
Preliminary Specification

X/Open Single Sign-on Service (XSSO) —

Pluggable Authentication Modules

The Open Group

 June 1997, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Preliminary Specification

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules

ISBN: 1-85912-144-6
Document Number: P702

Published in the U.K. by The Open Group, June 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Preliminary Specification (1997)

Contents

Chapter 1 Introduction to Single Sign-on.. 1
 1.1 Scope of XSSO ... 4
 1.1.1 Functional Objectives.. 4
 1.1.2 Non-functional Objectives ... 5
 1.1.3 Security Objectives .. 5
 1.1.4 Out of Scope — End-user Sign-on Interface 6
 1.1.5 Out of Scope — Account Administration Interface 6

Chapter 2 Conformance... 7
 2.1 XSSO (Base) Conformance.. 7
 2.2 PAM Application Programming Interface Conformance 7
 2.3 PAM System Programming Interface Conformance........................... 8
 2.4 PAM Module Conformance.. 8

Chapter 3 XSSO Architecture .. 9
 3.1 XSSO Single Sign-on Model.. 9
 3.2 XSSO Account Management Model ... 11

Chapter 4 XSSO Sign-on Services... 13
 4.1 XSSO Sign-on Service Structure .. 13
 4.2 PAM Service Overview ... 13
 4.2.1 PAM-API.. 15
 4.2.2 PAM-SPI... 16
 4.2.3 PAM Configuration... 17
 4.3 Models of Primary and Secondary Sign-on... 19
 4.3.1 Primary Sign-on ... 19
 4.3.2 Secondary Sign-on... 20

Chapter 5 Parameter Passing Conventions in PAM................................. 25
 5.1 Structured Data Types ... 25
 5.1.1 Messages.. 25
 5.1.2 Call Back Information ... 25
 5.1.3 Opaque Data Types ... 26
 5.2 Status Values.. 26
 5.2.1 PAM Status Codes ... 26
 5.3 Constants .. 28
 5.4 Flags... 28
 5.5 Item_type.. 29
 5.6 PAM Configuration Entry Constants ... 29
 5.6.1 Service Name.. 29
 5.6.2 Module Type... 29
 5.6.3 Control Flags... 30

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules iii

Contents

 5.6.4 Module Path.. 30
 5.6.5 Options... 30

Chapter 6 PAM — Application Program Interface (API) 31
 pam_acct_mgmt() .. 32
 pam_authenticate() .. 34
 pam_authenticate_secondary() ... 36
 pam_chauthtok() .. 38
 pam_close_session()... 40
 pam_end() .. 42
 pam_get_data () .. 43
 pam_getenv() ... 44
 pam_getenvlist() .. 45
 pam_get_item().. 46
 pam_get_mapped_authtok() ... 48
 pam_get_mapped_username() .. 50
 pam_get_user() .. 52
 pam_open_session() ... 54
 pam_putenv()... 56
 pam_setcred() ... 57
 pam_set_data () .. 59
 pam_set_item() .. 60
 pam_set_mapped_authtok() .. 62
 pam_set_mapped_username()... 64
 pam_sm_acct_mgmt() ... 66
 pam_sm_authenticate() ... 68
 pam_sm_authenticate_secondary() .. 70
 pam_sm_chauthtok() ... 72
 pam_sm_close_session() .. 75
 pam_sm_get_mapped_authtok() .. 77
 pam_sm_get_mapped_username() ... 79
 pam_sm_open_session() .. 81
 pam_sm_set_mapped_authtok() ... 83
 pam_sm_set_mapped_username() .. 85
 pam_sm_setcred() .. 87
 pam_start()... 89
 pam_strerror().. 92

Appendix A Example Header Files .. 93
 A.1 PAM_APPL.H.. 93
 A.2 PAM_MODULE.H.. 101

Appendix B PAM Configuration Administration .. 103
 B.1 Mapping Service Configuration .. 103
 B.2 Module Option Parameters .. 104
 B.3 Additional PAM Options .. 104

iv Preliminary Specification (1997)

Contents

Appendix C Internationalization.. 105
 C.1 Introduction ... 105
 C.2 Single System Codesets ... 105
 C.3 Usernames.. 105
 C.4 Passwords... 106
 C.5 Proposed Solution... 106
 C.6 Smart Cards.. 106

Appendix D XSSO Account Management Services....................................... 107
 D.1 Scope of XSSO Account Management.. 107
 D.1.1 XBSS Functional Requirements... 107
 D.1.2 Basic Functional Requirements... 108
 D.2 Account Management Authorities.. 109
 D.3 Common Core Account Attributes... 110
 D.4 Management of Account Information for Multiple Services 111
 D.4.1 Registry of Domain Types.. 112
 D.5 XSSO Account Management Implementation Considerations 112
 D.5.1 Mapping of Administrative Authorities to XSSO UAM Agents ... 112
 D.5.2 XSSO Management Information Base Initialization......................... 112

 Glossary ... 113

 Index... 121

List of Figures

1-1 Legacy Approach to User Sign-on to Multiple Systems........................ 1
1-2 Single User Sign-on to Multiple Services.. 2
3-1 SSO Sign-on Model.. 9
3-2 SSO Account Management Model ... 12
4-1 PAM Framework.. 14
4-2 SSO Primary Sign-on... 19
4-3 Single Sign-on to Local Application Domain... 21
4-4 Single Sign-on to Distributed Domain .. 22
4-5 Single Sign-on to Remote Local Service.. 23
4-6 Single Sign-on to Remote Distributed Service... 24

List of Tables

4-1 PAM Item Names .. 15
4-2 PAM Configuration with Different Modules... 18
4-3 PAM Configuration File with Stacked Modules 18
5-1 Routine Errors... 27
5-2 Message Constants .. 28
5-3 Flags.. 28
5-4 Item Types ... 29
5-5 Module Type... 29
5-6 Control Flags... 30

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules v

Contents

vi Preliminary Specification (1997)

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that designates
vendor products which conform to Open Group Product Standards

• promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules vii

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

viii Preliminary Specification (1997)

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules ix

Preface

This Document

This document is a Preliminary Specification (see above).

• Chapter 1 is an introduction to the XSSO.

• Chapter 2 describes the conformance requirements.

• Chapter 3 describes the basic XSSO architecture.

• Chapter 4 describes the XSSO Sign-on Services and the use of PAM and GSS-API to provide
these.

• Chapter 5 describes the parameter passing conventions and constants used within the PAM
specification.

• Chapter 6 describes the application and system programming interfaces supported by PAM.

• Appendix A contains example header files.

• Appendix B discusses the topic of the administration of PAM Configuration.

• Appendix C discusses the issue of internationalization of the sign-on service.

• Appendix D describes the XSSO Account Management services.

• A glossary and index are provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, and C-language keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— C-language variable names, for example, substitutable argument prototypes

— C-language functions; these are shown as follows: name().

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify a C-language return code EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font .

• Language-independent functions and arguments use bold italic font, for example, function()
and argument.

x Preliminary Specification (1997)

Trademarks

KerberosTM is a trademark of the Massachusetts Institute of Technology.

Motif, OSF/1, and UNIX are registered trademarks and the IT DialToneTM, The Open
GroupTM, and the ‘‘X Device’’TM are trademarks of The Open Group.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules xi

Acknowledgements

The Open Group acknowledges contributions to the development of this specification by many
members of The Open Group Security Program Group in providing additional material and
reviewing drafts.

xii Preliminary Specification (1997)

Referenced Documents

The following documents are referenced in this specification:

CESG Memo
CESG Memorandum No.1, Issue 1.2, October 1992, Glossary of Security Terminology.

Federal Criteria
Federal Criteria Version 1.0, December 1992, Federal Criteria for Information Technology
Security.

ISO/IEC 10181
ISO/IEC 10181, Information Technology — Open Systems Interconnection — Security
Frameworks in Open Systems:

10181-1, Part 1: Security Frameworks Overview
10181-2, Part 2: Authentication Framework
10181-3, Part 3: Access Control
10181-4, Part 4: Non-repudiation Framework
10181-5, Part 5: Integrity Framework
10181-6, Part 6: Confidentiality Framework
10181-7, Part 7: Security Audit Framework

ISO/IEC 7498-2
ISO/IEC 7498-2: 1989, Information Processing Systems — Open Systems Interconnection —
Basic Reference Model — Part 2: Security Architecture.

ITSEC
Information Technology Security Evaluation Criteria, Provisional Harmonised Criteria, June
1991, Version 1.2, published by the Commission of the European Communities.

OSF RFC 86.0
OSF RFC 86.0. October 1995, Unified Login with Pluggable Authentication Modules (PAM).

PAM Manual
Sun Microsystems Inc., PAM Reference Manual Pages.

POSIX.0
IEEE Std 1003.0/D15, June 1992, Draft Standard for Information Technology — Portable
Operating System Interface (POSIX) — Part 0.

RFC 1510
Internet Proposed Standard, The Kerberos Network Authentication System, John Kohl,
B.Clifford Neuman, Issue 5.2, 21 April 1993.

The following Open Group documents are referenced in this specification:

Base GSS-API
CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441).

XDSF
Guide, December 1994, Distributed Security Framework (ISBN: 1-85912-071-7, G410).

The following document is useful background reading:

Lai and Samar
Charlie Lai and Vipin Samar, Making Login Services Independent of Authentication

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules xiii

Referenced Documents

Technologies, 1996.

xiv Preliminary Specification (1997)

Chapter 1

Introduction to Single Sign-on

As IT systems proliferate to support business processes, users and system administrators are
faced with an increasingly complicated interface to accomplish their job functions. Users
typically have to sign-on to multiple systems, necessitating an equivalent number of sign-on
dialogues, each of which may involve different usernames and authentication information.
System administrators are faced with managing user accounts within each of the multiple
systems to be accessed in a co-ordinated manner in order to maintain the integrity of security
policy enforcement. This legacy approach to user sign-on to multiple systems is illustrated in
Figure 1-1.

User

Primary Domain
Management
Information

BaseSign-on

Primary
Domain

Shell

Secondary Domain
Management
Information

Base

Secondary Domain 1

Secondary Domain 2

Secondary Domain n User
Account
Manager

Primary
Domain

Sign-on

Secondary
Domain

Secondary
Domain

Shell

User
Account
Manager

User
Account
Manager

User
Account
Manager

Primary
Domain User
Credentials

Secondary
Domain User
Credentials

Figure 1-1 Legacy Approach to User Sign-on to Multiple Systems

Historically a distributed system has been assembled from components that act as independent
security domains. These components comprise individual platforms with associated operating
systems and applications.

These components act as independent domains in the sense that an end-user has to identify and
authenticate himself independently to each of the domains with which he wishes to interact.
This scenario is illustrated in Figure 1-1.

The end user interacts initially with a Primary Domain to establish a session with that primary
domain. This is termed the Primary Domain Sign-on in Figure 1-1 and requires the end user to
supply a set of user authentication information applicable to the primary domain, for example a
username and password. The primary domain session is typically represented by an operating
system session shell executed on the end user’s workstation within an environment
representative of the end user (for example, process attributes, environment variables and home

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 1

Introduction to Single Sign-on

directory). From this primary domain session shell the user is able to invoke the services of the
other domains, such as platforms or applications.

To invoke the services of a secondary domain an end user is required to perform a Secondary
Domain Sign-on. This requires the end user to supply a further set of user authentication
information applicable to that secondary domain. An end user has to conduct a separate sign-on
dialogue with each secondary domain that the end user requires to use.

From the management perspective the legacy approach requires independent management of
each domain and the use of multiple user account management interfaces.

Considerations of both usability and security give rise to a need to co-ordinate and where
possible integrate user sign-on functions and user account management functions for the
multitude of different domains now found within an enterprise. A service that provides such
co-ordination and integration can provide real cost benefits to an enterprise through:

• reduction in the time taken by users in sign-on operations to individual domains, including
reducing the possibility of such sign-on operations failing through user error

• improved security through the reduced need for a user to handle and remember multiple sets
of authentication information

• reduction in the time taken, and improved response, by system administrators in adding and
removing users to the system or modifying their characteristics

• improved security through the enhanced ability of system administrators to maintain the
integrity of user account configuration including the ability to inhibit or remove an
individual user’s access to all system resources in a co-ordinated and consistent manner.

User

Primary Domain
Management
Information

BaseSign-on

Primary
Domain

Shell

Secondary Domain
Management
Information

Base

Secondary Domain 1

Secondary Domain 2

Secondary Domain n User
Account
Manager

Primary
Domain

Sign-on

Secondary
Domain

Secondary
Domain

Shell

Primary and
Secondary
Domain User
Credentials

U
s
e
r

A
c
c
o
u
n
t

M
a
n
a
g
e
m
e
n
t

TRUST

Figure 1-2 Single User Sign-on to Multiple Services

2 Preliminary Specification (1997)

Introduction to Single Sign-on

Such a service has been termed Single Sign-on after the end-user perception of the impact of this
service. However, it is not intended to preclude prompting a user for additional information if it
is required. An alternative appropriate term that could be used is Integrated Sign-on. In addition,
both the end-user and management aspects of the service are equally important.

The Single Sign-on approach is illustrated in Figure 1-2. In the single sign-on approach the
system may collect from the user as, part of the primary sign-on, all the identification and user
authentication information necessary to support the authentication of the user to each of the
secondary domains that the user may potentially require to interact with. The information
supplied by the user is then used by Single Sign-on Services within the primary domain to
support the authentication of the end user to each of the secondary domains with which the user
actually requests to interact.

The information supplied by the end-user as part of the Primary Domain Sign-on procedure may
be used in support of secondary domain sign-on in several ways:

• Directly, the information supplied by the user is passed to a secondary domain as part of a
secondary sign-on.

• Indirectly, the information supplied by the user is used to retrieve other user identification
and user authentication information stored within the a single sign-on management
information base. The retrieved information is then used as the basis for a secondary domain
sign-on operation.

• Immediately, to establish a session with a secondary domain as part of the initial session
establishment. This implies that application clients are automatically invoked and
communications established at the time of the primary sign-on operation.

• Temporarily stored or cached and used at the time a request for the secondary domain
services is made by the end-user.

From a management perspective the single sign-on model provides a single user account
management interface through which all the component domains may be managed in a co-
ordinated and synchronized manner.

From an integration perspective significant security aspects of the Single Sign-on model are:

• The secondary domains have to trust the primary domain to:

— correctly assert the identity and security attributes of the end user

— protect the authentication information used to verify the end user identity to the
secondary domain from unauthorized use.

• The authentication information has to be protected when transferred between the primary
and secondary domains against threats arising from interception or eavesdropping leading to
possible masquerade attacks.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 3

Scope of XSSO Introduction to Single Sign-on

1.1 Scope of XSSO
The scope of the XSSO is application program interfaces in support of:

• the development of applications to provide a common, single end-user interface for an
enterprise for sign-on, sign-off and password change operations

• the development of applications for the co-ordinated management of multiple user account
management information bases maintained by an enterprise.

1.1.1 Functional Objectives

User Sign-on Interface

The following functional objectives have been defined for the XSSO in support of a user sign-on
interface:

• The interface shall be independent of the type of authentication information handled and
shall be capable of supporting all appropriate sign-on interactive sequences including none.
For example, a smartcard may be used to supply a user identity to XSSO for the primary
sign-on instead of prompting the user.

• Change of user controlled authentication information shall be supported. This is interpreted
as initially being restricted to change of user password although capability for future
extension shall not be precluded.

• Support shall be provided for an application calling the sign-on interface to establish a
security context based upon a default user profile. User selection of a security context from a
set of available user profiles is not required to be supported but shall not be precluded as a
future extension.

• On session termination, or sign-off, the initiation of cleanup services that clean up at least the
system on which the original sign-on was performed shall be supported.

• XSSO shall not require that all sign-on operations are performed at the same time as the
primary sign-on operation. This otherwise would result in the creation of user sessions with
all possible services even though those services may not actually be required by the user.

• Support shall be provided for the management of system sign-on policy.

• XSSO APIs must not preclude the use of 16 bit characters, although other system components
may preclude their use in particular instances.

• The automatic refresh of credentials used for sign-on operations shall be supported.

• Both administratively controlled and algorithmic mappings between primary and secondary
sign-on naming systems shall be supported.

Account Management Interface

The following functional objectives have been defined for the XSSO in support of an account
management interface:

• The creation, deletion, and modification of accounts shall be supported.

• The setting of attributes for individual accounts shall be supported. The attributes to be
supported shall include as a minimum those necessary to support the XBSS.

4 Preliminary Specification (1997)

Introduction to Single Sign-on Scope of XSSO

1.1.2 Non-functional Objectives

The non-functional objectives of the XSSO are:

• The XSSO shall be authentication technology independent. The interface shall not prescribe
the use of a specific authentication technology, nor preclude the use of any appropriate
authentication technology.

Note: Some authentication technologies, for example those based upon challenge-
response mechanisms of which a user held device is a component may not be
appropriate for use as part of secondary sign-on functions without invoking further
user interaction.

• XSSO shall be independent of platform or operating system. XSSO shall not preclude the
integration of common desktops or common servers, including mainframes. There is no
expectation that such desktops or servers shall be capable of integration within XSSO
without modification.

• It shall be possible to integrate legacy applications into the XSSO framework, and XSSO shall
be designed to facilitate this. It may, however, be necessary for changes to be made to those
applications at the level of the source code.

• XSSO shall support sign-on to a client component of legacy client-server systems on both the
local and remote platforms.

1.1.3 Security Objectives

The security objectives to be met by the XSSO are:

• XSSO shall not require the introduction of a single point of failure into a system.

• XSSO shall not adversely impact the availability of any individual system service.

• XSSO shall support the authorization policies enforced by the constituent applications of the
policy domain. That is, a principal shall only be able to obtain access via the services of XSSO
to the same account information pertaining to an application that the principal is authorized
to access using the services of the application itself.

• The XSSO shall not preclude the audit of all security relevant events which occur within the
context of the XSSO.

• An XSSO implementation shall protect all security relevant information supplied to or
generated by the XSSO implementation such that other services may adequately trust the
integrity and origin of all security information provided to them as part of a secondary sign-
on operation.

• An XSSO implementation shall provide protection to security relevant information when
exchanged between its own constituent components and between those components and
other services.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 5

Scope of XSSO Introduction to Single Sign-on

1.1.4 Out of Scope — End-user Sign-on Interface

The following aspects are not considered to be within the current scope of XSSO:

• Support for single sign-on across policy domain administrative boundaries.

• User initiated change of non-user configurable authentication information, for example
magnetic badges, smartcards, and so on.

• Password synchronization between multiple authentication domains.

• Facilities for a user to claim a subset of permitted attributes when signing on or when
initiating a secondary sign-on operation.

• Configuration and management of alternative sets of user profiles.

• Boot-time passwords. XSSO only applies to a system with a fully operational operating
system.

• Facilities to support a change of user identity associated with an active session.

• Dependency of authentication method upon location or user identity or both. That is, the
dynamic specification of the authentication mechanism.

• Multiple namespaces for primary sign-on. The user is not required, nor able, to select the
primary domain for which the sign-on name is supplied. This is controlled by the XSSO
sign-on configuration.

• Control of the sequence of secondary sign-on operations once the primary sign-on is
completed. XSSO only controls the sequence of operations, including secondary sign-ons and
credential acquisition, during the primary sign-on operation. Once this is completed the
sequence of secondary sign-on operations is under the control of the end-user.

• Facilities for an end-user to configure services into XSSO. The configuration of XSSO is an
administrative facility only.

• Maintenance of the consistency of the single sign-on account information base with
underlying individual service account information bases when those underlying user
account information bases are modified by means other than XSSO provided functionality. It
is assumed that all account information bases are managed via the XSSO service.

• Graphical and command line user interfaces to XSSO based services. These are the province
of applications written to utilize the XSSO.

• The definition of protocols to support interoperability between components from different
XSSO implementations.

1.1.5 Out of Scope — Account Administration Interface

The specification of an interface and protocols to support the co-ordinated management of
multiple account management information bases is deferred to a future specification.

These services are included in the description of the architecture. See Chapter 3 for contextual
information. Also, Appendix D provides an introduction to the scope of the services to be
covered by a future specification for Account Management Interfaces.

6 Preliminary Specification (1997)

Chapter 2

Conformance

2.1 XSSO (Base) Conformance
This section defines conformance criteria for implementations of the XSSO.

The following XSSO implementation conformance categories are defined:

• PAM Application Programming Interface Conformance

This is applicable to an implementation of the PAM infrastructure that supports the PAM
application programming interfaces that may be used by a sign-on application.

• PAM System Programming Interface Conformance

This is applicable to an implementation of the PAM infrastructure that uses and supports the
PAM system programming interfaces for the integration of PAM modules.

• PAM Module Conformance

This is applicable to implementations of PAM modules to be used underneath the PAM
infrastructure. A set of options equivalent to the module types are supported thus,
Authentication, Account Management, Session Management, Password Management,
Mapping.

2.2 PAM Application Programming Interface Conformance
An implementation of the PAM Infrastructure that conforms with this conformance category
shall support the following interfaces:

pam_acct_mgmt() pam_authenticate()
pam_authenticate_secondary() pam_chauthtok()
pam_close_session() pam_end()
pam_get_data() pam_getenv()
pam_get_envlist() pam_get_item()
pam_get_mapped_authtok() pam_get_mapped_username()
pam_get_user() pam_open_session()
pam_putenv() pam_setcred()
pam_set_data() pam_set_item()
pam_set_mapped_authtok() pam_set_mapped_username()
pam_start() pam_strerror()

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 7

PAM System Programming Interface Conformance Conformance

2.3 PAM System Programming Interface Conformance
An implementation of the PAM Infrastructure that conforms with this conformance category
shall support the following interfaces:

pam_sm_acct_mgmt() pam_sm_authenticate()
pam_sm_authenticate_secondary() pam_sm_chauthtok()
pam_sm_close_session() pam_sm_get_mapped_authtok()
pam_sm_get_mapped_username() pam_sm_set_mapped_authtok()
pam_sm_set_mapped_username() pam_sm_open_session()
pam_sm_setcred()

2.4 PAM Module Conformance
An implementation of a PAM module that conforms with this conformance category shall
support one or more of the following sets of interfaces:

Authentication Option
pam_sm_authenticate() pam_sm_setcred()

Account Management Option
pam_sm_acct_mgmt()

Session Management Option
pam_sm_close_session() pam_sm_open_session()

Password Management Module
pam_sm_chauthtok()

Mapping Option
pam_sm_get_mapped_authtok() pam_sm_get_mapped_username()
pam_sm_set_mapped_authtok() pam_sm_set_mapped_username()

An implementor of a module shall define how that module is configured, and in particular,
define the options that may be included in a PAM configuration entry for the module.

An implementor of a module that is capable of using mapping shall document whether the
module provides support for mapping usernames, or passwords, or both.

8 Preliminary Specification (1997)

Chapter 3

XSSO Architecture

This chapter presents an overview of the architectural concepts of the XSSO services. The
services and the architecture are described in greater detail in Chapter 4 and Appendix D. As
described in Chapter 1 there are two perspectives to a Single Sign-on service, an end user
perspective and a user account management perspective. For simplicity these two perspectives
are presented as two separate models.

3.1 XSSO Single Sign-on Model

Primary
Mechanism

User

Logon
User

Interface

Secondary
Signon
Target

Application

Secondary
Signon
Target

Application

Secondary
Signon

Application
Client

Secondary
Signon

Application
Client

XSSO Sign-on
Support Service

Cache XSSO
MIB

Application
Client

User
Workstation

Primary
Signon

Application
Target

Figure 3-1 SSO Sign-on Model

Figure 3-1 is a top-level view of the sign-on model. The model illustrates a combination of
primary and secondary sign-on operations.

The initial user sign-on is performed by the primary sign-on application. Secondary sign-on
operations are invoked when a user invokes an application that interfaces to services that
require user authentication. These services are typically client-server applications requiring the

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 9

XSSO Single Sign-on Model XSSO Architecture

communication of user authentication information to a further platform.

• Logon User Interface

The user interacts with the sign-on service via an interface provided by the application
providing the system entry service that establishes a user session on the workstation. This
application invokes the primary authentication mechanism, and any necessary secondary
authentication mechanisms via the XSSO Services.

• Primary Mechanism

The primary mechanism is used to authenticate the user as part of the system entry service. If
this authentication fails then the user is generally denied access to the workstation. The
primary mechanism may need to interact with a remote authentication service target
(Primary Sign-on Application Target) in order to perform user authentication.

• XSSO Sign-on Support Services

Authentication mechanism independence is provided by the invocation of common XSSO
sign-on services by the primary and secondary sign-on applications. The XSSO sign-on
services support multiple components for implementing user authentication and session
establishment whilst maintaining a common interface for the calling application.

• XSSO Service Cache

The XSSO service cache provides temporary storage for sign-on information obtained or
derived as part of the primary sign-on operation from which it can be retrieved for use in
subsequent secondary sign-on operations during the current user session. The cache is
cleared on termination of a user session.

• XSSO Management Information Base

The XSSO sign-on service depends upon a set of sign-on service management information.
This comprises configuration information for the XSSO sign-on service itself, for example
which authentication mechanisms to use, together with the user account information
required by those authentication mechanisms and the other supporting services.

• Secondary Sign-on Applications

In addition to the primary sign-on, that essentially supports access to a user session on the
workstation and applications executed within it, secondary sign-on operations to
authenticate the user and establish sessions with other management domains are generally
necessary within a distributed environment. These are supported by the XSSO services in a
manner that is generally transparent to the end-user on whose behalf the secondary sign-on
operations are undertaken. These secondary sign-ons may occur at the time of the primary
sign-on or later as an application is invoked.

The XSSO services invoked by the Primary Sign-on Application are responsible for:

• Conducting the dialogue with the user. XSSO services need to acquire from the user all the
information necessary to perform, or needed to derive the information necessary to perform,
both the primary sign-on and any subsequent secondary sign-ons so that secondary sign-ons
may be transparent to the end-user.

• Authenticating the user. This may include authentication to multiple authentication services
at this time to support later secondary sign-on operations as determined by administrative
policy.

• Authorizing the creation of a user session.

10 Preliminary Specification (1997)

XSSO Architecture XSSO Single Sign-on Model

• Initializing the user session including establishing the session security context. The XSSO
service shall not preclude auditing the creation of a user session.

• Caching the information necessary to support subsequent secondary sign-ons and
supporting the retrieval of the cached information. The information to be cached includes
any security tokens obtained as part of the authentication operations and may also include
the original authentication information supplied by the user if that is required for secondary
sign-on operations. Cache management may include the refreshing of secondary sign-on
credentials.

• Supporting a session close down policy. This may include the invocation of configured
services on user session termination including the forced termination of any residual
processing initiated within the session. The XSSO service shall not preclude the auditing of
session termination.

Note: Deferred authentication — for example, batch processing, whether directly invoked
or scheduled — is considered to comprise a separate session and is not within the
scope of the current XSSO specification. This may be subject to an extension within
a subsequent version of the specification.

The XSSO services invoked by a secondary sign-on application client and target service in effect
comprise a Distributed XSSO Sign-on Service. The XSSO sign-on service invoked by the target
service performs essentially the same functions as the XSSO services invoked by the Primary
Sign-on Application. However, the user dialogue is replaced by an exchange of information with
the application client. The XSSO sign-on services invoked by the application client are
responsible for retrieving the information required for the exchange with the target service from
the XSSO service cache created by the primary sign-on operation or from the Sign-on Service
Management Information.

In addition, the XSSO sign-on services invoked by the application client and target service are
responsible for protecting the sign-on information exchanged.

3.2 XSSO Account Management Model
Figure 3-2 illustrates the XSSO Account Management Model. The objective of the XSSO Account
Management Service is to support the development of management applications that are
capable of managing a set of distributed account information bases whilst providing a common
administrator user interface. This is to be achieved by defining an XSSO Account Management
API to be supported by management modules specific to each of the individual account
information bases. This will enable an XSSO Management Application developer to provide
agent applications that will interface to management services provided by each domain that
supports the XSSO ACM-API.

The definition of the Account Management API is deferred to a future specification.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 11

XSSO Account Management Model XSSO Architecture

Domain 1
User Account
Management

Module

Domain 1
User Account
Information

Base

XSSO
User Account
Management

Agent

XSSO User Account
Management API

Domain 2
User Account
Management

Module

Domain 2
User Account
Information

Base

XSSO
User Account
Management

Agent

Domain n
User Account
Management

Module

Domain n
User Account
Information

Base

XSSO
User Account
Management

Agent

XSSO
User Account
Management
Application

Distributed

XSSO Service
User Account
Information

Base

Adminsitrative
User

Figure 3-2 SSO Account Management Model

12 Preliminary Specification (1997)

Chapter 4

XSSO Sign-on Services

4.1 XSSO Sign-on Service Structure
This specification defines an API to an XSSO Sign-on Service for use by sign-on applications. The
XSSO Service API is independent of the specific authentication mechanisms used. There are two
distinct aspects to a Single Sign-on service; the Primary Sign-on operation in which a user signs
onto the policy domain as a whole, and Secondary Sign-on operations in which a user signs onto
a service within the domain. The principal objective of a Single Sign-on service is that Secondary
Sign-on operations may be transparent to the user.

The XSSO Service API comprises the PAM (Pluggable Authentication Modules) Service. The
next subsection describes the PAM service.

The chapter concludes by providing illustrations of how the PAM service is used to support both
Primary and Secondary Sign-on operations in upport of the concept of Single Sign-on. There are
four models of secondary sign-on considered:

• Single Sign-on to a secondary domain colocated with primary sign-on session, that is on the
same host platform.

• Single Sign-on to a distributed authentication service to access a target application on a
remote platform. This model uses the GSS-API or any such appropriate mechanism for
authentication between the client and target applications. The secondary authentication uses
a secure authentication protocol, for example the DCE security service or a GSS-API
implementation over Kerberos.

• Single Sign-on to a local service on a remote platform. This involves a distributed application
on the remote system acting as a proxy for the user principal and conducting the sign-on to
the secondary local service.

• Single Sign-on to a secondary distributed authentication service. This involves a distributed
application acting as proxy for the user principal and conducting the sign-on to the
secondary distributed authentication service.

4.2 PAM Service Overview
This section provides an overview of the PAM service.

PAM (Pluggable Authentication Modules) provides system administrators with the flexibility to:

• choose any authentication service available on a system to perform end-user authentication
for an application

• use multiple authentication services thus providing a means of integrating authentication
technologies with system-entry services

• add new authentication service modules to a system and make them available without
having to modify any applications

• incorporate mapping services to map user names and authentication tokens between
different authentication domains.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 13

PAM Service Overview XSSO Sign-on Services

The PAM framework comprises an interface library and multiple PAM service modules. The
PAM interface library is the layer implementing the Application Programming Interface (PAM-
API). The PAM service modules are a set of dynamically loadable objects invoked by the PAM-
SPI to provide a particular type of user authentication.

PAM-API

PAM-SPI

PAM
Service

PAM
Interface

Library

User
PAM

Conversation
Routines

Calling Application
servicename,

username,
conversation routines

PAM Handle

pamh

PAM
Configuration

Data

System
Management

Authentication
Modules

Account
Management

Modules

Session
Management

Modules

Password
Management

Modules

Modules

Authentication
Device(s)

XSSO Service
Data Cache

XSSO Interdomain
Service

XSSO Management
Information Base

Mapping

Modules

Figure 4-1 PAM Framework

Figure 4-1 illustrates the PAM framework. PAM supports five different types of service modules:

• Authentication

• Account Management

• Session Management

• Password Management

• Mapping.

PAM may be configured with multiple instances of each module type to support sign-on
operations to different authentication domains and the use of multiple mechanisms.

A system manager configures the PAM service via the PAM Configuration Data. This specifies
which PAM service modules are to be called for a particular application. It also specifies the
sequence, if more than one module is to be called, and the interdependencies of the results of
each of the authentication operations.

A calling application is responsible for implementing the routines for conducting a dialogue
with an end-user. This makes PAM independent of the user interface. The address of these
callback communication functions, together with the servicename and the username are passed
to the first PAM call. This call returns a handle to an internal PAM structure which maintains
information related to the caller and via which information is passed to and returned by each of

14 Preliminary Specification (1997)

XSSO Sign-on Services PAM Service Overview

the PAM service modules that is invoked.

The user prompts used for a dialogue with an end-user are provided by the backend module and
can therefore easily prompt for service specific information such as a PIN.

4.2.1 PAM-API

The functions comprising the PAM-API may be grouped into six categories of functions:

PAM Framework Layer Functions

These functions enable an application to invoke PAM service modules and to communicate
information to the PAM Service Modules.

pam_start()
pam_end()
pam_get_data ()
pam_set_data ()
pam_get_item()
pam_set_item()
pam_getenv()
pam_getenvlist()
pam_putenv()
pam_strerror()

pam_start() and pam_end() are PAM transaction routines for establishing and terminating a PAM
session. pam_start() takes as arguments the name of the application calling PAM, the name of
the user to be authenticated and the address of the callback conversation structure provided by
the caller. It returns a handle for use with subsequent calls to the PAM library.

pam_get_data () and pam_set_data () are routines for accessing and updating module specific data
from the PAM handle.

pam_get_item() and pam_set_item() are routines for PAM that allow both applications and PAM
service modules to access and update common PAM information such as service name, user
name, remote host name, remote user name, and so on, from the PAM handle. The values that
may be manipulated by these functions are listed in Table 4-1.

Item Name Description
PAM_SERVICE Service name
PAM_USER User name
PAM_RUSER Remote user name
PAM_TTY tty name
PAM_RHOST remote host name
PAM_CONV pam_conv structure
PAM_AUTHTOK Authentication token
PAM_OLDAUTHTOK Old authentication token

Table 4-1 PAM Item Names

Note: The values of PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM
modules and not to applications.

pam_getenv(), pam_getenvlist() and pam_putenv() enable the calling application and PAM
modules to set and retrieve environment variables for the user session which will be established
with pam_open_session().

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 15

PAM Service Overview XSSO Sign-on Services

pam_strerror() returns error status information.

Authentication Functions

pam_authenticate ()
pam_authenticate_secondary ()
pam_setcred()

The pam_authenticate () function is called to verify the identity of the current user. The
pam_authenticate_secondary () function is called to authenticate a username in a secondary
domain independently of the primary user authentication and user session establishment. The
caller will typically have previously retrieved the username and authentication token to be used
with the secondary target domain by calls to the mapping module.

pam_setcred() function is called to set the credentials of the current process associated with the
authentication handle supplied. Typically, this is done after the user has been authenticated.

Account Management Functions

pam_acct_mgmt()

This function is used to verify the authorization of the user to sign-on. It will typically include
checking for password and account expiration, valid login times, and so on.

Session Management Functions

pam_open_session()
pam_close_session()

These functions are called on the initiation and termination of a PAM session. They may support
session auditing.

Password Management Functions

pam_chauthtok ()

This function is called to change the authentication token (password) associated with the user.

Mapping Functions

pam_get_mapped_username()
pam_get_mapped_authtok ()
pam_set_mapped_username()
pam_set_mapped_authtok ()

These functions are called to set and retrieve identities and authentication tokens (for example,
passwords) that are associated with (mapped to) the specified identity.

4.2.2 PAM-SPI

The functions comprising the PAM-SPI are provided by the modules called by the PAM
infrastructure and are grouped below on the basis of module type.

16 Preliminary Specification (1997)

XSSO Sign-on Services PAM Service Overview

Authentication Module Functions

pam_sm_authenticate ()
pam_sm_authenticate_secondary ()
pam_sm_setcred()

The pam_sm_authenticate () function is called to verify the identity of the current user. The
pam_sm_authenticate_secondary () function is called to authenticate a username in a secondary
domain independently of the primary user authentication and user session establishment. The
caller will typically have previously retrieved the username and authentication token to be used
with the secondary target domain by calls to the mapping module.

pam_sm_setcred() function is called to set the credentials of the current process associated with
the authentication handle supplied. Typically, this is done after the user has been authenticated.

Account Management Module Functions

pam_sm_acct_mgmt()

This function is used to verify the authorization of the user to sign-on. It will typically include
checking for password and account expiration, valid login times, and so on.

Session Management Module Functions

pam_sm_open_session()
pam_sm_close_session()

These functions are called on the initiation and termination of a PAM session. They may
support session auditing.

Password Management Module Functions

pam_sm_chauthtok ()

This function is called to change the authentication token (password) associated with the user.

Mapping Module Functions

pam_sm_get_mapped_username()
pam_sm_get_mapped_authtok ()
pam_sm_set_mapped_username()
pam_sm_set_mapped_authtok ()

These functions are called to set and retrieve identities and authentication tokens (for example,
passwords) that are associated with (mapped to) the specified identity.

4.2.3 PAM Configuration

PAM is controlled by a set of configuration information. An example set of configuration
information is given in Table 4-2 on page 18.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 17

PAM Service Overview XSSO Sign-on Services

Service Module_type Control_flag Module_path Options
login mapping sufficient libmap.so
login mapping sufficient libmapfoo.so
login auth required pam_unix_auth.so nowarn
login session required pam_unix_session.so
login account required pam_unix_account.so
login password required pam_unix_passwd.so
ftp auth required pam_skey_auth.so debug
ftp session required pam_unix_session.so
telnet session required pam_unix_session.so
passwd mapping required libmap.so
passwd mapping required libmapfoo.so
passwd password required pam_unix_passwd.so
OTHER auth required pam_unix_auth.so
OTHER session required pam_unix_session.so
OTHER account required pam_unix_account.so
OTHER password required pam_unix_passwd.so

Table 4-2 PAM Configuration with Different Modules

The PAM configuration data is logically grouped into records comprising the following five
fields:

Service
Service denotes the systems-entry application, for example login, passwd, rlogin. The name
OTHER denotes the module used by default if a specific entry for a service is not specified.

Module_type
Module_type denotes the type of PAM module. Valid module types are mapping, auth,
account, session and password.

Control_flag
The control_flag determines the behavior of stacking multiple modules by specifying
whether any particular module is required, sufficient, requisite or optional.

Module_path
The Module_path specifies the location of the module to be loaded.

Options
Options is used to define module-specific options that are passed to PAM modules.

Note: A general option to instruct a module to use a Personal Security Device (for
example, a smartcard) is not included in this specification. Such an option is
considered to be unnecessary and an administrative complication. It is expected
that specific PSD aware modules will be developed for any appropriate service and
will be specified within the PAM configuration.

Service Module_type Control_flag Module_path Options
login auth required pam_unix_auth.so nowarn
login auth optional pam_kerberos.so
rlogin auth sufficient pam_rhosts_auth.so
rlogin auth required pam_unix_passwd.so

Table 4-3 PAM Configuration File with Stacked Modules

18 Preliminary Specification (1997)

XSSO Sign-on Services PAM Service Overview

Table 4-3 illustrates the stacking of authentication modules within a PAM configuration file. The
entries for login illustrate support for integrated authentication to both UNIX and Kerberos
domains. The entries for rlogin illustrate support for alternative methods of authentication;
rhosts based authentication is sufficient for rlogin but if that is not successful then normal UNIX
authentication is required.

4.3 Models of Primary and Secondary Sign-on

4.3.1 Primary Sign-on

Primary

User

Logon
User

Interface

Secondary
Signon
Target

Application

Secondary
Signon
Target

Application

Secondary
Signon

Application
Client

Secondary
Signon

Application
Client

XSSO Sign-on
Support Service

Cache

PAM API

XSSO
MIB

Application
Client

User
Workstation

PAM API
Primary
Signon

Application
Target

Mechanism

Figure 4-2 SSO Primary Sign-on

Figure 4-2 illustrates the basic model of the SSO Service in support of a Primary Sign-on
operation. The essential features are:

• The primary domain sign-on application is responsible for invoking the PAM service via the
PAM-API to perform user authentication. The primary domain sign-on application is also
responsible for providing PAM support functions for prompting the user for sign-on
information and for sending messages and error reports to the user. This makes XSSO
independent of the user interface.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 19

Models of Primary and Secondary Sign-on XSSO Sign-on Services

• The PAM Service is controlled by configuration data that define for a particular application
which PAM modules are to be invoked by the PAM service for the particular Primary
Domain Sign-on Application. Separate modules may be specified for authentication,
authorization, session control, mapping and authentication information (password) change.
Multiple modules of each type may be configured for use by a particular application. That is,
a single authentication dialogue may perform both local and distributed service
authentication.

• The PAM modules may require to utilize the services of an authentication device, for
example a badge or smartcard reader, or to retrieve additional information from a
management information base, for example, for mapping usernames and passwords.

• The mechanism specific modules may cache information retrieved or derived during the
primary sign-on operation, such as authentication credentials, in a manner that makes them
accessible for subsequent use in secondary authentication operations by client applications
executed within the same user session.

• In support of authentication to multiple domains as part of the primary sign-on, PAM
modules may require to map information supplied by the user, or retrieved from the XSSO
Management Information Base into representations applicable to the specific authentication
domains. An example is the mapping of a user identity. This mapping service is supported
by PAM mapping modules.

• PAM modules may require to retrieve information from the XSSO Account Management
Information Base, for example authentication information, environment information, and so
on. The retrieval of information from the XSSO Account Management information Base is
subject to authorization. The authorization required may be dependent upon the
information requested for retrieval.

• The PAM password modules may need to modify the authentication information held for an
account within the XSSO Management Information Base.

Note: The interfaces used by the PAM modules to manipulate the cache or access the
XSSO Account Management Information Base are not included within the scope of
this particular specification. They will be addressed as part of the Account
Management Service in a future specification.

4.3.2 Secondary Sign-on

Four scenarios of secondary sign-on were identified at the beginning of this chapter. Each of
these is described separately below.

Single Sign-on to Local Application Domain

Figure 4-3 illustrates the basic structure of a secondary sign-on operation to a local application
domain. That is, sign-on to an application that resides on the same host as the primary sign-on
operation.

In this case, the client application performs the secondary sign-on operation by retrieving
information from the XSSO Service Data Cache that was placed there by the primary sign-on
operation. This information may be used directly for sign-on purposes or may be used to
retrieve additional information from the XSSO Management Information Base. These operations
may require the mapping of the information into a representation applicable to the local
application.

20 Preliminary Specification (1997)

XSSO Sign-on Services Models of Primary and Secondary Sign-on

Primary

User

Logon
User

Interface

Secondary
Signon
Target

Application

Secondary
Signon
Target

Application

Secondary
Signon

Application
Client

Secondary
Signon

Application
Client

XSSO Sign-on
Support Service

Cache

PAM API

XSSO
MIB

Application
Client

User
Workstation

PAM API
Primary
Signon

Application
Target

Mechanism

Figure 4-3 Single Sign-on to Local Application Domain

The secondary sign-on does not necessarily preclude any interaction with the user. Although
the concept of Single Sign-on emphasizes the transparency to users of the secondary sign-on
operation, it does not preclude a security policy for a secondary sign-on requiring some
interaction with the user.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 21

Models of Primary and Secondary Sign-on XSSO Sign-on Services

Primary
Signon

Application

XSSO Service

Secondary
Signon

Client

Secondary
Signon
Target

Application
Target

(e.g., GSSAPI)

(e.g. Kerberos)

Workstation Application
Server

(e.g., GSSAPI)

Figure 4-4 Single Sign-on to Distributed Domain

Single Sign-on to Distributed Domain

Figure 4-4 illustrates the basic structure of a secondary sign-on operation to an application based
upon a distributed security service domain. That is, sign-on to an application that uses the
services of a distributed authentication service for the purposes of association security context
establishment between client and server components via the use of the GSS-API or any such
appropriate authentication mechanism.

The client retrieves distributed authentication service credentials from the XSSO Service Data
Cache and exchanges these with the server application using the GSS-API or any such
appropriate mechanism. The server application is then responsible for establishing the
appropriate processing environment for the client principal.

22 Preliminary Specification (1997)

XSSO Sign-on Services Models of Primary and Secondary Sign-on

Single Sign-on to Remote Local Service

Primary
Signon

Application

XSSO Service

Secondary
Signon

Client

Secondary
Signon
Target

Application
Target

(e.g., GSSAPI)

(e.g. Kerberos)

Workstation Application Server

XSSO Service

Secondary
Signon

Client

Secondary
Signon

Target

(e.g., GSSAPI)

Figure 4-5 Single Sign-on to Remote Local Service

Figure 4-5 illustrates the use of PAM to support single sign-on to remote services that are not
based on Distributed Security Services. That is, the client and server components are not part of
the same authentication domain. Such services are often referred to as Legacy services and
utilize an authentication service that is localized on the remote platform. An example is a
traditional RDBMS implementation.

In this case an application on the target application server platform acts as proxy for the user
principal. On the target platform PAM is utilized as if it was a Primary sign-on with the proxy
application acting as sign-on principal. The proxy application uses PAM to retrieve the
necessary authentication information from the XSSO Service Data Cache or the XSSO
Management Information Base, or both. The proxy application may utilize the XSSO
Interdomain Mapping service. As in the local application sign-on, additional interaction with the
user or an authentication device may be required. This would need to be supported by the
distributed application that is acting as proxy for the user.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 23

Models of Primary and Secondary Sign-on XSSO Sign-on Services

Single Sign-on to Remote Distributed Service

Primary
Signon

Application

XSSO Service

Secondary
Signon

Client

Secondary
Signon
Target

Application
Target

(e.g., GSSAPI)

(e.g. Kerberos)

Workstation Application Server

XSSO Service

Secondary
Signon

Client

Secondary
Signon

Target

Target

Application Server

(e.g. Netware)

(e.g., GSSAPI)

(e.g., GSSAPI) (e.g., GSSAPI)

Figure 4-6 Single Sign-on to Remote Distributed Service

Figure 4-6 illustrates the use of PAM to support single sign-on to remote services that are based
on a secondary Distributed Security Service. An example is a network operating system such as
Netware.

In this case a client application acts as proxy for the user principal. On the target PAM is utilized
as if it was a Primary sign-on with the proxy application acting as sign-on principal. The proxy
client uses PAM to retrieve the necessary authentication information from the XSSO Service
Data Cache or the XSSO Management Information Base, or both and may utilize the XSSO
Interdomain Mapping service.

24 Preliminary Specification (1997)

Chapter 5

Parameter Passing Conventions in PAM

This chapter describes the data types and constants used by the PAM functions. It also explains
calling conventions for these functions.

5.1 Structured Data Types
Wherever these PAM-API C-bindings describe structured data, only fields that must be provided
by all PAM-API implementations are documented. Individual implementations may provide
additional fields, either for internal use within PAM-API routines, or for use by non-portable
applications.

5.1.1 Messages

The structure pam_message is used to pass prompt, error message, or any text information from
the PAM services to the application or user. It is the responsibility of the PAM service modules
to localize the messages. The memory used by pam_message has to be allocated and freed by the
PAM modules. The pam_message structure has the following structure:

struct pam_message{
int msg_style;
char *msg; /* message */

};

The msg_style can be set to a number of values. See Table 5-2 on page 28. The structure
pam_response is used to get the response back from the application or user. The storage used
by pam_response has to be allocated by the application and freed by the PAM modules. It is
defined as:

struct pam_response{
char *response;
int resp_retcode;

};

5.1.2 Call Back Information

The structure pam_conv contains the address of the conversation function provided by the
application. The underlying PAM service module invokes this function to output information to
and retrieve input from the user. The pam_conv structure has the following entries:

struct pam_conv{
int (*conv) (int, struct pam_message **,

struct pam_response **, void *);
void *appdata_ptr;

};

where
int conv(int num_msg,

const struct pam_message **msg, struct pam_response **resp,
void *appdata_ptr);

The function, conv() is called by a service module to hold a PAM conversation with the
application or user. For window applications, the application can create a new pop-up window

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 25

Structured Data Types Parameter Passing Conventions in PAM

to be used by the interaction.

The parameter, num_msg is the number of messages associated with the call. The parameter, msg,
is a pointer to an array of length num_msg of the pam_message structure.

appdata_ptr is an application data pointer which is passed by the application to the PAM service
modules. Since the PAM modules pass it back through the conversation function, the
applications can use this pointer to point to any application-specific data.

5.1.3 Opaque Data Types

pam_handle
This is opaque to the caller and returned to the caller upon initiation of a PAM session. It is
subsequently passed as a parameter to each PAM-API call.

5.2 Status Values
One or more status codes are returned by each PAM-API routine. An implementation of PAM
functions shall return PAM_SUCCESS and other status values appropriate for the
implementation of the function. The characteristics of a particular implementation may make
some status returns inappropriate for that implementation.

5.2.1 PAM Status Codes

PAM-API routines return PAM status codes as their int function value. These codes indicate
major status errors that are independent of the underlying mechanism used to provide the
security service.

26 Preliminary Specification (1997)

Parameter Passing Conventions in PAM Status Values

Name Value in Meaning
Field

[PAM_SUCCESS] 0 Successful completion.
Failure when dynamically loading a
service module.

[PAM_OPEN_ERR] 1

[PAM_SYMBOL_ERR] 2 Symbol not found in service module.
[PAM_SERVICE_ERR] 3 Error in underlying service module.
[PAM_SYSTEM_ERR] 4 System error.
[PAM_BUF_ERR] 5 Memory buffer error.
[PAM_CONV_ERR 6 Conversation failure.

The caller does not possess the required
authority.

[PAM_PERM_DENIED] 7

[PAM_MAXTRIES] 8 Maximum number of tries exceeded.
[PAM_AUTH_ERR] 9 Authentication error.

New authentication token required from
user.

[PAM_NEW_AUTHTOK_REQD] 10

Cannot access authentication database
because credentials supplied are
insufficient.

[PAM_CRED_INSUFFICIENT] 11

Cannot retrieve authentication
information.

[PAM_AUTHINFO_UNAVAIL] 12

The user is not known to the underlying
account management module.

[PAM_USER_UNKNOWN] 13

[PAM_CRED_UNAVAIL] 14 Cannot retrieve user credentials.
[PAM_CRED_EXPIRED] 15 User credentials have expired.
[PAM_CRED_ERR] 16 Failure setting user credentials.
[PAM_ACCT_EXPIRED] 17 User account has expired.

Password expired and no longer usable.[PAM_AUTHTOK_EXPIRED] 18
Cannot initiate/terminate a PAM
session.

[PAM_SESSION_ERR] 19

Error in manipulating authentication
token.

[PAM_AUTHTOK_ERR] 20

Old authentication token cannot be
recovered.

[PAM_AUTHTOK_RECOVERY_ERR] 21

The authentication token lock is busy.[PAM_AUTHTOK_LOCK_BUSY] 22
Authentication token ageing is disabled.[PAM_AUTHTOK_DISABLE_AGING] 23

[PAM_NO_MODULE_DATA] 24 Module data not found.
[PAM_IGNORE] 25 Ignore this module.
[PAM_ABORT] 26 General PAM failure.
[PAM_TRY_AGAIN] 27 Unable to complete operation. Try again.
[PAM_MODULE_UNKNOWN] 28 Module type unknown.
[PAM_DOMAIN_UNKNOWN] 29 Domain unknown.

Table 5-1 Routine Errors

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 27

Constants Parameter Passing Conventions in PAM

5.3 Constants
The table below sets out the constants defined by the specification, and the value to which they
are set.

Name Value Meaning
[PAM_PROMPT_ECHO_OFF] 1 Echo off when getting response.
[PAM_PROMPT_ECHO_ON] 2 Echo on when getting response.
[PAM_ERROR_MSG] 3 Error message.
[PAM_TEXT_INFO] 4 Textual information.

Maximum number of messages passed
to the application through the
conversation function call.

[PAM_MAX_NUM_MSG] 32

Maximum size in characters of messages
passed to application through the
conversation function call.

[PAM_MAX_MSG_SIZE] 512

Maximum size in characters of each
response passed from the application
through the conversation function call.

[PAM_MAX_RESP_SIZE] 512

Table 5-2 Message Constants

5.4 Flags
The table below sets out the flags defined by the specification, and the value to which they are
set.

Name Value Meaning
General flags

Switch off messages from service.PAM_SILENT 0x80000000

Flags for pam_authenticate
Disallow a NULL authentication token.PAM_DISALLOW_NULL_AUTHTOK 0x1

Flags for pam_setcred
Set user credentials for the
authentication service.

PAM_ESTABLISH_CRED 0x1

Delete user credentials from the
authentication service.

PAM_DELETE_CRED 0x2

PAM_REINITIALISE_CRED 0x4 Reinitialize user credentials.
PAM_REFRESH_CRED 0x8 Extend lifetime of user credentials.
Flags for pam_sm_chauthtok

Preliminary check for update readiness.PAM_CRED_PRELIM_CHECK 0x1
PAM_UPDATE_AUTHTOK 0x2 Update authentication token.
Flags for pam_sm_chauthtok and
pam_chauthtok

Force a change to an expired
authentication token.

PAM_CHANGE_EXPIRED_AUTHTOK 0x4

Table 5-3 Flags

28 Preliminary Specification (1997)

Parameter Passing Conventions in PAM Item_type

5.5 Item_type
The table below sets out the item_types defined by the specification, and the value to which they
are set.

Name Value Meaning
PAM_SERVICE 1 The program service name.
PAM_USER 2 The user name.
PAM_TTY 3 The tty name.
PAM_RHOST 4 The remote host name.
PAM_CONV 5 The conversation structure.
PAM_AUTHTOK 6 The authentication token.
PAM_OLDAUTHTOK 7 The old authentication token.
PAM_RUSER 8 The remote user name.
PAM_USER_PROMPT 9 The user prompt.

Table 5-4 Item Types

5.6 PAM Configuration Entry Constants
Each entry has the following format:

<service_name> <module_type> <control_flag> <module_path> <options>

An entry commencing with a "#" character will be ignored.

The following subsections define the string constants that are used within a PAM configuration
entry.

5.6.1 Service Name

The service_name denotes the service (for example, login, dtlogin, or rlogin). The service name is
defined by the supplier of the application that is calling PAM.

The keyword, other, indicates the module that should be used for all applications which have
not been included in the PAM configuration under a specific service name. The other keyword
can also be used if all services using the same module_type have the same requirements.

5.6.2 Module Type

The PAM framework supports five module types. These are listed in Table 5-5.

Module_type Module
auth Authentication module.
account Account management module.
mapping Mapping module.
password Password management module.
session Session management module.

Table 5-5 Module Type

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 29

PAM Configuration Entry Constants Parameter Passing Conventions in PAM

5.6.3 Control Flags

Control Flags
required
sufficient
requisite
optional

Table 5-6 Control Flags

The PAM framework processes each service module in the stack.

If a requisite module fails the PAM framework immediately returns to the application with the
error returned by the requisite module and stops processing the module stack.

If all requisite and required modules in the stack succeed, then success is returned (optional and
sufficient error values are ignored).

If one or more required modules fail, then the error value from the first required module that failed
is returned.

If none of the service modules in the stack are designated as required or requisite, then the PAM
framework requires that at least one optional or sufficient module succeed. If all fail then the error
value from the first service module in the stack is returned.

The exception to the above is caused by the sufficient flag. If a service module that is designated
as sufficient succeeds, then the PAM framework immediately returns success to the application
(all subsequent service modules, even required and requisite ones, in the stack are ignored), given
that all prior required and requisite modules have also succeeded. If a prior required module
failed, then the error value from that module is returned.

If a module does not exist or cannot be opened, then the entry is ignored.

5.6.4 Module Path

The module_path field specifies the pathname to a shared library object which implements the
service functionality. If the pathname is not absolute, it is assumed to be relative to an
implementation-defined base directory.

The PAM configuration syntax does not dictate either the name or the location of the service
specific modules. The convention, however, is the following:

/usr/lib/security/pam_<service_name>_<module_name>.<extension>

5.6.5 Options

The options field is used by the PAM framework layer to pass module specific options to the
modules. It is up to the module to parse and interpret the options. This field can be used by the
modules to turn on debugging or to pass any module specific parameters such as a TIMEOUT
value. It can also be used to support unified login. The options supported by a modules shall be
documented by the supplier of the module.

30 Preliminary Specification (1997)

Chapter 6

PAM — Application Program Interface (API)

This chapter presents the functions to be used by callers of the PAM — XSSO application
programming interfaces.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 31

pam_acct_mgmt() PAM — Application Program Interface (API)

NAME
pam_acct_mgmt — perform PAM account validation procedures

SYNOPSIS
#include <security/pam_appl.h>

int pam_acct_mgmt (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_acct_mgmt() function is called to determine if the current user’s account is valid. This
includes checking for password and account expiration, as well as verifying access hour
restrictions. This function is typically called after the user has been authenticated with
pam_authenticate ().

The arguments for pam_acct_mgmt() are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

flags (in)
Flags may be set to:

PAM_SILENT
The account management service should not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK
The account management service should return PAM_NEW_AUTHTOKEN_REQD if
the user has a null authentication token.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_ACCT_EXPIRED]
The user account has expired.

[PAM_NEW_AUTHTOKEN_REQD]
New authentication token is required. The user password has aged or expired. PAM service
modules return this to request the calling application to immediately prompt the user for a
new password.

[PAM_USER_UNKNOWN]
The user is unknown to the underlying account management module.

[PAM_OPEN_ERR]
Failure when dynamically loading an account management service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

32 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_acct_mgmt()

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

[PAM_PERM_DENIED]
Permission to access relevant information is denied.

[PAM_AUTHTOK_EXPIRED]
User password has aged or expired. Typically, PAM service modules return this to indicate
that a password has been expired for too long.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 33

pam_authenticate() PAM — Application Program Interface (API)

NAME
pam_authenticate — perform authentication within the PAM framework

SYNOPSIS
#include <security/pam_appl.h>

int pam_authenticate (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_authenticate () function is called to authenticate a user. The user is usually required to
enter a password or similar authentication token depending upon the authentication service
configured within the system. The user in question may have been specified by a prior call to
pam_start() or pam_set_item(). The underlying PAM modules may use the PAM conversation
functions to get information about the user.

In the case of an authentication failure due to an incorrect username or password as denoted by
the error code [PAM_AUTH_ERR] or [PAM_USER_UNKNOWN], it is the responsibility of the
application to retry pam_authenticate () and to maintain the retry count. An authentication
service module may implement an internal retry count and return an error PAM_MAXTRIES if
the module does not want the application to retry.

If the PAM framework cannot load the authentication module, then it will return
[PAM_OPEN_ERR].

For security reasons, the location of the authentication failure is hidden from the user. Thus, if
several authentication services are stacked and a single service fails, pam_authenticate requires
that the user re-authenticate to all the services.

A Null authentication token in the authentication database will result in successful
authentication unless PAM_DISALLOW_NULL_AUTHTOK was specified. In such cases, there
will not be any prompting for the user to enter an authentication token.

For security reasons, pam_authenticate () clears the PAM_AUTHTOK item in the PAM handle
prior to returning to the application.

The arguments for pam_authenticate () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

flags (in)
Flags which determine the actions to be taken on authentication. These may be set to:

PAM_SILENT
The authentication service shall not display any messages.

PAM_DISALLOW_NULL_AUTHTOK
The authentication service should return [PAM_AUTH_ERROR] if the user has a null
authentication token.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

34 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_authenticate()

[PAM_AUTH_ERR]
There has been an error in authenticating the user. This occurs if the user submits an
invalid authentication token, or if the PAM_DISALLOW_NULL_AUTHTOK flag is set and
the user submits a NULL authentication token.

[PAM_CRED_INSUFFICIENT]
Cannot access authentication data due to insufficient credentials.

[PAM_AUTHINFO_UNAVAIL]
The underlying authentication service cannot retrieve the authentication information.

[PAM_USER_UNKNOWN]
The user is not known to the authentication module.

[PAM_MAXTRIES]
An authentication service has maintained a retry count which has been reached. No more
authentication retries should be attempted.

[PAM_OPEN_ERR]
Failure when dynamically loading one of the authentication service modules.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

[PAM_PERM_DENIED]
Permission denied.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 35

pam_authenticate_secondary() PAM — Application Program Interface (API)

NAME
pam_authenticate_secondary — perform authentication to a secondary domain within the PAM
framework

SYNOPSIS
#include <security/pam_appl.h>

int pam_authenticate_secondary (
pam_handle_t * pamh,
char * target_username ,
char * target_module_type ,
char * target_authn_domain ,
char * target_supp_data ,
unsigned char * target_module_authtok ,
int flags

);

DESCRIPTION
The pam_authenticate_secondary () function is called to authenticate the target_username in the
domain specified by target_authn_domain independently of the primary user authentication and
user session establishment. The caller will typically have previously retrieved the username and
authentication token to be used with the target domain by calls to pam_get_mapped_username()
and pam_get_mapped_authtok ().

If the PAM framework cannot load the authentication module, then it will return
[PAM_OPEN_ERR].

If PAM_DISALLOW_NULL_AUTHTOK is specified and target_module_authtok is NULL then the
authentication will fail.

Callers should not assume that the target_module_authtok buffer will be cleared upon return from
this function.

The arguments for pam_authenticate_secondary () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_username (in)
The username to be authenticated within the target domain. This will generally have been
retrieved with a call to pam_get_mapped_username().

target_module_type (in)
The mechanism to be used for the authentication.

target_authn_domain (in)
The domain within which the secondary authentication is required.

target_supp_data (in)
Supplementary data to be used by the secondary authentication mechanism.

target_module_authtok (in)
The authentication data-specific to the type of mechanism and the domain within which
authentication is required. This will generally have been retrieved with a call to
pam_get_mapped_authtok ().

flags (in)
Flags which determine the actions to be taken on authentication. These may be set to:

36 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_authenticate_secondary()

PAM_SILENT
The authentication service shall not display any messages.

PAM_DISALLOW_NULL_AUTHTOK
The authentication service should return [PAM_AUTH_ERROR] if the user has a null
authentication token.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_AUTH_ERR]
There has been an error in authenticating the user. This occurs if the user submits an invalid
authentication token, or if the PAM_DISALLOW_NULL_AUTHTOK flag is set and the user
submits a NULL authentication token.

[PAM_CRED_INSUFFICIENT]
Cannot access authentication data due to insufficient credentials.

[PAM_USER_UNKNOWN]
The user is not known to the authentication module.

[PAM_OPEN_ERR]
Failure when dynamically loading the secondary authentication service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

[PAM_PERM_DENIED]
Permission denied.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 37

pam_chauthtok() PAM — Application Program Interface (API)

NAME
pam_chauthtok — perform password related functions within the PAM framework

SYNOPSIS
#include <security/pam_appl.h>

int pam_chauthtok (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_chauthtok () function changes the authentication token associated with a particular user
referenced by the authentication handle, pamh.

pam_chauthtok () performs a preliminary check before attempting to update passwords. This
check is performed for each password module in the stack as listed in PAM configuration data.
The check may include pinging remote name services to determine if they are available. If
pam_chauthtok () returns [PAM_TRY_AGAIN], then the check has failed, and passwords are not
updated.

The underlying PAM password modules may use the PAM conversation functions to get
relevant information from the user.

Note: That it is possible that the password update succeeds only in some modules.

For security reasons, pam_chauthtok () clears the PAM_AUTHTOK and PAM_OLDAUTHTOK
items in the PAM handle prior to returning to the calling application.

The arguments for pam_chauthtok () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

flags (in)
Flags may be set to:

PAM_SILENT
Disable messages from the password service.

PAM_CHANGE_EXPIRED_AUTHTOK
Specify that only expired passwords should be changed. If this flag is not passed, all
password services should update their passwords.

The flag PAM_CHANGE_EXPIRED_AUTHTOK is typically used by a login application which
has determined that the user’s password has aged or expired. Before allowing the user to login,
the login application may invoke pam_chauthtok () with this flag to allow the user to update the
password. Typically applications such as passwd should not use this flag.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_AUTHTOK_ERR]
There has been a failure in updating the authentication token.

[PAM_TRY_AGAIN]
Preliminary check on the password has failed. Try again.

38 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_chauthtok()

[PAM_AUTHTOK_RECOVERY_ERR]
The authentication information cannot be recovered.

[PAM_AUTHTOK_LOCK_BUSY]
The authentication token lock is busy.

[PAM_AUTHTOK_DISABLE_AGING]
Authentication token aging is disabled.

[PAM_USER_UNKNOWN]
The user is unknown to the password service.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 39

pam_close_session() PAM — Application Program Interface (API)

NAME
pam_close_session — close an existing user session

SYNOPSIS
#include <security/pam_appl.h>

int pam_close_session (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_close_session() function informs the PAM framework that the user session previously
opened by a call to pam_open_session has terminated.

In many instances the pam_open_session() and pam_close_session() calls may be made by different
processes. For example, in UNIX the login process opens a session, while the init process closes
the session. In this case the, UTMP/WTMP entries may be used to link the call to
pam_close_session() with an earlier call to pam_open_session(). This is possible because
UTMP/WTMP entries are uniquely identified by a combination of attributes, including the user
login name and device name, which are accessible through the PAM handle, pamh. The call to
pam_open_session() should precede UTMP/WTMP entry management and the call to
pam_close_session() should follow UTMP/WTMP exit management.

The arguments for pam_close_session() are:

pamh (in)
The PAM authentication handle, which has been returned from a previous call to
pam_start().

flags (in)
Flags may be set to PAM_SILENT to disable messages from the session service.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SESSION_ERR]
There has been a failure in creating or removing and entry for the specified session.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

40 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_close_session()

PAM_PERM_DENIED
Permission denied.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 41

pam_end() PAM — Application Program Interface (API)

NAME
pam_end — terminates the PAM transaction

SYNOPSIS
#include <security/pam_appl.h>

int pam_end (
pam_handle_t * pamh,
int status ,

);

DESCRIPTION
The pam_end() function terminates the PAM transaction referred to by pamh. The function frees
any storage allocated by the PAM modules. status is passed to the cleanup() function stored
within the pam handle, pamh, and is used to determine what module-specific state must be
purged. A cleanup function is attached to the handle by the underlying PAM modules through a
call to pam_set_data ().

The arguments for pam_end() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

status (in)
Used to determine the module-specific state which needs to be purged. This is typically the
status of the last PAM call.

RETURN VALUE
One of the following PAM return codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

42 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_get_data()

NAME
pam_get_data — get module information

SYNOPSIS
#include <security/pam_appl.h>

int pam_get_data (
pam_handle_t * pamh,
const char * module_data_name ,
void ** data

);

DESCRIPTION
The pam_get_data () function is used by the PAM modules to retrieve module-specific
information from the PAM handle, pamh, for the module_data_name supplied. The data argument
is assigned the address of the requested data. This data should not be freed by the caller; it will
be freed by the cleanup function that was specified in the call to pam_set_data () when the
pam_end() function is called.

The arguments for pam_get_data () are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start(), from which
the data are retrieved.

module_data_name (in)
The name identifying the module data to be retrieved. This should be unique across all
services.

data (out)
The data retrieved from pamh for module_data_name supplied.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_NO_MODULE_DATA]
No module-specific data are present.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 43

pam_getenv() PAM — Application Program Interface (API)

NAME
pam_getenv — retrieve the value of a PAM environment variable

SYNOPSIS
#include <security/pam_appl.h>

char* pam_getenv (
pam_handle_t * pamh,
const char * name,

);

DESCRIPTION
The pam_getenv() function returns the value of the environment variable specified by name.

The PAM library module will allocate memory for the returned value. The calling application is
responsible for freeing that memory. The arguments for pam_getenv() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start.()

name (in)
Name of the environment variable to be retrieved.

RETURN VALUE
pam_getenv() returns the value of the specified variable. If the variable does not exist, a NULL
pointer is returned.

44 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_getenvlist()

NAME
pam_getenvlist — returns a list of all the PAM environment variables

SYNOPSIS
#include <security/pam_appl.h>

char** pam_getenvlist (
pam_handle_t * pamh,

);

DESCRIPTION
The pam_getenvlist() function returns a pointer to a list of all the PAM environment variables.

The PAM library module allocates memory for the returned value. The calling calling
application is responsible for freeing this memory.

The arguments for pam_getenvlist() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

RETURN VALUE
The pam_getenvlist() returns a pointer to a list of all the PAM environment variables. If no
values are set, a NULL pointer is returned.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 45

pam_get_item() PAM — Application Program Interface (API)

NAME
pam_get_item — get PAM information

SYNOPSIS
#include <security/pam_appl.h>

int pam_get_item (
pam_handle_t * pamh,
int item_type ,
void ** item

);

DESCRIPTION
The pam_get_item() function returns to the caller the PAM information for the item_type
supplied. item is assigned the address of the requested item. The data within the item is valid
until it is modified by a subsequent call to pam_set_item(). If the item has not been previously
set, a NULL pointer is returned.

An item retrieved by pam_get_item() should not be modified or freed. It will be released by
pam_end().

The arguments for pam_get_item() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

item_type (in)
The item type for which the PAM information is requested. This may be:

PAM_SERVICE
The service name.

PAM_USER
The user name.

PAM_AUTHOK
The user authentication token.

PAM_OLDAUTHOK
The old user authentication token.

PAM_TTY
The tty name.

PAM_RHOST
The remote host name.

PAM_RUSER
The remote user name.

PAM_CONV
The pam_conv structure.

PAM_USER_PROMPT
The default prompt used by pam_get_user().

The item types PAM_AUTHTOK and PAM_OLDAUTHTOK are available only to the PAM
service modules for security reasons. The authentication module, account module, and
session management module should treat PAM_AUTHTOK as the current authentication
token, and should ignore PAM_OLDAUTHTOK. The password management module
should treat PAM_OLDAUTHTOK as the current authentication token and

46 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_get_item()

PAM_AUTHTOK as the new authentication token.

item (out)
The address of a pointer into which is returned the address of the object requested.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 47

pam_get_mapped_authtok() PAM — Application Program Interface (API)

NAME
pam_get_mapped_authtok — get mapped password for the user

SYNOPSIS
#include <security/pam_appl.h>

int pam_get_mapped_authtok (
pam_handle_t * pamh,
const char * target_module_username ,
const char * target_module_type ,
const char * target_authn_domain ,
size_t * target_authtok_len ,
unsigned char ** target_module_authtok

);

DESCRIPTION
The pam_get_mapped_authtok () function is used to obtain a password for the given user. Any
authorization data required by the implementation of this interface must be present in the PAM
handle. The function checks the authorization data provided in the PAM handle to ensure that
the caller is authorized to retrieve the password for the target_module_username.

The caller should clear memory containing the returned password immediately after using the
password.

The arguments for pam_get_mapped_authtok () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username used for the mapping.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname. A NULL value may be passed to
allow a default target domain to be used.

target_authtok_len (out)
The length of the target password.

target_module_authtok (out)
The target password.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

48 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_get_mapped_authtok()

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 49

pam_get_mapped_username() PAM — Application Program Interface (API)

NAME
pam_get_mapped_username — get valid matched identity in new domain

SYNOPSIS
#include <security/pam_appl.h>

int pam_get_mapped_username (
pam_handle_t * pamh,
const char * src_username ,
const char * src_module_type ,
const char * src_authn_domain ,
const char * target_module_type ,
const char * target_authn_domain ,
char ** target_module_username ,

);

DESCRIPTION
The pam_get_mapped_username() function is used to obtain a valid identity in a new domain that
matches the input identity. The target_module_type and target_authn_domain are used to query
the mapping database and extract the target_username.

The arguments for pam_get_mapped_username() are:

pamh (in)
The PAM authentication handle, which has been returned from a previous call to
pam_start().

src_username (in,out)
The source username used for the mapping. It this is NULL, then the value is obtained from
the pam_hamdle.

src_module_type (in)
The source authentication type; for example, DCE.

src_authn_domain (in)
The source domain; for example, the DCE cell name.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, UNIX hostname.

target_module_username (out)
The target username which matches the input src_username.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

50 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_get_mapped_username()

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 51

pam_get_user() PAM — Application Program Interface (API)

NAME
pam_get_user — retrieve user name

SYNOPSIS
#include <security/pam_appl.h>

int pam_get_user (
pam_handle_t * pamh,
char ** user ,
const char * prompt

);

DESCRIPTION
The pam_get_user() function is used by PAM service modules to retrieve the current user name
from the pamh handle. If the user name has not been set via pam_start() or pam_set_item(), then
the PAM conversation function will be used to prompt the user for the user name with the string
prompt. If prompt is NULL, then pam_get_item() is called and the value of PAM_USER_PROMPT
is used for prompting. If the value of PAM_USER_PROMPT is NULL, the following default
prompt is used:

Please enter user name:

After the user name is gathered by the conversation function, pam_set_item() is used to set the
value of PAM_USER.

By convention, applications that need to prompt for a user name should call pam_set_item() and
set the value of PAM_USER_PROMPT before calling pam_authenticate (). The service module’s
pam_sm_authenticate () function will then call pam_get_user() to prompt for the user name. Note
that certain PAM service modules (such as a smart card module) may override the value of
PAM_USER_PROMPT and pass in their own prompt.

Applications that call pam_authenticate () multiple times should set the value of PAM_USER to
NULL with pam_set_item() before calling pam_authenticate () if they want the user to be
prompted for a new user name each time.

The value of user retrieved by pam_get_user() should not be modified or freed. The item will be
released by pam_end().

The arguments for pam_get_user() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

user (out)
The user name returned from pamh.

prompt (in)
The prompt to be used if the conversation function needs to prompt the user for a user
name.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_CONV_ERR]
Conversation failure.

52 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_get_user()

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 53

pam_open_session() PAM — Application Program Interface (API)

NAME
pam_open_session — open a user session

SYNOPSIS
#include <security/pam_appl.h>

int pam_open_session (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_open_session() function opens a new session for a user previously authenticated with a
call to pam_authenticate ().

If successful, the function returns [PAM_SUCCESS].

The arguments for pam_open_session() are:

pamh (in)
The PAM handle, which has been returned from a previous call to pam_start().

flags (in)
Flags may be set to PAM_SILENT to disable messages from the session service.

In many instances the pam_open_session() and pam_close_session() calls may be made by different
processes. For example, in UNIX the login process opens a session, while the init process closes
the session. In this case the, UTMP/WTMP entries may be used to link the call to
pam_close_session() with an earlier call to pam_open_session(). This is possible because
UTMP/WTMP entries are uniquely identified by a combination of attributes, including the user
login name and device name, which are accessible through the PAM handle, pamh. The call to
pam_open_session() should precede UTMP/WTMP entry management and the call to
pam_close_session() should follow UTMP/WTMP exit management.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SESSION_ERR]
There has been a failure in creating or removing an entry for the specified session.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

54 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_open_session()

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 55

pam_putenv() PAM — Application Program Interface (API)

NAME
pam_putenv — set the value of an environment variable

SYNOPSIS
#include <security/pam_appl.h>

int pam_putenv (
pam_handle_t * pamh,
const char * namevalue ,

);

DESCRIPTION
The function pam_putenv() is used by the PAM service modules to set the value of the
environment variable defined by namevalue.

The arguments for pam_putenv() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

namevalue (in)
Name and value of the environment variable to be set. It should be in the form
"NAME=value"; for example, "SHELL=/bin/sh" .

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SYSTEM_ERR]
The environment variable could not be set.

[PAM_BUF_ERR]
Memory buffer error.

56 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_setcred()

NAME
pam_setcred — modify/delete user credentials for an authentication service

SYNOPSIS
#include <security/pam_appl.h>

int pam_setcred (
pam_handle_t * pamh,
int flags

);

DESCRIPTION
The pam_setcred() function is used to establish, modify, or delete the credentials of the current
user associated with the authentication handle, pamh.

The arguments for pam_setcred() are:

pamh (in)
The PAM authentication handle, which has been returned from a previous call to
pam_start().

flags (in)
Flags may be set to one of the following:

PAM_SILENT
To disable messages from the authentication service.

PAM_ESTABLISH_CRED
To set user credentials. This is the default value.

PAM_DELETE_CRED
To delete user credentials associated with the authentication service.

PAM_REINITIALISE_CRED
To reinitialize user credentials.

PAM_REFRESH_CRED
To extend the lifetime of the user credentials.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_CRED_UNAVAIL]
The authentication service cannot retrieve the user credentials.

[PAM_CRED_EXPIRED]
The user credentials have expired.

[PAM_USER_UNKNOWN]
The user is unknown to the service.

[PAM_CRED_ERR]
Failure in setting user credentials.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 57

pam_setcred() PAM — Application Program Interface (API)

[PAM_SYMBOL_ERR]
Symbol not found.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

58 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_set_data()

NAME
pam_set_data — set module information

SYNOPSIS
#include <security/pam_appl.h>

int pam_set_data (
pam_handle_t * pamh,
const char * module_data_name ,
void * data ,
void * (cleanup) (pam_handle_t *pamh,

void *data, int pam_end_status)
);

DESCRIPTION
The pam_set_data () function allows the PAM modules to set and update module specific
information as needed. The module-specific information is stored within the PAM handle, pamh.
The module_data_name uniquely identifies the data, and the data argument represents the data.

The cleanup() function is used to free any memory used by the data after it is no longer needed
and is invoked by pam_end(). If pam_set_data () is called and the module data already exists
under the same module_data_name, then the existing data are replaced by the new data and the
existing cleanup function is replaced by the new cleanup function.

The arguments for pam_set_data () are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start(). It is used to
store the module-specific data set by the function.

module_data_name (in)
The name identifying the module data to be set. This should be unique across all services.

data (in)
The data to be set for module_data_name supplied.

cleanup (in)
The cleanup function to be used by pam_end defining what module-specific information
needs to be purged on termination.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 59

pam_set_item() PAM — Application Program Interface (API)

NAME
pam_set_item — set authentication information

SYNOPSIS
#include <security/pam_appl.h>
int pam_set_item (

pam_handle_t * pamh,
int item_type ,
void * item

);

DESCRIPTION
The pam_set_item() function allows the caller to update PAM information as needed. The
information is specified by item_type.

The function copies the item to an internal storage area allocated by the authentication module.
If the item had been previously set, it is overwritten.

The arguments for pam_set_item() are:

pamh (in)
The PAM handle, obtained from a previous call to pam_start().

item_type (in)
This may be one of:

PAM_SERVICE
The service name.

PAM_USER
The user name.

PAM_AUTHOK
The user authentication token.

PAM_OLDAUTHOK
The old user authentication token.

PAM_TTY
The tty name.

PAM_RHOST
The remote host name.

PAM_RUSER
The remote user name.

PAM_CONV
The pam_conv structure.

PAM_USER_PROMPT
The default prompt used by pam_get_user().

The authentication module, account module, and session management module should treat
PAM_AUTHTOK as the current authentication token, and should ignore
PAM_OLDAUTHTOK. The password management module should treat
PAM_OLDAUTHTOK as the current authentication token and PAM_AUTHTOK as the
new authentication token.

item (in)
A pointer to the object to be set or updated.

60 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_set_item()

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 61

pam_set_mapped_authtok() PAM — Application Program Interface (API)

NAME
pam_set_mapped_authtok — store the password for the username supplied

SYNOPSIS
#include <security/pam_appl.h>

int pam_set_mapped_authtok (
pam_handle_t * pamh,
char * target_module_username ,
size_t * target_authtok_len ,
unsigned char * target_module_authtok ,
char * target_module_type ,
char * target_authn_domain ,

);

DESCRIPTION
The pam_set_mapped_authtok () function stores the password for the target_username supplied.

The arguments for pam_set_mapped_authtok () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username for which the password is to be stored.

target_authtok_len (in)
The length of the password to be stored.

target_module_authtok (in)
The password to be stored.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

62 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_set_mapped_authtok()

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 63

pam_set_mapped_username() PAM — Application Program Interface (API)

NAME
pam_set_mapped_username — set a username

SYNOPSIS
#include <security/pam_appl.h>

int pam_set_mapped_username (
pam_handle_t * pamh,
char * src_username ,
char * src_module_type ,
char * src_authn_domain ,
char * target_module_username ,
char * target_module_type ,
char * target_authn_domain ,

);

DESCRIPTION
The pam_set_mapped_username() function stores a username using the target_module_type and
target_authn_domain parameters supplied.

The arguments for pam_set_mapped_username() are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username to be stored.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_OPEN_ERR]
Failure when dynamically loading a service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

64 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_set_mapped_username()

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 65

pam_sm_acct_mgmt() PAM — Application Program Interface (API)

NAME
pam_acct_mgmt — service provider implementation for pam_acct_mgmt

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_acct_mgmt (
pam_handle_t * pamh,
int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_acct_mgmt(), the PAM framework calls pam_sm_acct_mgmt() from
the modules listed in the PAM configuration. The authentication provider supplies the back-end
functionality for this interface function.

The function pam_sm_acct_mgmt(), is called to determine if the current user’s account is valid.
This includes checking for password and account expiration, as well as verifying access hour
restrictions. This function is typically called after the user has been authenticated with
pam_authenticate ().

The arguments for pam_acct_mgmt() are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

flags (in)
Flags may be set to:

PAM_SILENT
The account management service should not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK
The account management service should return PAM_NEW_AUTHTOKEN_REQD if
the user has a null authentication token.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the authentication
module. Please refer to the specific module manual pages for the various available options.
If any unknown option is passed in, the module should log the error and ignore the option.

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_ACCT_EXPIRED]
The user account has expired.

[PAM_NEW_AUTHTOKEN_REQD]
New authentication token is required. The user password has aged or expired. PAM service
modules return this to request the calling application to immediately prompt the user for a

66 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_acct_mgmt()

new password.

[PAM_USER_UNKNOWN]
The user is unknown to the underlying account management module.

[PAM_OPEN_ERR]
Failure when dynamically loading an account management service module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation failure.

[PAM_PERM_DENIED]
Permission to access relevant information is denied.

[PAM_AUTHTOK_EXPIRED]
User password has aged or expired. Typically, PAM service modules return this to indicate
that a password has been expired for too long.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 67

pam_sm_authenticate() PAM — Application Program Interface (API)

NAME
pam_sm_authenticate — service provider implementation for pam_authenticate

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_authenticate(
pam_handle_t * pamh,
int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_authenticate (), the PAM framework calls pam_sm_authenticate () from
the modules listed in the PAM configuration. The authentication provider supplies the back-end
functionality for this interface function.

The function, pam_sm_authenticate (), is called to verify the identity of the current user. The user
is usually required to enter a password or similar authentication token depending upon the
authentication scheme configured within the system. The user in question is typically specified
by a prior call to pam_start(), and is referenced by the authentication handle, pamh.

If the user is unknown to the authentication service, the service module should mask this error
and continue to prompt the user for a password. It should then return the error,
[PAM_USER_UNKNOWN].

Before returning, pam_sm_authenticate () should call pam_get_item() and retrieve
PAM_AUTHTOK. If it has not been set before (that is, the value is NULL),
pam_sm_authenticate () should set it to the password entered by the user using pam_set_item().

An authentication module may save the authentication status (success or reason for failure) as
state in the authentication handle using pam_set_data (). This information is intended for use by
pam_setcred().

Note: Modules should not retry the authentication in the event of a failure. Applications
handle authentication retries. To limit the number of retries, modules may maintain an
internal retry count and return a [PAM_MAXTRIES] error.

The arguments for pam_sm_authenticate () are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

flags (in)
The following flags may be passed in to pam_sm_authenticate ():

PAM_SILENT
The authentication service should not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK
The authentication service should return [PAM_AUTH_ERR] if the user has a null
authentication token.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

68 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_authenticate()

argv (in)
Specifies the module options, which are interpreted and processed by the authentication
module. Refer to the specific module manual pages for the various available options . If any
unknown option is passed in, the module should log the error and ignore the option.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_AUTH_ERR]
The user could not be authenticated.

[PAM_USER_UNKNOWN]
No account for the present user.

[PAM_CRED_INSUFFICIENT]
Cannot access authentication data because of insufficient credentials.

[PAM_AUTHINFO_UNAVAIL]
Cannot retrieve authentication information.

[PAM_IGNORE]
Ignore underlying authentication module regardless of whether the control flag is required,
optional, or sufficient.

[PAM_CONV_ERR]
Conversation failure.

[PAM_SERVICE_ERR]
Error in underlying service module.

[PAM_MAXTRIES]
The module can return this error to limit the number of retries.

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 69

pam_sm_authenticate_secondary() PAM — Application Program Interface (API)

NAME
pam_sm_authenticate_secondary — service provider interface for pam_authenticate_secondary

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_authenticate_secondary (
pam_handle_t * pamh,
char * target_username ,
char * target_module_type ,
char * target_authn_domain ,
char * target_supp_data ,
unsigned char * target_module_authtok ,
int flags

);

DESCRIPTION
In response to a call to pam_authenticate_secondary (), the PAM framework calls
pam_sm_authenticate_secondary () from the modules listed in the PAM configuration. The
authentication provider supplies the back-end functionality for this interface function.

The function, pam_sm_authenticate_secondary (), is called to verify the identity of the current user
to a further domain.

If PAM_DISALLOW_NULL_AUTHTOK is specified and target_module_authtok is NULL then the
authentication will fail.

The arguments for pam_sm_authenticate_secondary () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_username (in)
The username to be authenticated within the target domain.

target_module_type (in)
The mechanism to be used for the authentication.

target_authn_domain (in)
The domain within which the secondary authentication is required.

target_supp_data (in)
Supplementary data to be used by the secondary authentication mechanism.

target_module_authtok (in)
The authentication data specific to the type of mechanism and the domain within which
authentication is required. This will generally have been retrieved with a call to
pam_get_mapped_authtok ().

flags (in)
Flags which determine the actions to be taken on authentication. These may be set to:

PAM_SILENT
The authentication service shall not display any messages.

PAM_DISALLOW_NULL_AUTHTOK
The authentication service should return [PAM_AUTH_ERROR] if the user has a null
authentication token.

70 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_authenticate_secondary()

RETURN VALUE
One of the following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_AUTH_ERR]
There has been an error in authenticating the user. This occurs if the user submits an invalid
authentication token, or if the PAM_DISALLOW_NULL_AUTHTOK flag is set and the user
submits a NULL authentication token.

[PAM_CRED_INSUFFICIENT]
Cannot access authentication data due to insufficient credentials.

[PAM_USER_UNKNOWN]
The user is not known to the authentication module.

[PAM_SYMBOL_ERR]
Symbol not found in service module.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

[PAM_PERM_DENIED]
Permission denied.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 71

pam_sm_chauthtok() PAM — Application Program Interface (API)

NAME
pam_sm_chauthtok — service provider implementation for pam_chauthtok

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_chauthtok(
pam_handle_t *pamh,
const int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_chauthtok () the PAM framework calls pam_sm_chauthtok () from the
modules listed in the PAM configuration. The password management provider supplies the
back-end functionality for this interface function.

pam_sm_chauthtok () changes the authentication token associated with a particular user
referenced by the authentication handle, pamh.

Upon successful completion of the call, the authentication token of the user will be ready for
change or will be changed (depending upon the flag) in accordance with the authentication
scheme configured within the system.

It is the responsibility of pam_sm_chauthtok () to determine if the new password meets certain
strength requirements. pam_sm_chauthtok () may continue to re-prompt the user (for a limited
number of times) using the conversation functions for a new password until the password
entered meets the strength requirements.

Before returning, pam_sm_chauthtok () should call pam_get_item() and retrieve both
PAM_AUTHTOK and PAM_OLDAUTHTOK. If both are NULL, pam_sm_chauthtok () should set
them to the new and old passwords as entered by the user.

Note that the framework invokes the password services twice. The first time the modules are
invoked with the flag, PAM_PRELIM_CHECK. During this stage, the password modules should
only perform preliminary checks (ping remote name services to see if they are ready for updates,
for example). If a password module detects a transient error (remote name service temporarily
down, for example) it should return PAM_TRY_AGAIN to the PAM framework, which will
immediately return the error back to the application. If all password modules pass the
preliminary check, the PAM framework invokes the password services again with the flag,
PAM_UPDATE_AUTHTOK. During this stage, each password module should proceed to
update the appropriate password. Any error will again be reported back to application.

If a service module receives the flag, PAM_CHANGE_EXPIRED_AUTHTOK, it should check
whether the password has aged or expired. If the password has aged or expired, then the service
module should proceed to update the password. If the status indicates that the password has
not yet aged/expired, then the password module should return PAM_IGNORE.

If a user’s password has aged or expired, a PAM account module could save this information as
state in the authentication handle, pamh, using pam_set_data (). The related password
management module could retrieve this information using pam_get_data () to determine whether
or not it should prompt the user to update the password for this particular module.

The arguments for pam_sm_chauthtok () are:

72 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_chauthtok()

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

flags (in)
The following flag may be passed in to pam_sm_chauthtok ():

PAM_SILENT
The password service should not generate any messages.

PAM_CHANGE_EXPIRED_AUTHTOK
The password service should only update those passwords that have aged. If this flag
is not passed, the password service should update all passwords.

PAM_PRELIM_CHECK
The password service should only perform preliminary checks. No passwords should
be updated.

PAM_UPDATE_AUTHTOK
The password service should update passwords.

Note that PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK cannot be set at the
same time.

argc (in)
The argc argument represents the number of module options passed in from the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the password
management module. Please refer to the specific module man pages for the various
available options.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_AUTHTOK_ERR]
Authentication token manipulation error.

[PAM_AUTHTOK_RECOVERY_ERR]
Old authentication token cannot be retrieved.

[PAM_AUTHTOK_LOCK_BUSY]
The authentication token lock is busy.

[PAM_AUTHTOK_DISABLE_AGING]
Authentication token again disabled.

[PAM_USER_UNKNOWN]
User unknown to password service.

[PAM_TRY_AGAIN]
Preliminary check by password service failed.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 73

pam_sm_chauthtok() PAM — Application Program Interface (API)

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

74 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_close_session()

NAME
pam_sm_close_session — service provider implementation for pam_close_session

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_close_session(
pam_handle_t *pamh,
int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_close_session() the PAM framework calls pam_sm_close_session() from
the modules listed in the pam.conf file. The session management provider supplies the back-end
functionality for this interface function.

pam_sm_close_session() is called to terminate session management.

The arguments for pam_sm_close_session() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

flags (in)
The following flag may be set in the flags field:

PAM_SILENT
Session service should not generate any messages.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the session
management service. If an unknown option is passed in, an error should be logged and the
option ignored.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SESSION_ERR]
Cannot make/remove an entry for the specified session.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SERVICE_ERR]
Error in service module.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 75

pam_sm_close_session() PAM — Application Program Interface (API)

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

76 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_get_mapped_authtok()

NAME
pam_sm_get_mapped_authtok — get password for username

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_get_mapped_authtok (
pam_handle_t * pamh,
char * target_module_username ,
char *arget_module_type ,
char *arget_authn_domain ,
size_t * target_authtok_len ,
unsigned char **arget_module_authtok ,
int argc,
const char ** argv

);

DESCRIPTION
The pam_sm_get_mapped_authtok () function is used to obtain a password for the username
supplied. Any authorization data required by the implementation of this interface must be
present in the PAM handle. The function checks the authorization data provided in the PAM
handle to ensure that the caller is authorized to retrieve the password for the
target_module_username.

The caller should clear memory containing the returned password immediately after using the
password.

The arguments for pam_sm_get_mapped_authtok () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username used for the mapping.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname.

target_authtok_len (out)
The length of the target password.

target_module_authtok (out)
The target password.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the mapping module.
If an unknown option is passed in, an error should be logged and the option ignored.

RETURN VALUE
The following PAM status codes shall be returned:

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 77

pam_sm_get_mapped_authtok() PAM — Application Program Interface (API)

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

78 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_get_mapped_username()

NAME
pam_sm_get_mapped_username — get valid matched identity in new domain

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_get_mapped_username (
pam_handle_t * pamh,
char * src_username ,
char * src_module_type ,
char * src_authn_domain ,
char * target_module_type ,
char * target_authn_domain ,
char ** target_module_username ,
int argc ,
const char ** argv

);

DESCRIPTION
The pam_sm_get_mapped_username() function is used to obtain a valid identity in a new domain
that matches the input identity. target_module_type and target_authn_domain are used to query
the mapping database and extract the target_username.

The arguments for pam_sm_get_mapped_username() are:

pamh (in)
The PAM authentication handle, which has been returned from a previous call to
pam_start().

src_username (in,out)
The source username used for the mapping. It this is NULL, then the value is obtained from
the pam_hamdle. If a zero length string is specified, it is used to query the mapping service
and the value is returned if found.

src_module_type (in)
The source authentication type; for example, DCE.

src_authn_domain (in)
The source domain; for example, the DCE cell name.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, UNIX hostname.

target_module_username (out)
The target username which matches the input src_username.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the mapping module.
If an unknown option is passed in, an error should be logged and the option ignored.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 79

pam_sm_get_mapped_username() PAM — Application Program Interface (API)

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

80 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_open_session()

NAME
pam_sm_open_session — service provider implementation for pam_open_session

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_open_session(
pam_handle_t *pamh,
int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_open_session() the PAM framework calls pam_sm_open_session() from
the modules listed in the PAM configuration. The session management provider supplies the
back-end functionality for this interface function.

pam_sm_open_session() is called to initiate session management.

The arguments for pam_sm_open_session() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

flags (in)
The following flag may be set in the flags field:

PAM_SILENT
Session service should not generate any messages.

argc (in)
The argc argument represents the number of module options passed in from the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the session
management service. If an unknown option is passed in, an error should be logged and the
option ignored.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SESSION_ERR]
Cannot make/remove an entry for the specified session.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SERVICE_ERR]
Error in service module.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 81

pam_sm_open_session() PAM — Application Program Interface (API)

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

82 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_set_mapped_authtok()

NAME
pam_sm_set_mapped_authtok — store the password for the username supplied

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_set_mapped_authtok (
pam_handle_t * pamh,
char * target_module_username ,
size_t * target_authtok_len ,
unsigned char * target_module_authtok ,
char * target_module_type ,
char * target_authn_domain ,
int argc ,
const char ** argv

);

DESCRIPTION
The pam_sm_set_mapped_authtok () function stores the password for the target_username supplied.

The arguments for pam_sm_set_mapped_authtok () are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username for which the password is to be stored.

target_authtok_len (in)
The length of the password to be stored.

target_module_authtok (in)
The password to be stored.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the mapping module.
If an unknown option is passed in, an error should be logged and the option ignored.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 83

pam_sm_set_mapped_authtok() PAM — Application Program Interface (API)

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

84 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_set_mapped_username()

NAME
pam_sm_set_mapped_username — set a username

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_set_mapped_username (
pam_handle_t * pamh,
char * target_module_username ,
char *arget_module_type ,
char *arget_authn_domain ,
int argc ,
const char ** argv

);

DESCRIPTION
The pam_sm_set_mapped_username() function stores a username using the target_module_type and
target_authn_domain parameters supplied.

The arguments for pam_sm_set_mapped_username() are:

pamh (in)
The PAM authentication handle, returned from a previous call to pam_start().

target_module_username (in)
The target username to be stored.

target_module_type (in)
The target authentication type; for example, UNIX.

target_authn_domain (in)
The target domain; for example, the UNIX hostname.

argc (in)
The argc argument represents the number of module options defined in the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the mapping module.
If an unknown option is passed in, an error should be logged and the option ignored.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_USER_UNKNOWN]
The username supplied is not recognized.

[PAM_MODULE_UNKNOWN]
The mapping service does not support this module type.

[PAM_DOMAIN_UNKNOWN]
The mapping service does not support this module’s domain.

[PAM_SERVICE_ERR]
The mapping service failed in reading/writing data.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 85

pam_sm_set_mapped_username() PAM — Application Program Interface (API)

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

86 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_sm_setcred()

NAME
pam_sm_setcred — service provider implementation for pam_setcred

SYNOPSIS
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_setcred(
pam_handle_t * pamh,
int flags ,
int argc ,
const char ** argv

);

DESCRIPTION
In response to a call to pam_set_cred(), the PAM framework calls pam_sm_setcred() from the
modules listed in the PAM configuration. The authentication provider supplies the back-end
functionality for this interface function.

pam_sm_setcred() is called to set the credentials of the current user associated with the
authentication handle, pamh.

The authentication status (success or reason for failure) is typically saved as module-specific
state in the authentication handle by the authentication module. The status should be retrieved
using pam_get_data (), and used to determine if user credentials should be set.

The arguments for pam_sm_setcred() are:

pamh (in)
The PAM authentication handle, obtained from a previous call to pam_start().

flags (in)
The following flags may be set in the flags field. Note that the first four flags are mutually
exclusive:

PAM_ESTABLISH_CRED
Set user credentials for the authentication service.

PAM_DELETE_CRED
Delete user credentials associated with the authentication service.

PAM_REINITIALIZE_CRED
Reinitialize user credentials.

PAM_REFRESH_CRED
Extend lifetime of user credentials.

PAM_SILENT
Authentication service should not generate messages.

If none of these flags are set, PAM_ESTABLISH_CRED is used as the default.

argc (in)
The argc argument represents the number of module options passed in from the PAM
configuration.

argv (in)
Specifies the module options, which are interpreted and processed by the authentication
service. If an unknown option is to the module, an error should be logged and the option
ignored.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 87

pam_sm_setcred() PAM — Application Program Interface (API)

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_CRED_UNAVAIL]
Underlying authentication service cannot retrieve user credentials.

[PAM_CRED_EXPIRED]
User credentials have expired.

[PAM_USER_UNKNOWN]
User unknown to authentication service.

[PAM_CRED_ERR]
Failure in setting user credentials.

[PAM_IGNORE]
Ignore underlying session module regardless of whether the control flag is required, optional
or sufficient .

[PAM_PERM_DENIED]
The caller does not possess the required authority.

[PAM_SERVICE_ERR]
Error in service module.

[PAM_SYSTEM_ERR]
System error.

[PAM_BUF_ERR]
Memory buffer error.

[PAM_CONV_ERR]
Conversation error.

88 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_start()

NAME
pam_start — initiate a PAM transaction

SYNOPSIS
#include <security/pam_appl.h>

int pam_start (
const char * service ,
const har * user ,
const struct pam_conv * pam_conv ,
pam_handle_t ** pamh

);

DESCRIPTION
The pam_start() function initiates a PAM transaction. On successful completion, pamh refers to a
PAM handle for use with subsequent calls to the authentication library.

The arguments for pam_start() are:

service (in)
The name of the current service.

user (in)
The name of the user to be authenticated.

pam_conv (in)
The address of the conversation structure.

pamh (out)
The pam authentication handle is returned. This is then used for all subsequent calls to the
authentication library.

The pam_conv structure, pam_conv, contains the address of the conversation function provided
by the application. The underlying PAM service module invokes this function to output
information to and retrieve input from the user. The pam_conv structure has the following
entries:

struct pam_conv {
int ((**conv)(); /* Conversation function */
void (**appdata_ptr; /* Application data */

};
where

int conv(int num_msg,
const struct pam_message **msg, struct pam_response **resp,
void *appdata_ptr);

The function conv() is called by a service module to hold a PAM conversation with the
application or user. For window applications, the application can create a new pop-up window
to be used by the interaction.

The parameter num_msg is the number of messages associated with the call. The parameter msg
is a pointer to an array of length num_msg of the pam_message structure.

The structure pam_message is used to pass prompt, error message, or any text information from
the authentication service to the application or user. It is the responsibility of the PAM service
modules to localize the messages. The memory used by pam_message has to be allocated and
freed by the PAM modules. The pam_message structure has the following entries:

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 89

pam_start() PAM — Application Program Interface (API)

struct pam_message{
int msg_style;
char ∗msg;

};

The message style, msg_style, can be set to one of the following values:

PAM_PROMPT_ECHO_OFF
Prompt user, disabling echoing of response.

PAM_PROMPT_ECHO_ON
Prompt user, enabling echoing of response.

PAM_ERROR_MSG
Print error message.

PAM_TEXT_INFO
Print general text information.

The maximum size of the message and the response string is PAM_MAX_MSG_SIZE defined in
<security/pam_appl.h>.

The structure pam_response is used by the authentication service to get the user’s response back
from the application or user. The storage used by pam_response has to be allocated by the
application and freed by the PAM modules. The pam_response structure has the following
entries:

struct pam_response{
char (**resp;
int resp_retcode; /* currently not used, should be set to 0 */

};

It is the responsibility of the conversation function to strip off newline characters for
PAM_PROMPT_ECHO_OFF and PAM_PROMPT_ECHO_ON message styles, and to add
newline characters (if appropriate) for PAM_ERROR_MSG and PAM_TEXT_INFO message
styles.

appdata_ptr is an application data pointer which is passed by the application to the PAM service
modules. Since the PAM modules pass it back through the conversation function, the
applications can use this pointer to point to any application-specific data.

pam_end() is called to terminate the authentication transaction identified by pamh and to free any
storage area allocated by the authentication module. The argument, status, is passed to the
cleanup() function stored within the pam handle, and is used to determine what module-specific
state must be purged. A cleanup function is attached to the handle by the underlying PAM
modules through a call to pam_set_item() to free module-specific data.

RETURN VALUE
The following PAM status codes shall be returned:

[PAM_SUCCESS]
Successful completion.

[PAM_SERVICE_ERR]
Error in underlying service module.

[PAM_SYSTEM_ERR]
System error.

90 Preliminary Specification (1997)

PAM — Application Program Interface (API) pam_start()

[PAM_BUF_ERR]
Memory buffer error.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 91

pam_strerror() PAM — Application Program Interface (API)

NAME
pam_strerror — get PAM standard error message string

SYNOPSIS
#include <security/pam_appl.h>

const char *pam_strerror (
pam_handle_t * pamh,
int error_number

);

DESCRIPTION
The pam_strerror() function maps the PAM error number in error_number to a PAM error
message and returns the error message. The application should not free or modify the string
returned. The function returns a NULL if cannot map error_number to a string.

The arguments for pam_strerror() are:

pamh (in)
The PAM authentication handle.

error_number (in)
The number of the error for which the error message is required.

RETURN VALUE
If successful, the string mapped to error_number is returned.

If error_number cannot be mapped to a string, NULL is returned.

92 Preliminary Specification (1997)

Appendix A

Example Header Files

This appendix provides an illustration of the header files required for a PAM implementation.

A.1 PAM_APPL.H

#define PAM_SUCCESS 0 /* Normal function return */
#define PAM_OPEN_ERR 1 /* Failure in loading service module*/
#define PAM_SYMBOL_ERR 2 /* Symbol not found */
#define PAM_SERVICE_ERR 3 /* Error in underlying service module */
#define PAM_SYSTEM_ERR 4 /* System error */
#define PAM_BUF_ERR 5 /* Memory buffer error */
#define PAM_CONV_ERR 6 /* Conversation failure */
#define PAM_PERM_DENIED 7 /* Permission denied */
#define PAM_MAXTRIES 8 /* Maximum number of tries exceeded */
#define PAM_AUTH_ERR 9 /* Authentication failure */
#define PAM_NEW_AUTHTOK_REQD 10 /* Get new auth token from the user */
#define PAM_CRED_INSUFFICIENT 11 /* can not access auth data b/c */

/* of insufficient credentials */
#define PAM_AUTHINFO_UNAVAIL 12 /* Can not retrieve auth information */
#define PAM_USER_UNKNOWN 13 /* No account present for user */
#define PAM_CRED_UNAVAIL 14 /* can not retrieve user credentials */
#define PAM_CRED_EXPIRED 15 /* user credentials expired */
#define PAM_CRED_ERR 16 /* failure setting user credentials */
#define PAM_ACCT_EXPIRED 17 /* user account has expired */
#define PAM_AUTHTOK_EXPIRED 18 /* Password expired and no longer */
#define PAM_SESSION_ERR 19 /* can not make/remove entry for */

/* specified session */
#define PAM_AUTHTOK_ERR 20 /* Authentication token */

/* manipulation error */
#define PAM_AUTHTOK_RECOVERY_ERR 21 /* Old authentication token */

/* cannot be recovered */
#define PAM_AUTHTOK_LOCK_BUSY 22 /* Authentication token */

/* lock busy */
#define PAM_AUTHTOK_DISABLE_AGING 23 /* Authentication token aging */

/* is disabled */
#define PAM_NO_MODULE_DATA 24 /* module data not found */
#define PAM_IGNORE 25 /* ignore module */
#define PAM_ABORT 26 /* General PAM failure */
#define PAM_TRY_AGAIN 27 /* Unable to update password */

/* Try again another time */
#define PAM_MODULE_UNKNOWN 28 /* Module unknown */
#define PAM_DOMAIN_UNKNOWN 29 /* Domain unknown */

/*
* structure pam_message is used to pass prompt, error message,
* or any text information from scheme to application/user.
*/

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 93

PAM_APPL.H Example Header Files

struct pam_message {
int msg_style; /* Msg_style - see below */
char *msg; /* Message string */

};

/*
* msg_style defines the interaction style between the
* scheme and the application.
*/

#define PAM_PROMPT_ECHO_OFF 1 /* Echo off when getting response */
#define PAM_PROMPT_ECHO_ON 2 /* Echo on when getting response */
#define PAM_ERROR_MSG 3 /* Error message */
#define PAM_TEXT_INFO 4 /* Textual information */

/*
* max # of messages passed to the application through the
* conversation function call
*/

#define PAM_MAX_NUM_MSG 32

/*
* max size (in chars) of each messages passed to the application
* through the conversation function call
*/

#define PAM_MAX_MSG_SIZE 512

/*
* max size (in chars) of each response passed from the application
* through the conversation function call
*/

#define PAM_MAX_RESP_SIZE 512

/*
* structure pam_response is used by the scheme to get the user’s
* response back from the application/user.
*/

struct pam_response {
char *resp; /* Response string */
int resp_retcode; /* Return code - for future use */

};

/*
* structure pam_conv is used by authentication applications for
* passing call back function pointers and application data pointers
* to the scheme
*/

struct pam_conv {
int (*conv)(int, struct pam_message **,
struct pam_response **, void *);
void *appdata_ptr; /* Application data ptr */

94 Preliminary Specification (1997)

Example Header Files PAM_APPL.H

};

/* the pam handle */
typedef struct pam_handle pam_handle_t;

/*
* pam_start() is called to initiate an authentication exchange
* with PAM.
*/

extern int
pam_start(

const char *service_name, /* Service Name */
const char *user, /* User Name */
const struct pam_conv *pam_conv, /* Conversation structure */
pam_handle_t **pamh /* Address to store handle */

);

/*
* pam_end() is called to end an authentication exchange with PAM.
*/

extern int
pam_end(

pam_handle_t *pamh, /* handle from pam_start() */
int status /* the final status value that */

/* gets passed to cleanup functions */
);

/*
* pam_set_item is called to store an object in PAM handle.
*/

extern int
pam_set_item(

pam_handle_t *pamh, /* PAM handle */
int item_type, /* Type of object - see below */
const void *item /* Address of place to put pointer */

/* to object */
);

/*
* pam_get_item is called to retrieve an object from the static data area
*/

extern int
pam_get_item(

const pam_handle_t *pamh, /* PAM handle */
int item_type, /* Type of object - see below */
void **item /* Address of place to put pointer */

/* to object */
);

/* Items supported by pam_[sg]et_item() calls */
#define PAM_SERVICE 1 /* The program/service name */
#define PAM_USER 2 /* The user name */

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 95

PAM_APPL.H Example Header Files

#define PAM_TTY 3 /* The tty name */
#define PAM_RHOST 4 /* The remote host name */
#define PAM_CONV 5 /* The conversation structure */
#define PAM_AUTHTOK 6 /* The authentication token */
#define PAM_OLDAUTHTOK 7 /* Old authentication token */
#define PAM_RUSER 8 /* The remote user name */
#define PAM_USER_PROMPT 9 /* The user prompt */

/*
* pam_get_user is called to retrieve the user name (PAM_USER). If
* PAM_USER is not set then this call will prompt for the user name
* using the conversation function. This function should only be used
* by modules, not applications.
*/

extern int
pam_get_user(

pam_handle_t *pamh, /* PAM handle */
char **user, /* User Name */
const char *prompt /* Prompt */

);

/*
* pam_set_data is used to create module specific data, and
* to optionally add a cleanup handler that gets called by pam_end.
*
*/

extern int
pam_set_data(

pam_handle_t *pamh, /* PAM handle */
const char *module_data_name, /* unique module data name */
const void *data, /* the module specific data */
void (*cleanup)(pam_handle_t *pamh, void *data, int pam_end_status)

);

/*
* get module specific data set by pam_set_data.
* returns PAM_NO_MODULE_DATA if specified module data was not found.
*/

extern int
pam_get_data(

const pam_handle_t *pamh,
const char *module_data_name,
void **data

);

/*
* PAM equivalent to strerror();
*/

extern char *
pam_strerror(

pam_handle_t *pamh, /* pam handle */

96 Preliminary Specification (1997)

Example Header Files PAM_APPL.H

int errnum /* error number */
);

/* general flag for pam_* functions */
#define PAM_SILENT 0x80000000

/*
* pam_authenticate is called to authenticate the current user.
*/

extern int
pam_authenticate(

pam_handle_t *pamh,
int flags

);

/*
* Flags for pam_authenticate
*/

#define PAM_DISALLOW_NULL_AUTHTOK 0x1 /* The password must be non-null*/

/*
* pam_authenticate_secondary is called to authenticate the current user

to a secondary domain.
*/

extern int
pam_authenticate_secondary (

pam_handle_t * pamh,
char * target_username,
char * target_module_type,
char * target_authn_domain,
char * target_supp_data,
unsigned char * target_module_authtok,
int flags

);

/*
* pam_acct_mgmt is called to perform account management processing
*/

extern int
pam_acct_mgmt(

pam_handle_t *pamh,
int flags

);

/*
* pam_open_session is called to note the initiation of new session
* in the appropriate administrative data bases.
*/

extern int
pam_open_session(

pam_handle_t *pamh,

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 97

PAM_APPL.H Example Header Files

int flags
);

/*
* pam_close_session records the termination of a session.
*/

extern int
pam_close_session(

pam_handle_t *pamh,
int flags

);

/* pam_setcred is called to set the credentials of the current user */
extern int
pam_setcred(

pam_handle_t *pamh,
int flags

);

/* flags for pam_setcred() */
#define PAM_ESTABLISH_CRED 0x1 /* set scheme specific user id */
#define PAM_DELETE_CRED 0x2 /* unset scheme specific user id */
#define PAM_REINITIALIZE_CRED 0x4 /* reinitialize user credentials */

/* (after a password has changed */
#define PAM_REFRESH_CRED 0x8 /* extend lifetime of credentials */

/* pam_chauthtok is called to change authentication token */

extern int
pam_chauthtok(

pam_handle_t *pamh,
int flags

);

/*
* Be careful - there are flags defined for pam_sm_chauthtok() in
* pam_modules.h also.
*/

#define PAM_CHANGE_EXPIRED_AUTHTOK 0x4 /* update expired passwords only */

/* pam_getenv is called to retrieve the value of a
* PAM environment variable
*/

char* pam_getenv (
pam_handle_t * pamh,
const char * name,

);

/* pam_getenvlist is called to retrieve a list of alli
* the PAM environment variables
*/

98 Preliminary Specification (1997)

Example Header Files PAM_APPL.H

char** pam_getenvlist (
pam_handle_t * pamh,

);

/* pam_putenv sets the value of a PAM environment variable */

int pam_putenv (
pam_handle_t * pamh,
const char * namevalue,

);

/* pam_get_mapped_authok gets a mapped password for the user */

int pam_get_mapped_authtok (
pam_handle_t * pamh,
const char * target_module_username, |
const char * target_module_type, |
const char * target_authn_domain, |
size_t * target_authtok_len,
unsigned char ** target_module_authtok |

);

/* pam_set_mapped_authtok stores a mapped password for
* the username supplied
*/

int pam_set_mapped_authtok (
pam_handle_t * pamh,
char * target_module_username,
size_t * target_authtok_len,
unsigned char * target_module_authtok,
char * target_module_type,
char * target_authn_domain,

);

/* pam_get_mapped_username retrieves a valid matched identity
* in a new domain
*/

int pam_get_mapped_username (
pam_handle_t * pamh,
const char * src_username,
const char * src_module_type,
const char * src_authn_domain,
const char * target_module_type,
const char * target_authn_domain,
char ** target_module_username,

);

/* pam_set_mapped_username stores a mapped name for the
* username supplied
*/

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 99

PAM_APPL.H Example Header Files

int pam_set_mapped_username (
pam_handle_t * pamh,
char * src_username, |
char * src_module_type, |
char * src_authn_domain, |
char * target_module_username,
char * target_module_type, |
char * target_authn_domain, |

);

/* pam_get_user retrieves the current user name from a PAM handle */

int pam_get_user (
pam_handle_t * pamh,
char ** user,
const char * prompt

);

100 Preliminary Specification (1997)

Example Header Files PAM_MODULE.H

A.2 PAM_MODULE.H
extern int
pam_sm_authenticate(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_authenticate_secondary(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_setcred(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_acct_mgmt(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_open_session(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_close_session(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

/*
* Be careful - there are flags defined for pam_chauthtok() in
* pam_appl.h also.
*/

#define PAM_PRELIM_CHECK 0x1
#define PAM_UPDATE_AUTHTOK 0x2

extern int
pam_sm_chauthtok(

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 101

PAM_MODULE.H Example Header Files

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_get_mapped_authtok(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_set_mapped_authtok(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_get_mapped_username(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

extern int
pam_sm_set_mapped_username(

pam_handle_t *pamh,
int flags,
int argc,
const char **argv);

102 Preliminary Specification (1997)

Appendix B

PAM Configuration Administration

The syntax and semantics of the PAM configuration data are part of this specification. However,
the physical form in which that configuration data is stored is not specified.

Existing implementations of PAM utilize a file, pam.conf, located on each platform supporting
PAM to hold the PAM configuration data. It is not a requirement of this specification that an
implementation needs to support a local pam.conf file. A centralized service could be provided
for ease of administration.

The current PAM configuration syntax supports the definition of PAM behavior on a
host/service basis. The possibility of extending the PAM configuration file to include user
identities and thus support a host/user/service basis has been discussed during the
development of this specification but has been deferred to a future version.

This specification does not include any definition of the way in which underlying modules are
configured, except where module specific parameters are to be included in the options field as
part of an entry within the PAM configuration data. The purpose and value of this specification
is to define a common interface to authentication and other types of modules. The mechanism
by which the modules used are configured is implementation specific.

B.1 Mapping Service Configuration
The mapping service is configured through the PAM configuration file. Such services are
identified by a PAM type mapping. Just like the other PAM types, mapping modules can be
specified on a per service basis or for all services through the "OTHER" entry. Multiple mapping
modules can also be stacked.

It is not a requirement for the module providers to use mapped user names or passwords. If
mapping is supported, the module provider should document whether mapping is provided
and whether for user names, passwords, or both. The system administrator can enable mapping
on a per application basis through the use of option flags such as "map=user" or "map=pass". Based
on such flags, the modules should call pam_get_user() or pam_get_mapped_username() to get the
name of the user.

It is the responsibility of the PAM engine to load the mapping services and route the "get" and
"set" calls to the appropriate mapping services, and return appropriate status to the calling
module. This is very similar to the way PAM engine handles other PAM types such as auth.

If there are multiple mapping modules, the semantics of the control flags (that is, optional,
required, and sufficient) require special attention. With multiple mapping services, the desired
semantics are that the result from the first successful map will be used. For updates, the new
map should be sent to all the configured mapping services so that the appropriate mapping
service gets updated. Thus for the get calls, the semantics required are of the sufficient flag, and
for the set calls, the semantics required are of the optional flag.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 103

Module Option Parameters PAM Configuration Administration

B.2 Module Option Parameters
Modules may be supplied with parameters via the options field of a PAM configuration entry.
The recommended syntax is:

option
or
option_name=option_value

WHITE SPACE is delimiter between options

Proprietary option names may be used. Collision with standard names is considered to be
unlikely and easily addressed by one or other names being changed.

Option names should be registered with The Open Group. The list of registered names will be
published by The Open Group, and details about the procedure for registering new option
names will also be published. For further details write to:

OGsecurity-request@opengroup.org

That document also describes the procedure for registering new option names.

B.3 Additional PAM Options
The introduction of options in the PAM configuration are necessary to accommodate mapping
and additional authentication attempts. The following options are defined:

map=user
The module should do mapping for user names.

map=pass
The module should do mapping for passwords.

map
The module should do mapping for user names and passwords.

retry_user
If an authentication service retrieves an invalid user name (this could be due to
unsynchronized database), the authentication would fail. If an option such as retry_user
were present in the configuration file, the authentication service should prompt the user for
another name and reattempt authentication. If this user name is valid, it should update the
mapping database, using the appropriate PAM set mapping routines.

retry_pass
If an authentication service retrieves an invalid password (this could be due to
unsynchronized database), the authentication would fail. If an option such as retry_pass
were present in the configuration file, the authentication service should prompt the user for
another password and reattempt authentication. If this password is valid, it should update
the mapping database, using the appropriate PAM set mapping routines.

104 Preliminary Specification (1997)

Appendix C

Internationalization

The issue of codesets is viewed by the working group as a general issue that requires addressing
globally. It would be to parochial to try and address currently in PAM.

This appendix documents the issue and some proposals as presented to and discussed by the
working group.

C.1 Introduction
The PAM architecture assumes that usernames and passwords are selected from the same
codeset and handled using C programming character pointers. This may not be true since there
are a variety of codesets available. In addition, not all characters sets are handled using C
character pointers. A proposal from Hewlett-Packard recommends a parameter to maintain the
codeset type.

C.2 Single System Codesets
A username and corresponding password are compared against stored data, (/etc/passwd on a
simple UNIX machine). On a stand-alone machine, the comparison data and the interface which
captures data, utilize the same codeset.

A simple byte by byte match between the text collected by the interface and the comparison data
may be used for the username. Yet, passwords comparisons are not so simple since it is
dependent upon the codeset by which the password is represented.

For example, let us consider a user with password "ABCD" on a system where the password
comparison data is formed in the UNIX manner.

If the system uses the ASCII codeset, an encryption key is generated from {0x41, 0x42, 0x43,
0x44} and a fixed plaintext is encrypted with this key. If the system uses EBCDIC, the
encryption key is generated from {0xC1, 0xC2, 0xC3, 0xC4}.

Therefore, even if the plaintext is encrypted using identical algorithms on these two systems, the
results will differ due to the codeset.

C.3 Usernames
If the login interface and the authentication service (AS) do not reside on the same machine, it is
not reasonable to assume compatible codesets are deployed.

For example, in a Japanese enterprise where the username is in Kanji, a user logs into a machine
which uses Shift-JIS. But suppose the authentication service is based upon eucJP. In order to
achieve successful authentication, the Shift-JIS username must be recognized by the eucJP
service.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 105

Passwords Internationalization

C.4 Passwords
A system may restrict passwords to a particular set of characters which exist in all versions of
EBCDIC and localizations of ISO 646, such as ASCII. The system may also perform conversions
to ISO 646 prior to processing. Although this guarantees consistent comparison data, it may be
undesirable. Technically, this approach is not sufficient - as the character set decreases,
passwords become weaker. In addition, it is inconvenient to use an unfamiliar set of characters
for password selection.

C.5 Proposed Solution
From the previous example, a user has a Kanji password (Shift-JIS codeset) but an AS which
requires a different codeset, eudJP. One potential solution involves passing the Shift-JIS
password, with a tag indicating the codeset type, from the client to the AS though a protected
channel. The AS converts the password to eucJP and proceeds with its comparison to the stored
data.

The stored value in the remote AS differs from the encrypted Shift-JIS password (on the local
machine) since different codesets are employed. If local authentication is required, password
synchronization between the machines may not be achieved by simply copying the remote AS’s
stored value to the client, even though both use the same encryption algorithm.

Further complications arise if the client attempts to convert the password to the codeset used by
the remote AS. That is, the client must determine the codeset used by the AS. In addition, if local
authentication is required, the client must not only verify the type of codeset applied to generate
the data, but also securely retrieve the stored value from the remote AS.

Regardless of codesets, authentication services must function properly.

C.6 Smart Cards
The issues discussed above apply to smart cards which are used primarily as a repository of
passwords and computations are performed elsewhere. If passwords on a card are indexed by
username, there may be complications if identical usernames are used on machines with
different codesets. However, if passwords are indexed by system name and username pairs,
smart cards may hold passwords in the localized codeset.

106 Preliminary Specification (1997)

Appendix D

XSSO Account Management Services

The essential objective of XSSO Account Management services is to provide support for the
development of applications to implement co-ordinated management of account information
bases in a heterogeneous set of security domains (platforms and applications).

As described in Chapter 1, an individual end-user of a distributed system typically requires the
capability to utilize many different platforms and applications (domains). To provide this
capability an individual needs to be represented by entries in the account information bases
appropriate to each of those domains.

Each individual domain will have its own set of account attributes to be managed. These are
referenced to domain specific identities and have domain specific formats. The requirement on
XSSO is to provide the capability of managing a minimum common core set of such attributes
with the capability for future extension.

Note: The business benefit sought from the specification of the XSSO ACM Service is a
reduction in the number of administrative interactions with the system to manage
individual accounts. In an approach based on a minimum common core set of
attributes, the extent to which these benefits are realisable within a particular system
depend upon an assumption that any additional attributes required for accounts by a
particular domain can be generated on basis of domain defined defaults or derived
from XSSO provided attribute values on the basis of domain defined rules. As an
example, under DCE the creation of a login account requires the previous creation of
the appropriate principal, group and organization registry entries.

D.1 Scope of XSSO Account Management

D.1.1 XBSS Functional Requirements

The core requirements of XSSO Account Management are based upon requirements detailed in
the XBSS. These encompass both Account Level Policies and System Level Policies.

Account-level Policy

The following requirements are applicable to the administration of individual accounts:

• By default all accounts within the scope of a policy domain shall be uniquely identified for
the purposes of authentication and security audit. This may be achieved by the use of a
single unique identity within the policy domain or by a one to one mapping of primary
domain identity to secondary domain identity if a single identity representation cannot be
used for all services within the policy domain.

Note: It is acceptable for identities or attributes used solely for the purposes of
authorization to be shared by several principals. Examples of such use are for the
support of roles and anonymous ftp services.

• Authentication data shall include information for verifying the identity of individual
principals.

• Policy attributes of individual principals shall be maintained (for example, groups, time
intervals, location). At least a primary group is mandatory.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 107

Scope of XSSO Account Management XSSO Account Management Services

Note: Some implementations support the concept of supplementary groups in which a
principal may exercise the rights applicable to a set of groups concurrently.

Within the XSSO, the concept of a group is subsumed as an account attribute and is
not separately distinguished.

• An administrator shall be able to enable and disable an account.

• An administrator shall be able to enquire of status information for all active principals and all
accounts (enabled or disabled).

• Initialize and change an account password.

• Set password expiration at any time, including before first use.

• Audit event pre-selection mask by account.

System-level Policy

The following XBSS requirements are applicable and controlled on a policy domain wide basis:

• An administrator shall be able to configure the period by which subsequent sign-on attempts
are delayed after a failed sign-on attempt.

• Configure password ageing parameters.

• Configure period and frequency of end-user notification of password expiry.

• Configure password re-use controls on the basis of at least one of:

— Period of time.

— Number of password changes.

— Minimum change period.

• Configure required complexity of end-user entered passwords.

D.1.2 Basic Functional Requirements

The XSSO ACM-API is required to support the following functions within the domain
supporting the interface:

Add Account
Create a new account.

Delete Account
Delete account.

Note: If done thoroughly, this encompasses the deletion or reassignment of system
resources currently assigned to the account according to the applicable policy. For
example, files owned by the account should be deleted or have their ownership
changed. Access authorizations specifically assigned for the account should be
removed. For example, this may imply a change of ACLs and file ownership
attributes.

Update Account
Change the value of account attributes.

List Accounts
List all accounts or accounts based on optional selection criteria. This may include the
selective listing of "active accounts" for those domains in which the interpretation of an
"active account" is defined.

108 Preliminary Specification (1997)

XSSO Account Management Services Scope of XSSO Account Management

Disable/Enable Account
Disable and enable the use of an account to access the services of the domain. The disabling
of an account should include, where possible, the disabling of any scheduled sessions for
the account and the termination of any interactive sessions for the account that are in
progress at the time the account is disabled.

Update Account Authentication Information
This includes update of account authentication information by an administrator, including a
forced change on first usage, and by the end-user via XSSO Sign-on Services. An
administrator may also be able to update the method or methods of authentication. In the
first version of XSSO the only form of authentication information required to be supported
are passwords and pass phrases but the specification should not preclude future
extensibility.

Add Account Attribute
Create a new attribute that may be assigned to accounts.

Delete Account Attribute
Delete an attribute. Where possible this should include the removal of this attribute from all
accounts, or should only succeed if the attribute is not currently assigned to any account.

Set Account Attributes
Set the values of attributes for an account.

Get Account Attributes
Retrieve the attributes assigned to an account.

D.2 Account Management Authorities
The account management authorities identified below are disjoint authorities that are used to
control the exercise of Account Management Functions in support of the principles of Least
privilege and Separation of Duties.

XSSO_ACCOUNT_ADMIN
Required to create, populate, and modify accounts. Excludes modification of audit
attributes, authentication information and account enabling, disabling and deletion.

XSSO_ATTRIBUTE_ADMIN
Required to assign attributes to accounts. This authority may be parameterized to control
the modification of discrete sets of attributes.

Note: The next two authorities can be considered as specific examples of the
XSSO_ATTRIBUTE_ADMIN authority with the sets of attributes which they cover
having particular security significance.

XSSO_ACCOUNT_AUDITOR
Required to modify account audit attributes.

XSSO_ACCOUNT_SECURITY
Required to set and modify account authentication information attributes, and to enable,
disable, and delete accounts.

XSSO_ADMIN
Required to configure XSSO UAM services. For example to add/modify/delete domain types
and domain instances.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 109

Common Core Account Attributes XSSO Account Management Services

D.3 Common Core Account Attributes
The common core attributes for accounts represent the minimum set of attributes required by
XBSS for the purposes of both account level and system level policy enforcement. These
attributes are not necessarily applicable nor mappable to all component account registries within
a policy domain but a XSSO implementation has to be capable of supporting their management.
The common core attributes comprise:

Account_name
Human readable text string. Must be unique within the domain of definition.

Account_ID
Domain internal accountID that must be unique within the domain of definition.

Account Enabled Flag
Account enabled if flag set, account disabled if unset.

Account Last Used
Date and time the account was last used in an authentication operation.

Authentication Information
For the current specification this comprises at least a password. In the future it may include
information such as authentication method.

Authentication Information Expiry
The date and time at which the current authentication information expires at which system
level policy may enforce an authentication information change. Appropriate setting of this
attribute can force an authentication information change on the next use of the account for a
authentication operation.

Account Audit Identity
Identity assigned to an account for audit purposes within domain. (May be the same as
Account_ID.)

Account Audit Pre-selection Mask
Configuration of audit profile for account for those component services that support the
control of audit service by account.

Authorization Attributes
Set of authorizations assigned to account. These may include access identities, roles
identities, service specific privileges, and so on. These may be specific to each component
service within a XSSO policy domain.

Account Environment Data
Information that defines the environment to be created on session establishment within
which the account is required to operate. For example, shell or application, home directory,
environment variables, resource quotas, default resource access permissions, and so on.
These will be specific to each component service within a XSSO policy domain.

The interface style required to support XSSO is that in which the minimum information
necessary to identify the account is always required and all parameters, whether core or
extended are passed as a list of attribute/value pairs as and when required.

Note: The issue of atomicity of operations and locking has been discussed and the need to
identify any implicit locking mechanisms in the use of the interface identified. This is
only of concern in update operations. The semantics of the operation require defining.
There are two possible approaches:

110 Preliminary Specification (1997)

XSSO Account Management Services Common Core Account Attributes

• Replace complete account information with information supplied in function call,
or

• Add or replace only the specific information included in the function call.

D.4 Management of Account Information for Multiple Services
A concept of XSSO Account Administration is that XSSO provides a common management
interface to account information for all the component services within an XSSO Policy Domain.

Each component service may identify its account attributes by different labels and represent
them in different formats. Each domain may also utilize different naming schemes for account
identities. It is therefore necessary that functionality is included in an implementation of XSSO
UAM to enable an administrator to configure the mapping and XSSO sign-on components, such
as PAM, to be able to get the mapping to support secondary sign-on operations.

Such mappings may be based on two approaches:

Algorithmic
In which the secondary domain representation of an identity or attribute may be derived
from the primary domain representation on the basis of a transformation rule

Administrative
In which the mapping cannot be derived on the basis of a transformation rule but has to be
explicitly defined.

The XSSO administrative application management information base requires to hold the
following information:

Register of Domain Types
This is a register of the different types of domains that are integrated with and managed by
the XSSO administrative application. For each domain type, a list of the domain attributes is
maintained.

Register of Domain Instances
This is a register of instances of domains managed by the XSSO administrative application.
For each instance of a domain, its location and domain type is maintained.

Register of Accounts
This is a register of the accounts managed by the XSSO administrative application. For each
account a list of the domain instances within which it is registered and the attributes
assigned to it within each domain instance are maintained. This may include copies of the
credentials required to authenticate to the domain if required to support secondary sign-on.

The XSSO may not necessarily maintain a copy of the attributes assigned within each
domain instance provided that it can retrieve the information from the domain itself when
required.

Default Account Profiles
To facilitate the assignment of attributes across multiple domains to accounts and the
simultaneous registration of principals in multiple domains then a set of account profiles
may be defined. These may include rules for derivation or look up of secondary domain
specific attributes based on XSSO domain based attributes.

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 111

Management of Account Information for Multiple ServicesXSSO Account Management Services

D.4.1 Registry of Domain Types

For each domain typ, a set of attributes is required to be registered. For each attribute the
following information may be required:

Domain_Type
The domain type to which the attribute belongs.

Attribute_ID
The internal label by which the attribute is referenced.

Attribute_Name
The human readable label used to reference the attribute.

Attribute_Format (Encoding)
The format in which the attribute value is represented for storage and exchange.

Attribute_Default_Value
The rule by which the default value of this attribute is derived.

Domain_Authorities
The domain specific authorities that have to be possessed by a caller of the ACM-API in
order to query or modify this attribute.

D.5 XSSO Account Management Implementation Considerations

D.5.1 Mapping of Administrative Authorities to XSSO UAM Agents

An XSSO implementation needs to be able to map the domain specific authorities required to
manage the attributes within the domain to the XSSO administrative authorities and roles that it
supports. That is, an XSSO agent requires sufficient privilege to manage the domain that it
services. The exercise of those privileges must be matched to the authorization assigned to the
initiating administrator principals.

The security context of an XSSO agent invoked within a specific domain on behalf of an XSSO
Administrator is required to reflect the security context of the XSSO Administrator.

D.5.2 XSSO Management Information Base Initialization

An implementation is required to define how the XSSO Management Information Base is
initialized.

112 Preliminary Specification (1997)

Glossary

access control
The prevention of unauthorized use of a resource including the prevention of use of a
resource in an unauthorized manner (see ISO/IEC 7498-2).

access control information
(ACI) — any information used for access control purposes, including contextual
information (see ISO/IEC 10081-3).

access control policy
The set of rules that define the conditions under which an access may take place (see
ISO/IEC 10081-3).

accountability
The property that ensures that the actions of an entity may be traced to that entity (see
ISO/IEC 7498-2).

ACI
Access control information.

ACL
Access control list.

action
The operations and operands that form part of an attempted access (see ISO/IEC 10081-3).

active threat
The threat of a deliberate unauthorized change to the state of the system

administrative security information
Persistent information associated with entities; it is conceptually stored in the Security
Management Information Base. Examples are:

• security attributes associated with users and set up on user account installation, which is
used to configure the user’s identity and privileges within the system

• information configuring a secure interaction policy between one entity and another
entity, which is used as the basis for the establishment of operational associations
between those two entities.

API
Application Programming Interface.

The interface between the application software and the application platform, across which
all services are provided.

The application programming interface is primarily in support of application portability,
but system and application interoperability are also supported by a communication API
(see POSIX.0).

assertion
Explicit statement in a system security policy that security measures in one security domain
constitute an adequate basis for security measures (or lack of them) in another (see CESG
Memo).

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 113

Glossary

audit
See Security Audit (see ISO/IEC 7498-2).

audit authority
The manager responsible for defining those aspects of a security policy applicable to
maintaining a security audit (see ISO/IEC 10081-7).

audit trail
See Security Audit Trail (see ISO/IEC 7498-2).

authenticated identity
An identity of a principal that has been assured through authentication (see ISO/IEC
10081-2).

authentication
Verify claimed identity; see data origin authentication, and peer entity authentication (see
ISO/IEC 7498-2).

authentication certificate
Authentication information in the form of a security certificate which may be used to assure
the identity of an entity guaranteed by an authentication authority (see ISO/IEC 10081-2).

authentication exchange
A sequence of one or more transfers of exchange authentication information (AI) for the
purposes of performing an authentication (see ISO/IEC 10081-2).

authentication information (AI)
Information used to establish the validity of a claimed identity (see ISO/IEC 7498-2).

authentication initiator
The entity which starts an authentication exchange (see ISO/IEC 10081-2).

authentication method
Method for demonstrating knowledge of a secret. The quality of the authentication method,
its strength is determined by the cryptographic basis of the key distribution service on
which it is based. A symmetric key based method, in which both entities share common
authentication information, is considered to be a weaker method than an asymmetric key
based method, in which not all the authentication information is shared by both entities.

authorization
The granting of rights, which includes the granting of access based on access rights (see
ISO/IEC 7498-2).

authorization policy
A set of rules, part of an access control policy, by which access by security subjects to
security objects is granted or denied. An authorization policy may be defined in terms of
access control lists, capabilities or attributes assigned to security subjects, security objects or
both (see ECMA TR/46).

availability
The property of being accessible and usable upon demand by an authorized entity (see
ISO/IEC 7498-2).

claim authentication information
(Claim AI) — information used by a claimant to generate exchange AI needed to
authenticate a principal (see ISO/IEC 10081-2).

clear text
Intelligible data, the semantic content of which is available (see ISO/IEC 7498-2).

114 Preliminary Specification (1997)

Glossary

client-server
These operations occur between a pair of communicating independent peer processes. The
peer process initiating a service request is termed the client. The peer process responding to
a service request is termed the server. A process may act as both client and server in the
context of a set of transactions.

confidentiality
The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes (see ISO/IEC 7498-2).

contextual information
Information derived from the context in which an access is made (for example, time of day)
(see ISO/IEC 10081-3).

corporate security policy
The set of laws, rules and practices that regulate how assets including sensitive information
are managed, protected and distributed within a user organization (see ITSEC).

countermeasure
The deployment of a set of security services to protect against a security threat.

credentials
Data that is transferred to establish the claimed identity of an entity (see ISO/IEC 7498-2).

data integrity
The property that data has not been altered or destroyed in an unauthorized manner (see
ISO/IEC 7498-2).

data origin authentication
The corroboration that the entity responsible for the creation of a set of data is the one
claimed.

denial of service
The unauthorized prevention of authorized access to resources or the delaying of time-
critical operations (see ISO/IEC 7498-2).

digital fingerprint
A characteristic of a data item, such as a cryptographic checkvalue or the result of
performing a one-way hash function on the data, that is sufficiently peculiar to the data item
that it is computationally infeasible to find another data item that possesses the same
characteristics (see ISO/IEC 10081-1).

digital signature
Data appended to, or a cryptographic transformation (see cryptography) of, a data unit that
allows a recipient of the data unit to prove the source and integrity of the data unit and
protect against forgery for example, by the recipient (see ISO/IEC 7498-2).

discretionary access control
A discretionary authorization scheme is one under which any principal using the domain
services may be authorized to assign or modify ACI such that he may modify the
authorizations of other principals under the scheme. A typical example is an ACL scheme
which is often referred to as Discretionary Access Control (DAC).

distinguishing identifier
Data that unambiguously distinguishes an entity in the authentication process. Such an
identifier shall be unambiguous at least within a security domain (see ISO/IEC 10081-2).

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 115

Glossary

distributed application
A set of information processing resources distributed over one or more open systems which
provides a well-defined set of functionality to (human) users, to assist a given (office) task
(see ECMA TR/46).

exchange authentication information
(Exchange AI) — information exchanged between a claimant and a verifier during the
process of authenticating a principal (see ISO/IEC 10081-2).

identification
The assignment of a name by which an entity can be referenced. The entity may be high
level (such as a user) or low level (such as a process or communication channel.

identity-based security policy
A security policy based on the identities or attributes of users, a group of users, or entities
acting on behalf of the users and the resources or targets being accessed (see ISO/IEC 7498-
2).

initiator
An entity (for example, human user or computer based entity) that attempts to access other
entities (see ISO/IEC 10081-3).

integrity
See Data Integrity (see ISO/IEC 7498-2).

masquerade
The unauthorized pretence by an entity to be a different entity (see ISO/IEC 7498-2).

non-discretionary access control
A non-discretionary authorization scheme is one under which only the recognized security
authority of the security domain may assign or modify the ACI for the authorization
scheme such that the authorizations of principals under the scheme are modified.

off-line authentication certificate
A particular form of authentication information binding an entity to a cryptographic key,
certified by a trusted authority, which may be used for authentication without directly
interacting with the authority (see ISO/IEC 10081-2).

on-line authentication certificate
A particular form of authentication information, certified by a trusted authority, which may
be used for authentication following direct interaction with the authority (see ISO/IEC
10081-2).

operational security information
Transient information related to a single operation or set of operations within the context of
an operational association, for example, a user session. Operational security information
represents the current security context of the operations and may be passed as parameters
to the operational primitives or retrieved from the operations environment as defaults.

organizational security policy
Set of laws, rules, and practices that regulates how an organization manages, protects, and
distributes sensitive information (see Federal Criteria).

password
Confidential authentication information, usually composed of a string of characters (see
ISO/IEC 7498-2).

116 Preliminary Specification (1997)

Glossary

peer-entity authentication
The corroboration that a peer entity in an association is the one claimed (see ISO/IEC 7498-
2).

physical security
The measures used to provide physical protection of resources against deliberate and
accidental threats (see ISO/IEC 7498-2).

platform domain
A security domain encompassing the operating system, the entities and operations it
supports and its security policy.

policy
See security policy (see ISO/IEC 7498-2).

primary service
An independent category of service such as operating system services, communication
services and data management services. Each primary service provides a discrete set of
functionality. Each primary service inherently includes generic qualities such as usability,
manageability and security.

Security services are therefore not primary services but are invoked as part of the provision
of primary services by the primary service provider.

principal
An entity whose identity can be authenticated (see ISO/IEC 10081-2).

privacy
The right of individuals to control or influence what information related to them may be
collected and stored and by whom and to whom that information may be disclosed.

Note: because this term relates to the right of individuals, it cannot be very precise and
its use should be avoided except as a motivation for requiring security (see
ISO/IEC 7498-2).

quality of protection
A label that implies methods of security protection under a security policy. This normally
includes a combination of integrity and confidentiality requirements and is typically
implemented in a communications environment by a combination of cryptographic
mechanisms.

repudiation
Denial by one of the entities involved in a communication of having participated in all or
part of the communication (see ISO/IEC 7498-2).

rule-based security policy
A security policy based on global rules imposed for all users. These rules usually rely on a
comparison of the sensitivity of the resources being accessed and the possession of
corresponding attributes of users, a group of users, or entities acting on behalf of users (see
ISO/IEC 7498-2).

seal
A cryptographic checkvalue that supports integrity but does not protect against forgery by
the recipient (that is, it does not support non-repudiation). When a seal is associated with a
data element, that data element is sealed (see ISO/IEC 10081-1).

secondary discretionary disclosure
An example of the misuse of access rights. It occurs when a principal authorized to access
some information copies that information and authorizes access to the copy by a second

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 117

Glossary

principal who is not authorized to access the original information.

secret key
In a symmetric cryptographic algorithm the key shared between two entities (see ISO/IEC
10081-1).

secure association
An instance of secure communication (using communication in the broad sense of space
and/or time) which makes use of a secure context.

secure context
The existence of the necessary information for the correct operation of the security
mechanisms at the appropriate place and time.

secure interaction policy
The common aspects of the security policies in effect at each of the communicating
application processes (see CESG Memo).

security architecture
A high level description of the structure of a system, with security functions assigned to
components within this structure (see CESG Memo).

security attribute
A security attribute is a piece of security information which is associated with an entity.

security audit
An independent review and examination of system records and operations in order to test
for adequacy of system controls, to ensure compliance with established policy and
operational procedures, to detect breaches in security and to recommend any indicated
changes in control, policy and procedures (see ISO/IEC 7498-2).

security audit trail
Data collected and potentially used to facilitate a security audit (see ISO/IEC 7498-2).

security auditor
An individual or a process allowed to have access to the security audit trail and to build
audit reports (see ISO/IEC 10081-7).

security aware
The caller of an API that is aware of the security functionality and parameters which may be
provided by an API.

security certificate
A set of security-relevant data from an issuing security authority that is protected by
integrity and data origin authentication, and includes an indication of a time period of
validity (see ISO/IEC 10081-1).

Note: All certificates are deemed to be security certificates (see the relevant definitions in
7498-2). The term "security certificate" is adopted in order to avoid terminology
conflicts with [X.509 | ISO 9594-8] (that is, the directory authentication standard).
[ISO/IEC CD 10181-1:Dec 1992]

security domain
A set of elements, a security policy, a security authority and a set of security-relevant
operations in which the set of elements are subject to the security policy, administered by
the security authority, for the specified operations (see ISO/IEC 10081-1).

security event manager
An individual or process allowed to specify and manage the events which may generate a

118 Preliminary Specification (1997)

Glossary

security message and to establish the action or actions to be taken for each security message
type (see ISO/IEC 10081-7).

security label
The marking bound to a resource (which may be a data unit) that names or designates the
security attributes of that resource (see ISO/IEC 7498-2).

Note: The marking may be explicit or implicit.

security policy
The set of criteria for the provision of security services (see also identity-based and rule-
based security policy).

security service
A service which may be invoked directly or indirectly by functions within a system that
ensures adequate security of the system or of data transfers between components of the
system or with other systems.

security state
State information that is held in an open system and which is required for the provision of
security services.

security token
A set of security-relevant data that is protected by integrity and data origin authentication
from a source that is not considered a security authority (see ISO/IEC 10081-1).

security unaware
The caller of an API that is unaware of the security functionality and parameters which may
be provided by an API.

service domain
A security domain encompassing an application, the entities and operations it supports and
its security policy.

signature
See digital signature (see ISO/IEC 7498-2).

strength of mechanism
An aspect of the assessment of the effectiveness of a security mechanism, namely the ability
of the security mechanism to withstand direct attack against deficiencies in its underlying
algorithms, principles and properties (see ITSEC).

system security function
A capability of an open system to perform security-related processing (see CESG Memo).

target
An entity to which access may be attempted (see ISO/IEC 10081-3).

threat
A potential violation of security (see ISO/IEC 7498-2).
An action or event that might prejudice security (see ITSEC).

trap door
A hidden software or hardware mechanism that permits system protection mechanisms to
be circumvented. It is activated in some non-apparent manner (for example, special
‘‘random’’ key sequence at a terminal) (see TCSEC).

trojan horse
Computer program containing an apparent or actual useful function that contains
additional (hidden) functions that allow unauthorized collection, falsification or destruction

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 119

Glossary

of data (see Federal Criteria).

trust
A relationship between two elements, a set of operations and a security policy in which
element X trusts element Y if and only if X has confidence that Y behaves in a well defined
way (with respect to the operations) that does not violate the given security policy (see
ISO/IEC 10081-1).

trusted computing base (TCB)
The totality of protection mechanisms within an IT system, including hardware, firmware,
software and data, the combination of which is responsible for enforcing the security policy.

trusted functionality
That which is perceived to be correct with respect to some criteria, for example, as
established by a security policy (see ISO/IEC 7498-2).

trusted path
Mechanism by which a person using a terminal can communicate directly with the TCB (see
Federal Criteria).

Note: Trusted path can only be activated by the person or the TCB and cannot be
imitated by untrusted software.

trusted third party
A security authority or its agent, trusted by other entities with respect to security-related
operations (see ISO/IEC 10081-1).

verification AI
Information used by a verifier to verify an identity claimed through exchange AI (see
ISO/IEC 10081-2).

verifier
An entity which is or represents the entity requiring an authenticated identity. A verifier
includes the functions necessary for engaging in authentication exchanges (see ISO/IEC
10081-2).

vulnerability
Weakness in an information system or components (for example, system security
procedures, hardware design, internal controls) that could be exploited to produce an
information-related misfortune (see Federal Criteria).

120 Preliminary Specification (1997)

Index

access control...113
access control information....................................113
access control policy ..113
account..29
accountability ..113
ACI...113
ACL ...113
action...113
active threat ...113
administrative security information113
API...113
APIs ...31
assertion..113
audit ..114
audit authority ..114
audit trail ..114
auth..29
authenticated identity ...114
authentication ...114
authentication certificate114
authentication exchange114
authentication information (AI)114
authentication initiator..114
authentication method ..114
authorization ...114
authorization policy...114
availability ...114
C-language

names ..28
calling convention

names ..28
status value..26

claim authentication information114
clear text ...114
client-server ...115
confidentiality ...115
conformance ..7
constants...28
contextual information..115
corporate security policy115
countermeasure ..115
credentials ..115
data integrity ...115
data origin authentication115
data type

int ...26

structured...25
denial of service ..115
digital fingerprint ...115
digital signature..115
discretionary access control115
distinguishing identifier..115
distributed application ..116
exchange authentication information116
flags..28
identification..116
identity-based security policy..............................116
initiator ...116
int ...26
integrity ..116
internationalization..105
item_type..29
mapping..29
masquerade..116
non-discretionary access control.........................116
off-line authentication certificate116
on-line authentication certificate.........................116
operational security information116
organizational security policy116
PAM

status code ...26
PAM Configuration Administration103
PAM Header Files...93
PAM_ABORT ..27
PAM_ACCT_EXPIRED...27

in pam_acct_mgmt() ...32
in pam_sm_acct_mgmt()66

pam_acct_mgmt()..32
pam_authenticate()..34
pam_authenticate_secondary().............................36
PAM_AUTHINFO_UNAVAIL27

in pam_authenticate()...35
in pam_sm_authenticate()69

PAM_AUTHTOK ...29
PAM_AUTHTOK_DISABLE_AGING.................27

in pam_chauthtok()...39
in pam_sm_chauthtok()73

PAM_AUTHTOK_ERR...27
in pam_chauthtok()...38
in pam_sm_chauthtok()73

PAM_AUTHTOK_EXPIRED27
in pam_acct_mgmt() ...33

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 121

Index

in pam_sm_acct_mgmt()67
PAM_AUTHTOK_LOCK_BUSY...........................27

in pam_chauthtok()...39
in pam_sm_chauthtok()73

PAM_AUTHTOK_RECOVERY_ERR27
in pam_chauthtok()...39
in pam_sm_chauthtok()73

PAM_AUTH_ERR..27
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71

PAM_BUF_ERR ..27
in ..43, 76
in pam_acct_mgmt() ...33
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_close_session()40
in pam_end()...42
in pam_get_item() ...47
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_get_user()..53
in pam_open_session()54
in pam_putenv() ..56
in pam_setcred() ..58
in pam_set_data() ..59
in pam_set_item()..61
in pam_set_mapped_authtok()63
in pam_set_mapped_username().....................65
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()74
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()82
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()86
in pam_start() ...91

PAM_BUF_ERR in
pam_sm_get_mapped_authtok()78
PAM_CHANGE_EXPIRED_AUTHTOK28
pam_chauthtok()..38
pam_close_session()..40
PAM_CONV..29
PAM_CONV_ERR..27

in ..55
in pam_acct_mgmt() ...33
in pam_authenticate()...35

in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_close_session()40
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_get_user() ..52-53
in pam_setcred() ..58
in pam_set_mapped_authtok()63
in pam_set_mapped_username().....................65
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()74
in pam_sm_close_session()76
in pam_sm_open_session()82
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()86

PAM_CONV_ERR in
pam_sm_get_mapped_authtok()78
PAM_CONV_ERR]

in pam_sm_get_mapped_username().............80
PAM_CRED_ERR...27

in pam_setcred() ..57
in pam_sm_setcred()...88

PAM_CRED_EXPIRED ...27
in pam_setcred() ..57
in pam_sm_setcred()...88

PAM_CRED_INSUFFICIENT................................27
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71

PAM_CRED_PRELIM_CHECK28
PAM_CRED_UNAVAIL..27

in pam_setcred() ..57
in pam_sm_setcred()...88

PAM_DELETE_CRED...28
PAM_DISALLOW_NULL_AUTHTOK...............28
PAM_DOMAIN_UNKNOWN..............................27

in pam_get_mapped_authtok()48
in pam_get_mapped_username()50
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()85

pam_end() ...42
PAM_ERROR_MSG...28
PAM_ESTABLISH_CRED.......................................28

122 Preliminary Specification (1997)

Index

pam_getenv()..44
pam_getenvlist() ..45
pam_get_data() ..43
pam_get_item() ..46
pam_get_mapped_authtok().................................48
pam_get_mapped_username()50
pam_get_user()...52
PAM_IGNORE..27

in pam_sm_authenticate()69
in pam_sm_chauthtok()73
in pam_sm_close_session()75
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()81
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()86

PAM_MAXTRIES ...27
in pam_authenticate()...35
in pam_sm_authenticate()69

PAM_MAX_MSG_SIZE ..28
PAM_MAX_NUM_MSG...28
PAM_MAX_RESP_SIZE..28
PAM_MODULE_UNKNOWN..............................27

in pam_get_mapped_authtok()48
in pam_get_mapped_username()50
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_set_mapped_authtok().................83
in pam_sm_set_mapped_username()85

PAM_NEW_AUTHTOKEN_REQD
in pam_acct_mgmt() ...32
in pam_sm_acct_mgmt()66

PAM_NEW_AUTHTOK_REQD...........................27
PAM_NO_MODULE_DATA..................................27

in pam_get_data()..43
PAM_OLDAUTHTOK ..29
PAM_OPEN_ERR

in pam_acct_mgmt() ...32
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_close_session()40
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_open_session()54
in pam_setcred() ..57
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64

in pam_sm_acct_mgmt()67
pam_open_session()..54
PAM_PERM_DENIED...27

in pam_acct_mgmt() ...33
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_open_session()54
in pam_setcred() ..57
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()74
in pam_sm_close_session()75
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()81
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()86

PAM_PROMPT_ECHO_OFF.................................28
PAM_PROMPT_ECHO_ON..................................28
pam_putenv() ...56
PAM_REFRESH_CRED ..28
PAM_REINITIALISE_CRED..................................28
PAM_RHOST ..29
PAM_RUSER...29
PAM_SERVICE ...29
PAM_SERVICE_ERR...27

in ..39, 75, 88
in pam_acct_mgmt() ...32
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_close_session()40
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_open_session()54
in pam_setcred() ..58
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()74
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()81

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 123

Index

in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()85
in pam_start() ...90

PAM_SESSION_ERR ...27
in pam_close_session()40
in pam_open_session()54
in pam_sm_close_session()75
in pam_sm_open_session()81

pam_setcred() ...57
pam_set_data() ...59
pam_set_item()...60
pam_set_mapped_authtok()62
pam_set_mapped_username()..............................64
PAM_SILENT..28
pam_sm_acct_mgmt() ..66
pam_sm_authenticate() ..68
pam_sm_authenticate_secondary()70
pam_sm_chauthtok() ..72
pam_sm_close_session() ..75
pam_sm_get_mapped_authtok()77
pam_sm_get_mapped_username()79
pam_sm_open_session() ..81
pam_sm_setcred()..87
pam_sm_set_mapped_authtok()..........................83
pam_sm_set_mapped_username()85
pam_start() ..89
pam_strerror() ..92
PAM_SUCCESS ..27

in pam_acct_mgmt() ...32
in pam_authenticate()...34
in pam_authenticate_secondary()....................37
in pam_chauthtok()...38
in pam_close_session()40
in pam_end()...42
in pam_get_data()..43
in pam_get_item() ...47
in pam_get_mapped_authtok()48
in pam_get_mapped_username()50
in pam_get_user()..52
in pam_open_session()54
in pam_putenv() ..56
in pam_setcred() ..57
in pam_set_data() ..59
in pam_set_item()..61
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_acct_mgmt()66
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()73
in pam_sm_close_session()75

in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()81
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................83
in pam_sm_set_mapped_username()85
in pam_start() ...90

PAM_SYMBOL_ERR ...27
in ..51
in pam_acct_mgmt() ...32
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_close_session()40
in pam_get_mapped_authtok()49
in pam_open_session()54
in pam_setcred() ..58
in pam_set_mapped_authtok()63
in pam_sm_acct_mgmt()67
in pam_sm_authenticate_secondary()71

PAM_SYMBOL_ERR]
in pam_set_mapped_username().....................64

PAM_SYSTEM_ERR ..27
in pam_acct_mgmt() ...32
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_close_session()40
in pam_end()...42
in pam_get_data()..43
in pam_get_item() ...47
in pam_get_mapped_authtok()49
in pam_get_mapped_username()51
in pam_get_user()..53
in pam_open_session()54
in pam_putenv() ..56
in pam_setcred() ..58
in pam_set_data() ..59
in pam_set_item()..61
in pam_set_mapped_authtok()63
in pam_set_mapped_username().....................65
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()74
in pam_sm_close_session()76
in pam_sm_get_mapped_username().............80
in pam_sm_open_session()82
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................84
in pam_sm_set_mapped_username()86

124 Preliminary Specification (1997)

Index

in pam_start() ...90
PAM_SYSTEM_ERR in
pam_sm_get_mapped_authtok()78
PAM_TEXT_INFO..28
PAM_TRY_AGAIN..27

in pam_chauthtok()...38
in pam_sm_chauthtok()73

PAM_TTY...29
PAM_UPDATE_AUTHTOK28
PAM_USER..29
PAM_USER_PROMPT ..29
PAM_USER_UNKNOWN......................................27

in pam_acct_mgmt() ...32
in pam_authenticate()...35
in pam_authenticate_secondary()....................37
in pam_chauthtok()...39
in pam_get_mapped_authtok()48
in pam_get_mapped_username()50
in pam_setcred() ..57
in pam_set_mapped_authtok()62
in pam_set_mapped_username().....................64
in pam_sm_acct_mgmt()67
in pam_sm_authenticate()69
in pam_sm_authenticate_secondary()71
in pam_sm_chauthtok()73
in pam_sm_get_mapped_authtok()78
in pam_sm_get_mapped_username().............80
in pam_sm_setcred()...88
in pam_sm_set_mapped_authtok().................83
in pam_sm_set_mapped_username()85

Parameter Passing Conventions in PAM.............25
password..29, 116
peer-entity authentication117
physical security ...117
platform domain...117
policy...117
primary service ...117
principal..117
privacy ..117
quality of protection ..117
repudiation ..117
return value..26
rule-based security policy.....................................117
seal ...117
secondary discretionary disclosure117
secret key..118
secure association ...118
secure context..118
secure interaction policy118
security architecture ..118
security attribute...118

security audit...118
security audit trail ..118
security auditor...118
security aware ...118
security certificate ..118
security domain ..118
security event manager ...118
security label..119
security policy ...119
security service..119
security state..119
security token ..119
security unaware ..119
service domain ..119
session ...29
signature...119
SSO introduction...1
status code..26
status value ..26
strength of mechanism..119
system security function.......................................119
target ...119
threat ...119
trap door...119
trojan horse ..119
trust ...120
trusted computing base (TCB).............................120
trusted functionality ..120
trusted path..120
trusted third party..120
verification AI..120
verifier...120
vulnerability ..120
XSSO Account Management Services................107
XSSO Architecture..9
XSSO Sign-on Services ..13

X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules 125

Index

126 Preliminary Specification (1997)

