
X/Open Snapshot

Security Interface Specifications: Auditing and Authentication

X/Open Company, Ltd.

 1990, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open Snapshot

Security Interface Specifications: Auditing and Authentication

X/Open Document Number: XO/SNAP/90/020

Set in Palatino by X/Open Company Ltd., U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to
the X/Open Company at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open Snapshot (1990)
Page : ii Security Interface Specifications: Auditing and Authentication

Contents

SECURITY INTERFACE SPECIFICATIONS:
AUDITING AND AUTHENTICATION

Chapter 1 INTRODUCTION

Chapter 2 OVERVIEW

2.1 GENERAL

2.2 SECURITY AUDITING

2.3 AUDIT TRAILS

2.4 AUTHENTICATION EXTENSIONS

2.5 XSI CHANGES AND EXTENSIONS

2.6 CONFIGURATION
2.6.1 The ACCOUNTABILITY Option
2.6.2 The AUTHENTICATION Option

2.7 DEFINITIONS
2.7.1 Accountability
2.7.2 Appropriate Privileges
2.7.3 Audit ID
2.7.4 Audit Record
2.7.5 Audit State
2.7.6 Audit Trail
2.7.7 Auditing Style
2.7.8 Auditor
2.7.9 Authentication
2.7.10 Authentication Database
2.7.11 Discretionary Access Control
2.7.12 Identification Database
2.7.13 Mandatory Access Control
2.7.14 Object
2.7.15 Subject
2.7.16 TCB
2.7.17 Trusted Computing Base

Chapter 3 FUNCTION AND INTERFACE

3.1 SECURITY AUDITING
3.1.1 Audit Identifier Interfaces
3.1.2 Audit Reduction Interfaces
3.1.3 Trusted Application Interfaces
3.1.4 Audit Control Interfaces

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : iii

Contents

3.1.5 Protecting the Audit Trail

3.2 AUDIT RECORD FORMAT
3.2.1 Purpose of Records
3.2.2 Audit Record Contents

3.3 AUDIT EVENT CLASSES AND EVENT TYPES

3.4 AUDITING STYLE
3.4.1 Auditing Style Interfaces
3.4.2 Include Absolute Pathnames
3.4.3 Include Object MAC Information
3.4.4 Include Object DAC Information

3.5 XSI CHANGES AND EXTENSIONS
3.5.1 Commands and Utilities
3.5.2 System Interfaces and Headers
3.5.3 Passwords and Password Aging

Chapter 4 COMMANDS AND UTILITIES
at
crontab

Chapter 5 SYSTEM INTERFACES AND HEADERS
aud_commit()
aud_config()
aud_discard()
aud_get_header()
aud_get_object()
aud_get_event_info()
aud_length()
aud_next()
aud_print()
aud_put_object()
aud_put_event_info()
aud_start()
aud_switch()
exec
fork()
get_password_aging()
get_process_audit_ID()
get_process_audit_events()
get_user_audit_events()
map_audit_ID_to_user()
map_user_to_audit_ID()
secure_get_passwd_user()
secure_put_passwd_user()
set_password_aging()
set_process_audit_ID()
set_process_audit_events()
set_user_audit_ID()

X/Open Snapshot (1990)
Page : iv Security Interface Specifications: Auditing and Authentication

Contents

set_user_audit_events()
sysconf()
update_audit_events()
<audit.h>
<limits.h>
<unistd.h>

Chapter 6 AUDIT EVENT CLASSES AND EVENT TYPES

6.1 SUMMARY OF AUDITING OPERATIONS
6.1.1 Auditing at the System Interface
6.1.2 Auditing at the User Interface

6.2 AUDIT EVENT TYPES
6.2.1 AET_AUDIT_SWITCH
6.2.2 AET_CHDIR
6.2.3 AET_CHMOD
6.2.4 AET_CHOWN
6.2.5 AET_CHROOT
6.2.6 AET_CREAT
6.2.7 AET_EXEC
6.2.8 AET_EXECE
6.2.9 AET_EXIT
6.2.10 AET_FORK
6.2.11 AET_KILL
6.2.12 AET_LINK
6.2.13 AET_LOGIN_USER
6.2.14 AET_LOGOUT_USER
6.2.15 AET_MKDIR
6.2.16 AET_MKFIFO
6.2.17 AET_MSGCTL
6.2.18 AET_MSGGET
6.2.19 AET_OPEN
6.2.20 AET_RENAME
6.2.21 AET_RMDIR
6.2.22 AET_SECURE_PUT_PASSWD_USER
6.2.23 AET_SEMCTL
6.2.24 AET_SEMGET
6.2.25 AET_SET_PASSWORD_AGING
6.2.26 AET_SET_PROCESS_AUDIT_ID
6.2.27 AET_SET_PROCESS_AUDIT_EVENTS
6.2.28 AET_SET_USER_AUDIT_EVENTS
6.2.29 AET_SETGID
6.2.30 AET_SETUID
6.2.31 AET_SHMCTL
6.2.32 AET_SHMGET
6.2.33 AET_SWITCH_USER
6.2.34 AET_UNLINK
6.2.35 AET_UPDATE_AUDIT_EVENTS

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : v

Contents

6.3 AUDIT EVENT CLASSES
6.3.1 Summary of Event Classes
6.3.2 AEC_ACCESS_CHANGE
6.3.3 AEC_ACCESS_DENIALS
6.3.4 AEC_ADMIN_OPERATOR
6.3.5 AEC_AUTHENTICATION
6.3.6 AEC_OBJECT_AVAILABLE
6.3.7 AEC_OBJECT_CREATION
6.3.8 AEC_OBJECT_DELETION
6.3.9 AEC_OBJECT_MODIFICATION
6.3.10 AEC_OBJECT_TO_SUBJECT
6.3.11 AEC_OBJECT_UNAVAILABLE
6.3.12 AEC_PRIVILEGE
6.3.13 AEC_PROCESS
6.3.14 AEC_PROCESS_CONTROL
6.3.15 AEC_RESOURCE_DENIALS
6.3.16 AEC_SYSTEM

Appendix A RATIONALE

A.1 INTRODUCTION
A.1.1 Document Cross-References

A.2 OVERVIEW
A.2.1 General
A.2.2 Security Auditing
A.2.3 Audit Record Format
A.2.4 XSI Changes and Extensions
A.2.5 Configuration

A.3 FUNCTION AND INTERFACE
A.3.1 Security Auditing
A.3.2 Audit Record Format
A.3.3 Audit Event Classes and Event Types
A.3.4 Auditing Style
A.3.5 XSI Changes and Extensions
A.3.6 Passwords and Password Aging

A.4 COMMANDS AND UTILITIES
A.4.1 at, batch
A.4.2 crontab

A.5 SYSTEM INTERFACES AND HEADERS
A.5.1 aud_commit()
A.5.2 aud_config()
A.5.3 aud_discard()
A.5.4 aud_get_header()
A.5.5 aud_get_object()
A.5.6 aud_get_event_info()
A.5.7 aud_length()
A.5.8 aud_next()

X/Open Snapshot (1990)
Page : vi Security Interface Specifications: Auditing and Authentication

Contents

A.5.9 aud_print()
A.5.10 aud_put_object()
A.5.11 aud_put_event_info()
A.5.12 aud_start()
A.5.13 aud_switch()
A.5.14 exec()
A.5.15 fork()
A.5.16 get_password_aging()
A.5.17 get_process_audit_ID()
A.5.18 get_process_audit_events()
A.5.19 get_user_audit_events()
A.5.20 map_audit_ID_to_user()
A.5.21 map_user_to_audit_ID()
A.5.22 secure_get_password_user()
A.5.23 secure_put_password_user()
A.5.24 set_password_aging()
A.5.25 set_process_audit_ID()
A.5.26 set_process_audit_events()
A.5.27 set_user_audit_ID()
A.5.28 set_user_audit_events()
A.5.29 sysconf()
A.5.30 update_audit_events()
A.5.31 audit.h
A.5.32 limits.h
A.5.33 unistd.h

A.6 AUDIT EVENT CLASSES AND EVENT TYPES

Appendix B NON-ACTIONED REVIEW COMMENTS

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : vii

Contents

X/Open Snapshot (1990)
Page : viii Security Interface Specifications: Auditing and Authentication

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of
the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring greater value to users through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards
into a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers all the standards,
above the hardware level, that are needed to support open systems. It ensures portability
and connectivity of applications, and allows users to move between systems without
retraining.

The interfaces identified as components of the Common Applications Environment are
defined in the X/Open Portability Guide. This guide contains an evolving portfolio of
practical applications programming interface standards (APIs), which significantly
enhance portability of application programs at the source code level. The interfaces
defined in the X/Open Portability Guide are supported by an extensive set of
conformance tests and a distinct trademark - the X/Open brand - that is carried only on
products that comply with the X/Open definitions.

X/Open is thus primarily concerned with standards selection and adoption. The policy is
to use formal approved de jure standards, where they exist, and to adopt widely
supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organizations to encourage the creation of formal standards covering the
needed functionalities, and to make its own work freely available to such organizations.
Additionally, X/Open has a commitment to align its definitions with formal approved
standards.

The X/Open Product Family - XPG

There is a single family of X/Open products, which has the generic name ‘‘XPG’’.

XPG Versions

There are different numbered versions of XPG within the XPG family (XPG1, XPG2, XPG3).
Each XPG version is an integrated set of elements supporting the development,
procurement and implementation of open systems products, and each comprises its
own:

• XPG Specifications

• XPG Verification Suite

• XPG descriptive guides

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : ix

Preface

• XPG trademark licensing materials

The XPG trademark (or ‘‘brand’’) licensed by X/Open always contains a particular XPG
version number (e.g., ‘‘XPG3’’) and, when associated with a vendor’s system,
communicates clearly and unambiguously to a procurer that the software bearing the
trademark correctly implements the corresponding XPG specifications. Users specifying
particular XPG versions in their procurements are therefore certain as to the XPG
specifications to which vendors’ systems conform.

XPG Specifications

There are four types of XPG specification:

• XPGn Formal Specifications

These are the long-life XPG specifications that form the basis for conformant/branded
X/Open systems, and are the only type of XPG specification released with an XPG
version number (e.g., ‘‘XPG3’’). They are intended to be used widely within the
industry for product development and procurement purposes. Currently, all XPG
Formal Specifications are included in Issue 3 of the X/Open Portability Guide.

Individual XPG specifications are released as Formal Specifications only as part of the
formal release of the complete XPG version to which they belong. However, prior to
the launch of that XPG version, they may be made available as:

• XPG Developers’ Specifications

These are specifically designed to allow developers to create X/Open-compliant
products and applications in advance of the formal launch of a future version of the
XPG.

Developers’ Specifications may be relied on by product developers as the final, base
specification that will appear in a future XPG. They are made available beforehand in
order to meet the need of product developers for advance notification of the contents
of XPG Formal Specifications, to assist in their product planning and development
activities.

By providing such advance notification, X/Open makes it possible for products
conforming to future XPG Formal Specifications to be developed as soon as
practicable, enhancing the value of XPG itself as a procurement aid to users.

• XPG Preliminary Specifications

These are XPG specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for validation purposes. A Preliminary
Specification is not a ‘‘draft’’ specification. Indeed, it is as stable as X/Open can make
it, and on publication will have gone through the same rigorous X/Open
development and review procedures as XPG Formal and Developers’ Specifications.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organizations, and product development teams are intended to
develop product on the basis of them. Because of the nature of the technology they
are addressing, they are untried in practice, and they may therefore change before
being published as an XPG Formal or Developers’ Specification.

X/Open Snapshot (1990)
Page : x Security Interface Specifications: Auditing and Authentication

Preface

• Snapshot Specifications

These are ‘‘draft’’ documents, that provide a mechanism for X/Open to disseminate
information on its current direction and thinking to a limited audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A snapshot represents the interim results of an X/Open technical activity. While
X/Open currently intends to progress this activity towards publication of an X/Open
Guide, X/Open is a consensus organisation, and makes no commitment regarding
publication.

Similarly, a snapshot does not represent any commitment on behalf of any X/Open
member to make any specific products available now or in the future.

This Document

This document is a Snapshot specification (see above). It describes extensions to the base
X/Open operating system definition that satisfy the requirement for additional
accountability and authentication features. The extensions have been designed to be
compatible with existing guidelines for secure systems set out by external bodies, such as
the DoD Trusted Computer System Evaluation Criteria (TCSEC). X/Open work on
security has also been coordinated with that of the IEEE POSIX 1003.6 working group,
which is considering auditing on secure IEEE standard 1003.1-1988 conforming systems.
The interface definition will be maintained to remain compatible with auditing interfaces
defined by that group.

Disclaimer:

This document represents the interim results of an X/Open technical activity. While
X/Open currently intends to progress this activity towards publication of an X/Open
Guide, X/Open is a consensus organisation, and makes no commitment regarding
publication.

Similarly, this document does not represent any commitment on behalf of any X/Open
member to make any specific products available now or in the future.

Do not specify or claim conformance to this document.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : xi

Preface

X/Open Snapshot (1990)
Page : xii Security Interface Specifications: Auditing and Authentication

Trademarks

X/Open and the ‘X’ device are trademarks of X/Open Company Limited in the U.K. and
other countries.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : xiii

Referenced Documents

The following documents are referenced in this guide:

• DoD Document 5200.28-STD, Trusted Computer System Evaluation Criteria (TCSEC).

X/Open Snapshot (1990)
Page : xiv Security Interface Specifications: Auditing and Authentication

Chapter 1

Introduction

In addition to general purpose systems already defined in the Common Applications
Environment (CAE), X/Open members also need to supply systems for use in
commercial and civil government roles that require additional accountability and
authentication. Accountability applies to users and user processes and implies the need
for additional methods of selectively auditing various aspects of process behaviour.
Authentication extends the security features already present on most X/Open systems.

The fundamental aim of the X/Open Security Interface is to identify extensions to the
base operating system definition that satisfy the above requirements. Concomitant with
this objective is the need to provide these extensions in a way that is compatible with
existing guidelines for secure systems set out by external bodies such as those defined in
the DoD Trusted Computer System Evaluation Criteria (TCSEC) (see Referenced
Documents).

The IEEE P1003.6 working group is also considering auditing on secure IEEE Standard
1003.1-1988 conforming systems. The work of X/Open on security has been coordinated
with the P1003.6 working group and the interface definition will be maintained to remain
compatible with auditing interfaces defined by that group.

Further requirements include the definition of a common audit record format, such that
tools to process audit trails can be written to be portable between X/Open systems. This
only applies to the external audit record format as presented to applications by a
procedural interface to the underlying audit data. The internal format of audit data is
implementation-defined.

A number of extensions are also required to existing system interfaces and headers.
These have been minimised to reduce the risk of destabilising existing base products.
Thus, changes to standard interfaces are marked as optional extensions to the base
definition.

This issue of the XSI Security interfaces concentrates on the following major areas:

• Security Auditing

• Audit Trails

• Audit Event Classes and Audit Event Types

• Authentication Extensions

• Minimal XSI Changes

Chapter 2, Overview describes the major requirements in each of these key areas.
Chapter 3, Function and Interface provides a narrative description of the functions
provided to meet these requirements. The remaining chapters contain the formal
interface definition itself.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 1

Introduction

X/Open Snapshot (1990)
Page : 2 Security Interface Specifications: Auditing and Authentication

Chapter 2

Overview

2.1 GENERAL

The features required of XSI Security include:

• Systems must provide identification and authentication, giving a unique identifier to
each user, so that the person who causes any security related event can be identified.

• Systems must be able to selectively audit the actions of any one or more users based
on individual audit identity. The resulting audit must be available to an audit
administrator.

• The audit trail, in which is recorded the audit of user actions, must be protected from
modification, unauthorised access and destruction.

The types of event that must be audited are also identified. Some minimal requirements
for the content of audit trail records are given.

This level of security features includes the requirements defined by the C2 level of the
DoD Trusted Computer System Evaluation Criteria (TCSEC) (see Referenced
Documents).

In addition to the TCSEC criteria, X/Open has added a requirement for extra selectivity of
audit data collection. In particular, selectivity by event type is required. Events should be
selectable on a per-user basis and on an individual per-process basis. For usability, it
should also be possible to set a default system-wide level of auditing for new users of the
system.

Further requirements beyond TCSEC level C2 may be included in future issues of the
interface definition.

At a gross level the requirements can be grouped into two categories; Accountability and
Authentication. These terms are formally defined in Section 2.7, Definitions.

2.2 SECURITY AUDITING

The purpose of defining standard interface functions to the audit facilities of a secure
X/Open system is to permit the development of portable applications of the following
type:

• Audit reduction packages, which require access to audit data in a standard format.
This leads to a requirement to provide a standard interface to audit trails, as seen by
audit reduction packages.

• Applications which are trusted to do their own auditing. There is thus a requirement
for a trusted application to be able to append records to the audit trail. Applications
that are trusted to audit themselves at a much coarser level of granularity than the
Trusted Computing Base (TCB) may also be trusted to disable TCB auditing of their
activities. Another interface is required to achieve this functionality.

• Packages providing improved usability for audit administrators. Standard audit
control interfaces are therefore required.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 3

Security Auditing Overview

The main technical requirements in defining standard interface functions to the audit
facilities are:

• To meet or exceed the auditing criteria defined by external requirements bodies, for
example, TCSEC C2.

• To ensure portability of applications and compatibility with possible future
extensions to the XSI Security.

2.3 AUDIT TRAILS

The main requirement is that applications must be able to access audit trails in a portable
way. The goals of this specification are to provide a definition that:

• Allows audit reduction tools to be developed independently of any particular system
implementation.

• Allows new types of audit records to be generated either by the TCB or trusted
applications without requiring modifications to existing audit tools.

• Can be used by an X/Open-compliant system to describe the operations performed
by the system’s Trusted Computing Base (TCB).

• Allows implementations considerable flexibility in the choice of what information is
recorded in audit records.

How and where audit data is physically recorded is implementation-defined.
Additionally the internal format of the audit trail is implementation-defined and is of no
concern to this specification.

2.4 AUTHENTICATION EXTENSIONS

There is a need to define new system interfaces to:

• Permit the reading and writing of encrypted passwords in implementation-defined
authentication databases.

• Examine and modify the rules for password aging.

Although not defined as part of the XSI, it is assumed that all systems supporting the
Security Option will implement some form of user authentication mechanism. This may
take the form of a password, which the system will validate against the authentication
database entry for the specified user name. Access to the system should only be granted
if the password is specified correctly.

The above interfaces are necessary to provide a portable interface to user authentication
mechanisms, which may vary considerably from one system to another. Password aging
is a mechanism by which system administrators can impose rules on the user community
about when passwords must be changed. There is a requirement to provide such a
mechanism. How it is implemented is system defined.

X/Open Snapshot (1990)
Page : 4 Security Interface Specifications: Auditing and Authentication

Overview Xsi Changes And Extensions

2.5 XSI CHANGES AND EXTENSIONS

As stated in Chapter 1, Introduction, a number of extensions are necessary to existing
system interfaces and headers to support the XSI Security. These have been minimised as
much as possible to prevent unnecessary disturbance of the base definition. Extensions
are required at both the command and programming levels, primarily to cater for the
maintenance of user audit identifiers (see definition of Audit ID). The interfaces affected
by this requirement are described in Chapter 3, Function and Interface.

2.6 CONFIGURATION

XSI Security is not applicable to all systems, nor indeed to all deliveries of a system that
supports the security interfaces. The XSI Security facility has therefore been divided into
two separately supportable security options corresponding to the accountability and
authentication categories introduced in Section 2.1, General. The options are:

i. ACCOUNTABILITY. This option contains the functions and interfaces related to
process accounting, including the audit interface functions, audit trail contents and
event identification.

ii. AUTHENTICATION. This option contains the functions and interfaces related to
user authentication and the processing of entries in the authentication database.

Individual interface specifications identify to which option each function belongs.

An implementation may support one, both or neither of the above security options. If any
part of an option is provided by an implementation, all interfaces and functions defined
as being part of that option must be fully supported. An application can determine what
options are supported by calling the sysconf() function.

On systems that offer neither security option, it is desirable that portable tools fail
sensibly. To ensure this, the following must be provided even on systems that support
neither of the security options:

i. The security option flags defined for the sysconf() function.

ii. An <audit.h> header.

iii. The symbolic constants defined in <unistd.h>.

iv. An embryonic implementation of each interface function, which need do nothing
more than set errno to ENOSYS and indicate that the call was unsuccessful.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 5

Configuration Overview

2.6.1 The ACCOUNTABILITY Option

The following new interface functions are defined for the ACCOUNTABILITY option:

Interface
aud_commit()
aud_config()
aud_discard()
aud_get_header()
aud_get_object()
aud_get_event_info()
aud_length()
aud_next()
aud_print()
aud_put_object()
aud_put_event_info()
aud_start()
aud_switch()
get_process_audit_ID()
get_process_audit_events()
get_user_audit_events()
map_audit_ID_to_user()
map_user_to_audit_ID()
set_process_audit_ID()
set_process_audit_events()
set_user_audit_ID()
set_user_audit_events()

TABLE 1. New Interfaces for the ACCOUNTABILITY Option

X/Open Snapshot (1990)
Page : 6 Security Interface Specifications: Auditing and Authentication

Overview Configuration

2.6.2 The AUTHENTICATION Option

The following new interface functions are defined for the AUTHENTICATION option:

Interface
get_password_aging()
secure_get_passwd_user()
secure_put_passwd_user()
set_password_aging()

TABLE 2. New Interfaces for the AUTHENTICATION Option

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 7

Definitions Overview

2.7 DEFINITIONS

2.7.1 Accountability

The property that enables activities on a system to be traced to individuals who may then
be held responsible for their actions.

2.7.2 Appropriate Privileges

Zero or more implementation-defined privileges associated with a process with regard to
the function calls and function call options defined in this interface specification that need
special privileges.

2.7.3 Audit ID

Each authorised user of a secure system is identified by a unique arithmetic value of type
audit_ID_t. This value is set at login time and for all subsequent child processes,
including those initiated via the at, batch and crontab commands.

2.7.4 Audit Record

The smallest discrete unit of data that is recorded in the audit trail on the occurrence of
an auditable event. An audit record is composed of attributes which define the
characteristics of the auditable event.

2.7.5 Audit State

The audit state of a process includes the list of event classes and event types currently
being audited and additionally whether auditing for that process is switched on or off.

2.7.6 Audit Trail

A file-like storage entity used to hold audit records produced by the Trusted Computing
Base and Trusted applications.

2.7.7 Auditing Style

The set of parameters designed into the system by the Auditor that govern the contents of
audit records generated by the system.

2.7.8 Auditor

The name assigned to the authorised individual(s) who is (are) responsible for auditing.

2.7.9 Authentication

The process that verifies the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system. It is also the
process that verifies the integrity of data that have been stored, transmitted or otherwise
exposed to possible unauthorised modification.

X/Open Snapshot (1990)
Page : 8 Security Interface Specifications: Auditing and Authentication

Overview Definitions

2.7.10 Authentication Database

An implementation-specific file or files used to define the mapping between user names
and encrypted passwords. The authentication database also contains rules for password
aging.

2.7.11 Discretionary Access Control

An access control mechanism which allows a subject to grant its acquired access rights to
other subjects without restriction.

2.7.12 Identification Database

An implementation-specific file or files used to define the one-to-one mapping between
user names and audit IDs.

2.7.13 Mandatory Access Control

An access control mechanism which does not permit a subject to transfer information
freely from one access domain to another.

2.7.14 Object

A passive entity in the system used for storage or transferral of information.

2.7.15 Subject

An active entity in the system which transfers information from one object to another.

2.7.16 TCB

See Trusted Computing Base.

2.7.17 Trusted Computing Base

The Trusted Computing Base (or TCB) consists of hardware, firmware and software that
together enforce a security policy over a product or system. The TCB creates a basic
protection environment and provides additional user services. The ability of a trusted
computing base to correctly enforce a security policy depends solely on the mechanisms
within the TCB and the correct input by system administrative personnel of parameters
(e.g., a user’s clearance) related to the security policy.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 9

Definitions Overview

X/Open Snapshot (1990)
Page : 10 Security Interface Specifications: Auditing and Authentication

Chapter 3

Function and Interface

3.1 SECURITY AUDITING

3.1.1 Audit Identifier Interfaces

TCSEC C2 requires that users be individually accountable for their security-relevant
actions. This implies that a user should be accountable for all events in a session, from the
moment of logging-in to the point of exiting the session. This is achieved by giving each
individual a unique ‘‘audit identifier’’ (audit_ID), which is associated with the user’s
initial process and inherited by all child processes. The audit_ID of a process cannot be
changed by any subsequent action of the user. It is also inherited by any at, batch or
crontab jobs (see the X/Open Portability Guide, Issue 3, Volume 1, XSI Commands and
Utilities) initiated by the user.

It is further required that each user of the system has a distinct, individual user name.
Systems supporting the ACCOUNTABILITY option shall maintain an identification
database, in which a unique audit_ID is associated with each registered user of the
system. In programming terms, an audit_ID is distinct from a UID and is defined as an
arithmetic value of type audit_ID_t (see <audit.h>). The interface definition identifies
various functions for setting and getting the audit_ID of processes and users. It does not
define how the identification database should be implemented.

Most X/Open systems allow some users to log in to user names that are not accountable
to an individual user (e.g., root, uucp, etc.). In a secure system, individual accountability
must be maintained even when a user logs in to one of these ‘‘role’’ user names. The
ACCOUNTABILITY option defines that the value of audit_ID shall accurately identify the
user of a ‘‘role’’ user name. Because it is not relevant to application portability, the
interface definition does not state how accountability should be achieved when a user
logs in to a role user name.

The following interfaces are currently defined for accessing process audit_IDs and the
identification database. Note that these interfaces can only be called successfully by
processes having appropriate privileges.

Interface
get_process_audit_ID()
map_audit_ID_to user()
map_user_to_audit_ID()
set_process_audit_ID()
set_user_audit_ID()

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 11

Security Auditing Function and Interface

3.1.2 Audit Reduction Interfaces

Audit reduction utilities need a standard means to access the audit trail and need the
format of information read from the trail to be standardised. This section defines the
interface functions provided to access audit trails.

Although there is no requirement that audit data be stored in a file when it is collected,
nor any requirement placed on the internal form of the data, it is assumed that the data
can be made available via file-like interfaces, and in ‘‘records’’ of standard format, for
analysis by audit reduction tools. The term ‘‘record’’ is used to mean the audit data
collected on the occurrence of a single auditable event.

Interfaces are provided for reading individual records from an audit trail, either
sequentially or by seeking for the next record that matches a given search criterion. Other
interfaces provide for the manipulation of data within an audit record.

The standard format in which audit trail records are made available via these interfaces is
defined in Section 3.2, Audit Record Format. For the purpose of this part of the guide, it
is sufficient to know that:

• each record contains basic attributes which define the nature of the event recorded,
and

• a record may contain additional attributes, depending on the nature of the event and
the configuration of the system.

The following interfaces are currently defined for use by audit reduction tools.

Interface
aud_discard()
aud_next()
aud_get_header()
aud_get_object()
aud_get_event_info()
aud_print()
aud_length()

Reading the Audit Trail

Records can be read from the audit trail with the aud_next() function. This function
returns an audit record in a buffer. The structure of the information in this buffer is not
defined, but operations are defined to access the information.

The function for reading audit records from the audit trail is:

size_t aud_next (fd, ard, predicate)

The aud_next() function allows an application to search for the next record in the trail
matching specified criteria. This call has the side effect of establishing the criteria to be
used on subsequent searches. This function will return the next record from the audit
trail matching the current search criteria. If none are established, then the next record in
the trail is returned.

X/Open Snapshot (1990)
Page : 12 Security Interface Specifications: Auditing and Authentication

Function and Interface Security Auditing

This function returns the data via ard , which is the means of returning an identifier to a
buffer allocated by the function.

The fd argument must point to an open audit trail. If a call to one of the above functions is
successful, the cursor associated with fd will be left pointing at the next record in the
audit trail. If a call is unsuccessful, the cursor will either be left unchanged or, where no
further records are available, it will point to the end of the audit trail.

Manipulating Audit Records

Functions are provided to read information from the audit record, to determine its length
and to print it. The functions to read information from the audit record are:

int aud_get_header(ard, header, version)
int aud_get_object(ard, object, version)
int aud_get_event_info(ard, event_info)

It is assumed that ard identifies a valid audit record buffer.

The aud_get_header () function returns the header information from the audit record in the
buffer. The information is returned as a pointer via header .

The aud_get_object() function returns an object descriptor from the audit record. This
function can be invoked repeatedly to read all object descriptors from the record.

The aud_get_event_info() function returns event-specific information from the audit
record. This information is syntactically described by the record, but has no ascertainable
semantics.

The version argument on each of the functions aud_get_header and aud_get_object ensures
forward compatibility. The argument specifies the minimum acceptable value for the
type of item required. If the audit record contains only items with a lower value of the
version field, the function call will fail.

The other functions provided to manipulate an audit record are:

int aud_discard (ard)
int aud_print (fd, ard, mode)
size_t aud_length (ard)

The aud_discard () function will free any space allocated by the system to store audit
records and attributes that have been read.

The aud_print() function will translate an audit record into an external format according
to the mode parameter. The output is written into the file specified by fd. The aud_length()
function will return the length of the audit record in the buffer.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 13

Security Auditing Function and Interface

3.1.3 Trusted Application Interfaces

Some processes may be given privilege to append records to the audit trail. The
following interface functions are defined to satisfy this requirement:

Interface
aud_commit()
aud_discard()
aud_put_object()
aud_put_event_info()
aud_start()
aud_switch()

Writing the Audit Trail

Functions are provided to create and alter audit records. These include:

int aud_start(ard, event)
int aud_put_object(ard, object)
int aud_put_event_info(ard, event_info)

The aud_start() function returns the identifier of an internal audit record buffer in which a
trusted application can prepare audit data for appending to the audit trail. The event
parameter will define the event type.

The aud_put_object() and aud_put_event_info() functions may be used to alter the audit
record defined by the ard parameter. aud_put_object adds an object descriptor to the
record and aud_put_event_info adds event-specific information to the record. Both
functions may be called repeatedly.

Functions are provided to write the completed audit records. These are:

int aud_commit(ard, client, result)
int aud_discard(ard)

The aud_commit() function may be called to commit the audit record in the ard buffer with
the specified result. The client parameter may optionally be used to define the client on
whose behalf a server is acting. The system will fill in the additional fields in the header
and append the record to the system audit trail.

The aud_discard () function will free any space allocated by the system to store the audit
record.

Note that standardisation of these interfaces does not restrict implementations to use of a
standard internal audit record format. Implementations are free to map the structured
data from the audit write calls into any appropriate internal format. However, the fact
that the audit data is structured means that the mapping to an internal format should be
done in a meaningful way, such that the process can be reversed when converting an
audit trail back into the standard format.

X/Open Snapshot (1990)
Page : 14 Security Interface Specifications: Auditing and Authentication

Function and Interface Security Auditing

Auditing Suspension and Resumption

A process with appropriate privileges to insert records into the audit trail may also be
given the (possibly different) privilege to advise the TCB that standard auditing of its
operations should be suspended or resumed. This may be useful to avoid recording
unnecessary detail in the audit trail. The privilege to advise the TCB in this way should be
available only to fully trusted software. The TCB may or may not actually suspend its
auditing of the process, depending on the audit policy currently in use.

This capability is provided by the aud_switch() function, which takes a single argument
indicating whether process auditing is to be switched on or off. Note that the audit state
of a process, including the current on or off state of auditing, is inherited by a child if the
process calls fork ().

3.1.4 Audit Control Interfaces

These interfaces are only available to processes with appropriate privilege and their use
may itself be audited. The following audit control functions are defined in this issue of
the interface definition:

Interface
get_process_audit_events()
get_user_audit_events()
set_process_audit_events()
set_user_audit_events()
update_audit_events()

Specifying Event Lists to be Audited

Events to be audited are specified to the audit system in event lists. An event list is
simply a row of event identifiers. Each identifier is simply a value of type aud_event_t.
The identifiers may include both individual events and groups of events (see Chapter 6,
Audit Event Classes and Event Types).

The set_user_audit_events() function is provided to turn on and off auditing of specified
events for one or more users. Setting on or off specified events for all users of the system
is permitted, as is setting on or off all events for specified users. For administrative
convenience, it is possible to define a system default setting for events. This setting is
used as the default set for a user name when it is added to the system. The interface also
permits specified events for specified users to be set to the system default.

When a user’s auditable events are changed, the new events are used for all subsequent
login sessions and jobs initiated by the at, batch or crontab commands. The interface does
not define the effect on sessions that already exist. However, an interface
(update_audit_events()) is defined which ensures that all sessions are updated to reflect the
current event lists.

The get_user_audit_events() function gets the current selected events for a specified user
or the system default event list.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 15

Security Auditing Function and Interface

How and where user event lists are stored by a system is implementation-defined.

Two further functions (set_process_audit_events () and get_process_audit_events ()) are
provided to set and get the event list for the current process. The initial events for a
session are set to the default event list defined for that user. These interfaces allow a
process with appropriate privileges to modify its auditable events at a later stage.

3.1.5 Protecting the Audit Trail

TCSEC requires that the audit trail is protected from unauthorised access of all types. It is
believed that the standard system file protection mechanisms defined in the X/Open
Portability Guide, Issue 3, Volume 2, System Interfaces and Headers are sufficient to
meet this requirement. Thus no changes or additions to the system protection
mechanisms are defined for XSI Security.

X/Open Snapshot (1990)
Page : 16 Security Interface Specifications: Auditing and Authentication

Function and Interface Audit Record Format

3.2 AUDIT RECORD FORMAT

This section describes the common characteristics of audit records.

3.2.1 Purpose of Records

Audit records describe events; that is, there is a correspondence between some actual
event that occurred and was noticed by the TCB and the audit record it generates. An
audit record provides a largely context-independent description of an event. With an
audit record, you know what happened, who caused it to happen, what it happened to,
and when.

3.2.2 Audit Record Contents

Audit records contain a header, object descriptors and event-specific information. The
header describes the event and subject information, including the event time and result.
The object descriptors contain information about the objects affected by the event. The
event-specific information is described syntactically only.

Although there is no requirement on how the system stores the audit record, logically it
appears to the application as several structures which are ‘‘read’’ from the audit record
by audit trail analysers. The structures for object descriptors and the event-specific
information can also be put into an audit record by a trusted process; trusted processes
will also set certain fields in the audit record header.

The header structure contains the following fields:

version the version number of the header

subject the audit ID of the subject

client the audit ID of the client

event the event type

time the time of the event

time_off the time offset (in nanoseconds)

status the audit status of the event

pid the process ID

dac a pointer to the subject DAC information

mac a pointer to the subject MAC information

net a pointer to the origin information

priv a pointer to subject privilege information

The definition of the dac structure will be inherited from other standards bodies working
on discretionary access control. It is likely to contain the following members:

version the structure version number

ruid the real user ID

euid the effective user ID

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 17

Audit Record Format Function and Interface

suid the saved user ID

rgid the real group ID

egid the effective group ID

sgid the saved group ID

ngroups the number of concurrent groups

groups the array of concurrent groups

The definition of the mac structure will be inherited from other standards bodies working
on mandatory access control. It is likely to contain the following members:

version the structure version number

type the type of MAC label

fmt the format of MAC label

size the size of the MAC label

label a pointer to the MAC security label of the subject

The net and priv structures are yet to be defined.

The object descriptor structure contains the following fields:

version the version number

type the type of object

mode the mode of access

namefmt the format of the name

namelen the length of the name

name a pointer to the name of the object

mac a pointer to the object MAC information

dac a pointer to the object DAC information

Each item of event-specific information contains the following members:

format a format specifier

len the length of the information

info a pointer to the data

The mac, dac , priv and net fields from these headers may be null, indicating that either this
information is not recorded in each record on the system or the attribute is not
supported.

There is no limit on the length of any individual attribute except for the maximum size of
{AUDIT_REC_MAX} bytes for the entire audit record.

The structures and the audit record may contain other information.

X/Open Snapshot (1990)
Page : 18 Security Interface Specifications: Auditing and Authentication

Function and Interface Audit Event Classes And Event Types

3.3 AUDIT EVENT CLASSES AND EVENT TYPES

Each audit record has exactly one audit event type. In addition, each audit event type
belongs to one or more audit event class.

The audit event type is intended as a way of identifying all audit records that describe the
same type of event; that is, events that differ only in the parameters supplied to an
operation.

The audit event class is intended as a way of grouping audit event types in a way that is
useful to an auditor.

The audit event type is an inherent property of an event and is recorded in each audit
record. The audit event class, on the other hand, is a structure imposed from outside and
is not recorded in an audit record.

Because nearly all operations have the common characteristic that they may succeed or
fail, the true type of an event should be considered to incorporate both the audit event
type and the status (success/failure) from the record header.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 19

Auditing Style Function and Interface

3.4 AUDITING STYLE

The auditing style of a system determines whether certain types of information are to be
included in the audit record. This section describes each style option and the inquiry
interface. In all cases, style options are binary (i.e., a system either implements the option
or it doesn’t). It is required that a system implement the same style in all audit records it
generates.

For the most part, style options are a tradeoff of size and cost-to-generate against the ease
of analysing audit data and the degree to which certain security requirements are met.
Because certain types of information are difficult to record and store, it is important that a
conforming implementation have the option not to generate them.

The facility to inquire into the current auditing style of a system is for the benefit of tools
which perform their own auditing. Such tools are then able to generate audit records
consistent with the style of the system.

The inquiry facility is not for use by portable audit analysis tools. A portable audit
analysis tool must be prepared to establish the style for the audit trail under analysis by
the contents of the records it encounters - the trail may have been generated by a different
system. Such a tool must be prepared to operate on records generated by a system that
implements any combination of these style options. Fortunately, since the options are
orthogonal, this is comparatively easy for tools to cope with.

3.4.1 Auditing Style Interfaces

The inquiry interface for auditing style is:

int aud_config (option)

If the style option specified by the option argument is implemented, the aud_config()
function will return the value 1. If the style option is not implemented, 0 is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

The following values of option are defined as symbolic constants in <audit.h>:

Name Description
AUS_ABSPATH Include Absolute Pathnames
AUS_OBJMAC Include Object MAC Information
AUS_OBJDAC Include Object DAC information

There are no interfaces for setting auditing style, as this operation is inherently
implementation-dependent and probably cannot be adjusted dynamically.

3.4.2 Include Absolute Pathnames

Inquire by aud_config (AUS_ABSPATH);

If a system implements this option, all pathnames in objects are absolute. File relative
pathnames are not permitted. This allows inquiries about files by name.

If a system does not implement this option, portable analysis tools must be prepared to
satisfy by-name file inquiries by tracking each subject’s current working directory and

X/Open Snapshot (1990)
Page : 20 Security Interface Specifications: Auditing and Authentication

Function and Interface Auditing Style

root directory throughout their life in the audit trail.

3.4.3 Include Object MAC Information

Inquire by aud_config (AUS_OBJMAC);

If a system implements this option, all object descriptors include the MAC information
appropriate to the system on which the record was generated.

3.4.4 Include Object DAC Information

Inquire by aud_config (AUS_OBJDAC);

If a system implements this option, all object descriptors include the DAC information
appropriate to the system on which the record was generated.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 21

XSI Changes and Extensions Function and Interface

3.5 XSI CHANGES AND EXTENSIONS

3.5.1 Commands and Utilities

The provision of security auditing requires that all processes set off during a user session
are auditable. This means that the audit_ID of the session leader must be inherited by all
child processes, including those initiated indirectly via autonomous process schedulers
(e.g., for batch jobs). This affects the operation of a number of commands currently
defined in the X/Open Portability Guide, Issue 3, Volume 1, XSI Commands and
Utilities:

Commands
at
batch
crontab

The interface definition does not state what audit_ID should be used by schedulers
themselves.

Chapter 4, Commands and Utilities provides a modified definition of the above
commands for use in a secure environment. Specifically, the audit_ID of the initiating
process must be exported and inherited by processes set up to run background
commands.

3.5.2 System Interfaces and Headers

A number of system interfaces defined in the X/Open Portability Guide, Issue 3, Volume
2, System Interfaces and Headers are affected in different ways by the requirements for
secure systems described in Chapter 2, Overview. Some, like the fork () and exec ()
functions, must ensure that audit_IDs and audit states are inherited correctly. Others, like
the sysconf () function, have been extended to enable applications to determine what
security options are supported by an implementation.

The following system interfaces and headers are affected by XSI Security:

Interface
exec()
fork()
sysconf()
<limits.h>
<unistd.h>

Modified entries for these interfaces are presented in Chapter 5, System Interfaces and
Headers. Note that XSI Security requires that additional symbolic constants are defined
in <limits.h> and <unistd.h>. It does not alter the definition of any existing constants.

X/Open Snapshot (1990)
Page : 22 Security Interface Specifications: Auditing and Authentication

Function and Interface XSI Changes and Extensions

3.5.3 Passwords and Password Aging

Four new interfaces are defined to provide additional, secure interfaces to the
authentication database:

Interface
get_password_aging()
secure_get_passwd_user()
secure_put_passwd_user()
set_password_aging()

The secure_get_passwd_user () function allows a process with appropriate privileges to
read the encrypted password of a named user from the authentication database.
Conversely, the secure_put_passwd_user() function allows a privileged process to write the
encrypted password of a named user into the authentication database.

How and where passwords are stored in a system is implementation-defined.

Password aging is a mechanism by which system administrators can force users to
change their passwords at regular intervals. This interval is defined by two values which
give:

• the maximum number of days for which a password will remain valid, and

• a warning time, before the password expires, during which the users will be warned
to change their passwords.

By manipulation of these values, it is possible for administrators to force a user to supply
a new password when he or she next attempts to log in to the system. After a password
has expired, it is undefined whether the associated user ID is still usable.

The set_password_aging () function allows a process with appropriate privileges to set the
password aging rules for the system as a whole or for a named user. The
get_password_aging () function allows a privileged process to determine (for a named
user) the number of days for which the current password will remain valid, and the
number of days since the password was last changed.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 23

XSI Changes and Extensions Function and Interface

X/Open Snapshot (1990)
Page : 24 Security Interface Specifications: Auditing and Authentication

Chapter 4

Commands and Utilities

This chapter contains modified definitions of standard commands and utilities for
systems supporting XSI Security. Only commands whose behaviour is different in a
secure environment are included. For a complete definition of all commands and utilities
see the X/Open Portability Guide, Issue 3, Volume 1, XSI Commands and Utilities.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 25

Commands and Utilities

X/Open Snapshot (1990)
Page : 26 Security Interface Specifications: Auditing and Authentication

Utilities at

NAME
at, batch - execute commands at a later time

SYNOPSIS
at time [date] [+increment]
at -r job
at -l job

batch

DESCRIPTION
See at in the X/Open Portability Guide, Issue 3, Volume 1, XSI Commands and Utilities.

SECURITY
On systems supporting the ACCOUNTABILITY option, jobs executed by the at and batch
commands will inherit the audit ID of the initiating process. The default audit state of the
associated user will be used as the initial audit state of any resulting processes. How these
settings are exported is implementation-defined.

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 2.

This Document
A SECURITY section has been added indicating additional requirements for systems
supporting the Security Interfaces.

X/Open Snapshot (1990)
XSI Security Page : 27

crontab Utilities

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -r
crontab -l

DESCRIPTION
See crontab in the X/Open Portability Guide, Issue 3, Volume 1, XSI Commands and
Utilities.

SECURITY
On systems supporting the ACCOUNTABILITY option, jobs initiated via the crontab
command will inherit the audit ID of the user who owns the associated crontab file. The
default audit state of that user will also be used as the initial audit state of any resulting
processes.

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 2.

This Document
A SECURITY section has been added indicating additional requirements for systems
supporting the Security Interfaces.

X/Open Snapshot (1990)
Page : 28 XSI Security

Chapter 5

System Interfaces and Headers

This chapter contains definitions of system interfaces and headers for XSI Security. In
addition, it contains modified definitions of standard system interfaces defined in the
X/Open Portability Guide, Issue 3, Volume 2, XSI System Interfaces and Headers,
whose behaviour is different in a secure environment.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 29

System Interfaces and Headers

X/Open Snapshot (1990)
Page : 30 Security Interface Specifications: Auditing and Authentication

System Interfaces aud_commit()

NAME
aud_commit - append record to audit trail

SYNOPSIS
#include <audit.h>

int aud_commit (ard, client, status)
aud_rec_t ard;
audit_ID_t client;
aud_stat_t status;

DESCRIPTION
The aud_commit() function will complete the audit record identified by ard and write it to
the audit trail. The audit record buffer identified by ard will have been returned to the
process by a previous, successful call to the aud_start() function.

Audit records are completed by filling in the defined fields of the header. The event field
will have been initialized when the audit buffer was created. The status and client fields
are filled in at an implementation-defined time. If the process is not acting on behalf of a
client, the client parameter should be specified as AUDIT_NOBODY.

Storage space used for the audit record is freed with this call if successful. If unsuccessful,
the record should be discarded with the aud_discard () function.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the aud_commit() function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_commit() function may return any of the errors identified for the write() function. It
will also fail if:

[EINVAL] The ard argument does not identify a valid audit record buffer.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
aud_discard (), aud_put_event_info(), aud_put_object(), aud_start(), <audit.h>,
write() in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interfaces and
Headers.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 31

aud_config() System Interfaces

NAME
aud_config - get auditing style option setting

SYNOPSIS
#include <audit.h>

int aud_config (option)
int option;

DESCRIPTION
The aud_config() function allows an application to inquire about the current setting of an
auditing style option. The auditing style of a system determines whether certain types of
information are to be included in the audit record. The facility to inquire into the current
auditing style of a system is for the benefit of tools which perform their own auditing.
Such tools are then able to generate audit records consistent with the style of the system.

The style option is identified by the setting of the option argument, which can be set to one
of the following symbolic constants defined in <audit.h>:

Name Description
AUS_ABSPATH Include Absolute Pathnames
AUS_OBJMAC Include Object MAC Information
AUS_OBJDAC Include Object DAC Information

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If the specified option is implemented, the aud_config() function returns a value of 1. If the
option is not implemented, a value of 0 will be returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_config() function will fail if:

[EINVAL] The option argument does not contain a valid style option constant.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 32 XSI Security

System Interfaces aud_discard()

NAME
aud_discard - discard audit record buffer

SYNOPSIS
#include <audit.h>

int aud_discard (ard)
aud_rec_t ard;

DESCRIPTION
The aud_discard () function will discard the audit record buffer identified by ard , including
the freeing of any storage space that may be allocated to the buffer. The audit record buffer
identified by ard may have been returned to the process by a previous, successful, call to
the aud_start() function or to the aud_next() function.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the aud_discard () function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_discard () function will fail if:

[EINVAL] The ard argument does not identify a valid audit record buffer.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
aud_commit(), aud_next(), aud_put_object(), aud_put_event_info(), aud_start(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 33

aud_get_header() System Interfaces

NAME
aud_get_header - read the audit record header

SYNOPSIS
#include <audit.h>

int aud_get_header (ard, header, version)
aud_rec_t ard;
struct aud_hdr_t ∗∗header;
unsigned char version;

DESCRIPTION
The aud_get_header () function will return a pointer to the header structure via the
argument header .

Currently only one header version is defined: AUD_XSTD_HDR, which contains the
following members:

unsigned char version;
audit_ID_t subject;
audit_ID_t client;
aud_event_t event;
time_t time;
unsigned time_off;
aud_stat_t status;
pid_t pid;
struct aud_dac_t ∗dac;
struct aud_mac_t ∗mac;
struct aud_net_t ∗net;
struct aud_priv_t ∗priv;

The version argument specifies the minimum acceptable value for the version field within
the header. Headers with a lower version value will not be returned.

The structures for the mac and dac header components will be defined by other standards
groups.

Storage allocated by this function must be explicitly freed by a call to aud_discard ().

RETURN VALUE
If successful, the aud_get_header () function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_get_header () function will fail if:

[EINVAL] The ard argument does not contain a valid audit record.

[EINVAL] The version argument does not specify a supported header type.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The aud_get_header () function may fail if:

[ENOMEM] Insufficient storage space is available to hold the header structure.

X/Open Snapshot (1990)
Page : 34 XSI Security

System Interfaces aud_get_header()

SEE ALSO
aud_discard (), aud_get_event_info(), aud_get_object(), aud_next(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 35

aud_get_object() System Interfaces

NAME
aud_get_object - read an object descriptor from the audit record

SYNOPSIS
#include <audit.h>

int aud_get_object (ard, object, version)
aud_rec_t ard;
struct aud_obj_t ∗∗object;
unsigned char version;

DESCRIPTION
The aud_get_object() function will return a pointer to an object descriptor via the argument
object .

Currently only one version of object descriptor is defined: AUD_XSTD_OBJ, which contains
the following members:

unsigned char version;
unsigned short type;
unsigned short mode;
unsigned char namefmt;
unsigned char namelen;
char ∗name;
struct aud_mac_t ∗mac;
struct aud_dac_t ∗dac;

The version argument specifies the minimum acceptable value for the version field within
the object. Objects with a lower version value will not be returned.

The type parameter defines the type of object. This should be one of the following values:

AUD_OBJ_FILE
AUD_OBJ_DIR
AUD_OBJ_DEV
AUD_OBJ_FIFO
AUD_OBJ_MSG
AUD_OBJ_SHM
AUD_OBJ_SEM
AUD_OBJ_STOR
AUD_OBJ_IPC

The AUD_OBJ_STOR and AUD_OBJ_IPC values should be used to denote storage and IPC
objects which are implementation-defined. The other values correspond to defined XPG
objects.

The mode parameter defines how the object was accessed. This is a bitmask and contains
one of:

AUD_OBJ_STAT
AUD_OBJ_CONTENTS

and one of:

X/Open Snapshot (1990)
Page : 36 XSI Security

System Interfaces aud_get_object()

AUD_OBJ_READ
AUD_OBJ_WRITE
AUD_OBJ_EXEC
AUD_OBJ_SEARCH

The namefmt parameter defines the format of the name and may be any of the valid values
defined for the format of the event-specific information.

The structures for the mac and dac object components will be defined by other standards
groups.

The objects are returned in the order in which they were added to the record by the
implementation or application. The number of remaining objects is returned as the status
code. When this value reaches zero, there are no unreturned object descriptors in the
record. The number of unreturned descriptors may be queried at any point if this function
is invoked with a NULL pointer for the object parameter.

Storage allocated by this function must be explicitly freed by a call to aud_discard ().

RETURN VALUE
If successful, the aud_get_object() function returns a value greater than or equal to zero
which corresponds to the number of object descriptors remaining in the audit record.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
The aud_get_object() function will fail if:

[EINVAL] The ard argument does not contain a valid audit record.

[EINVAL] The version argument does not specify a supported object type.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The aud_get_object() function may fail if:

[ENOMEM] Insufficient storage space is available to hold the object descriptor.

SEE ALSO
aud_discard (), aud_get_event_info(), aud_get_header (), aud_next(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 37

aud_get_event_info() System Interfaces

NAME
aud_get_event_info - read event-specific information from the audit record

SYNOPSIS
#include <audit.h>

int aud_get_event_info (ard, event_info)
aud_rec_t ard;
struct aud_event_info_t ∗∗event_info;

DESCRIPTION
The aud_get_event_info() function will return a pointer to an item of event-specific
information via the argument event_info. This item contains a structure with the following
members:

unsigned short format;
unsigned short len;
char ∗info;

The format field defines formatting information that may be used to display the data
referenced by info . Possible values of this field are:

AUD_FORMAT_CHAR
AUD_FORMAT_SHORT
AUD_FORMAT_INT
AUD_FORMAT_LONG
AUD_FORMAT_STRING
AUD_FORMAT_OPAQUE

This function may be invoked multiple times to read all event-specific information from
the audit record.

The event-specific items are returned in the order in which they were added to the record
by the implementation or application. The number of remaining event-specific items is
returned as the status code. When this value reaches zero, there are no unreturned event-
specific items in the audit record. The number of unreturned event-specific items may be
queried at any point if this function is invoked with a NULL pointer for the event_info
parameter.

Storage allocated by this function must be explicitly freed by a call to aud_discard ().

RETURN VALUE
If successful, the aud_get_event_info() function returns the number of event_info descriptors
remaining in the audit record. If unsuccessful, a value of -1 is returned and errno is set to
indicate the error.

ERRORS
The aud_get_event_info() function will fail if:

[EINVAL] The ard argument does not contain a valid audit record.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

X/Open Snapshot (1990)
Page : 38 XSI Security

System Interfaces aud_get_event_info()

The aud_get_event_info() function may fail if:

[ENOMEM] Insufficient storage space is available to hold the event-specific information.

SEE ALSO
aud_discard (), aud_get_header (), aud_get_object(), aud_next(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 39

aud_length() System Interfaces

NAME
aud_length - get audit record length

SYNOPSIS
#include <audit.h>

size_t aud_length (ard)
aud_rec_t ard;

DESCRIPTION
The aud_length() function will return the total length (in bytes) of the audit record
identified by ard . The audit record will have been either read into ard by a previous,
successful, call to the aud_next() function or allocated by the aud_start() function.

RETURN VALUE
If successful, the aud_length() function returns the length of the audit record. Otherwise, a
value of (size_t)-1 is returned and errno is set to indicate the error.

ERRORS
The aud_length() function will fail if:

[EINVAL] The ard argument does not identify a valid audit record buffer.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
aud_next(), aud_start(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 40 XSI Security

System Interfaces aud_next()

NAME
aud_next - read audit trail record

SYNOPSIS
#include <sys/types.h>
#include <audit.h>
size_t aud_next (fd, ard, predicate)
int fd;
aud_rec_t ∗ard;
char ∗predicate;

DESCRIPTION
This function attempts to read the ‘‘next’’ record from the audit trail specified with the file
descriptor fd.

This function also defines the predicate to be used to search for the next record and will
return a matching record if one exists. The aud_next function can then be used to search for
successive records in the trail that match the defined predicate. By default, if no predicate
is explicitly defined the function will return the next record read from the audit trail.

The predicate may include comparison, IN or LIKE predicates of the form defined in the
X/Open Portability Guide, Issue 3, Volume 5, Data Management, for SQL search
conditions with WHERE clauses. The SQL predicates may be connected with AND, OR or
NOT operators and parentheses may be used to change the order of evaluation.

The left hand side of each predicate must be the name of one of the audit record attributes
defined below:

EVENT the name of the audit event type.

STATUS the audit status of the record.

TIME the time when the record was generated. Values must be specified in the
format defined by the LC_TIME environmental variable.

PROCESS the process ID of the subject.

AUDIT_ID the audit ID of the subject or client (if specified).

REAL_UID the real user ID of the subject or client (if specified).

If the predicate parameter is a NULL pointer, the search criteria remains unchanged from
the last call of aud_next() which specified a predicate .

If the predicate parameter points to a NULL or empty string, the search condition will be set
to the default (the next sequential record in the trail).

If the file descriptor is valid and points to a valid audit trail and a matching record is
found in the trail, the contents of the first such record are returned to the caller in the
manner described below.

The function will allocate a buffer, place the contents of the record into it and return an
identifier to it via the argument ard .

The information returned via ard is suitable to supply to calls of the functions
aud_get_header , aud_get_object and aud_get_event_info .

X/Open Snapshot (1990)
XSI Security Page : 41

aud_next() System Interfaces

Storage allocated by this function must be explicitly freed by a call to aud_discard ().

If the function successfully reads an audit trail record, the cursor associated with fd will be
advanced to point at the next record in the audit trail.

If no appropriate record can be found in the audit trail, a value of zero is returned and the
cursor is advanced to the end of the audit trail.

If a call is unsuccessful, a value of -1 is returned and the cursor remains unchanged.

RETURN VALUE
If successful, the function returns the length of the audit record. If there are no more
records in the audit trail, the function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
These functions may return any of the errors identified for the read() function. They will
also fail if:

[EINVAL] The cursor associated with fd is not positioned at a valid audit record.

[EINVAL] The predicate defined by predicate is not syntactically valid.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The functions may fail if:

[ENOMEM] Insufficient storage space is available to hold the audit record.

SEE ALSO
aud_discard (), aud_get_event_info(), aud_get_header (), aud_get_object(), aud_length(),
aud_print(), read(), <audit.h>, in the X/Open Portability Guide, Issue 3, Volume 2, XSI
System Interfaces and Headers.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 42 XSI Security

System Interfaces aud_print()

NAME
aud_print - translates a binary audit record

SYNOPSIS
#include <audit.h>

int aud_print (fd, mode, ard)
int fd;
int mode;
aud_rec_t ard;

DESCRIPTION
The aud_print() function translates an audit record identified by the ard parameter from the
system-specific format to an external representation specified by the mode parameter. The
output is written to the file descriptor specified by the fd parameter.

The audit record will have been assembled in ard by a previous, successful, call to the
aud_next() function.

The mode parameter can specify one of:

AUD_STD_ASCII
AUD_STD_XDR
AUD_STD_NDR

The AUD_STD_ASCII format provides a textual representation of the audit record.

The AUD_STD_XDR and AUD_STD_NDR formats provide system-independent binary
representations of the audit record.

RETURN VALUE
If successful, the aud_print() function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_print() function will fail if:

[EINVAL] The ard argument does not identify a valid audit record.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

[EINVAL] The mode argument is not one of AUD_STD_ASCII, AUD_STD_XDR or
AUD_STD_NDR.

[ENOSYS] The requested translation mode is not supported on this implementation.

SEE ALSO
aud_length(), aud_next(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 43

aud_put_object() System Interfaces

NAME
aud_put_object - put object descriptor into record buffer

SYNOPSIS
#include <audit.h>

int aud_put_object (ard, object)
aud_rec_t ard;
aud_obj_t ∗object;

DESCRIPTION
The aud_put_object() function will insert the object description in the structure pointed to
by the object parameter into the audit record buffer identified by ard . The audit record
buffer, ard , will have been initialized by a previous, successful, call to the aud_start()
function.

The aud_obj_t structure contains the following members:

unsigned char version;
unsigned short type;
unsigned short mode;
unsigned char namefmt;
unsigned short namelen;
char ∗name;
struct aud_mac_t ∗mac;
struct aud_dac_t ∗dac;

The type parameter defines the type of object. This should be one of the following values:

AUD_OBJ_FILE
AUD_OBJ_DIR
AUD_OBJ_DEV
AUD_OBJ_FIFO
AUD_OBJ_MSG
AUD_OBJ_SHM
AUD_OBJ_SEM
AUD_OBJ_STOR
AUD_OBJ_IPC

The AUD_OBJ_STOR and AUD_OBJ_IPC values are used to denote storage and IPC objects
which are implementation-defined. The other values correspond to defined XPG objects.

The mode parameter defines how the object was accessed. This is a bitmask and should
contain one of:

AUD_OBJ_STAT
AUD_OBJ_CONTENTS

X/Open Snapshot (1990)
Page : 44 XSI Security

System Interfaces aud_put_object()

and one of:

AUD_OBJ_READ
AUD_OBJ_WRITE
AUD_OBJ_EXEC
AUD_OBJ_SEARCH

The namefmt parameter defines the format of the name and may be any of the valid values
defined for the format of the event-specific information (see aud_get_event_info()).

The structures for the mac and dac object components will be defined by other standards
groups.

The aud_put_object() function may be called repeatedly in order to add several descriptors
to the record. The order of these descriptors will be preserved by the system, so that they
may be read in the same order by the aud_get_object() function. This order will also be
preserved by the aud_print() function.

RETURN VALUE
If successful, the aud_put_object() function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_put_object() function will fail if:

[EINVAL] The ard argument does not identify a valid audit record.

[EINVAL] The version field of the object structure is not valid.

[EINVAL] The type, mode or namefmt fields of the object structure contained illegal
values.

[EPERM] The caller does not have the appropriate privilege to invoke this function or
to set the value of the specified attribute.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The aud_put_object() function may fail if:

[ENOMEM] The function cannot allocate the additional memory in the audit record
buffer to contain the new object.

SEE ALSO
aud_commit(), aud_discard (), aud_get_event_info(), aud_get_object(), aud_print(),
aud_put_event_info(), aud_start(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 45

aud_put_event_info() System Interfaces

NAME
aud_put_event_info - put event-specific information into record buffer

SYNOPSIS
#include <audit.h>

int aud_put_event_info (ard, event_info)
aud_rec_t ard;
aud_event_info_t ∗event_info;

DESCRIPTION
The aud_put_event_info() function will insert the event-specific information in the structure
pointed to by the event_info parameter into the audit record buffer identified by ard . The
audit record buffer, ard , will have been initialized by a previous, successful, call to the
aud_start() function.

The event_info structure contains the following members:

unsigned short format;
unsigned short len;
char ∗info;

The format member defines the format of the information in the info buffer, while the len
member gives the length of the buffer, in bytes (see aud_get_event_info() for possible values
of format).

The aud_put_event_info() function may be called repeatedly in order to add several
descriptors to the record. The order of these descriptors will be preserved by the system,
so that they may be read in the same order by the aud_get_event_info() function. This order
will also be preserved by the aud_print() function.

RETURN VALUE
If successful, the aud_put_event_info() function returns a value of 0. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ERRORS
The aud_put_event_info() function will fail if:

[EINVAL] The ard argument does not identify a valid audit record.

[EINVAL] The format field of the event_info structure contained an illegal value.

[EPERM] The caller does not have the appropriate privilege to invoke this function or
to set the value of the specified attribute.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The aud_put_event_info() function may fail if:

[ENOMEM] The function cannot allocate memory in the audit record buffer to contain the
new event_info.

SEE ALSO
aud_commit(), aud_discard (), aud_get_event_info(), aud_print(), aud_put_object(), aud_start(),
<audit.h>.

X/Open Snapshot (1990)
Page : 46 XSI Security

System Interfaces aud_put_event_info()

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 47

aud_start() System Interfaces

NAME
aud_start - allocate audit record buffer

SYNOPSIS
#include <audit.h>

int aud_start (ard, event)
aud_rec_t ∗ard;
aud_event_t event;

DESCRIPTION
The aud_start() function allocates an internal audit record buffer and returns its identifier
in ard . Information can be added to the record in the buffer with the aud_put_object() and
aud_put_event_info() functions. The audit record can be completed and appended to the
audit trail by calling the aud_commit() function.

The event and subject fields in the header will be set according to the event parameter and
audit ID of the current process, respectively. The client and status fields in the header are
set with the aud_commit function. All other fields in the header are completed by the
system. It is implementation-defined when the header values are actually established.

If the process terminates before the audit record is finished and committed, the audit
record buffer is discarded and no data will be written to the audit trail.

Whether or not partially completed audit record buffers are made available to subsequent
child processes is undefined. On some systems, if a child attempts to access such buffers it
may invalidate an audit record being built in the parent, or result in two similar records
being written to the audit trail.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the aud_start() function returns a value of 0. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The aud_start() function will fail if:

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The aud_start() function may fail if:

[ENOMEM] Insufficient storage space is available to hold the audit record buffer.

SEE ALSO
aud_commit(), aud_discard (), aud_put_event_info(), aud_put_object(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 48 XSI Security

System Interfaces aud_switch()

NAME
aud_switch - suspend or resume process auditing

SYNOPSIS
#include <audit.h>

int aud_switch (audit_state)
enum { off, on } audit_state;

DESCRIPTION
The aud_switch() function sets process auditing off or on. The request is advisory and may
be ignored either wholly or partially if the auditing policy of the system (or the TCB)
prohibits the suspension of process auditing. A request to suspend auditing from a
process that is privileged to do its own auditing only affects audit data generated by the
TCB (i.e., it does not affect auditing performed by the aud_commit() function).

The current state of this switch is inherited by a child if the process calls the fork () function.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the aud_switch() function returns the previous value of the audit switch for
the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

ERRORS
The aud_switch() function will fail if:

[EINVAL] The value of the audit_state argument is invalid.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
aud_commit(), fork (), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 49

exec System Interfaces

NAME
environ, execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
extern char ∗∗environ;

int execl (path, arg0, arg1, ..., argn, (char∗)0)
char ∗path, ∗arg0, ∗arg1, ..., ∗argn;

int execv (path, argv)
char ∗path, ∗argv[];

int execle (path, arg0, arg1, ..., argn, (char∗)0, envp)
char ∗path, ∗arg0, ∗arg1, ..., ∗argn, ∗envp[];

int execve (path, argv, envp)
char ∗path, ∗argv[], ∗envp[];

int execlp (file, arg0, arg1, ..., argn, (char∗)0)
char ∗file, ∗arg0, ∗arg1, ..., ∗argn;

int execvp (file, argv)
char ∗file, ∗argv[];

DESCRIPTION
See exec in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and
Headers.

SECURITY
On systems supporting the ACCOUNTABILITY option, the following attributes will also be
inherited by the new process image:

• audit_ID,

• audit switch state,

• process audit events.

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 1.

This Document
A SECURITY section has been added indicating additional requirements for systems
supporting the Security Interfaces.

X/Open Snapshot (1990)
Page : 50 XSI Security

System Interfaces fork()

NAME
fork - create a new process

SYNOPSIS
#include <sys/types.h>

pid_t fork ()

DESCRIPTION
See fork () in .

SECURITY
On systems supporting the ACCOUNTABILITY option, the following attributes are also
inherited by a child process:

• audit_ID,

• audit switch state,

• process audit events.

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 1.

This Document
A SECURITY section has been added indicating additional requirements for systems
supporting the Security Interfaces.

X/Open Snapshot (1990)
XSI Security Page : 51

get_password_aging() System Interfaces

NAME
get_password_aging - get information on password aging

SYNOPSIS
#include <audit.h>

int get_password_aging (user_name, time_left, when_changed)
char ∗user_name;
int ∗time_left;
int ∗when_changed;

DESCRIPTION
The get_password_aging () function returns information about the current state of password
aging for user user_name. This information is returned in the integers pointed to by the
time_left and when_changed arguments, as follows:

time_left The number of days for which the current password will remain valid. A
negative value indicates that this time has already expired.

when_changed
The number of days since the password was last changed.

Users can and should change their passwords before time_left days have elapsed. After a
password has expired, it is undefined whether or not the associated user ID is still usable.

A process must have appropriate privileges to call this function.

RETURN VALUE
If successful, the get_password_aging () function returns a value of 0. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
The get_password_aging () function will fail if:

[EINVAL] The user_name argument does not identify a valid user.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The AUTHENTICATION option is not supported on this implementation.

SEE ALSO
set_password_aging (), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 52 XSI Security

System Interfaces get_process_audit_ID()

NAME
get_process_audit_ID - get the audit ID of the calling process

SYNOPSIS
#include <audit.h>

audit_ID_t get_process_audit_ID ()

DESCRIPTION
The get_process_audit_ID () function returns the audit ID of the calling process.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the get_process_audit_ID () function returns the audit ID of the process.
Otherwise, a value of audit_ID_t-1 is returned and errno is set to indicate the error.

ERRORS
The get_process_audit_ID () function will fail if:

[EINVAL] The audit_ID of the process is not set.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 53

get_process_audit_events() System Interfaces

NAME
get_process_audit_events - get process event list

SYNOPSIS
#include <audit.h>

aud_event_t ∗get_process_audit_events (nmemb)
size_t ∗nmemb;

DESCRIPTION
The get_process_audit_events () function returns a pointer to an array of up to
{AUDIT_MAX_SIZE} elements containing a list of the event classes and event types
currently being audited in the calling process. This list is initialised at session start and is
inherited by all child processes. The initial setting of the list is determined from the default
audit event list defined for the associated user (see set_user_audit_events()). Subsequent
changes to the process event list can only be made by processes with appropriate
privileges calling set_process_audit_events () or update_audit_events().

A value indicating the number of valid elements in the event list is stored in the location
pointed to by the nmemb argument. If this value is not required, nmemb can be set to the
NULL pointer and no value will be returned.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the get_process_audit_events () function returns a pointer to the current event
list. Otherwise, a NULL pointer is returned and errno is set to indicate the error.

ERRORS
The get_process_audit_events () function will fail if:

[EINVAL] No events are currently being audited in the process.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The get_process_audit_events () function may fail if:

[ENOMEM] The implementation requires to allocate space to hold the return value of the
function and there is insufficient free memory space currently available.

APPLICATION USAGE
The array used to hold the process event list may be held in a static data area whose
contents are overwritten by this and other audit system function calls. Applications are
recommended to copy this array to a local data area if it is to be saved or reused.

SEE ALSO
set_process_audit_events (), set_user_audit_events(), update_audit_events(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 54 XSI Security

System Interfaces get_user_audit_events()

NAME
get_user_audit_events - get user event list

SYNOPSIS
#include <audit.h>

aud_event_t ∗get_user_audit_events (user_name, nmemb)
char ∗user_name;
size_t ∗nmemb;

DESCRIPTION
The get_user_audit_events() function returns a pointer to an array of up to
{AUDIT_MAX_SIZE} elements containing a list of the audit event classes and event types
currently turned on for user user_name. If user_name is the NULL pointer, the function
returns a pointer to an array containing the list of audit event classes and event types
currently defined as the system default event list (see set_user_audit_events()).

A value indicating the number of valid elements in the event list is stored in the location
pointed to by the nmemb argument. If this value is not required, nmemb can be set to the
NULL pointer and no value will be returned.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the get_user_audit_events() function returns a pointer to the audit event list for
user user_name, or for the system if user_name is the NULL pointer. Otherwise, a NULL
pointer is returned and errno is set to indicate the error.

ERRORS
The get_user_audit_events() function will fail if:

[EINVAL] The user_name argument is not the NULL pointer and does not identify a
valid user.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The get_user_audit_events() function may fail if:

[ENOMEM] The implementation requires to allocate space to hold the return value of the
function and there is insufficient free memory space currently available.

APPLICATION USAGE
The array used to hold the user event list may be held in a static data area whose contents
are overwritten by this and other audit system function calls. Applications are
recommended to copy this array to a local data area if it is to be saved or reused.

SEE ALSO
set_user_audit_events(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 55

map_audit_ID_to_user() System Interfaces

NAME
map_audit_ID_to_user - get user name for audit ID

SYNOPSIS
#include <audit.h>

char ∗map_audit_ID_to_user (audit_ID)
audit_ID_t audit_ID;

DESCRIPTION
The map_audit_ID_to_user() function returns a pointer to a string containing the user name
associated with audit_ID in the identification database. How and where this information is
stored is implementation-defined.

A process needs appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the map_audit_ID_to_user() function returns a pointer to a string containing
the user name associated with audit_ID. Otherwise, a NULL pointer is returned and errno
is set to indicate the error.

ERRORS
The map_audit_ID_to_user() function will fail if:

[EINVAL] The audit_ID argument does not contain a valid audit identifier.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

The map_audit_ID_to_user() function may fail if:

[ENOMEM] The implementation requires to allocate space to hold the return value of the
function and there is insufficient free memory space currently available.

APPLICATION USAGE
The string used to hold the user name may be held in a static data area whose contents are
overwritten by other audit system function calls. Applications are recommended to copy
this string to a local data area if it is to be saved or reused.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 56 XSI Security

System Interfaces map_user_to_audit_ID()

NAME
map_user_to_audit_ID - get audit ID for user name

SYNOPSIS
#include <audit.h>

audit_ID_t map_user_to_audit_ID (user_name)
char ∗user_name;

DESCRIPTION
The map_user_to_audit_ID() function returns the audit ID of the user identified by the string
pointed to by user_name. This information is taken from the system’s identification
database, the format and location of which are implementation-defined.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the map_user_to_audit_ID() function returns the audit ID associated with
user_name. Otherwise, a value of audit_ID_t-1 is returned and errno is set to indicate the
error.

ERRORS
The map_user_to_audit_ID() function will fail if:

[EINVAL] The user_name argument does not identify a valid user.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 57

secure_get_passwd_user() System Interfaces

NAME
secure_get_passwd_user - get password for user

SYNOPSIS
#include <audit.h>

int secure_get_passwd_user (name, password, nbyte)
char ∗name, ∗password;
unsigned nbyte;

DESCRIPTION
The secure_get_passwd_user () function searches the authentication database for the user
entry identified in the string pointed to by name. If found, the encrypted form of the
password associated with user name is returned in the buffer pointed to by password .

No more than nbyte bytes will be placed in the buffer. If the size of the encrypted password
is less than or equal to nbyte, the secure_get_passwd_user () function will place the password
in the buffer and return its size in bytes. If its size is greater than nbyte, the first nbyte bytes
will be placed in the buffer and the function will return a value greater than nbyte.

If nbyte is 0, password is permitted to be a null pointer. This form of a call is useful for
determining the size of an encrypted password.

The algorithm for encrypting passwords is implementation-defined.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the secure_get_passwd_user () function returns the length of the encrypted
password in bytes. If the value returned is greater than nbyte, only nbyte bytes will have
been placed in the buffer pointed to by password . Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The secure_get_passwd_user () function will fail if:

[EINVAL] The name argument does not identify a valid user name.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The AUTHENTICATION option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 58 XSI Security

System Interfaces secure_put_passwd_user()

NAME
secure_put_passwd_user - set password for user

SYNOPSIS
#include <audit.h>

int secure_put_passwd_user (name, password, nbyte)
char ∗name, ∗password;
unsigned nbyte;

DESCRIPTION
The secure_put_passwd_user() function sets the password associated with user name in the
authentication database. The password argument is a pointer to a character array of nbyte
bytes, containing an encrypted form of the new password.

The algorithm for encrypting passwords is implementation-defined.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the secure_put_passwd_user() function returns a value of 0. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

ERRORS
The secure_put_passwd_user() function will fail if:

[EINVAL] The name argument does not identify a valid user name.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The AUTHENTICATION option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 59

set_password_aging() System Interfaces

NAME
set_password_aging - set information on password aging

SYNOPSIS
#include <audit.h>

int set_password_aging (user_name, time_to_expire, warning_time)
char ∗user_name;
int time_to_expire, warning_time;

DESCRIPTION
The set_password_aging () function sets information about password aging for user
user_name. This information is defined by the values of time_to_expire and warning_time as
follows:

time_to_expire
The maximum number of days for which a password will remain valid.
After a password has expired, it is undefined whether or not the associated
user ID is still useable.

warning_time
The period in days, before the password expires, during which the user is
warned to change the password.

If warning_time ≥ time_to_expire , the password must be changed on the next
login. The maximum life of a password may be no greater than one year (365
days).

If user_name is the NULL pointer, the function sets information about password aging for
all current users of the system. This supersedes existing password aging information, if
present.

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the set_password_aging () function returns a value of 0. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
The set_password_aging () function will fail if:

[EINVAL] The user_name argument is not the NULL pointer and does not identify a
valid user, or time_to_expire or warning_time contain an invalid setting.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The AUTHENTICATION option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 60 XSI Security

System Interfaces set_process_audit_ID()

NAME
set_process_audit_ID - set the audit_ID of the calling process

SYNOPSIS
#include <audit.h>

int set_process_audit_ID (audit_ID)
audit_ID_t audit_ID;

DESCRIPTION
The set_process_audit_ID () function will set the audit identifier of the calling process to
audit_ID. A call to this function will fail if the audit identifier of the process is already set,
or if the value of audit_ID is not a valid audit identifier.

A process must have appropriate privileges to call this function successfully.

Once set, the audit ID of a process is inherited by all child processes (see fork ()), by new
process images (see exec()), and by all background jobs initiated from the process (see at
and crontab).

RETURN VALUE
If successful, the set_process_audit_ID () function will return a value of 0. Otherwise, the
value -1 will be returned and errno will be set to indicate the error.

ERRORS
The set_process_audit_ID () function will fail if:

[EINVAL] The value of audit_ID is not a valid audit identifier.

[EPERM] The process does not have appropriate privileges to call this function, or the
audit identifier of the process is already set.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
at, crontab , exec(), fork (), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 61

set_process_audit_events() System Interfaces

NAME
set_process_audit_events - set process event list

SYNOPSIS
#include <audit.h>

int set_process_audit_events (audit_state, event_ptr, nmemb)
enum { off, on } audit_state;
aud_event_t ∗event_ptr;
size_t nmemb;

DESCRIPTION
The set_process_audit_events () function will set the event classes or event types identified in
the array pointed to by event_ptr to audit_state in the calling process. The array pointed to
by event_ptr is defined as an event list of nmemb elements, where nmemb is a value in the
range (1-{AUDIT_MAX_SIZE}).

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the set_process_audit_events () function will return a value of 0. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
The set_process_audit_events () function will fail if:

[EINVAL] The value of the audit_state or nmemb argument is invalid, or an element of
the array pointed to by event_ptr identifies an invalid event class or event
type.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Page : 62 XSI Security

System Interfaces set_user_audit_ID()

NAME
set_user_audit_ID - set audit ID for user

SYNOPSIS
#include <audit.h>

int set_user_audit_ID (user_name, audit_ID)
char ∗user_name;
audit_ID_t audit_ID;

DESCRIPTION
The set_user_audit_ID() function sets the audit ID for the user identified in the string
pointed to by user_name. This function updates the identification database. Existing
processes belonging to user user_name will not be affected.

A call to this function will fail if the process does not have appropriate privileges to access
the identification database.

RETURN VALUE
If successful, the set_user_audit_ID() function returns a value of 0. Otherwise, a value of -1
is returned and errno is set to indicate the error.

ERRORS
The set_user_audit_ID() function will fail if:

[EINVAL] The user_name argument does not identify a valid user, or audit_ID does not
contain a unique audit identifier.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 63

set_user_audit_events() System Interfaces

NAME
set_user_audit_events - set user event list

SYNOPSIS
#include <audit.h>

int set_user_audit_events (audit_state, user_names, event_ptr,
nmemb)
enum { off, on, default } audit_state;
char ∗∗user_names;
aud_event_t ∗event_ptr;
size_t nmemb;

DESCRIPTION
The set_user_audit_events() function will set the event classes or event types specified in the
array pointed to by event_ptr to audit_state , for the users identified in the NULL-terminated
list of user names pointed to by user_names.

If user_names is not the NULL pointer, the function sets the specified event classes or event
types to audit_state for each named user. If the first element of the array pointed to by
event_ptr is set to the constant AUDIT_EVENTS_ALL, all event classes and event types will
be set to audit_state . If the value of audit_state is default, the list of audit events for each
named user will be set to the system default event list. If the first string in the string list
pointed to by user_names is set to ‘‘∗’’, the event list of all current users will be updated.

If user_names is the NULL pointer, the function sets the specified event classes or event
types to audit_state in the system default event list. If the first element of the array pointed
to by event_ptr is set to the constant AUDIT_EVENTS_ALL, all event classes and event types
will be set to audit_state . If the audit_state argument is set to default, the call will have no
effect.

If the first element of event_ptr is not the constant AUDIT_EVENTS_ALL, event_ptr is defined
as an event list of nmemb elements, where nmemb is an integer value in the range
(1-{AUDIT_MAX_SIZE}).

A process must have appropriate privileges to call this function successfully.

RETURN VALUE
If successful, the set_user_audit_events() function will return a value of 0. Otherwise, a
value of -1 will be returned and errno will be set to indicate the error.

ERRORS
The set_user_audit_events() function will fail if:

[EINVAL] The value of the audit_state or nmemb argument is invalid, or one of the users
identified by user_names is not registered with the system, or the event list
pointed to by event_ptr identifies an invalid event.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
<audit.h>.

X/Open Snapshot (1990)
Page : 64 XSI Security

System Interfaces set_user_audit_events()

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 65

sysconf() System Interfaces

NAME
sysconf - get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf (name)
int name;

DESCRIPTION
See sysconf() in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface
and Headers.

SECURITY
The following system variables and symbolic constants have been added for the Security
Interfaces:

Variable Value of name
ACCOUNTABILITY _SC_ACCOUNTABILITY
AUDIT_MAX_SIZE _SC_AUDIT_MAX_SIZE
AUDIT_REC_SIZE _SC_AUDIT_REC_SIZE
AUTHENTICATION _SC_AUTHENTICATION

The ACCOUNTABILITY and AUTHENTICATION variables will be defined if an
implementation supports these options. In this case, the sysconf() function will return the
value of the variable. Otherwise, -1 is returned without changing the value of errno .

On systems supporting the ACCOUNTABILITY option, AUDIT_MAX_SIZE gives the
maximum number of elements in an audit event list and AUDIT_REC_SIZE gives the
maximum number of bytes in an audit record.

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 3.

This Document
A SECURITY section has been added indicating additional variables and symbolic
constants for the Security Interfaces.

X/Open Snapshot (1990)
Page : 66 XSI Security

System Interfaces update_audit_events()

NAME
update_audit_events - update process event list for users

SYNOPSIS
#include <audit.h>

int update_audit_events (user_names)
char ∗∗user_names;

DESCRIPTION
The update_audit_events() function will update the list of event classes and event types
being audited for processes belonging to users identified in user_names. The user_names
argument is a NULL terminated array, each element of which is a pointer to a string
containing a user name. If the first user name in the list is the string ‘‘∗’’, all user processes
will be updated.

If any of the strings in the array pointed to by user_names identifies an invalid user name,
the behaviour of this function is undefined (i.e., processes belonging to valid user names
given elsewhere in the list may or may not be updated correctly).

This function allows a process with appropriate privileges to update process audit event
lists so they become consistent with the current specification of user audit event lists (see
set_user_audit_events()).

RETURN VALUE
If successful, the update_audit_events() function returns a value of 0. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
The update_audit_events() function will fail if:

[EINVAL] One of the strings in the array pointed to by user_names identifies an invalid
user name.

[EPERM] The process does not have appropriate privileges to call this function.

[ENOSYS] The ACCOUNTABILITY option is not supported on this implementation.

SEE ALSO
set_user_audit_events(), <audit.h>.

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
XSI Security Page : 67

<audit.h> Headers

NAME
audit.h - data types and constants for security auditing

SYNOPSIS
#include <audit.h>

DESCRIPTION
The following types are defined in this header through typedefs:

aud_event_t The type of an audit event class or audit event type identifier.

aud_rec_t The type of an audit record structure or array identifier.

aud_stat_t The type of the status field within an audit record header.

audit_ID_t The type of an audit identifier.

size_t Unsigned integral type returned by the sizeof operator.

The following structures are defined for use in querying or setting attributes in audit
records:

aud_hdr_t The audit record header which contains the following members:

unsigned char version;
audit_ID_t subject;
audit_ID_t client;
aud_event_t event;
time_t time;
unsigned time_off;
aud_stat_t status;
pid_t pid;
struct aud_dac_t ∗dac;
struct aud_mac_t ∗mac;
struct aud_net_t ∗net;
struct aud_priv_t ∗priv;

aud_obj_t The audit record object which contains the following members:

unsigned char version;
unsigned short type;
unsigned short mode;
unsigned char namefmt;
unsigned char namelen;
char ∗name;
struct aud_mac_t ∗mac;
struct aud_dac_t ∗dac;

aud_event_info_t
The audit record event_info which contains the following members:

unsigned short format;
unsigned short len;
char ∗info;

X/Open Snapshot (1990)
Page : 68 Security Interface Specifications: Auditing and Authentication

Headers <audit.h>

aud_dac_t The dac structure which contains the following members:

unsigned char version
uid_t ruid
uid_t euid
uid_t suid
gid_t rgid
gid_t egid
gid_t sgid
int ngroups
gid_t ∗groups

aud_mac_t The mac structure which contains the following members:

unsigned char version
unsigned short type
unsigned char mt
size_t size
char ∗label

aud_net_t The net structure which contains the following members:

(To be defined)

aud_priv_t The priv structure which contains the following members:

(To be defined)

The following symbolic constants are defined for general use:

AUDIT_EVENTS_ALL
A value of type aud_event_t which is a wild card event indicating all event
classes and event types.

AUDIT_NOBODY
A value of type audit_ID_t which is used to specify an empty value of audit
ID.

NULL The null pointer.

The following symbolic constants are defined for version values in audit record structures:

AUD_XSTD_HDR
Version of the header structure.

AUD_XSTD_OBJ
Version of the object structure.

AUD_XSTD_DAC
Version of the dac structure.

AUD_XSTD_MAC
Version of the mac structure.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 69

<audit.h> Headers

The following symbolic constants are defined for values of the format field within the
aud_event_info_t structure and the namefmt field within the aud_obj_t structure:

AUD_FORMAT_CHAR
AUD_FORMAT_SHORT
AUD_FORMAT_INT
AUD_FORMAT_LONG
AUD_FORMAT_STRING
AUD_FORMAT_OPAQUE

The following symbolic constants are defined for values of the type field within the
aud_obj_t structure:

AUD_OBJ_FILE
AUD_OBJ_DIR
AUD_OBJ_DEV
AUD_OBJ_FIFO
AUD_OBJ_MSG
AUD_OBJ_SHM
AUD_OBJ_SEM
AUD_OBJ_STOR
AUD_OBJ_IPC

The following symbolic constants are defined for values of the mode field within the
aud_obj_t structure:

AUD_OBJ_STAT
AUD_OBJ_CONTENTS
AUD_OBJ_READ
AUD_OBJ_WRITE
AUD_OBJ_EXEC
AUD_OBJ_SEARCH

The following symbolic constants are defined for values of the mode argument to
aud_print():

AUD_STD_ASCII
AUD_STD_XDR
AUD_STD_NDR

The following symbolic constants are defined for the aud_config() function:

AUS_ABSPATH
AUS_OBJMAC
AUS_OBJDAC

X/Open Snapshot (1990)
Page : 70 Security Interface Specifications: Auditing and Authentication

Headers <audit.h>

The following symbolic constants are defined for status values in audit headers:

AUR_SUCCESS
AUR_FAIL_ACC
AUR_FAIL_DAC
AUR_FAIL_MAC
AUR_FAIL_PRIV
AUR_FAIL_OTHER

The following symbolic constants are defined for audit event classes:

AEC_ACCESS_CHANGE
AEC_ACCESS_DENIALS
AEC_ADMIN_OPERATOR
AEC_AUTHENTICATION
AEC_OBJECT_AVAILABLE
AEC_OBJECT_CREATION
AEC_OBJECT_DELETION
AEC_OBJECT_MODIFICATION
AEC_OBJECT_TO_SUBJECT
AEC_OBJECT_UNAVAILABLE
AEC_PRIVILEGE
AEC_PROCESS
AEC_PROCESS_CONTROL
AEC_RESOURCE_DENIALS
AEC_SYSTEM

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 71

<audit.h> Headers

The following symbolic constants are defined for audit event types:

AET_AUDIT SWITCH
AET_CHDIR
AET_CHMOD
AET_CHOWN
AET_CHROOT
AET_CREAT
AET_EXEC
AET_EXECE
AET_EXIT
AET_FORK
AET_KILL
AET_LINK
AET_LOGIN_USER
AET_LOGOUT_USER
AET_MKDIR
AET_MKFIFO
AET_MSGCTL
AET_MSGGET
AET_OPEN
AET_RENAME
AET_RMDIR
AET_SECURE_PUT_PASSWD_USER
AET_SEMCTL
AET_SEMGET
AET_SETGID
AET_SETUID
AET_SET_PASSWORD_AGING
AET_SET_PROCESS_AUDIT_EVENTS
AET_SET_PROCESS_AUDIT_ID
AET_SET_USER_AUDIT_EVENTS
AET_SHMCTL
AET_SHMGET
AET_SWITCH_USER
AET_UNLINK
AET_UPDATE_AUDIT_EVENTS

X/Open Snapshot (1990)
Page : 72 Security Interface Specifications: Auditing and Authentication

Headers <audit.h>

The following are declared as either functions or macros:

aud_commit()
aud_config()
aud_discard()
aud_get_header()
aud_get_object()
aud_get_event_info()
aud_length()
aud_next()
aud_print()
aud_put_object()
aud_put_event_info()
aud_start()
aud_switch()
get_password_aging()
get_process_audit_ID()
get_process_audit_events()
get_user_audit_events()
map_audit_ID_to_user()
map_user_to_audit_ID()
secure_get_passwd_user()
secure_put_passwd_user()
set_password_aging()
set_process_audit_ID()
set_process_audit_events()
set_user_audit_ID()
set_user_audit_events()
update_audit_events()

SEE ALSO
aud_commit(), aud_config(), aud_discard (), aud_get_event_info(), aud_get_header (),
aud_get_object(), aud_length(), aud_next(), aud_next_where(), aud_print(),
aud_put_event_info(), aud_put_object(), aud_start(), aud_switch(), get_password_aging (),
get_process_audit_events (), get_process_audit_ID (), get_user_audit_events(),
map_audit_ID_to_user(), map_user_to_audit_ID(), secure_get_passwd_user (),
secure_put_passwd_user(), set_password_aging (), set_process_audit_events (),
set_process_audit_ID (), set_user_audit_events(), set_user_audit_ID(), update_audit_events().

CHANGE HISTORY
First released in this document.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 73

<limits.h> Headers

NAME
limits.h - implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
See <limits.h> in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface
and Headers.

SECURITY
If the ACCOUNTABILITY option is supported, the following constants will be defined in
<limits.h>. These constants may be made available from the sysconf() function and are
additional to those defined in the X/Open Portability Guide, Issue 3.

Name Description Minimum
Acceptable
Value

maximum number of elements in an audit event listAUDIT_MAX_SIZE ∗

maximum number of bytes in an audit recordAUDIT_REC_MAX 65535

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 1.

This Document
A SECURITY section has been added indicating additional constants for the Security
Interfaces.

X/Open Snapshot (1990)
Page : 74 XSI Security

Headers <unistd.h>

NAME
unistd.h - standard symbolic constants and structures

SYNOPSIS
#include <unistd.h>

DESCRIPTION
See <unistd.h> in the X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface
and Headers.

SECURITY
The following symbolic constants are defined if the associated option is supported by an
implementation:

• ACCOUNTABILITY

• AUTHENTICATION

The following symbolic constants are defined for the sysconf() function:

• _SC_ACCOUNTABILITY

• _SC_AUDIT_MAX_SIZE

• _SC_AUDIT_REC_SIZE

• _SC_AUTHENTICATION

CHANGE HISTORY
First released in the X/Open Portability Guide, Issue 1.

This Document
A SECURITY section has been added indicating additional constants for the Security
Interfaces.

X/Open Snapshot (1990)
XSI Security Page : 75

Chapter 6

Audit Event Classes and Event Types

This section defines the audit event classes and event types that will be supported by a
system implementing the ACCOUNTABILITY option. For each event type, this includes a
definition of the information that will be recorded in an associated audit record. For each
event class, this includes a list of the event types contained in that class.

The audit event type provides a method of identifying all audit records that describe the
same type of event; that is, event type records differ only in the parameters supplied to an
operation. For example, the event type AET_FORK identifies all the audit records relating
to the fork () operation. The event type also serves as a modifier or identifier of the event-
specific data. For example, a process ID in a record of type AET_FORK indicates a new
process has been spawned, while a process ID in a record of type AET_KILL indicates a
process has been deleted from the system. Thus the event-specific information without
the event type as a modifier provides incomplete or worthless information.

The class names provide an auditor with a simple means of specifying audit criteria for
selection or analysis without requiring a detailed knowledge of audit event types. For
example, the AEC_PROCESS event class provides a grouping of events which relate to
process creation and/or process deletion. This group would contain event types such as
AET_EXIT, AET_FORK and AET_KILL.

The audit event type is an inherent attribute of an audit record, each audit record
therefore contains the audit event type. The audit event class is a grouping of audit event
types, which is inherently site-dependent and as such not known to the audit generating
programs, nor is it contained in the audit records. This grouping may be reduced or
expanded by the audit administrator based on site needs.

X/Open Snapshot (1990)
Page : 76 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Summary Of Auditing Operations

6.1 SUMMARY OF AUDITING OPERATIONS

Two levels of auditing are defined. First, there is auditing of operations performed by
programs at the System Interface level. Second, there is auditing of operations
performed by users of the system. Auditing performed at the System Interface level is
inherently geared towards the system call interface, i.e., there is nearly a one-to-one
mapping of event to system call. Auditing performed at the User Interface level is geared
more towards a task basis; for example, logging into the system.

6.1.1 Auditing at the System Interface

The following interfaces, published in the X/Open Portability Guide, Issue 3, Volume 2,
XSI System Interfaces and Headers, are defined as the minimum set of system interface
functions that should be auditable by a conforming implementation. The event type is a
symbolic constant defined in <audit.h >.

Interface Event Type
chdir() AET_CHDIR
chmod() AET_CHMOD
chown() AET_CHOWN
chroot() AET_CHROOT
creat() AET_CREAT
execl() AET_EXEC
execle() AET_EXECE
execlp() AET_EXEC
execv() AET_EXEC
execve() AET_EXECE
execvp() AET_EXEC
_exit() AET_EXIT
exit() AET_EXIT
fork() AET_FORK
kill() AET_KILL
link() AET_LINK
mkdir() AET_MKDIR
mkfifo() AET_MKFIFO
open() AET_OPEN
rename() AET_RENAME
rmdir() AET_RMDIR
setgid() AET_SETGID
setuid() AET_SETUID
unlink() AET_UNLINK

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 77

Summary Of Auditing Operations Audit Event Classes and Event Types

In addition to the list defined above, the following new interfaces defined for the
ACCOUNTABILITY option shall be auditable:

Interface Event Type
aud_switch() AET_AUDIT_SWITCH
set_process_audit_ID() AET_SET_PROCESS_AUDIT_ID
set_process_audit_events() AET_SET_PROCESS_AUDIT_EVENTS
set_user_audit_events() AET_SET_USER_AUDIT_EVENTS
update_audit_events() AET_UPDATE_AUDIT_EVENTS

If the AUTHENTICATION option is present the following interfaces should be auditable:

Interface Event Type
secure_put_passwd_user() AET_SECURE_PUT_PASSWD_USER
set_password_aging() AET_SET_PASSWORD_AGING

In addition, the following IPC interfaces should be auditable if the option is present:

Interface Event Type
msgctl() AET_MSGCTL
msgget() AET_MSGGET
semctl() AET_SEMCTL
semget() AET_SEMGET
shmctl() AET_SHMCTL
shmget() AET_SHMGET

Note that it may be difficult for applications to detect the presence of the IPC option, since
pre- and post-selection of events may be done on remote machines.

Clearly the list of events defined above is not inclusive. Commonly used applications,
such as databases and networks, are not covered by the events defined above. As such it
is likely that other event types and system interface functions for auditing may be defined
on a site-specific basis. The format and contents of audit records associated with non-
standard event types is implementation-defined.

X/Open Snapshot (1990)
Page : 78 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Summary Of Auditing Operations

6.1.2 Auditing at the User Interface

The following are defined as the minimum set of user interface operations that should be
auditable by a conforming implementation. Since user interface auditing is inherently
task-oriented, these operations are defined generically. The event type is a symbolic
constant defined in <audit.h >.

Operation Event Type
user login AET_LOGIN_USER
user logout AET_LOGOUT_USER
switch of user Id’s AET_SWITCH_USER

Additional user interface event types are likely to be defined by individual systems. The
format and contents of audit records associated with non-standard event types is
implementation-defined.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 79

Audit Event Types Audit Event Classes and Event Types

6.2 AUDIT EVENT TYPES

This section describes the standard audit event types in greater detail. In particular, it
defines the minimum set of information that shall be recorded in the audit trail for each
event.

Each audit record contains a header in which generic attributes applicable to every event
are recorded (e.g., event type, status of the event). Section 3.2.2, Audit Record Contents
describes the header in greater detail.

Other items of information or attributes are only meaningful within the context of a
specific event. For example, the pathname for the AET_CHROOT event indicates the
pathname to the new root, while the pathname for the AET_CREAT event indicates the
pathname to a new file system object. These additional items of information are recorded
either in an object structure or in an event_info structure.

The remainder of this section details the event-specific items for each event type defined
by the ACCOUNTABILITY option. It also indicates whether the information is recorded in
an object structure or an event_info structure.

The ACCOUNTABILITY option defines the minimum set of attributes which shall be
audited by a conforming implementation. An implementation may record additional
attributes; however, the objects and event_infos defined below must appear before any
additional information.

The order of objects in an audit record is significant. Similarly, the order of event_infos
in a record is significant. There is, however, no relationship between the order of objects
with respect to the order of event_infos.

Some attributes within headers and objects may change as a result of the event. Unless
otherwise stated, the values recorded in the headers and objects are those that are
current prior to the event.

Most event types are defined to contain a return value, which may be set to errno. The
return value will indicate the success/failure indicator returned by the operation.

The audit records for some event types are defined to contain a ‘‘file pathname’’ attribute.
This will be either a file absolute pathname or a file relative pathname, depending on the
auditing style of the system. This attribute is recorded for interfaces that specify a path
argument, both to record the setting of path and to describe the associated filestore object.
In cases where a path argument contains an invalid pointer, the attribute is assigned to
NULL.

Note that systems whose auditing style supports relative pathnames will have to audit
all event types which record changes to the path (except chdir) so the absolute pathname
may be rebuilt if needed.

The remainder of this section describes the event-specific information recorded for each
event type. Each item of information is listed along with its storage attribute (i.e.,
object/event_info).

X/Open Snapshot (1990)
Page : 80 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Types

6.2.1 AET_AUDIT_SWITCH

Attribute Storage Structure
audit state event_info
return value event_info

The audit state attribute records the audit_state argument. This is invoked whenever the
state of auditing is changed.

6.2.2 AET_CHDIR

Attribute Storage Structure
file pathname object
return value event_info

The file pathname attribute describes the file referenced by the path argument. This event
type records changes in the current working directory. If a system’s auditing style is such
that only relative pathnames are recorded, a post-processing utility will require that this
event be audited in order to rebuild the absolute pathnames.

6.2.3 AET_CHMOD

Attribute Storage Structure
file pathname object
mode event_info
return value event_info

The file pathname attribute describes the file referenced by the path argument. The mode
attribute records the value supplied in the mode argument.

This event records changes in the file’s access control list attributes.

6.2.4 AET_CHOWN

Attribute Storage Structure
file pathname object
owner event_info
group event_info
return value event_info

The file pathname attribute describes the file referenced by the path argument, the owner
attribute records the value supplied in the owner argument, and the group attribute
records the value supplied in the group argument.

This event records changes in the file’s owner and/or group attributes.

6.2.5 AET_CHROOT

Attribute Storage Structure
file pathname object
return value event_info

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 81

Audit Event Types Audit Event Classes and Event Types

The file pathname attribute describes the file referenced by the path argument.

This event records changes to the starting point for path searches. If a system’s auditing
style is such that only relative pathnames are recorded, a post-processing utility will
require that this event be audited in order to rebuild the absolute pathnames.

6.2.6 AET_CREAT

Attribute Storage Structure
file pathname object
mode event_info
return value event_info

The file pathname attribute describes the file referenced by the path argument. The mode
attribute records the value supplied in the mode argument.

This event tracks the introduction of new file system objects.

6.2.7 AET_EXEC

Attribute Storage Structure
file pathname object
command args event_info
return value event_info

This event is recorded for any of the functions execl , execlp , execv or execvp .

The file pathname attribute records the path of the file to be executed.

The command args records the contents of the arguments supplied to the command to be
executed. If any of arg0 ... argn, argv or any of the elements in the array pointed to argv
contain invalid pointers, the command args is assigned to NULL.

6.2.8 AET_EXECE

Attribute Storage Structure
file pathname object
command args event_info
environment event_info
return value event_info

This event is recorded for any of the functions execle or execve .

The file pathname attribute records the path of the file to be executed.

The command args records the contents of the arguments supplied to the command to be
executed. If any of arg0 ... argn, argv or any of the elements in the array pointed to argv
contain invalid pointers, the command args is assigned to NULL.

The environment records the contents of the envp argument. If the envp argument or any
of the elements in the array pointed to by envp contain an invalid pointer, the
environment attribute is assigned to NULL.

X/Open Snapshot (1990)
Page : 82 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Types

6.2.9 AET_EXIT

Attribute Storage Structure
status event_info

This event is recorded for any of the functions _exit or exit.

The status attribute records the value of the status argument.

No return value is specified since there can be no return from a _exit or exit call.

6.2.10 AET_FORK

Attribute Storage Structure
process object
return value event_info

The process attribute describes the child process spawned by a successful call of fork . If
the call is unsuccessful, the process attribute is assigned to NULL.

This event records the introduction of new processes into the system.

6.2.11 AET_KILL

Attribute Storage Structure
pid event_info
sig event_info
return value event_info

The pid attribute records the pid argument and the sig attribute records the sig argument.

This event records the deletion of processes from the system.

6.2.12 AET_LINK

Attribute Storage Structure
file pathname object
new pathname event_info
return value event_info

The attribute file pathname describes the file referenced by the path1 argument (i.e., the
existing file). The attribute new pathname records the path described by the path2
argument (i.e., the new directory entry to be created).

This event records the introduction of a new name into the file system name space.

6.2.13 AET_LOGIN_USER

Attribute Storage Structure
user name event_info
process id event_info
failure indicator event_info

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 83

Audit Event Types Audit Event Classes and Event Types

The user name attribute records the username of the login operation.

For a successful login operation the value of process id is the process id of the process
that runs the ‘‘program to use as shell’’ (see <pwd.h> in the X/Open Portability Guide,
Issue 3, Volume 2, XSI System Interface and Headers). The field failure indicator is
assigned to NULL in this case.

For an unsuccessful login operation, a human-readable message may be recorded in the
failure indicator attribute indicating the reason for failure. This would typically be the
message returned by the login operation to the user. The field process id is assigned to
NULL in this case.

This event records the introduction of a new user identity into the system.

6.2.14 AET_LOGOUT_USER

Attribute Storage Structure
user name event_info
process id event_info

The attribute user name records the user performing the logout operation. The field
process id records the pid of the login process.

No failure indicator is provided since there is no return from a logout.

6.2.15 AET_MKDIR

Attribute Storage Structure
file pathname object
mode event_info
return value event_info

The file pathname attribute describes the path referenced by the path argument. The
mode attribute records the value supplied in the mode argument.

This event tracks the introduction of new file system objects.

6.2.16 AET_MKFIFO

Attribute Storage Structure
file pathname object
mode event_info
return value event_info

The file pathname attribute describes the file referenced by the path argument. The mode
attribute records the value supplied in the mode argument.

This event tracks the introduction of new file system objects.

X/Open Snapshot (1990)
Page : 84 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Types

6.2.17 AET_MSGCTL

Attribute Storage Structure
message queue object
cmd event_info
buf event_info
return value event_info

The message queue attribute describes the message queue identified by the msqid
argument. The cmd attribute records the value supplied in the cmd argument. The buf
attribute records the value supplied in the buf argument.

This event tracks the introduction of new file system objects.

6.2.18 AET_MSGGET

Attribute Storage Structure
message queue object
key event_info
msgflg event_info
return value event_info

The message queue attribute describes the message queue obtained by the call of msgget.
The key attribute records the value supplied in the key argument. The msgflg attribute
records the value supplied in the msgflg argument.

This event tracks the introduction of new file system objects.

6.2.19 AET_OPEN

Attribute Storage Structure
file pathname object
mode event_info
open state event_info
return value event_info

The file pathname attribute describes the file referenced by the path argument.

The mode attribute records the value supplied in the mode argument. The field mode is
only recorded if the O_CREAT flag is set in oflag, otherwise it is assigned to NULL.

The open state attribute records the type of open performed (i.e., read, write, creat). As
such, this enables an application to differentiate an open for read (access of a file system
object) from an open for write (create/modify of a file system object).

This event may track the introduction of new file system objects (i.e., O_CREAT).

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 85

Audit Event Types Audit Event Classes and Event Types

6.2.20 AET_RENAME

Attribute Storage Structure
file pathname object
new pathname event_info
return value event_info

The file pathname attribute describes the file referenced by the old pathname argument.
The new pathname attribute records the argument of that name.

This event tracks modification of the file systems name space.

6.2.21 AET_RMDIR

Attribute Storage Structure
file pathname object
return value event_info

The file pathname attribute describes the path referenced by the path argument.

This event tracks deletion of file system objects.

6.2.22 AET_SECURE_PUT_PASSWD_USER

Attribute Storage Structure
user name event_info
return value event_info

The attribute user name records the name specified by the username argument. If the
username argument contains an invalid pointer, the contents of the user name attribute
are assigned to NULL.

6.2.23 AET_SEMCTL

Attribute Storage Structure
semaphore object
semnum event_info
cmd event_info
arg event_info
return value event_info

The semaphore attribute describes the semaphore identified by the semid argument. The
semnum attribute records the value supplied in the semnum argument, the cmd attribute
records the value supplied in the cmd argument, and the arg attribute records the value
supplied in the arg argument.

This event tracks the introduction of new file system objects.

X/Open Snapshot (1990)
Page : 86 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Types

6.2.24 AET_SEMGET

Attribute Storage Structure
semaphore object
key event_info
nsems event_info
semflg event_info
return value event_info

The semaphore attribute describes the semaphore obtained by the call of semget. The key
attribute records the value supplied in the key argument, the nsems attribute records the
value supplied in the nsems argument and the semflg attribute records the value
supplied in the semflg argument.

This event tracks the introduction of new file system objects.

6.2.25 AET_SET_PASSWORD_AGING

Attribute Storage Structure
user name event_info
return value event_info

The user name attribute contains the name referenced by the username argument. If the
username argument contains an invalid pointer, the user name attribute is assigned to
NULL.

6.2.26 AET_SET_PROCESS_AUDIT_ID

Attribute Storage Structure
audit id event_info
return value event_info

The audit id attribute contains the audit_id argument.

For this type of event, the Audit ID recorded in the subject field of the header will be the
value for the current process before the function call.

This event tracks changes in the auditability of the user.

6.2.27 AET_SET_PROCESS_AUDIT_EVENTS

Attribute Storage Structure
audit state event_info
events event_info
return value event_info

The audit state attribute records the audit_state argument. The events attribute records
the list of events referenced by the event_ptr argument.

If AET_SET_PROCESS_AUDIT_EVENTS is one of the events for which this function is
called, the call will be audited regardless of whether the audit_state is on or off.

This event tracks changes in the auditability of the user.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 87

Audit Event Types Audit Event Classes and Event Types

6.2.28 AET_SET_USER_AUDIT_EVENTS

Attribute Storage Structure
audit state event_info
events event_info
users event_info
return value event_info

The audit state attribute records the audit_state argument. The events attribute records
the list of events referenced by the event_ptr argument. The users attribute records the
users referenced by the user_names argument.

This event tracks changes in the auditability of the user.

6.2.29 AET_SETGID

Attribute Storage Structure
gid event_info
return value event_info

The gid attribute records the gid argument.

This event tracks changes in access control.

6.2.30 AET_SETUID

Attribute Storage Structure
uid event_info
return value event_info

The uid attribute records the uid argument.

This event tracks changes in access control.

6.2.31 AET_SHMCTL

Attribute Storage Structure
shared memory object
cmd event_info
buf event_info
return value event_info

The shared memory attribute describes the shared memory identified by the shmid
argument. The cmd attribute records the value supplied in the cmd argument, and the
buf attribute records the value supplied in the buf argument.

This event tracks the introduction of new file system objects.

X/Open Snapshot (1990)
Page : 88 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Types

6.2.32 AET_SHMGET

Attribute Storage Structure
shared memory object
key event_info
size event_info
shmflg event_info
return value event_info

The shared memory attribute describes the shared memory obtained by the call of
shmget. The key attribute records the value supplied in the key argument, the size
attribute records the size argument, and the shmflg attribute records the value supplied
in the shmflg argument.

This event tracks the introduction of new file system objects.

6.2.33 AET_SWITCH_USER

Attribute Storage Structure
user name event_info
process id event_info
failure indicator event_info

The user name attribute records the username of the switch user operation.

For a successful switch user operation the value of process id is the process id of the
process that runs the ‘‘program to use as shell’’ (see <pwd.h> in the X/Open Portability
Guide, Issue 3, Volume 2, XSI System Interface and Headers). The field failure
indicator is assigned to NULL in this case.

For an unsuccessful switch user operation, a human-readable message may be recorded in
the failure indicator attribute indicating the reason for failure. This would typically be
the message returned by the switch user operation to the user. The field process id is
assigned to NULL in this case.

This event tracks changes in user identity and access control.

6.2.34 AET_UNLINK

Attribute Storage Structure
file pathname object
return value event_info

The file pathname attribute describes the path referenced by the path argument.

This event tracks deletion of an entry in the file systems name space.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 89

Audit Event Types Audit Event Classes and Event Types

6.2.35 AET_UPDATE_AUDIT_EVENTS

Attribute Storage Structure
users event_info
return value event_info

The users attribute records the users referenced by the user_names argument.

X/Open Snapshot (1990)
Page : 90 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Classes

6.3 AUDIT EVENT CLASSES

The audit event class provides a mechanism for associating a single name with a set of
audit event types. The class names provide an auditor with a simple means of specifying
audit criteria for selection or analysis without requiring a detailed knowledge of audit
event types. It also provides a measure of portability. For example, consider the
AET_OBJECT_CREATION class which contains events pertaining to object creation. While
the events which constitute the class are likely to vary across different machines, (e.g., IPC
not available) the class itself is a constant. As such, AET_OBJECT_CREATION can be
selected on all machines regardless of the set of types each individual system supports.
An additional benefit of the audit class mechanism is the ability to change the grouping
of types within a given class or to add new classes. Since the grouping of events into
classes is inherently arbitrary, this provides valuable functionality. It should be noted that
classes which work well for specifying selection criteria do not necessarily map well to
specifying analysis criteria. Thus again proving the need for a flexible audit class
mechanism.

This section defines the audit event classes that will be supported by conforming
systems. Our goal in defining the event classes listed below was to provide guidance as
to which sets of event types should be logically grouped together to provide useful audit
information for both pre- and post-processing.

An implementation may extend the list of event classes, or may define additional event
types within one of the standard classes. Note, however, that numeric values assigned to
event class and event type constants must not overlap.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 91

Audit Event Classes Audit Event Classes and Event Types

6.3.1 Summary of Event Classes

The following are audit event classes which must be supported by a conforming system.
Each event class is identified by a symbolic constant in <audit.h >.

Event Class Description
AEC_ACCESS_CHANGE Change Access
AEC_ACCESS_DENIALS Deny Access
AEC_ADMIN_OPERATOR Administrator/

Operator Actions
AEC_AUTHENTICATION System Access
AEC_OBJECT_AVAILABLE Make Object Available
AEC_OBJECT_CREATION Create Object
AEC_OBJECT_DELETION Delete Object
AEC_OBJECT_MODIFICATION Modify Object
AEC_OBJECT_TO_SUBJECT Map Object to Subject
AEC_OBJECT_UNAVAILABLE Make Object

Unavailable
AEC_PRIVILEGE Use of Privilege
AEC_PROCESS Process Creation

and Deletion
AEC_PROCESS_CONTROL Process Control
AEC_RESOURCE_DENIALS Deny Resource Usage
AEC_SYSTEM System Related

The remaining sections of this chapter define which audit event types are assigned to
which event class.

6.3.2 AEC_ACCESS_CHANGE

This event class includes audit event types that bring about changes to the access of an
object.

Event Type
AET_CHMOD
AET_CHOWN
AET_MSGCTL (where cmd is IPC_SET)
AET_SEMCTL (where cmd is IPC_SET)
AET_SHMCTL (where cmd is IPC_SET)

X/Open Snapshot (1990)
Page : 92 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Classes

6.3.3 AEC_ACCESS_DENIALS

This event class includes operations that have failed either because access to an object is
denied, or because an object does not exist. The following list of audit event types are
included for failures with errno values of EACCES, EISDIR, ENOENT, ENXIO, ENOTDIR,
EPERM, EROFS and ETXTBSY.

Event Type
AET_AUDIT_SWITCH
AET_CHDIR
AET_CHMOD
AET_CHOWN
AET_CHROOT
AET_CREAT
AET_EXEC
AET_EXECE
AET_KILL
AET_LINK
AET_MKDIR
AET_MKFIFO
AET_MSGCTL
AET_MSGGET
AET_OPEN
AET_RENAME
AET_RMDIR
AET_SECURE_PUT_PASSWD_USER
AET_SEMCTL
AET_SEMGET
AET_SET_PASSWORD_AGING
AET_SET_PROCESS_AUDIT_ID
AET_SET_PROCESS_AUDIT_EVENTS
AET_SET_USER_AUDIT_EVENTS
AET_SETGID
AET_SETUID
AET_SHMCTL
AET_SHMGET
AET_UNLINK
AET_UPDATE_AUDIT_EVENTS

6.3.4 AEC_ADMIN_OPERATOR

This event class includes actions carried out by the System Administrator or Operator.
No standard audit event types are currently defined in this class.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 93

Audit Event Classes Audit Event Classes and Event Types

6.3.5 AEC_AUTHENTICATION

This event class includes audit event types concerned with obtaining access to the
system.

Event Type
AET_LOGIN_USER
AET_LOGOUT_USER
AET_SECURE_PUT_PASSWD_USER
AET_SET_PASSWORD_AGING
AET_SWITCH_USER

6.3.6 AEC_OBJECT_AVAILABLE

This event class includes audit event types concerned with making objects available to a
program. The objects are usually files.

Event Type
AET_CREAT
AET_MSGGET
AET_OPEN
AET_SEMGET
AET_SHMGET

6.3.7 AEC_OBJECT_CREATION

This event class includes audit event types that create objects. The objects are usually
files.

Event Type
AET_CREAT (where file is created)
AET_LINK
AET_MKDIR
AET_MKFIFO
AET_MSGGET (if message queue created)
AET_OPEN (where file is created)
AET_RENAME
AET_SEMGET (if semaphore created)
AET_SHMGET (if shared memory created)

X/Open Snapshot (1990)
Page : 94 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Classes

6.3.8 AEC_OBJECT_DELETION

This event class includes audit event types that delete objects. The objects are usually
files.

Event Type
AET_MSGCTL (if cmd is IPC_RMID)
AET_RMDIR
AET_SEMCTL (if cmd is IPC_RMID)
AET_SHMGET (if cmd is IPC_RMID)
AET_UNLINK

6.3.9 AEC_OBJECT_MODIFICATION

This event class includes audit event types that cause objects to be modified. The objects
are usually files.

Event Type
AET_CHDIR
AET_CHROOT

6.3.10 AEC_OBJECT_TO_SUBJECT

This event class includes audit event types that map objects to a subject.

Event Type
AET_EXEC
AET_EXECE

6.3.11 AEC_OBJECT_UNAVAILABLE

This event class includes actions which result in objects becoming unavailable. No
standard audit event types are currently defined in this class.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 95

Audit Event Classes Audit Event Classes and Event Types

6.3.12 AEC_PRIVILEGE

This class includes operations that succeed because the process has special privileges.

Event Type
AET_AUDIT_SWITCH
AET_CHDIR
AET_CHMOD
AET_CHOWN
AET_CHROOT
AET_CREAT
AET_EXEC
AET_EXECE
AET_KILL
AET_LINK
AET_MKDIR
AET_MKFIFO
AET_MSGCTL
AET_MSGGET
AET_OPEN
AET_RENAME
AET_RMDIR
AET_SECURE_PUT_PASSWD_USER
AET_SEMCTL
AET_SEMGET
AET_SET_PASSWORD_AGING
AET_SET_PROCESS_AUDIT_ID
AET_SET_PROCESS_AUDIT_EVENTS
AET_SET_USER_AUDIT_EVENTS
AET_SETGID
AET_SETUID
AET_SHMCTL
AET_SHMGET
AET_UNLINK
AET_UPDATE_AUDIT_EVENTS

6.3.13 AEC_PROCESS

This event class includes audit event types concerned with the creation and removal of
processes.

Event Type
AET_EXIT
AET_FORK
AET_KILL

X/Open Snapshot (1990)
Page : 96 Security Interface Specifications: Auditing and Authentication

Audit Event Classes and Event Types Audit Event Classes

6.3.14 AEC_PROCESS_CONTROL

This event class includes audit event types that change the characteristics of a process.

Event Type
AET_SET_PROCESS_AUDIT_ID
AET_SET_PROCESS_AUDIT_EVENTS
AET_SETGID
AET_SETUID

6.3.15 AEC_RESOURCE_DENIALS

This event class includes audit event types that fail because the system limit has been
reached on some resource. Typical failure values of errno are E2BIG, EMFILE, EMLINK,
ENOSPC and ENFILE.

Event Type
AET_CREAT
AET_EXEC
AET_EXECE
AET_FORK
AET_LINK
AET_MKDIR
AET_MKFIFO
AET_MSGGET
AET_OPEN
AET_RENAME
AET_SEMGET
AET_SHMGET

6.3.16 AEC_SYSTEM

This event class includes audit event types that have a system wide effect. In addition to
the event types defined below, this class is also likely to record such items as system
startup and shutdown.

Event Type
AET_AUDIT_SWITCH
AET_SET_USER_AUDIT_EVENTS
AET_UPDATE_AUDIT_EVENTS

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 97

Audit Event Classes Audit Event Classes and Event Types

X/Open Snapshot (1990)
Page : 98 Security Interface Specifications: Auditing and Authentication

Appendix A

Rationale

A.1 INTRODUCTION

This appendix contains a rationale for the X/Open Security Specifications currently being
defined by the X/Open Security Working Group (SWG). To ease cross-referencing, the
section numbering in this appendix corresponds to the equivalent chapter numbers in the
main body of the document. For example, Section B.2, Overview is the rationale for
Chapter 2, Overview in the main document. The rationale records the dates on which
decisions were made by the group, and the reasons for those decisions. This document
contains a rationale for the XSI Security Specifications

A.1.1 Document Cross-References

1. Trusted Computer System Evaluation Criteria US DoD (CSC-STD-001-83)

2. The Design of an Effective Auditing Subsystem (J.Picciotto)

3. A Guide to Understanding Audit in Trusted Systems (NCSC-TG-001)

4. Guidelines for Audit Log Mechanisms in Secure Computer Systems (R.L.Brown)

5. X/Open Portability Guide - Issue 3

6. Security Auditing for X/Open Systems (SWG)

7. Minimal Changes for the X/Open C2 Security Option (SWG)

8. P1003.6 Audit Record Format Proposal: Summary of Goals and Proposals

9. P1003.6 Proposal: Audit Record Format

10. P1003.6 Proposal: Audit Record Interfaces

11. P1003.6 Proposal: Audit Selection Class Design

12. Proposal for Audit Event Types and Audit Event Classes

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 99

Overview Rationale

A.2 OVERVIEW

A.2.1 General

TCSEC C2 Criterion

There is consensus that TCSEC C2 should form the basis for the X/Open audit work.
This satisfies the technical managers and others who take a high level view that the C2
level is appropriate. It satisfies the US companies who need to have products conforming
to the DoD criteria. And it is agreed by the European members of the SWG that C2 is at
least a subset of the European and commercial requirements.

X/Open Criteria

It is implicit in the X/Open discussions that selectivity of collection is required, though
selectivity of analysis would be sufficient to satisfy TCSEC. The requirement is based on
the available data showing that audit trail files can grow very quickly, and thus that there
must be ways of controlling the data collection to make the audit system usable.

The SWG decided at the October 1987 meeting that selectivity by event type was
required, to allow the audit administrator to define that he is interested in only a subset
of the possible auditable events on the system. The June 1988 meeting decided to make
explicit the requirement that events should be selectable at per-user granularity; also,
that for usability it should be possible to set a background level to be used for all users,
including new users.

Selectivity by object identity has also been debated. This would further enhance the audit
administrator’s ability to reduce the volume of data collected, since he would be able to
specify that only accesses to security critical objects was to be audited. The NCSC audit
guideline [3] specifies that object selectivity is desirable at C2; it is not a TCSEC
requirement. Balancing the gain in market acceptability provided by object level
selectivity, against the implementation cost of providing it, the SWG has decided that it is
not to be included in the current standard.

Beyond TCSEC C2

Upward compatibility of the proposed C2 audit standard to more secure systems is
desirable because this will further increase portability of applications and increase
acceptability as the basis of a POSIX standard.

A.2.2 Security Auditing

This section provides a high-level statement of requirements for the auditing interfaces.
These are of two main types.

Firstly, there are requirements imposed by the stated aim of the X/Open group, to
‘‘increase the volume of applications available [on X/Open systems] ... by ensuring
portability of application programs at the source code level’’ [5]. These requirements
lead to a definition of the types of interface that are to be standardised, in terms of the
applications that will use them. Originally, two types of applications were identified as
benefitting from standard interfaces. These were audit reduction utilities and
applications trusted to audit themselves. At the October 1987 meeting the SWG added a

X/Open Snapshot (1990)
Page : 100 Security Interface Specifications: Auditing and Authentication

Rationale Overview

third type: general audit control packages. This is a departure from other X/Open
standards, which do not normally standardise administrative interfaces. The SWG felt
that security in X/Open systems would be significantly enhanced by use of good security
administration packages. Production of audit administration packages should be
encouraged by standardisation of audit control interfaces.

Secondly, there are technical requirements. These come from two sources:

• The technical managers have requested work on X/Open interfaces to allow them to
conform to the TCSEC C2 level [1], and

• Members of the SWG are aware of some requirements in the markets to be addressed
by secure X/Open systems. These requirements lead to both extra facilities and
upward compatibility to more secure systems than those currently being addressed
by the group.

A.2.3 Audit Record Format

The audit record format is intended to promote application portability for two classes of
trusted applications; programs that generate audit records and programs that analyse
audit records.

Interoperability Goals

The goal of interoperability is that applications using the audit system are portable, and
that audit data itself is portable among different machines, so that generation and
analysis need not be tightly coupled.

One expected class of portable applications is programs that generate audit records, i.e.,
portable trusted applications. Another class is programs that analyse audit data. It is a
major goal of the interface definition that an audit-generating program running on one
machine can generate audit data which is then stored on a second machine and finally
analysed by tools on a third machine, all without explicit format conversions.

It is also a goal that analysis tools operate to some degree independently of each other;
that is, one analysis tool can operate on the output from another without either tool
requiring a complete understanding of the records on which it is operating. For instance,
a general-purpose selection tool could be used to select records generated by a trusted
application and then pass them on to an analysis tool that is part of the application. The
selection tool need know nothing about the application, except the event types of its
records (which will be specified by the auditor performing the analysis). The analysis
tool need know nothing about record selection or other types of records, but only about
interpreting records produced by the trusted application.

Efficiency Goals

Efficiency of the auditing mechanism is very important. A system that spends all its
resources auditing is obviously not a usable system.

Efficiency concerns arise in three major areas: time spent generating audit records, space
used to store them, and time spent interpreting them. The proposed interfaces and data
structures have been designed to reduce these costs while still retaining a programming
model which meets the goal of permitting interoperable audit analysis tools.
Consequently, this is not the most efficient interface imaginable; merely the most efficient

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 101

Overview Rationale

portable interface proposed so far.

One trade-off is caused by using XDR and NDR as the format of the portable audit trail.
These data representation standards are not as efficient as possible, but are generally
available and already understood.

Another trade-off exists in the granularity of information in the audit record. An audit
record consisting of individual attributes is the more general interface but is also more
inefficient. Structure-based interfaces which put and get information in large chunks are
more familiar to programmers, but it may be more difficult to validate the attributes. The
structure-based approach was selected to ensure a manageable number of interfaces.
Initially, audit records consisted of individual tokens, but this lead to an excessive
number of token types and interfaces to manipulate each token type. There was also the
possibility of inconsistent use of the tokens by applications performing their own
auditing.

A third trade-off is caused by offering only indirect access to the audit record, since the
information must be retrieved procedurally. But the cost is minimal if these interfaces are
implemented as macros and a procedural interface allows an implementation greater
flexibility in defining audit trail storage and access methods.

Although this standard may cause an overall increase in the size of the system audit trail,
the storage costs can be reduced through the use of standard file compression techniques.

Non-Goals

The interface does not address audit data storage. It is expected that each conforming
implementation may have a different form of permanent storage for audit data. While
some implementations may store it in files, allowing the proposed interfaces to be used
directly, all that is required is that an implementation provides a program that delivers
audit records on standard output so that they may be redirected into a portable analysis
tool.

The interface does not address the actual mechanism for delivering audit records from a
trusted application (or from the operating system itself) to a system’s audit trail.
However, the interfaces that an application (or the operating system) would use to
perform the delivery are specified.

A.2.4 XSI Changes and Extensions

Changes to the XSI for C2 assurance and functionality are provided in accordance with
software engineering principles for object-oriented programming. This means that
information hiding is enforced, and interfaces are provided for the handling of abstract
data types.

For example, although the concept of audit IDs is introduced, there is no mechanism
defined for accessing the audit ID of a process other than through a set of standard
interface functions.

A number of interfaces published in the X/Open Portability Guide, Issue 1 and the
X/Open Portability Guide, Issue 2 were determined to be affected by security, i.e., the at
and crontab commands, and the exec(), fork () and sysconf() functions. The sysconf()
function requires modification so that applications can interrogate system variables
associated with the security option (this was agreed at the February 1989 meeting). Other

X/Open Snapshot (1990)
Page : 102 Security Interface Specifications: Auditing and Authentication

Rationale Overview

interfaces have been updated to handle process audit IDs correctly.

A.2.5 Configuration

It was originally intended that XSI Security would be presented as a single
implementation option in the X/Open Portability Guide. A number of delegates
objected to this approach on the grounds that accountability and authentication, while
both related to security, provide quite different capabilities. Further concerns were
expressed that mandatory inclusion of authentication mechanisms in the Security Option
might prompt some companies to vote against the option as a whole.

Given these concerns, the SWG decided at the February 1989 meeting to separate the
security interface into two options: ACCOUNTABILITY and AUTHENTICATION. These
would be separately configurable, their availability in a particular implementation being
determined by calling the sysconf() function for the value of the associated system
variable.

Tables were thus included in this section of the interface definition to identify which
functions belong to what option.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 103

Function And Interface Rationale

A.3 FUNCTION AND INTERFACE

A.3.1 Security Auditing

Audit IDs are introduced to meet the requirement for individual accountability. In
existing X/Open systems, the user has a username and a user ID. Neither of these is
appropriate for use as the audit ID. The name is inconvenient to handle. The user ID is
the basis of the authorisation policy of the system, which is logically distinct from the
accountability policy. In particular, on some systems the system administrator allows
aliasing of one user ID to several usernames which all have the same authorisations; this
is incompatible with use of the user ID as an audit ID. The decision to have logically
separate user ID and audit ID values for each user was taken at the October 1987 meeting.
The June 1988 meeting decided to define the type audit_ID_t, since only by doing this
could an audit file be analysed on systems of different type to the one on which it was
generated. Some implementations might wish to define mappings between audit_ID_t
values and implementation-defined identifiers, such as personnel numbers; this is not
subject to standardisation.

Note that there is nothing to stop a particular implementation from implementing user ID
and audit ID for each user as the same value, as long as it maintains individual
accountability. However, confusion might arise from the existence of two sets of
interfaces to the same value.

There is an issue connected with su to another username. Who should be recorded as
performing the actions, subsequent to the su, from that terminal? If the username is a
role, such as root, it is clear that accountability must still be to the logged in user.
However, on su to another individual username, it is clear that the owner of the target
user name must have done the su, because the su has to be authenticated by the
password of the target user. Either the login user or the su user could be accountable for
subsequent actions. Within the su session, certain commands still appear to come from
the outer user (e.g., who , mail). It would be possible for either user to plant Trojan Horse
programs to achieve undesirable effects within the su session. For example, the outer
user could plant an ls Trojan Horse which created a writable suid file in the su user’s
name; and the su user could use a Trojan Horse to mail others with the apparent
authorship of the outer user.

The SWG has decided the accountability policy should be that a user is accountable for
everything that occurs from his login to his logout. Therefore audit must still use the
login user’s audit ID even after an su. However, the su user’s identity is also generally
available, because it is required that su (an authentication mechanism) is audited; the su
audit record should contain the new username, to uniquely identify the user. Therefore in
practice both identities should be available.

Note that this accountability policy extends to at, batch and crontab jobs fired off within an
su session: accountability should be to the outer user, even though they run with
permissions of the su user. This allows detection of jobs fired off by Trojan Horse
programs within an su session.

It was pointed out at the June 1988 meeting that the arguments for unchanged
accountability on su also apply to remote login. Although X/Open does not currently
define rlogin(1), it would be sensible for secure systems that support rlogin to keep the

X/Open Snapshot (1990)
Page : 104 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

same accountability within the outer and inner sessions. The implications of this are
beyond the scope of this document.

Because we have defined that accountability does not change after the start of a session, it
is possible to increase the strength of the individual accountability by specifying that a
call to the set_process_audit_ID () function can be used only once within a process (and its
children). Thus, even if a user manages to gain superuser privileges he will not be able to
change his audit ID.

If a user logs into a ‘‘role’’ username, such as root or uucp, accountability is lost; there is
no identification of the individual. Secure X/Open systems must be able to detect when
a user is logging in to a role username, and insist on individual accountability. Since
accountability must be to individuals, secure X/Open systems should provide a way to
force login to a user’s account to provide individual accountability.

Note that there is no requirement that an implementation supports login to role
usernames, only that accountability should be provided if it is supported. In particular,
systems may require that su(1) is used to enter role usernames, and this does provide
accountability.

There is a problem in auditing daemons: what audit ID should they have? They are not
(usually) fired off by either cron or getty/login, but by a shell interpreting /etc/rc. The SWG
agreed at the January 1988 meeting that this is not an area for standardisation, since it is
of no relevance to the interfaces used by the defined types of portable applications.

Audit Identifier Interfaces

The set of interfaces suggested here includes the basic operations of setting and
determining the audit ID for each user and for the current process, and for getting the
username corresponding to a known audit ID. Details of the actual implementation of
audit IDs, beyond the fact that they are arithmetic types, are concealed. Following the
decision to define audit IDs to this extent, a proposed compare_audit_ID() interface was
removed; there is no need to provide a special interface to compare two arithmetic values
for equality.

Also at the June 1988 meeting, the set_process_audit_ID () interface was changed to
set_proc_audit_state (), and defined to set both the audit ID and the corresponding events
for the current process. However, this decision was reversed at the August 1988
meeting, on the grounds that the separate interfaces allowed for greater flexibility of
audit policy.

Note that the get_process_audit_ID interface is defined to require appropriate privilege.
On particular implementations this privilege may be defined to be null: it is not clear that
there are any security problems implied by a process determining its audit ID.

Audit Reduction Interfaces

Following the April 1988 meeting, an attempt was made to define a set of interfaces for
use in analysing abstract audit trails, concealing the storage method, location and format
of the actual data. However, this resulted in a need to re-invent a complete IO package
for such objects. Also, it did not succeed in defining any particularly useful interfaces,
other than a record-oriented read function. At the June 1988 meeting, it was decided that
it would be better to treat audit trails as if they are always stored in files, thus allowing

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 105

Function And Interface Rationale

use of the standard IO packages. In fact this still does not imply that the trail actually has
to be held in a file; a suitable filter can read any local form of trail and output the data to
a file or pipe, thus ensuring that the data is always available through a file interface
whatever its original form. Such a filter might also be a privileged program which gave
selected views of the audit trail to users not privileged to see all of it, if this was
permitted by the audit policy on the system. The useful record-oriented read interface
was retained, operating on file descriptors. Extra functions were added to allow reading
of the next record containing a given subrecord type, as well as the next sequential
record.

• Reading the Audit Trail

Initially it was envisaged that the interface for reading audit trails would need to
distinguish between audit headers, records and trailers. Three functions were
proposed:

read_audit_header ()
read_audit_record ()
read_audit_trailer ()

However, it later became apparent that separate header and trailer records were not
necessary, and that instead each audit record would contain a header and optional
trailer token identifying the associated auditable event.

At the February 1989 meeting it was agreed to replace the above interfaces with a
single read function aur_read(). In addition, the functions aur_next_match() and
aur_next_type() were included to permit searching forward in an audit trail for an
audit record that contains a matching token or matching token type.

At the August 1989 and October 1989 meetings, the token format was replaced by a
structure format and the functions above were replaced by a single function,
aud_next(). The function aud_next() was added to allow general searching of the audit
trail. It returns a record matching the current search criteria and can also be used to
alter those criteria. Using just one function simplifies the interface considerably. The
decision to require system support for more general search predicates was made after
considerable debate. This requirement places a considerable burden on systems
(parsing SQL where clauses), but it was felt that many applications could make use of
this capability.

A record-oriented interface is provided both because this is probably more convenient
for reduction utilities than a byte interface, and because it may allow an
implementation to optimise the conversion of records from an internal format to the
X/Open standard audit record format.

Also at the February 1989 meeting, it was agreed to change the names of the functions
in this section to align with the naming conventions proposed in [8]. New functions
were added to extract individual fields from the record header (aur_length(),
aur_event_class (), aur_event_type(), aur_result() and aur_time()), and the aur_print()
function was included for the first time.

At the May 1989 meeting it was decided that event classes should not be included in
header tokens, as it was felt that they could not be guaranteed to provide a complete
reason for an audit record. The functions aur_event_class (), aut_set_header_class () and

X/Open Snapshot (1990)
Page : 106 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

aut_header_class () were also removed from the interface definition.

At the April 1990 meeting, the record storage was changed to align with POSIX
(P1003.6) and so the above interfaces were dropped, since the system now manages
all storage associated with the record. The aud_discard () function was modified to
apply to records read by the aud_next() function so that applications could explicitly
free all storage associated with records they were no longer using.

The function aud_print() was also extended to permit more general translations of the
audit record at this meeting. Among other things, the new translations allow the
elimination of specific interfaces for appending records to file descriptors and for
generating portable data.

• Manipulating Audit Records

Previously, with the token interfaces, discrete functions were provided to extract
tokens from records and then to operate on tokens. With data presented as structures,
the former interfaces have been reduced to three interfaces, while the latter interfaces
have been eliminated. The three new interfaces are: aud_get_header() which returns
the header information, aud_get_object() which returns successive objects from the
record, and aud_get_event_info() which returns successive event-specific data items
from the record.

Note that these interfaces operate on audit record descriptors as returned by
aud_next() and aud_start(). The decision to use symmetric interfaces allows
applications greater latitude in processing a record and allows the implementation to
be considerably simplified since separate writing functions are not needed for records
which are read from the trail as opposed to those that are created from scratch.

Trusted Application Interfaces

• Writing the Audit Trail

Some utilities are expected to have their own audit requirements, so there is a need
for a set of interfaces that add a record to the audit trail. However, these interfaces
cannot be generally available, since it would provide a malicious user with a means of
denying service to other users (by filling up the audit file or perhaps more subtly by
seeding the audit trail with disinformation). Accordingly, utilities that access this
interface must have appropriate privilege and be trusted to use it properly.

The SWG decided at the January 1988 meeting that the parameter to an audit_write()
function should be a single pointer to a structure giving, in some form, the details of
the data to be recorded. It was felt by the group that a single parameter was neater
than multiple parameters giving the fields from the structure.

The April 1988 meeting heard an audit record format proposal from Sun, and decided
to use this as the basis for the X/Open audit record standard. Also, it decided that it
would be an advantage to increase the system’s understanding of the data audited by
allowing the process to produce formatted audit records. Therefore they decided that
the data passed to the audit_write() routine should be in the form of audit subrecords.

Further debate at that meeting on the format of the parameter to audit_write() was
superseded by changes at the June 1988 meeting. This meeting decided to adopt a
proposal that there should be an interface to allow suitably privileged users to build

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 107

Function And Interface Rationale

up audit records without having to be concerned with the details of their storage. The
interface to allow writing of a collection of subrecords was also to be retained.

This strategy is expanded in [10], with the difference that separate functions are
defined for creating an audit record buffer (e.g., aur_start()), for adding tokens to the
buffer (e.g., aur_add_token()), and for writing a completed buffer to the audit trail
(aur_finish(), aur_commit(), etc.). The SWG accepted this proposal at the February 1989
meeting.

In adding these functions to the interface definition, it quickly became apparent that a
two-stage write mechanism (i.e., finish and commit) brought with it certain problems.
For example, what was to stop an application reassigning fields in a finished audit
record buffer before it had been committed to the audit trail? As a result of this and
other concerns, the SWG decided at the May 1989 meeting that finishing (i.e.,
completing the header token and optionally appending a trailer token) and
committing an audit record should be done in a single operation. Thus the functions
aur_commit(), aur_commit_save(), aur_write_fd() and aur_get_record () were redefined to
finish an audit record, and the aur_finish() function was deleted.

When the data representation was changed from tokens to structures the interfaces
were correspondingly changed. The aud_start() function is now the only interface to
begin an audit record and it additionally defines the event type for the record.

The aud_put_object() and aud_put_event_info() functions may then be used to modify
the record created by the aud_start() function by adding object and event-specific
information respectively to the record.

The function aud_commit() is the only function for committing an audit record to the
trail. As a side effect, it also discards all storage allocated as part of generating the
record. Unfinished records may also be discarded with the aud_discard () function.

These changes have the side benefit of simplifying the interfaces for writing a record.
The SWG felt that making the interfaces more programmable will make it more likely
that they will be used, thus facilitating the goal of providing greater security in
X/Open systems.

• Auditing Suspension and Resumption

Any process doing its own auditing may wish to suspend standard auditing in order
to save space in the audit trail. This is likely to be used mainly by processes auditing
themselves at a much coarser granularity than the kernel. For example, a program
that scans the filestore periodically and moves to tape files that have been unused for
a long time could audit the movement of the files itself (in a more meaningful way
than the kernel); it would seem unnecessary to record that it had checked the access
dates of all the other files in the system, which would merely clutter the audit trail
with data. Even standard utilities (with appropriate privilege) might make use of this
facility to provide a higher level view of events than would be given by the kernel.

The June 1988 meeting decided that it would also be useful to have an interface that
would allow a suitable, privileged process to adjust TCB auditing of its operations at
the granularity of single events (or groups of events). This interface is added as part
of the later section, on event selectivity.

X/Open Snapshot (1990)
Page : 108 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

Audit Control Interfaces

It is reported that the NCSC say that use of audit control interfaces must always be
audited.

Select Users

TCSEC requires selectivity by user at C2, though it is not specified whether the selection is
to be performed at audit trail generation or reduction. The SWG decided that it is
desirable to permit selection at audit trail generation. This will permit the audit
administrator to have better control of the size and relevance of the audit trail.

Select Events

TCSEC does not require audit to be selective by event type. The SWG decided that this is
a desirable addition for the Security Interface Specifications, because it provides a
potential reduction in the amount of audit data collected unnecessarily.

Specifying Event Lists to be Audited

The meeting in April 1988 heard a proposal for control of auditable events on a user and
system wide basis. This was broadly based on the syntax used in the Sun C2 system, but
was generalised to meet some additional requirements added at the January 1988
meeting. Although this interface provided flexible facilities, it was thought to be too
complex. A new proposal was included for the June 1988 meeting. This was extended at
that meeting to allow a suitably privileged process to ascertain and modify its audit
events; this is effectively a finer granularity form of the audit_switch interface. The
interface to set the events would also be used at login to set the events specified for the
user.

There are at least two granularities at which an audit administrator may wish to specify
the events to be audited:

• he may wish to specify events to be audited throughout the system, or

• he may wish to specify events for each individual user of the system.

The proposed solution allows both approaches.

The SWG considered at the August 1988 meeting whether there was a requirement to
provide other granularities of event selection, for example by UNIX group. Noone was
aware of any requirement for this, so it is not included in the interface definition.

The audit event interface functions could use username or audit ID to identify the user.
We have proposed username because that is what an administrator would supply to
identify a user, and what the user specifies to identify himself at login. Thus utilities
using these interfaces do not have to be concerned about the audit ID at all.

At the June 1988 meeting the SWG agreed not to standardise an interface for controlling
the events to be audited for daemons, since this is not relevant to application portability.

Protecting the Audit Trail

Of all the data in a secure computing system, the audit trail is perhaps the one item
which is most important to protect against invalid manipulations, even by apparently
authorised users. For instance, if an intruder can defeat a system’s access control

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 109

Function And Interface Rationale

mechanisms, and assume all the rights and powers of an authorised system
administrator, it would still be extremely useful to be able to audit the intruder’s
activities. To any extent possible, the auditing mechanism and the audit trail should be
protected against external attacks.

The SWG considered specifying a few possible mechanisms that provide elements of
protection against this threat, but decided not to. The SWG took this position because any
mechanism which is sufficiently general enough (not implementation-dependent) to
specify for X/Open would not, itself, provide significant protection. Only a combination
of mechanisms, most of them implementation-dependent and outside the scope of
X/Open’s work, can protect a system’s audit trail to a meaningful degree beyond basic
file protection.

The principal mechanism we considered was giving the administrator the ability to
specify that certain events are always audited. That is, once that list of events was turned
on, they could never be turned off except by a system reboot. Possibly, these could even
be configured into the system, perhaps by the manufacturer, so that not even a reboot
could change the state.

For this to provide real protection, however, more is required. It must be impossible to
modify the running kernel or its data structures (for instance, by writing to /dev/kmem). It
must also be impossible to modify or destroy the audit files themselves. Ordinary file
protection won’t do, since the intruder will be able to override that. Even if the audit files
are somehow special, the raw disk device offers numerous possibilities. The only real
way to protect against the audit files being removed or overwritten is to write audit
messages in some ‘‘write-only’’ fashion, perhaps to a tape or optical disk, or to a different
host on the network which has some additional protection against the intruder. The
underlying problem is that it is extremely hard to protect against privileged intruders.
The only mechanisms we can invent to help are highly implementation-dependent.

If the audit file is protected using the normal filesystem protection mechanisms, the
degree of protection increases with the security of the system. Thus in a DAC-based
system with a single superuser, it could be read/write to superuser only. On a system
with the administrative roles divided according to the principle of least privilege, it could
be owned by the audit administrator, with read access available also to the security
administrator. On a system with MAC controls of disclosure and integrity, it could be
owned by the audit administrator with a disclosure label making it readable only to
security and audit administrators, and an integrity label making it writable only to the
TCB.

Of course, these access controls do not prevent the audit subsystem itself from writing to
the audit trail to record actions of users, even though the users don’t have write access to
the audit trail file.

A.3.2 Audit Record Format

The logical system audit trail is a stream of audit records. That is, an audit trail appears
to the application program as a file of discrete, variable length records. Each record
contains a complete description of an audit event. Note that the file-like appearance of
records is intentional and necessary for a scheme where records may be processed by a
sequence of data filters. Also note that records are intended to be largely independent
entities.

X/Open Snapshot (1990)
Page : 110 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

During several meetings in 1988 and early 1989, a token-based format for audit records
was considered. In this format, each record consisted of a stream of audit tokens. Each
audit token was a self-defining entity which could be interpreted contextually. Records
were constructed by building tokens and then adding them to the record. Records were
read by reading the tokens sequentially from the record and then extracting the data from
the tokens.

A token-based format has the advantage that it is easy to extend the system, and possible
to do so granularly. Token-based formats have the disadvantage that the programming
interface is more complex than with other formats. There are possible losses in
computational and storage efficiency as well. Because of these disadvantages, the token
format was changed during the August 1989 and October 1989 meetings to the format
described below.

Audit Record Contents

The statement above that audit records should be largely independent is an
acknowledgement that no audit data can be completely context-independent, and an
encouragement that audit records contain enough context to be meaningful for analysis
in most circumstances.

Each audit record contains a header, zero or more object descriptors and zero or more
event-specific data descriptors. The header defines the event and the responsible subject,
and includes fields for event type, event time, event status, subject identifiers and subject
security characteristics.

The object descriptor include fields for the name of the object, its data format and length
and object security characteristics. Object descriptors in a record are ordered so that the
relative position of a descriptor may be interpreted consistently.

A data descriptor contains only the data item and its length and format. That is, a data
descriptor is event-specific information with no defined semantics and self-defined
syntax.

Semantics of Audit Event Types

The Snapshot includes a set of pre-defined events with fixed interpretations
(corresponding to basic system operations defined in Volumes 1, 2 and 3 of the X/Open
Portability Guide, Issue 3). Applications, however, must have a way of communicating
between audit producer and consumer without interference in between.

Event types are the Achilles’ heel of this grand view of interoperability. Because they are
the one concretely specified aspect of otherwise unconstrained records, there must be
some mechanism to ensure they do not collide. No agreement for a mechanism to
achieve this objective has yet been reached.

Comments would be welcome.

Audit Record Data Format

The physical format of an audit record is unspecified - that is, an application may make
no assumptions about the format and location of the header, object and event-specific
data in the record. Logically, an audit record is an opaque data object which is referred
to by a handle and accessed only by operations referencing that handle.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 111

Function And Interface Rationale

These operations set and query structures (C) or records (Pascal). Structures contain at
least the defined members, and generally include a version number which defines the
members actually included. Version stamping allows for upward compatibility. On
reading a structure, the application specifies the version number of the structure
expected, so that the system can know which data items to return to the application. On
writing a structure, the application specifies the version number of the structure it
created so that the system can know which data items the application is specifying.

While this method of grouping data is neither as general nor as extensible as the token
method considered earlier, it represents a more natural programming style and may be
more efficient as well.

The data types of each structure member are defined by this standard, but the size and
byte-ordering of the data items may vary from system to system. That is, there is no
intention that the binary data returned in these structures is directly portable from
system to system.

The header structure must be (logically) included in every record. This structure may
only be queried. No interface is providing for setting it in total, but certain members of
the structure may be set via the parameters of the functions which create and commit
audit records. Each structure contains at least the members which define the event and
the subject ID. When the subject is a server, the client ID may be included as well. The
security characteristics of the subject may be included according to the auditing style of
the system which generated the event.

The object structures in a record are ordered so that semantics may be attached to the
relative positions of object descriptors. Interfaces are provided to set and query object
descriptors in the record. The system must maintain a ‘‘current object pointer’’ which
will determine the object read or written by the corresponding call. While allowing the
objects in a record to be explicitly addressed would be more general, the SWG did not feel
that the additional complication of the interface would be justified.

The event-specific information structures in a record are also ordered, for the reasons
given for object descriptors. These structures are also read and written in the same way.
Note that for both the object and data descriptors, reading the corresponding structure
from a record logically deletes that descriptor from the record.

Note that cursor manipulation is a problem. Implicitly there is both a read and a write
cursor for object descriptors and data descriptors within a record. The current definition
excludes an important function, namely that of reading an audit record, modifying some
attributes and writing it out. This functionality is useful to create ‘template records’ in
such cases where it is likely that lots of very similar audit records will be produced. Such
a record would be located, read, and then used as a template for creating other records.
In practice it is likely that this type of record would not be read from the audit trail,
rather it would be defined as a template, modified as needed, and then committed.
Comments would be welcome

The audit records for the event types defined herein will contain well-defined sequences
of object and data descriptors. For other event types, the audit records will contain
application specified object and data descriptors.

X/Open Snapshot (1990)
Page : 112 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

Portable Audit Record Format

The SWG felt that it was necessary to allow analysis tools to generate portable audit trails.
Among other things, a portable audit trail allows the audit data to be analysed on
systems other than the systems which generated it. In earlier versions of this document,
there was an implicit requirement that the system returns the audit records in a portable
format. This approach, however, imposes a performance penalty on ‘‘localx’’
applications; i.e., those analysis tools which run on the generating system.

To avoid this unnecessary penalty, the data which is returned in the structures is always
in the local format. An application, however, may convert any record into a portable
format. These records can then be transferred to other systems portably.

There are two costs to this approach, however. The first is that each system must be
prepared to read the portable format(s) defined. The second is that these records are
always translated twice; once on the generating system and once on the system used for
analysis.

The portable data formats are not defined in this document. That is, the size of uids, gids,
mac labels, etc., is unspecified at this point. There is a necessary trade-off in specifying
these sizes. If each is defined to be at least as large as the data item on any conforming
system, then the data item may not be processed efficiently on machines with smaller
word size. On the other hand, defining the data item as being no larger than an ‘‘efficient’’
size implies a loss of precision. A further complication arises since standards do not, in
general, specify maximum data sizes. But since the loss of precision of the second
approach is unacceptable due to the nature of the data being processed, the first
approach is probably preferable. Comments would be welcome.

A.3.3 Audit Event Classes and Event Types

The distinction between event types and event classes has generated considerable
controversy. Reference [9] proposes that the grouping of event types into event classes is
arbitrary and may differ from one system to another. The group considered this proposal
at the February 1989 meeting but rejected it in favour of [12], which suggests that event
types should belong to a small, fixed set of standard event classes. [12] further proposes
that the event class is recorded in a header, along with the event type, thus making it the
responsibility of the auditing program to fix the relationship between the two.

This latter proposal was accepted at the February 1989 meeting. However, after further
reflection, it was decided that recording the event class in a header was not tenable. If an
event type belongs to many classes, but only one can be recorded in a header, then the
inclusion of such a value might serve to confuse rather than clarify the reason for the
audit record. It was agreed at the May 1989 meeting that the event class field should be
removed from the definition of header structures.

It also turns out to be very hard to define precisely when an event deserves an event type
of its own. For instance, are successful and failed open calls the same event type?
Probably so, since they can be differentiated by the result field in the record header.
(Looked at another way, that really means that the result field is part of the event type,
and so they are two different types).

Are open of a file for reading, and open of a file for read/write, different event types?
Though they differ only in one bit of a system call argument, they certainly ought to be

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 113

Function And Interface Rationale

different types, because they represent very different capabilities being exercised. This
example leads to a circular definition of event types; two types should be separate when
it would make sense to assign them to separate classes.

Although the numbering and ordering of objects and event-specific data in the record is
important, it should be noted that for failed events, some objects and data in the record
for the standard event types may not be included, since this information may be missing
from the function or command invocation.

During the February and May 1989 meetings the SWG took a decision as to which system
calls were to be made auditable as mandatory and which as optionally. The decisions
were as follows:

Function Auditability
access optional
alarm optional
chdir mandatory
chmod mandatory
chown mandatory
chroot mandatory
close optional
creat mandatory
dup (1) optional
exec (2) mandatory
exit (3) mandatory
fcntl optional
fork mandatory
fstat (4) optional
fsync optional
getegid optional
geteuid optional
getgid optional
getgroups optional
getpgrp optional
getpid optional
getppid optional
getuid optional
kill mandatory
link mandatory
lseek optional
mkdir mandatory
mkfifo mandatory
open mandatory
pause optional
pipe optional

X/Open Snapshot (1990)
Page : 114 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

Function Auditability
read optional
rename mandatory
rmdir mandatory
setgid mandatory
setpgid optional
setsid optional
setuid mandatory
sigaction optional
sigaddset optional
sigdelset optional
sigemptyset optional
sigfillset optional
sigismember optional
signal optional
sigpending optional
sigprocmask optional
sigsuspend optional
time optional
times optional
ulimit optional
umask optional
uname optional
unlink optional
utime optional
wait optional
waitpid optional
write optional

A.3.4 Auditing Style

Style options seem unavoidable. In most cases, they represent a simple trade-off of
record size and analysis capability, and perhaps some of those options could be
eliminated (by requiring trailers, file attributes, group lists, etc.). In some cases (absolute
pathnames, particularly), however, they represent a trade-off that cannot be made the
same way in all systems.

Auditing Style Interface

The aud_config() provides interrogation of auditing style. The interface is necessary to
support portable auditing tools.

There is no equivalent support offered for portable analysis tools that may need to
behave differently, or reject certain types of queries, depending on the system’s auditing
style.

There is a portability problem posed by portable analysis tools; it is implicitly tied to the
system on which an analysis tool is running. This means that analysing one system’s
audit trail on another system could malfunction if the two systems have different

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 115

Function And Interface Rationale

auditing styles. This is actually just the tip of the iceberg. Worse problems occur if the
two systems have different mappings of user ID to user name, etc.. Probably there should
be some explicit dependency on an environment variable to specify non-local
interpretations. It is certainly not a problem unique to auditing style. In practice,
however, it is thought unlikely that it will come up very often; it is not a problem for
distributed systems, since many more things will fail if a distributed system has non-
homogeneous auditing styles.

Items that can be Interrogated

Auditing style items that can be interrogated by aud_config() are:

a. whether audit records contain absolute pathnames or relative pathnames to
identify files;

b. whether audit record object descriptors should include MAC information, and

c. whether audit record object descriptors should include DAC information.

Items that cannot be Interrogated

The following items describing auditing style were originally available via the
aud_config() interface. They were subsequently removed as they are items that cannot be
influenced by an auditing application:

a. whether audit record header descriptors include subject MAC information;

b. whether audit record header descriptors include subject DAC information;

c. whether audit record header descriptors include subject Privilege information, and

d. whether audit record header descriptors include origin information.

A.3.5 XSI Changes and Extensions

From the outset the SWG decided, for stability, that changes to standard XSI interfaces for
security should be kept to an absolute minimum. Nevertheless, the security aspects of
various interfaces have been considered along the way.

Following is a summary of the major discussions and conclusions of the working group
in this area. For further information see [7].

New Error Codes

It was suggested that X/Open should define a new error response, ESECUR, to indicate
violation of any of the newly introduced security requirements.

The arguments in favour of this proposal were:

i. these are new error conditions and a new error response is therefore appropriate,
and

ii. these errors are logically different from existing errors.

Against this proposal, it was argued that:

i. at the higher (B1+) levels of security, the ESECUR response could provide a covert
channel and, when access is denied, the appropriate response is to indicate that the

X/Open Snapshot (1990)
Page : 116 Security Interface Specifications: Auditing and Authentication

Rationale Function And Interface

object does not exist.

The SWG eventually decided not to include any new error codes.

Auditing

Should there be a section in each XSI entry telling the user about the auditing done on that
command or system interface?

The SWG decided not to include this information in the X/Open Portability Guide.

Duplication of IDs

How and where should the X/Open recommendations or requirements about non-
duplication of IDs be recorded?

The SWG decided to leave this as a site option, accordingly nothing will be said in the
X/Open Portability Guide on the subject.

getpwnam() and getpwuid()

A concern was expressed that on many existing systems, the pwd structure returned by
these functions includes the password field. There was a suggestion that on secure
systems, an implementation should be required to ensure that (for non-privileged
processes) this field does not contain a valid password (encrypted or otherwise).
Conversely, for privileged processes, this is one way that a process could determine the
password of a user.

It was decided not to change these interfaces for a number of reasons. First, IEEE Std
1003.1-1988 and X/Open Portability Guide, Issue 3 no longer define the pwd structure to
contain a password field. And second, the SWG decided that it was better to define
procedural interfaces to password data (see secure_get_passwd_user () and
secure_put_passwd_user()).

login, passwd and su

At one time or another the SWG considered either including the above commands in the
interface definition, or modifying their description as presented elsewhere in the X/Open
Portability Guide. The login and su commands were considered necessary to satisfy
requirements for user identification and authentication, while changing passwd was
proposed for recording password construction rules.

All three were eventually dropped for different reasons: login because it was felt unlikely
that agreement could be reached on the definition of such a mechanism (which was one
of the reasons why it hadn’t been included in the X/Open Portability Guide in the first
place); passwd because its inclusion made no sense if login was not to be included; and su
because it had been marked WITHDRAWN in the X/Open Portability Guide, Issue 3.

The decision not to include these interfaces was taken at the December 1988 meeting.

Commands and Utilities

The only commands affected by the Security Interfaces are schedulers that either directly
or indirectly initiate other processes on behalf of the caller. It is a security requirement
that, when this happens, any child processes should inherit the audit ID and audit state of
the parent.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 117

Function And Interface Rationale

This affects the at, batch and crontab commands. The cron command itself is not presented
in the X/Open Portability Guide, and no-one could see any value in adding to the
security sections.

System Interfaces and Headers

A number of system interfaces are also affected by security, primarily exec() and fork ().
The descriptions of these functions must be updated to define that, on secure systems,
the audit ID and audit state of the caller will be inherited by child processes and new
process images respectively. This functionality must also be verifiable (which raises a
whole other set of questions not yet addressed by either the working group or those
responsible for the verification suite).

The SWG also decided at the February 1989 meeting that the configuration state of the
various security options should be made available to applications via the sysconf()
interface. To satisfy this requirement, additional symbolic constants for security have
been defined in <unistd.h>, which can be passed as the name argument to the sysconf()
function.

The only other change to standard interfaces affects the <limits.h> header. Two new
system limits have been defined, {AUDIT_MAX_SIZE} and {AUDIT_REC_MAX}, giving the
maximum number of elements in an event list, and the maximum number of bytes in an
audit record respectively. These values can also be determined at runtime by calling
sysconf().

A.3.6 Passwords and Password Aging

Two sets of interfaces are defined to provide a secure interface to a generic authentication
database. How this database is implemented is not defined, although it could utilise
existing files such as /etc/passwd.

The first set of interfaces includes the functions secure_get_passwd_user () and
secure_put_passwd_user(). These provide a procedural interface to encrypted passwords
for processes with appropriate privileges.

The second set, get_password_aging () and set_password_aging (), enable a privileged
process to set and/or read the password aging rules of a named user.

Note that these functions constitute the totality of the AUTHENTICATION option.
Existing System V-based systems can implement them relatively simply by manipulating
entries in the passwd file. The fact that they are presented as a separate option simplifies
things for systems that do not currently provide equivalent facilities (and for suppliers
who do not want to incur the cost of implementing them).

X/Open Snapshot (1990)
Page : 118 Security Interface Specifications: Auditing and Authentication

Rationale Commands And Utilities

A.4 COMMANDS AND UTILITIES

A.4.1 at, batch

The requirement that jobs initiated via at and batch should inherit the audit ID and audit
state of the initiating process has non-trivial implications for the way the cron mechanism
is implemented. The at and batch commands themselves already export the name of the
originating user, which the cron daemon uses to initialise the user ID and group ID of any
background processes. This mechanism must now be extended to include the audit ID of
the originating process, its audit switch state and the list of process audit events.

The audit ID is okay, as this cannot be changed dynamically even by a privileged process.
The audit switch state and list of process audit events is more of a problem. Unless some
direct way of exporting these values from the initiating process can be devised, they can
only be set to the default for the associated user. Thus any changes to the audit state of a
process will not be reflected in background tasks initiated therefrom.

There is also a security issue to be considered. Current implementations of at and batch
export the login name of the caller, rather than the user name associated with the effective
user ID of the initiating process. Thus background jobs can acquire extra privilege if, for
example, they are initiated after having switched user to a less trusted user name. This is
a known weakness of the cron mechanism and is not made any worse by the changes
proposed in this document.

A.4.2 crontab

The situation with the crontab command is a lot cleaner. The interface defines that
processes initiated via crontab will inherit the audit ID of the user who owns the crontab
file, and that the audit state of the process will be initialised to the default audit state of
that user. Thus there is no ambiguity in this mechanism.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 119

System Interfaces And Headers Rationale

A.5 SYSTEM INTERFACES AND HEADERS

The ERRORS sections in this chapter clearly distinguish values of errno that ‘‘will’’ be set
by a function from those that ‘‘may’’ be set. In implementation terms, a system must
support the former, but it is optional whether the latter are supported. This
nomenclature is consistent with the X/Open Portability Guide, Issue 3, Volume 2, XSI
System Interface and Headers, and is important for verification.

All security functions are declared in the <audit.h> header. This has been done for
consistency with guidelines set down in ANS/X3.159-1989 Programming Language C
Standard, and because it permits implementations with naming restrictions to abbreviate
long interface names prior to compilation, e.g.,

#define set_user_audit_ID setusrID
#define set_user_audit_events setusrEV
etc..

As agreed at the December 1988 meeting, the [ENOSYS] error has been defined as
mandatory for all interfaces. This permits null implementations of either or both the
ACCOUNTABILITY and the AUTHENTICATION options.

A.5.1 aud_commit()

Originally, several interfaces were defined to allow a trusted application to dispose of the
audit record. These have been simplified to two: aud_commit() and aud_discard (). The
first function commits a finished record to the audit trail, discards the record and frees all
associated storage. aud_discard () discards the record and frees all associated storage.

It is felt desirable, in the future, to specify changes in this area which allow a single audit
buffer to be used to create several successive records pertaining to the same event type,
but each with somewhat different attributes. In this way, the record would be used as a
template in which attributes may be modified. Comments would be welcome.

aud_commit() allows an application to specify a client’s audit ID in order to facilitate the
creation of audit records by server processes; programs which act on the behalf of other
processes. In this case, the subject’s audit ID would be that of the server, which would not
allow for true accountability. The third argument to aud_commit() allows the application
to specify the status of the audit event, so that successful events may be distinguished
from failures, and that different types of security relevant failures may be noted.

A.5.2 aud_config()

This function provides an interrogative interface to the current settings of the system’s
auditing style options. An interface to set these options is not defined, as this
functionality is considered to be implementation-dependent and therefore outside the
scope of standardisation. For a complete rationale see Section B.3.4, Auditing Style.

A.5.3 aud_discard()

This function allows an application to discard audit records and their associated storage.
It may be used by both audit trail writers and audit trail readers. Audit trail writers will
use it to discard records either in situations where aud_commit() fails or where an
application calls aud_start() and does not call aud_commit(). Audit trail readers will use it
to discard records which either are not interesting or for which the analysis has been

X/Open Snapshot (1990)
Page : 120 Security Interface Specifications: Auditing and Authentication

Rationale System Interfaces And Headers

completed.

This function allows an application to manage storage since the amount of memory
available to satisfy calls to the aud_next() and aud_start() functions is limited. Since the
system may not discard records created by these calls, the application should free any
memory which it is no longer using.

A.5.4 aud_get_header()

This function was added at the August 1989 meeting to allow an application to retrieve
the header information from the audit record. This information is returned as a structure
to allow applications to access this information in standard fashion. Note that the fields
which are in the returned structure are defined implicitly by the version field. Also, the
header parameter was changed so that the caller provides a pointer to a pointer. This
allows the system to do the memory allocation rather than the caller.

A.5.5 aud_get_object()

This function was added at the August 1989 meeting to allow an application to retrieve
the object information from the audit record. As with aud_get_header (), this information is
returned as a structure to allow applications to access this information in standard
fashion. And again, the fields which are in the returned structure are defined implicitly
by the version field and storage management is done by the system.

Note that cursor manipulation is a problem. Implicitly there is both a read and a write
cursor for object descriptors within a record. The current definition excludes an
important function, namely that of reading an audit record, modifying some attributes
and writing it out. Comments would be welcome.

The type field values allow for non-standard types of objects to be defined with the
manifest constants AUD_OBJ_STOR and AUD_OBJ_IPC. The defined structure allows the
explicit specification of the name, its format and its length, so that objects in separate
naming spaces may be correctly and unambiguously named. The mode field in the
structure allows an application to specify how an object was accessed. The function
always returns the description of the ’current’ object. The system must maintain this
pointer and ’increment’ it at each successive call to this function. Objects are retrieved in
the order in which they were written so that any semantic differences between object
inherent in this ordering will be preserved.

A.5.6 aud_get_event_info()

This function was added at the August 1989 meeting to allow an application to retrieve
the event-specific information from the audit record. As with aud_get_header (), this
information is returned as a structure to allow applications to access this information in
standard fashion. And again, storage management is done by the system.

Note that cursor manipulation is a problem. Implicitly there is both a read and a write
cursor for data descriptors within a record. The current definition excludes an important
function, namely that of reading an audit record, modifying some attributes and writing
it out. Comments would be welcome.

The information returned by this function is defined only syntactically and is mostly
intended to be used by filters which format the audit record.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 121

System Interfaces And Headers Rationale

A.5.7 aud_length()

This function returns the length of a specified audit record.

Note that this function is defined to return a value of type size_t, i.e., an unsigned
integral type returned by the sizeof operator. This is consistent with the definition of
similar interfaces defined elsewhere in the X/Open Portability Guide (e.g., strlen()) and
in the ANS/X3.159-1989 Programming Language C Standard.

A.5.8 aud_next()

This function allows a trusted application to read records from the system audit trail.
These records are returned in sequential order by timestamp. The function allows a
predicate to be specified in SQL format which defines search conditions. The SQL format
is used because it is part of the X/Open Portability Guide. The predicate specified
becomes the search criteria for subsequent calls of the function where a NULL predicate is
supplied. If no predicate is ever defined, the default is to read the next record.

This function only returns a descriptor for the next record. The contents of this record
may be read and manipulated by the application using the aud_get and aud_put functions.
The format of the contents of the record is unspecified. The record may be translated into
a specific format and returned in an application managed buffer with the aud_print()
function.

A.5.9 aud_print()

This interface is intended to provide a way for an application to translate the audit record
into a specific format and then returned in an application specified buffer. This function
is mostly intended to allow an application to format audit records for viewing. It also
provides an application with the means to translate the record into a format suitable for
exporting to another machine. The format of the text record is left as implementation-
defined, since there did not seem to be much reason to define it. A few members of the
group thought that the format should be specified so that it could be parsed but could
not think of a general application for this. Note that the XDR and NDR data
representations were chosen for their availability more than their efficiency. Several
members of the group expressed reservations about these choices. Comments would be
welcome.

A.5.10 aud_put_object()

There are two interfaces provided to add information to the audit record:
aud_put_object() and aud_put_event_info(). Each of these is the ‘‘write’’ analogue of the
corresponding aud_get function.

The aud_put_object() function provides a means for an application to add an object
description to the audit trail for objects affected by the event. This function is distinct
from aud_put_event_info() because the object information is common to all types of
objects.

Note that no separate function is provided to define the header of an audit record. This
function was omitted because the group felt that modifying many of the header fields is a
different level of trust. An application given this capability would be able to fabricate an
entire audit trail. Instead, only the event, client and status fields of the header may be

X/Open Snapshot (1990)
Page : 122 Security Interface Specifications: Auditing and Authentication

Rationale System Interfaces And Headers

specified by the application directly. All other fields are set by the system itself.

Note that cursor manipulation is a problem. Implicitly there is both a read and a write
cursor for object descriptors and data descriptors within a record. The current definition
excludes an important function, namely that of reading an audit record, modifying some
attributes and writing it out. Comments would be welcome.

A.5.11 aud_put_event_info()

This interface allows an application to add event-specific information to an audit record.
Since the sort of information included in an audit record varies so much, it was felt by the
group that providing separate information for each semantic type of information would
be neither useful enough nor general enough to justify the number of additional
interfaces to be provided. The aud_put_object() interface is provided since this particular
type of information was deemed general enough to justify a separate function. All other
information can be recorded with the aud_put_event_info() function. Note that the
application should define the syntax of this information so that it can be properly
formatted.

A.5.12 aud_start()

This function will be used by trusted applications to create an audit record to be
appended to the audit trail. This function was redefined at the August 1989 meeting to
subsume the function of the other interfaces used to begin audit records. The other
interfaces provided for the creation of audit records with no subject or with server
subjects. This functionality is offered by the client field in the header and so separate
interfaces were no longer deemed necessary.

It is implementation-defined when the header fields are actually filled in. There was
considerable debate over this subject, since this implies that the event time cannot be
specified by the application, but there was no clear resolution to the issue of when an
event actually occurs. Comments would be welcome.

A.5.13 aud_switch()

This function only affects the audit switch state of the calling process and subsequent
descendents. No mechanism is defined for changing the audit switch state of the system
as a whole, nor is it defined whether the default switch state is off or on. Both of these are
considered to be implementation-defined (although maybe they should be considered for
standardisation at some stage?). Comments would be welcome.

A.5.14 exec()

This interface needs updating for the ACCOUNTABILITY option, to ensure that the audit
ID and audit state of the process are inherited by a new process image. On the surface,
this doesn’t seem to be present any particular implementation difficulties (other than
those associated with implementing audit IDs and audit states in the first place).

A.5.15 fork()

Similarly, this interface needs updating to ensure that the audit ID and audit state of a
parent are inherited by child processes. There are no obvious implementation concerns
here either.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 123

System Interfaces And Headers Rationale

A.5.16 get_password_aging()

This interface is intended for applications that perform their own authentication. Doubt
was raised about its value at the February 1989 meeting. However, despite a proposal to
remove the function, the group voted 6-1 in favour of retaining it.

Also at the February 1989 meeting, discussion took place about how an implementation
of this function can determine whether the caller has appropriate privilege. There are no
problems in the case of ‘‘superuser’’ processes; however, at one stage this interface also
defined that each user would normally have privilege to call get_password_aging () for
there own user name. How this privilege could be determined was not defined.
Theoretically it could be done by accessing the identification database, which is slow and
might present implementation difficulties, or it could be done via some other, less secure
mechanism (e.g., environment variables)?

The SWG decided at the May 1989 meeting that this was an implementation issue that fell
outside the scope of the interface definition. Thus the text was modified to indicate that
‘‘appropriate privileges’’ are required to call this interface, without defining the nature of
those privileges.

A.5.17 get_process_audit_ID()

Simple interface to allow trusted applications to read the audit ID of the current process
(i.e., similar to getuid() and geteuid() for user IDs).

A.5.18 get_process_audit_events()

An event list was originally defined as a fixed length array of {AUDIT_MAX_SIZE}
elements, containing a row of audit event numbers. This definition was challenged at the
February 1989 meeting as being too rigid and unnecessarily wasteful of storage space. It
was further proposed that this document was changed to define event lists as variable
length rows of audit event numbers, terminated by a value of (ad_event_t)0.

The group voted 3-1 in favour of retaining fixed length arrays in the interface definition.

This decision was reversed at the May 1989 meeting, where the group voted in favour of
passing the number of elements in an event list via an argument nmemb. Other interfaces
that manipulate event lists were similarly affected.

A.5.19 get_user_audit_events()

This interface is intended to allow privileged processes to read the default audit event list
for named users, or for the system as a whole. Where this information should be stored
by a system is an implementation matter and is not defined in this document.

A.5.20 map_audit_ID_to_user()

Provides trusted applications with a simple way of converting audit IDs to user names.
There is no ambiguity possible in this mapping as there must be a one-to-one relationship
between audit IDs and user names.

The auditor must ensure consistency of identification databases across systems for this
interface to provide consistent mapping of Audit ID to user names.

X/Open Snapshot (1990)
Page : 124 Security Interface Specifications: Auditing and Authentication

Rationale System Interfaces And Headers

A.5.21 map_user_to_audit_ID()

Opposite of the above, providing a way of converting user names to audit IDs. Both
these functions access the identification database to make the necessary conversions.

The auditor must ensure consistency of identification databases across systems for this
interface to provide consistent mapping of user name to Audit ID.

A.5.22 secure_get_password_user()

At the December 1988 meeting it was proposed that the length argument should be
defined as the number of elements in a password string in ‘‘implementation-defined
units’’. This was to allow various encrypting schemes where the resulting string was not
necessarily produced in units of bytes. This proposal was rejected at the February 1989
meeting on the grounds that at some level the application would still need to work in
units of bytes, and therefore it was an unnecessary complication to define the interface in
terms of any other data type.

Note that this interface also supports a mechanism for determining the size of an
encrypted password string without reading it.

A.5.23 secure_put_password_user()

Opposite of the above which allows a trusted application to write an encrypted
password to the authentication database. Rules for encrypting passwords are not
defined in the interface definition, nor is there any implication that password strings are
null terminated (thus allowing 0x00 as a valid encryption character).

A.5.24 set_password_aging()

There has been considerable debate about the set and names of arguments to this
interface. The user_name argument has been there throughout, but initially it was
proposed to have two other arguments, max_days and min_elapsed . These gave,
respectively, the number of days for which a password would remain valid, and the
minimum number of days that must elapse before a password could be changed.

This interface was changed at the February 1989 meeting to define the arguments (a)
user_name, (b) time_to_expire , which gives the maximum number of days for which a
password is valid, and (c) warning_time, which denotes a period in days, before the
password expires, during which the user is warned to change the password. It is not
defined how the user is so warned (as the login mechanism itself is implementation-
defined).

It was agreed at the May 1989 meeting that if user_name is the NULL pointer, the function
should be defined to set password information for all current users of the system, over-
riding any information already set in the authentication database. It is anticipated that
this form of a call will be used infrequently (e.g., during system installation).

A.5.25 set_process_audit_ID()

This interface is provided to allow trusted applications to set a process audit ID. Note
that a call to this function will fail if the audit ID of the process is already set, meaning
that (once set) process audit IDs cannot be changed.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 125

System Interfaces And Headers Rationale

A.5.26 set_process_audit_events()

It is assumed that the normal method of initialising a process event list will be for a
trusted application to read the associated default user event list (via
get_user_audit_events()), using the results as the set of auditable events passed to the
set_process_audit_events () function. This interface also allows a trusted application to
modify or tune a process audit event list dynamically.

A.5.27 set_user_audit_ID()

Declarative interface to the identification database, allowing trusted applications to
establish the relationship between user names and audit IDs. The SWG agreed at the
February 1989 meeting that this relationship could be changed, hence there are no
restrictions about user_name identifying an existing database entry.

A.5.28 set_user_audit_events()

This interface allows a trusted application to establish the system default event list and
default event lists for individual users. It also supports a wild-card mechanism that
allows the event lists of all current users to be updated in a single call. How and where
this information is stored is not defined.

A.5.29 sysconf()

This entry was added after the February 1989 meeting. The SWG agreed that the .I
sysconf () function should be updated to return various switches and values for the
Security Interfaces; specifically, which options are supported (if any), and the values of
the AUDIT_MAX_SIZE and AUDIT_REC_SIZE variables.

A.5.30 update_audit_events()

This interface allows a trusted application to update process audit event lists so they
become consistent with the current (possibly amended) specification of user audit event
lists. One would expect it to be used after having modified a user audit event list via the
set_user_audit_events() function. Note that the interface does not define when these
changes will come into effect. In particular, it might cause some odd behaviour on
multi-processor systems, unless the interface is changed to define that the system as a
whole is rendered quiescent before making the changes (although this could present
implementation difficulties).

A.5.31 audit.h

This header contains all the typedefs and symbolic constants defined for the Security
Interfaces. It also contains all the function and macro declarations, as required by
ANS/X3.159-1989 Programming Language C Standard. This has the secondary
advantage of allowing implementations with naming restrictions to map long interface
names to shorter values.

A.5.32 limits.h

Updated for the AUDIT_MAX_SIZE and AUDIT_REC_MAX variables.

X/Open Snapshot (1990)
Page : 126 Security Interface Specifications: Auditing and Authentication

Rationale System Interfaces And Headers

A.5.33 unistd.h

Updated for the symbolic constants ACCOUNTABILITY and AUTHENTICATION. Also
contains additional constants required by the sysconf() function.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 127

Audit Event Classes And Event Types Rationale

A.6 AUDIT EVENT CLASSES AND EVENT TYPES

The rationale for Chapter 6, Audit Event Classes and Event Types is incorporated into
the chapter itself.

X/Open Snapshot (1990)
Page : 128 Security Interface Specifications: Auditing and Authentication

Appendix B

Non-Actioned Review Comments

Prior to the formal release of a document by X/Open, it is subjected to what is called a
‘‘Company Review Process’’. This involves all X/Open member companies and
representatives from the X/Open Associate Member Councils. During this process,
comments are sought on the content of the document which may or may not lead to
changes.

This appendix lists the response of the X/Open Security Working Group to some of the
comments that were received during the Company Review Process and had no impact
on the content of either the interface specifications themselves, or the rationale. They are
included here, however, for further clarification of the work contained in this document.

Comment 1
Section 6.1.1, Auditing of the System Interface. Some events are missing: close(),
dup(), pipe(), setsid().

Response
ACCEPTED IN PART. (See the table in Section A.3.3, Audit Event Classes and Event
Types.)

Comment 2
Section 2.2, Security Auditing, second bullet: ‘‘Applications which are trusted to do
their own auditing’’.

We disagree that applications which are trusted to audit themselves should be able
to disable TCB auditing of themselves. The disabling ability should be a special
‘‘privilege’’ afforded to only special applications. (A separate programming interface
for disabling auditing and the ability to append records to the audit trail are not
restrictive enough.)

A problem arises when an auditor is trying to trace the actions of a user, but trusted
applications used by the user disable their auditing, thus there are no records of
what the user did while in the trusted process.

Selective disabling of auditing should be a separate privilege given to only a small
set of trusted processes, most of whom require it because they are part of the audit
function and might generate recursive audit without it.

Response
ACCEPTED IN PART. The comments made are taken into consideration in the sub-
section of Chapter 3, Auditing Suspension and Resumption: ‘‘A process with
appropriate privileges to insert records into the audit trail may also be given the
(possibly different) privilege to advise the TCB that standard auditing of its
operations should be suspended or resumed. This may be useful to avoid
unnecessary detail in the audit trail. The privilege to advise the TCB in this way
should be available only to fully trusted software. The TCB may or may not actually
suspend its auditing of the process, depending on the audit policy currently in use’’.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 129

Non-Actioned Review Comments

With this specification in mind it should be clear that processes being able to
suspend the ‘‘normal’’ audit have to be a part of the TCB (fully trusted software). As
members of the TCB they are not suspending the TCB audit, but replacing the
‘‘normal’’ records with their own. Many ‘‘trusted’’ processes need to disable
auditing since the records generated by the process would not be meaningful.
Consider the output of login, most of the audit records would simply be noise. The
audit records coming from third-party applications, a network server for example,
would probably not contain much useful information. In these cases the application
itself is best suited to create the audit record.

It should also be kept in mind that this specification was designed to fill the gap for
X/Open-compliant systems to reach the C2 level of TCSEC, as auditing is the major
feature missing in standard X/Open-compliant systems to reach this level of
trustworthiness. Therefore we cannot rely on any privilege mechanism other than
the UID 0. With systems designed for higher security levels, this may be different.

Comment 3
Excluding the capability of auditing specific files seems to be a mistake. Most
administrators are concerned with watching just a few files, independent of the
users. In order to enable this an administrator would have to make the system
default class include objects which would create a huge trail.

Response
ACCEPTED IN PART. This is true; it is however quite difficult to implement (e.g.,
requiring changes to the inode structure, etc.). As this functionality is not necessary
to fullfil the C2 requirements, it was felt that auditing all opens, for instance, then
reducing the data during post-processing was acceptable. This may generate quite a
large audit trail. The vendor may feel free to include this functionality into his
implementation for performance considerations.

Comment 4
Having the base set of events defined as constants would seem to increase collisions
and reduce portability. Events should remain as strings which are mapped to unique
constants in an implementation-defined manner. Expanding the base, therefore,
reduces the possibility of collisions. X has a base set of constants for its ‘‘atoms’’ and
a registration mechanism for mapping new strings into unique ‘‘atoms’’, where
atoms = ulong_t.

Response
REJECTED. The POSIX audit group is looking at assigning numeric constant values to
the event types. For example:

#define AET_EXIT 2

Since it is likely that events are stored in the record as numeric values, a name to
numeric mapping, as in the example above, is needed for audit trail portability. The
problem with possible collisions exists only with extensions to the audit event types
and classes.

X/Open Snapshot (1990)
Page : 130 Security Interface Specifications: Auditing and Authentication

Non-Actioned Review Comments

Comment 5
No registration mechanism is defined for increasing the base of events or classes. A
different machine interpreting the trail could not resolve any base extension. Having
a registration mechanism would allow the new machine to redifine its base before
attempting to read the trail to resolve these new events/classes.

Response
REJECTED. It was felt that each application would define a way to add events and
classes. Since these events, by their very nature, are non-portable, the method for
defining them need not be part of a standard. The fact that the base is expandable is
sufficient.

Comment 6
get_∗_events should return names, not numbers; this is a simpler interface.

Response
REJECTED. It is hard to see how the return of a character string is very useful. Most
applications deal with numeric values far better than they deal with strings.
Additionally, with a string the problems of space and size have to be dealt with. It is
hard to see what benefit could be gained by returning a name.

Comment 7
There should be a registration mechanism for users (clients) to register a set of audit
classes/events that servers can pick up, i.e., if a client wishes all background
processes to run with a particular event class it should register that with the auditing
system; the server can then query that registration and run the ‘‘client process’’ with
that event class.

Response
REJECTED. See previous 2 comments.

Comment 8
Section 2.1, General: ‘‘Events should be selectable on a per-user basis and on an
individual per-process basis’’.

Implementation details are horrendous, but the facility for auditing selectable on a
per-object basis is popular with some users (particularly Government users).
Appendix A, Rationale explains the reason for not including it. Did the SWG
consider as an alternative the possibility of selection at collection time based upon
the optional DAC/MAC/privilege attributes of an object? This would be particularly
useful, of course, at B1 and above where a selection criterion could be ‘‘access to all
TOP SECRET objects’’. Our experience with audit trails to date certainly shows that
the biggest single problem is volume - any mechanism to reduce audit collection
size, such as the above, is worth considering.

Response
ACCEPTED IN PART. Adding the ability to audit based on object level (i.e., MAC) is a
very useful feature, we can see applications that may wish to audit only the actions
of, for example, TopSecret users. Auditing on DAC (i.e., UID) seems less useful. The
functionality to audit on a per-user basis is already provided.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 131

Non-Actioned Review Comments

On the other hand, as the auditing specification is designed for C2 systems, we
cannot rely on MAC functionalities. This functionality is therefore out of the scope of
the current specification.

Comment 9
Section 3.1.1, Audit Identifier Interfaces: ‘‘It is further required that each user of the
system has a distinct, individual user name’’.

The requirement for distinct user names is prescribed with reference to ‘‘the
system’’. No mention is made of unique accountability in audit records where
machines are part of a network. Has there been any discussion on this point? For
example, the audit header contains no field to identify a machine node, so that the
identification of audit records produced on one machine and analysed on another is
left to manual procedure. Should audit_IDs be network-wide unique; can this be
achieved by defining the tuple:

<hostname, audit_ID>

as the unique identifier of the user within the audit record? If this was the purpose
of the aud_net_t field in the audit header then I would support its inclusion.

Response
REJECTED. There is no need for the <hostname, audit_ID> tuple, as the audit header
already includes the information on the machine where the record was generated in
the net structure (of type struct aud_net_t). Unfortunately, this structure is not yet
defined (as is the priv structure), but the group felt that this should be provided for a
future version when naming services for networks are defined in the X/Open
Portability Guide.

Comment 10
Sub-section of Section 3.1.2, Manipulating Audit Records: ‘‘It is assumed that ard
identifies a valid audit record buffer’’.

The type assigned to ard is not very clear from reading the document. Is it an
identifier (like a file fd), or a pointer, or the address of a pointer, as some procedure
argument descriptions would suggest?

Response
CLARIFICATION. ard is a handle to an audit record.

Comment 11
Section 3.5.3, Passwords and Password Aging.

Aging on its own does not fit the security policies of systems which I have been
involved with so far. The minimum time that must elapse before a password may
be changed is common. Have other password time-constants been discussed?

Also on the subject of passwords, this document says nothing about password
validation rules, another very common component of a system security policy.

Has there been any consideration to an interface that will support basic validation
rules in a configurable way?

X/Open Snapshot (1990)
Page : 132 Security Interface Specifications: Auditing and Authentication

Non-Actioned Review Comments

For example, two functions:

get_password_validation (pval)
passwd_val_t ∗pval
put_password_validation(pval)
passwd_val_t ∗pval;

where elements in the (structure) argument may define, as a first pass:

pwd_val_runlength
pwd_val_length
pwd_val_sequences
pwd_val_notlogin
pwd_val_unique
pwd_val_spell

This gives coverage of common policy requirements, which, in order, are: maximum
number allowed runs of the same character; minimum password length; maximum
allowed length of a sequenced (abc..,345..,); password to be different to login name;
password to be system-wide unique; password not to be a valid word in the native
language.

Response
REJECTED. This does not seem to be something that is required for applications
portability, nor does it seem something that needs to be part of a standards
specification.

Furthermore, a concept like this one is dangerous for standardisation in that it may
restrict the effective use of local validation policies. What about the minimum and
maximum numbers of numbers and/or special characters, codeset to use, etc.? To
allow local validation policies to be used, the interface could be something like a
routine taking the (plaintext) password as an argument and returning a boolean
value for failure or success of the validation, which is done by some local module.
But then again you start to run into trouble when you wish to issue any detailed
error message in case of failure. So it is better to keep such interfaces, which are
non-standard by their nature, out of the specification.

Comment 12
aud_get_event_info() in Chapter 5, System Interfaces and Headers.

The purpose of the format type AUD_FORMAT_OPAQUE is not very transparent!

Response
ACCEPTED. This format is for opaque data. This data, by its very nature, has non-
standard types. The purpose of the format is to provide a way of informing the
application that the data is of a type that is non-standard and may not be known or
interpretable by the application.

Comment 13
<audit.h> header in Chapter 5, System Interfaces and Headers.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 133

Non-Actioned Review Comments

Facilities are provided to create and put records to the audit trail, such that
‘‘trusted’’ applications may do their own auditing, which is essential. In the audit.h
header a set of symbolic constants defining audit event classes and types is given. If
an application wishes to employ a new event class or event type how is it to allocate
new constant values? There is a comment about this in Appendix A, Rationale.

The problem here is similar to the allocation of error values in general. I have used a
scheme for exception handling within C which mirrors the structure for error
numbers used by DEC within VMS. A 32-bit longword is split into 3 sections:

<Subsystem><ErrorNum><Severity>

A unique value in the ‘‘Subsystem’’ field specifies a system error; other values are
assigned to utility programs or applications. The ‘‘ErrorNum’’ field is then private
to the application. The ‘‘Severity’’ field in the exception handling code was used to
identify warnings, informational messages, soft errors or fatal errors. This scheme
seems to work quite well.

Without considering what the ‘‘Severity’’ field might mean within the auditing
context, I would suggest that some form of hierarchical audit event type structure
might be beneficial.

Response
ACCEPTED IN PART. It is clear that some method of adding audit events needs to be
defined. The group would have to hear more about the implementation of the
hierarchical audit event type structure defined above before commenting on its
acceptability. Problems to be taken into consideration would be:

• the same event type with different naming and/or different placement into the
hierarchy, and

• a naming scheme for different subsystems (how do subsystems who don’t know
each other get a unique name?).

At a first glance such a scheme seems to be better suited to avoid collisions, but if
there is a unique way to provide unique names for applications we should be able to
provide uniqe numbers also. In this case, the scheme can be used again as is.

Comment 14
Section 6.2, Audit Event Types.

In the audit event type tables, no mention is made of the networking service calls
(XTI) - is this deliberate? Our projects to date have ALL required some form of
network session auditing. Such records could, of course, be left to trusted
applications. Was this intended?

Response
CLARIFICATION. Networking was intended to be left out.

Comment 15
Sub-section of Section A.3.2, Audit Record Data Format (fourth paragraph).

X/Open Snapshot (1990)
Page : 134 Security Interface Specifications: Auditing and Authentication

Non-Actioned Review Comments

This paragraph specifies that audit data contains binary fields. Is the intention that
applications are to provide the service of exporting audit trails to other machines for
analysis?

Response
CLARIFICATION. Yes. The ability to do post-processing on a remote machine is a
valuable feature.

Comment 16
Sub-section of Section A.3.2, Portable Audit Record Format: ‘‘Portable data formats
are not defined’’. What about variable length ASCII records used by ‘‘cpio’’?

Response
REJECTED. Comment is not clear.

Comment 17
The system limit {AUDIT_MAX_SIZE} seems to be a misnomer - why not use instead
{AUDIT_EVENT_MAX}?

Response
ACCEPTED IN PART. The group agrees that AUDIT_MAX_SIZE is not a very
descriptive name however AUDIT_EVENT_MAX may be ambiguous. Does it mean
the MAX events supported by the system or the MAX events settable in the user’s
audit mask?

Comment 18
Section A.5.12, aud_start(): ‘‘...implementation-defined when header fields are
actually filled in’’.

The event time should be written in by the TCB. Thus it depends on the definition of
the TCB perimeter as to whether an application is allowed to write header
information into the audit trail.

Response
ACCEPTED IN PART. Indeed the header of every audit record can only be
manipulated by a part of the TCB. However, the problem was a bit different: The
group discussed in some depth ∗when∗ the header fields should be filled in, i.e., at
the time the audit record is allocated or at the time it is committed. There were
arguments for both schemes, and as the group did not reach any final conclusion on
the topic, this issue was left as implementation-defined.

X/Open Snapshot (1990)
Security Interface Specifications: Auditing and Authentication Page : 135

Non-Actioned Review Comments

X/Open Snapshot (1990)
Page : 136 Security Interface Specifications: Auditing and Authentication

