
Preliminary Specification

Systems Management:

Topology Service

The Open Group

 March 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Preliminary Specification

Systems Management: Topology Service

ISBN: 1-85912-127-6
Document Number: P701

Published in the U.K. by The Open Group, March 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Preliminary Specification

Contents

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Scope.. 2
 1.3 Requirements... 3
 1.3.1 Association Management... 3
 1.3.2 Scalability and Performance .. 3
 1.3.3 Query Support.. 4
 1.3.4 Application Integration .. 4
 1.3.5 Interoperability... 5
 1.3.6 Usability... 5
 1.4 Relationship to Existing Services .. 6
 1.4.1 Relationship Service .. 6
 1.4.2 Transaction Service.. 6
 1.4.3 Factory Service ... 7
 1.4.4 Persistence Service... 7
 1.4.5 XCMF Policy Service ... 7
 1.4.6 XCMF Instance Management.. 8
 1.4.7 XCMF Managed Sets... 8

Chapter 2 Topology Service Overview .. 9
 2.1 High-level Architectural View... 10
 2.2 Key Concepts ... 11
 2.2.1 Topology .. 11
 2.2.2 Entities and Aggregate Entities... 11
 2.2.3 Topology Rules... 14
 2.2.3.1 Topology Rule Format ... 15
 2.2.3.2 Further Characteristics .. 16
 2.2.3.3 Summary of Topology Constraints ... 16
 2.2.4 Object Mode.. 17
 2.2.4.1 Fusion Method of Object Modelling... 18
 2.2.5 Topology Queries... 18
 2.3 Development Process... 19
 2.3.1 Service Development Process ... 19
 2.3.2 Creating a Topology Schema... 20
 2.3.3 Typical Process for Defining IDL Interfaces....................................... 21
 2.3.4 Populating the Topology Service Data Store 22
 2.4 Development Example .. 23
 2.4.1 Adding Enforcers... 29
 2.4.2 Queries... 29

Systems Management: Topology Service iii

Contents

Chapter 3 Data Definitions.. 31
 3.1 Topology.idl Definitions.. 31

Chapter 4 Populating Topology Interface .. 33
 4.1 EntityManager: Managing Entities ... 33
 Manage .. 34
 Unmanage ... 36
 Create_Empty_Entity .. 37
 Associate ... 38
 Disassociate .. 39
 Tie_Entities ... 40
 Untie_Entities .. 41
 In_Same_Aggregate ... 42
 Is_Managed .. 43
 State_Has_Changed ... 44
 Get_Associations .. 45
 Get_Topological_Type .. 46
 Get_Ties .. 47
 4.2 Managing Aggregate Entities Interface.. 48
 Get_Entities .. 49
 Get_Topological_Types .. 50
 Get_Entity_of_Type ... 51
 4.3 TopologyData.idl File... 52

Chapter 5 Managing Topological Types ... 55
 5.1 TopologicalTypeManager ... 55
 Create .. 56
 Dismiss .. 57
 Exists ... 58
 Get_All_Types .. 59
 Get_Parents .. 60
 Define_Rules ... 61
 Define_Enforcers .. 63
 Get_Association_Rules .. 65
 Get_Enforcers ... 66
 5.2 TopologyMetaData.idl File ... 67

Chapter 6 Manipulating Queries in Topology.. 71
 6.1 QueryExecution .. 71
 Stop .. 72
 Get_Status .. 73
 Get_Query .. 75
 Get_Next ... 76
 Get_All .. 77
 6.2 QueryExecutionFactory... 78
 Create .. 79
 Create_With_Filter .. 80
 6.3 TopologyQuery.idl File.. 82

iv Preliminary Specification

Contents

Appendix A Topology Query .. 85
 A.1 Introduction ... 85
 A.2 Topology Data Store... 87
 A.2.1 Type Matching.. 88
 A.2.2 Meta-AE (Meta-Aggregate Entity) ... 88
 A.2.3 Simple Navigation Paths.. 88
 A.2.4 Query Trees ... 89
 A.2.5 Example Queries.. 90
 A.2.6 Repetition .. 92
 A.2.7 References to Registered Queries... 94
 A.2.8 AE Matching Constraint... 94
 A.2.9 Query Result ... 95
 A.2.10 Result Construction Rules ... 95
 A.2.11 User Tags ... 95
 A.3 Topology Query System.. 96
 A.3.1 Query Language Definition ... 96
 A.4 TQL Overview... 98
 A.4.1 TQL Language.. 98
 A.4.2 TQL Compiler... 98
 A.4.3 TQL Grammar .. 98
 A.4.4 TQL Semantics ... 100
 A.4.4.1 Query Structure... 100

 Glossary ... 109

 Index... 111

List of Figures

2-1 High-level Architcture View of Topology Service.................................. 10
2-2 Topological Entities and Aggregate Entities .. 13
2-3 AEs and Topological Entities in the File System Example.................... 14
2-4 Matching Topology Roles with Topological Types 15
2-5 Topology Object Model .. 17
2-6 Conventions in Fusion Object Modelling Method.................................. 18
2-7 Typical Topology Service Development Process 19
2-8 Typical Process for Creating a Topology Schema 20
2-9 Typical Process for Defining IDL Interfaces... 21
2-10 Typical Process for Populating Topology Service Data Store............... 22
2-11 Topological Entities and Associations for PC NFS Example................ 24
2-12 Portion of Object Model for Development Example.............................. 26
2-13 Sample Topology with Entities ... 28
A-1 A Process for Performing Navigation Queries .. 86
A-2 Topology Graph Structure ... 87
A-3 Example of a Topological Type Inheritance Hierarchy 88
A-4 Graphical Representation of the Queries.. 89
A-5 Graphical Representation of Example Queries 91
A-6 Graphical Representation of Queries: Logical Connectives 92

Systems Management: Topology Service v

Contents

A-7 Graphical Representation of Query Repetition....................................... 93
A-8 Equivalent Query without Repetition ... 94
A-9 Topology Query System... 96
A-10 Binding Points assigned to AEs .. 103

List of Tables

2-1 Topology Rules... 27
2-2 Valid Associations ... 28

vi Preliminary Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Systems Management: Topology Service vii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

viii Preliminary Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Topology Service ix

Preface

This Document

One of the fundamental needs of an automated management system is to be able to keep track of
where resources are located and how they are related to other resources in the managed
environment. Topology provides a service to applications for managing topological
relationships (associations) among managed objects in a distributed workgroup and up through
the Enterprise environments.

A Topology Service relieves most of the burden that applications have in managing associations,
by providing storage of topological data, by maintaining semantic integrity of associations, and
by providing query support to clients interested in retrieving topological information. As such,
Topology serves as a fundamental integration point for management applications in
determining how managed objects are organized, what their inter-dependencies are, and how
underlying aspects of the managed environment blend together to form the resources which
administrators manage. Classes of applications which benefit from this integration include fault
management applications, map generators, correlators, and configuration management tools.

Structure

• Chapter 1 examines the purpose, scope and requirements of a topology service.

• Chapter 2 describes the high-level architecture, key concepts and development process
involved in this topology service.

• Chapter 3 gives the data definitions use in this topology service.

• Chapter 4 describes how to populate the Topology Data Store, and once populated, how to
manage it.

• Chapter 5 describes how to manage a collection of Topological Types.

• Chapter 6 desribes the Topology Query interface.

• Appendix A provides more information on Topology Query.

Typograpgical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes, parameters and
environment variables

— options in text

— function calls are shown as follows: name()

• Normal font is used for the names of constants and literals.

• CORBA IDL code fragments are shown in helvetica bold font.

x Preliminary Specification

Trade Marks

Motif, OSF/1 and UNIX are registered trademarks and the ‘‘X Device’’TM and The Open
GroupTM are trademarks of The Open Group.

Systems Management: Topology Service xi

Referenced Documents

The following documents are referenced in this specification:

OODFM
D. Coleman, et al., Object-Oriented Development: The Fusion Method, published by
Prentice-Hall.

XCMFv1
Preliminary Specification, June 1995, Systems Management: Common Management
Facilities, Volume 1 (ISBN: 1-85912-047-4, P421).

Federated Naming
CAE Specification, July 1995, Federated Naming: The XFN Specification
(ISBN: 1-85912-052-0, C403).

xii Preliminary Specification

Index

administration tools ...1
AE ..13, 85
AE-pattern..18
aggregate entities..48, 85
aggregate entity ..13
aggregate entity (AE)...109
aggregates ..11
aggregation ..13
application integration ..4
applications..9
architectural view...10
asset management ..2
Associate...38
Association...31
association cardinality...15
association management...3
association roles..15
cardinality ..15
client ..4
collection manager ...33
configuation ...9
configuration management1
constraints ..16
CORBA ...3, 109
correlators...1
COS ...33, 109
Create ..56, 79
Create_Empty_Entity ..37
Create_With_Filter ...80
data definitions ...31
data editing ..4
data interchange..2
data manager API...10
data store ...22, 33, 52, 87

AE matching constraint94
meta-AE..88
navigation path...88
query result..95
query tree ...89
registered queries ...94
result construction rules95
type matching ...88
user tags..95

Define_Enforcers...63
Define_Rules..61
defining IDL interfaces ..21

Disassociate ...39
discovery ..2
Dismiss..57
display...2
enforcement ...3
enforcers ...29
entensibility..3
enterprise environment ...1
entities ...8
entity..33
EntityManager...33
evaluating a query..85
events ..2, 4
Exists ...58
exported file system ...12
extensibility..1, 4, 9
factory service ...78
fault management...1
fusion...24
fusion object model ..17
Get_All ..77
Get_All_Types...59
Get_Associations ..45
Get_Association_Rules..65
Get_Enforcers ..66
Get_Entities..49
Get_Entity_of_Type ...51
Get_Next ..76
Get_Parents..60
Get_Query..75
Get_Status ..73
Get_Ties ..47
Get_Topological_Type...46
Get_Topological_Types...50
graph structure..87
IDL...109
IDL interfaces ..21
inheritance..88
instance management ..8
integration ..9
interoperability ...5, 109
inventory ..2
In_Same_Aggregate ...42
Is_Managed..43
lifecycle ...8
linkages ...4

Systems Management: Topology Service 111

Index

logical component ..11
logical view ..4
Manage ...34
managed resources...11
managed sets ...8
managing aggregate entities48
managing entities ...33
managing topological types55
manipulating queries...71
map generators..1
member/set relationship...8
meta-AE..85
meta-association ...85
multiple components ...12
navigation paths ...85
navigation queries ..86
object ...3
object instances ...8
object-oriented...14
ObjectIdentity..33
objects..3, 8
OMG..109
overview...9
PartitionedIdentifier31, 33, 48
performance...3
persistent store ..5
physical component ...11
physical view...4
policy enforcement...7
populating data store...33
proxy ...55
query...18, 29, 71, 96
query execution...82
query manager API ..10
query support ..1, 4
QueryExecution ..71
QueryExecutionFactory71, 78
relationships ..1

factory service ...7
persistence service..7
policy service...7
relationship service ..6
transaction service..6

report generators ..5
resources...1
roles ...15
rules ...7
scalability ...1, 3, 9
scope..2
semantic integrity ...1
semantics manager API...10

service development ..19
single resource...12
State_Has_Changed...44
Stop..72
Tie_Entities ..40
topological associations ..3
topological data...1
topological entities ...13
Topological Entity ..109
topological type ..14
topological types...55
TopologicalEntity ...31, 33
TopologicalTypeManager55
topology..11
Topology...109
topology constraints ..16
topology data editing...4
topology query..18, 85
topology query language............................18, 85, 96
topology query system..96
topology rule format..15
topology rules ...7, 11, 14
topology schema...20
Topology Service ..1, 109
topology service data store.....................................22
topology tree..14
Topology.idl...31
TopologyData.idl ..52
TopologyMetaData.idl55, 67
TopologyQuery.idl...71, 82
TQL ...18, 29, 85

compiler..98
grammar...96, 98
overview...98
semantics..100

type..8, 14
types ..55, 67
unified view ...4
Unmanage..36
Untie_Entities ..41
usability ..5
user presentation ..2
XCMF ..109

112 Preliminary Specification

Chapter 1

Introduction

1.1 Purpose
With the move to re-engineer and automate tasks and processes, coupled with the move to
distributed systems environments, we have seen the need to have more robust and cooperating
network and systems management and administration tools.

One of the fundamental needs of an automated management system is to be able to keep track of
where resources are located and how they are related to other resources in the managed
environment. Therefore, a well designed Topology information management service will be of
increasing importance. Topology provides a service to applications for managing topological
relationships (associations) among managed objects in a distributed workgroup up through the
enterprise environments.

A Topology Service relieves most of the burden applications have in managing associations by
providing storage of topological data, by maintaining semantic integrity of associations, and by
providing query support to clients interested in retrieving topological information. As such,
Topology serves as a fundamental integration point for management applications in
determining how managed objects are organized, what their inter-dependencies are, and how
underlying aspects of the managed environment blend together to form the resources
administrators manage. Classes of applications which benefit from this integration include fault
management applications, map generators, correlators, and configuration management tools.

As management environments become increasingly complex, and due to the integral role that
topological data has in management, a Topology Service necessarily must:

• scale well to address the broad range of size seen today in customer environments

• be extensible to accommodate new technologies and unanticipated topologies.

Accordingly, major operational goals pertaining to management that the Topology Service
supports include:

• the provision of an environment in which applications can integrate with one another, via
topological information, by means of consistent paradigms

• the enabling of scalable solutions, whereby an application can usefully participate in
managing hundreds to millions of objects.

Systems Management: Topology Service 1

Scope Introduction

1.2 Scope
This specification addresses Topology information management services for network and
systems management purposes. However, this technology may well be applicable outside of its
original charter (for example: relationship management of other applications).

It is not the function of the Topology Service to ‘‘discover’’ topological data or to manage assets.
It is also not the function of this service to ‘‘display’’ information to the user. This service
cooperates with other services such as Discovery Services, Event Services, Inventory
Management or Asset Management Services, and User Presentation Services such as map
services or map generation services, etc.

Likewise, this service does not specifically address ‘‘interchange’’ of information between
implementation-specific topology managers. However, this service could support an additional
component that performs interchange functions.

2 Preliminary Specification

Introduction Requirements

1.3 Requirements

1.3.1 Association Management

A Topology Service must provide a general, distributed service for managing topological
associations that exist among managed objects in a consistent manner.

It must manage the lifecycle of associations as directed by clients using the service. Operations
include the ability to:

• make managed objects known to Topology (manage and unmanage them) so associations
can be established with them

• create, delete, and query associations

• notify clients of such association changes

• represent associations of arbitrary degree (relating multiple objects with a single association)
in a manner consistent with the overall Topology paradigm.

It must provide the ability to validate that associations may be allowed and the validation
process must be client-definable and extensible so that the Topology Service can be made to
manage arbitrarily-defined topologies, newly and dynamically defined by clients of the service.
The extensible aspects which the service must support include:

• configuration of the kinds of associations that can be established with what types of objects

• specification of the minimum and maximum number of a given kind of association that an
object type can participate in

• dynamic alteration of topology semantics if and when required

• policy imposition and removal, enforced by Topology as topological edits take place, as
needed.

Semantics of the associated objects are unaffected by their involvement in topological associations.

Validation must also be enforced when a client may request an edit to the topological
information. This enforcement may allow or prohibit the client to make the edit, based on the
enforcement process results.

1.3.2 Scalability and Performance

The Topology Service must scale well to be able to support very large environments that may
require management of the order of millions of objects, yet be able to also not be so heavyweight
and burdensome as to not be appropriate for small workgroup environments who may only
have hundreds of objects to manage.

The Topology Service should allow the storage of relationships between CORBA objects and
non-CORBA objects.

Topological data, internal to the service, should not be required to be exposed in the form of
directly addressable objects in and of themselves (such as directly addressable CORBA objects).

The Topology Service should not restrict implementations from being federated in order to
support improved performance in large-scale, distributed environments.

Systems Management: Topology Service 3

Requirements Introduction

1.3.3 Query Support

The Topology Service should support arbitrary queries which are client-defined. Example
queries might include:

• Which clients are currently mounting file systems from NFS server Q?

• Which users are currently running shared Application X?

• What systems are dependent on router A for connectivity to P, Q and R?

• What departments are responsible for managing the PC inventory in Building 6?

Queries should be able to be stored, re-used and referenced as sub-queries from within other
queries.

1.3.4 Application Integration

The Topology Service must provide semantics that are well defined and established so that all
clients (both internal within a product and third-party supported clients) can edit topology data.

The Topology Service must allow for clients to be able to build on the work of others by creating
and manipulating associations involving objects that have been defined and managed by other
applications.

The Topology Service should support extensions to new topologies based on existing objects
may participate in. This must be done in such a way that the semantics and implementations of
existing objects are unaffected by new associations they are called to participate in via the
Topology Service.

The Topology Service must provide an integrated, comprehensive view of both logical and
physical worlds.

The Topology Service should provide direct support for integratedmanagement of logical and
physical worlds where these worlds are tied together. In particular, Topology should support
integrated views of resources that actually consist of cooperating logical and physical objects,
while retaining individuality and direct management access to the underlying objects:

The Topology Service should directly support integrated management of systems,
networks and distributed applications. Queries should be able to span linkages
transparently among these topologies through its integrated views and common
storage.

The Topology Service should allow applications to query all topological data (subject to security
restrictions). It should integrate the various topologies that objects participate in such that
queries can be written to retrieve unified views (spanning associations defined by separate and
distinct topologies).

The Topology Service should allow for queries to be named and shared (re-used) by applications
other than those which defined the queries.

The Topology Service should integrate with external event services so applications can subscribe
to change notifications pertaining to topological data:

• Topology should define and generate events to notify interested clients of changes (such as
creations, deletions and updates) that occur on the basis of:

— object types

— object state

4 Preliminary Specification

Introduction Requirements

— association instances

— the management and unmanagement of object instances by topology.

The Topology Service should maintain a persistent store of its topological data. If the topological
data is stored in an RDBMS, the underlying tables should be published to support read access by
independent report generators. However, the form of the data in the relational store may not be
conducive to simple or efficient access.

1.3.5 Interoperability

The Topology Service should support the interchange of topological data with heterogeneous
implementations, including:

• the exchange of associations

• the exchange of objects involved in the associations

• ideally, the semantics which apply to valid topological representations.

1.3.6 Usability

The Topology Service should support a usable, intuitive interface:

• provide a paradigm that hides Topology-internal representations from the client to relieve
the burden from the client of dealing with Topology internals.

The Topology Service interface and querying capabilities should support:

• comprehensive views of cooperating components, to provide individual views of aggregated
components and provide queries based on either comprehensive or individual views

• provide transparency between comprehensive and individual component views that allows
comprehensive representations to take on the characteristics of all of their individual
components.

Systems Management: Topology Service 5

Relationship to Existing Services Introduction

1.4 Relationship to Existing Services

1.4.1 Relationship Service

The OMG Relationship Service has considerable overlap in its functionality with the proposed
Topology Service. In particular they both address the following key requirement:

• Manage relationships between objects of which the objects themselves are unaware.

However, Topology has some additional requirements that yield a different service:

• Scale up to the management of relationships of hundreds of thousands of objects.

• Provide a mechanism to integrate relationship data from disparate application spaces and
present a unified view of the complete set of relationships. This is the aggregation concept
which is explained in the abstract portion of the Topology submittal.

• Manage relationships between things that are not CORBA objects.

The particular interface defined for Topology yields some additional benefits beyond the basic
requirements outlined above:

• The distinction between relationships and entities is blurred. This is important as an
integration enabler, because what one application views as a relationship may be an entity to
another.

Consider the example in which one application manages People that are Married to each other,
and a different application manages Marriages which are Performed by Clergy . In the first
application, Marriage is a relationship between persons, but in the second application
Marriage is an entity that participates in a different sort of relationship with a clergy.

• The Topology Service maintains information about the kinds of entities and relationships
that may be managed. This information can be requested via the defined interfaces and may
also be augmented at run-time on the fly.

The OMG Relationship Service provides no such standard mechanism for a client to gather
this information, and new relationships and roles can only be defined by creating new
CORBA interfaces — generally a compile-time activity.

1.4.2 Transaction Service

Topology does not present any interfaces that overlap or attempt to augment the Transaction
Service interfaces. However, Topology is defined to operate in an environment where a
transaction service can help maintain consistency of the topology. Thus, some transaction
service is needed in order to implement Topology as well as to use it. The OMG Topology
Service is an appropriate service to use for this functionality. While it would be feasible to
implement a Topology Service using a different transaction service, this would be counter
productive since the clients of the service must also use the transaction interfaces.

Topology provides a powerful declarative query mechanism using a formal language
specifically designed for querying the relationships that are managed by Topology. It would
have been appealing to simply use the OMG Query Service interface for querying topology,
however, the Query Service requires the use of the OQL/SQL which is not suitable for use in an
environment where the objects being queried have no knowledge of the relationships in which
they participate and in which the relationship store has no knowledge of the objects being
managed.

6 Preliminary Specification

Introduction Relationship to Existing Services

1.4.3 Factory Service

Topology does not provide any general lifecycle management services. Thus, there is no overlap
with the GenericFactory interface.

1.4.4 Persistence Service

Topology does not present any interfaces that overlap or attempt to augment the Persistence
interface. A Topology implementation will usually keep a persistent store of its data and may
use whatever mechanism the implementor chooses to use.

1.4.5 XCMF Policy Service

There is some overlap of functionality between certain features of the Topology Service and the
‘‘Common Management Facilities’’ (XCMF) Policy Management Service (see referenced
document XCMFv1). Topology has features that enable clients of the service to define rules that
apply to relationships between topological entities, or arbitrary rules applied to the state of
topological entities that are involved in changes to e underlying topological relationships.
Topology enforces these rules automatically whenever a change to the topology being managed
is made. Similarly, XCMF Policy Management allows clients of the service to define rules that
apply to any portion of the state of each managed object. The state information to which these
rules may apply could include, but is in no way limited to, information about the relationships
the managed objects participate in. XCMF Policy Management does not automatically enforce
policies defined on the state of managed objects. Instead, policy enforcement must be requested
by clients of the service.

It would not be feasible to implement XCMF Policy Management in terms of the support for
policy provided by the Topology Service, since the latter requires a state change between
topological relationships to trigger policy enforcement, and the former allow policy enforcement
at any arbitrary time — which may not be preceded by a change in the relationships in which
managed objects participate.

It may be possible to implement the support for policy enforcement provided by Topology in
terms of XCMF Policy Management. For instance, whenever relationship changes occur CORBA
proxies could be created for the topological entities affected using Instance Managers, and
Validation Policies could be invoked corresponding to all rules defined by Topology. But, this
solution may be sub-optimal, since it requires creation of first class CORBA objects
corresponding to all topological entities involved in a state change.

Whether or not the support for policy management provided by Topology is implemented in
terms of XCMF Policy Management is an issue which should be left as an implementation detail
within the Topology Service, since the choice of whether or not to do this would not impact the
interoperability of two implementations of Topology. Also, too little is known at this time about
whether or not this is an optimal solution to make the relationship between this services a
requirement to an implementor. Instead, it makes more sense to view this as an implementation
detail at this time, opening up the possibility of both integrated, and non-integrated solutions,
which will ultimately provide for more direct comparison between the various approaches.

Systems Management: Topology Service 7

Relationship to Existing Services Introduction

1.4.6 XCMF Instance Management

There is no obvious relationship between Topology and XCMF Instance Management. Topology
manages the relationships between entities (objects), while XCMF Instance Management
manages the lifecycle of object instances by type, along with the policies that may be applied to
each type of object instance. Most notably, Topology does not manage any aspect of the lifecycle
of the entities it manages.

1.4.7 XCMF Managed Sets

There is clearly some functionality overlap between the Topology Service and XCMF
ManagedSets. Essentially, Topology is capable of representing and managing any type of
relationship between managed entities. XCMF ManagedSets is capable of managing one
particular type of relationship that can exist between managed objects: the member/set
relationship.

Since the type of relationship supported by ManagedSets is a subset of the types of relationships
that are supported by Topology, it makes no sense to consider implementing Topology in terms
of ManagedSets.

Conversely, however, it may be possible to implement XCMF ManagedSets in terms of
Topology. To do so, the implementation would likely be such that a topological entity of type
Member would be created for each XCMF object supporting the Member interface, and a
topological entity of type Set would be created for each XCMF object supporting the Set
interface. Whenever an XCMF Member object is added to an XCMF Set object, a relationship
would be established between the corresponding Topological entities within Topology. All
queries to the XCMF ManagedSet objects for things such as membership of a Set of which Sets a
Member belongs to would be delegated as queries to Topology.

We do not feel, however, there has been sufficient implementation experience with either XCMF
or Topology to make the implementation of XCMF ManagedSets in terms of Topology a strict
requirement at this time. The implementation described above could add appreciable overhead
to an implementation of XCMF ManagedSets not integrated with Topology, for example, since
the proposed implementation essentially requires delegation of requests on ManagedSets
interfaces to Topology. As with the issue of overlap between the XCMF Policy Management
Service and the support for Policy Management supported by Topology, we feel the issue of
whether one could/should be implemented in terms of the other should be left as an
implementation detail at this time. If integrated implementations emerge that demonstrate clear
advantages over non-integrated implementations, then issues such as this can be revisited at this
time.

In general, there is a strong argument for specifying XCMF and Topology in such a way as there
are no dependencies between them. Specifying these as two orthogonal sets of services allows
more implementation options, and hopefully will produce more total implementations. Making
the requirement that one depends on the other places a heavier-weight requirement on any
organization considering the implementation of one or the other, and thus may prohibit
implementations of either.

8 Preliminary Specification

Chapter 2

Topology Service Overview

The Topology Service provides a general, distributed service for storing and querying
topological associations between objects. The Topology Service is extensible to handle any
developer-defined topologies, including, for example, those found among users and computer
systems, any variety of networks, the hardware arrangements of computing devices, I/O cards
and peripherals, or shared software and the departments that manage its use.

The Topology Service is highly useful in the handling of management problems, as it removes
most of the burden applications have in storing, manipulating and querying associations among
the resources being managed. This not only reduces application development cost, it also
exposes a key integration point for applications: a rendezvous point for determining how
managed resources are organized, configured, or connected, and for how separate, underlying
aspects of the managed environment blend together to form the resources administrators
manage.

Major operational goals pertaining to management that the Topology Service addresses include:

• the provision of an environment in which applications can integrate with one another via
topological data through consistent paradigms

• the enabling of scalable solutions, whereby an application can usefully participate in
managing environments that range in size from an order of hundreds up to an order of
millions objects

• the ability to establish new associations among objects without affecting the semantics or
implementations of those objects.

The Topology Service is configurable and extensible. It allows applications to define what
constitutes valid associations that characterize a particular topology. This is done by specifying
the rules that the associations must obey which the Topology Service will then enforce. The
Topology Service then provides storage of the associations and querying capabilities for
retrieval.

Systems Management: Topology Service 9

High-level Architectural View Topology Service Overview

2.1 High-level Architectural View
Figure 2-1 shows the major components of a Topology Service being submitted for
standardization. These are:

• Semantics Manager API
which is used by a client to define the topological rules which form the semantics for a given
topology

• Data Manager API
which is used by a client to populate the Topology Service with associations that conform to
the semantics of previously-defined topology rules

• Query Manager API
which is used by a client to retrieve topological data based on registered (and sharable)
queries.

Topology
Data Manager

Topology
Interchange

Adaptor

Topology
Query

Manager

Topology
Semantics
Manager

Semantics
Manager

API

Topology
Object Model

Clients

DBMS
Persistent

Store

Topology
Service

Areas for Standardization
for the Topology Service

Query Mgr API

Data Mgr API

Figure 2-1 High-level Architcture View of Topology Service

10 Preliminary Specification

Topology Service Overview Key Concepts

2.2 Key Concepts

2.2.1 Topology

A topology is a set of valid associations between objects. In the Topology Service the set of valid
associations in a topology is constrained by a set of topology rules. As an example in network
management, a TCP/IP network topology can be established which is governed by rules
dictating conditions such as:

• all IP network addresses must be unique

• a host can be connected to a network only if one of its network interface cards has an IP
address which matches the address of the network.

As an example in system management, topology rules can be established which define a
topology of users and distributed computing resources. Such a topology would consist of
associations that indicate how users map to various login accounts and what corresponding
access each has to particular system resources. The corresponding topology rules might dictate
how many users can simultaneously have access to a given type of resource, and under what
conditions.

2.2.2 Entities and Aggregate Entities

The Need for Aggregates

Management interfaces to resources in a distributed network and system environment are
typically very complex. Although often viewed by their users as single components, managed
resources often consist of several, possibly tens of smaller, individually managed objects.

These smaller objects are often a mixture of logical and physical components which work
together to offer functional services to which applications can subscribe. Any or all of the smaller
components can change (due to upgrades, repairs, migration, physical moves, etc.) Yet as these
changes to underlying components take place, the combined resource itself (usually) persists.
Such a combined resource is what users and administrators generally know by a common name
and perceive in terms of the services its combined, underlying components provide.

Consider the example of a file system. While the file system is typically viewed as a whole, it
actually consists of a logical component and a physical component. The logical component is a
hierarchical file system (hfs) which defines the structure of contained files and directories. The
physical component, is a hard disk device which has its media organized by the hfs. Together
they form the file system. Both are required, yet each can be managed individually. For example:

1. by taking the appropriate steps, the hard disk can be replaced with another, while still
retaining the file system as it is known to its users

2. asset management of the physical hard drive is handled without any consideration given
to the hfs implemented over it

3. by logically mounting the hfs to another location in the computer system’s complete file
system structure, the file system has moved, yet physically it has been unaffected.

Systems Management: Topology Service 11

Key Concepts Topology Service Overview

Consider now the administrator’s desire to export the file system to clients via NFS. To do so,
another logical component is needed: an exported file system which provides a remote access
point for mounting and which retains a list of clients who may have access to the exported file
system. There are several points worth noting in this example:

1. The exported file system component also represents the file system, along with the hfs and
hard drive components — yet it has a very different lifecycle.

2. Not every file system gets mounted. Thus, only those being exported require the additional
exported file system component.

3. It is the exported file system which participates in an NFS topology which in turn identifies
the clients and servers forming the distributed file system. The other file system
components, such as the hfs and the disk drive, neither have knowledge of NFS nor should
they.

4. If this file system were exported instead via non-NFS protocols (such as those provided by
Netware), a variation of the NFS exported file system would be required to adequately
manage the export.

5. If this file system were exported via both NFS and Netware, it would be appropriate and
correct to have an exported file system component for each , so that the facets of each
exporting environment can be managed individually and independently.

So, in this example, we see a single resource — a file system — which is nevertheless based on
multiple, underlying components. Some of these components always exist while others may
come and go more frequently, and yet all require some degree of individual management.

This example illustrates a frequently-encountered situation:

• Resources and services are often viewed as units because they operate as units, yet they are
truly a collection of cooperating components that must be individually managed.
Furthermore, it is the underlying components that characterize a resource’s participation in
various topologies.

This situation raises two issues for resource management:

• How does one best maintain the perspective, identity, and longevity of a combined resource,
while allowing direct management access to its underlying components as individual
entities?

• How does one appropriately model a resource to allow it to participate in a variety of
topologies, some of which are physical, some of which are logical, some of which are
seemingly in conflict with one another, and some of which are not even conceived yet?

A solution to this problem would make sufficiently transparent the key underlying components
that intrinsically form a resource as well as the topologies those components participate in. Such
a solution becomes highly useful in:

• bridging the gaps between logical and physical worlds that interact together to form
resources

• enabling traversals through and across separate topologies in which resource components
participate.

Both these situations characterize the nature of the networks and systems that make up resource
management. Consequently, applications providing integrated management of:

• networks

12 Preliminary Specification

Topology Service Overview Key Concepts

• systems

• networks and systems

• distributed applications which depend on both networks and systems

would all benefit fundamentally from such a solution.

The Topology Service provides a solution to this problem through means of a special
relationship, called aggregation1. Internal to Topology, individual managed objects, such as the
hfs, the hard disk, and the exported file system in the above example, are represented by
topological entities . When topological entities are recognized to be part of a larger resource (such
as the file system in the example above) the Topology Service can be told to join them into an
aggregate entity (AE).

Another
AE

an
association

An AE (Aggregate Entity)

a
topological entity

represented
object

represented
object

represented
object

Topology
Service

Figure 2-2 Topological Entities and Aggregate Entities

As a result, Topology provides aggregate views, as well as individual entity views, of the
components that participate in the topologies it stores2.

In the above file system example, aggregation means that access can be made to the file system
AE, whereby information pertaining to its topological entities — its hard disk, its hfs, and any
exported file systems — are immediately available. From the AE, any of the topological
associations that topological entities participate in can be seen and traversed. Figure 2-3
illustrates the concept using the File System example for UNIX systems.

1. The Aggregation relationship is considered ‘‘special’’ to Topology because it has certain characteristics that set it apart from the
administration of associations in general, as will become evident.

2. Note that objects are referenced, but not managed, by Topology. Applications manage objects, while Topology manages the
topological characteristics pertaining to objects — that is, the Topological Entities, the Associations between them, and the
Aggregate Entities which provide a complete view of the entities being managed.

Systems Management: Topology Service 13

Key Concepts Topology Service Overview

Client AE

Server AE

File System AE

File System AE

Special File AE

HP-UX

HP-UX

RISC
Computing
Box

RISC
Computing
Box

Containment
Association

Containment
Association

Containment
AssociationNFS Mount

Association

Abstracted
NFS Mount
Association

Hard Disk Drive
Device

Hard Disk Drive
Device

UNIX
hfs

UNIX
hfs

UNIX Remote Path Exported
File System

Directory

Figure 2-3 AEs and Topological Entities in the File System Example

This benefit of entity aggregation becomes evident when navigating through the topology tree.
AEs provide a degree of transparency whereby traversals from one topology to another is
readily accomplished via the topological entities that form an AE. In the above example, the
‘‘Abstracted NFS Mount Association’’ between the Client and Server is in fact derived from
navigating through three types of topologies: physical equipment containment, logical file
system structure, and the NFS topology. The Topology Service query subsystem takes advantage
of the integration and transparency provided by AEs to make such a query easy to specify and
execute. Without the aggregation provided by AEs, such a query would be far more
cumbersome to develop.

2.2.3 Topology Rules

The Topology Service allows developers to dynamically specify topology rules which must be met
for every instantiated association. As part of these rules, the object-oriented concept of type is
used to distinguish different entities that make up an AE. Every topological entity is assigned
such a topological type . Based on these types, topology rules express the kinds of associations
allowed with various other topological types3.

3. It is useful to note that the use of types allows the expression of ‘‘topologies’’ to follow easily from the developer’s Object-
Oriented Analyses (OOA) of their respective problem domains. See Section 2.4 on page 23 for an example of this.

14 Preliminary Specification

Topology Service Overview Key Concepts

Examples of topological types include NFS Server and NSF Client for an NFS topology. For an
SDH topology, topological examples include Virtual Circuit, Trail, Add-Drop Multiplexer and
Synchronous Digital Crossconnect.

Note that topological types are managed purely as a Topology Service concept. Developers can
define new types and assign them to entities in whatever manner makes sense for their
applications and for the topologies being represented. In practice, however, topological types
will typically correspond directly to the interfaces exposed by the objects represented by
topological entities.

The topological types assigned to entities are transitive to their AEs. Thus, an AE takes on all the
topological types of its entities.

Associations are characterized by roles and by cardinality . Association roles dictate the parts
played by topological types on either end of an association. Association cardinality indicates the
minimum and maximum number of these associations that can be established with an entity of a
given topological type. Associations in Topology are strictly binary in nature, that is, each
association links exactly two topological entities. (Relationships of degree n are modelled by
representing the relationships as Topological Entities themselves.)

Association

Role 1 Role 2

Topology Rules
dictate what roles
can be matched
with which
Topological types

ToplolType A ToplolType B

Figure 2-4 Matching Topology Roles with Topological Types

2.2.3.1 Topology Rule Format

Topology rules are assigned to specific topological types. They dictate the kinds and quantity of
associations that a specified topological type can participate in. A Topology Rule for topological
type T is defined by the following 4-tuple:

{role, min-cardinality, max-cardinality, associated_topological_type}

where

• role specifies the role played by the topological type T in the association

• the minimum and maximum cardinality dictate how many of these kinds of associations can be
applied to an entity of this topological type T

• the associated_topological_type dictates the type of the entity on the other side of the (binary)
association.

In the File System example, two rules would be defined for the NFS mount association shown in
Figure 2-3 on page 14, one for the topological entity of type UNIX remote path , and one for the
topological entity of type exported file system. Before specifying the rules, the roles that
characterize the NFS mount association need to be defined. Using mounter for the client side and
exporter for the server side, we have the following topology rule for the UNIX remote path
topological type:

{mounter, 1, 1, exported file system}

Systems Management: Topology Service 15

Key Concepts Topology Service Overview

which indicates that a remote path, if it exists, must be associated with exactly one exported file
system entity. The corresponding topology rule for the exported file system topological type is then:

{exporter, 0, *, UNIX remote path}

In this case, the existence of the exported file system is not dependent on any mounting clients.
Also, a maximum cardinality is specified as being infinite. In practice, the implementer of this
topology might really want to specify some maximum number to represent a finite limitation on
system resources.

2.2.3.2 Further Characteristics

The Topology Service allows topological types to be specialized. For example, the personal
computer and mainframe topological types are specializations of topological type computer; an
ethernet LAN card topological type is a specialization of network interface card . A particular type
may be a specialization of multiple parent types.

The Topology Service considers that a specialized type will inherit all the characteristics of its
more generalized types. Therefore, an entity of a specialized type must not only obey the rules
defined specifically for that type, but also all the topological rules defined for its parent types.

2.2.3.3 Summary of Topology Constraints

There are 3 types of constraints which the Topology Service enforces on a topology. These are:

• configurable constraints

• built-in constraints

• extensible constraints.

Configurable constraints are Topology Rules as described above, which are configured by the
developer and enforced directly by the Topology Service.

Built-in constraints are built into Topology and require that each entity be uniquely represented
by one topological type, and that each entity belong to only one AE. This ensures uniqueness of
each entity represented in Topology and that all associations in which an entity participates are
readily accessible and apparent (not hidden or difficult to find).

Extensible constraints allow the developer to supplement built-in and configurable constraints
with additional semantics that cannot be expressed using topology rules. These extensible
constraints are supported by allowing the developer to supply code in the form of object
methods, called enforcers, that implement the supplementary constraints. When changes to
topology data are proposed by any client, the Topology Service invokes any registered enforcers
that apply to validate the changes. Only fully-validated changes are allowed to proceed.

16 Preliminary Specification

Topology Service Overview Key Concepts

2.2.4 Object Mode

Figure 2-5 describes the relationships between the concepts used within Topology. This is
expressed as a fusion (see Section 2.2.4.1 on page 18) object model. Note that this form of
expression does not imply or require that these objects exist as CORBA objects in an
implementation.

Topological Type
1

1

1

1

1

**

*

**

*

+

0..1

Aggregate Entity

Topology Enforcer

Topology

Name
Topology Rules

enforced
by

Topological View of Entity

Topological Entity
(internal to Topology)

Object

AE-names
Topological Type

Details of Associations

Object Specific Methods
and Attributes

is
associated

with

role 1
role 2

classifies

specializes

repre-
sents

Figure 2-5 Topology Object Model

Systems Management: Topology Service 17

Key Concepts Topology Service Overview

2.2.4.1 Fusion Method of Object Modelling

The topology object model (see Figure 2-5 on page 17) is based on the fusion method of object
modelling, as explained in referenced document OODFM. Conventions in the Fusion method
include the representations shown in Figure 2-6.

Object Type

Parent A

B

SubType A SubType B

....read top-to-bottom
or left-to-right

Cardinality
Symbols
* = 0 or more
+ = 1 or more
a..b = min a to max b

Objects

Inheritance

attributes
methods

x=# of A’s

y=# of B’s

relation-
ship

Figure 2-6 Conventions in Fusion Object Modelling Method

2.2.5 Topology Queries

Topology allows a user to make arbitrary queries of topological data. A query always returns a
boolean value indicating whether or not a match was found and optionally the actual AEs that
matched the query.

A query is expressed in the form of a navigation path which is used by Topology to navigate
through the topology graph in search for matching AEs. A navigation path includes one or more
AE-patterns interconnected by association-patterns . association-pattern .

An AE-pattern is a string expression of AE selection criteria. The AE-pattern selection criteria
consists of an AE name or an expression of topological types.

An association-pattern interconnects AE-patterns to designate the criteria for selecting
associations while navigating through the topology graph from one AE to another. An
association-pattern uses an expression of role names as a basis for selecting associations.

Textual examples of queries which can be formulated include:

• ‘‘get all the laser printers that are associated via serial cables with this computer’’
(assuming that laser printer, computer and serial cable are types of AEs whose valid
associations conform to a topology managed by the Topology Service)

• ‘‘list all the programs that can be executed by the users who can execute Program A’’
(assuming that a Program A is an existing topological entity and that person and can execute
are AEs whose valid associations conform to a topology managed by the Topology Service).

Queries are expressed textually using a Topology Query Language (TQL). Queries can be
parameterized so their execution point in the topology graph can be determined at execution
time.

18 Preliminary Specification

Topology Service Overview Development Process

2.3 Development Process

2.3.1 Service Development Process

Figure 2-7 shows a typical process for developing a sub-product which uses the Topology
Service.

1. Model the Problem Domain

4. Populate the Topology Service Data Store

Access to
Underlying

CORBA
Objects

Modelling Task (no services / tools provided by OpenView)

Topology Service Task

Distributed Object Infrastructure Task

Topology Service Data Store

5. Query Data Details

4. Navigation Queries

5. Query Topology Schema Details

2. Create a Topology Schema 3. Define IDL Interfaces

Figure 2-7 Typical Topology Service Development Process

Systems Management: Topology Service 19

Development Process Topology Service Overview

2.3.2 Creating a Topology Schema

Figure 2-8 shows a typical process for creating a topology schema for a client which uses the
Topology Service.

Topology Service Task

Distributed Object Infrastructure Task

Topology Service Data Store

6

7

5

2 3

1. Model the Problem Domain

2. Creates a Topology Schema

Create a Topological Type for Each Class/Relationship Type

DefineTopological Type Specialization

4. Populate the Topology Service Data Store

Define Association Rules

Define Enforcers

3. Define IDL Interfaces

Modelling Task (no services / tools provided by OpenView)

1

4

Figure 2-8 Typical Process for Creating a Topology Schema

20 Preliminary Specification

Topology Service Overview Development Process

2.3.3 Typical Process for Defining IDL Interfaces

Figure 2-9 shows a typical process for defining IDL interfaces for a client which uses the
Topology Service.

1. Model the Problem Domain

2. Create a Topology Schema

Define an IDL interface for Each Class/Relationship Type

Define Interface Inheritance

Define Interface Attributes

Define Interface Operations

4. Populate the Topology Service Data Store

3. Define IDL Interfaces

Topology Service Task

Distributed Object Infrastructure Task

Topology Service Data Store

6

7

5

2 3Modelling Task (no services / tools provided by OpenView)

1

4

Figure 2-9 Typical Process for Defining IDL Interfaces

Systems Management: Topology Service 21

Development Process Topology Service Overview

2.3.4 Populating the Topology Service Data Store

Figure 2-10 shows a typical process for populating the Topology Service data store.

4. Populate the Topology Service Data Store

Manage an Entity

Create Associations

Create an Empty Entity

Create Aggregate-entites

ExplicityImplicity

3. Define IDL Interfaces

Access to
Underlying

CORBA
Objects

2. Create a Topology Schema

Topology Service Task

Distributed Object Infrastructure Task

Topology Service Data Store

6

7

5

2 3Modelling Task (no services / tools provided by OpenView)

1

4

Figure 2-10 Typical Process for Populating Topology Service Data Store

22 Preliminary Specification

Topology Service Overview Development Example

2.4 Development Example
As an example for defining a topology to be managed by the Topology Service, consider an
extension to the File System example which incorporates PC NFS clients. Figure 2-11 on page 24
shows an example subgraph of what such a set of topologies might look like within the
Topology Service. Note that the example assumes some extensions to the object model, which
includes new topological types (for example, PC Box, DOS Disk hfs, DOS network drive, and a
Windows95 Operating System). A corresponding object model on which the example topologies
are based is shown in Figure 2-12 on page 26. 4

4. This object model is also based on the fusion method of object modelling, as explained in referenced document OODFusion. The
following extensions to fusion are used in the figure in this footnote, since AEs and association roles are not fusion concepts.

Extensions to Fusion for the Example

Potential AE

Type 1 Type 2

Role A

Role B

Type 1Type 1
association

Systems Management: Topology Service 23

Development Example Topology Service Overview

Client AE

Client AE

File System AE

File System
AE

File System AE

File System
AE

Special File
AE

UNIX

UNIX

RISC
Computing
Box

RISC
Computing
Box

Containment
AssociationsNFS Mount

Associations

Abstracted
NFS Mount
Associations

Hard
Disk
Drive
Device

Hard
Disk
Drive
Device

Hard
Disk
Drive
Device

PC
box

Windows ’95

DOS
Network
Drive

DOS
Disk
hfs

DOS Universal Name Path

UNIX hfs

UNIX
hfs

UNIX Remote Path

Exported
File System

Directory

Server AE

Figure 2-11 Topological Entities and Associations for PC NFS Example

In developing the example, we establish topology rules for two topologies: NFS, and
OS-hierarchical file systems. The topological types these entail include:

• OS subtypes:

— HP-UX
— Windows ’95

• logical volume and its subtypes:

— UNIX hfs
— DOS disk hfs
— DOS network drive

24 Preliminary Specification

Topology Service Overview Development Example

• file system path and its subtypes:

— directory
— special file subtypes:

• remote path (UNIX)
• universal name path (DOS)

• exported file system

• physical computing equipment

— RISC computing box
— PC box

• physical peripheral devices

— hard disk drive.

These are shown as shaded in Figure 2-12.

Systems Management: Topology Service 25

Development Example Topology Service Overview

Disk
Drive

Path
Permissions

FSpath

Special
File

Optional
Member

Optional
Member +

+

*

*

*

*

*

*

Computer
System AE

Container

Collector
Collector

Collector

Collector

Optional
Member

Optional
Member

Optional
Member

Mounter

Mounter server

nfs-Mountable
File System AE

1

11

1

1

0,1

1

1
serverDevice

File

Directory

File
System

UNIX
Remote

Path

File

DOS Universal
Name Path

Exported
File

System

Computing
Equipment

OS

PC Box
RISC

Computing
Box

UNIX Windows ’95
contains

Container

logical
volume

nfs
mount

UNIX
hfs

Root
Path

CDFS DOS
hfs

Disk
label

Network
Drivenfs

mount

contained
by

contains

contains

contains

contains

Figure 2-12 Portion of Object Model for Development Example

Once the object model is defined, with association roles and cardinality labeled, the topology
rules can be written down. The rules are developed for each topological type to express the
kinds of associations that topological type can participate in.

Each topology rule specifies a role name, and a minimum and maximum number of associations
in which the entity can participate in that role, along with the topological type of the associated
entity.

26 Preliminary Specification

Topology Service Overview Development Example

Table 2-1 shows the topology rules used for this example for the eight types of associations
(denoted by the diamond-shaped boxes in Figure 2-12).

Association Topological Type Topology Rules
Role Min Max Associated Entity’s

Topological Type
1 OS container 1 infinite Logical Volume

Logical Volume optional member 1 1 OS
2 Windows ’95 OS collector 0 26 DOS disk hfs

DOS disk hfs optional member 1 1 Windows ’95 OS
3 Windows ’95 OS collector 0 26 DOS network drive

DOS network drive optional member 1 1 Windows ’95 OS
4 UNIX OS collector 1 infinite UNIX hfs

UNIX hfs optional member 1 1 UNIX OS
5 Logical Volume container 0 infinite FSpath

FSpath optional member 1 1 Logical Volume
6 UNIX remote path mounter 0 1 Exported File System

Exported File System server 0 infinite UNIX remote path
7 DOS universal name path mounter 0 1 Exported File System

Exported File System mounted 0 infinite DOS universal name path
8 Computing Equipment collector 0 32 Disk Drive

Disk Drive optional member 0 1 Computing Equipment

Table 2-1 Topology Rules

Systems Management: Topology Service 27

Development Example Topology Service Overview

With the Topology Rules defined and made known to the Topology Service, topological
associations can be realized. Figure 2-13 shows a sample topology, whose associations are
represented in Table 2-2.

Bob’s
PC’s OS
(OS)

Bob’s
PC H:
(DOS
network
drive) Hard Disk #5

(disk drive
periferal)

NFS Mount

Abstracted NFS Mount

Mainserver’s
UNIX

Mainserver

(OS)

Containment Containment
Containment

\\ mainserver\ public
(universal name path)

\ public
(exported file system)

/ dev/ dsk/ c201d0s0
(UNIX hfs)

Bob’s
PC

Figure 2-13 Sample Topology with Entities

With the specified constraints, the developer can create the associations identified in Table 2-2.

Entity Entity’s Role Associated Entity’s Associated Entity
Role

Windows ’95 OS on Bob’s PC Drive H: on Bob’s PCContainer Optional Member
\\hpcndfs1\public universal name
path on Bob’s PC

/public exported file
system on hpcndfs1

Mounter Server

/dev/dsk/c201d0s0 on hpcndfs1 Optional Member Collector HP-UX OS on hpcndfs1
mainserver RISC
Computing Box

hard disk drive #5 Optional Member Collector

Table 2-2 Valid Associations

28 Preliminary Specification

Topology Service Overview Development Example

Note that the Abstracted NFS Mount association between Bob’s PC and the main server can be
added as well (provided the topological rules are established first5). This NFS Mount association
is an abstraction derived from underlying physical and logical associations, brought together
through AE aggregation.

2.4.1 Adding Enforcers

If it is to be modelled correctly, there is at least one aspect of the NFS topology semantics that
the Topology rules cannot adequately describe and hence require an enforcer. Specifically, an
exported file system entity has as attribute which indicates which remote clients are allowed to
establish a mount with it. This attribute consists of a list of hostnames with the designated
access each is allowed to have. The Topology rules cannot enforce this, but a registered enforcer
can. Note that this check by the enforcer requires information beyond the universal name path
and the exported file system, which are directly associated in the NFS Mount. Validating the
association for Bob’s PC in the example requires following the association from the DOS
network drive to its containing OS (and its AE) to determine the hostname for Bob’s PC.

2.4.2 Queries

The Topology Service also provides a query language, as noted earlier, which allows Topology
clients to obtain topological information (such as the Abstracted NFS Mount association
described above and the path from which it is derived). The queries supported provide
transparency across AEs and thereby tie separate topologies together into seemingly one,
providing an powerful data integration paradigm.

5. These would consist of the following:

• for the Computing Equipment Topological Type (a):
\{NFS client, 0, infinite, Computing Equipment\}

• for the Computing Equipment Topological Type (b):
\{NSF Server, 0, infinite, Computing Equipment\}.

Systems Management: Topology Service 29

Topology Service Overview

30 Preliminary Specification

Chapter 3

Data Definitions

This chapter contains a description of the data definitions used in the Topology Service
modules.

3.1 Topology.idl Definitions
#if !defined (TOPOLOGY_IDL)
#define TOPOLOGY_IDL
module Topology {

// NOTE: it is hoped that the PartitionedIdentifier will be
// incorporated into the standard COS ObjectIdentity module

struct PartitionedIdentifier {
string id_context;
string id_base;

};

typedef sequence<PartitionedIdentifier> IdList;

struct TopologicalEntity {
PartitionedIdentifier id;
Object obj;

};

typedef sequence <TopologicalEntity> TopologicalEntityList;
typedef string TopologicalTypeName;
typedef sequence <TopologicalTypeName> TopologicalTypeNameList;

struct Association {
TopologicalEntity entity1;
string role1;
TopologicalEntity entity2;
string role2;

};

typedef sequence <Association> AssociationList;

exception SchemaViolation {};
exception AggregationConstraintViolation{};
exception NotManaged{};
exception TransactionWillRollback{};
exception ServerNotContactable{};
exception NoSuchType{};
exception RoleNotSupported{};
exception InconsistentData{};
exception InvalidRoleName{};
exception InvalidTypeName{};

};
#endif // TOPOLOGY_IDL

Systems Management: Topology Service 31

Data Definitions

32 Preliminary Specification

Chapter 4

Populating Topology Interface

This chapter describes how to populate the Topology Data Store, and once populated how then
to manage it.

All interfaces are expressed in CORBA IDL. They are grouped under TopologyData.idl.

4.1 EntityManager: Managing Entities
These operations are designed to manage the topological data for a collection of entities within
the Topology Service.

This interface provides access to the data that the Topology Service maintains about
topologically managed entities.

An EntityManager is a collection manager whose components are the topological aspects of
entities. These topological aspects are never accessed directly by users of the Topology Service.
Instead an EntityManager acts as a proxy to implement the operations that are conceptually
performed on the entities themselves.

The entity (or entities) on which an operation is to be performed is identified by a
PartitionedIdentifier structure. This structure contains two strings which together uniquely
identify the entity and are immutable for this entity. Currently this structure is defined as part of
the Topology module, but it is hoped that this will become part of the standard CORBA Services
(COS) ObjectIdentity module in the future.

When first announcing the entity to the Topology Service (via the manage () operation) the entity
is indicated by a TopologicalEntity structure which contains a PartitionedIdentitifer and also
contains an object reference (which may be nil). Topology will store the object reference and will
return it to the clients when referring to the entity, but Topology itself does not examine or use
the object reference.

Many of the operations are designed such that it is not an error to do the same operation on the
same entity (or entities) that has previously been done. In these cases the operation returns a
boolean value which will indicate whether the data was actually changed (TRUE) or not
(FALSE).

The purpose of this section is to describe the interfaces associated with managing entities with
the Topology Service. Once an entity is managed by the Topology Service, numerous tasks can
be performed, such as creating associations between the entity and other entities, and managing
the entity as part of an aggregate entity.

If the entity to be managed does not exist (where no underlying implementation exists), it is
necessary to create an empty entity — see the reference manual page for CreateEmptyEntity ().

Systems Management: Topology Service 33

Manage Populating Topology Interface

NAME — DESCRIPTION
Manage — This operation is used to manage an existing entity and treat it as a topological
entity.

SIGNATURE

boolean manage (
in TopologicalEntity entity,
in Topology::TopologicalTypeName topo_type)

raises (TypeChanged,
Topology::SchemaViolation,
Topology::InvalidTypeName,
Topology::NoSuchType,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

entity
The given entity to be managed.

topo_type
The topological type for the new entity, typically, same as the entity name.

Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation creates a new topological entity of the specified topological type topo_type . The
topological type name must conform to the Federated Name syntax (see reference XFN).

If the entity specified by the entity parameter value is already topologically managed, and it is of
the same topological type as the one specified by the topo_type parameter value, no exception is
raised. In this case the operation returns FALSE to indicate that the Topology data store was not
altered.

Topology saves the object reference portion of the TopologicalEntity but does not examine it or
use it. This object reference may be nil.

EXCEPTIONS RAISED

[TypeChanged]
Raised if this operation attempts to change the type of an entity which is already managed
in Topology.

[Topology::InvalidTypeName]
Raised if the given type name does not conform to the X/Open Federated Name syntax.

[Topology::SchemaViolation]
Raised if this operation is not part of a transaction and the type specified for the entity being
managed requires that the entity be part of an association.

[Topology::NoSuchType]
Returned if the specified topological_type does not exist.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

34 Preliminary Specification

Populating Topology Interface Manage

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 35

Unmanage Populating Topology Interface

NAME — DESCRIPTION
Unmanage — This operation is used when you want to have Topology stop managing the
topological data for an entity.

SIGNATURE

boolean unmanage (
in Topology::PartitionedIdentifier entity)

raises (Topology::SchemaViolation,
Topology::ServerNotContactable,
Topology::TransactionWillRollback);

PARAMETERS

Input

entity
The given entity for which management of its topology data is to stop.

Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation is used to inform Topology to stop managing the topological data for a given
entity. This operation deletes the topological data associated with the entity.

If the given entity, entity has not been managed created via the operation manage (), then no
exception will be raised. In this case, the operation does not modify the data and returns a
FALSE to indicate that the topology database was not modified.

If the given entity was constrained to be part of the same aggregate as another entity, the
Topology Service will undo (untie) this constraint.

EXCEPTIONS RAISED

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

[Topology::SchemaViolation]
Raised if this operation is not part of a transaction and the operation results in a conflict
between the Topology Schema definition and the new state of the topology data. This
occurs if the Topology Type rules require that an entity be part of an association, but the
operation unmanaged an entity which was participating in one such association (thereby
removing the association).

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

36 Preliminary Specification

Populating Topology Interface Create_Empty_Entity

NAME — DESCRIPTION
Create_Empty_Entity — This operation is used to create an ‘‘empty-entity’’. Typically this is for
managing relationship types where there are no actual entity implementations behind these
Topology Service internal structures.

SIGNATURE

Topology::PartitionedIdentifier
create_empty_entity (

in Topology::TopologicalTypeName topo_type)
raises (Topology::NoSuchType,

Topology::InvalidTypeName,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

topo_type
The topological type representing this entity.

Return
This operation returns a PartitionedIdentifier which identifies the internal Topological entity
structure.

SEMANTICS
This operation creates an empty entity, that is, a topologically managed entity which has no
underlying object implementation. The empty entity becomes an instance of the topological
type specified by the topo_type parameter value.

EXCEPTIONS RAISED

[NoSuchType]
Returned if the specified topological_type does not exist.

[Topology::SchemaViolation]
Raised if this operation is not part of a transaction and the type specified for the entity being
managed requires that the entity be part of an association.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

[ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 37

Associate Populating Topology Interface

NAME — DESCRIPTION
Associate — This operation is used to create an association between two entities..

SIGNATURE

boolean associate (
in Topology::Association assoc);

raises (Topology::SchemaViolation,
Topology::NotManaged,
Topology::InvalidRoleName,
Topology::RoleNotSupported,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

assoc
The structure that includes the TopologicalEntity identifiers and their roles in the
association being proposed.

Output/Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation forms a topological association between the two entities specified in assoc .

An association is specified by two sets of <entity, role> pairs.

If the association specified in assoc already exists, no error is returned. In this case, the operation
does not modify the data and returns FALSE.

The object reference in the TopologicalEntity identifiers (passed in the Association structure) is
disregarded for this operation and may be nil.

EXCEPTIONS RAISED

[Topology::NotManaged]
Raised if one of the entities specified in the association is not managed by Topology.

[Topology::SchemaViolation]
Raised if this operation is not part of a transaction and the operation results in a conflict
between the Topology Schema definition and the new state of the topology data. This
occurs if the Topology Type rules express a maximum cardinality for an association but the
operation adds an association which exceeds this maximum.

[Topology::InvalidRoleName]
Raised if a role specified in the association does not conform to the X/Open Federated
Name syntax.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable

[Topology::RoleNotSupported]
Raised if a role which was specified which is not supported by the entities.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

38 Preliminary Specification

Populating Topology Interface Disassociate

NAME — DESCRIPTION
Disassociate — This operation is used to delete an association between two entities.

SIGNATURE

boolean disassociate (
in Topology::Association assoc)

raises (Topology::NotManaged,
Topology::InvalidRoleName,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

assoc
The structure that includes the entities and the roles within an association which are to
be deleted.

Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation destroys a topological assocation between the two entites specified in the assoc
parameter.

If the association specified in assoc did not previously exist, no error is returned. In this case, the
operation does not modify the data and returns a FALSE.

The object reference in the TopologicalEntity identifiers (passed in the Association structure) is
disregarded for this operation and may be nil.

EXCEPTIONS RAISED

[Topology::NotManaged]
Raised if one of the entities specified in the association is not managed by Topology.

[Topology::InvalidRoleName]
Raised if a role specified in the association does not conform to the X/Open Federated
Name syntax.

[Topology::SchemaViolation]
Raised if this operation is not part of a transaction and the operation results in a conflict
between the Topology Schema definition and the new state of the topology data. This
occurs if the Topology Type rules require that an entity be part of an association, but the
operation removed an association which the rules require.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 39

Tie_Entities Populating Topology Interface

NAME — DESCRIPTION
Tie_Entities — This operation is used to constrain two entities so that they are forced to
represent the same Aggregate Entity (AE).

SIGNATURE

boolean tie_entities (
in AggregationTie tie)

raises (Topology::NotManaged,
Topology::AggregationConstraintViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

tie
Indicates the two entities to be tied and a string identifier to distinguish the tie from
other ties between these two entities.

Output/Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation constrains two given entities, to represent the same Aggregate Entity (AE).

If the tie (between these two entities and with the given identifier) already exists no exception is
raised. In this case, the operation does not modify the data and returns FALSE to indicate that
the data was not modified.

The object reference in the TopologicalEntity identifiers (passed in the AggregationTie structure)
is disregarded for this operation and may be nil.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if one of the entities specified in the tie is not managed by Topology.

[Topology::AggregationConstraintViolation]
Returned if this operation would result in an Aggregate Entity containing two entities with
the same Topological Type, or two entities where the type of one is a child of the type of
another.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

40 Preliminary Specification

Populating Topology Interface Untie_Entities

NAME — DESCRIPTION
Untie_Entities — This operation is used to stop two entities from being constrained so that they
are no longer forced to represent the same Aggregate Entity(AE).

SIGNATURE

boolean untie_entities (
in AggregationTie tie)

raises (Topology::NotManaged,
Topology::TransactionWillRollback,
Topology::ServiceNotContactable);

PARAMETERS

Input

tie
Indicates the two entities to be tied and a string identifier to distinguish the tie.

Output/Return
A boolean which indicates whether or not this operation modified the topology data.

SEMANTICS
This operation removes the specified tie from constraining the two entities to represent the same
Aggregate Entity(AE). The tie to be removed is indicated by the two entities and the identifier.

If the entities were not previously constrained to represent the same AE, no error is returned. In
this case, the operation does not modify the data and returns FALSE.

The object reference in the TopologicalEntity identifiers (passed in the AggregationTie structure)
is disregarded for this operation and may be nil.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if one of the entities specified in the tie is not managed by Topology.

[Topology::TransactionWillRollback]
Raised if the operation is being performed within a transaction and inconsistencies are
discovered in the current data. Topology will not let the transation successfully commit.

Systems Management: Topology Service 41

In_Same_Aggregate Populating Topology Interface

NAME — DESCRIPTION
In_Same_Aggregate — This operation is used to verify whether a list of entities belong to the
same Aggregate Entity.

SIGNATURE

boolean in_same_aggregate (
in Topology::IDList entity_list)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

PARAMETERS

Input

entity_list
List of entity identifiers.

Return
A boolean which indicates whether the entities belong to the same Aggregate Entity.

SEMANTICS
If all of the entities in the entity_list belong to the same Aggregate Entity, then a TRUE is
returned. If any one of the entities in the entity_list do not belong to the same Aggregate Entity
then FALSE is returned.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Returned if any one or more of the entities in entity_list are not managed by Topology.

42 Preliminary Specification

Populating Topology Interface Is_Managed

NAME — DESCRIPTION
Is_Managed — This operation is used to determine whether or not a certain entity is managed
by Topology.

SIGNATURE

boolean is_managed (
in Topology::PartitionedIdentifier entity)

raises (Topology::ServerNotContactable);

PARAMETERS

Input

entity
The given entity to be verified if managed by Topology.

Return
A boolean which indicates whether the entity is managed by Topology.

SEMANTICS

If the entity is managed by Topology a TRUE is returned, else a FALSE is returned.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 43

State_Has_Changed Populating Topology Interface

NAME — DESCRIPTION
State_Has_Changed — This operation is used to advise the Topology Service that the
non-topological state of an entity has changed.

SIGNATURE

void state_has_changed (
in Topology::PartionedIdentifier entity)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

PARAMETERS

Input

entity
The given entity whose non-topological state has changed.

SEMANTICS
An entity with an enforcer which is interested in its non-topological state must arrange for the
correct invocation of this operation. Entities using this operation allow greater integration with
other sub-products.

This allows an application to place appropriate code for verifying the semantics of a relationship
where it belongs — that is, in an enforcer. For example, an application which manages
relationships between modems might want to ensure that the baud rate of communicating
modems are the same. It can have an enforcer which gets triggered whenever the modems are
associated or when the modems have a state change (when their baud rate is changed). The
enforcer can then verify that the two modems have the same baud rate. However, since
Topology cannot on its own be aware of state changes it must be informed of them via this call.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

44 Preliminary Specification

Populating Topology Interface Get_Associations

NAME — DESCRIPTION
Get_Associations — This operation is used to get the associations that involve an entity.

SIGNATURE

Topology::AssociationList
get_associations (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

PARAMETERS

Input

entity
The entity for a list of associations is wanted.

Return
A list of associations, Topology::AssociationList , that involve the given entity, entity.

SEMANTICS
This operation returns a list of associations, Topology::AssociationList that represents all the
associations that involve the entity.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

Systems Management: Topology Service 45

Get_Topological_Type Populating Topology Interface

NAME — DESCRIPTION
Get_Topological_Type — This operation gets the topological type for a given entity.

SIGNATURE

Topology::TopologicalTypeName
get_topological_type (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

PARAMETERS

Input

entity
The entity of interest.

Return
The topological type, Topology::TopologicalTypeName, of the entity.

SEMANTICS
This operation gets the topological type of the topological entity specified by the entity
parameter value.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

46 Preliminary Specification

Populating Topology Interface Get_Ties

NAME — DESCRIPTION
Get_Ties — Get the list of aggregation ties that involve an entity.

SIGNATURE

AggregationTieList
get_ties (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

PARAMETERS

Input

entity
The entity of interest.

Return
Returns a list of ties that involve the given entity. If the entity is not tied to any other
entities then the returned list is empty.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

Systems Management: Topology Service 47

Managing Aggregate Entities Interface Populating Topology Interface

4.2 Managing Aggregate Entities Interface
This set of operations provides access to the data that the Topology Service maintains about
Aggregate Entities. The Aggregate Entity Manager, AEManager, is a collection manager whose
components are Aggregate Entities. These Aggregate Entities are never accessed directly by
users of the Topology Service, instead an AEManager acts as a proxy to implement the
operations that are conceptually performed on individual Aggregate Entities. The Aggregate
Entity on which the operation is to be performed is identified by a PartitionedIdentifier of any
one of the entities of the Aggregate.

48 Preliminary Specification

Populating Topology Interface Get_Entities

NAME — DESCRIPTION
Get_Entities — This operation gets the topological entities that are part of an Aggregate Entity.

SIGNATURE

Topology::TopologicalEntityList
get_entities (

in Topology::PartitionedIdentifier ae)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

PARAMETERS

Input

ae
An identifier for an entity within the Aggregate Entity of interest.

Return
A list of entity identifiers which are in the Aggregate Entity.

SEMANTICS
This operation gets the topological entities that are part of the Aggregate Entity specified by the
ae parameter value. The value of the ae parameter may identify any one of the entities in the
Aggregate Entity. The list will always include the entity identifier of the input parameter.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

Systems Management: Topology Service 49

Get_Topological_Types Populating Topology Interface

NAME — DESCRIPTION
Get_Topological_Types — This operation gets the topological types of the entities that are part
of an Aggregate Entity.

SIGNATURE

Topology::TopologicalTypeNameList
get_topological_types (

in Topology::PartitionedIdentifier ae)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

PARAMETERS

Input

ae
An entity identifier within the Aggregate Entity.

Return
A list of Topological Types.

SEMANTICS
This operation gets the topological types of the topological entities that are part of the Aggregate
Entity specified by the ae parameter value. The value of the ae parameter may identify any one
of the entities in the aggregate.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

50 Preliminary Specification

Populating Topology Interface Get_Entity_of_Type

NAME — DESCRIPTION
Get_Entity_of_Type — This operation gets the entity of a particular topological type which is
part of an Aggregate Entity.

SIGNATURE

Topology::TopologicalEntity
get_entity_of_type (

in Topology::PartitionedIdentifier ae,
in Topology::TopologicalTypeName topo_type)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

PARAMETERS

Input

ae
An entity within an Aggregate Entity.

topo_type
The topological type of the entity being sought.

Return
The identifier of an entity with the specified topological type.

SEMANTICS
This operation gets the entity of a particular topological type which is part of the Aggregate
Entity specified by the ae parameter value. The value of the ae parameter may identify any one
of the entities in the Aggregate Entity. The operation will only get an entity of the specified
topological type topo_type , and not any specializations of that topological type.

If an entity of the topological type specified by the topo_type parameter value is found, the entity
identifier is returned.

If no entity of the topological type specified by the topo_type parameter value is found, then the
PartitionedIdentifier will contain empty strings and the object reference will be nil.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

[Topology::NotManaged]
Raised if the entity specified is not managed by Topology.

Systems Management: Topology Service 51

Get_Entity_of_Type Populating Topology Interface

4.3 TopologyData.idl File
#if !defined (TOPOLOGYDATA_IDL)
#define TOPOLOGYDATA_IDL

#include <ErrorService.idl>
#include <Topology.idl>

module TopologyData {

interface EntityManager: CosTransactions::TransactionalObject, Entity {
// Operations which deal with a collection of entities

boolean manage (
in Topology::TopologicalEntity entity,
in Topology::TopologicalTypeName topo_type)

raises (TypeChanged,
Topology::SchemaViolation,
Topology::InvalidTypeName,
Topology::NoSuchType,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean unmanage (
in Topology::PartitionedIdentifier entity)

raises (Topology::SchemaViolation,
Topology::ServerNotContactable,
Topology::TransactionWillRollback);

Topology::PartitionedIdentifier
create_empty_entity (

in Topology::TopologicalTypeName topo_type)
raises (Topology::NoSuchType,

Topology::InvalidTypeName,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean associate (
in Topology::Association assoc),

raises (Topology::SchemaViolation,
Topology::NotManaged,
Topology::InvalidRoleName,
Topology::RoleNotSupported,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean disassociate (
in Topology::Association assoc)

raises (Topology::NotManaged,
Topology::InvalidRoleName,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean tie_entities (
in AggregationTie tie)

raises (Topology::NotManaged,
Topology::AggregationConstraintViolation,

52 Preliminary Specification

Populating Topology Interface TopologyData.idl File

Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean untie_entities (
in AggregationTie tie)

raises (Topology::NotManaged,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean in_same_aggregate (
in Topology::IDList entity_list)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

// Operations for which the EntityManager acts as a proxy
// for an individual entity:

boolean is_managed (
in Topology::PartitionedIdentifier entity)

raises (Topology::ServerNotContactable);

void state_has_changed (
in Topology::PartitionedIdentifier entity)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

Topology::AssociationList
get_associations (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

Topology::TopologicalTypeName
get_topological_type (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

AggregationTieList
get_ties (

in Topology::PartitionedIdentifier entity)
raises (Topology::ServerNotContactable,

Topology::NotManaged);
};

interface AEManager: CosTransactions::TransactionalObject {

// Operations for which the EntityManager acts as a proxy
// for an individual aggregate-entity

Topology::TopologicalEntityList
get_entities (

in Topology::PartitionedIdentifier ae)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

Topology::TopologicalTypeNameList
get_topological_types (

Systems Management: Topology Service 53

TopologyData.idl File Populating Topology Interface

in Topology::PartitionedIdentifier ae)
raises (Topology::ServerNotContactable,

Topology::NotManaged);

Topology::TopologicalEntity
get_entity_of_type (

in Topology::PartitionedIdentifier ae,
in Topology::TopologicalTypeName topo_type)

raises (Topology::ServerNotContactable,
Topology::NotManaged);

};
};
#endif //TOPOLOGYDATA_IDL

54 Preliminary Specification

Chapter 5

Managing Topological Types

This chapter describes how to manage a collection of Topological Types.

All interfaces are expressed in CORBA IDL. They are grouped under TopologyMetaData.idl.

5.1 TopologicalTypeManager
This interface provides access to the data that the Topology Service maintains about topological
types. These topological types are never accessed directly by users of the Topology Service.
Instead a TopologicalTypeManager acts as a proxy proxy to implement the operations that are
conceptually performed on the individual topological types themselves.

The topological type on which the operation is to be performed is identified by its topological
type name. By convention, this name is passed as a first parameter to the proxy operation on the
TopologicalTypeManager.

Although a topological type is not an entity, this interface provides an operation that returns an
entity identifier for a given topological type name. This allows the optional use of an event
service to generate notifications whose source is a topological type.

Systems Management: Topology Service 55

Create Managing Topological Types

NAME — DESCRIPTION
Create — This operation is used to create a new topological type.

SIGNATURE

boolean create (
in Topology::TopologicalTypeName type_name,
in Topology::TopologicalTypeNameList parent_types);

raises (Toplogy::InvalidTypeName,
Toplogy::NoSuchType,
ToplogyMetaData: :TypeRedefinition,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type to be created.

parent_types
The name of the parent topological types.

Output/Return
A boolean which indicates whether or not a topological type was actually created as a result
of this operation.

SEMANTICS
This operation creates a topological type with a topological type name as specified by the value
of the type_name parameter and the parent topological types as specified by the value of the
parent_types parameter.

Topological types should be identified by the interface type of the corresponding entity interface
type of the entities that will be managed by Topology (in the IDL form module::interface).

If the topological type specified by the topo_type parameter value already exists, and has the
same parent topological types as those specified by the parent_types parameter value, then no
error is returned. In this case the operation returns a FALSE to indicate that the Topology
metadata store was not altered, else it returns a TRUE.

EXCEPTIONS RAISED

[Toplogy::InvalidTypeName]
Returned if any of the given type names in the type_name and parent_types parameter values
are not valid topological type names.

[Toplogy::NoSuchType]
Returned if the topological type names specified by the parent_types parameter value are not
existing topological types.

[ToplogyMetaData::TypeRedefinition]
Returned if passed the name of an existing topological type as the value of the type_name
parameter and which has different parents from those specified in the parent_types
parameter value.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

56 Preliminary Specification

Managing Topological Types Dismiss

NAME — DESCRIPTION
Dismiss — This operation is used to notify the Topology Service that an application no longer
wishes to support a topological type.

SIGNATURE

boolean dismiss (
in Topology::TopologicalTypeName type_name)

raises (Topology::InvalidTypeName,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type to be deleted.

Output/Return
A boolean which indicates whether or not the topological type was actually removed.

SEMANTICS
This operation notifies the Topology Service that a client is no longer interested in a topological
type. The Topology Service will remove the topological type provided:

• there are no entities that are managed as instances of the topological type

• the topological type is not a parent of any other topological types.

If the topological type specified by the type_name parameter value does not exist, no error is
returned. In this case, the operation returns FALSE, else it returns a TRUE.

EXCEPTIONS RAISED

[Toplogy::InvalidTypeName]
Returned if the given type name is not a valid topological type name.

[Toplogy::TypeInUse]
Returned if the given type has instances or other types which inherit from it.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 57

Exists Managing Topological Types

NAME — DESCRIPTION
Exists — This operation is used to check whether a topological type exists.

SIGNATURE

boolean exists (
in Topology::TopologicalTypeName type_name)

raises (Topology::InvalidTypeName,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type to be checked.

Output/Return
A boolean which indicates whether or not a topological type with this name exists.

SEMANTICS
This operation returns a TRUE if a topological type exists with the same name specified by the
type_name parameter value, otherwise it returns FALSE.

EXCEPTIONS RAISED

[Toplogy::InvalidTypeName]
Returned if any of the given type name is not a valid topological type name.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

58 Preliminary Specification

Managing Topological Types Get_All_Types

NAME — DESCRIPTION
Get_All_Types — This operation is used to get all of the topological types which exist in the
installation.

SIGNATURE

Topology::TopologicalTypeNameList
get_all_types()

raises (Topology::ServerNotContactable);

PARAMETERS

Input
There are no input parameters for this operation.

Output/Return
A list of topological type names.

SEMANTICS
This operation gets a list of all topological types which exist in the installation.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 59

Get_Parents Managing Topological Types

NAME — DESCRIPTION
Get_Parents — This operation is used to get the names of the parents of a topological type.

SIGNATURE

Topology::TopologicalTypeNameList
get_parents (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type to be checked.

Output/Return
A list of names of the parent topological types.

SEMANTICS
This operation gets the names of the parents for the specified topological type, type_name
parameter value. By parents, it is meant just the immediate parents of the topological type
rather than all of the topological types from which it inherits.

EXCEPTIONS RAISED

[Toplogy::InvalidTypeName]
Returned if the given type name is not a valid topological type name.

[Topology::NoSuchType]
Returned if the given topological type name does not exist.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

60 Preliminary Specification

Managing Topological Types Define_Rules

NAME — DESCRIPTION
Define_Rules — This operation is used to define or redefine the association rules for a
topological type.

SIGNATURE

void define_rules (
in Topology::TopologicalTypeName type_name,
in AssociationRuleList rules)

raises (TopologyMetaData: :InvalidTypeModification,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The topological type whose rules are to be defined.

rules
The association rules for the given topological type.

Output/Return
There are no output or return parameters for this operation.

SEMANTICS
This operation is used to define the initial association rules for the topological type specified by
the type_name parameter value, or if association rules already exist for the topological type, this
operation replaces them with the newly defined rules.

For each association rule in the input list the structure AssocationRule allows you to specify:

• the role of the topological type

• the name of the topological type with which instances of this topological type can be
associated

• the minimum number of associations allowed with an instance of the associated topological
type

• the maximum number of associations allowed with an instance of the associated topological
type.

A type is considered ‘‘in use’’ if there are in existence instances of that type, or if another type
inherits from it:

• rules can be added to a type

• a rule which is defined in a parent type can never be changed/redefined

• if the type is ‘‘in use’’ then rules cannot be removed or modified.

Systems Management: Topology Service 61

Define_Rules Managing Topological Types

If this operation is invoked within a transaction and the Topological Type is ‘‘in use’’ and the
effect would be to remove or modify existing rules, this operation raises no exception. However,
at the end of the transaction, the Topology Data Service:

• rolls back the transaction

• writes the message associated within the exception
[TopologyMetaData::InvalidTypeModification]

to the error log.

If this operation is invoked outside of a transaction, the Topology Data Service itself starts a
transaction, performs the operation, and closes the transaction. In this case, if the Topological
Type is ‘‘in use’’ and the effect of this operation would be to remove or modify existing rules,
this operation fails and raises the exception [TopologyMetaData::InvalidTypeModification].

EXCEPTIONS RAISED

[TopologyMetaData::InvalidTypeModification]
Returned if the effect of this operation would be to remove or modify existing rules.

[Topology::InvalidTypeName]
Returned if the type specified is not a valid topological type name.

[Topology::NoSuchType]
Returned if there is no type defined in the Topology store that matches the given type name.

[Topology::SchemaViolation]
Returned if there is a conflict between the Topology Schema definition and the persistent
storage of the topology data, known as Topology data store.

[Topology::ServerNotContacted]
Returned if the topology server required to complete this operation is not contactable.

62 Preliminary Specification

Managing Topological Types Define_Enforcers

NAME — DESCRIPTION
Define_Enforcers — This operation is used to define or redefine the enforcers for a topological
type.

SIGNATURE

void define_enforcers (
in Topology::TopologicalTypeName type_name,
in EnforcerRegistrationList enforcers)

raises (TopologyMetaData: :InvalidRegisteredObject,
Topology::InvalidTypeName,
Topology::NoSuchType,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The topological type whose enforcers are to be defined.

enforcers
The list of enforcers for the given topological type.

Output/Return
There are no output or return parameters for this operation.

SEMANTICS
This operation defines the enforcers for the topological type specified by the type_name
parameter value, or if enforcers already exist for the topological type, this replaces them with the
newly defined enforcers.

A type is considered ‘‘in use’’ if there are instances of that type, or if another type inherits from
it. If the type is ‘‘in use’’ then rules cannot be added, removed or modified.

There is no return for this operation.

An enforcer is informed by the Topology Service whenever an entity of its associated type is
affected in a way that satisfies one or more of its associated invocation conditions. The enforcer
is given a veto over the change that produced the effect.

A Topology enforcer must be an object that supports the TopologyEnforcer interface. During the
prepare to commit phase of a transaction, Topology will invoke the validate () operation of the
enforcer, passing it the entity which is involved in the change. Validate () then checks whatever it
deems necessary and returns a Vote as to whether the transaction should proceed or not.

There are two types of enforcers defined.

• A COMMON_ENFORCER is one in which a single object is registered as an enforcer. Thus,
all Topology servers will be using this single object to validate modifications involving the
specified topological type. This introduces a single point of failure if this object is
unreachable.

Systems Management: Topology Service 63

Define_Enforcers Managing Topological Types

• A NAMED_ENFORCER is one in which Topology is given the name of an object that it can
locate in a naming service and will then narrow to the TopologyEnforcer interface. This
provides for the use of a Unified Service (where multiple objects are providing the same
functionality) or if there is only a single object it can, if necessary, easily be moved to a
different host and reregistered with the naming service.

EXCEPTIONS RAISED

[TopologyMetaData::InvalidRegisteredObject]
Returned if an object specified as an enforcer cannot be narrowed to the TopoloygEnforcer
interface.

[Topology::InvalidTypeName]
Returned if the type specified is not a valid topological type name..

[Topology::NoSuchType]
Returned if there is no type defined in the Topology store that matches the given type name.

[Topology::SchemaViolation]
Returned if there is a conflict between the Topology Schema definition and the persistent
storage of the topology data, known as Topology data store.

[Topology::ServerNotContacted]
Returned if the topology server required to complete this operation is not contactable.

64 Preliminary Specification

Managing Topological Types Get_Association_Rules

NAME — DESCRIPTION
Get_Association_Rules — This operation is used to get a list of association rules for a topological
type.

SIGNATURE

AssociationRuleList
get_association_rules (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type whose rules are required.

Output/Return
Returns a list of the topology rules for the topological type.

SEMANTICS
The operation returns a list of association rules that represent all of the association rules defined
for the topological type as specified in the type_name parameter value. The association rules that
only apply to the topological type by inheritance are not returned.

EXCEPTIONS RAISED

[Toplogy::InvalidTypeName]
Returned if the given type name is not a valid topological type name.

[Topology::NoSuchType]
Returned if the given topological type name does not exist.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 65

Get_Enforcers Managing Topological Types

NAME — DESCRIPTION
Get_Enforcers — This operation is used to get a list of enforcers for a topological type.

SIGNATURE

EnforcerRegistrationList
get_enforcers (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

PARAMETERS

Input

type_name
The name of the topological type.

Output/Return
Returns a list of the enforcers for the topological type specified.

SEMANTICS
This operation returns a list of enforcers that represents all of the enforcers defined for the
topological type specified by the type_name parameter value. The enforcers that only apply to
the topological type by inheritance are not returned.

EXCEPTIONS RAISED

[Toplogy::Toplogy::InvalidTypeName]
Returned if the given type name is not a valid topological type name.

[Topology::NoSuchType]
Returned if the given topological type name does not exist.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

66 Preliminary Specification

Managing Topological Types Get_Enforcers

5.2 TopologyMetaData.idl File
#if !defined (TOPOLOGYMETADATA_IDL)
#define TOPOLOGYMETADATA_IDL

#include <TopologyData.idl>
#include <ErrorService.idl>

module TopologyMetaData {
interface TopologyEnforcer;

enum Invoke Condition {
ENTITY_ASSOCIATED,
ENTITY_DISASSOCIATED,
ENTITY_STATE_CHANGED,
AGGREGATE_ENTITY_ASSOCIATED,
AGGREGATE_ENTITY_DISASSOCIATED,
AGGREGATE_ENTITY_STATE_CHANGED,
ASSOCIATED_ENTITY_ASSOCIATED,
ASSOCIATED_ENTITY_DISASSOCIATED,
ASSOCIATED_ENTITY_STATE_CHANGED,
ENTITY_MANAGED,
ENTITY_UNMANAGED,
ALL

};

typedef sequence<InvokeCondition> InvokeConditionList;

enum EnforcerType {COMMON_ENFORCER, NAMED_ENFORCER};

typedef string EnforcerName;
struct EnforcerRegistration {

InvokeConditionList invoke_conditions;
union EnforcerObjectReference switch(EnforcerType) {

case NAMED_ENFORCER:
EnforcerName enforcer_name;

case COMMON_ENFORCER:
default:

TopologyEnforcer enforcer_ek;
}enforcer;

};

typedef sequence <EnforcerRegistration> EnforcerRegistrationList;

const unsigned long NO_LIMIT = ˜0;

struct AssociationRule {
string role;
long min_cardinality;
long max_cardinality;
Topology::TopologicalTypeName associate_type;

};

typedef sequence<AssociationRule> AssociationRuleList;
exception TypeRedefinition{ };
exception InvalidCardinality{ };
exception TypeInUse{ };
exception InvalidRole{ };
exception NoSuchEnforcerImplementation{ };

Systems Management: Topology Service 67

TopologyMetaData.idl File Managing Topological Types

interface TopologicalTypeManager: CosTransactions::TransactionalObject {

// Life-cycle operations

boolean create (
in Topology::TopologicalTypeName type_name,
in Topology::TopologicalTypeNameList parent_types)

raises (Toplogy::InvalidTypeName,
Toplogy::NoSuchType,
ToplogyMetaData: :TypeRedefinition,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

boolean dismiss (
in Topology::TopologicalTypeName type_name)

raises (Topology::InvalidTypeName,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

// Query operations

boolean exists (
in Topology::TopologicalTypeName type_name)

raises (Topology::InvalidTypeName,
Topology::ServerNotContactable);

Topology::TopologicalTypeNameList
get_all_types()

raises (Topology::ServerNotContactable);

Topology::TopologicalTypeNameList
get_parents (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

AssociationRuleList
get_association_rules (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

EnforcerRegistrationList
get_enforcers (

in Topology::TopologicalTypeName type_name)
raises (Topology::InvalidTypeName,

Topology::NoSuchType,
Topology::ServerNotContactable);

// Set operations

void define_rules (
in Topology::TopologicalTypeName type_name,
in AssociationRuleList rules)

raises (TopologyMetaData: :InvalidTypeModification,
Topology::SchemaViolation,
Topology::TransactionWillRollback,

68 Preliminary Specification

Managing Topological Types TopologyMetaData.idl File

Topology::ServerNotContactable);

void define_enforcers (
in Topology::TopologicalTypeName type_name,
in EnforcerRegistrationList enforcers)

raises (TopologyMetaData: :InvalidRegisteredObject,
Topology::InvalidTypeName,
Topology::NoSuchType,
Topology::SchemaViolation,
Topology::TransactionWillRollback,
Topology::ServerNotContactable);

};

interface TopologyEnforcer : CosTransactions::TransactionalObject {

// Operations
CosTransactions::Vote
validate (

in Topology::TopologicalEntity affected_entity);
};

};
#endif // TOPOLOGYMETADATA_IDL

Systems Management: Topology Service 69

Managing Topological Types

70 Preliminary Specification

Chapter 6

Manipulating Queries in Topology

6.1 QueryExecution
This interface provides for interaction with the execution of a query.

The CORBA object QueryExecution models the evaluation of a query. These objects are created
by a QueryExecutionFactory CORBA object (see Appendix A).

This interface supports operations to get the status of a query, stop the execution of the query,
retrieve the query string, and retrieve the results from the execution of the query.

The lifecycle of a query consists of its creation via the QueryExecutionFactory at which point the
query evaluation begins. The client may then inquire as to the current status of the query, may
prematurely stop the query, or may begin requesting query results via the get_next () or get_all ()
operations. When the query execution has been completed and the last query result has been
requested — either via get_next () or get_all () — then the QueryExecution object destroys itself.

All interfaces are expressed in CORBA IDL. They are grouped under TopologyQuery.idl.

Systems Management: Topology Service 71

Stop Manipulating Queries in Topology

NAME — DESCRIPTION
Stop — This operation is used to stop (abort) the execution of the query and destroys this
QueryExecution.

SIGNATURE

void stop()
raises (Topology::ServerNotContactable);

SEMANTICS
This operation stops the evaluation of a query and destroys this QueryExecution.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

72 Preliminary Specification

Manipulating Queries in Topology Get_Status

NAME — DESCRIPTION
Get_Status — This operation is used to get the status of a QueryExecution.

SIGNATURE

QueryExecutionStatus get_status()
raises (Topology::ServerNotContactable);

PARAMETERS

Input/Output
There are no input or output parameters for this operation.

Return
This operation returns the status of the evaluation of a query.

SEMANTICS
This operation returns the status of the evaluation of a query. The meaning of each of the fields
in the QueryExecutionStatus is as follows:

truth_of_proposition
indicates whether the query is a true logical proposition on topology

partial
indicates whether the results for this query are all the result that may exist (for example, a
possible result may be missing due to one of the topology servers being down in an
installation)

finished
indicates whether the evaluation of the query is complete

num_result
indicates the number of individual results that have been obtained so far for this query.

A query represents a logical proposition on topology. This operation sets the truth_of_proposition
field of the QueryExecutionStatus to be the result of that logical proposition. The
truth_of_proposition flag is the only mechanism through which a client can obtain the result of a
query executed with the QueryResultOption of QRO_TRUTH. A query executed with this option
will never return any topological data as part of the results, and so it is not possible to determine
the result of the logical proposition of a query by looking at the list of results. If
truth_of_proposition is FALSE then any result data returned from get_next () or get_all () will be
undefined.

If it is possible that there may be more results to this query than those that can be obtained, then
the partial field of the QueryExecutionStatus will be set to TRUE.

When a query is evaluated, it is possible that some of the topology servers in the installation
may not be contactable. This may force the evaluation to disregard possible results as one of
these topology servers may be needed to obtain a complete result. If this happens then the
results of the evaluation will be flagged as partial . The partial flag may also be true when the
query was evaluated with a result option of QRO_TRUTH or QRO_ANY.

Systems Management: Topology Service 73

Get_Status Manipulating Queries in Topology

A query has the following status until a result has been found for the query (that is, before the
notification’s interimResult has been sent):

truth_of_proposition = FALSE

partial = TRUE

finished = FALSE

num_results = 0

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

74 Preliminary Specification

Manipulating Queries in Topology Get_Query

NAME — DESCRIPTION
Get_Query — This operation is used to return the query string represented by this
QueryExecution.

SIGNATURE

string get_query()
raises (Topology::ServerNotContactable);

PARAMETERS

Input/Output
There are no input or output parameters for this operation.

Return
The TQL query in its expanded form.

SEMANTICS
When a TQL string is given to a QueryExecutionFactory , the string is manipulated before being
used to create a QueryExecution. This manipulation includes resolving references to other
queries, instantiation of parameters, and optimization. This operation allows a client to obtain
the TQL string that results from this manipulation process, and therefore to have access to the
‘‘real’’ query that will be executed by this QueryExeuction.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 75

Get_Next Manipulating Queries in Topology

NAME — DESCRIPTION
Get_Next — This operation is used to get the next individual result for this query and destroys
the QueryExeuction if this is the last result.

SIGNATURE

void get_next (
out QueryExecutionStatus status,
out QueryResult result_data)

raises (Topology::ServerNotContactable);

PARAMETERS

Output

status
The status of the executed query.

result_data
The individual result of the executed query.

SEMANTICS
This operation returns the next individual result that is available for the executed query. Once a
result has been retrieved through this operation, the result is removed from the cache and is no
longer available. The status is returned as described for get_status . If the num_results field of the
status is zero, and the finished field of status is TRUE, then the contents of result_data are
undefined. If the execution of the query is complete and this call to get_next returns the last
result, then the QueryExecution is destroyed at the completion of this operation.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

76 Preliminary Specification

Manipulating Queries in Topology Get_All

NAME — DESCRIPTION
Get_All — This operation is used to get all of the remaining results for the executed query and
then destroys the QueryExecution.

SIGNATURE

void get_all (
in QueryResultFormat result_format,
out QueryExecutionStatus status,
out QueryResults result_data)

raises (Topology::ServerNotContactable);

PARAMETERS

Input

result_format
Indicates the format in which the result should be returned. Alternatives are as a
combination of all of the individual results for the query (COMBINED_RESULT) or as a
list of individual results for the query (SEPARATE_RESULTS).

Output

status
The status of the executed query.

result_data
The results of the executed query.

SEMANTICS
This operation returns all of the remaining results for the query (that is, all of the results for the
query less those already returned via the get_next () operation). The status is returned as
described for get_status (). If the num_results field of status is zero, and the finished field of status
is TRUE, then the contents of result_data are undefined.

The QueryExecution is destroyed after this operation completes.

EXCEPTIONS RAISED

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 77

Get_All Manipulating Queries in Topology

6.2 QueryExecutionFactory
This interface is provides the factory service for QueryExecution objects. This interface supports
operations to create instances of QueryExecution objects, causing the evaluation of the query to
begin.

78 Preliminary Specification

Manipulating Queries in Topology Create

NAME — DESCRIPTION
Create — This operation is used to create a QueryExecution.

SIGNATURE

QueryExecution create (
in string tql_string,
in ParameterBindings parameters,
in QueryResultOption result_option)

raises (CompileError,
OVTopology::ServerNotContactable);

PARAMETERS

Input

tql_string
The query to be evaluated.

parameters
The actual values for arguments to the query.

result_option
The way that the results will be generated.

Return
A new QueryExecution object.

SEMANTICS
This operation creates a QueryExecution object and returns an object reference it.

If the I result_option is QRO_ALL, the the query is executed and the execution will attempt to
find all valid answers to this query. If the result_option is QRO_ANY, then the query is executed
and the execution will attempt to find no more than one answer to this query. If the result_option
is QRO_TRUTH, then the query is executed and the execution will only attempt to answer the
logical proposition formed by this query.

EXCEPTIONS RAISED

[CompileError]
Returned if the query is not syntactically valid. The details of the error which occurred
during the compile of the query are included in the error message.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 79

Create_With_Filter Manipulating Queries in Topology

NAME — DESCRIPTION
Create_With_Filter — This operation allows the client to filter on specific types of entities or
specific tags, to reduce the amount of data returned from a query.

SIGNATURE

QueryExecution create_with_filter (
in string tql_string,
in ParameterBindings parameters,
in QueryResultOption result_option,
in QueryResultFilterList result_filter_list)

raises (
CompileError,
Topology::ServerNotContactable);

PARAMETERS

Input

tql_string
The query to be evaluated.

parameters
The actual values for arguments to the query.

result_option
The way that the results will be generated.

result_filter_list
The filters to be applied to the returned result.

Return
A new QueryExecution object.

SEMANTICS
This operation behaves similarly to the create () operation with the additional semantics that as
the query is executed and the result is built the specified filters are applied.

The result_filter_list parameter specifies a number of filters to be applied to the results returned
to the client. The filter_type field of a particular filter specifies whether the filter applies to
topological types (TYPE_FILTER) or to tags (TAG_FILTER). In the case of a topological type
filter the select_list specifies 1 or more topological types, in the case of a tag filter the select_list
specifies 1 or more tags or the special string "*" which is used to indicate any tag.

If the result_filter_list is an empty sequence then no result filtering occurs, otherwise each item in
the sequence specifies a filter which restricts the entities and aggregate entities which appear in
the query result.

In order to appear in the result an entity must satisfy all of the type filters in the list. An entity in
the result satisfies a filter of type TYPE_FILTER if its topological type matches (taking
inheritance of topological types into account) at least one of the topological types in the
select_list .

An aggregate entity in the result satisfies a filter of type TAG_FILTER if the aggregate entity
matched an AE pattern in the query which was tagged and either the select_list contains the
string ‘‘*’’, or the tag for that aggregate entity matches at least one of the tags in the select_list .

80 Preliminary Specification

Manipulating Queries in Topology Create_With_Filter

EXCEPTIONS RAISED

[CompileError]
Returned if the query is not syntactically valid. The details of the error which occurred
during the compile of the query are included in the error message.

[Topology::ServerNotContactable]
Returned if the topology server required to complete this operation is not contactable.

Systems Management: Topology Service 81

Create_With_Filter Manipulating Queries in Topology

6.3 TopologyQuery.idl File
#if !defined (TOPOLOGYQUERY_IDL)
#define TOPOLOGYQUERY_IDL

#include <Topology.idl>
#include <TopologyData.idl>

module TopologyQuery {

typedef sequence<string> StringList;

typedef sequence<unsigned long> IndexList;

enum QueryResultFilterType {TYPE_FILTER, TAG_FILTER};

struct QueryResultFilter {
QueryResultFilterType filter_type;
StringList select_list;

};

typedef sequence <QueryResultFilter> QueryResultFilterList;
struct QueryExecutionStatus {

boolean truth_of_proposition;
boolean partial;
boolean finished;
short num_results;

};

struct QueryResultAssociation {
unsigned long pred_aggregate;
unsigned long pred_entity;
unsigned long pred_role;
unsigned long succ_aggregate;
unsigned long succ_entity;
unsigned long succ_role;

};

typedef sequence <QueryResultAssociation> QueryResultAssociationList;
struct QueryResultEntity {

Topology::TopologicalEntity entity;
unsigned long aggregate;
unsigned long type;

};

typedef sequence <QueryResultEntity> QueryResultEntityList;

struct QueryResultAggregate {
IndexList entities;
IndexList tags;

};

typedef sequence <QueryResultAggregate> QueryResultAggregateList;

struct QueryResult {
QueryResultEntityList entities;
QueryResultAggregateList aggregates;
QueryResultAssociationList associations;
StringList types;

82 Preliminary Specification

Manipulating Queries in Topology TopologyQuery.idl File

StringList roles;
StringList tags;

};

typedef sequence <QueryResult> QueryResults;

enum QueryResultFormat {COMBINED_RESULT, SEPARATE_RESULTS};

typedef string RegisteredQueryName;

typedef sequence <RegisteredQueryName> RegisteredQueryNameList;

enum QueryResultOption {
QRO_ALL,
QRO_ANY,
QRO_TRUTH

};

struct ParameterBinding {
string parameter_name;
string parameter_value;

};

typedef sequence <ParameterBinding> ParameterBindings;

exception CompileError {string reason;};

exception InvalidFilter { };

interface QueryExecution {

// Life-cycle operations

void stop ()
raises (Topology::ServerNotContactable);

// Status operations

QueryExecutionStatus
get_status ()

raises (Topology::ServerNotContactable);

string get_query ()
raises (Topology::ServerNotContactable);

// Result retrieval operations

void get_next (
out QueryExecutionStatus status,
out QueryResult result_data)

raises (Topology::ServerNotContactable);

void get_all (
in QueryResultFormat result_format,
out QueryExecutionStatus status,
out QueryResults result_data)

raises (Topology::ServerNotContactable);
};

Systems Management: Topology Service 83

TopologyQuery.idl File Manipulating Queries in Topology

interface QueryExecutionFactory: CosTransactions::TransactionalObject {

// Life-cycle operations

QueryExecution create (
in string tql_string,
in ParameterBindings parameters,
in QueryResultOption result_option)

raises (CompileError,
OVTopology::ServerNotContactable);

QueryExecution create_with_filter (
in string tql_string,
in ParameterBindings parameters,
in QueryResultOption result_option,
in QueryResultFilterList result_filter_list)

raises (CompileError,
Topology::ServerNotContactable);

};
};
#endif //TOPOLOGYQUERY_IDL

84 Preliminary Specification

Appendix A

Topology Query

A.1 Introduction
Queries are expressed textually using a Topology Query Language (TQL).

Topology supports generally topology queries on the set of all defined Aggregate Entities (AEs).
Each query specifies one or more meta_AEs which are matched against the known AEs. A
meta-AE is essentially a template for matching AEs.

Queries also specify navigation paths through Topology, which dictate which associations are to
be followed between AEs in evaluating a query. Navigation paths are expressed in terms of
meta-associations , which are templates for matching associations in Topology.

The result of a topology query consists of two parts. The first part is a boolean value that
indicates whether the propositional expression posed by the query evaluates to TRUE or FALSE.
This part of the result is always returned. The second part of the result is a sub-graph, or sub-
graphs, that match the navigation paths specified by the query. The construction and existence
of this part of the result depends on the type of result requested by the client.

The process is illustrated in Figure A-1 on page 86.

Systems Management: Topology Service 85

Introduction Topology Query

1. Specify the Query Using TQL

Query about
the Topology
Service Data

Store

5. Interpret Query Results

4. Get Query Results

3. Execute the Query

2. Manage the Query Table

Choose Reporting Mode

Get Next Result

and/or Stop the Query

Express Lack of Interest in Query

Get Balance of Results

Execute the Query

Add Query

Figure A-1 A Process for Performing Navigation Queries

86 Preliminary Specification

Topology Query Topology Data Store

A.2 Topology Data Store
The Topology data store can be viewed as a graph of associated AEs. A topology graph is a set of
nodes and a set of edges connecting the nodes. Nodes are AEs, and edges simply indicate the
existence of an association between the two AEs.

Computer
3

Computer
4

NFS
1

Computer
2

Computer
1

Printer
2

Topology

Has
Printer 1

Printer
1

Figure A-2 Topology Graph Structure

Systems Management: Topology Service 87

Topology Data Store Topology Query

A.2.1 Type Matching

Topological types are organized into inheritance type hierarchies.

An entity is matched against a topological type if it has the same topological type as that
specified, or it has a topological type which is a specialization of that specified.

For example, in Figure A-3, if a meta-AE specified topological type RT-3, all AEs with
topological type RT-3, RT-6, RT-7 and RT-9 will match the meta-AE.

root

RT-1 RT-3

RT-6

RT-9

RT-2

RT-4 RT-5

RT-7

Figure A-3 Example of a Topological Type Inheritance Hierarchy

A.2.2 Meta-AE (Meta-Aggregate Entity)

A meta-AE is a template for matching AEs in topology. A meta-AE can be:

• a specific AE in topology

• any AE in topology

• a topological type

• a propositional expression of topological types. The propositional expression can be formed
using the logical connectives AND, OR, and NOT. For example, a meta-AE may specify
(Type-A AND Type-B) AND NOT Type-C.

A.2.3 Simple Navigation Paths

A simple navigation path contains one or more meta-AEs connected by meta-associations.

The presence of a meta-association in evaluating a query means that an association in the
Topology data store must be traversed.

A meta-association can optionally specify a role for each of the meta-AEs that it connects. If
specified, these roles limit the matching AEs to those that take the specified role in the
corresponding association. The specification for a role may include an index, if cardinality is
greater than 1.

A simple navigation path can be viewed as a proposition on topology that will return TRUE or
FALSE, but not both. Each topology query must consist of at least one simple navigation path.

A simple navigation path is a recipe for matching paths through the Topology data store. A path
in topology will match a simple navigation path if each AE in the topology path matches the
corresponding meta-AE in the navigation path and adjacent AEs in the topology path are
associated (in the correct roles) with each other; that is, the associations match the meta-
associations. AE matching starts with the root meta-AE of the path and progresses sequentially

88 Preliminary Specification

Topology Query Topology Data Store

to the leaf meta-AE of the navigation path. Several paths through topology may match a simple
navigation path.

Some examples of simple topology queries using a simple navigation path (see Section A.4 on
page 98 for syntax specifications):

• Ex1:
Is AE E1, associated via AE R1 with AE E2, where AE E2 is also associated via R2 with AE
E3?

• Ex 2:
Is there any AE matching ET1, associated via an AE that matches RT1, with an AE of that
which matches ET2?

E1 ET1

R1 RT1

E2 ET2

= meta-AE

= association

R2

E3

leaf

(Ex1) (Ex2)

root

Figure A-4 Graphical Representation of the Queries

Both example queries start AE matching at the root meta-AE of their simple navigation paths.
Ex 1 will only find, at most, one matching path in topology as it specifies a specific AE at every
meta-AE. Ex2 may find several paths in topology that match the root meta-AE as it specifies
topological types at every meta-AE. A query will return TRUE if it can find at least one
matching path in topology.

A.2.4 Query Trees

Simple navigation paths can be combined, using logical connectives, to pose more advanced
queries on the topology graph structure. The logical AND, OR, and NOT are used to produce
compound propositional expressions on topology. They are expressed as query trees. A simple
navigation path is the simplest form of query tree. Evaluation of the connectives is in
accordance with the rules of logic. These are:

• Logical NOT (see next section)

• Logical AND: the result is TRUE if both query sub-trees being combined have a result of
TRUE

• Logical OR: the result is TRUE if at least one query sub-tree being combined has a result of
TRUE.

Systems Management: Topology Service 89

Topology Data Store Topology Query

Nodes in query trees are either meta-AEs or logical connectives. Branches only occur at the
logical AND and OR connectives which each have two branches. Complex navigation paths are
paths within query trees.

If a null sub-query tree is a child of an AND or OR logical connective, that null query sub-tree is
assumed to return the result TRUE. In other words, the tree is equivalent to one where the AND
or OR node (with the null sub-query tree) is removed; that is, the node that was its child
becomes the child of the parent of the AND or OR.

In query trees that are simple navigation paths, the edges always join nodes that are meta-AEs
and always represent meta-associations. In contrast, in more general query trees, edges join
nodes that may be meta-AEs or logical connectives. Edges in the tree are therefore not always
meta-associations. Meta-associations exist between each pair of meta-AEs in the query tree
where one meta-AE in the pair is the closest ancestor node of the other that is also a meta-AE.

A.2.5 Example Queries

Some example topology queries using the logical connectives are:

• Ex1:
Is AE-E1 associated, via AE-R1, with AE-E2, where E2 is associated via AE-R2, with AE-E3
AND where E2 is also associated via AE-R3 with AE-E4?

• Ex2:
Is AE-E1 associated, via AE-R1, with AE-E2, whree E2 is associated with AE-R2, with AE-E3
OR where E2 is associated, via AE-R3, with AE-E4?

• Ex3:
Is AE-E1 associated, via AE-R1, with AE-E2, where E2 is NOT associated, via any AE with
AE-E3?

• Ex4:
Is AE-E1 associated, via AE-R1, with AE-E2, where E2 is associated via AE-R2, with AE-E3
AND where E2 is also associated, via AE-R3, with AE-E4 and where AE-E3 is associated via
AE-R4 with AE-E5, OR where AE-E3 is associated via AE-R5 with AE-R6.

90 Preliminary Specification

Topology Query Topology Data Store

These examples show that the queries can be posed to Topology can be complex (and difficult to
unambiguously describe in natural language).

E1 E1 E1E1

R1 R1 R1R1

E2 E2 E2E2

and or

or

andnot

= Meta-AE

= Logical Connective

R2 R2 R2

R4

E3 E3 E3

E5

R3 R3 R3any

R5

E4 E4 E4E3

E6

(Ex1) (Ex2) (Ex4)(Ex3)

Figure A-5 Graphical Representation of Example Queries

All four queries start AE matching at the root meta-AE (E1). Queries Ex1 and Ex2 contains two
complex navigation paths rooted at E1, whereas query Ex3 contains a single complex navigation
path rooted at E1. Query Ex4 shows an example of nested logical connectives, with a total of
three complex navigation paths that are rooted at E1.

• Ex1 will only return TRUE if there is at least one path through topology from E1 to E2 (via
R1), and from E2 to both E3 (via R2) AND E4 (via R3).

• Ex2 will only return TRUE if there is at least one path through topology from E1 to E2 (via
R1), and from E2 to either E3 (via R2) OR E4 (via R3).

• Ex3 will only return TRUE if there is at least one path through topology from E1 to E2 (via
R1), and there is no path from E2 to E3 (via any single AE).

• Ex4 will only return TRUE if there is at least one path through topology from E1 to E2 (via
R1), and from E2 to both E3 (via R2) AND E4 (via R3), and from E3 to either E5 (via R4) OR
E6 (via R5).

Systems Management: Topology Service 91

Topology Data Store Topology Query

The logical connectives AND and OR can also be used as root nodes in query trees. Examples of
these types of queries are:

• Ex1:
Is AE-E1 associated, via AE-R1 to AE-E2, AND is AE-E3 associated via AE-R2 to AE-E4?

• Ex2:
Is AE-E1 associated, via AE-R1 to AE-E2, OR (is AE-E3 associated, via AE-R2, to AE-E4 AND
is AE-E5 asssociated via any AE to AE-E6)? Paranthesis have been used to indicate
evaluation precedence.

and

and

or

E1 E1

E1 E1R1 R1

R1 R1E2 E2

E2 E2

E3

R2

E4

(Ex1) (Ex2)

= meta-AE

= logical connective

Figure A-6 Graphical Representation of Queries: Logical Connectives

A.2.6 Repetition

A simple navigation path, can be repeated a number of times as part of the query. A repetition
statement is bounded by a lower limit. An optional upper limit may also be specified. These
limits indicate the minimum and maximum number of times the repetition can occur in a
topology path.

92 Preliminary Specification

Topology Query Topology Data Store

Here is an example of specifying repetition in a query:

• Is AE-E2 contained within AE-E1, where we understand containment to be transitive; that is,
if E1 contains X and X contains Y, then E1 contains Y. Figure A-7 provides a graphical
representation of the query. This example also shows how roles, specified for each meta-AE
per association, are used. In the example, a topological type containment is used. This type
supports two roles, container and contained . The other AEs also support these roles.

E1 r r d d r r d dany

= meta-AE

= containment topological type

= repetition

r = container role
d = contained role

E2

Figure A-7 Graphical Representation of Query Repetition

Systems Management: Topology Service 93

Topology Data Store Topology Query

Queries containing repetition constructs where the upper bound is specified can always be
expressed by an equivalent to a query without repetition. Figure A-8 shows the equivalent query
for a query shown in Figure A-7’ where an upper bound of 2 is specified.

E1

E1 OR OR

r

r

r r

r

r

r

r r

r

r

r

d

d

d d

d

d

d

d

d

d d

d

d

d

r r d dany

E2

any E2

E2

any

any

Original query

Equivalent query

E2

Figure A-8 Equivalent Query without Repetition

For the purposes of specifying the requirements for matching queries it is not necessary to
consider the repetition construct given that equivalent queries can be constructed without them
(for these purposes, queries containing repetition constructs where the upper bound is not
specified can be considered as having a very large upper bound).

A.2.7 References to Registered Queries

At any point in a query where a meta-AE can be specified, it is also possible to specify a
reference to a registered query. A registered query is a query that has been named. When a
query that contains references to registered queries is evaluated, Topology replaces the
references with the query tree that represents the registered query.

A.2.8 AE Matching Constraint

There are two things that are matched in a query. AEs match meta-AEs and associations match
meta-associations.

The Topology Service supports the ability for the client to define constraints between pairs of
meta-AEs that either require or forbit the same AE from matching both meta-AEs.

These constraints are specified for any pair of meta-AEs as:

• Equals: an AE that matches a specified meta-AE must also match the other meta-AE

• Not Equals: an AE that matches one specified meta-AE must not match the other meta-AE.

If any pair of meta-AEs does not have a constraint specified, then the same AE may or may not
match both meta-AEs; that is, ‘‘don’t care’’ is the default.

There is similar support for expressing constraints for meta-associations.

94 Preliminary Specification

Topology Query Topology Data Store

A.2.9 Query Result

There are two parts to a query result:

• A boolean result which will return TRUE or FALSE, but not both. This part of the result is
always returned and is an evaluation of the propositional expression posed on Topology.

• Sub-graphs of Topology that match the query. This part of the result is optional and is
dependent on the combination of result construction rules and show indicator rules.

A.2.10 Result Construction Rules

The result construction rules specify the number of sub-graphs to be returned from a query. A
query can only return sub-graphs if the boolean result of the query was true. There are three
result construction rules:

• None:
the query will not return any sub-graphs in the result; the boolean value is the only result
returned

• Any:
returns one sub-graph; the query will return the result of one successful match made on
Topology

• All:
returns one or many sub-graphs; the query will return the results of all successful matches
made on Topology.

A query can only specify one result construction rule at a time.

A.2.11 User Tags

The Topology query service allows user tags to be specified on the meta-AEs of the query. While
user tags are semantically irrelevant to the query evaluation process, the provide a means for the
client to identify which topology AEs matched which meta-AE(s) in the query.

Each sub-graph returned in the result of a query will copy all user tags from the meta-AEs to
their corresponding matched topology AEs. If the result construction rule of the query specifies
the graph option, and the topology AE in the query result represents more than one meta-AE, the
AE will copy all user tags from each meta-AE it matched.

The client can then extract AEs from the query result by specifying the tags of interest.

Systems Management: Topology Service 95

Topology Query System Topology Query

A.3 Topology Query System
The Topology Query System consists of the components as shown in Figure A-9.

Query Execution
Factory

Query Executor
and Iterator

Query Result

Query Compiler

syntax
check

Registered Queries

Query String
& Name

compiled
query

generates

query string
& parameters

Figure A-9 Topology Query System

A.3.1 Query Language Definition

The query language definition consists of the language grammar (syntax) with corresponding
semantics (see sections that follow on TQL: Topology Query Language). The language
definition is a precise specification from which users can construct query programs for
subsequent compilation and execution:

query program
A query program is a textual expression of a query.

compiled query
A compiled query is produced by the QueryExecutionFactory, which calls the TQL
compiler, when a valid query program is processed.

parameterized query
A parameterized query is a query where named parameters are used as placeholders that
are substituted when the query is evaluated. There are three kinds of values that can be
substituted for a parameter: a tag, a specific AE or a compiled sub-query.

query language compiler
The TQL compiler, called by the QueryExeuctionFactory, takes as input a textual program
(string) and performs syntactic and semantic checking on the input. If no errors are
detected by this checking the query can be executed.

96 Preliminary Specification

Topology Query Topology Query System

sub-query
A TQL query string may contain references to other queries which are defined as a separate
string with a particular name. These references to other queries are called sub-queries.
They could have been directly written into the query but because of the semantics defined
for the relationships they find it makes the query more understandable to write them as a
short reusable query.

For example, a query to find grandparents of an entity can most easily be written as a query
to find the parents of the parents of the entity. Thus, a query to find parents is a very
suitable candidate to write as a sub-query.

A potential implementation could allow these sub-queries to be registered and stored for
retrieval and sharing between various applications.

Systems Management: Topology Service 97

TQL Overview Topology Query

A.4 TQL Overview

A.4.1 TQL Language

TQL is a textual language designed to facilitate the use of the Topology Service navigation query
functions, by allowing navigation queries to be expressed textually.

The language maps directly onto the query trees that are supported by Topology. No additional
functionality is supplied by the language and none is denied.

The scope of the language is restricted to providing a syntax for the expression of any allowable
query tree and the conversion of the expression into the physical tree data structure. Minimal
semantic checking is done by the compiler; this is deferred untiqa():-l query execution.

A.4.2 TQL Compiler

The TQL compiler methods are defined by the QueryCompiler interface. Every Topology server
instantiates one object that supports the Query Compiler interface. There is, therefore, a TQL
compiler on every host on which the Topology Server is running.

Clients access the compiler by initializing a Query object with a TQL string.

A.4.3 TQL Grammar

The YACC specification of the TQL grammar is as follows. A discussion of the TQL grammar
also follows:

query: query_head ’\{’ clause_expr ’\}’ ;

query_head: IDENTIFIER
| IDENTIFIER ’(’ ’)’
| IDENTIFIER ’(’ argument_list ’)’ ;

clause_expr: sequence_clause
| clause_member ;

sequence_clause: sequence_clause clause_member
| clause_member clause_member ;

clause_member: clause
| repetition_clause
| meta_association
| ABSENT_TOKEN clause_member
| clause_member AND_TOKEN clause_member
| clause_member OR_TOKEN clause_member
| ’(’clause_expr’)’ ;

meta_association: labeled_meta_association
| role labeled_meta_association
| labeled_meta_association role
| role labeled_meta_association role ;

labeled_meta_association: ’-’
| ’-’ label ’-’ ;

clause: clause_item
| clause_item clause_qualifier ;

clause_item: topology_type_expression

98 Preliminary Specification

Topology Query TQL Overview

| query_reference
| ARGUMENT
| AENAME_TOKEN xfn ; /* where xfn is an agregate entity name */

clause_qualifier: HEAD_TOKEN
| TAIL_TOKEN
| label
| tag
| clause_qualifier HEAD_TOKEN
| clause_qualifier TAIL_TOKEN
| clause_qualifier label
| clause_qualifier tag ;

repetition_clause: ’[’ range clause_expr ’]’ ;

topology_type_expression: topology_type
| topology_type_expression TOPOLOGY_TYPE_AND topology_type_expression
| topology_type_expression TOPOLOGY_TYPE_OR topology_type_expression
| TOPOLOGY_TYPE_NOT topology_type_expression
| ’(’ topology_type_expression ’)’ ;

topology_type: xfn
| ANY_TOKEN ;

tag: TAGGED_TOKEN STRING ;
/*

* tags are used for marking parts of the query so that when the
* results of the query are returned you can tell what actual data
* matched which parts of the query
*/

label: LABELED_TOKEN IDENTIFIER ;
/* labels are used for setting constraints */

role: ’<’ IDENTIFIER ’>’
| ’<’ IDENTIFIER INTEGER ’>’ ;

range: /* nothing */
| INTEGER RANGE_TOKEN
| RANGE_TOKEN INTEGER
| INTEGER RANGE_TOKEN INTEGER ;

query_reference: SUBQUERY_TOKEN xfn ’(’ ’)’
| SUBQUERY_TOKEN xfn ’(’query_actual_list’)’ ;

query_actual_list: clause_item
| query_actual_list ’,’ clause_item ;

argument_list: IDENTIFIER
| argument_list ’,’ IDENTIFIER ;

xfn: IDENTIFIER
| STRING ;

ABSENT_TOKEN: ’ABSENT’
AENAME_TOKEN: ’AENAME’
AND_TOKEN: ’AND’
ANY_TOKEN: ’ANY’
HEAD_TOKEN: ’HEAD’

Systems Management: Topology Service 99

TQL Overview Topology Query

LABELED_TOKEN: ’LABELED’
OR_TOKEN: ’OR’
RANGE_TOKEN: ’..’
SUBQUERY_TOKEN: ’SUBQUERY’
TAGGED_TOKEN: ’TAGGED’
TAIL_TOKEN: ’TAIL’
TOPOLOGY_TYPE_AND: ’&’
TOPOLOGY_TYPE_NOT: ’!’
TOPOLOGY_TYPE_OR: ’|’

A.4.4 TQL Semantics

This section describes the grammar and semantics of TQL.

A.4.4.1 Query Structure

A TQL query has the following structure:

name(parameters) \{body\}

Name and Parameters

A TQL query has a name and optionally a list of parameters. This has the form:

name(parameter, parameter,parameter)

The name uniquely identifies the query. Parameters define placeholders for external queries to
be used in the query body. A placeholder defines where in the query body the value for the
parameter is used; for example:

q(p) \{TypeA-p-TypeC\}

When the query is called, a value must be supplied for each parameter and this value is bound
into the query where the corresponding placeholder is used.

Query Body

The query body specifies the declarative logic of the query. When reference is made to a
‘‘query’’, what it usually means is the query body.

The query body is an expression of clauses.

Clause Expressions

The body of the query is a clauseexpression. A clause expression consists of clause expressions
(recursive definition) separated by the binary operators AND, OR, the unary operator ABSENT
(equivalent to ‘‘NOT’’), and the binary meta-association operator (DASH, or ‘‘-’’). A clause
expression can be a clause or a repetition expression.

Clause expressions are evaluated as per normal expression syntax, that is, a left associative infix
expression of a binary tree with brackets for explicit grouping. Clause operators in order of
precedence are: ABSENT , AND , OR , DASH.

For instance, the expression:

q() \{ clause OR clause AND clause or ABSENT clause \}

which is equivalent to the following, with brackets explicitly shown:

q() \{ ((clause OR (clause AND clause)) OR (ABSENT clause)) \}

100 Preliminary Specification

Topology Query TQL Overview

An example of explicit precedence follows:

q() \{ (clause OR clause) AND (clause OR ABSENT clause) \}

A clause expression can be a list of clause expressions separated by meta-associations denoted by
dashes.

q() \{ clause-clause-clause \}

We can then have the following expression:

q() \{ clause-clause-clause AND clause-clause \}

Brackets may be used for grouping clause epxressions so that they can be associated:

q() \{ (clause)-(clause)\}
q() \{ (clause AND clause)-(clause OR clause)-clause \}

Clauses

A clause can be a meta-AE, a query reference or a placeholder .

Meta-AEs

A meta-AE expression is a template for matching AEs in topology. There are three forms:

• topological type

• topological type expression template

• any topological type.

A topological type consists of a valid name for a topological type, for example:

query() \{ Computer\}

This defines a query that will match all AEs of type Computer.

A meta-AE may be an expression of topological type identifiers. A topological type identifier is
the name of a valid topological type. The binary operators ‘‘&’’ (and) ‘‘|’’ (or) and the unary
operator ‘‘!’’ (not) are used as type operators, with brackets for explicit grouping (as with clause
expressions). The precedence of the operators from highest to lowest is ! & |. All of the type
operators have a higher precedence than the clause expression operators, so they will bind more
tightly to type identifiers, avoiding ambiguities.

For instance:

(Computer & Workstation) | MiniComputer & !Mainframe

This specifies a single AE matching this expression for typological types.

The following example shows that the type expression operators have a higher precedence. The
expression:

Type1 AND Type2 & Type3

is evaluated as:

(Type1 AND (Type2 & Type3))

Note that meta-associations are not applied to topological type identifiers in the type expression
but to the entire expression (meta-AE).

Systems Management: Topology Service 101

TQL Overview Topology Query

A wildcard match can be defined using the keyword any . This specifies that an AE of any type
may match the meta-AE.

Constraints , tags , roles and binding points may be specified on meta-AEs.

A constraint is simply a label associated with a meta-AE. However, for a given query, the labels
constrain the query result in that any two meta-AEs that share the same label must result in the
same matching AEs in every query result produced. Correspondingly, non-matching labels must
result in non-matching AEs. Constraints can also be assigned to meta-associations to produce
matching or non-matching associations in the query results. Constraint labels are identifiers
specified with the Keyword LABELED.

Tags are explained in Section A.2.11 on page 95.

Tags are indicated in the keyword TAGGED.

Roles are explained in Section 2.2.3 on page 14, and are specified at the start and end of the meta-
AE expression to indicate the roles the AE plays in associations coming into it (the role
specification at the start) or going out of it (the role specification at the end). A role specification
is indicated by braces:

q() \{‘‘AE-pattern’’ <role> ‘‘AE-pattern’’\}

Binding points are used to process query references. There are binding points in each query
referred to as head and tail binding points. Binding points are assigned to AEs to define the way
that references to that query by other queries are resolved. When a referenced query is bound to
its reference, a new bound query is produced by taking the referencing query and replacing the
reference node with a referenced query. Replacement here means the head node of the
referenced query will replace the reference node, and the subtree rooted at the reference node
will be duplicated and attached to each tail of the referenced query.

A meta-AE can be labeled as both a head and a tail.

102 Preliminary Specification

Topology Query TQL Overview

The following diagram depicts this:

New Bound Query

Head

Tail

Head

Tail

Referring
Node

Referenced Query

Figure A-10 Binding Points assigned to AEs

An example of a fully featured meta-AE expression is:

HEAD TAIL <client> (Computer&Workstation|PC) <server> TAGGED ‘‘box’’

This matches an AE that is a Computer and a Workstation , or a PC. Furthermore, it has two tags:
box and node . It has a constraint label ‘‘x’’ on it and is both the head and tail binding point. It will
be a client role with any associated meta-AE on the left, and a server role with an associated
meta-AE on the right.

Meta-associations

A meta-association is specified using the binary ‘‘-’’ (dash) operator:

TypeA-TypeB-TypeC
TypeA-(TypeB AND TypeC)
(TypeA AND TypeB)-(TypeC OR TypeD)
TypeA | TypeB-TypeC & TypeD

A meta-association is placed between clause expressions:

clausexpr-clausexpr

The expression is evaluated from left to right. Every clause expression on the left is associated
with every clause expression on the right.

Systems Management: Topology Service 103

TQL Overview Topology Query

In the simple case, with clause expressions that are clauses, this could look like:

q() \{ clause-clause-clause-clause-clause \}

for example, ‘‘Vehicles belonging to people’’:

q() \{ Person-Owns-Vehicle \}

Slightly more complex clause expressions could be associated:

q() \{ clause-(ABSENT clause)-clause-(clause) \}

A clause expression could be even more complex, forming a tree, such as:

clause AND clause OR clause

For example, ‘‘all coconuts or lemons, as long as there are no guavas’’:

q() \{ (Coconuts OR Lemons) AND ABSENT Guavas \}

Meta-associations can be placed between clause expressions that are grouped by brackets,
giving a mechanism to associate subtrees.

q() \{ (clause1 AND clause2)-(clause3 OR clause4) \}

The example above would be equivalent to:

q() \{ (clause1-clause3 OR clause1clause4)
AND (clause2-clause3 OR clause2-clause4) \}

The subtree (clause3 OR clause4) is attached to both leaves of the tree (clause1 AND
clause2) .

If the subtree (clause expression) on the left has multiple leaf nodes, the subtree associated to the
right will be placed at each of these leaves with equals constraints between the corresponding
elements in the right subtree.

For example, ‘‘computers with both a modem and a printer that are located in the same
location’’:

q() \{ Computer-(Modem AND Printer)-(Located-Location) \}

Meta-associations may have constraint labels attached to them.

Meta-associations can be established between repetition expressions, denoted by square
brackets, for example:

q () \{ TypeA-TypeB-[1..20,TypeC-TypeD]-[2,TypeE-]TypeF \}

Meta-associations can be established between placeholders. The binding points in the external
query determine how it is bound into the query.

q(x) :- TypeA-x-TypeB \}

Meta-associations can be made between query references. The binding points in the referenced
query determine how it is bound into the query.

q(x) :- parent(x)-Owns-Vehicle \}

104 Preliminary Specification

Topology Query TQL Overview

Roles

A meta-AE can be in different roles for different meta-associations. Roles are specified inside
‘‘<’’ and ‘‘>’’ symbols and using the role type name.

The role is specified on the side of the meta-AE adjacent to the associated meta-AE, as a
particular meta-AE can be in a different role with an associated meta-AE on the other side in the
query:

MetaAE<roletype>
<roletype>MetaAE
<roletype>MetaAE<roletype>

For instance, a query, ‘‘Clients and Servers in the NetWare relationship’’:

q() \{ Computer<client>-NetWare-<server>Computer \}

Constraint Labels

Meta-AE and meta-association constraints are specified using labels. Labels are specified with
LABELED.

A meta-AE constraint label is expressed after the meta-AE:

q() \{ TypeA LABELE D x - TypeB - TypeC AND TypeD LABELED y;

A meta-association constraint label is expressed using two DASH operators with the label
between them.

q() \{ TypeA-(LABELED x)-TypeB-(LABELED y)-TypeA;

There are three conditions for constraints:

• equals constraint

• not equals constraint

• don’t care (default).

Equals constraints are specified using the same label; not equals constraints with different labels;
don’t care conditions are the default, with no label.

Sub-queries and Query References

A query may be defined in terms of other sub-queries. Sub-queries can be passed in as
parameters and referenced in a clause with a placeholder or called using a query reference.

An example of a query passed in as a parameter is:

p() :- TypeA-TypeB;
q(p) :- p;

In the example, ‘‘p’’ is a placeholder for an external query and is equivalent to the fully
expanded form:

q() \{ TypeA-TypeB\}

A query can be called via a query reference which has the form:

SUBQUERY queryIdentifier(parameter)

Parameters in a query reference can be either a placeholder for a parameter passed into the
calling query or another query reference. The previous example is also equivalent to:

Systems Management: Topology Service 105

TQL Overview Topology Query

q() \{ p() \}

Consider the following query:

parent(x) \{ x<child>-Family-<parent>head,tail Person \}
grandparent(y)\{ parent(parent(x)) \}

q(x) \{ parent(x)-Located \{ loc \} Location
AND grandparent(x)-Located- \{ loc \}Location \}

It queries, ‘‘Are X’s parents and grandparents located in the same location’’. It shows how
parameters may be defined in terms of other query references.

Bindingpoints are used to control what is bound for a sub-query that is called from a query. If no
binding points are specified, the entire query is bound by default.

Binding Points

Binding points are used to control how a sub-query is bound into a calling query. The keywords
HEAD and TAIL are used for this purpose. These are specified before the meta-AE expression.
They are put before the label, if one exists, and between the role specifiers:

<role>HEAD TAIL (x) Typexpr TAGGED ‘‘tags’’<role>

One, all or none may be specified on a meta-AE.

The validity of binding points is not enforced by TQL but by the QueryExecutionFactory:

p()\{ HEAD TypeA-(TypeB-TypeC OR TypeD-TAIL TypeE)\}

The head and tail may be specified on a single meta-AE:

p() \{ TypeA-(TypeB-TypeC OR TypeD-(HEAD TAIL TypeE)) \}

Repetition

Repetition is used to specify paths that may be repeated over and over within bounds. The path
that may be repeated is called a repetition unit.

Square brackets define the repetition unit:

q() \{ TypeA-TypeB[1..20, TypeC-TypeD-]TypeE \}

In a list of one or more clauses, such as:

clause-clause-clause-clause-clause

a repetition unit may be placed starting at a clause and ending at a meta-association:

clause-[clause-clause-]clause-clause

or starting at a meta-association and ending at a clause:

clause[-clause-clause]-clause-clause

The smallest repetition unit is one of the following:

[clause-]clausexpr
clausexpr[-clause]

An integer range can be placed on the repetition unit:

[1, TypeA-TypeB-]TypeC

106 Preliminary Specification

Topology Query TQL Overview

This means repeat unit 1 to infinity times.

[1...20, TypeA-TypeB-]TypeC

This means repeat unit 1 to 20 times.

If no repetition range is specified, it defaults to ‘‘0 . . . ∞’’ (zero to infinity).

The repetition unit consists of an expression that is similar to a clause expression, except that it
cannot have clause expression operators AND, OR, ABSENT and cannot have a repetition
statement (repetitions cannot be nested).

Tags

Tags are strings that are attached to sets of entities that match the meta-AE template in the
query. This allows individual result sets to be extracted from the query result later on.

Tags are specified as a list of strings immediately after the meta-AE type expression:

q() \{ TypeA TAGGED’’tag1’’ \}

q() \{ TypeA TAGGED ’’tag1’’,TAGGED ’’tag2’’,TAGGED ’’tag3’’ \}

Systems Management: Topology Service 107

Topology Query

108 Preliminary Specification

Glossary

aggregate entity (AE)
A collection (aggregate) of topological entities which are recognized as forming a part of a larger
logical or physical resource in a computer system environment.

CORBA
Common Object Request Broker Architecture.

COS
CORBA Object Service

IDL
Interface Definition Language.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to
communicate effectively.

Topology
A set of valid relationships (associations) between resources in a defined computing
environment.

Topological Entity
An individual logical or physical resource in a computer system environment.

Topology Service
A service which provides storage of topological data, maintains semantic integrity of
relationships (associations), and provides query support by responding to clients interested in
retrieving topological information.

OMG
Object Management Group.

XCMF
Common Management Facilities for a CORBA environment.

Systems Management: Topology Service 109

Glossary

110 Preliminary Specification

