arguments, errors and references.

• [Additional language bindings] should not contain explicit references back to the
functional interface standard document.

• A short description of the arguments, mapping back to the parameters from the
functional interface standard, should be given within the schema.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 45

Basic Principles Layout of Specifications

• It is not necessary for there to be a page break, with corresponding page headers, for
every major section in the functional interface standard.

• The structure definitions should not be split between two pages.

• Descriptions should not be broken across two pages.

• Error Messages, for binding errors only, should be a part of the function description
schema.

• Along with the table of abbreviations, there should also be a table containing the
function names alphabetically, by level.

5.2 INTRODUCTION

The introduction to the specification, containing a statement of the objective of the API, a
general overview, and a list of reference documents.

5.3 TYPES

Definitions and descriptions of all types used in the interface to the application service
including any aggregates and enumerations, except those defined in object class
definitions or function definitions. A complete list of all C language identifiers must
appear, usually in the definition of headers. It may be appropriate to define types in the
header definition where the usage and semantics are both simple and clear.

5.4 CONSTANTS

A list of all named constants which appear in the interface, together with descriptions,
except those defined in object class definitions or function definitions. A complete list of
all C language identifiers must appear, usually in the definition of headers. It may be
appropriate to define types in the header definition where the usage and semantics are
both simple and clear.

5.5 ERROR HANDLING

A description of the mechanism used to report errors, and a list of all the error codes
which can be generated by this package, together with a standard description of their
cause.

5.6 PARAMETERS

A list of function parameters which occur frequently in the interface which allows the
reader to become familiar with common parameters. It also reduces the size of
individual function specifications while encouraging good description of the parameters.
The list should be in the order in which parameters occur in function parameter lists, not
in alphabetic order.

5.7 INDEX OF C LANGUAGE NAMES

In order that application programmers can write portable programs, and so that support
staff can determine the source of name conflicts, it is necessary for each API to fully
specify the names which implementations will use. An ordered list is needed of all the C
function names, global variables, macro names, typedef and enum names, structure tags

X/Open Snapshot (1990)
Page : 46 Interworking API Style Guide

Layout of Specifications Index of C Language Names

and any other symbols. This requirement can be met by the Headers chapter in X/Open
Portability Guide practice.

The list should reserve some additional names for use by particular implementations of
the application service. It is recommended that two particular subspaces are reserved:

• All names starting with the API prefix followed by the letter P for private (i.e.,
internal) use by implementations of the interface. Some compilation and linking
environments may make it necessary to expose names which would ideally not be
visible to the user, so this namespace provides a means of doing so which will not
cause conflicts.

• All names starting with the API prefix followed by the letter X for vendor-specific
extensions of the interface.

Note that this does not prohibit an API from using public abstract names which start with
the letters P or X (e.g., an interface function named Print() which might bind to t_Print()
in C). It simply warns application programmers who use the API that they should not
use any identifiers (e.g., they may not define the identifier t_Poll).

5.8 OBJECT SPECIFICATIONS

API designs which make use of Object Management will include object class definitions
(or just class definitions) in their specifications. These class definitions describe the major
data entities which are supported and manipulated by the API. Object Management is
described and specified in the OSI Object Management API (see Referenced
Documents), and that material is not repeated here. This section is concerned with the
layout of class definitions.

All names used in the class definition are abstract names, except when the C binding is
discussed below. The scope of all names is package-wide, and they must be unique
within the package.

5.8.1 Class Definitions

Each class is defined in a separate section of the API specification containing the
following:

• The section header is the name of the class.

• The first paragraph is a very brief description of the purpose of the class.

• The second paragraph lists the class hierarchy from object down to the class. Abstract
classes in the hierarchy are listed in italics, while concrete classes are listed in bold.

• The next item is a table of the class-specific attributes, with the following columns:

Attribute The name of the attribute, which is spelled identically to the
attribute-type.

Value Syntax The kind of value(s) which may be assumed by the attribute.
Possible value syntaxes are defined in the Object Management
specification.

Value Length For value syntaxes which are of variable length (e.g., strings), this
column specifies the range of permitted lengths. For other value

X/Open Snapshot (1990)
Interworking API Style Guide Page : 47

Object Specifications Layout of Specifications

syntaxes it is blank.

Value Number This column specifies the range of number of values which an
attribute may possess. An entry of 1 specifies a mandatory, single-
valued attribute; an entry of 0-1 specifies an optional, single-valued
attribute; an entry of 0-n specifies a multi-valued attribute with up
to n values; and an entry of 0 or more specifies a multi-valued
attribute with an unlimited number of values. This column is never
blank.

Ordered For multi-valued attributes, this column indicates whether the
values have a fixed ordering (so that one value is always first, and
so on). The column entry is either Yes or No; and for single-valued
attributes it is blank.

Value Initially The value of the attribute when an instance of the class is created.
This is a value of the given syntax, or blank if the attribute has no
default value.

• Following the table of attributes is a list of the attributes, describing the purpose of
each.

5.8.2 C Binding of Classes

The C binding is derived as set out below, and documented in a table at the end of the
section which defines the class. All C identifiers are prefixed with the package prefix
characters, and all are #define object-like macro names except for the enumerations.
They are all entirely in upper-case letters, except for any enumeration tags.

class name The package prefix is followed by C_ and then the abstract name of the
class. The numeric value is not part of the API specification.

attribute type The package prefix is followed by the abstract name of the attribute.
The numeric value is not part of the API specification.

value syntax The appropriate name as defined by the Object Management
specification.

value lengths The package prefix is followed by VL_ and then the abstract name of
the attribute. A C binding only exists for maximum value lengths
greater than one, and the numeric value is as specified in the attribute
table. There is no C binding to minimum value lengths.

value numbers The package prefix is followed by VN_ and then the abstract name of
the attribute. A C binding only exists for maximum value numbers
greater than one, and the numeric value is as specified in the attribute
table.

enumerations Where the value syntax is an enumeration (e.g., Enum(Priority)), the C
binding is also an enumeration.

The enumeration tag identifier is composed of the package prefix
followed by the abstract name of the value set (i.e., the name in
parentheses in the value syntax). This name is spelled in the same case
as the abstract name.

X/Open Snapshot (1990)
Page : 48 Interworking API Style Guide

Layout of Specifications Object Specifications

Each enumeration constant identifier is composed of the package
prefix followed by the abstract name of the constant, spelled entirely in
upper-case. The numeric value is not part of the API specification.

5.8.3 Example Class Specification - Message

An instance of class Message is a primary information object conveyed between users by
the MTS. It conveys arbitrary binary data from one user, the originator, to one or more
users, the recipients.

The class hierarchy is Object, Communique, Message . An instance of this class has the
attributes of an instance of its immediate superclass, and additionally the attributes listed
below.

Value Value Value Value
Attribute Syntax Length Number Ordered Initially
Content Object(Content) - 1 - -
Content-Return-Requested Boolean - 1 - false
Deferred-Delivery-Time String(Time) 0-17 0-1 - -
Disclosure-Allowed Boolean - 1 - false
Priority Enum(Priority) - 1 - normal

Attributes of a Message

1. Content. The arbitrary binary information the message is intended to convey to its
recipients. The MTS modifies the value of this attribute only for purposes of
conversion.

2. Content-Return-Requested. Whether the Content attribute is to be included, as the
Message-Content attribute, in any reports of non-delivery the message provokes.

3. Deferred-Delivery-Time. The date and time, if any, before which the message
shall not be delivered. Delivery deferral is normally the responsibility of the MD
that originates the message. Thus messages whose Deferred-Delivery-Time
attributes are present shall be transferred between MDs only by bilateral agreement
between those MDs.

4. Disclosure-Allowed. Whether the O/R names of other recipients are to be
indicated to each recipient at delivery.

5. Priority. The relative priority at which the message is to be transferred. Its value
may be low, normal or urgent.

Value Value Value
Attribute Syntax Length Number
MT_CONTENT OM_S_OBJECT
MT_CONTENT_RETURN_REQUESTED OM_S_BOOLEAN
MT_DEFERRED_DELIVERY_TIME OM_S_UTC_TIME
MT_DISCLOSURE_ALLOWED OM_S_BOOLEAN
MT_PRIORITY OM_S_ENUMERATION

C Binding for Class MT_C_MESSAGE

X/Open Snapshot (1990)
Interworking API Style Guide Page : 49

Object Specifications Layout of Specifications

Tag Constants
MT_Priority MT_LOW MT_NORMAL MT_URGENT

Enumerations

5.9 FUNCTION SPECIFICATIONS

Each function in the API is described in an individual specification. These are ordered by
abstract name and this name should appear in the page header.

An index of the C language names is also provided as described above. Each function is
described using the section headings described below, and illustrated in the following
example from the X/Open Transport Interface (XTI).

NAME
The abstract name of the function, which also appears in the header at the top of
each page. This is followed by a very brief statement of the function’s purpose.

SYNOPSIS
The C binding to the function expressed as a C code fragment including:

• any headers which are necessary for its use, and

• the ANSI C prototype of the function (with names derived by the method
described in Section 4.4, Abstract Names). The list of parameters should
contain parameter names as well as types, and must be in the same order as the
abstract arguments and results below.

DESCRIPTION
The detailed specification of the function’s behaviour. Note that much of this
behaviour is better expressed in the description of the arguments and results.

ARGUMENTS
A list of the abstract input parameters of the function, which includes not only
those in the C parameter list but also any external state the function reads (e.g.,
environment variables), and individual components of aggregated parameters.

Each parameter is characterised by:

name The abstract name of the parameter.

type The abstract type as defined earlier (see Section 5.2, Types).

description A description of the parameter, and its relationship to the function’s
behaviour.

RESULTS
A list of the abstract output parameters of the function, which includes not only the
function return value, but also those in the C parameter list, any external state
changes (e.g., errno), and individual components of aggregated parameters. The
description of each result should state under what conditions it will or will not be
valid, unless it will always be valid when the status is success, and invalid
otherwise. The format of the entries is as for the input parameters. Any
parameters which are input-output should appear in both lists.

X/Open Snapshot (1990)
Page : 50 Interworking API Style Guide

Layout of Specifications Function Specifications

The function status (which is bound to the C function result) should be the last
result in the list. This causes the list of arguments and results to match the C
binding precisely, and allows easy reference from the status result to the errors
section below.

ERRORS
The abstract and C names of any errors which can be generated by the function,
together with the standard description of the error. A more precise explanation of
the circumstances which give rise to the error may be given in additional
commentary, although they are normally explained in the DESCRIPTION,
ARGUMENTS or RESULTS above.

SEE ALSO
The abstract names of any related functions, and the title and number of any other
appropriate sections of the document. Use the actual C binding name for functions
which do not (yet) have an abstract name, such as system functions like fcntl().

5.9.1 Example Function Specification - Receive-Data

This section comprises an example function specification using Receive_Data().

X/Open Snapshot (1990)
Interworking API Style Guide Page : 51

Function Specifications Layout of Specifications

X/Open Snapshot (1990)
Page : 52 Interworking API Style Guide

Layout of Specifications Receive_Data()

NAME
Receive-Data - receive data or expedited data sent over a connection

SYNOPSIS
#include <xti.h>

t_status t_Receive_Data(
int file_descriptor,
int buffer_length,
char ∗ buffer_return,
int ∗ transfer_length_return,
bool ∗ more_data_return,
bool ∗ expedited_data_return

);

DESCRIPTION
This function receives either normal or expedited data.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for event_data_available or
event_expedited_data_available using the get_event() function. Additionally, the process can
arrange to be notified via the Event Manager interface.

ARGUMENTS

file_descriptor (file-descriptor-type)
The local transport endpoint through which the data will arrive.

buffer_length (integer)
The size, in bytes, of the buffer available for data.

non_block_mode (boolean)
By default, Receive_Data() operates in synchronous mode and will wait for data
to arrive if none is currently available. However, if the global variable
non_block_mode is set (via open() or fcntl()), it will execute in asynchronous mode
and will fail if no data is available. (See error_no_data below).

RESULTS

buffer (byte-array)
A receive buffer of buffer_length bytes where user data will be placed.

transfer_length (integer)
The number of bytes of data received.

more_data (boolean)
If more_data has the value true, this indicates that the current transport service
data unit (TSDU) or expedited transport service data unit (ETSDU) must be
received in multiple calls to Receive_Data(). Each call with more_data set indicates
that a further call must follow immediately to get more data for the current TSDU.
The end of the TSDU is identified by the return of a call with more_data taking the
value false. If the transport provider does not support the concept of a TSDU as
indicated in the information returned from open() or get_information(), then
more_data should be ignored.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 53

Receive_Data() Layout of Specifications

expedited_data (boolean)
The data returned is expedited data if this result is true. If the number of bytes of
expedited data exceeds buffer_length, both expedited_data and more_data will be
true on return. On subsequent calls to retrieve the remaining ETSDU
expedited_data will also take the value true on return. The return of a call with
more_data taking the value false identifies the end of the ETSDU.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed.
Only after the full ETSDU has been retrieved (more_data is false), will the
remainder of the TSDU be available to the user.

status (boolean)
true if the function is successful and false if an error occurs.

error_number (integer-type)
Indicates which particular error has occurred. It is a global variable (errno -
strictly in C it is a modifiable lvalue) which is set only when the status indicates
an error has occurred. It is not changed if the function was successful.

ERRORS
On failure, status [the function result] is set to false and error_number [the global
t_errnumber] is set to one of:

Error [C Name] Description
error_bad_file The specified file_descriptor does not refer to a

transport endpoint.[TBADF]

error_no_data non_block_mode was set, but no data is currently
available from the transport provider.[TNODATA]

error_asynchronous_event An asynchronous event has occurred on this transport
endpoint and requires immediate attention.[TLOOK]

error_not_supported This function is not supported by the underlying
transport provider.[TNOTSUPPORT]

error_wrong_state The function was issued in the wrong sequence on the
transport endpoint referenced by the file_descriptor.[TOUTSTATE]

error_system_error A system error has occurred during execution
of this function.[TSYSERR]

SEE ALSO
fcntl(), get_information(), get_event(), open(), send_data().

X/Open Snapshot (1990)
Page : 54 Interworking API Style Guide

Chapter 6

Rules for C Bindings

6.1 INTRODUCTION

This Chapter presents specific advice on the preparation of C bindings to X/Open
Interworking APIs. Some of the advice is repeated from Chapter 5, Layout of
Specifications in order to provide a complete checklist in this section.

6.2 GENERAL RULES

The following rules should be followed by all C bindings:

1. ANSI C requires that wherever a library function is implemented by a macro with
parameters (a function macro), a genuine function with an identical name is also
provided. This can be accessed by using #undef on the macro or by enclosing the
name in parentheses (e.g., library_func(parameters)) and permits users to perform
operations not possible with macros, specifically to take the address of the function.

2. All functions in an API should return the return-code as their result. A value of zero
indicates success (i.e., the abstract constant success is bound to 0) and other values
match one of the errors which the function can raise.

3. If a function result must be used for something other than the return-code, the return
value shall at least encode success/fail. If it returns a pointer, NULL indicates
failure. If it returns an integer, at least one value shall be reserved to indicate failure
and that value should be ((int)-1). If it would otherwise return nothing, it should
have the return-code as its result.

4. A further naming convention should be used for output parameters because all
parameters are passed by value in C. If the derived parameter name is
parameter_name and the returned value is of type parameter_type then the C
parameter should have _return appended and be declared as:

parameter_type ∗ parameter_name_return;

5. Abstract types should be bound in the API binding to underlying intermediate
types having an explicit size, and each implementation should then define the
intermediate types in terms of short, int, long and so on. The intermediate types
should be the same from API to API:

Sint32 Signed 32-bit integer. Used as the representation of all signed integral
types requiring more than 16-bit range.

Sint Signed integer guaranteed to provide at least 16 bits. Used as the
representation of general signed integral types requiring not more than
16-bit range.

Sint16 Signed 16-bit integer. Used only as the representation of signed integral
types requiring exactly 16-bit range. Typically used in large arrays to
conserve space, or for transfer to machines with different architecture.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 55

General Rules Rules for C Bindings

Uint32 Unsigned 32-bit integer.

Uint Unsigned integer guaranteed to provide at least 16 bits.

Uint16 Unsigned 16-bit integer.

Intermediate 16-bit Definition 32-bit Definition
Sint32 long int
Sint int int
Sint16 int short
Uint32 unsigned long unsigned
Uint unsigned unsigned
Uint16 unsigned unsigned long

Definition of Intermediate Types on Different Architectures

This technique allows application programs using the API to be portable across
different word lengths without requiring explicit casts of every parameter. An API
is able to specify the numeric ranges it requires without causing inefficiencies. For
example, and ignoring naming conventions for clarity:

typedef Uint32 File_length;
typedef Uint Packet_length;
typedef Uint16 Historical_packet_length;
typedef Historical_packet_length Transmission_statistics[30000];

/∗
∗ Files can be very long, so need 32 bits.
∗ Packets are quite small, and 16 bits is sufficient but 32 bits
∗ is also fine (whichever is more efficient on each machine).
∗ A large collection of packet lengths means we must be
∗ explicit to avoid wasting space and time.
∗/

6.3 IMPLEMENTATION CONSIDERATIONS

Where the C binding is the fundamental interface to the implementation (e.g., because the
implementation is written in C) it may be used as the basis to implement other bindings.
The following additional rules should be followed in order to ease this task:

1. Large blocks of data should not be passed as zero-terminated strings, but should
have a separate count of the length. This avoids the necessity for a block copy in
other languages in order to obtain the extra byte for the terminating zero. An
additional function in the C binding can easily permit zero-terminated strings, as
perhaps:

result_type user_friendly_function(char ∗ string)
{
return basic_function(string, strlen(string));
}

2. Any functions which perform dynamic memory management which is visible to
the user must provide a means to inhibit this. An example would be a read function

X/Open Snapshot (1990)
Page : 56 Interworking API Style Guide

Rules for C Bindings Implementation Considerations

which is used malloc() to allocate a buffer for the return data. The function may
provide explicit means of control (e.g., a Boolean parameter use_dynamic_memory),
or implicit means (e.g., passing in a non-NULL output buffer), or a completely
separate function. This eases the preparation of bindings to languages not
possessing equivalent dynamic memory mechanisms.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 57

Implementation Considerations Rules for C Bindings

X/Open Snapshot (1990)
Page : 58 Interworking API Style Guide

Appendix A

Name Prefixes and Abbreviations

This Appendix is provided as a starting point which should be maintained and expanded
as necessary.

A.1 APPLICATION SERVICE PREFIXES

The prefixes for various system facilities are shown below together with the X/Open
Portability Guide, Issue 3 volume number if appropriate. In most cases it can be
assumed that the same prefix in other letter-cases is also used (e.g., SQL is also used);
refer to the appropriate manual for details. The importance of this kind of record is
illustrated by the already existing clash for the ‘is’ prefix.

Prefix XPG Service Name and Comments
E 4 ANSI C standard error macros
ft FTAM (proposed by MAP)
is 4 ANSI C standard functions
is 5 X/Open ISAM (also uses some other names)
LC_ 4 ANSI C standard macros
mem 4 ANSI C standard functions
rt_ POSIX realtime extensions (proposed)
SIG_ 4 ANSI C standard macros
sql 5 X/Open SQL
str 4 ANSI C standard functions
to 4 ANSI C standard functions
t_ 7 X/Open Transport Interface
wcs 4 ANSI C standard functions
X 6 X Window System

X/Open Snapshot (1990)
Interworking API Style Guide Page : 59

Abbreviations Name Prefixes and Abbreviations

A.2 ABBREVIATIONS

The words in abstract function names should be abbreviated as shown below when
forming the equivalent name in the programming language.

Word Abbreviation
abort abt
acknowledge ack
block blk
confirm cnf
connection con
directory dir
error err
event evt
get get
indication ind
in in_
initiate ini
input in_
message msg
modify mod
option opt
out out
output out
receive rcv
remove rem
request req
response rsp
select sel
send snd

X/Open Snapshot (1990)
Page : 60 Interworking API Style Guide

Appendix B

Rationale

B.1 INTRODUCTION

The rationale for the API Style Guide presents additional information supporting some of
the decisions made about the content. It uses the same section numbering as the main
document and should be read in conjunction with the corresponding text.

B.1.1 Overview

Provision of guidance for functional specification depends on the architecture to be
chosen, and particularly on the choice of programming model.

B.1.2 Language-Independent Specification

Language-independent techniques are becoming more common, and are used in the MAP
specification, for example. The ISO Guidelines were developed partly as a result of the
effort to produce the language-independent GKS (Graphical Kernel System). Work is also
underway towards converting POSIX to a language-independent specification. However,
such efforts still stand as disparate individual efforts.

It is premature for X/Open to take this route at this time, partly because of the several
current efforts. It will become an appropriate route when a standard emerges and
receives widespread support, and particularly if the POSIX effort succeeds.

In the meantime it is better to avoid the additional effort of rewriting specifications to be
language-independent, knowing that the format is likely to be revised for compatibility in
the future. For X/Open, using C-specific specifications also has the advantage of
retaining a similar style to the rest of the X/Open Portability Guide.

X/Open specifications are presently expressed almost entirely and exclusively in the C
language. COBOL is the only other language supported by the X/Open Portability
Guide, Issue 3, though FORTRAN and Pascal were mentioned in Issue 2. X/Open
COBOL programs are able to call C functions, so an interface specification expressed in C
suffices for the Common Applications Environment.

There are some steps which can be taken to ease the production of bindings to other
languages and the later transition to language-independence, particularly by the
identification of all inputs to and outputs from functions.

It is not suggested that any existing language-independent standards are rewritten when
adopted or adapted by X/Open. Indeed it is necessary that this Style Guide does offer
guidelines rather than rules, because X/Open adopts standards rather than setting them.

B.1.3 Contents

It will be appropriate to separate all the programming language-specific aspects of
Chapter 5, Layout of Specifications into a separate section when X/Open moves to
language-independent specifications.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 61

Introduction Rationale

B.1.4 Terms and Abbreviations

X/Open Snapshot (1990)
Page : 62 Interworking API Style Guide

Rationale Language Bindings

B.2 LANGUAGE BINDINGS

B.2.1 Introduction

The ISO SC22/WG11/N466 document used in this report is the Draft Technical Report
(DTR) dated February 1990.

The original text of modified or deleted ISO Guidelines is presented in this rationale,
along with reasons for changes and points of interest.

B.2.2 Organisational Guidelines

2 Original ISO Guideline: "Either the language committee or the system facility
committee should have primary responsibility for the language binding. Different
language bindings to a system facility should not be the cause of substantial differences
in program structure."

Changed to reflect the X/Open Interworking organisation, and avoid repetition
of Guideline 6.

3 Original ISO Guideline: "Whichever committee is responsible for a particular
binding, the other committee needs to be consulted as early as possible. The two
committees have complementary responsibilities and concerns."

Changed to reflect the rewording of Guideline 2.

B.2.3 General Technical Guidelines

B.2.4 Recommendations for Functional Specifications

9 Original ISO Guideline: "A functional specification should use an abstract
description, and should avoid being influenced by a particular programming language."

This is one of the greatest changes from the ISO Guidelines. The X/Open
Portability Guide is expressed very largely in the C language at present, and it
is premature to express one part using an abstract methodology. Refer back to
Section 1.2, Language-Independent Specification for more details.

12 This Guideline has been introduced since the ISO draft used by MAP.

B.2.5 Procedural Interface Guidelines

16 It is intended that the binding should reserve part of the identifier namespace(s)
for private use by the application service implementation, perhaps because
internal procedures are unavoidably exposed through the linkage mechanism.
This is made clear in the notes accompanying the ISO Guideline.

B.2.6 Suggested Actions For Standards Committees

B.2.7 Recommendations For Programming Language Committees

X/Open Snapshot (1990)
Interworking API Style Guide Page : 63

Language Bindings Rationale

B.2.8 Procedural Language Binding Generic Issues

28 The MAP specification deletes the second sentence, but X/Open may wish to
adopt a specification which includes a generic binding (cf SQL).

29 Original ISO Guideline: "The development of language-specific bindings must be
supported for those functional interface standards that require such bindings; however,
a single generic binding may be supported for rapid adoption and implementation of
such functional interface standards as those in the database arena."

30 Original ISO Guideline: "If a generic binding is required, only one should be
developed, as one standard is generally better than two for a single purpose."

44 Original ISO Guideline: "A single approved abbreviation list should be used for all
languages that have unrestricted lengths for identifiers. The BASIC and FORTRAN
bindings have special considerations for identifier syntax; these considerations should
be used for any other bindings developed for these languages or other languages that
have similar identifier restrictions."

The X/Open Portability Guide provides for the C and COBOL languages, and
currently requires that external (linkable) names be unique in the first 6
characters and also not rely on case differences. This may change in the future,
at which time this Guideline should be reviewed. Note that some interfaces
specified in the X/Open Portability Guide already violate this restriction which
suggests that all X/Open members’ systems actually exceed the requirements of
the X/Open Portability Guide. Examples of such interfaces are XTI which
requires 8-character significance and X Windows which requires 16-character.

X/Open Snapshot (1990)
Page : 64 Interworking API Style Guide

Rationale API Content

B.3 API CONTENT

B.3.1 Introduction

The topic of asynchronous results has been removed from the present version, but
should be replaced when a suitable mechanism is developed. It will be appropriate to
consider the Directory Services mechanism as a model when it is finalised.

B.3.2 Functional Interface

B.3.3 Event Management

Introduction

The need to manage data associated with an event is one of the reasons that X/Open
needs its own mechanism for interworking. Another concern is the timescale, since
X/Open wants to adopt several interworking APIs in the near future. During this time,
the system interface to event notification is likely to be both vendor-specific and
changing. The intent is to provide a single mechanism which will utilise any of the low-
level facilities. This allows the design of APIs which will themselves need minimal
change over time, and which allow application programs to be written which will need
no change except at the few places where system facilities must be directly used.

The proposal assumes that the ‘holy grail’ of unified event management will not be found
in the timescales considered.

Background

System Facilities for Event Notification

Overview of Mechanism

Access Points

Events

Programming Examples

B.3.4 Error Handling

Introduction

The design criteria used are presented to provide motivation for the mechanism in terms
of initial requirements and consequent design decisions. These are:

1. the mechanism must not penalise writers of simple applications;

X/Open Snapshot (1990)
Interworking API Style Guide Page : 65

API Content Rationale

2. the mechanism must allow implementation freedom to vendors;

3. the mechanism must fit many API models;

4. the mechanism must allow errors to be common across APIs where possible;

5. the mechanism must allow all errors to be detected in a uniform way;

6. the mechanism must be extensible to multithreaded programs, and

7. the mechanism must be extensible to multiple concurrent operations.

The first requirement led to a decision that there should be an easy method for simple
applications to detect all errors and terminate safely with a helpful error message (see
error_fatal() below). However, sophisticated applications should be able to:

• recover where possible (e.g., by means of retries), and

• abort operations tidily (e.g., release all dynamically allocated memory).

One of the main decisions based on all the criteria was that a functional interface is
preferred to a definition of data items, since this permits different implementations of the
API, including vendor-specific implementations with extensions.

As an example, consider that an error could be specified as an aggregate [structure]
containing an error_number, an error_class and a reference to the operation which caused
the error. Instead, it is preferable to specify operations to return the error_number,
error_class and reference when given a particular error as parameter.

This frees implementors to choose the best underlying representation, and enables
individual vendors to add extra functionality if required without changing the standard
interface. Additional functionality simply results in additional operations, rather than
changed aggregate definitions.

It also makes it easier to integrate errors arising in different parts of the implementation
(e.g., local system errors versus remote service errors).

Mechanism

Status Lifetime

Programming Examples

B.3.5 Object Management

B.3.6 Internationalisation

B.3.7 Resource Constraints

B.3.8 Level of API

B.3.9 Extensions

X/Open Snapshot (1990)
Page : 66 Interworking API Style Guide

Rationale Bindings to APIs

B.4 BINDINGS TO APIS

B.4.1 Introduction

B.4.2 Naming Conventions

COBOL programs in an X/Open environment are able to call C functions which means
that the C naming convention is sufficient.

B.4.3 Internal and External Names

The X/Open Portability Guide currently requires that portable external names in C are
unique in the first six characters and are case-independent, and this is also all that is
guaranteed by the draft ANSI C Standard (as an obsolescent feature). ANSI intend in the
future to require C implementations to recognise case differences and at least 31
characters in external names. See the section entitled Portability - Variable Names in the
X/Open Portability Guide, Issue 3, Volume 4, Programming Languages and Sections
3.1.2 and 3.9.1 of the Draft C Standard.

However, some interfaces defined in the X/Open Portability Guide require more than
six characters. For example, the XTI interface in Volume 7, Networking Services requires
eight, while the Xlib interface in Volume 6, Window Management needs twenty-one
characters to distinguish XCirculateSubwindowsDown() from XCirculateSubwindowsUp().
This suggests that all X/Open implementations of the Common Applications
Environment actually provide at least this significance, since otherwise it would be
impossible to link X applications. With this in mind, the X/Open Interworking Working
Group has selected a sixteen-character limit. It further suggests that the recommended
six-character limit in Volume 3, XSI Supplementary Definitions be reviewed and
increased to at least this value.

FORTRAN 77 and previous versions of the language impose a six-character limit on the
length of identifiers, but the POSIX FORTRAN binding committee (P1003.9) intend to
require all implementations to provide thirty-one characters. The rationale for this is that
it is necessary in order to obtain a reasonable binding to POSIX, and is in any case a very
common extension in current implementations. The FORTRAN 8x standard will also
require thirty-one-character significance to be supported.

The naming conventions should be reviewed when 31-character significance eventually
becomes part of the X/Open Portability Guide.

B.4.4 Abstract Names

Because of differences between programming languages, no single set of names will work
in all environments. Therefore each programming language must have a standard set of
names defined for it.

Although a single convention suffices for X/Open COBOL and C, the abstract name idea
is retained to allow bindings to other languages to be produced as required in individual
cases or in the future. FORTRAN and Ada are examples of languages for which different
conventions are appropriate.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 67

Bindings to APIs Rationale

B.4.5 General Naming Rules

B.4.6 Six-Character Naming Convention

The aim is to provide more readable names than the MAP scheme of always abbreviating
to a single letter. FORTRAN 77 and previous versions of the language are examples of
environments with very small limits on identifier length, but see the comments in Section
B.4.3, Internal and External Names above.

B.4.7 Sixteen-Character Naming Convention

The sixteen-character convention is designed for use with external names.

B.4.8 Thirty-Character Naming Convention

The thirty-character convention is designed for use with internal names. For these, the
X/Open Portability Guide states that a maximum of eight significant characters should
be assumed for portability in C (see Section 3.4 in Volume 4, Programming Languages).
This assumption seems extremely pessimistic in view of existing interfaces adopted by
X/Open which require longer names and so suggest that actual implementations provide
them. The ANSI C standard requires at least 31 significant characters, which allows the
complete abstract name to be used in most cases and results in much more readable
identifiers. X/Open COBOL guarantees 30 significant characters in names, and is not case
significant.

The suggested wording of the API Style Guide takes the view that C implementations
provide 31-character capability already, and that it will in any case be required when
X/Open adopts the ANSI C Standard.

B.4.9 Function Names

Chapter 5, Layout of Specifications requires all private but visible functions to be listed
as part of the API specification, so users can detect obscure name clashes when using
several packages.

Under the six-character naming scheme, the XTI functions used as examples of the
naming scheme show little change from the original with careful choice of the abstract
name, as can be seen in the full list given below. Other choices would result in more
substantial changes, for example receive_data_over_connection would become
t_rdconnection if over is counted as ‘noise’. Note that the original names t_rcvudata and
t_rcvuderr require 8 characters to be distinguished, and so exceed the maximum advised
by Section 3.4 in the X/Open Portability Guide, Issue 3, Volume 4, Programming
Languages.

Under the sixteen-character naming scheme, all C function names are identical to the
abstract names, and are considerably different to the existing names.

X/Open Snapshot (1990)
Page : 68 Interworking API Style Guide

Rationale Bindings to APIs

Abstract name 16-Character name 6-Character name Original name
accept t_accept t_accept t_accept
allocate t_allocate t_allocate t_alloc
bind t_bind t_bind t_bind
close t_close t_close t_close
connect t_connect t_connect t_connect
error t_error t_error t_error
free t_free t_free t_free
get_event t_get_event t_getevent t_look
get_information t_get_information t_getinformation t_getinfo
get_state t_get_state t_getstate t_getstate
listen t_listen t_listen t_listen
open t_open t_open t_open
option_management t_option_management t_optmanagement t_optmgmt
receive_connection t_receive_connection t_rcvconnection t_rcvconnect
receive_data t_receive_data t_rcvdata t_rcv
receive_disconnect t_receive_disconnect t_rcvdisconnect t_rcvdis
receive_release t_receive_release t_rcvrelease t_rcvrel
receive_unit_data t_receive_unit_data t_rudata t_rcvudata
receive_unit_error t_receive_unit_error t_ruerror t_rcvuderr
send_data t_send_data t_snddata t_snd
send_disconnect t_send_disconnect t_snddisconnect t_snddis
send_release t_send_release t_sndrelease t_sndrel
send_unit_data t_send_unit_data t_sudata t_sndudata
synchronise t_synchronise t_synchronise t_sync
unbind t_unbind t_unbind t_unbind

X/Open Snapshot (1990)
Interworking API Style Guide Page : 69

Bindings to APIs Rationale

Abstract Name Description
accept accept a connect request
allocate allocate a library structure
bind bind an address to a transport endpoint
close close a transport endpoint
connect establish a connection with another transport user
error produce error message
free free a library structure
get_event look at the current event on a transport endpoint
get_information get protocol-specific service information
get_state get the current state
listen listen for a connect request
open establish a transport endpoint
option_management manage options for a transport endpoint
receive_connection receive the confirmation from a connection request
receive_data receive data or expedited data sent over a connection
receive_disconnect retrieve information from disconnect
receive_release acknowledge receipt of an orderly release indication
receive_unit_data receive a data unit
receive_unit_error receive a unit data error indication
send_data send data or expedited data over a connection
send_disconnect send user-initiated disconnect request
send_release initiate an orderly release
send_unit_data send a data unit
synchronise synchronise transport library
unbind disable a transport endpoint

B.4.10 External Variable Names

B.4.11 Internal Names

B.4.12 Error Names

B.4.13 Parameter Names

(From MAP 4.2.2.5.) No convention is needed for C or COBOL since parameter names are
not part of a function’s external interface, but this is not true of all languages. For
example, an Ada binding would need a naming convention since parameter names are
visible in the interface.

B.4.14 Parameter Placement

Consistency with ISO Guideline 35 and MAP 4.2.3.

B.4.15 Aggregate Parameters

This discussion replaces the text concerning DCBs in the MAP specification. The DCB is a
concept introduced as part of the MAP interface model to which we have no
corresponding concept. However some of their text is pertinent to the general notion of

X/Open Snapshot (1990)
Page : 70 Interworking API Style Guide

Rationale Bindings to APIs

aggregates.

B.4.16 Parameter Usage

B.4.17 Guidelines for Other Languages

X/Open Snapshot (1990)
Interworking API Style Guide Page : 71

Layout of Specifications Rationale

B.5 LAYOUT OF SPECIFICATIONS

B.5.1 Basic Principles

The layout is based on an amalgamation of the MAP specification (particularly
A7A1.4.2.5), the POSIX proposal, the ISO Guidelines including the GKS example, the X.400
APIA specification (X.400 GW API), and existing X/Open Portability Guide practice.
Examples of pages from each of these specifications are included as Appendix C,
Example Specifications.

Further guidelines for the content of specifications can be given if the X/Open
Interworking Architecture provides a single model for X/Open Interworking APIs.

The original ISO Guideline reads as follows:

48 "For readability and ease of maintenance, a single set of contents should be used for
every binding developed to a functional interface standard. Guidelines concerning the
format are:

• It is not necessary that there be one function description per page.

• Descriptive information should not be copied from the functional interface standard.

• The functional description schema should have titles for the sections relating to
arguments, errors and references.

• This schema should not contain explicit references back to the functional interface
standard document.

• A short description of the arguments, mapping back to the parameters from the
functional interface standard, should be given within the schema.

• It is not necessary for there to be a page break, with corresponding page headers, for
every major section in the functional interface standard.

• The structure definitions should not be split between two pages.

• Descriptions should not be broken across two pages.

• Error Messages, for binding errors only, should be a part of the function description
schema.

• Along with the table of abbreviations, there should also be a table containing the
function names alphabetically, by level."

It has been modified chiefly because the C binding has been combined with the functional
interface standard for current X/Open use. The resulting documents will have different
typical sizes of sections, making different layout choices more appropriate. Consistency
with existing X/Open Portability Guide practice has also been considered.

B.5.2 Introduction

B.5.3 Types

X/Open Snapshot (1990)
Page : 72 Interworking API Style Guide

Rationale Layout of Specifications

B.5.4 Constants

B.5.5 Error Mechanism and Error Codes

See ISO Guideline 11.

B.5.6 Parameters

B.5.7 Index of C Language Names

ISO Guideline 15 suggests reserving part of the name space for implementations.

B.5.8 Object Specifications

Class Definitions

C Binding of Classes

Example Class Specification - Message

B.5.9 Function Specifications

The X/Open Interworking Working Group felt that classifying functions in an API was of
little value, and outweighed by the benefits of a single alphabetical list of functions. This
also accords with current X/Open Portability Guide style.

C SYNOPSIS
C function declarations without prototypes are an obsolescent feature of ANSI C.
The chosen style, which uses prototypes, is chosen in advance of a published
version of the X/Open Portability Guide which has adopted ANSI C. The goal is to
avoid rework of new APIs, and an anticipation of X/Open Portability Guide
adoption of ANSI C.

ARGUMENTS
Inclusion of external state dependencies and state changes accords formal status to
side-effects which are often only discussed in the DESCRIPTION. Inclusion of side-
effects, return value and parameter subcomponents allows bindings to other
languages with different procedure calling mechanisms to be generated more
easily, and also has the benefit of describing the function more completely. The
parameter characteristics are chosen to match those of the X.400 APIA specification.

ERRORS
The standard description of the error is not strictly necessary since it simply repeats
the description given in the full list of errors, but it is present in the current X/Open
Portability Guide and makes the specification slightly easier to read. It is
important that the standard description is precisely the same as in the full list and
that any specific text is additional to it.

SEE ALSO
The abstract name is used as the primary index to the document and so is a more

X/Open Snapshot (1990)
Interworking API Style Guide Page : 73

Layout of Specifications Rationale

appropriate reference than the C name.

B.5.10 Example Function Specification - Receive_Data

C SYNOPSIS
Notes:

• The function name was originally t_rcv.

• The order of buffer_length (was nbytes) and buffer_return (was buf) have been
exchanged so that input parameters precede output ones (ISO Guideline 35).

• There is a problem with the original specification since the buffer length is
unsigned whilst the function return value (containing the number of bytes read)
is int. Presumably, the number of bytes of data and the buffer length are
actually restricted to less than {INT_MAX} rather than {UINT_MAX}.

DESCRIPTION
A better function would guarantee that more_data is never set if the concept of a
TSDU is not supported, to avoid conditional tests.

The original definition of this function returns status information in several
parameters (status, error_number and even transfer_length) which interact and are
not fully defined without access to additional information returned from open or
get_information (see below). One benefit of the suggested explicit listing of all
parameters is that this kind of confusion becomes more obvious.

X/Open Snapshot (1990)
Page : 74 Interworking API Style Guide

Rationale Rules for C Bindings

B.6 RULES FOR C BINDINGS

This section is present as an example of the kind of material which can be presented in
additional sections for bindings to other languages if and when they are deemed
necessary.

Some duplication of information from earlier sections is a consequence of the decision to
combine the C binding with the functional specifications.

B.6.1 General Rules

The output parameter convention clearly shows the underlying type of the parameter
and the reason that a pointer is used, which is concealed by the possible alternative
declaration:

typedef parameter_type ∗ parameter_pointer_type;
...

parameter_pointer_type parameter_name;

B.6.2 Implementation Considerations

X/Open Snapshot (1990)
Interworking API Style Guide Page : 75

Rules for C Bindings Rationale

X/Open Snapshot (1990)
Page : 76 Interworking API Style Guide

Appendix C

Example Specifications

This Appendix is part of the rationale and lists examples from other API Style Guides
which were considered in arriving at the Style Guide defined in the document.

1. an example from the X/Open Revised XTI Developers’ Specification, X/Open 1990;

2. an example from the POSIX 1003.1-N178 proposal;

3. a GKS example from the ISO Guidelines for Language Bindings;

4. an example from the X/Open and X.400 APIA X.400 API Specification, and

5. an example from MAP.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 77

Example One: Revised XTI Example Specifications

C.1 EXAMPLE ONE: REVISED XTI

The following example is taken from the X/Open Revised XTI Developers’ Specification,
X/Open 1990, page 67ff.

X/Open Snapshot (1990)
Page : 78 Interworking API Style Guide

Example Specifications t_rcv()

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
#include <xti.h>

int t_rcv(fd, buf, nbytes, flags)
int fd;
char ∗buf;
unsigned int nbytes;
int ∗flags;

DESCRIPTION

Parameters Before call After call
fd x /
buf x (x)
nbytes x /
flags / x

This function receives either normal or expedited data. The argument fd identifies
the local transport endpoint through which data will arrive, buf points to a receive
buffer where user data will be placed, and nbytes specifies the size of the receive
buffer. The argument flags may be set on return from t_rcv() and specifies optional
flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O_NONBLOCK is set (via t_open() or
fcntl()), t_rcv() will execute in asynchronous mode and will fail if no data is
available. (See [TNODATA] below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more
data, and the current transport service data unit (TSDU) or expedited transport
service data unit (ETSDU) must be received in multiple t_rcv() calls. In the
asynchronous mode, the T_MORE flag may be set on return from the t_rcv() call
even when the number of bytes received is less than the size of the receive buffer
specified. Each t_rcv() with the T_MORE flag set indicates that another t_rcv() must
follow to get more data for the current TSDU. The end of the TSDU is identified by
the return of a t_rcv() call with the T_MORE flag not set. If the transport provider
does not support the concept of a TSDU as indicated in the info argument on return
from t_open() or t_getinfo(), the T_MORE flag is not meaningful and should be
ignored. If nbytes is greater than zero on the call to t_rcv(), t_rcv() will return 0 only
if the end of a TSDU is being returned to the user.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If the
number of bytes of expedited data exceeds nbytes, t_rcv() will set T_EXPEDITED and
T_MORE on return from the initial call. Subsequent calls to retrieve the remaining
ETSDU will have T_EXPEDITED set on return. The end of the ETSDU is identified by
the return of a t_rcv() call with the T_MORE flag not set.

In synchronous mode, the only way for the user to be notified of the arrival of
normal or expedited data is to issue this function or check for the T_DATA or
T_EXDATA events using the t_look() function. Additionally, the process can arrange

X/Open Snapshot (1990)
Interworking API Style Guide Page : 79

t_rcv() Example Specifications

to be notified via the EM interface.

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure, t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNODATA] O_NONBLOCK was set, but no data is currently available from
the transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport
provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport
endpoint referenced by fd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been
detected between XTI and the transport provider for which there
is no other suitable XTI (t_errno).

RETURN VALUE
On successful completion, t_rcv() returns the number of bytes received. Otherwise,
it returns -1 on failure and t_errno is set to indicate the error.

SEE ALSO
fcntl(), t_getinfo(), t_look(), t_open(), t_snd().

(The following is taken from Section 6.2.)

Key for Parameter Arrays

For each XTI function description, a table is given which summarises the contents of the
input and output parameter. The key is given below:

x The parameter value is meaningful. (Input parameter must be set before
the call and output parameter may be read after the call.)

(x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

X/Open Snapshot (1990)
Page : 80 Interworking API Style Guide

Example Specifications Example Two: POSIX

C.2 EXAMPLE TWO: POSIX

The following example is taken from POSIX Draft 1003.1-N178 proposal, page 8ff.

Reproduced with permission.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 81

Example Two: POSIX Example Specifications

4.4 POSIX-Specific Procedure Interfaces

4.4.1 get-file-statistics

The following represents the proposed format and contents for the description of the
abstract equivalent of the current POSIX function whose name in the C binding is stat().

4.4.1.1 Procedure Parameters

Access Type
Name Data Type Written Written

Read [Success] [Exception]
pathname pathname-type X
file-kind file-kind-type X
file-permissions file-permission-type X
file-identifier file-identifier-type X
link-count link-count-type X
user-identification user-identifier-type X
group-identification group-identifier-type X
file-eof-offset file-offset-type X
time-file-last-accessed time-value-type X
time-file-last-modified time-value-type X
time-file-last-status-change time-value-type X

PROCEDURE-STATUS procedure-status-type X X

4.4.1.2 Expected Procedure Status Values Returned

Error Description Possible Recovery Action
successful completion Normal successful completion N/A

error-no-access ? ?
error-name-too-long ? ?
error-no-entry ? ?
error-not-a-directory ? ?
error-invalid-file-descriptor ? ?

4.4.1.3 Associated Packages

Package Name Description
system-type-definition-package ?
file-statistics-definition-package ?

X/Open Snapshot (1990)
Page : 82 Interworking API Style Guide

Example Specifications Example Two: POSIX

4.4.2 close-a-file

The following represents the proposed format and contents for the description of the
abstract equivalent of the current POSIX function whose name is close().

4.4.2.1 Procedure Parameters

Access Type
Name Data Type Written Written

Read [Success] [Exception]
file-descriptor file-descriptor-type X

PROCEDURE-STATUS procedure-status-type X X

4.4.2.2 Expected Procedure Status Values Returned

Error Description Possible Recovery Action
successful completion Normal successful completion N/A
error-invalid-file-descriptor ? ?
error-signal-interrupt ? ?

4.4.2.3 Associated Packages

None.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 83

Example Three: ISO Guidelines Example Specifications

C.3 EXAMPLE THREE: ISO GUIDELINES

The following example is taken from the ISO Guidelines for Language Bindings, PDTR
10182, page 43ff.

Reproduced with permission. Complete copies can be obtained through national
standards bodies.

X/Open Snapshot (1990)
Page : 84 Interworking API Style Guide

Example Specifications Example Three: ISO Guidelines

REQUEST STROKE WSOP, WSAC, SGOP L0b

Parameters
In workstation identifier N
In stroke device number (1..n) I
Out status (OK,NONE) E
Out normalization transformation number (0..n) I
Out number of points (0..n) I
Out points in stroke WC nxP

Effect: GKS performs a REQUEST on the specified STROKE device. If the break
facility is invoked by the operator, the status NONE is returned;
otherwise, OK is returned together with the logical input value which
is the current measure of the STROKE device. This consists of a
sequence of not more than ‘input buffer size’ (in the stroke data
record) points in world coordinates, and the normalization
transformation number, which was used in the conversion to world
coordinates. The points in the stroke all lie within the window of
the normalization transformation.

NOTE: If an operator enters more points than the stroke input buffer size
(in the workstation state list) allows, the additional points are
lost. The operator should be informed of this situation.

References:
4.6.5
4.8.1
4.8.2
4.8.3
4.8.4

Errors:
7 GKS not in proper state; GKS shall be in one of the states WSOP,

WSAC or SGOP.
20 Specified workstation identifier is invalid.
25 Specified workstation is not open.
38 Specified workstation is neither of category INPUT nor of category

OUTIN.
140 Specified input device is not in REQUEST mode.

Figure 1: Example of the Definition of a GKS Function

X/Open Snapshot (1990)
Interworking API Style Guide Page : 85

Example Three: ISO Guidelines Example Specifications

In the definition of a parameter of a GKS function, the data type, coordinate system and
range of permitted values are defined in Clause 6.1 of GKS - see Figures 2, 3 and 4
respectively.

The data type can be a simple type, which is one of the following:

I integer whole number
R real floating point number
S string number of characters and character sequence

2 real values specifying the x and y coordinates of a location in WC,
NDC or DC space.

P point

identification (used for error file, workstation identifier, connection
identifier, workstation type, specific escape function identification,
GDP identifier, pick identifier, segment name and identification of a
GKS function). In a programming language, not all these instances
of the same data type need be bound to the same data type in the
language.

N name

a data type comprizing a set of values. The set is defined by
enumerating the identifiers which denote the values. This type
could be mapped, for example, onto scalar types in Pascal, or onto
integers in FORTRAN.

E enumeration

Alternatively, the data type can be a combination of simple types, thus:

f) a vector of values, for example, 2xR

g) a matrix of values, for example, 2x3xR

h) a list of values of one type; the type can be a simple type or a
vector, for example, nxI and nx4nR

i) an array of values of simple type, for example, nxnxI

j) an ordered pair of different types, for example, (I;E)

or it can be:
a compound data type, the content and structure of which are not
defined in this standard.

D data record

Figure 2: The Possible Data Types in GKS

X/Open Snapshot (1990)
Page : 86 Interworking API Style Guide

Example Specifications Example Three: ISO Guidelines

For coordinate data, the relevant coordinate system is indicated:

k) WC : world coordinate system
l) NDC : normalized device coordinate system
m) DC : device coordinate systems

Figure 3: Possible Coordinate Systems in GKS

Permitted values can be specified by:

n) a condition, for example, >0 or [0,1]; the latter implies that the value lies between
0 and 1 inclusively.

o) a standard range of integer values, for example, (1..4).

p) a range of integer values in which the maximum is determined by
implementation or other constraints, for example, (32..n). An occurrence of n
does not necessarily imply any relationship with other occurrences of n; n merely
denotes a variable integer in this context.

q) a list of values which constitute an enumeration type, for example, (SUPPRESSED,
ALLOWED).

r) an ordered list of any of the above.

Figure 4: Range of Permitted Values in GKS

In a language binding of GKS:

a) ‘The abstract functions and data types of GKS need to be expressed in terms of the
constructs available in the host language ... in a natural and efficient manner.’
(Quote from Annex C of GKS)

b) In one case (pick identifier) the default for a particular GKS state variable is
language dependent and must be bound so.

c) Error conditions specific to a language binding may be defined (for example, ‘array
size too small’ in FORTRAN). GKS specifies the range in which language-binding-
dependent error messages must lie.

Following through with the example shown in Figure 1, specific instances from the
Pascal, FORTRAN, Ada and C GKS bindings are given in Example 5.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 87

Example Three: ISO Guidelines Example Specifications

Procedure GReqInput (
InputClass : GEInputClass;
WsId : GTWsId;
InputDeviceNum : GTInt1;
VAR Status : GEReqStatus;
VAR inputvalue : GRInput);

Type
GEInputClass = (GVLocator..GVString);
GTWsId = INTEGER;
GTInt1 = 1..MAXINT;
GEReqStatus = (GVStatusOK, GVNoInput, GVStatusNone);
GRInput = record

case InputClass : GEInputClass of
. . .

GVStroke: (NormTranStroke:GTint0;
Num : GTint0;
Points : GAPointArray);

only stroke record construct is shown
. . .

end;
GTint0 = 0..MAXINT;
GAPointArray = array[GTMaxPoint1] of GRpoint;
GRPoint = record

x,y : REAL;
end;

GTMaxPoint1 = 1..GCMaxpoint;

The Pascal GKS binding contains the following alternative binding for this
function:

Procedure GReqStroke(
WsId : GTWsId;
StrokeDeviceNum : GTInt1;

VAR Status : GEReqStatus;
VAR StrokeMeasure : GRStroke);

with the additional data type -
type GRStroke = record

NormTranStroke : GTInt0;
Num : GTInt0;
Points : GAPointArray;

end;

Figure 5: Example in GKS Pascal Binding

X/Open Snapshot (1990)
Page : 88 Interworking API Style Guide

Example Specifications Example Three: ISO Guidelines

SUBROUTINE GRQSK (WKID, SKDNR, N, STAT, TNR, NP, PXA, PYA)
Input: INTEGER WKID

INTEGER SKDNR
INTEGER N

Output: INTEGER STAT
INTEGER TNR
INTEGER NP
REAL PXA (N), PYA (N)

Figure 6: Example in GKS FORTRAN Binding

Gint - integer
Gfloat - floating point number

typedef struct {
Gfloat x;
Gfloat y;

} Gwpoint;

typedef struct {
Gint transform;
Gint n_points;
Gwpoint ∗points;

} Gstroke;

typedef enum {
GOK,
GNONE

} Gistat;

typedef struct {
Gistat status;
Gstroke ∗stroke;

} Gqstroke;

greqstroke (ws, dev, response)
Gint ws;
Gint dev;
Gqstroke ∗response;

There are alternative methods for binding this function in Appendix A of the C GKS
binding for nonconforming C Compilers.

Figure 7: Example in GKS C Binding

X/Open Snapshot (1990)
Interworking API Style Guide Page : 89

Example Three: ISO Guidelines Example Specifications

procedure REQUEST_STROKE
(WS : in WS_ID;
DEVICE : in DEVICE_NUMBER;
STATUS : out INPUT_STATUS;
TRANSFORMATION : out TRANSFORMATION_NUMBER;
POSITION : out WC.POINT);

type WS_ID is new POSITIVE;
type DEVICE_NUMBER is new POSITIVE;
type INPUT_STATUS is (OK,NONE);
type TRANSFORMATION_NUMBER is new NATURAL;

package WC is new GKS_COORDINATE_SYSTEM (WC_TYPE);
type WC_TYPE is digits PRECISION;

NOTE: GKS_COORDINATE_SYSTEM is a generic package which defines an assortment
of types that support each of the GKS coordinate systems.

Figure 8: Example in GKS Ada Binding

X/Open Snapshot (1990)
Page : 90 Interworking API Style Guide

Example Specifications Example Four: X.400 API Specification

C.4 EXAMPLE FOUR: X.400 API SPECIFICATION

The following example is taken from the X/Open and X.400 APIA X.400 API Preliminary
Specification, X/Open 1990, Chapter 3, Message Handling Interfaces.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 91

Example Four: X.400 API Specification Example Specifications

3.1 DATA TYPES

This section defines, and Table 3 lists, the data types of the MA and MT interfaces that are
specific to MH. The data types of both the generic and C interfaces are specified. Those
of the C interface are repeated in Section 3.5, which serves as a summary and a reference.
The interfaces also include the Boolean, Object, Object Identifier, Private Object, Return
Code, String and intermediate data types of the OM interface.

Data Type Description
Feature The features to be negotiated for a session.
Interval An interval of time measured in milliseconds.
Object Count A number of objects.
Sequence Number The sequence number of an object in a retrieval queue.

Table 3 : Interface Data Types Specific to MH

3.1.1 Feature

NAME
Feature - type definition for requesting features

DECLARATION
typedef struct {

OM_object_identifier feature;
OM_boolean activated;

} MH_feature;

DESCRIPTION
A data value of this type is used for negotiating the features of a session.

3.1.2 Interval

NAME
Interval - the integer that denotes an interval of time measured in milliseconds

DECLARATION
typedef OM_uint32 MH_interval;

DESCRIPTION
A data value of this data type is the integer in the interval [0, 232) that denotes an
interval of time measured in milliseconds.

3.1.3 Object Count

NAME
Object Count - the integer that denotes a number of objects

DECLARATION
typedef OM_uint32 MH_object_count;

DESCRIPTION
A data value of this data type is the integer in the interval [0, 232) that denotes a
number of objects.

X/Open Snapshot (1990)
Page : 92 Interworking API Style Guide

Example Specifications Example Four: X.400 API Specification

3.1.4 Sequence Number

NAME
Sequence Number - the sequence number of an object in a retrieval queue

DECLARATION
typedef OM_uint32 MH_sequence_number;

DESCRIPTION
A data value of this data type is the integer in the interval [0, 231) (sic) that denotes
a message or report in a retrieval queue.

Sequence numbers are assigned in ascending order, but not necessarily
consecutively. An object’s sequence number never changes, and no sequence
number denotes two different objects, even at different times.

3.2 ACCESS FUNCTIONS

This section defines, and Table 4 lists, the functions of the MA interface. The functions of
both the generic and C interfaces are specified. Those of the C interface are repeated in
Section 3.5, which serves as a summary and a reference.

Function Description
Cancel Submission Cancel the deferred delivery of a submitted message.
Close Terminate an MA session.
Finish Delivery Conclude the delivery in progress in a session.
Finish Retrieval Conclude the retrieval in progress in a session.
Open Establish an MA session.
Size Determine the size of the delivery or retrieval queue.
Start Delivery Begin the delivery of a message or a report.
Start Retrieval Begin the retrieval of a message or a report.
Submit Submit a communique.
Wait Return when an object is available for delivery or retrieval.

Table 4 : MA Interface Functions

As indicated in the table, the MA interface comprises a number of functions whose
purpose and range of capabilities are summarised as follows:

1. Cancel Submission. This function cancels the deferred delivery of a message,
without regard to the session in which it was submitted.

2. Close. This function terminates an MA session between the client and the service. If
the delivery or retrieval of a message or a report is in progress, the service first
unsuccessfully finishes that delivery or retrieval.

3. Finish Delivery. This function concludes the delivery in progress in a session. The
client supplies delivery confirmations, as required, for users to which the object, a
message, was delivered. It also indicates to which users the object, either a
message or a report, is undeliverable.

4. Finish Retrieval. This function concludes the retrieval in progress in a session. The
client indicates whether the service is to remove the retrieved message or report

X/Open Snapshot (1990)
Interworking API Style Guide Page : 93

Example Four: X.400 API Specification Example Specifications

from the retrieval queue, or leave it there.

5. Open. This function establishes an MA session between the client and the service,
and makes the Basic Access FU and the OM Package initially available in that
session. The client may also specify the other features required for the session. The
client specifies either its own name or the O/R address of a local user. The session
provides MTS access to the local user at the specified address, if the latter, or to a
group of local users, statically associated with the client name, if the former.

6. Size. This function determines the number of messages and reports in the delivery
or retrieval queue to which a session provides access.

7. Start Delivery. This function begins the delivery of a message or a report to one or
more of the users associated with a session. If no messages or reports await
delivery, the function reports an exception.

8. Start Retrieval. This function begins the retrieval of a message or a report from the
retrieval queue to which a session provides access. If no messages or reports await
retrieval, the function reports an exception.

9. Submit. This function submits a communique (see the Communique class) by
adding it to the submission queue to which a session provides access. The function
first verifies the communique’s integrity.

10. Wait. This function returns when a message or a report is available for delivery or
retrieval in the delivery or retrieval queue to which a session provides access, or
when a period of time elapses, whichever occurs first.

The functions are grouped into four FUs - one basic and one each for submission,
delivery, and retrieval - as indicated in Table 5. (As stated previously, the Delivery and
Retrieval FUs are mutually exclusive.)

Basic Access Submission Delivery Retrieval
Open Submit Size Size
Close Cancel Submission Start Delivery Start Retrieval
OM API Finish Delivery Finish Retrieval

Table 5 : MA Interface Functional Units

Note: OM API is defined in [1]

The intent of the interface definition is that each function is atomic, i.e., that it either
carries out its assigned task in full and reports success, or fails to carry out even a portion
of the task and reports an exception. However, the service does not guarantee that a task
will not occasionally be carried out in part but not in full.

Note: Making such a guarantee might be prohibitively expensive.

Whether a function detects and reports each of the exceptions listed in the Errors clause
of its specification is unspecified. If a function detects two or more exceptions, which it
reports is unspecified. If a function reports an exception for which a return code is
defined, however, it uses that (rather than another) return code to do so.

X/Open Snapshot (1990)
Page : 94 Interworking API Style Guide

Example Specifications Cancel Submission()

NAME
Cancel Submission - cancel the deferred delivery of a submitted message

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_cancel_submission (

OM_private_object session,
OM_object mts_identifier

);

DESCRIPTION
This function cancels the deferred delivery of a message, without regard to the
session in which it was submitted.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

MTS Identifier (Object)
The MTS identifier assigned to the message whose delivery is to be
cancelled; an instance of the MTS Identifier class.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-message, no-such-representation, no-such-session, no-such-syntax, no-such-
type, not-private, permanent-error, pointer-invalid, system-error, temporary-error,
too-late, too-many-values, wrong-class, wrong-value-length, wrong-value-makeup,
wrong-value-number, wrong-value-syntax or wrong-value-type.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 95

Close() Example Specifications

NAME
Close - terminate an MA session between the client and the service

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_close (

OM_private_object session
);

DESCRIPTION
This function terminates an MA session between the client and the service. If the
delivery or retrieval of a message or a report is in progress in the session, the
service first unsuccessfully finishes that delivery or retrieval.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
function-interrupted, memory-insufficient, network-error, no-such-session, not-
private, permanent-error, pointer-invalid, system-error, temporary-error or wrong-
class.

X/Open Snapshot (1990)
Page : 96 Interworking API Style Guide

Example Specifications Finish Delivery()

NAME
Finish Delivery - conclude the delivery in progress in a session

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_finish_delivery (

OM_private_object session,
OM_object delivery_confirmations,
OM_object non_delivery_reports

);

DESCRIPTION
This function concludes the delivery in progress in a session. The client supplies
delivery confirmations, as required, for users to which the object, a message, was
delivered. It also indicates to which users the object, either a message or a report, is
undeliverable, and thus, by implication, to which users the object was delivered.

The client indicates to which users the message or report is temporarily, rather than
permanently, undeliverable. The circumstances that cause temporary
undeliverability are client-defined. However, whether the service will accept any
circumstances as causes of temporary failure is service implementation-defined. If
the service does not support temporary failures, it treats them as permanent.

If the object is a message, the service issues delivery reports (DRs), as required, for
the users to which it has been delivered; issues NDRs, as required, for the users to
which it is permanently undeliverable; and returns the message to the delivery
queue for the users to which it is temporarily undeliverable. In the first case, the
service considers that it has transferred responsibility for the message to the client.

If the object is a report, the service returns the report to the delivery queue for the
users to which it is temporarily undeliverable. For the users to which the report has
been delivered, the service considers that it has transferred responsibility for the
report to the client.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class. A delivery shall be in progress.

Delivery Confirmations (Object)
One or more delivery confirmations, as required, for users to which the
object, a message, was delivered; an instance of the Local Delivery
Confirmations class.

This argument is omitted if there are no confirmations.

In the C interface, the argument’s absence is signalled by the null pointer.

Non-delivery Reports (Object)
Indicates the one or more users to which the object cannot be delivered; an
instance of the Local NDR class.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 97

Finish Delivery() Example Specifications

This argument is omitted if there are no such users.

In the C interface, the argument’s absence is signalled by the null pointer.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-object, no-such-representation, no-such-session, no-such-syntax, no-such-
type, not-private, permanent-error, pointer-invalid, session-not-busy, system-error,
temporary-error, too-many-values, wrong-class, wrong-value-length, wrong-
value-makeup, wrong-value-number, wrong-value-syntax or wrong-value-type.

X/Open Snapshot (1990)
Page : 98 Interworking API Style Guide

Example Specifications Finish Retrieval()

NAME
Finish Retrieval - conclude the retrieval in progress in a session

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_finish_retrieval (

OM_private_object session,
OM_boolean remove

);

DESCRIPTION
This function concludes the retrieval in progress in a session. The client indicates
whether the service is to remove the message, report from the retrieval queue, or
leave it there. In the former case, the service considers that it has transferred
responsibility for the object from the service to the client. In the latter case, the
service makes the objects inaccessible (i.e., the object handles are made invalid); the
associated communique or report, however, can be obtained again in a subsequent
Start Retrieval function invocation.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class. A retrieval shall be in progress.

Remove (Boolean)
Whether the service is to remove the retrieved message or report from the
retrieval queue, rather than leave it there.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-object, no-such-session, not-private, permanent-error, pointer-invalid,
session-not-busy, system-error, temporary-error or wrong-class.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 99

Open() Example Specifications

NAME
Open - establish an MA session between the client and the service

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_open (

OM_object user_address,
OM_string client_name,
MH_feature feature_list[],
OM_private_object ∗session,
OM_workspace ∗workspace

);

DESCRIPTION
This function establishes an MA session between the client and the service, and
makes the Basic Access FU and the OM Package initially available in that session.
The client may also specify the other features required for the session.

The client specifies either its own name or the O/R address of a local user. The
session provides MTS access to the local user at the specified address, if the latter,
or to a group of local users, statically associated with the client name, if the former.
The Retrieval FU can be requested only if a single user is designated, but that user
may be designated in either of these two ways.

The client always designates a particular user in the same way. The choice between
O/R address and client name is made by means outside the scope of this
document. How users are associated with a client name is outside the document’s
scope. The maximum number of users in a group is implementation-defined (and
may be one).

Opening an MA session also creates a workspace. A workspace contains objects
returned as a result of functions invoked within that session. The workspace is
used as an argument in the OM Create and Copy functions.

The maximum number of sessions that may exist simultaneously is
implementation-defined and may vary with time.

ARGUMENTS

User Address (Object)
Explicitly identifies the local user to which the session is to provide MTS
access; an instance of the OR Address class.

If this argument is absent, the Client Name argument shall be present.

In the C interface, the argument’s absence is signalled by the null pointer.

Client Name (String)
The name by which the service knows the client, interpreted as a value
whose syntax is String (IA5). It implicitly identifies one or more local users
to which the session is to provide MTS access.

X/Open Snapshot (1990)
Page : 100 Interworking API Style Guide

Example Specifications Open()

If this argument is absent, the User Address argument shall be present.

In the C interface, the argument’s absence is signalled by the null pointer.

Feature-List (Feature-List)
An ordered sequence of features, each represented by an object identifier.
The sequence is terminated by an object identifier having no components
(a length of zero and any value of the data pointer in the C representation).

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Activated (Boolean-List)
If the function completed successfully, this result contains an ordered
sequence of Boolean values, with the same number of elements as the
Feature-List. If true, each value indicates that the corresponding feature is
now part of the interface. If false, each value indicates that the
corresponding feature is not available.

In the C binding, this result is combined with the Feature-List argument as
a single array of structures of type MH_feature.

Session (Private Object)
The established MA session between the client and the service; an instance
of the Session class. The service prevents the client from modifying this
object subsequently. This result is present if and only if the Return Code
result is success.

Workspace (OM_workspace)
The workspace that will contain all objects returned as a result of the
functions invoked in the session.

ERRORS
feature-conflicts, feature-unavailable, function-interrupted, memory-insufficient,
network-error, no-such-client, no-such-representation, no-such-syntax, no-such-
type, no-such-user, permanent-error, pointer-invalid, system-error, temporary-
error, too-many-sessions, too-many-values, wrong-class, wrong-value-length,
wrong-value-makeup, wrong-value-number, wrong-value-syntax or wrong-value-
type.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 101

Size() Example Specifications

NAME
Size - determine the number of messages and reports in the delivery or retrieval
queue

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_size (

OM_private_object session,
MH_object_count ∗number

);

DESCRIPTION
This function determines the number of messages and reports in the delivery or
retrieval queue to which a session provides access.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Number (Object Count)
The number of objects in the delivery or retrieval queue. However, if that
number exceeds 216-1, 216-1 is returned. This result is present if and only
if the Return Code result is success.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-session, not-private, permanent-error, pointer-invalid, system-error,
temporary-error or wrong-class.

X/Open Snapshot (1990)
Page : 102 Interworking API Style Guide

Example Specifications Start Delivery()

NAME
Start Delivery - begin the delivery of a message or a report to one or more of the
users associated with a session

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_start_delivery (

OM_private_object session,
OM_private_object ∗object

);

DESCRIPTION
This function begins the delivery of a message or a report to one or more of the
users associated with a session (see the Open function). If no objects await
delivery, the function reports an exception. The client shall finish the delivery of
one object before it starts the delivery of another in the same session. The delivery
of a particular object cannot simultaneously be in progress in two sessions.

Whether the service begins the delivery of an object addressed to several users in
one function invocation, or in one invocation per user, is dependent on the
Multiple-delivery feature being available for the session.

Which qualifying object in the delivery queue (if there are several such objects) the
service selects for delivery is implementation-defined.

Note: The invocation of this function initiates but does not consummate delivery. That is, it
does not transfer responsibility for the object from the service to the client. That is
accomplished by means of the Finish Delivery function.

Note: The fact that the Wait or Size function indicated that the delivery queue contained an
object immediately prior to invocation of this function does not guarantee this function’s
success. For example, another process might have begun the object’s delivery.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Object (Private Object)
The object whose delivery is started; an instance of the Delivered Message
or the Delivered Report class. If the former, the object includes one
envelope for each of one or more of the users associated with the session.
The service prevents the client from modifying this object subsequently.
This result is present if and only if the Return Code result is success.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 103

Start Delivery() Example Specifications

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-session, not-private, permanent-error, pointer-invalid, queue-empty, session-
busy, system-error, temporary-error or wrong-class.

X/Open Snapshot (1990)
Page : 104 Interworking API Style Guide

Example Specifications Start Retrieval()

NAME
Start Retrieval - begin the retrieval of a message or a report

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_start_retrieval (

OM_private_object session,
MH_sequence_number minimum_sequence_number,
MH_sequence_number ∗selected_sequence_number,
OM_private_object ∗object

);

DESCRIPTION
This function begins the retrieval of a message or a report from the retrieval queue
to which a session provides access. The client shall finish the retrieval of one object
before it starts the retrieval of another in the same session. The retrieval of a
particular object cannot simultaneously be in progress in two sessions.

The service selects for retrieval the object whose sequence number is nearest to but
no less than a sequence number specified by the client. If no object has a sequence
number greater than or equal to that specified, the function reports an exception.

Note: The invocation of this function initiates but does not consummate retrieval. That is, it
does not transfer responsibility for the object from the service to the client. That is
accomplished, if desired, by means of the Finish Retrieval function.

Note: The fact that the Wait or Size function indicated that the retrieval queue contained an
object immediately prior to invocation of this function does not guarantee this function’s
success. For example, another process might have begun the object’s retrieval.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

Minimum Sequence Number (Sequence Number)
The sequence number of the first message or report to be considered for
retrieval.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Selected Sequence Number (Sequence Number)
The sequence number of the message or report selected for retrieval. This
result is present if and only if the Return Code result is success.

Object (Private Object)
The object whose retrieval is started; an instance of the Delivered Message
or the Delivered Report class. If the former, the object includes a single

X/Open Snapshot (1990)
Interworking API Style Guide Page : 105

Start Retrieval() Example Specifications

envelope, for the user associated with the session. The service prevents
the client from modifying this object subsequently. This result is present if
and only if the Return Code result is success.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-session, not-private, permanent-error, pointer-invalid, queue-empty, session-
busy, system-error, temporary-error or wrong-class.

X/Open Snapshot (1990)
Page : 106 Interworking API Style Guide

Example Specifications Submit()

NAME
Submit - submit a communique

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_submit (

OM_private_object session,
OM_object communique,
OM_private_object ∗submission_results

);

DESCRIPTION
This function submits a communique by adding it to the submission queue to
which a session provides access. This transfers responsibility for the communique
from the client to the service. The function first verifies the communique’s integrity.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

Communique (Object)
The object to be submitted; an instance of the Submitted Communique
class. Its purported originator shall be among the users associated with
the session. The communique is made inaccessible.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Submission Results (Private Object)
The results of the submission; an instance of the Submission Results class.
This result is present if and only if the Return Code result is success.

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-class, no-such-object, no-such-representation, no-such-session, no-such-
syntax, no-such-type, not-private, originator-improper, permanent-error, pointer-
invalid, system-error, temporary-error, too-many-values, wrong-class, wrong-
value-length, wrong-value-makeup, wrong-value-number, wrong-value-syntax or
wrong-value-type.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 107

Wait() Example Specifications

NAME
Wait - return when a message or a report is available for delivery or retrieval, or
when a period of time elapses, whichever occurs first

SYNOPSIS
[#include <xmh.h>|]

OM_return_code
ma_wait (

OM_private_object session,
MH_interval interval,
OM_boolean ∗available

);

DESCRIPTION
This function returns when a message or a report is available for delivery or
retrieval in the delivery or retrieval queue to which a session provides access, or
when a period of time elapses, whichever occurs first.

The function manipulates an event flag associated with the session. It returns when
the event flag is true or after a specified interval has elapsed, whichever occurs first.
If the interval is zero, the client is not blocked in any circumstance.

A session’s event flag is a Boolean maintained by the service. It is set to false when
the session is first established and again whenever the present function finds it true.
Asynchronously, the service may set the flag to true whenever it places an object in
the delivery or retrieval queue to which the session provides access. If several
sessions provide access to that queue (see the Open function), the service sets to
true the flag associated with at least one. Which and how many sessions the service
notifies in this manner are implementation-defined.

Note: This function is designed to be easily implemented using the event signalling
primitives of many operating systems, including the primitives whose inclusion in POSIX is
currently under discussion within IEEE.

ARGUMENTS

Session (Private Object)
An established MA session between the client and the service; an instance
of the Session class.

Interval (Interval)
The maximum length of time that the service is to block the client before
returning.

RESULTS

Return Code (Return Code)
Whether the function succeeded and, if not, why. It may be success or one
of the values listed under ERRORS below.

Available (Boolean)
Whether the event flag was ever found true. This result is present if and
only if the Return Code result is success.

X/Open Snapshot (1990)
Page : 108 Interworking API Style Guide

Example Specifications Wait()

ERRORS
feature-unavailable, function-interrupted, memory-insufficient, network-error, no-
such-session, not-private, permanent-error, pointer-invalid, system-error,
temporary-error or wrong-class.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 109

Example Five: MAP Specification Version 3.0 Example Specifications

C.5 EXAMPLE FIVE: MAP SPECIFICATION VERSION 3.0

The following example is taken from the MAP Specification Version 3.0, Appendix 7,
Attachment 3, page A7A3-5.13ff.

Reproduced with permission.

X/Open Snapshot (1990)
Page : 110 Interworking API Style Guide

Example Specifications Example Five: MAP Specification Version 3.0

5.4 LISTEN_______

5.4.1 Description__________

The purpose of this function is to declare a willingness of the AE to accept an association
indication from another AE invocation. It also informs the network service provider that
any additional association should be queued for this AE.

This function corresponds to one primitive, i.e., A_ASSOCIATE indication.

A successful completion of this function will provide a CONNECTION_ID which can be
used for rejecting or honoring the peer request for association.

An A_ASSOCIATE indication received by this function has been approved by both the
ACSE and the corresponding ASE. An OUTPUT BUFFER OVERFLOW error will destroy an
A_ASSOCIATE indication and there is no mechanism to recover it.

It is possible for an outstanding asynchronous Listen function to be terminated by a Stop
Listen function. As a result, an error code STOP LISTEN PURGE will be generated by the
STOP LISTEN Service Provider and the return_event_name of the Listen function will be
noted. Refer to the Stop Listen function detail description on the Service Provider for
more information.

5.4.2 References_________

Section 2.2.1 Number of AE Invocations Per Presentation Address
Section 2.3 Responding AE Invocation Selection
Section 2.5.1 Receiving Association Indications
Section 3.2 Connection Establishment Phase

5.4.3 Parameters_________

name (short description) default

Exposed Input:
AE_LABEL
RETURN_EVENT_NAME SYNCHRONOUS

In/Out DCB:
Input:

X/Open Snapshot (1990)
Interworking API Style Guide Page : 111

Example Five: MAP Specification Version 3.0 Example Specifications

IN/OUT_DCB_SIZE:
Output:

CONTEXT_NAME
CALLING_AE_NAME
CALLED_AE_NAME
CALLING_PRESENTATION_ADDRESS
CALLED_PRESENTATION_ADDRESS
RETURN_CODE
ASE_SPECIFIC_ASSO_IND_INFORMATION

(The exact structure of this information
must be defined by each ASE interface
specification)

Exposed Output:
CONNECTION_ID

5.4.4 Errors______

DUPLICATE RETURN_EVENT_NAME
INVALID RETURN_EVENT_NAME
INVALID AE_LABEL
SERVICE UNAVAILABLE
NO RESOURCES TO QUEUE REQUEST
OUTPUT BUFFER OVERFLOW
ASSOCIATIONS PER AE INVOCATION EXCEEDED
STOP LISTEN PURGE

5.4.5 Detail Description_______________

5.4.5.1 Library Function______________

1. Check the range of RETURN_EVENT_NAME. If it is out of range, indicate INVALID
RETURN_EVENT_NAME error and return to the user.

2. If the RETURN_EVENT_NAME is "in use", indicate DUPLICATE
RETURN_EVENT_NAME error and return to the user.

3. Perform General Error Checks that can be carried out by the Library Function.

4. If RETURN_EVENT_NAME is SYNCHRONOUS, generate a unique Return_Event.

X/Open Snapshot (1990)
Page : 112 Interworking API Style Guide

Example Specifications Example Five: MAP Specification Version 3.0

5. Queue the service request for the network service provider. If the request cannot
be queued because the provider is not present, indicate NETWORK SERVICE
UNAVAILABLE. If the request cannot be queued because no system resource is
available, indicate NO RESOURCES TO QUEUE REQUEST.

6. If the request was synchronous, wait for the Return_Event to be noted with no time
out.

7. Return to the user.

5.4.5.2 General Error Checks__________________

If AE_LABEL is not recognized by the server, indicate UNKNOWN AE_LABEL error. If the
error checking was performed in the library routine, then return to the user program.
Otherwise, note Return_Event and terminate further processing on the request.

5.4.5.3 HLSP Function_____________

If previous general error checks were successful, the following must be performed.

1. Record the AE_Invocation as interested in receiving indications.

2. If the Number of Associations Per AE Invocation is exceeded, indicate
ASSOCIATIONS PER AE INVOCATION EXCEEDED.

3. Issue an indication solicitation to the PSP.

4. Wait for the response from the PSP with indefinite time.

5. If there is a STOP LISTEN PURGE error, indicate it and skip the next two steps.

6. Put all output information from the PSP into the designated output area. If the
output buffer area is insufficient, indicate OUTPUT BUFFER OVERFLOW.

7. If no error, increment the Number of Associations per AE invocation for AE_LABEL.

8. Note Return_Event.

X/Open Snapshot (1990)
Interworking API Style Guide Page : 113

Example Five: MAP Specification Version 3.0 Example Specifications

5.4.5.4 PSP Function___________

The PSP behavior is consistent with the PSP specification in the Interface Model and
Specifications Requirements document.

This particular PSP function, however, is AE specific, not AE invocation specific.

X/Open Snapshot (1990)
Page : 114 Interworking API Style Guide

Index

:

X/Open Snapshot (1990)
Interworking API Style Guide Page : 115

Index

X/Open Snapshot (1990)
Page : 116 Interworking API Style Guide

