
X/Open Preliminary Specification

Architecture Neutral Distribution Format (XANDF)

X/Open Company Ltd.

 January 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Preliminary Specification

Architecture Neutral Distribution Format (XANDF)

ISBN: 1-85912-146-2
X/Open Document Number: P527

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open Preliminary Specification

Contents

Chapter 1 Introduction... 1
 1.1 Scope and Purpose.. 1
 1.2 This Specification .. 1
 1.3 Terminology... 2
 1.4 Using XANDF for Porting... 2

Chapter 2 Structure of XANDF... 5
 2.1 Overall Structure... 5
 2.2 Tokens ... 9
 2.3 Tags .. 10
 2.4 Extending the Format... 10

Chapter 3 Describing the Structure.. 11

Chapter 4 Installer Behaviour.. 15
 4.1 Definition of Terms... 15
 4.2 Properties of Installers ... 15

Chapter 5 Specification of XANDF Constructs... 17
 5.1 ACCESS .. 17
 5.1.1 access_apply_token... 17
 5.1.2 access_cond... 17
 5.1.3 add_accesses... 18
 5.1.4 constant.. 18
 5.1.5 long_jump_access.. 18
 5.1.6 no_other_read... 18
 5.1.7 no_other_write ... 18
 5.1.8 out_par... 19
 5.1.9 preserve.. 19
 5.1.10 register.. 19
 5.1.11 standard_access.. 19
 5.1.12 used_as_volatile... 19
 5.1.13 visible ... 20
 5.2 AL_TAG.. 21
 5.2.1 al_tag_apply_token... 21
 5.2.2 make_al_tag.. 21
 5.3 AL_TAGDEF.. 22
 5.3.1 make_al_tagdef .. 22
 5.4 AL_TAGDEF_PROPS... 23
 5.4.1 make_al_tagdefs .. 23
 5.5 ALIGNMENT .. 24
 5.5.1 alignment_apply_token.. 24

Architecture Neutral Distribution Format (XANDF) iii

Contents

 5.5.2 alignment_cond.. 25
 5.5.3 alignment... 25
 5.5.4 alloca_alignment.. 25
 5.5.5 callees_alignment... 26
 5.5.6 callers_alignment... 26
 5.5.7 code_alignment.. 26
 5.5.8 locals_alignment .. 26
 5.5.9 obtain_al_tag... 27
 5.5.10 parameter_alignment.. 27
 5.5.11 unite_alignments ... 27
 5.5.12 var_param_alignment... 27
 5.6 BITFIELD_VARIETY.. 28
 5.6.1 bfvar_apply_token... 28
 5.6.2 bfvar_cond... 28
 5.6.3 bfvar_bits... 28
 5.7 BITSTREAM... 29
 5.8 BOOL... 30
 5.8.1 bool_apply_token .. 30
 5.8.2 bool_cond.. 30
 5.8.3 false... 30
 5.8.4 true.. 30
 5.9 BYTESTREAM... 31
 5.10 CALLEES.. 32
 5.10.1 make_callee_list ... 32
 5.10.2 make_dynamic_callees... 32
 5.10.3 same_callees.. 32
 5.11 CAPSULE ... 33
 5.11.1 make_capsule ... 33
 5.12 CAPSULE_LINK... 34
 5.12.1 make_capsule_link.. 34
 5.13 CASELIM.. 35
 5.13.1 make_caselim ... 35
 5.14 ERROR_CODE .. 36
 5.14.1 nil_access ... 36
 5.14.2 overflow... 36
 5.14.3 stack_overflow ... 36
 5.15 ERROR_TREATMENT .. 37
 5.15.1 errt_apply_token.. 37
 5.15.2 errt_cond.. 37
 5.15.3 continue ... 37
 5.15.4 error_jump... 38
 5.15.5 trap.. 38
 5.15.6 wrap.. 38
 5.15.7 impossible.. 38
 5.16 EXP... 39
 5.16.1 exp_apply_token.. 39
 5.16.2 exp_cond.. 39
 5.16.3 abs ... 39

iv X/Open Preliminary Specification

Contents

 5.16.4 add_to_ptr... 40
 5.16.5 and... 40
 5.16.6 apply_proc... 40
 5.16.7 apply_general_proc... 41
 5.16.8 assign.. 42
 5.16.9 assign_with_mode... 43
 5.16.10 bitfield_assign... 43
 5.16.11 bitfield_assign_with_mode.. 43
 5.16.12 bitfield_contents... 44
 5.16.13 bitfield_contents_with_mode.. 44
 5.16.14 case.. 44
 5.16.15 change_bitfield_to_int .. 45
 5.16.16 change_floating_variety ... 45
 5.16.17 change_variety ... 45
 5.16.18 change_int_to_bitfield .. 46
 5.16.19 complex_conjugate.. 46
 5.16.20 component... 46
 5.16.21 concat_nof ... 46
 5.16.22 conditional... 47
 5.16.23 contents.. 47
 5.16.24 contents_with_mode... 48
 5.16.25 current_env... 48
 5.16.26 div0 ... 49
 5.16.27 div1 ... 49
 5.16.28 div2 ... 50
 5.16.29 env_offset... 50
 5.16.30 env_size.. 51
 5.16.31 fail_installer... 51
 5.16.32 float_int .. 51
 5.16.33 floating_abs ... 51
 5.16.34 floating_div ... 52
 5.16.35 floating_minus.. 52
 5.16.36 floating_maximum .. 52
 5.16.37 floating_minimum... 53
 5.16.38 floating_mult .. 53
 5.16.39 floating_negate ... 53
 5.16.40 floating_plus ... 54
 5.16.41 floating_power ... 54
 5.16.42 floating_test... 54
 5.16.43 goto ... 55
 5.16.44 goto_local_lv... 55
 5.16.45 identify... 55
 5.16.46 ignorable.. 56
 5.16.47 imaginary_part... 56
 5.16.48 initial_value... 56
 5.16.49 integer_test.. 56
 5.16.50 labelled... 57
 5.16.51 last_local .. 57

Architecture Neutral Distribution Format (XANDF) v

Contents

 5.16.52 local_alloc.. 58
 5.16.53 local_alloc_check ... 58
 5.16.54 local_free.. 59
 5.16.55 local_free_all ... 59
 5.16.56 long_jump.. 59
 5.16.57 make_complex.. 60
 5.16.58 make_compound ... 60
 5.16.59 make_floating ... 60
 5.16.60 make_general_proc ... 61
 5.16.61 make_int .. 62
 5.16.62 make_local_lv... 62
 5.16.63 make_nof ... 62
 5.16.64 make_nof_int .. 62
 5.16.65 make_null_local_lv.. 63
 5.16.66 make_null_proc.. 63
 5.16.67 make_null_ptr .. 63
 5.16.68 make_proc... 63
 5.16.69 make_stack_limit ... 64
 5.16.70 make_top... 65
 5.16.71 make_value... 65
 5.16.72 maximum .. 65
 5.16.73 minimum... 65
 5.16.74 minus.. 66
 5.16.75 move_some ... 66
 5.16.76 mult... 66
 5.16.77 n_copies ... 67
 5.16.78 negate ... 67
 5.16.79 not ... 67
 5.16.80 obtain_tag.. 67
 5.16.81 offset_add .. 68
 5.16.82 offset_div ... 68
 5.16.83 offset_div_by_int ... 68
 5.16.84 offset_max ... 69
 5.16.85 offset_mult... 69
 5.16.86 offset_negate ... 69
 5.16.87 offset_pad .. 69
 5.16.88 offset_subtract .. 70
 5.16.89 offset_test ... 70
 5.16.90 offset_zero ... 70
 5.16.91 or.. 71
 5.16.92 plus.. 71
 5.16.93 pointer_test ... 71
 5.16.94 power.. 72
 5.16.95 proc_test... 72
 5.16.96 profile ... 72
 5.16.97 real_part... 73
 5.16.98 rem0.. 73
 5.16.99 rem1.. 73

vi X/Open Preliminary Specification

Contents

 5.16.100 rem2.. 74
 5.16.101 repeat.. 74
 5.16.102 return.. 75
 5.16.103 return_to_label ... 75
 5.16.104 round_with_mode... 75
 5.16.105 rotate_left... 75
 5.16.106 rotate_right.. 76
 5.16.107 sequence... 76
 5.16.108 set_stack_limit .. 76
 5.16.109 shape_offset... 77
 5.16.110 shift_left ... 77
 5.16.111 shift_right .. 78
 5.16.112 subtract_ptrs ... 78
 5.16.113 tail_call ... 78
 5.16.114 untidy_return.. 79
 5.16.115 variable... 79
 5.16.116 xor ... 80
 5.17 EXTERNAL.. 81
 5.17.1 string_extern... 81
 5.17.2 unique_extern... 81
 5.17.3 chain_extern.. 81
 5.18 EXTERN_LINK ... 83
 5.18.1 make_extern_link... 83
 5.19 FLOATING_VARIETY... 84
 5.19.1 flvar_apply_token.. 84
 5.19.2 flvar_cond.. 84
 5.19.3 flvar_parms ... 84
 5.19.4 complex_parms.. 85
 5.19.5 float_of_complex.. 85
 5.19.6 complex_of_float.. 85
 5.20 GROUP.. 86
 5.20.1 make_group.. 86
 5.21 LABEL... 87
 5.21.1 label_apply_token.. 87
 5.21.2 make_label... 87
 5.22 LINK.. 88
 5.22.1 make_link.. 88
 5.23 LINKEXTERN ... 89
 5.23.1 make_linkextern... 89
 5.24 LINKS.. 90
 5.24.1 make_links .. 90
 5.25 NAT.. 91
 5.25.1 nat_apply_token .. 91
 5.25.2 nat_cond .. 91
 5.25.3 computed_nat... 91
 5.25.4 error_val... 91
 5.25.5 make_nat ... 92
 5.26 NTEST ... 93

Architecture Neutral Distribution Format (XANDF) vii

Contents

 5.26.1 ntest_apply_token ... 93
 5.26.2 ntest_cond ... 93
 5.26.3 equal ... 93
 5.26.4 greater_than.. 93
 5.26.5 greater_than_or_equal.. 94
 5.26.6 less_than .. 94
 5.26.7 less_than_or_equal.. 94
 5.26.8 not_equal ... 94
 5.26.9 not_greater_than.. 94
 5.26.10 not_greater_than_or_equal.. 94
 5.26.11 not_less_than.. 95
 5.26.12 not_less_than_or_equal.. 95
 5.26.13 less_than_or_greater_than... 95
 5.26.14 not_less_than_and_not_greater_than ... 95
 5.26.15 comparable.. 95
 5.26.16 not_comparable.. 95
 5.27 OTAGEXP... 96
 5.27.1 make_otagexp... 96
 5.28 PROCPROPS.. 97
 5.28.1 procprops_apply_token ... 97
 5.28.2 procprops_cond ... 97
 5.28.3 add_procprops ... 97
 5.28.4 check_stack ... 97
 5.28.5 inline... 98
 5.28.6 no_long_jump_dest... 98
 5.28.7 untidy... 98
 5.28.8 var_callees ... 98
 5.28.9 var_callers.. 98
 5.29 PROPS ... 99
 5.30 ROUNDING_MODE ... 100
 5.30.1 rounding_mode_apply_token... 100
 5.30.2 rounding_mode_cond... 100
 5.30.3 round_as_state ... 100
 5.30.4 to_nearest .. 100
 5.30.5 toward_larger... 101
 5.30.6 toward_smaller .. 101
 5.30.7 toward_zero.. 101
 5.31 SHAPE... 102
 5.31.1 shape_apply_token.. 102
 5.31.2 shape_cond.. 102
 5.31.3 bitfield .. 102
 5.31.4 bottom.. 103
 5.31.5 compound ... 103
 5.31.6 floating ... 103
 5.31.7 integer... 103
 5.31.8 nof ... 104
 5.31.9 offset ... 104
 5.31.10 pointer.. 105

viii X/Open Preliminary Specification

Contents

 5.31.11 proc ... 105
 5.31.12 top ... 105
 5.32 SIGNED_NAT.. 106
 5.32.1 signed_nat_apply_token.. 106
 5.32.2 signed_nat_cond.. 106
 5.32.3 computed_signed_nat .. 106
 5.32.4 make_signed_nat... 106
 5.32.5 snat_from_nat... 107
 5.33 SORTNAME... 108
 5.33.1 access .. 108
 5.33.2 al_tag .. 108
 5.33.3 alignment_sort.. 108
 5.33.4 bitfield_variety ... 108
 5.33.5 bool ... 108
 5.33.6 error_treatment .. 108
 5.33.7 exp... 109
 5.33.8 floating_variety .. 109
 5.33.9 foreign_sort... 109
 5.33.10 label... 109
 5.33.11 nat.. 109
 5.33.12 ntest... 109
 5.33.13 procprops... 109
 5.33.14 rounding_mode.. 110
 5.33.15 shape... 110
 5.33.16 signed_nat ... 110
 5.33.17 string... 110
 5.33.18 tag.. 110
 5.33.19 transfer_mode... 110
 5.33.20 token... 110
 5.33.21 variety... 111
 5.34 STRING... 112
 5.34.1 string_apply_token.. 112
 5.34.2 string_cond.. 112
 5.34.3 concat_string... 112
 5.34.4 make_string... 112
 5.35 TAG.. 113
 5.35.1 tag_apply_token... 113
 5.35.2 make_tag.. 113
 5.36 TAGACC... 114
 5.36.1 make_tagacc.. 114
 5.37 TAGDEC ... 115
 5.37.1 make_id_tagdec ... 115
 5.37.2 make_var_tagdec... 115
 5.37.3 common_tagdec... 116
 5.38 TAGDEC_PROPS.. 117
 5.38.1 make_tagdecs ... 117
 5.39 TAGDEF.. 118
 5.39.1 make_id_tagdef.. 118

Architecture Neutral Distribution Format (XANDF) ix

Contents

 5.39.2 make_var_tagdef ... 118
 5.39.3 common_tagdef ... 119
 5.40 TAGDEF_PROPS .. 120
 5.40.1 make_tagdefs.. 120
 5.41 TAGSHACC... 120
 5.41.1 make_tagshacc ... 120
 5.42 TDFBOOL... 121
 5.43 TDFIDENT ... 121
 5.44 TDFINT... 121
 5.45 TDFSTRING... 121
 5.46 TOKDEC... 122
 5.46.1 make_tokdec... 122
 5.47 TOKDEC_PROPS.. 122
 5.47.1 make_tokdecs ... 122
 5.48 TOKDEF.. 123
 5.48.1 make_tokdef ... 123
 5.49 TOKDEF_PROPS .. 123
 5.49.1 make_tokdefs.. 123
 5.50 TOKEN.. 124
 5.50.1 token_apply_token.. 124
 5.50.2 make_tok ... 124
 5.50.3 use_tokdef ... 124
 5.51 TOKEN_DEFN.. 125
 5.51.1 token_definition ... 125
 5.52 TOKFORMALS ... 126
 5.52.1 make_tokformals ... 126
 5.53 TRANSFER_MODE.. 127
 5.53.1 transfer_mode_apply_token ... 127
 5.53.2 transfer_mode_cond ... 127
 5.53.3 add_modes.. 127
 5.53.4 overlap ... 128
 5.53.5 standard_transfer_mode.. 128
 5.53.6 trap_on_nil .. 128
 5.53.7 volatile.. 128
 5.53.8 complete... 128
 5.54 UNIQUE ... 129
 5.54.1 make_unique .. 129
 5.55 UNIT.. 130
 5.55.1 make_unit.. 130
 5.56 VARIETY... 131
 5.56.1 var_apply_token .. 131
 5.56.2 var_cond.. 131
 5.56.3 var_limits... 131
 5.56.4 var_width .. 132
 5.57 VERSION_PROPS .. 133
 5.57.1 make_versions.. 133
 5.58 VERSION.. 134
 5.58.1 make_version.. 134

x X/Open Preliminary Specification

Contents

 5.58.2 user_info.. 134

Chapter 6 Supplementary UNIT.. 135
 6.1 LINKINFO_PROPS .. 135
 6.1.1 make_linkinfos... 135
 6.2 LINKINFO.. 135
 6.2.1 static_name_def ... 135
 6.2.2 make_comment.. 136
 6.2.3 make_weak_defn... 136
 6.2.4 make_weak_symbol.. 136

Chapter 7 Notes .. 137
 7.1 Binding.. 137
 7.2 Character Codes.. 138
 7.3 Constant Evaluation... 139
 7.4 Division and Modulus ... 140
 7.5 Equality of EXPs.. 141
 7.6 Equality of SHAPEs.. 141
 7.7 Equality of ALIGNMENTS... 141
 7.8 Exceptions and Jumps ... 142
 7.9 Procedures.. 143
 7.10 Frames ... 144
 7.11 Lifetimes ... 145
 7.12 Alloca... 146
 7.13 Memory Model.. 147
 7.13.1 Simple Model.. 147
 7.13.2 Comparison of Pointers and Offsets .. 148
 7.13.3 Circular Types in Languages... 149
 7.13.4 Special Alignments.. 149
 7.13.5 Atomic Assignment... 149
 7.14 Order of Evaluation.. 150
 7.15 Original Pointers ... 150
 7.16 Overlapping... 151
 7.17 Incomplete Assignment... 151
 7.18 Representing Integers .. 151
 7.19 Overflow and Integers ... 152
 7.20 Representing Floating Point ... 152
 7.21 Floating Point Errors .. 153
 7.22 Rounding and Floating Point ... 153
 7.23 Floating Point Accuracy .. 153
 7.24 Representing Bitfields .. 154
 7.25 Permitted limits... 155
 7.26 Least Upper Bound... 155
 7.27 Read-only Areas.. 155
 7.28 Tag and Token Signatures ... 156
 7.29 Dynamic Initialisation ... 156

Architecture Neutral Distribution Format (XANDF) xi

Contents

Chapter 8 The Bit Encoding of XANDF .. 159
 8.1 The Basic Encoding... 159
 8.2 Fundamental Encodings.. 159
 8.2.1 TDFINT.. 159
 8.2.2 TDFBOOL.. 160
 8.2.3 TDFSTRING.. 160
 8.2.4 TDFIDENT.. 160
 8.2.5 BITSTREAM.. 160
 8.2.6 BYTESTREAM.. 160
 8.2.7 BYTE_ALIGN... 161
 8.2.8 Extendable Integer Encoding .. 161
 8.3 The XANDF Encoding... 161
 8.4 File Formats.. 162

Chapter 9 Token Register ... 163
 9.1 Introduction ... 163
 9.1.1 Background... 163
 9.1.2 Token Register Objectives .. 163
 9.1.3 Naming Scheme ... 163
 9.2 Target Dependency Tokens... 164
 9.2.1 Integer Variety Representations ... 164
 9.2.2 Floating Variety Representations ... 165
 9.2.3 Non-numeric Representations .. 167
 9.2.4 Common Conversion Routines .. 168
 9.3 Basic Mapping Tokens ... 169
 9.3.1 C Mapping Tokens... 169
 9.3.2 Fortran Mapping Tokens.. 171
 9.4 XANDF Interface Tokens .. 172
 9.4.1 Exception Handling... 172
 9.4.2 Diagnostic Extension... 173
 9.5 Language Programming Interfaces... 174
 9.5.1 C Producer LPI ... 174
 9.5.2 Fortran LPI... 175
 9.6 Application Programming Interfaces ... 176
 9.6.1 ANSI C Standard Functions .. 176
 9.6.2 Common Exceptional Cases.. 177

 Glossary ... 179

 Index... 181

xii X/Open Preliminary Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Architecture Neutral Distribution Format (XANDF) xiii

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xiv X/Open Preliminary Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This document provides specifications for each construct in the XANDF format, and some
general notes on various aspects of XANDF.

The Architecture Neutral Distribution Format (ANDF) is a software porting technology making
it possible to develop shrink-wrapped software for open systems, independent of any particular
processor architecture. ANDF intends to reduce the effort needed for porting of applications
while at the same time making it possible to fully utilise the particular features of a platform.

The XANDF specification defines an integration interface between the two major components of
a multi-platform cross-compilation system. The compilation of the source code is turned into a
two stage process. In the first stage, the application is transcribed into a format which utilises
generalised declarations of the API calls used, together with generalised definitions of data
types, constants, etc. This is the Architecture Neutral Distribution Format and the piece of
software producing it is called ANDF producer. XANDF is in fact an abstract algebra.

This format has a value in itself, even if the second phase of the compilation is never entered. It
can namely be examined to determine how portable the code really is, through comparing it
against lists of standardised API calls, and issuing warnings when such a search fails. X/Open is
currently examining the possibilities offered by these features to its testing programme.

In the second phase of the compilation, the entities generated in the first phase are first linked
together and then mapped onto a concrete machine through the use of processor-specific
libraries implementing the API calls and data formats. The software performing this task is
called ANDF Installer.

Architecture Neutral Distribution Format (XANDF) xv

Preface

XANDF tokens (see Chapter 9) offer a general encapsulation and expansion mechanism which
allows any implementation detail to be delayed to the most appropriate stage of program
translation. This provides a means for encapsulating any target dependencies in a neutral form,
with specific implementations defined through standard XANDF features. The token register
records the names and specifications of tokens, using a consistent naming scheme to avoid
ambiguity between tokens.

Intended Audience

application writers who wish to examine the portability of their code will be interested in ANDF
Producer.

Suppliers and Users who want the convenience of running shrink-wrapped applications will be
interested in ANDF Installer.

This specification is also intended for readers who are aware of the general background to
XANDF but require more detailed information for implementation purposes.

Structure

• Chapter 1 explains the positioning and purpose of XANDF.

• Chapter 2 explains the basic structure of XANDF, its use of tokens and tags, and its
extensibility.

• Chapter 3 describes XANDF structure representation.

• Chapter 4 describes the behaviour of XANDF installers.

• Chapter 5 gives the definitions for all the XANDF constructs.

• Chapter 6 gives the definitions for supplementary UNITs.

• Chapter 7 gives implementation notes and guidance.

• Chapter 8 explains the bit-encoding of XANDF.

• Chapter 9 explains the XANDF token register.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for commands, keywords, type names, and data structures.

• Italic font is used for emphasis or to identify the first instance of a word requiring definition.
Italics in text also denote:

— command operands, command option-arguments or variable names

— environment variables

• Normal font is used for the names of constants and literals.

• Names surrounded by braces { } represent the set containing what is inside the braces.

xvi X/Open Preliminary Specification

Trade Marks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Architecture Neutral Distribution Format (XANDF) xvii

Acknowledgements

The source for this XANDF Specification and its companion XANDF Guide was contributed by
the United Kingdom Defence Evaluation and Research Agency (DERA).

xviii X/Open Preliminary Specification

Referenced Documents

The following documents are referenced in this Specification:

XANDF_G
X/Open Guide, January 1996, Architecture Neutral Distribution Format (XANDF) (ISBN:
1-85912-141-1, G508).

Architecture Neutral Distribution Format (XANDF) xix

Referenced Documents

xx X/Open Preliminary Specification

Chapter 1

Introduction

1.1 Scope and Purpose
The Architecture Neutral Distribution Format (ANDF) is a software porting technology making
it possible to develop shrink-wrapped software for open systems, independent of any particular
processor architecture. ANDF intends to reduce the effort needed for porting of applications
while at the same time making it possible to fully utilise the particular features of a platform.

The XANDF specification defines an integration interface between the two major components of
a multi-platform cross-compilation system. The compilation of the source code is turned into a
two stage process. In the first stage, the application is transcribed into a format which utilises
generalised declarations of the API calls used, together with generalised definitions of data
types, constants, and so on. This is the Architecture Neutral Distribution Format and the piece
of software producing it is called ANDF producer. XANDF is in fact an abstract algebra.

This format has a value in itself, even if the second phase of the compilation is never entered. It
can be examined to determine how portable the code really is, through comparing it against lists
of standardised API calls, and issuing warnings when such a search fails. X/Open is currently
examining the possibilities offered by these features to its testing programme.

In the second phase of the compilation, the entities generated in the first phase are first linked
together and then mapped onto a concrete machine through the use of processor-specific
libraries implementing the API calls and data formats. The software performing this task is
called ANDF Installer.

While ANDF producers are used by application writers, installers are provided on systems
intending to offer the customers the convenience of running shrink-wrapped applications.

1.2 This Specification
This document provides specifications for each construct in the XANDF format and some
general notes on various aspects of XANDF. It is intended for readers who are aware of the
general background to XANDF but require more detailed information.

Architecture Neutral Distribution Format (XANDF) 1

Terminology Introduction

1.3 Terminology
The following terms are used with a precise meaning which is particular to this document:

compiling
The production of ANDF from some source language.

producing
Same meaning as ‘‘compiling’’.

translating
Making a program for some specific platform from ANDF.

1.4 Using XANDF for Porting
Software vendors, when they port their programs to several platforms, usually wish to take
advantage of the particular features of each platform. That is, they wish the versions of their
programs on each platform to be functionally equivalent, but not necessarily algorithmically
identical. XANDF is intended for porting in this sense. It is designed so that a program in its
XANDF form can be systematically modified when it arrives at the target platform to achieve
the intended functionality and to use the algorithms and data structures which are appropriate
and efficient for the target machine. A fully efficient program, specialised to each target, is a
necessity if independent software vendors are to take up a porting technology.

These modifications are systematic because, on the source machine, programmers work with
generalised declarations of the APIs they are using. The declarations express the requirements of
the APIs without giving their implementation. The declarations are specified in terms of
XANDF’s tokens, and the XANDF which is produced contains uses of these tokens. On each
target machine the tokens are used as the basis for suitable substitutions and alterations.

Using XANDF for porting places extra requirements on software vendors and API designers.
Software vendors must write their programs scrupulously in terms of APIs and nothing more.
API designers need to produce an interface which can be specialised to efficient data structures
and constructions on all relevant machines.

XANDF is neutral with respect to the set of languages which has been considered. The design of
C, C++, Fortran and Pascal is quite conventional, in the sense that they are sufficiently similar for
XANDF constructions to be devised to represent them all. These XANDF constructions can be
chosen so that they are, in most cases, close to the language constructions. Other languages, such
as Lisp, are likely to need a few extensions. To express novel language features XANDF will
probably have to be more seriously extended. But the time to do so is when the feature in
question has achieved sufficient stability. Tokens can be used to express the constructs until the
time is right. For example, there is a lack of consensus about the best constructions for parallel
languages, so that at present XANDF would either have to use low level constructions for
parallelism or back what might turn out to be the wrong system. In other words it is not yet the
time to make generalisations for parallelism as an intrinsic part of XANDF.

XANDF is neutral with respect to machine architectures. In designing XANDF, the aim has been
to retain the information which is needed to produce and optimise the machine code, while
discarding identifier and syntactic information. So XANDF has constructions which are closely
related to typical language features and it has an abstract model of memory. It is expected that
programs expressed in the considered languages can be translated into code which is as efficient
as that produced by native compilers for those languages.

2 X/Open Preliminary Specification

Introduction Using XANDF for Porting

Because of these porting features, XANDF supports shrink-wrapping, distribution and
installation. Installation does not have to be left to the end-user; the production of executables
can be done anywhere in the chain from software vendor, through dealer and network manager
to the end-user.

Architecture Neutral Distribution Format (XANDF) 3

Introduction

4 X/Open Preliminary Specification

Chapter 2

Structure of XANDF

Each piece of XANDF program is classified as being of a particular SORT. Some pieces of are
LABELs, some are TAGs, some are ERROR_TREATMENTs and so on (to list some of the more
transparently named SORTs). The SORTs of the arguments and result of each construct of the
XANDF format are specified. For instance, plus is defined to have three arguments — an
ERROR_TREATMENT and two EXPs (short for ‘‘expression’’) — and to produce an EXP; goto
has a single LABEL argument and produces an EXP. The specification of the SORTs of the
arguments and results of each construct constitutes the syntax of the XANDF format. When
XANDF is represented as a parsed tree, it is structured according to this syntax. When it is
constructed and read, it is in terms of this syntax.

2.1 Overall Structure
A separable piece of XANDF is called a CAPSULE. A producer generates a CAPSULE; the
XANDF linker links CAPSULEs together to form a CAPSULE, and the final translation process
turns a CAPSULE into an object file.

The structure of capsules is designed so that the process of linking two or more capsules consists
almost entirely of copying large byte-aligned sections of the source files into the destination file,
with out changing or even examining these sections. Only a small amount of interface
information has to be modified and this is made easily accessible. The translation process only
requires an extra indirection to account for this interface information, so it is also fast. The
description of XANDF at the capsule level is almost all about the organisation of the interface
information.

There are three major kinds of entity which are used inside a capsule to name its constituents.
The first are called tags: they are used to name the procedures, functions, values and variables
which are the components of the program. The second are called tokens: they identify pieces of
XANDF which can be used for substitution — a little like macros. The third are the alignment
tags, used to name alignments so that circular types can be described. Because these internal
names are used for linking pieces of XANDF together, they are collectively called linkable entities .
The interface information relates these linkable entities to each other and to the world outside
the capsule.

The most important part of a capsule, the part which contains the real information, consists of a
sequence of groups of units. Each group contains units of the same kind, and all the units of the
same kind are in the same group. The groups always occur in the same order, though it is not
necessary for each kind to be present.

.

unit units units

group 1 group 2 group 3

Architecture Neutral Distribution Format (XANDF) 5

Overall Structure Structure of XANDF

The order is as follows:

• tld unit.

Every capsule has exactly one tld unit. It gives information to the XANDF linker about those
items in the capsule which are visible externally.

• versions unit.

These units contain information about the versions of XANDF used. Every capsule will have
at least one such unit.

• tokdec units.

These units contain declarations for tokens. They bear the same relationship to the following
tokdef units that C declarations do to C definitions. However, they are not necessary for the
translator, and the current ANSI C producer does not provide them.

• tokdef units.

These units contain definitions of tokens.

• aldef units.

These units give the definitions of alignment tags.

• diagtype units.

These units give diagnostic information about types.

• tagdec units.

These units contain declarations of tags, which identify values, procedures and run-time
objects in the program. The declarations give information about the size, alignment and other
properties of the values. They bear the same relationship to the following tagdef units that C
declarations do to C definitions.

• diagdef units.

These units give diagnostic information about the values and procedures defined in the
capsule.

• tagdef units.

These units contain the definitions of tags, and so describe the procedures and the values
they manipulate.

• linkinfo units.

These units give information about the linking of objects.

This organisation is imposed to help installers, by ensuring that the information needed to
process a unit has been provided before that unit arrives. For example, the token definitions
occur before any tag definition, so that, during translation, the tokens may be expanded as the
tag definitions are being read1.

The tags and tokens in a capsule have to be related to the outside world. For example, there
might be a tag standing for printf used in the appropriate way inside the capsule. When an

1. In a capsule which is ready for translation all tokens used must be defined, but this need not apply to an arbitrary capsule.

6 X/Open Preliminary Specification

Structure of XANDF Overall Structure

object file is produced from the capsule the identifier printf must occur in it, so that the system
linker can associate it with the correct library procedure. In order to do this, the capsule has a
table of tags at the capsule level, and a set of external links which provide external names for
some of these tags.

units

capsule tags

external links
printf

In just the same way, there are tables of tokens and alignment tags at the capsule level, and
external links for these as well.

The tags used inside a unit have to be related to these capsule tags, so that they can be properly
named. A similar mechanism is used, with a table of tags at the unit level, and links between
these and the capsule level tags.

unit

unit tags

links

capsule tags

Again the same technique is used for tokens and alignment tags.

It is also necessary for a tag used in one unit to refer to the same thing as a tag in another unit. To
do this a tag at the capsule level is used, which may or may not have an external link.

Architecture Neutral Distribution Format (XANDF) 7

Overall Structure Structure of XANDF

unit 1 unit 2

unit1 links

unit1 tags

unit2 links

unit2 tags

capsule tags

The same technique is used for tokens and alignment tags.

So, when the XANDF linker is joining two capsules, it has to perform the following tasks:

• It creates new sets of capsule level tags, tokens and alignment tags by identifying those
which have the same external name, and otherwise creating different entries.

• It similarly joins the external links, suppressing any names which are no longer to be
external.

• It produces new link tables for the units, so that the entities used inside the units are linked to
the new positions in the capsule level tables.

• It reorganises the units so that the correct order is achieved.

This can be done without looking into the interior of the units (except for the tld unit), simply
copying the units into their new place.

During the process of installation the values associated with the linkable entities can be accessed
by indexing into an array followed by one indirection. These are the kinds of object which in a
programming language are referred to by using identifiers, which involves using hash tables for
access. This is an example of a general principle of the design of XANDF: speed is required in the
linking and installing processes, if necessary at the expense of time in the production of XANDF.

8 X/Open Preliminary Specification

Structure of XANDF Tokens

2.2 Tokens
Tokens are used (applied) in the XANDF at the point where substitutions are to be made. Token
definitions provide the substitutions and usually reside on the target machine and are linked in
there.

A typical token definition has parameters from various SORTS and produces a result of a given
SORT. As an example of a simple token definition, written here in a C-like notation, consider the
following.

EXP ptr_add(EXP par0,EXP par1, SHAPE par2)
{add_to_ptr(

par0,
offset_mult(

offset_pad(
alignment(par2),
shape_offset(par2))

par1))
}

This defines the token ptr_add, to produce something of SORT EXP. It has three parameters, of
SORTS EXP, EXP and SHAPE. The add_to_ptr, offset_mult, offset_pad, alignment and
shape_offset constructions are XANDF constructions producing respectively an EXP, an EXP, an
EXP, an ALIGNMENT and an EXP.

A typical use of this token is:

ptr_add(
obtain_tag(tag41),
contents(integer(signed_int),

obtain_tag(tag62)),
integer(char))

The effect of this use is to produce the XANDF of the definition with par0 , par1 and par2
substituted by the actual parameters.

There is no way of obtaining anything like a side-effect. A token without parameters is therefore
just a constant.

Tokens can be used for various purposes. They are used to make the XANDF shorter by using
tokens for commonly used constructions (ptr_add is an example of this use). They are used to
make target dependent substitutions (char in the use of ptr_add is an example of this, since char
may be signed or unsigned on the target).

A particularly important use is to provide definitions appropriate to the translation of a
particular language. Another is to abstract those features which differ from one ABI to another.
This kind of use requires that sets of tokens should be standardised for these purposes, since
otherwise there will be a proliferation of such definitions.

Architecture Neutral Distribution Format (XANDF) 9

Tags Structure of XANDF

2.3 Tags
Tags are used to identify the actual program components. They can be declared or defined. A
declaration gives the SHAPE of a tag (a SHAPE is the analogue of a type). A definition gives an
EXP for the tag (an EXP describes how the value is to be made up).

2.4 Extending the Format
XANDF can be extended for two major reasons.

First, as part of the evolution of XANDF, new features will from time to time be identified. It is
highly desirable that these can be added without disturbing the current encoding, so that old
XANDF can still be installed by systems which recognise the new constructions. Such changes
should only be made infrequently and with great care, for stability reasons, but nevertheless
they must be allowed for in the design.

Second, it may be required to add extra information to XANDF to permit special processing.
XANDF is a way of describing programs and it clearly may be used for other reasons than
portability and distribution. In these uses it may be necessary to add extra information which is
closely integrated with the program. Diagnostics and profiling can serve as examples. In these
cases the extra kinds of information may not have been allowed for in the XANDF encoding.

Some extension mechanisms are described below and are related to these reasons.

1. The encoding of every SORT in XANDF can be extended indefinitely (except for certain
auxiliary SORTS). This mechanism should only be used for extending standard XANDF to
the next standard, since otherwise extensions made by different groups of people might
conflict with each other. See Section 8.2.8 on page 161.

2. Basic XANDF has three kinds of linkable entity and seven kinds of unit. It also contains a
mechanism for extending these so that other information can be transmitted in a capsule
and properly related to basic XANDF. The rules for linking this extra information are also
laid down. See Section 5.11.1 on page 33.

If a new kind of unit is added, it can contain any information, but if it is to refer to the tags
and tokens of other units it must use the linkable entities. Since new kinds of unit might
need extra kinds of linkable entity, a method for adding these is also provided. All this
works in a uniform way, with capsule level tables of the new entities, and external and
internal links for them. If new kinds of unit are added, the order of groups must be the
same in any capsules which are linked together.

As an example of the use of this kind of extension, the diagnostic information is introduced
in just this way. It uses two extra kinds of unit and one extra kind of linkable entity. The
extra units need to refer to the tags in the other units, since these are the object of the
diagnostic information.

This mechanism can be used for both purposes.

3. The parameters of tokens are encoded in such a way that foreign information (that is,
information which cannot be expressed in the XANDF SORTS) can be supplied. This
mechanism should only be used for the second purpose, though it could be used to
experiment with extensions for future standards. See Section 8.2.5 on page 160.

10 X/Open Preliminary Specification

Chapter 3

Describing the Structure

The following examples show how XANDF constructs are described in this document. The first
is the construct floating (see Section 5.31.6 on page 103):

fv: FLOATING_VARIETY
→ SHAPE

The constructs’ arguments (one in this case) precede the ‘‘→’’ and the result follows it. Each
argument is shown as follows:

name: SORT

The name standing before the colon is for use in the accompanying English description within
the specification. It has no other significance.

The example given above indicates that floating takes one argument. This argument, v, is of
SORT FLOATING_VARIETY. After the → comes the SORT of the result of floating. It is a
SHAPE.

In the case of floating the formal description supplies the syntax and the accompanying English
text supplies the semantics. However, in the case of some constructs it is convenient to specify
more information in the formal section. For example, the specification of the construct
floating_negate (see Section 5.16.39 on page 53) not only states that it has an EXP argument and
an EXP result:

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)

→ EXP FLOATING(f)

but also supplies additional information about those EXPs; it specifies that these expressions will
be floating point numbers of the same kind.

In some constructs, arguments are optional. This is denoted as follows (the example is from
Section 5.16.6 on page 40) :

result_shape: SHAPE
p: EXP PROC

params: LIST(EXP)
var_param: OPTION(EXP)

→ EXP result_shape

In this example, var_param is an optional argument to the apply_proc construct.

Some constructs take a varying number of arguments, for example params in the above
construct. These are denoted by LIST. There is a similar construction, SLIST, which differs only
in having a different encoding.

Architecture Neutral Distribution Format (XANDF) 11

Describing the Structure

Some constructs’ results are governed by the values of their arguments. This is denoted by the ?
formation shown in the specification of the case (see Section 5.16.14 on page 44) construct
shown below:

exhaustive: BOOL
control: EXP INTEGER(v)

branches: LIST(CASELIM)
→ EXP (exhaustive ?BOTTOM:TOP)

If exhaustive is true, the resulting EXP has the SHAPE BOTTOM ; otherwise it is TOP.

Depending on an XANDF-processing tool’s purpose, not all of some constructs’ arguments need
necessarily be processed. For instance, installers do not need to process one of the arguments of
the x_cond constructs (where x stands for a SORT, for example, exp_cond on Section 5.16.2 on
page 39). Secondly, standard tools might want to ignore embedded fragments of XANDF
adhering to some private standard. In these cases it is desirable for tools to be able to skip the
irrelevant pieces of XANDF. BITSTREAMs and BYTESTREAMs are formations which permit
this. In the encoding they are prefaced with information about their length.

Some constructs’ arguments are defined as being BITSTREAMs or BYTESTREAMs, even though
the constructs specify them to be of a particular SORT. In these cases the argument’s SORT is
denoted as, for example:

BITSTREAM FLOATING_VARIETY

This construct must have a FLOATING_VARIETY argument, but certain XANDF-processing
tools may benefit from being able to skip past the argument (which might itself be a very large
piece of XANDF) without having to read its content.

The nature of the UNITS in a GROUP is determined by unit identifications. These occur in
make_capsule. The values used for unit identifications are specified in the text as follows:

Unit identification: some_name

where some_name might be tokdec, tokdef, and so on.

The kinds of linkable entity used are determined by linkable entity identifications. These occur in
make_capsule. The values used for linkable entity identification are specified in the text as
follows:

Linkable entity identification: some_name

where some_name might be tag, token, and so on.

The bit encodings are also specified in this document. The details are given in Chapter 8. This
section describes the encoding in terms of information given with the descriptions of the SORTS
and constructs.

With each SORT the number of bits used to encode the constructs is given in the following form:

Number of encoding bits: n

This number may be zero; if so, the encoding is non-extendable. If it is non-zero, the encoding
may be extendible or non-extendible. This is specified in the following form:

Is coding extendible? Yes or No

With each construct the number used to encode it is given in the following form:

Encoding number: n

12 X/Open Preliminary Specification

Describing the Structure

If the number of encoding bits is zero, n will be zero.

There may be a requirement that a component of a construct should start on a byte boundary in
the encoding. This is denoted by inserting:

byte_align

before the component.

Architecture Neutral Distribution Format (XANDF) 13

Describing the Structure

14 X/Open Preliminary Specification

Chapter 4

Installer Behaviour

4.1 Definition of Terms
In this document the behaviour of XANDF installers is described in a precise manner. Certain
words are used with very specific meanings. These are:

undefined Installers can perform any action, including refusing to translate the program.
It can produce code with any effect, meaningful or meaningless.

shall When the phrase ‘‘P shall be done’’ (or similar phrases involving ‘‘shall’’) is
used, every installer must perform P.

should When the phrase ‘‘P should be done’’ (or similar phrase involving ‘‘should’’)
is used, installers are advised to perform P, and producer writers may assume
it will be done if possible. This usage generally relates to optimisations which
are recommended.

will When the phrase ‘‘P will be true’’ (or similar phrases involving ‘‘will’’) is used
to describe the composition of a XANDF construct, the installer may assume
that P holds without having to check it. If, in fact, a producer has produced
XANDF for which P does not hold, the effect is undefined.

target-defined Behaviour will be defined, but it varies from one target machine to another.
Each target installer shall define everything which is said to be ‘‘target-
defined’’.

4.2 Properties of Installers
All installers must implement all of the constructions of XANDF. There are some constructions
where the installers may impose limits on the ranges of values which are implemented. In these
cases the description of the installer must specify these limits.

Installers are not expected to check that the XANDF they are processing is well-formed, nor that
undefined constructs are absent. If the XANDF is not well-formed, any effect is permitted.

Installers shall only implement optimisations which are correct in all circumstances. This
correctness can only be shown by demonstrating the equivalence of the transformed program,
from equivalences deducible from this specification or from the ordinary laws of arithmetic. No
statements are made in this specification of the form ‘‘such-and-such an optimisation is
permitted’’.

Note: Fortran90 has a notion of mathematical equivalence which is not the same as XANDF
equivalence. It can be applied to transform programs provided parentheses in the text
are not crossed. XANDF does not acknowledge this concept. Such transformations
would have to be applied in a context where the permitted changes are known.

Architecture Neutral Distribution Format (XANDF) 15

Installer Behaviour

16 X/Open Preliminary Specification

Chapter 5

Specification of XANDF Constructs

5.1 ACCESS
Number of encoding bits: 4

Is coding extendable? Yes

An ACCESS describes properties a variable or identity may have which may constrain or
describe the ways in which the variable or identity is used.

Each construction which needs an ACCESS uses it in the form OPTION (ACCESS). If the option
is absent, the variable or identity has no special properties.

An ACCESS acts like a set of the values constant, long_jump_access, no_other_read,
no_other_write, register, out_par, used_as_volatile, and visible. standard_access acts like the
empty set. add_accesses is the set union operation.

5.1.1 access_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ ACCESS

The token is applied to the arguments encoded in the BITSTREAM token_args to give an
ACCESS.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.1.2 access_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM ACCESS
e2: BITSTREAM ACCESS

→ ACCESS

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

Architecture Neutral Distribution Format (XANDF) 17

ACCESS Specification of XANDF Constructs

5.1.3 add_accesses

Encoding number: 3

a1: ACCESS
a2: ACCESS

→ ACCESS

A construction qualified with add_accesses has both ACCESS properties a1 and a2 . This
operation is associative and commutative.

5.1.4 constant

Encoding number: 4

→ ACCESS

Only a variable (not an identity) may be qualified with constant. A variable qualified with
constant will retain its initialising value unchanged throughout its lifetime.

5.1.5 long_jump_access

Encoding number: 5

→ ACCESS

An object must also have this property if it is to have a defined value when a long_jump returns
to the procedure declaring the object.

5.1.6 no_other_read

Encoding number: 6

→ ACCESS

This property refers to a POINTER, p . It says that within the lifetime of the declaration being
qualified, there are no contents, contents_with_mode or move_some source accesses to any
pointer not derived from p which overlap with any of the contents, contents_with_mode,
assign, assign_with_mode or move_some accesses to pointers derived from p .

The POINTER being described is that obtained by applying obtain_tag to the TAG of the
declaration. If the declaration is an identity, the SHAPE of the TAG will be a POINTER.

5.1.7 no_other_write

Encoding number: 7

→ ACCESS

This property refers to a POINTER, p . It says that, within the lifetime of the declaration being
qualified, there are no assign, assign_with_mode or move_some destination accesses to any
pointer not derived from p which overlap with any of the contents, contents_with_mode,
assign, assign_with_mode or move_some accesses to pointers derived from p .

18 X/Open Preliminary Specification

Specification of XANDF Constructs ACCESS

The POINTER being described is that obtained by applying obtain_tag to the TAG of the
declaration. If the declaration is an identity, the SHAPE of the TAG will be a POINTER.

5.1.8 out_par

Encoding number: 8

→ ACCESS

An object qualified by out_par will be an output parameter in a make_general_proc construct.
This will indicate that the final value of the parameter is required in the postlude part of an
apply_general_proc of this procedure.

5.1.9 preserve

Encoding number: 9

→ ACCESS

This property refers to a global object. It says that the object will be included in the final
program, whether or not all possible accesses to that object are optimised away, for example by
inlining all possible uses of procedure object.

5.1.10 register

Encoding number: 10

→ ACCESS

Indicates that an object with this property is frequently used. This can be taken as a
recommendation to place it in a register.

5.1.11 standard_access

Encoding number: 11

→ ACCESS

An object qualified as having standard_access has normal (that is, no special) access properties.

5.1.12 used_as_volatile

Encoding number: 12

→ ACCESS

An object qualified as having used_as_volatile will be used in a move_some,
contents_with_mode or an assign_with_mode construct with TRANSFER_MODE volatile.

Architecture Neutral Distribution Format (XANDF) 19

ACCESS Specification of XANDF Constructs

5.1.13 visible

Encoding number: 13

→ ACCESS

An object qualified as visible may be accessed when the procedure in which it is declared is not
the current procedure. A TAG must have this property if it is to be used by env_offset.

20 X/Open Preliminary Specification

Specification of XANDF Constructs AL_TAG

5.2 AL_TAG
Number of encoding bits: 1

Is coding extendable? Yes

Linkable entity identification: alignment

AL_TAGs name ALIGNMENTs. They are used so that circular definitions can be written in
XANDF. However, because of the definition of alignments, intrinsic circularities cannot occur.

For example, the following equation has a circular form:

x = alignment(pointer(alignment(x)))

and it or a similar equation might occur in XANDF. However, since alignment(pointer(x)) is
{pointer}, this reduces to x = {pointer}.

5.2.1 al_tag_apply_token

Encoding number: 2

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ AL_TAG

The token is applied to the arguments encoded in the BITSTREAM token_args to give an
AL_TAG.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.2.2 make_al_tag

Encoding number: 1

al_tagno: TDFINT
→ AL_TAG

make_al_tag constructs an AL_TAG identified by al_tagno .

Architecture Neutral Distribution Format (XANDF) 21

AL_TAGDEF Specification of XANDF Constructs

5.3 AL_TAGDEF
Number of encoding bits: 1

Is coding extendable? Yes

An AL_TAGDEF gives the definition of an AL_TAG for incorporation into a
AL_TAGDEF_PROPS.

5.3.1 make_al_tagdef

Encoding number: 1

t: TDFINT
a: ALIGNMENT

→ AL_TAGDEF

The AL_TAG identified by t is defined to stand for the ALIGNMENT a . All the AL_TAGDEFs in
a CAPSULE must be considered together as a set of simultaneous equations defining
ALIGNMENT values for the AL_TAGs. No order is imposed on the definitions.

In any particular CAPSULE the set of equations may be incomplete, but a CAPSULE which is
being translated into code will have a set of equations which defines all the AL_TAGs which it
uses.

The result of the evaluation of the control argument of any _cond construction (for example,
alignment_cond) used in a shall be independent of any AL_TAGs used in the control.
Simultaneous equations defining ALIGNMENTs can then always be solved.

See also Section 7.13.3 on page 149.

22 X/Open Preliminary Specification

Specification of XANDF Constructs AL_TAGDEF_PROPS

5.4 AL_TAGDEF_PROPS
Number of encoding bits: 0

Unit identification: aldef

5.4.1 make_al_tagdefs

Encoding number: 0

no_labels: TDFINT
tds: SLIST(AL_TAGDEF)

→ AL_TAGDEF_PROP

no_labels is the number of local LABELs used in tds. tds is a list of AL_TAGDEFs which define
the bindings for al_tags.

Architecture Neutral Distribution Format (XANDF) 23

ALIGNMENT Specification of XANDF Constructs

5.5 ALIGNMENT
Number of encoding bits: 4

Is coding extendable? Yes

An ALIGNMENT gives information about the layout of data in memory and hence is a
parameter for the POINTER and OFFSET SHAPES (see Section 7.13 on page 147). This
information consists of a set of elements.

The possible values of the elements in such a set are proc, code, pointer, offset, all VARIETIES,
all FLOATING_VARIETIES and all BITFIELD_VARIETIES. The sets are written here as, for
example, { pointer , proc } meaning the set containing pointer and proc .

In addition, there are ‘‘special’’ ALIGNMENTs alloca_alignment, callers_alignment,
callees_alignment, locals_alignment and var_param_alignment. Each of these are considered
to be sets which include all of the ‘‘ordinary’’ ALIGNMENTs above.

There is a function, alignment, which can be applied to a SHAPE to give an ALIGNMENT (see
the definition below). The interpretation of a POINTER to an ALIGNMENT, a, is that it can serve
as a POINTER to any SHAPE, s, such that alignment (s) is a subset of the set a .

So given a POINTER ({ proc , pointer }) it is permitted to assign a PROC or a POINTER to it, or
indeed a compound containing only PROCS and POINTERS. This permission is valid only in
respect of the space being of the right kind; it may or may not be big enough for the data.

The most usual use for ALIGNMENT is to ensure that addresses of int values are aligned on
4-byte boundaries, float values are aligned on 4-byte boundaries, doubles on 8-bit boundaries, and
so on, and whatever may be implied by the definitions of the machines and languages involved.

In the specification the phrase ‘‘ a will include b ’’ where a and b are ALIGNMENTS, means that
the set b will be a subset of a (or equal to a).

5.5.1 alignment_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ ALIGNMENT

The token is applied to the arguments encoded in the BITSTREAM token_args to give an
ALIGNMENT.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

24 X/Open Preliminary Specification

Specification of XANDF Constructs ALIGNMENT

5.5.2 alignment_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM ALIGNMENT
e2: BITSTREAM ALIGNMENT

→ ALIGNMENT

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.5.3 alignment

Encoding number: 3

sha: SHAPE
→ ALIGNMENT

The alignment construct is defined as follows:

• If sha is PROC then the resulting ALIGNMENT is { proc }.

• If sha is INTEGER (v) then the resulting ALIGNMENT is { v }.

• If sha is FLOATING (v) then the resulting ALIGNMENT is { v }.

• If sha is BITFIELD (v) then the resulting ALIGNMENT is { v }.

• If sha is TOP the resulting ALIGNMENT is { } — the empty set.

• If sha is BOTTOM the resulting ALIGNMENT is undefined.

• If sha is POINTER (x) or OFFSET (x , y) then the resulting ALIGNMENT is { pointer }
or { offset } respectively.

• If sha is NOF (n, s) the resulting ALIGNMENT is alignment (s).

• If sha is COMPOUND (EXP OFFSET (x , y)) then the resulting ALIGNMENT is x .

5.5.4 alloca_alignment

Encoding number: 4

→ ALIGNMENT

This delivers the ALIGNMENT of POINTERS produced from local_alloc.

Architecture Neutral Distribution Format (XANDF) 25

ALIGNMENT Specification of XANDF Constructs

5.5.5 callees_alignment

Encoding number: 5

var: BOOL
→ ALIGNMENT

If var is true the ALIGNMENT is that of callee parameters qualified by the PROCPROPS
var_callees. If var is false, the ALIGNMENT is that of callee parameters not qualified by
PROCPROPS var_callees.

This delivers the base ALIGNMENT of OFFSETS from a frame-pointer to a CALLEE parameter.
Values of such OFFSETS can only be produced by env_offset applied to CALLEE parameters, or
offset arithmetic operations applied to existing OFFSETS.

5.5.6 callers_alignment

Encoding number: 6

var: BOOL
→ ALIGNMENT

If var is true the ALIGNMENT is that of caller parameters qualified by the PROCPROPS
var_callers. If var is false, the ALIGNMENT is that of caller parameters not qualified by
PROCPROPS var_callers.

This delivers the base ALIGNMENT of OFFSETS from a frame-pointer to a CALLER parameter.
Values of such OFFSETS can only be produced by env_offset applied to CALLER parameters, or
offset arithmetic operations applied to existing OFFSETS.

5.5.7 code_alignment

Encoding number: 7

→ ALIGNMENT

This delivers { code }, the ALIGNMENT of the POINTER produced by make_local_lv.

5.5.8 locals_alignment

Encoding number: 8

→ ALIGNMENT

This delivers the base ALIGNMENT of OFFSETS from a frame-pointer to a value defined by
variable or identify . Values of such OFFSETS can only be produced by env_offset applied to
TAGS so defined, or offset arithmetic operations applied to existing OFFSETS.

26 X/Open Preliminary Specification

Specification of XANDF Constructs ALIGNMENT

5.5.9 obtain_al_tag

Encoding number: 9

at: AL_TAG
→ ALIGNMENT

obtain_al_tag produces the ALIGNMENT with which the AL_TAG at is bound.

5.5.10 parameter_alignment

Encoding number: 10

sha: SHAPE
→ ALIGNMENT

This delivers the ALIGNMENT of a parameter of a procedure of SHAPE sha .

5.5.11 unite_alignments

Encoding number: 11

a1: ALIGNMENT
a2: ALIGNMENT

→ ALIGNMENT

unite_alignments produces the alignment at which all the members of the ALIGNMENT sets a1
and a2 can be placed — in other words the ALIGNMENT set which is the union of a1 and a2 .

5.5.12 var_param_alignment

Encoding number: 12

→ ALIGNMENT

This delivers the ALIGNMENT used in the var_param argument of make_proc.

Architecture Neutral Distribution Format (XANDF) 27

BITFIELD_VARIETY Specification of XANDF Constructs

5.6 BITFIELD_VARIETY
Number of encoding bits: 2

Is coding extendable? Yes

These describe runtime bitfield values. The intention is that these values are usually kept in
memory locations which need not be aligned on addressing boundaries.

There is no limit on the size of bitfield values in XANDF, but an installer may specify limits. See
Section 7.24 on page 154 and Section 7.25 on page 155.

5.6.1 bfvar_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ BITFIELD_VARIETY

The token is applied to the arguments encoded in the BITSTREAM token_args to give a
BITFIELD_VARIETY.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.6.2 bfvar_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM BITFIELD_VARIETY
e2: BITSTREAM BITFIELD_VARIETY

→ BITFIELD_VARIETY

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.6.3 bfvar_bits

Encoding number: 3

issigned: BOOL
bits: NAT

→ BITFIELD_VARIETY

bfvar_bits constructs a BITFIELD_VARIETY describing a pattern of bits bits. If issigned is true,
the pattern is considered to be a twos-complement signed number; otherwise it is considered to
be unsigned.

28 X/Open Preliminary Specification

Specification of XANDF Constructs BITSTREAM

5.7 BITSTREAM
A BITSTREAM consists of an encoding of any number of bits. This encoding is such that any
program reading XANDF can determine how to skip over it. To read it meaningfully, extra
knowledge of what it represents may be needed.

A BITSTREAM is used, for example, to supply parameters in a TOKEN application. If there is a
definition of this TOKEN available, this will provide the information needed to decode the
bitstream.

See Section 8.3 on page 161.

Architecture Neutral Distribution Format (XANDF) 29

BOOL Specification of XANDF Constructs

5.8 BOOL
Number of encoding bits: 3

Is coding extendable? Yes

A BOOL is a piece of XANDF which can take two values: true or false .

5.8.1 bool_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ BOOL

The token is applied to the arguments encoded in the BITSTREAM token_args to give a BOOL.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.8.2 bool_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM BOOL
e2: BITSTREAM BOOL

→ BOOL

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.8.3 false

Encoding number: 3

→ BOOL

false produces a false BOOL.

5.8.4 true

Encoding number: 4

→ BOOL

true produces a true BOOL.

30 X/Open Preliminary Specification

Specification of XANDF Constructs BYTESTREAM

5.9 BYTESTREAM
A BYTESTREAM is analogous to a BITSTREAM, but is encoded to permit fast copying.

See Section 8.3 on page 161.

Architecture Neutral Distribution Format (XANDF) 31

CALLEES Specification of XANDF Constructs

5.10 CALLEES
Number of encoding bits: 2

Is coding extendable? Yes

This is an auxiliary SORT used in calling procedures by apply_general_proc and tail_call to
provide their actual callee parameters.

5.10.1 make_callee_list

Encoding number: 1

args: LIST(EXP)
→ CALLEES

The list of EXPS args are evaluated in any interleaved order, and the resulting list of values form
the actual callee parameters of the call.

5.10.2 make_dynamic_callees

Encoding number: 2

ptr: EXP POINTER(x)
sze: EXP OFFSET(x,y)

→ CALLEES

The value of size sze pointed at by ptr forms the actual callee parameters of the call.

The call involved (that is, apply_general_proc or tail_call) must have a var_callees
PROCPROPS.

5.10.3 same_callees

Encoding number: 3

→ CALLEES

The callee parameters of the call are the same as those of the current procedure.

32 X/Open Preliminary Specification

Specification of XANDF Constructs CAPSULE

5.11 CAPSULE
Number of encoding bits: 0

Is coding extendable? No

A CAPSULE is an independent piece of XANDF. There is only one construction: make_capsule.

5.11.1 make_capsule

Encoding number: 0

prop_names: SLIST(TDFIDENT)
capsule_linking: SLIST(CAPSULE_LINK)

external_linkage: SLIST(EXTERN_LINK)
groups: SLIST(GROUP)

→ CAPSULE

make_capsule brings together UNITs and linking and naming information. See Section 2.1 on
page 5.

The elements of the list, prop_names , correspond one-to-one with the elements of the list, groups .
The element of prop_names is the unit identification of all the UNITS in the corresponding
GROUP. See Section 5.29 on page 99. A CAPSULE need not contain all the kinds of UNIT.

It is intended that new kinds of PROPs with new unit identifications can be added to the
standard in a purely additive fashion, either to form a new standard or for private purposes.

The elements of the list, capsule_linking, correspond one-to-one with the elements of the list,
external_linkage . The element of capsule_linking gives the linkable entity identification for all the
LINKEXTERNS in the element of external_linkage . It also gives the number of CAPSULE level
linkable entities having that identification.

The elements of the list, capsule_linking, also correspond one-to-one with the elements of the lists
called local_vars in each of the make_unit constructions for the UNITS in groups . The element of
local_vars gives the number of UNIT-level linkable entities having the identification in the
corresponding member of capsule_linking .

It is intended that new kinds of linkable entity can be added to the standard in a purely additive
fashion, either to form a new standard or for private purposes.

external_linkage provides a list of lists of LINKEXTERNs. These LINKEXTERNs specify the
associations between the names to be used outside the CAPSULE and the linkable entities by
which the UNITs make objects available within the CAPSULE.

The list, groups , provides the non-linkage information of the CAPSULE.

Architecture Neutral Distribution Format (XANDF) 33

CAPSULE_LINK Specification of XANDF Constructs

5.12 CAPSULE_LINK
Number of encoding bits: 0

Is coding extendable? No

This is an auxiliary SORT which gives the number of linkable entities of a given kind at
CAPSULE level. It is used only in make_capsule.

5.12.1 make_capsule_link

Encoding number: 0

sn: TDFIDENT
n: TDFINT

→ CAPSULE_LINK

n is the number of CAPSULE level linkable entities (numbered from 0 to n -1) of the kind given
by sn. sn corresponds to the linkable entity identification.

34 X/Open Preliminary Specification

Specification of XANDF Constructs CASELIM

5.13 CASELIM
Number of encoding bits: 0

Is coding extendable? No

This is an auxiliary SORT which provides lower and upper bounds and the LABEL destination
for the case construction.

5.13.1 make_caselim

Encoding number: 0

branch: LABEL
lower: SIGNED_NAT
upper: SIGNED_NAT

→ CASELIM

This makes a triple of destination and limits. The case construction (see Section 5.16.14 on page
44) uses a list of CASELIMS. If the control variable of the case lies between lower and upper,
control passes to branch.

Architecture Neutral Distribution Format (XANDF) 35

ERROR_CODE Specification of XANDF Constructs

5.14 ERROR_CODE
Number of encoding bits: 2

Is coding extendable? Yes

5.14.1 nil_access

Encoding number: 1

→ ERROR_CODE

This delivers the ERROR_CODE arising from an attempt to access a nil pointer in an operation
with TRANSFER_MODE trap_on_nil.

5.14.2 overflow

Encoding number: 2

→ ERROR_CODE

This delivers the ERROR_CODE arising from a numerical exceptional result in an operation
with ERROR_TREATMENT trap(overflow).

5.14.3 stack_overflow

Encoding number: 3

→ ERROR_CODE

This delivers the ERROR_CODE arising from a stack overflow in the call of a procedure defined
with PROCPROPS check_stack.

36 X/Open Preliminary Specification

Specification of XANDF Constructs ERROR_TREATMENT

5.15 ERROR_TREATMENT
Number of encoding bits: 3

Is coding extendable? Yes

These values describe the way to handle various forms of error which can occur during the
evaluation of operations.

It is expected that additional ERROR_TREATMENTS will be needed.

5.15.1 errt_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ ERROR_TREATMENT

The token is applied to the arguments encoded in the BITSTREAM token_args to give an
ERROR_TREATMENT.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.15.2 errt_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM ERROR_TREATMENT
e2: BITSTREAM ERROR_TREATMENT

→ ERROR_TREATMENT

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.15.3 continue

Encoding number: 3

→ ERROR_TREATMENT

If an operation with a continue ERROR_TREATMENT causes an error, some value of the correct
SHAPE shall be delivered. This value shall have the same properties as is specified in
make_value.

Architecture Neutral Distribution Format (XANDF) 37

ERROR_TREATMENT Specification of XANDF Constructs

5.15.4 error_jump

Encoding number: 4

lab: LABEL
→ ERROR_TREATMENT

error_jump produces an ERROR_TREATMENT which requires that control be passed to lab if it
is invoked. lab will be in scope.

If a construction has an error_jump ERROR_TREATMENT and the jump is taken, the canonical
order specifies only that the jump occurs after evaluating the construction. It is not specified
how many further constructions are evaluated.

Note: This rule implies that a further construction is needed to guarantee that errors have
been processed. This is not yet included. The effect of nearby procedure calls or exits
also needs definition.

5.15.5 trap

Encoding number: 5

trap_list: LIST(ERROR_CODE)
→ ERROR_TREATMENT

The list of ERROR_CODES in trap_list specifies a set of possible exceptional behaviours. If any of
these occur in an construction with ERROR_TREATMENT trap, the XANDF exception handling
is invoked (see Section 7.8).

The observations on canonical ordering in error_jump apply equally here.

5.15.6 wrap

Encoding number: 6

→ ERROR_TREATMENT

wrap is an ERROR_TREATMENT which will only be used in constructions with integer
operands and delivering EXP INTEGER (v) where either the lower bound of v is zero or the
construction is not one of mult, power, div0, div1, div2, rem0, rem1, rem2. The result will be
evaluated and any bits in the result lying outside the representing VARIETY will be discarded
(see Section 7.18 on page 151).

5.15.7 impossible

Encoding number: 7

→ ERROR_TREATMENT

impossible is an ERROR_TREATMENT which means that this error will not occur in the
construct concerned.

Note: impossible is possibly a misnomer. If an error occurs the result is undefined.

38 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16 EXP
Number of encoding bits: 7

Is coding extendable? Yes

EXPs are pieces of XANDF which are translated into program. EXP is by far the richest SORT.
There are few primitive EXPs; most of the constructions take arguments which are a mixture of
EXPs and other SORTs. There are constructs delivering EXPs that correspond to the declarations,
program structure, procedure calls, assignments, pointer manipulation, arithmetic operations,
tests, and so on, of programming languages.

5.16.1 exp_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAM param_sorts(token_value)

→ EXP x

The token is applied to the arguments encoded in the BITSTREAM token_args to give an EXP.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.16.2 exp_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM EXPx
e2: BITSTREAM EXPy

→ EXP x or EXP y

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.16.3 abs

Encoding number: 3

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)

→ EXP INTEGER(v)

The absolute value of the result produced by arg1 is delivered.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err .

Architecture Neutral Distribution Format (XANDF) 39

EXP Specification of XANDF Constructs

5.16.4 add_to_ptr

Encoding number: 4

arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)

→ EXP POINTER(x)

arg1 is evaluated, giving p, and arg2 is evaluated and the results are added to produce the
answer. The result is derived from the pointer delivered by arg1 . The intention is to produce a
POINTER displaced from the argument POINTER by the given amount.

x will include y.

arg1 may deliver a null POINTER. In this case the result is derived from a null POINTER which
counts as an original POINTER. Further OFFSETS may be added to the result, but the only other
useful operation on the result of adding a number of OFFSETS to a null POINTER is to
subtract_ptrs a null POINTER from it.

The result will be less than or equal (in the sense of pointer_test) to the result of applying
add_to_ptr to the original pointer from which p is derived and the size of the space allocated for
the original pointer.

Note: In the simple representation of POINTER arithmetic (see Section 7.13 on page 147)
add_to_ptr is represented by addition. The constraint ‘‘x includes y’’ ensures that no
padding has to be inserted in this case.

5.16.5 and

Encoding number: 5

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The arguments are evaluated, producing integer values of the same VARIETY, v . The result is
the bitwise logical ‘‘and’’ of the two values in the representing VARIETY. The result is delivered
with the same SHAPE as the arguments.

See also Section 7.18 on page 151.

5.16.6 apply_proc

Encoding number: 6

result_shape: SHAPE
p: EXP PROC

params: LIST(EXP)
var_param: OPTION(EXP)

→ EXP result_shape

p , params and var_param (if present) are evaluated in any interleaved order. The procedure, p, is
applied to the parameters. The result of the procedure call, which will have result_shape , is
delivered as the result of the construction.

40 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

The canonical order of evaluation is as if the definition were inlined. That is, the actual
parameters are evaluated interleaved in any order and used to initialise variables which are
identified by the formal parameters during the evaluation of the procedure body. When this is
complete, the body is evaluated. So, apply_proc is evaluated like a variable construction, and
obeys similar rules for order of evaluation.

If p delivers a null procedure, the effect is undefined.

var_param is intended to communicate parameters which vary in SHAPE from call to call. Access
to these parameters during the procedure is performed by using OFFSET arithmetic. Note that it
is necessary to place these values on var_param_alignment because of the definition of
make_proc.

All calls to the same procedure will yield results of the same SHAPE.

For notes on the intended implementation of procedures, see Section 7.9 on page 143.

5.16.7 apply_general_proc

Encoding number: 7

result_shape: SHAPE
prcprops: OPTION(PROCPROPS)

p: EXP PROC
caller_params: LIST(OTAGEXP)
callee_params: CALLEES

postlude: EXP TOP
→ EXP result_shape

p , caller_params and callee_params are evaluated in any order. The procedure, p, is applied to the
parameters. The result of the procedure call, which will have result_shape, is delivered as the
result of the construction.

If p delivers a null procedure, the effect is undefined.

Any TAG introduced by an OTAGEXP in caller_params is available in postlude which will be
evaluated after the application.

postlude will not contain any local_allocs or calls of procedures with untidy returns. If prcprops
include untidy, postlude will be make_top.

The canonical order of evaluation is as if the definition of p were inlined in a manner dependent
on prcprops .

If none of the PROCPROPS var_callers, var_callees and check_stack are present, the inlining is
as follows, supposing that P is the body of the definition of p :

Let Ri be the value of the EXP of the i th OTAGEXP in caller_params and Ti be
its TAG (if it is present). Let Ei be the i th value in callee_params. Let ri be the
i th formal caller parameter TAG of p . Let ei be the i th formal callee parameter
TAG of p .

Each Ri is used to initialise a variable which is identified by ri; there will be
exactly as many Ri as ri. The scope of these variable definitions is a sequence
consisting of three components — the identification of a TAG res with the
result of a binding of P, followed by a binding of postlude, followed by an
obtain_tag of res giving the result of the inlined procedure call.

Architecture Neutral Distribution Format (XANDF) 41

EXP Specification of XANDF Constructs

The binding of P consists of using each Ei to initialize a variable identified
with ei; there will be exactly as many Ei as ei. The scope of these variable
definitions is P modified so that the first return or untidy_return encountered in
P gives the result of the binding. If it ends with a return, any space generated
by local_allocs within the binding is freed (in the sense of local_free) at this
point. If it ends with untidy_return, no freeing will take place.

The binding of postlude consists of identifying each Ti (if present) with the
contents of the variable identified by ri. The scope of these identifications is
postlude .

If the PROCPROPS var_callers is present, the inlining process is modified as
follows:

A compound variable is constructed initialised to Ri in order; the
alignment and padding of each individual Ri will be given by an
exact application of parameter_alignment on the SHAPE of Ri. Each
ri is then identified with a pointer to the copy of Ri within the
compound variable; there will be at least as many Ri as ri. The
evaluation then continues as above with the scope of these
identifications being the sequence.

If the PROCPROPS var_callees is present, the inlining process is modified as
follows:

The binding of P is done by generating (as if by local_alloc) a pointer
to space for a compound value constructed from each Ei in order
(just as for var_callers). Each ei is identified with a pointer to the
copy of Ei within the generated space; there will be at least as many ei
as Ei. P is evaluated within the scope of these identifications, as
before. Note that the generation of space for these callee parameters
is a local_alloc with the binding of P, and hence will not be freed if P
ends with an untidy_return.

5.16.8 assign

Encoding number: 8

arg1: EXP POINTER(x)
arg2: EXPy

→ EXP TOP

The value produced by arg2 will be put in the space indicated by arg1 .

x will include alignment (y).

y will not be a BITFIELD.

If the space which the pointer indicates does not lie wholly within the space indicated by the
original pointer from which it is derived, the effect is undefined.

If the value delivered by arg1 is a null pointer, the effect is undefined.

See also Section 7.16 on page 151 and Section 7.17 on page 151.

The constraint ‘‘ x will include alignment(y)’’ ensures in the simple memory model (see Section
7.13 on page 147) that no change is needed to the POINTER.

42 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.9 assign_with_mode

Encoding number: 9

md: TRANSFER_MODE
arg1: EXP POINTER(x)
arg2: EXPy

→ EXP TOP

The value produced by arg2 will be put in the space indicated by arg1 . The assignment will be
carried out as specified by the TRANSFER_MODE (see Section 5.33.19 on page 110).

If md consists of standard_transfer_mode only, then assign_with_mode is the same as assign.

x will include alignment (y).

y will not be a BITFIELD.

If the space which the pointer indicates does not lie wholly within the space indicated by the
original pointer from which it is derived, the effect is undefined.

If the value delivered by arg1 is a null pointer, the effect is undefined.

See also Section 7.16 on page 151 and Section 7.17 on page 151.

5.16.10 bitfield_assign

Encoding number: 10

arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)
arg3: EXP BITFIELD(v)

→ EXP TOP

The value delivered by arg3 is assigned at a displacement given by arg2 from the pointer
delivered by arg1 .

x will include y and z will include v .

arg2, BITFIELD (v) will be variety_enclosed (see also Section 7.24 on page 154).

5.16.11 bitfield_assign_with_mode

Encoding number: 11

md: TRANSFER_MODE
arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)
arg3: EXP BITFIELD(v)

→ EXP TOP

The value delivered by arg3 is assigned at a displacement given by arg2 from the pointer
delivered by arg1 by the TRANSFER_MODE (see Section 5.33.19 on page 110).

If md consists of standard_transfer_mode only, then bitfield_assign_with_mode is the same as
bitfield_assign.

Architecture Neutral Distribution Format (XANDF) 43

EXP Specification of XANDF Constructs

x will include y and z will include v .

arg2 , BITFIELD (v) will be variety_enclosed (see Section 7.24 on page 154).

5.16.12 bitfield_contents

Encoding number: 12

v: BITFIELD_VARIETY
arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)

→ EXP BITFIELD(v)

The bitfield of BITFIELD_VARIETY v, located at the displacement delivered by arg2 from the
pointer delivered by arg1 , is extracted and delivered.

x will include y and z will include v .

arg2 , BITFIELD (v) will be variety_enclosed (see Section 7.24 on page 154).

5.16.13 bitfield_contents_with_mode

Encoding number: 13

md: TRANSFER_MODE
v: BITFIELD_VARIETY

arg1: EXP POINTER(x)
arg2: EXP OFFSET(y,z)

→ EXP BITFIELD(v)

The bitfield of BITFIELD_VARIETY v, located at the displacement delivered by arg2 from the
pointer delivered by arg1 , is extracted and delivered. The operation will be carried out as
specified by the TRANSFER_MODE (see Section 5.33.19 on page 110).

If md consists of standard_transfer_mode only, then bitfield_contents_with_mode is the same
as bitfield_contents.

x will include y and z will include v .

arg2 , BITFIELD (v) will be variety_enclosed (see Section 7.24 on page 154).

5.16.14 case

Encoding number: 14

exhaustive: BOOL
control: EXP INTEGER(v)

branches: LIST(CASELIM)
→ EXP(exhaustive?BOTTOM:TOP)

control is evaluated to produce an integer value, c. Then c is tested to see if it lies inclusively
between lower and upper, for each element of branches. If this tests succeeds, control passes to the
label branch belonging to that CASELIM (see Section 5.13 on page 35). If c lies between no pair,
the construct delivers a value of SHAPE TOP. The order in which the comparisons are made is
undefined.

44 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

The sets of SIGNED_NATs in branches will be disjoint.

If exhaustive is true, the value delivered by control will lie between one of the lower/upper pairs.

5.16.15 change_bitfield_to_int

Encoding number: 15

v: VARIETY
arg1: EXP BITFIELD(bv)

→ EXP INTEGER(v)

arg1 is evaluated and converted to a INTEGER (v).

If arg1 exceed the bounds of v, the effect is undefined.

5.16.16 change_floating_variety

Encoding number: 16

flpt_err: ERROR_TREATMENT
r: FLOATING_VARIETY

arg1: EXP FLOATING(f)
→ EXP FLOATING(r)

arg1 is evaluated and will produce floating point value, fp . The value fp is delivered, changed to
the representation of the FLOATING_VARIETY r.

r and f will be both real or both complex.

If there is a floating point error it is handled by flpt_err.

See also Section 7.21 on page 153.

5.16.17 change_variety

Encoding number: 17

ov_err: ERROR_TREATMENT
r: VARIETY

arg1: EXP INTEGER(v)
→ EXP INTEGER(r)

arg1 is evaluated and will produce an integer value, a . The value a is delivered, changed to the
representation of the VARIETY r.

If a is not contained in the VARIETY being used to represent r, an overflow occurs and is
handled according to ov_err.

Architecture Neutral Distribution Format (XANDF) 45

EXP Specification of XANDF Constructs

5.16.18 change_int_to_bitfield

Encoding number: 18

bv: BITFIELD_VARIETY
arg1: EXP INTEGER(v)

→ EXP BITFIELD(bv)

arg1 is evaluated and converted to a BITFIELD (bv).

If arg1 exceed the bounds of bv, the effect is undefined.

5.16.19 complex_conjugate

Encoding number: 19

c: EXP FLOATING(cv)
→ EXP FLOATING(cv)

This delivers the complex conjugate of c.

cv will be a complex floating variety.

5.16.20 component

Encoding number: 20

sha: SHAPE
arg1: EXP COMPOUND(EXP OFFSET(x,y))
arg2: EXP OFFSET(x,alignment(sha))

→ EXP sha

arg1 is evaluated to produce a COMPOUND value. The component of this value at the OFFSET
given by arg2 is delivered. This will have SHAPE sha .

arg2 will be a constant and non-negative (see Section 7.3 on page 139).

If sha is a BITFIELD then arg2 , sha will be variety_enclosed (see Section 7.24 on page 154).

5.16.21 concat_nof

Encoding number: 21

arg1: EXP NOF(n,s)
arg2: EXP NOF(m,s)

→ EXP NOF(n+m,s)

arg1 and arg2 are evaluated and their results concatenated. In the result, the components derived
from arg1 will have lower indices than those derived from arg2 .

46 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.22 conditional

Encoding number: 22

alt_label_intro: LABEL
first: EXPx

alt: EXPz
→ EXP (x LUB z)

first is evaluated. If first produces a result, f , this value is delivered as the result of the whole
construct, and alt is not evaluated.

If goto (alt_label_intro) or any other jump (including long_jump) to alt_label_intro is obeyed
during the evaluation of first, then the evaluation of first will stop, alt will be evaluated and its
result delivered as the result of the construction.

The lifetime of alt_label_intro is the evaluation of first. alt_label_intro will not be used within alt.

The actual order of evaluation of the constituents shall be indistinguishable in all observable
effects (apart from time) from evaluating all the obeyed parts of first before any obeyed part of
alt . Note that this specifically includes any defined error handling.

For LUB see Section 7.26 on page 155.

5.16.23 contents

Encoding number: 23

s: SHAPE
arg1: EXP POINTER(x)

→ EXP s

A value of SHAPEs will be extracted from the start of the space indicated by the pointer, and this
is delivered.

x will include alignment (s).

s will not be a BITFIELD.

If the space which the pointer indicates does not lie wholly within the space indicated by the
original pointer from which it is derived, the effect is undefined.

If the value delivered by arg1 is a null pointer the effect is undefined.

Note: The constraint x will include alignment(s) ensures in the simple memory model (see
Section 7.13 on page 147) that no change is needed to the POINTER.

Architecture Neutral Distribution Format (XANDF) 47

EXP Specification of XANDF Constructs

5.16.24 contents_with_mode

Encoding number: 24

md: TRANSFER_MODE
s: SHAPE

arg1: EXP POINTER(x)
→ EXP s

A value of SHAPEs will be extracted from the start of the space indicated by the pointer, and this
is delivered. The operation will be carried out as specified by the TRANSFER_MODE (see
Section 5.33.19 on page 110).

If md consists of standard_transfer_mode only, then contents_with_mode is the same as
contents.

x will include alignment (s).

s will not be a BITFIELD.

If the space which the pointer indicates does not lie wholly within the space indicated by the
original pointer from which it is derived, the effect is undefined.

If the value delivered by arg1 is a null pointer, the effect is undefined.

5.16.25 current_env

Encoding number: 25

→ EXP POINTER(frame_alignment)

A value of SHAPE POINTER (fa) is created and delivered. It gives access to the variables,
identities and parameters in the current procedure activation which are declared as having
ACCESS visible.

If the immediately enclosing procedure is defined by make_general_proc, then fa is the set union
of local_alignment and the alignments of the kinds of parameters defined. That is to say, if there
are caller parameters, then the alignment includes callers_alignment (x) where x is true if the
PROCPROPS var_callers is present; if there are callee parameters, the alignment includes
callees_alignment (x) where x is true if the PROCPROPS var_callees is present.

If the immediately enclosing procedure is defined by make_proc, then

fa = {locals_alignment, callers_alignment(false) }.

If an OFFSET produced by env_offset is added to a POINTER produced by current_env from an
activation of the procedure which contains the declaration of the TAG used by env_offset, then
the result is an original POINTER, notwithstanding the normal rules for add_to_ptr (see Section
7.15 on page 150).

If an OFFSET produced by env_offset is added to such a pointer from an inappropriate
procedure, the effect is undefined.

48 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.26 div0

Encoding number: 26

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v .
Either the value a D1 b or the value a D2 b is delivered as the result of the construct, with the
same SHAPE as the arguments. Different occurrences of div0 in the same capsule can use D1 or
D2 independently.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and the result cannot be expressed in the VARIETY being used to represent v , an
overflow occurs and is handled by ov_err .

Producers may assume that shifting and div0 by a constant which is a power of two yield
equally good code.

See also Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

5.16.27 div1

Encoding number: 27

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v .
The value a D1 b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and the result cannot be expressed in the VARIETY being used to represent v , an
overflow occurs and is handled by ov_err .

Producers may assume that shifting and div1 by a constant which is a power of two yield
equally good code.

See also Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

Architecture Neutral Distribution Format (XANDF) 49

EXP Specification of XANDF Constructs

5.16.28 div2

Encoding number: 28

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v .
The value a D2 b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and the result cannot be expressed in the VARIETY being used to represent v , an
overflow occurs and is handled by ov_err .

Producers may assume that shifting and div2 by a constant which is a power of two yield
equally good code if the lower bound of v is zero.

See also Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

5.16.29 env_offset

Encoding number: 29

fa: ALIGNMENT
y: ALIGNMENT
t: TAGx

→ EXP OFFSET(fa,y)

t will be the tag of a variable, identify or procedure parameter with the visible property within a
procedure defined by make_general_proc or make_proc.

If it is defined in a make_general_proc, let P be its associated PROCPROPS; otherwise let P be
the PROCPROPS { locals_alignment , caller_alignment (false) }.

If t is the TAG of a variable or identify, fa will contain locals_alignment ; if it is a caller parameter fa
will contain a caller_alignment (b) where b is true if P contains var_callers; if it is a callee
parameter, fa will contain a callee_alignment (b) where b is true if P contains var_callees.

If t is the TAG of a variable or parameter, the result is the OFFSET of its position, within any
procedure environment which derives from the procedure containing the declaration of the
variable or parameter, relative to its environment pointer. In this case x will be POINTER (y).

If t is the TAG of an identify, the result will be an OFFSET of space which holds the value. This
pointer will not be used to alter the value. In this case y will be alignment (x).

See also Section 7.10 on page 144.

50 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.30 env_size

Encoding number: 30

proctag: TAG PROC
→ EXP OFFSET(locals_alignment,{})

This delivers an OFFSET of a space sufficient to contain all the variables and identifications,
explicit or implicit in the procedure identified by proctag . This will not include the space
required for any local_allocs or procedure calls within the procedure.

proctag will be defined in the current CAPSULE by a TAGDEF identification of a make_proc or a
make_general_proc.

5.16.31 fail_installer

Encoding number: 31

message: STRING(k,n)
→ EXP BOTTOM

Any attempt to use this operation to produce code will result in a failure of the installation
process. A message will give information about the reason for this failure; this message should
be passed to the installation manager.

5.16.32 float_int

Encoding number: 32

flpt_err: ERROR_TREATMENT
f: FLOATING_VARIETY

arg1: EXP INTEGER(v)
→ EXP FLOATING(f)

arg1 is evaluated to produce an integer value, which is converted to the representation of f and
delivered.

If f is complex, the real part of the result will be derived from arg1 and the imaginary part will be
zero.

If there is a floating point error, it is handled by flpt_err. See also Section 7.21 on page 153.

5.16.33 floating_abs

Encoding number: 33

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)

→ EXP FLOATING(f)

arg1 is evaluated and will produce a floating point value, a, of the FLOATING_VARIETY, f. The
absolute value of a is delivered as the result of the construct, with the same SHAPE as the
argument.

Though floating_abs cannot produce an overflow, it can give an invalid operand exception
which is handled by flpt_err.

Architecture Neutral Distribution Format (XANDF) 51

EXP Specification of XANDF Constructs

f will not be complex.

See also Section 7.23 on page 153.

5.16.34 floating_div

Encoding number: 34

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP FLOATING(f)

arg1 and arg2 are evaluated and will produce floating point values, a and b, of the same
FLOATING_VARIETY, f. The value a/b is delivered as the result of the construct, with the same
SHAPE as the arguments.

If there is a floating point error, it is handled by flpt_err.

See also Section 7.21 on page 153 and Section 7.23 on page 153.

5.16.35 floating_minus

Encoding number: 35

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP FLOATING(f)

arg1 and arg2 are evaluated and will produce floating point values, a and b, of the same
FLOATING_VARIETY, f. The value a − b is delivered as the result of the construct, with the same
SHAPE as the arguments.

If there is a floating point error it is handled by flpt_err.

See also Section 7.21 on page 153 and Section 7.23 on page 153

5.16.36 floating_maximum

Encoding number: 36

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP FLOATING(f)

The maximum of the values delivered by arg1 and arg2 is the result. f will not be complex.

If arg1 and arg2 are incomparable, flpt_err will be invoked.

See also Section 7.23 on page 153.

52 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.37 floating_minimum

Encoding number: 37

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP FLOATING(f)

The minimum of the values delivered by arg1 and arg2 is the result. f will not be complex.

If arg1 and arg2 are incomparable, flpt_err will be invoked.

See also Section 7.23 on page 153.

5.16.38 floating_mult

Encoding number: 38

flpt_err: ERROR_TREATMENT
arg1: LIST(EXP)

→ EXP FLOATING(f)

The arguments, arg1, are evaluated, producing floating point values all of the same
FLOATING_VARIETY, f. These values are multiplied in any order and the result of this
multiplication is delivered as the result of the construct, with the same SHAPE as the arguments.

If there is a floating point error it is handled by flpt_err. See also Section 7.21 on page 153.

Note: Separate floating_mult operations cannot in general be combined, because rounding
errors need to be controlled. The reason for allowing floating_mult to take a variable
number of arguments is to make it possible to specify that a number of multiplications
can be re-ordered.

If arg1 contains one element, the result is the value of that element. There will be at least one
element in arg1 .

See also Section 7.23 on page 153.

5.16.39 floating_negate

Encoding number: 39

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)

→ EXP FLOATING(f)

arg1 is evaluated and will produce a floating point value, a, of the FLOATING_VARIETY, f . The
value −a is delivered as the result of the construct, with the same SHAPE as the argument.

Though floating_negate cannot produce an overflow, it can give an invalid operand exception
which is handled by flpt_err.

See also Section 7.23 on page 153.

Architecture Neutral Distribution Format (XANDF) 53

EXP Specification of XANDF Constructs

5.16.40 floating_plus

Encoding number: 40

flpt_err: ERROR_TREATMENT
arg1: LIST(EXP)

→ EXP FLOATING(f)

The arguments, arg1, are evaluated, producing floating point values, all of the same
FLOATING_VARIETY, f. These values are added in any order and the result of this addition is
delivered as the result of the construct, with the same SHAPE as the arguments.

If there is a floating point error, it is handled by flpt_err.

See also Section 7.21 on page 153.

Note: Separate floating_plus operations cannot in general be combined, because rounding
errors need to be controlled. The reason for allowing floating_plus to take a variable
number of arguments is to make it possible to specify that a number of multiplications
can be re-ordered.

If arg1 contains one element, the result is the value of that element. There will be at least one
element in arg1 .

See also Section 7.23 on page 153.

5.16.41 floating_power

Encoding number: 41

flpt_err: ERROR_TREATMENT
arg1: EXP FLOATING(f)
arg2: EXP INTEGER(v)

→ EXP FLOATING(f)

The result of arg1 is raised to the power given by arg2 .

If there is a floating point error it is handled by flpt_err.

See also Section 7.21 on page 153 and Section 7.23 on page 153.

5.16.42 floating_test

Encoding number: 42

prob: OPTION(NAT)
flpt_err: ERROR_TREATMENT

nt: NTEST
dest: LABEL
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP TOP

arg1 and arg2 are evaluated and will produce floating point values, a and b, of the same
FLOATING_VARIETY, f. These values are compared using nt.

54 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

If f is complex then nt will be equal or not_equal.

If a nt b, this construction yields TOP. Otherwise control passes to dest.

If prob is present, prob /100 gives the probability that control will continue to the next construct
(that is, not pass to dest). If prob is absent, this probability is unknown.

If there is a floating point error it is handled by flpt_err.

See also Section 7.21 on page 153 and Section 7.23 on page 153.

5.16.43 goto

Encoding number: 43

dest: LABEL
→ EXP BOTTOM

Control passes to the EXP labelled dest. This construct will only be used where dest is in scope.

5.16.44 goto_local_lv

Encoding number: 44

arg1: EXP POINTER({code})
→ EXP BOTTOM

arg1 is evaluated. The label from which the value delivered by arg1 was created will be within its
lifetime, and this construction will be obeyed in the same activation of the same procedure as the
creation of the POINTER({code}) by make_local_lv. Control passes to this activation of this
LABEL.

If arg1 delivers a null POINTER, the effect is undefined.

5.16.45 identify

Encoding number: 45

opt_access: OPTION(ACCESS)
name_intro: TAGx

definition: EXPx
body: EXPy

→ EXP y

definition is evaluated to produce a value, v. Then body is evaluated. During this evaluation, v is
bound to name_intro. This means that inside body an evaluation of obtain_tag (name_intro) will
produce the value v .

The value delivered by identify is that produced by body.

The TAG given for name_intro will not be reused within the current UNIT. No rules for the
hiding of one TAG by another are given; this will not happen. The lifetime of name_intro is the
evaluation of body.

If opt_access contains visible , it means that the value must not be aliased while the procedure
containing this declaration is not the current procedure. Hence if there are any copies of this
value, they will need to be refreshed when the procedure is returned to. The easiest

Architecture Neutral Distribution Format (XANDF) 55

EXP Specification of XANDF Constructs

implementation when opt_access is visible may be to keep the value in memory, but this is not a
necessary requirement.

The order in which the constituents of definition and body are evaluated shall be indistinguishable
in all observable effects (apart from time) from completely evaluating definition before starting
body. See the note about order in Section 5.16.107 on page 76.

5.16.46 ignorable

Encoding number: 46

arg1: EXP x
→ EXP x

If the result of this construction is discarded, arg1 need not be evaluated, though evaluation is
permitted. If the result is used, it is the result of arg1 .

5.16.47 imaginary_part

Encoding number: 47

arg1: EXPc
→ EXP FLOATING(float_of_complex(c))

c will be complex. This delivers the imaginary part of the value produced by arg1 .

5.16.48 initial_value

Encoding number: 48

init: EXP s
→ EXP s

Any tag used as an argument of an obtain_tag in init will be global or defined within init .

All labels used in init will be defined within init .

init will be evaluated once only before any procedure application, other than those involved in
this or other initial_value constructions, but after all load-time constant initialisations of
TAGDEFs. The result of this evaluation is the value of the construction.

The order of evaluation of the different initial_values in a program is undefined.

See also Section 7.29 on page 156.

5.16.49 integer_test

Encoding number: 49

prob: OPTION(NAT)
nt: NTEST

dest: LABEL

56 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP TOP

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
These values are compared using nt.

If a nt b, this construction yields TOP. Otherwise control passes to dest.

If prob is present, prob/100 gives the probability that control will continue to the next construct
(that is, not pass to dest). If prob is absent, this probability is unknown.

5.16.50 labelled

Encoding number: 50

placelabs_intro: LIST(LABEL)
starter: EXPx
places: LIST(EXP)

→ EXP w

The lists placelabs_intro and places have the same number of elements.

To evaluate the construction, starter is evaluated. If its evaluation runs to completion producing
a value, then this is delivered as the result of the whole construction. If a goto to one of the
LABELS in placelabs_intro , or any other jump to one of these LABELS, is evaluated, then the
evaluation of starter stops and the corresponding element of places is evaluated. In the canonical
ordering, all the operations which are evaluated from starter are completed before any from an
element of places is started. If the evaluation of the member of places produces a result, this is the
result of the construction.

If a jump to any of the placelabs_intro is obeyed then evaluation continues similarly. Such
jumping may continue indefinitely, but if any places terminates, then the value it produces is the
value delivered by the construction.

The SHAPE w is the LUB of x and all the places. See Section 7.26 on page 155.

The actual order of evaluation of the constituents shall be indistinguishable in all observable
effects (apart from time) from that described above. Note that this specifically includes any
defined error handling.

The lifetime of each of the LABELs in placelabs_intro is the evaluation of starter and all the
elements of places.

5.16.51 last_local

Encoding number: 51

x: EXP OFFSET(y,z)
→ EXP POINTER(alloca_alignment)

If the last use of local_alloc in the current activation of the current procedure was after the last
use of local_free or local_free_all, then the value returned is the last POINTER allocated with
local_alloc.

If the last use of local_free in the current activation of the current procedure was after the last
use of local_alloc, then the result is the POINTER last allocated which is still active.

Architecture Neutral Distribution Format (XANDF) 57

EXP Specification of XANDF Constructs

The result POINTER will have been created by local_alloc with the value of its arg1 equal to the
value of x .

If the last use of local_free_all in the current activation of the current procedure was after the
last use of local_alloc, or if there has been no use of local_alloc in the current activation of the
current procedure, then the result is undefined.

The ALIGNMENT alloca_alignment includes the set union of all the ALIGNMENTs which can be
produced by alignment from any SHAPE. See Section 7.13.4 on page 149.

5.16.52 local_alloc

Encoding number: 52

arg1: EXP OFFSET(x,y)
→ EXP POINTER(alloca_alignment)

The arg1 expression is evaluated and space is allocated sufficient to hold a value of the given
size. The result is an original pointer to this space.

x will not consist entirely of bitfield alignments.

The initial contents of the space are not specified.

This allocation is as if on the stack of the current procedure, and the lifetime of the pointer ends
when the current activation of the current procedure ends with a return, return_to_label or
tail_call or if there is a long jump out of the activation. Any use of the pointer thereafter is
undefined. Note the specific exclusion of the procedure ending with untidy_return; in this case
the calling procedure becomes the current activation.

The uses of local_alloc within the procedure are ordered dynamically as they occur, and this
order affects the meaning of local_free and last_local.

arg1 may be a zero OFFSET. In this case, suppose the result is p ; then a subsequent use in the
current procedure activation of

local_free (offset_zero (alloca_alignment) p)

will return the alloca stack to the state it was in immediately before the use of local_alloc.

Note that if a procedure which uses local_alloc is inlined, it may be necessary to use local_free
to get the correct semantics.

See also Section 7.12 on page 146.

5.16.53 local_alloc_check

Encoding number: 53

arg1: EXP OFFSET(x,y)
→ EXP POINTER(alloca_alignment)

If the OFFSET arg1 can be accommodated within the limit of the local_alloc stack (see Section
5.16.108 on page 76), the action is precisely the same as local_alloc.

If not, normal action is stopped and an XANDF exception is raised with ERROR_CODE
stack_overflow .

58 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.54 local_free

Encoding number: 54

a: EXP OFFSET(x,y)
p EXP POINTER(alloca_alignment)

→ EXP TOP

The POINTER, p, will be an original pointer to space allocated by local_alloc within the current
call of the current procedure. It and all spaces allocated after it by local_alloc will no longer be
used. This POINTER will have been created by local_alloc with the value of its arg1 equal to the
value of a .

Any subsequent use of pointers to the spaces no longer used will be undefined.

5.16.55 local_free_all

Encoding number: 55

→ EXP TOP

Every space allocated by local_alloc within the current call of the current procedure will no
longer be used.

Any use of a pointer to space allocated before this operation within the current call of the current
procedure is undefined.

Note that if a procedure which uses local_free_all is inlined, it may be necessary to use
local_free to get the correct semantics.

5.16.56 long_jump

Encoding number: 56

arg1: EXP POINTER(fa)
arg2: EXP POINTER({code})

→ EXP BOTTOM

arg1 will be a pointer produced by an application of curent_env in a currently active procedure.

The frame produced by arg1 is reinstated as the current procedure. This frame will still be active.
Evaluation recommences at the label given by arg2. This operation will only be used during the
lifetime of that label.

Only TAGs declared to have long_jump_access will be defined at the re-entry.

If arg2 delivers a null POINTER({ code }), the effect is undefined.

Architecture Neutral Distribution Format (XANDF) 59

EXP Specification of XANDF Constructs

5.16.57 make_complex

Encoding number: 57

c: FLOATING_VARIETY
arg1: EXP FLOATING(f)
arg2: EXP FLOATING(f)

→ EXP FLOATING(c)

c will be complex and derived from the same parameters as f .

This delivers a complex number with arg1 delivering the real part and arg2 the imaginary part.

5.16.58 make_compound

Encoding number: 58

arg1: EXP OFFSET(base,y)
arg2: LIST(EXP)

→ EXP COMPOUND(arg1)

Let the i th component (i starts at one) of arg2 be x [i]. The list may be empty.

The components x [2 * k] are values which are to be placed at OFFSETs given by x [2 * k - 1].
These OFFSETs will be constants and non-negative.

The OFFSET x [2 * k - 1] will have the SHAPE OFFSET (zk , alignment (shape (x [2 * k]))), where
shape gives the SHAPE of the component and base includes zk .

arg1 will be a constant non-negative OFFSET. See also Section 5.16.87 on page 69.

The values x [2 * k - 1] will be such that the components when in place either do not overlap or
exactly coincide, in the sense that the OFFSETS are equal and the values have the same SHAPE.
If they coincide, the corresponding values x [2 * k] will have VARIETY SHAPES and will be
logically ‘‘OR’d’’ together.

The SHAPE of a x [2 * k] component can be TOP. In this case, the component is evaluated but no
value is placed at the corresponding OFFSET.

If x [2 * k] is a BITFIELD, then x [2 * k - 1], shape (x [2* k]) will be variety_enclosed (see Section 7.24
on page 154).

5.16.59 make_floating

Encoding number: 59

f: FLOATING_VARIETY
rm: ROUNDING_MODE

negative: BOOL
mantissa: STRING(k,n)

base: NAT
exponent: SIGNED_NAT

→ EXP FLOATING(f)

f will not be complex.

60 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

mantissa will be a STRING of 8-bit integers, each of which is either 46 or is greater than or equal
to 48. Those values, c, which lie between 48 and 63 will represent the digit c − 48 . A decimal
point is represented by 46.

The BOOL negative determines the sign of the result: if true, the result will be negative; if false, it
will be positive.

A floating point number, mantissa *(baseexponent) is created and rounded to the representation of
f as specified by rm.

rm will not be round_as_state . mantissa is read as a sequence of digits to base base and may
contain one point symbol.

base will be one of the numbers 2, 4, 8, 10, 16. Note that in base 16, the digit 10 is represented by
the character number 58, and so on.

The result will lie in f .

5.16.60 make_general_proc

Encoding number: 60

result_shape: SHAPE
prcprops: OPTION(PROCPROPS)

caller_intro: LIST(TAGSHACC)
callee_intro: LIST(TAGSHACC)

body: EXP BOTTOM
→ EXP PROC

Evaluation of make_general_proc delivers a PROC. When this procedure is applied to
parameters using apply_general_proc, space is allocated to hold the actual values of the
parameters caller_intro and callee_intro. The values produced by the actual parameters are used
to initialise these spaces. Then body is evaluated. During this evaluation the TAGS in caller_intro
and callee_intro are bound to original POINTERs to these spaces. The lifetime of these TAGS is
the evaluation of body.

The SHAPE of body will be BOTTOM. caller_intro and callee_intro may be empty.

The TAGs introduced in the parameters will not be reused within the current UNIT.

The SHAPES in the parameters specify the SHAPE of the corresponding TAGS.

The OPTION(ACCESS) (in params_intro) specifies the ACCESS properties of the corresponding
parameter, just as for a variable declaration.

In body , the only TAGs which may be used as an argument of obtain_tag are those which are
declared by identify or variable constructions in body and which are in scope, or TAGs which
are declared by make_id_tagdef, make_var_tagdef or common_tagdef, or are in caller_intro or
callee_intro. If a make_proc occurs in body , its TAGs are not in scope.

The argument of every return or untidy_return construction in body will have SHAPE
result_shape . Every apply_general_proc using the procedure will specify the SHAPE of its result
to be result_shape .

The presence or absence of each of the PROC PROPS var_callers, var_callees, check_stack and
untidy in prcprops will be reflected in every apply_general_proc or tail_call on this procedure.

The definition of the canonical ordering of the evaluation of apply_general_proc gives the
definition of these PROCPROPS.

Architecture Neutral Distribution Format (XANDF) 61

EXP Specification of XANDF Constructs

If prcprocs contains check_stack, an XANDF exception will be raised if the static space required
for the procedure call (in the sense of env_size) would exceed the limit given by
set_stack_limit.

If prcprops contains no_long_jump_dest, the body of the procedure will never contain the
destination label of a long_jump.

For notes on the intended implementation of procedures, see Section 7.9 on page 143.

5.16.61 make_int

Encoding number: 61

v: VARIETY
value: SIGNED_NAT

→ EXP INTEGER(v)

An integer value is delivered, the value of which is given by value , and the VARIETY by v. The
SIGNED_NAT value will lie between the bounds of v .

5.16.62 make_local_lv

Encoding number: 62

lab: LABEL
→ EXP POINTER({code})

A POINTER({ code }) lv is created and delivered. It can be used as an argument to goto_local_lv
or long_jump. If and when one of these is evaluated with lv as an argument, control will pass to
lab .

5.16.63 make_nof

Encoding number: 63

arg1: LIST(EXP)
→ EXP NOF(n,s)

This creates an array of n values of SHAPEs, containing the given values produced by evaluating
the members of arg1 in the same order as they occur in the list.

n will not be zero.

5.16.64 make_nof_int

Encoding number: 64

v: VARIETY
str: STRING(k,n)

→ EXP NOF(n, INTEGER(v))

An NOF INTEGER is delivered. The conversions are carried out as if the elements of str were
INTEGER (var_limits (0, 2 k − 1)). n may be zero.

62 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.65 make_null_local_lv

Encoding number: 65

→ EXP POINTER({code})

Makes a null POINTER ({ code }) which can be detected by pointer_test. The effect of
goto_local_lv or long_jump applied to this value is undefined.

All null POINTER ({ code }) are equal to each other and unequal to any other POINTERS.

5.16.66 make_null_proc

Encoding number: 66

→ EXP PROC

A null PROC is created and delivered. The null PROC may be tested for by using proc_test. The
effect of using it as the first argument of apply_proc is undefined.

All null PROC are equal to each other and unequal to any other PROC.

5.16.67 make_null_ptr

Encoding number: 67

a: ALIGNMENT
→ EXP POINTER(a)

A null POINTER (a) is created and delivered. The null POINTER may be tested for by
pointer_test.

a will not include code.

All null POINTER (x) are equal to each other and unequal to any other POINTER (x).

5.16.68 make_proc

Encoding number: 68

result_shape: SHAPE
params_intro: LIST(TAGSHACC)

var_intro: OPTION(TAGACC)
body: EXP BOTTOM

→ EXP PROC

Evaluation of make_proc delivers a PROC. When this procedure is applied to parameters using
apply_proc, space is allocated to hold the actual values of the parameters params_intro and
var_intro (if present). The values produced by the actual parameters are used to initialise these
spaces. Then body is evaluated. During this evaluation the TAGS in params_intro and var_intro
are bound to original POINTERs to these spaces. The lifetime of these TAGS is the evaluation of
body.

If var_intro is present then all uses of apply_proc which have the effect of calling this procedure
will have their var_param option present. The ALIGNMENT var_param_alignment includes the
set union of all the ALIGNMENTs which can be produced by alignment from any SHAPE. Note

Architecture Neutral Distribution Format (XANDF) 63

EXP Specification of XANDF Constructs

that var_intro does not contain an ACCESS component and so cannot be marked visible. Hence it
is not a possible argument of env_offset. If present, var_intro is an original pointer.

The SHAPE of body will be BOTTOM. params_intro may be empty.

The TAGs introduced in the parameters will not be reused within the current UNIT.

The SHAPES in the parameters specify the SHAPE of the corresponding TAGS.

The OPTION(ACCESS) (in params_intro) specifies the ACCESS properties of the corresponding
parameter, just as for a variable declaration.

In body , the only TAGs which may be used as an argument of obtain_tag are those which are
declared by identify or variable constructions in body and which are in scope, or TAGs which
are declared by make_id_tagdef, make_var_tagdef or common_tagdef, or are in params_intro or
var_intro. If a make_proc occurs in body , its TAGs are not in scope.

The argument of every return construction in body will have SHAPE result_shape. Every
apply_proc using the procedure will specify the SHAPE of it result to be result_shape .

For notes on the intended implementation of procedures, see Section 7.9 on page 143.

5.16.69 make_stack_limit

Encoding number: 116

stack_base: EXP POINTER(fa)
frame_size: EXP OFFSET(locals_alignment,x)
alloc_size: EXP OFFSET(alloca_alignment,y)

→ EXP POINTER(fb)

This creates a POINTER suitable for use with set_stack_limit.

fa and fb will include locals_alignment and, if alloc_size is not the zero offset, will also contain
alloca_alignment .

The result will be the same as if given by the following:

Assume stack_base is the current frame-pointer as given by current_env in a
hypothetical procedure P with env_size equal to frame_size and which has
generated alloc_size by a local_alloc. If P then calls Q, the result will be the
same as that of a current_env performed immediately in the body of Q.

If the following construction is performed:

set_stack_limit(make_stack_limit(current_env,F,A))

the frame space and local_alloc space that would be available for use by this
supposed call of Q will not be reused by procedure calls with check_stack or
uses of local_alloc_check after the set_stack_limit. Any attempt to do so will
raise an XANDF exception, stack_overflow .

64 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.70 make_top

Encoding number: 69

→ EXP TOP

make_top delivers a value of SHAPE TOP (that is, void).

5.16.71 make_value

Encoding number: 70

s: SHAPE
→ EXP s

This EXP creates some value with the representation of the SHAPE s. This value will have the
correct size, but its representation is not specified. It can be assigned, be the result of a contents,
a parameter or result of a procedure, or the result of any construction (like sequence) which
delivers the value delivered by an internal EXP. However, if it is used for arithmetic or as a
POINTER for taking contents or add_to_ptr, and so on, the effect is undefined.

Installers will usually be able to implement this operation by producing no code.

Note: A floating point NAN is a possible value for this purpose.

The SHAPE s will not be BOTTOM.

5.16.72 maximum

Encoding number: 71

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The arguments will be evaluated and the maximum of the values delivered is the result.

5.16.73 minimum

Encoding number: 72

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The arguments will be evaluated and the minimum of the values delivered is the result.

Architecture Neutral Distribution Format (XANDF) 65

EXP Specification of XANDF Constructs

5.16.74 minus

Encoding number: 73

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The difference a − b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

5.16.75 move_some

Encoding number: 74

md: TRANSFER_MODE
arg1: EXP POINTER(x)
arg2: EXP POINTER(yx)
arg3: EXP OFFSET(z,t)

→ EXP TOP

The arguments are evaluated to produce p1 , p2, and sz respectively. A quantity of data measured
by sz in the space indicated by p1 is moved to the space indicated by p2. The operation will be
carried out as specified by the TRANSFER_MODE (see Section 5.33.19 on page 110).

x will include z and y will include z .

sz will be a non-negative OFFSET (see Section 5.16.87 on page 69).

If the spaces of size sz to which p1 and p2 point do not lie entirely within the spaces indicated by
the original pointers from which they are derived, the effect of the operation is undefined.

If the value delivered by arg1 or arg2 is a null pointer, the effect is undefined.

See also Section 7.16 on page 151 and Section 7.17 on page 151.

5.16.76 mult

Encoding number: 75

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The product a * b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

66 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.77 n_copies

Encoding number: 76

n: NAT
arg1: EXPx

→ EXP NOF(n,x)

arg1 is evaluated and an NOF value is delivered which contains n copies of this value. n can be
zero or one or greater.

Producers are encouraged to use n_copies to initialise arrays of known size.

5.16.78 negate

Encoding number: 77

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 is evaluated and will produce an integer value, a. The value − a is delivered as the result of
the construct, with the same SHAPE as the argument.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

5.16.79 not

Encoding number: 78

arg1: EXP INTEGER(v)
→ EXP INTEGER(v)

The argument is evaluated producing an integer value, of VARIETY v. The result is the bitwise
logical NOT of this value in the representing VARIETY. The result is delivered as the result of
the construct, with the same SHAPE as the arguments.

See also Section 7.18 on page 151.

5.16.80 obtain_tag

Encoding number: 79

t: TAG x
→ EXP x

The value with which the TAG t is bound is delivered. The SHAPE of the result is the SHAPE of
the value with which the TAG is bound.

Architecture Neutral Distribution Format (XANDF) 67

EXP Specification of XANDF Constructs

5.16.81 offset_add

Encoding number: 80

arg1: EXP OFFSET(x,y)
arg2: EXP OFFSET(z,t)

→ EXP OFFSET(x,t)

The two arguments deliver OFFSETs. The result is the sum of these OFFSETs, as an OFFSET.

y will include z .

Notes:

1. The effect of the constraint ‘‘y will include z’’is that, in the simple representation
of pointer arithmetic (see Section 7.13 on page 147), this operation can be
represented by addition.

2. offset_add can lose information, so that offset_subtract does not have the usual
relation with it.

5.16.82 offset_div

Encoding number: 81

v: VARIETY
arg1: EXP OFFSET(x,x)
arg2: EXP OFFSET(x,x)

→ EXP INTEGER(v)

The two arguments deliver OFFSETs, a and b. The result is a/b, as an INTEGER of VARIETY v.
Division is interpreted in the same sense (with respect to remainder) as in div0.

The value produced by arg2 will be non-zero.

5.16.83 offset_div_by_int

Encoding number: 82

arg1: EXP OFFSET(x,x)
arg2: EXP INTEGER(v)

→ EXP OFFSET(x,x)

The result is the OFFSET produced by arg1 divided by arg2, as an OFFSET (x , x).

The value produced by arg2 will be greater than zero.

The following identity will apply for all A and n:

offset_mult(offset_div_by_int(A, n), n) = A

68 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.84 offset_max

Encoding number: 83

arg1: EXP OFFSET(x,y)
arg2: EXP OFFSET(z,y)

→ EXP OFFSET(unite_alignments(x,z),y)

The two arguments deliver OFFSETs. The result is the maximum of these OFFSETs, as an
OFFSET.

See Section 7.13.2 on page 148.

Note: In the simple memory model (see Section 7.13 on page 147), this operation is
represented by maximum. The constraint that the second ALIGNMENT parameters are
both y is to permit the representation of OFFSETS in installers by a simple
homomorphism.

5.16.85 offset_mult

Encoding number: 84

arg1: EXP OFFSET(x,x)
arg2: EXP INTEGER(v)

→ EXP OFFSET(x,x)

The first argument gives an OFFSET, off , and the second an integer, n. The result is the product
of these, as an offset.

The result shall be equal to ‘‘offset_adding’’ off a total of n times to offset_zero(x).

5.16.86 offset_negate

Encoding number: 85

arg1: EXP OFFSET(x,x)
→ EXP OFFSET(x,x)

The inverse of the argument is delivered.

In the simple memory model (see Section 7.13 on page 147), this can be represented by negate.

5.16.87 offset_pad

Encoding number: 86

a: ALIGNMENT
arg1: EXP OFFSET(z,t)

→ EXP OFFSET(unite_alignments(z,a),a)

arg1 is evaluated giving off . The next greater or equal OFFSET at which a value of ALIGNMENT
a can be placed is delivered. That is, there shall not exist an OFFSET of the same SHAPE as the
result which is greater than or equal to off and less than the result, in the sense of offset_test.

off will be a non-negative OFFSET, that is it will be greater than or equal to a zero OFFSET of the
same SHAPE in the sense of offset_test.

Architecture Neutral Distribution Format (XANDF) 69

EXP Specification of XANDF Constructs

Note: In the simple memory model (see Section 7.13 on page 147), this operation can be
represented by ((off + a − 1) / a) * a. In the simple model, this is the only operation which
is not represented by a simple corresponding integer operation.

5.16.88 offset_subtract

Encoding number: 87

arg1: EXP OFFSET(x,y)
arg2: EXP OFFSET(x,z)

→ EXP OFFSET(z,y)

The two arguments deliver offsets, p and q. The result is p − q, as an offset.

Note that x will include y , x will include z and z will include y, by the constraints on OFFSETS.

Note: offset_subtract and offset_add do not have the conventional relationship because
offset_add can lose information, which cannot be regenerated by offset_subtract.

5.16.89 offset_test

Encoding number: 88

prob: OPTION(NAT)
nt: NTEST

dest: LABEL
arg1: EXP OFFSET(x,y)
arg2: EXP OFFSET(x,y)

→ EXP TOP

arg1 and arg2 are evaluated and will produce offset values, a and b. These values are compared
using nt.

If a nt b, this construction yields TOP. Otherwise control passes to dest.

If prob is present, prob/100 gives the probability that control will continue to the next construct
(that is, not pass to dest). If prob is absent this probability is unknown.

a greater_than_or_equal b is equivalent to offset_max (a,b) = a , and similarly for the other
comparisons.

In the simple memory model (see Section 7.13 on page 147), this can be represented by
integer_test.

5.16.90 offset_zero

Encoding number: 89

a: ALIGNMENT
→ EXP OFFSET(a,a)

A zero offset of SHAPE OFFSET (a , a).

offset_pad(b, offset_zero(a)) is a zero offset of SHAPE OFFSET (unite_alignments(a, b), b).

70 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.91 or

Encoding number: 90

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The arguments are evaluated, producing integer values of the same VARIETY, v. The result is
the bitwise logical OR of these two integers in the representing VARIETY. The result is delivered
as the result of the construct, with the same SHAPE as the arguments.

See also Section 7.18 on page 151.

5.16.92 plus

Encoding number: 91

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The sum a + b is delivered as the result of the construct, with the same SHAPE as the arguments.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

5.16.93 pointer_test

Encoding number: 92

prob: OPTION(NAT)
nt: NTEST

dest: LABEL
arg1: EXP POINTER(x)
arg2: EXP POINTER(x)

→ EXP TOP

arg1 and arg2 are evaluated and will produce pointer values, a and b, which will be derived from
the same original pointer. These values are compared using nt.

If a nt b, this construction yields TOP. Otherwise control passes to dest.

If prob is present, prob/100 gives the probability that control will continue to the next construct
(that is, not pass to dest). If prob is absent, this probability is unknown.

The effect of this construction is the same as:

offset_test(prob, nt, dest, subtract_ptrs(arg1, arg2), offset_zero(x))

Note: In the simple memory model (see Section 7.13 on page 147), this construction can be
represented by integer_test.

Architecture Neutral Distribution Format (XANDF) 71

EXP Specification of XANDF Constructs

5.16.94 power

Encoding number: 93

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(w)

→ EXP INTEGER(v)

arg2 will be non-negative. The result is the result of arg1 raised to the power given by arg2 .

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

5.16.95 proc_test

Encoding number: 94

prob: OPTION(NAT)
nt: NTEST

dest: LABEL
arg1: EXP PROC
arg2: EXP PROC

→ EXP TOP

arg1 and arg2 are evaluated and will produce PROC values, a and b. These values are compared
using nt. The only permitted values of nt are equal and not_equal.

If a nt b, this construction yields TOP. Otherwise control passes to dest.

If prob is present, prob/100 gives the probability that control will continue to the next construct
(that is, not pass to dest). If prob is absent this probability is unknown.

Two PROCs are equal if they were produced by the same instantiation of make_proc or if they
were both made with make_null_proc. Otherwise they are unequal.

5.16.96 profile

Encoding number: 95

uses: NAT
→ EXP TOP

The integer uses gives the number of times which this construct is expected to be evaluated.

All uses of profile in the same capsule are to the same scale. They will be mutually consistent.

72 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.97 real_part

Encoding number: 96

arg1: EXPc
→ EXP FLOATING(float_of_complex(c))

c will be complex. This delivers the real part of the value produced by arg1 .

5.16.98 rem0

Encoding number: 97

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The value a M1 b or the value a M2 b is delivered as the result of the construct, with the same
SHAPE as the arguments. Different occurrences of rem0 in the same capsule can use M1 or M2
independently.

The following equivalence shall hold:

x = plus(mult(div0(x, y), y), rem0(x, y))

if all the ERROR_TREATMENTS are impossible, and x and y have no side effects.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and div0 (a,b) cannot be expressed in the VARIETY being used to represent v , an
overflow may occur, in which case it is handled by ov_err .

Producers may assume that suitable masking and rem0 by a power of two yield equally good
code.

See Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

5.16.99 rem1

Encoding number: 98

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The value a M1 b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and div1 (a,b) cannot be expressed in the VARIETY being used to represent v , an
overflow may occur, in which case it is handled by ov_err .

Architecture Neutral Distribution Format (XANDF) 73

EXP Specification of XANDF Constructs

Producers may assume that suitable masking and rem1 by a power of two yield equally good
code.

See Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

5.16.100 rem2

Encoding number: 99

div_by_zero_err: ERROR_TREATMENT
ov_err: ERROR_TREATMENT

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b, of the same VARIETY, v.
The value a M2 b is delivered as the result of the construct, with the same SHAPE as the
arguments.

If b is zero, a div_by_zero error occurs and is handled by div_by_zero_err .

If b is not zero and div2 (a,b) cannot be expressed in the VARIETY being used to represent v , an
overflow may occur, in which case it is handled by ov_err .

Producers may assume that suitable masking and rem2 by a power of two yield equally good
code if the lower bound of v is zero.

See Section 7.4 on page 140 for the definitions of D1, D2, M1 and M2.

5.16.101 repeat

Encoding number: 100

repeat_label_intro: LABEL
start: EXP TOP
body: EXPy

→ EXP y

start is evaluated. Then body is evaluated.

If body produces a result, this is the result of the whole construction. However if goto or any
other jump to repeat_label_intro is encountered during the evaluation then the current evaluation
stops and body is evaluated again. In the canonical order, all evaluated components are
completely evaluated before any of the next iteration of body. The lifetime of repeat_label_intro is
the evaluation of body.

The actual order of evaluation of the constituents shall be indistinguishable in all observable
effects (apart from time) from that described above. Note that this specifically includes any
defined error handling.

74 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.102 return

Encoding number: 101

arg1: EXP x
→ EXP BOTTOM

arg1 is evaluated to produce a value v. The evaluation of the immediately enclosing procedure
ceases and v is delivered as the result of the procedure.

Since the return construct can never produce a value, the SHAPE of its result is BOTTOM.

All uses of return in the body of a make_proc or make_general_proc will have arg1 with the
same SHAPE.

5.16.103 return_to_label

Encoding number: 102

lab_val: EXP POINTER(code_alignment)
→ EXP BOTTOM

lab_val will be a label value in the calling procedure.

The evaluation of the immediately enclosing procedure ceases and control is passed to the
calling procedure at the label given by lab_val .

5.16.104 round_with_mode

Encoding number: 103

flpt_err: ERROR_TREATMENT
mode: ROUNDING_MODE

r: VARIETY
arg1: EXP FLOATING(f)

→ EXP INTEGER(r)

arg1 is evaluated to produce a floating point value, v . This is rounded to an integer of VARIETY
r, using the ROUNDING_MODE mode. This is the result of the construction.

If f is complex, the result is derived from the real part of arg1 .

If there is a floating point error, it is handled by flpt_err. See also Section 7.21 on page 153.

5.16.105 rotate_left

Encoding number: 104

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(w)

→ EXP INTEGER(v)

The value delivered by arg1 is rotated left arg2 places.

arg2 will be non-negative.

Architecture Neutral Distribution Format (XANDF) 75

EXP Specification of XANDF Constructs

The effect of rotating more places than the number of bits needed to represent v is undefined .

The use of this construct assumes knowledge of the representational variety of v .

5.16.106 rotate_right

Encoding number: 105

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(w)

→ EXP INTEGER(v)

The value delivered by arg1 is rotated right arg2 places.

arg2 will be non-negative.

The effect of rotating more places than the number of bits needed to represent v is undefined.

The use of this construct assumes knowledge of the representational variety of v .

5.16.107 sequence

Encoding number: 106

statements: LIST(EXP)
result: EXPx

→ EXP x

The statements are evaluated in the same order as the list, statements, and their results are
discarded. Then result is evaluated and its result forms the result of the construction.

A canonical order is one in which all the components of each statement are completely evaluated
before any component of the next statement is started. A similar constraint applies between the
last statement and result. The actual order in which the statements and their components are
evaluated shall be indistinguishable in all observable effects (apart from time) from a canonical
order.

Note: This ordering specifically includes any defined error handling. However, if in any
canonical order the effect of the program is undefined, the actual effect of the sequence
is undefined.

Hence constructions with impossible error handlers may be performed before or after
those with specified error handlers, if the resulting order is otherwise acceptable.

5.16.108 set_stack_limit

Encoding number: 107

lim: EXP POINTER({locals_alignment, alloca_alignment})
→ EXP TOP

set_stack_limit sets the limits of remaining free stack space to lim. This include both the frame
stack limit and the local_alloc stack. Note that, in implementations where the frame stack and
local_alloc stack are distinct, this pointer will have a special representation, appropriate to its
frame alignment. Thus the pointer should always be generated using make_stack_limit or its
equivalent formation.

76 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

Any later apply_general_proc with PROCPROPS including check_stack up to the dynamically
next set_stack_limit will check that the frame required for the procedure will be within the
frame stack limit. If it is not, normal execution is stopped and an XANDF exception with
ERROR_CODE stack_overflow is raised.

Any later local_alloc_check will check that the locally allocated space required is within the
local_alloc stack limit. If it is not, normal execution is stopped and an XANDF exception with
ERROR_CODE stack_overflow is raised.

5.16.109 shape_offset

Encoding number: 108

s: SHAPE
→ EXP OFFSET(alignment(s),{})

This construction delivers the size of a value of the given SHAPE.

Suppose that a value of SHAPE, s, is placed in a space indicated by a POINTER (x), p , where x
includes alignment (s). Suppose that a value of SHAPE, t, where a is alignment (t) and x
includes a , is placed at

add_to_ptr(p, offset_pad(a, shape_offset(s)))

then the values shall not overlap. This shall be true for all legal s, x and t.

5.16.110 shift_left

Encoding number: 109

ov_err: ERROR_TREATMENT
arg1: EXP INTEGER(v)
arg2: EXP INTEGER(w)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b. The value a shifted left b
places is delivered as the result of the construct, with the same SHAPE as a .

b will be non-negative.

If the result cannot be expressed in the VARIETY being used to represent v, an overflow error is
caused and is handled in the way specified by ov_err.

Producers may assume that shift_left and multiplication by a power of two yield equally
efficient code.

The effect of shifting more places than the number of bits needed to represent v is undefined.

Architecture Neutral Distribution Format (XANDF) 77

EXP Specification of XANDF Constructs

5.16.111 shift_right

Encoding number: 110

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(w)

→ EXP INTEGER(v)

arg1 and arg2 are evaluated and will produce integer values, a and b. The value a shifted right b
places is delivered as the result of the construct, with the same SHAPE as arg1 .

b will be non-negative.

If the lower bound of v is negative, the sign will be propagated.

The efffect of shifting more places than the number of bits needed to represent v is undefined.

5.16.112 subtract_ptrs

Encoding number: 111

arg1: EXP POINTER(y)
arg2: EXP POINTER(x)

→ EXP OFFSET(x,y)

arg1 and arg2 are evaluated to produce pointers p1 and p2, which will be derived from the same
original pointer. The result, r, is the OFFSET from p2 to p1 . Both arguments will be derived from
the same original pointer.

Note that add_to_ptr(p2 ,r) = p1.

5.16.113 tail_call

Encoding number: 112

prcprops: OPTION(PROCPROPS)
p: EXP PROC

callee_params: CALLEES
→ EXP BOTTOM

p is called in the sense of apply_general_proc with the caller parameters of the immediately
enclosing procedure and CALLEES given by callee_params and PROCPROPS prcprops .

The result of the call is delivered as the result of the immediately enclosing procedure in the
sense of return. The SHAPE of the result of p will be identical to the SHAPE specified as the
result of immediately enclosing procedure.

No pointers to any callee parameters, variables, identifications or local allocations defined in
immediately enclosing procedure will be accessed either in the body of p or after the return.

The presence or absence of each of the PROCPROPS check_stack and untidy, in prcprops , will be
reflected in the PROCPROPS of the immediately enclosing procedure.

78 X/Open Preliminary Specification

Specification of XANDF Constructs EXP

5.16.114 untidy_return

Encoding number: 113

arg1: EXPx
→ EXP BOTTOM

arg1 is evaluated to produce a value, v. The evaluation of the immediately enclosing procedure
ceases and v is delivered as the result of the procedure, in such a manner as that pointers to any
callee parameters or local allocations are valid in the calling procedure.

untidy_return can only occur in a procedure defined by make_general_proc with PROCPROPS
including untidy.

5.16.115 variable

Encoding number: 114

opt_access: OPTION(ACCESS)
name_intro: TAG POINTER(alignment(x))

init: EXP x
body: EXP y

→ EXP y

init is evaluated to produce a value, v. Space is allocated to hold a value of SHAPE x and this is
initialised with v. Then body is evaluated. During this evaluation, an original POINTER pointing
to the allocated space is bound to name_intro. This means that inside body an evaluation of
obtain_tag (name_intro) will produce a POINTER to this space. The lifetime of name_intro is the
evaluation of body .

The value delivered by variable is that produced by body.

If opt_access contains visible , it means that the contents of the space may be altered while the
procedure containing this declaration is not the current procedure. Hence if there are any copies
of this value they will need to be refreshed from the variable when the procedure is returned to.
The easiest implementation when opt_access is visible may be to keep the value in memory, but
this is not a necessary requirement.

The TAG given for name_intro will not be reused within the current UNIT. No rules for the
hiding of one TAG by another are given: this will not happen.

The order in which the constituents of init and body are evaluated shall be indistinguishable in all
observable effects (apart from time) from completely evaluating init before starting body. See the
note about order in Section 5.16.107 on page 76.

When compiling languages which permit uninitialised variable declarations, make_value may
be used to provide an initialisation.

Architecture Neutral Distribution Format (XANDF) 79

EXP Specification of XANDF Constructs

5.16.116 xor

Encoding number: 115

arg1: EXP INTEGER(v)
arg2: EXP INTEGER(v)

→ EXP INTEGER(v)

The arguments are evaluated producing integer values of the same VARIETY, v. The result is the
bitwise logical XOR of these two integers in the representing VARIETY. The result is delivered as
the result of the construct, with the same SHAPE as the arguments.

See also Section 7.18 on page 151.

80 X/Open Preliminary Specification

Specification of XANDF Constructs EXTERNAL

5.17 EXTERNAL
Number of encoding bits: 2

Is coding extendable? Yes

An EXTERNAL defines the classes of external name available for connecting the internal names
inside a CAPSULE to the world outside the CAPSULE.

5.17.1 string_extern

Encoding number: 1

byte_align

s: TDFIDENT(n)
→ EXTERNAL

string_extern produces an EXTERNAL identified by the TDFIDENT s.

5.17.2 unique_extern

Encoding number: 2

byte_align

u: UNIQUE
→ EXTERNAL

unique_extern produces an EXTERNAL identified by the UNIQUE u.

5.17.3 chain_extern

Encoding number: 3

byte_align

s: TDFIDENT
prev: TDFINT

→ EXTERNAL

chain_extern produces an EXTERNAL identified by the TDFIDENT s.

prev is a linkable entity of the same kind as s identified by a make_link_extern.

The action of linking a set of CAPSULEs ci = 1..n containing:

make_link_extern(ei, chain_extern(S,p))

make_link_extern(Pi, string_extern(pi))

is to produce a joint capsule with a:

make_link_extern(e1 , chain_extern(S, pn))

make_link_extern(pn, string_extern(pn))

where Pi is locally linked to ei + 1 for i = 1..n − 1, eliminating the other EXTERNALs identifying S
and Pi .

Architecture Neutral Distribution Format (XANDF) 81

EXTERNAL Specification of XANDF Constructs

For many purposes, the strings Pi would be identical, for example, for chaining together
dynamic initialisations in C++ (see Section 7.29 on page 156). Clearly, the intended use of
EXTERNALs like these must be commutative and associative with respect to linking order.

82 X/Open Preliminary Specification

Specification of XANDF Constructs EXTERN_LINK

5.18 EXTERN_LINK
Number of encoding bits: 0

Is coding extendable? No

This is an auxiliary SORT providing a list of LINKEXTERN.

5.18.1 make_extern_link

Encoding number: 0

el: SLIST(LINKEXTERN)
→ EXTERN_LINK

make_capsule requires a SLIST (EXTERN_LINK) to express the links between the linkable
entities and the named (by EXTERNALS) values outside the CAPSULE.

Architecture Neutral Distribution Format (XANDF) 83

FLOATING_VARIETY Specification of XANDF Constructs

5.19 FLOATING_VARIETY
Number of encoding bits: 3

Is coding extendable? Yes

These describe kinds of floating point number.

5.19.1 flvar_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ FLOATING_VARIETY

The token is applied to the arguments to give a FLOATING_VARIETY.

If there is a definition for token_value in the CAPSULE, then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.19.2 flvar_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM FLOATING_VARIETY
e2: BITSTREAM FLOATING_VARIETY

→ FLOATING_VARIETY

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.19.3 flvar_parms

Encoding number: 3

base: NAT
mantissa_digits: NAT

minimum_exponent: NAT
maximum_exponent: NAT

→ FLOATING_VARIETY

base is the base with respect to which the remaining numbers refer. base will be a power of 2.

mantissa_digits is the required number of base digits, q, such that any number with q digits can be
rounded to a floating point number of the variety and back again without any change to the q
digits.

minimum_exponent is the negative of the required minimum integer such that base raised to that
power can be represented as a non-zero floating point number in the FLOATING_VARIETY.

maximum_exponent is the required maximum integer such that base raised to that power can be
represented in the FLOATING_VARIETY.

84 X/Open Preliminary Specification

Specification of XANDF Constructs FLOATING_VARIETY

An XANDF translator is required to make available a representing FLOATING_VARIETY such
that, if only values within the given requirements are produced, no overflow error will occur.
Where several such representative FLOATING_VARIETIES exist, the translator will choose one
to minimise space requirements or maximise the speed of operations.

All numbers of the form M* baseN+1-q are required to be represented exactly, where M and N are
integers such that:

baseq-1 ≤ M < baseq

−minimum_exponent ≤ N ≤ maximum_exponent

Zero will also be represented exactly in any FLOATING_VARIETY.

5.19.4 complex_parms

Encoding number: 4

base: NAT
mantissa_digits: NAT

minimum_exponent: NAT
maximum_exponent: NAT

→ FLOATING_VARIETY

A FLOATING_VARIETY described by complex_parms holds a complex number which is likely
to be represented by its real and imaginary parts, each of which is as if defined by flvar_parms
with the same arguments.

5.19.5 float_of_complex

Encoding number: 5

csh: SHAPE
→ FLOATING_VARIETY

csh will be a complex SHAPE.

This delivers the FLOATING_VARIETY required for the real (or imaginary) part of a complex
SHAPE csh.

5.19.6 complex_of_float

Encoding number: 6

fsh: SHAPE
→ FLOATING_VARIETY

fsh will be a floating SHAPE.

This delivers FLOATING_VARIETY required for a complex number whose real (and imaginary)
parts have SHAPE fsh .

Architecture Neutral Distribution Format (XANDF) 85

GROUP Specification of XANDF Constructs

5.20 GROUP
Number of encoding bits: 0

Is coding extendable? No

A GROUP is a list of UNITS with the same unit identification.

5.20.1 make_group

Encoding number: 0

us: SLIST(UNIT)
→ GROUP

make_capsule contains a list of GROUPS. Each member of this list has a different unit
identification deduced from the prop_name argument of make_capsule.

86 X/Open Preliminary Specification

Specification of XANDF Constructs LABEL

5.21 LABEL
Number of encoding bits: 1

Is coding extendable? Yes

A LABEL marks an EXP in certain constructions, and is used in jump-like constructions to
change the control to the labelled construction.

5.21.1 label_apply_token

Encoding number: 2

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ LABELx

The token is applied to the arguments to give a LABEL.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.21.2 make_label

Encoding number: 1

labelno: TDFINT
→ LABEL

Labels are represented in XANDF by integers, but they are not linkable. Hence the definition and
all uses of a LABEL occur in the same UNIT.

Architecture Neutral Distribution Format (XANDF) 87

LINK Specification of XANDF Constructs

5.22 LINK
Number of encoding bits: 0

Is coding extendable? No

A LINK expresses the connection between two variables of the same SORT.

5.22.1 make_link

Encoding number: 0

unit_name: TDFINT
capsule_name: TDFINT

→ LINK

A LINK defines a linkable entity declared inside a UNIT as unit_name, to correspond to a
CAPSULE linkable entity having the same linkable entity identification. The CAPSULE linkable
entity is capsule_name .

A LINK is normally constructed by the XANDF builder in the course of resolving sharing and
name clashes when constructing a composite CAPSULE.

88 X/Open Preliminary Specification

Specification of XANDF Constructs LINKEXTERN

5.23 LINKEXTERN
Number of encoding bits: 0

Is coding extendable? No

A value of SORT LINKEXTERN expresses the connection between the name by which an object
is known inside a CAPSULE and a name by which it is known outside.

5.23.1 make_linkextern

Encoding number: 0

internal: TDFINT
ext: EXTERNAL

→ LINKEXTERN

make_linkextern produces a LINKEXTERN connecting an object identified within a CAPSULE
by a TAG, TOKEN, AL_TAG or any linkable entity constructed from internal , with an
EXTERNAL, ext. The EXTERNAL is an identifier which linkers and similar programs can use.

Architecture Neutral Distribution Format (XANDF) 89

LINKS Specification of XANDF Constructs

5.24 LINKS
Number of encoding bits: 0

Is coding extendable? No

5.24.1 make_links

Encoding number: 0

ls: SLIST(LINK)
→ LINKS

make_unit uses a SLIST (LINKS) to define which linkable entities within a UNIT correspond to
the CAPSULE linkable entities. Each LINK in a LINKS has the same linkable entity
identification.

90 X/Open Preliminary Specification

Specification of XANDF Constructs NAT

5.25 NAT
Number of encoding bits: 3

Is coding extendable? Yes

These are non-negative integers of unlimited size.

5.25.1 nat_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ NAT

The token is applied to the arguments to give a NAT.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.25.2 nat_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM NAT
e2: BITSTREAM NAT

→ NAT

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.25.3 computed_nat

Encoding number: 3

arg: EXP INTEGER(v)
→ NAT

arg will be an install-time non-negative constant. The result is that constant.

5.25.4 error_val

Encoding number: 4

err: ERROR_CODE
→ NAT

Gives the NAT corresponding to the ERROR_CODE err. Each distinct ERROR_CODE will give a
different NAT.

Architecture Neutral Distribution Format (XANDF) 91

NAT Specification of XANDF Constructs

5.25.5 make_nat

Encoding number: 5

n: TDFINT
→ NAT

n is a non-negative integer of unbounded magnitude.

92 X/Open Preliminary Specification

Specification of XANDF Constructs NTEST

5.26 NTEST
Number of encoding bits: 4

Is coding extendable? Yes

These describe the comparisons which are possible in the various test constructions. Note that
greater_than is not necessarily the same as not_less_than_or_equal, since the result need not be
defined (for example, in IEEE floating point).

5.26.1 ntest_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ NTEST

The token is applied to the arguments to give a NTEST.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.26.2 ntest_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM NTEST
e2: BITSTREAM NTEST

→ NTEST

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.26.3 equal

Encoding number: 3

→ NTEST

Signifies equal test.

5.26.4 greater_than

Encoding number: 4

→ NTEST

Signifies greater than test.

Architecture Neutral Distribution Format (XANDF) 93

NTEST Specification of XANDF Constructs

5.26.5 greater_than_or_equal

Encoding number: 5

→ NTEST

Signifies greater than or equal test.

5.26.6 less_than

Encoding number: 6

→ NTEST

Signifies less than test.

5.26.7 less_than_or_equal

Encoding number: 7

→ NTEST

Signifies less than or equal test.

5.26.8 not_equal

Encoding number: 8

→ NTEST

Signifies not equal test.

5.26.9 not_greater_than

Encoding number: 9

→ NTEST

Signifies not greater than test.

5.26.10 not_greater_than_or_equal

Encoding number: 10

→ NTEST

Signifies not (greater than or equal) test.

94 X/Open Preliminary Specification

Specification of XANDF Constructs NTEST

5.26.11 not_less_than

Encoding number: 11

→ NTEST

Signifies not less than test.

5.26.12 not_less_than_or_equal

Encoding number: 12

→ NTEST

Signifies not (less than or equal) test.

5.26.13 less_than_or_greater_than

Encoding number: 13

→ NTEST

Signifies less than or greater than test.

5.26.14 not_less_than_and_not_greater_than

Encoding number: 14

→ NTEST

Signifies not less than and not greater than test.

5.26.15 comparable

Encoding number: 15

→ NTEST

Signifies comparable test.

With all operands SHAPES except FLOATING, this comparison is always true.

5.26.16 not_comparable

Encoding number: 16

→ NTEST

Signifies not comparable test.

With all operands SHAPES except FLOATING, this comparison is always false.

Architecture Neutral Distribution Format (XANDF) 95

OTAGEXP Specification of XANDF Constructs

5.27 OTAGEXP
Number of encoding bits: 0

Is coding extendable? No

This is an auxiliary SORT used in apply_general_proc.

5.27.1 make_otagexp

Encoding number: 0

tgopt: OPTION(TAGx)
e: EXPx

→ OTAGEXP

e is evaluated and its value is the actual caller parameter. If tgopt is present, the TAG will be
bound to the final value of caller parameter in the postlude part of the apply_general_proc.

96 X/Open Preliminary Specification

Specification of XANDF Constructs PROCPROPS

5.28 PROCPROPS
Number of encoding bits: 4

Is coding extendable? Yes

PROCPROPS is a set of properties ascribed to procedure definitions and calls.

5.28.1 procprops_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ PROCPROPS

The token is applied to the arguments to give a PROCPROPS.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters in the order specified.

5.28.2 procprops_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM PROCPROPS
e2: BITSTREAM PROCPROPS

→ PROCPROPS

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.28.3 add_procprops

Encoding number: 3

arg1: PROCPROPS
arg2: PROCPROPS

→ PROCPROPS

This delivers the join of arg1 and arg2 .

5.28.4 check_stack

Encoding number: 4

→ PROCPROPS

The procedure body is required to check for stack overflow.

Architecture Neutral Distribution Format (XANDF) 97

PROCPROPS Specification of XANDF Constructs

5.28.5 inline

Encoding number: 5

→ PROCPROPS

The procedure body is a good candidate for inlining at its application.

5.28.6 no_long_jump_dest

Encoding number: 6

→ PROCPROPS

The procedure body will contain no label which is the destination of a long_jump.

5.28.7 untidy

Encoding number: 7

→ PROCPROPS

The procedure body may be exited using an untidy_return.

5.28.8 var_callees

Encoding number: 8

→ PROCPROPS

Applications of the procedure may have different numbers of actual callee parameters.

5.28.9 var_callers

Encoding number: 9

→ PROCPROPS

Applications of the procedure may have different numbers of actual caller parameters.

98 X/Open Preliminary Specification

Specification of XANDF Constructs PROPS

5.29 PROPS
A PROPS is an assemblage of program information. This standard offers various ways of
constructing a PROPS — that is, it defines kinds of information which it is useful to express.
These are:

• definitions of AL_TAGs standing for ALIGNMENTs

• declarations of TAGs standing for EXPs

• definitions of the EXPs for which TAGs stand

• declarations of TOKENs standing for pieces of program

• definitions of the pieces of XANDF program for which TOKENs stand

• linkage and naming information

• version information.

PROPS giving diagnostic information form part of an optional extension to XANDF which is
described in Section 9.4.2 on page 173.

The standard can be extended by the definition of new kinds of PROPS information and new
PROPS constructs for expressing them. Also, private standards can define new kinds of
information and corresponding constructs without disruption to adherents to the present
standard.

Each GROUP of UNITS is identified by a unit identification — a TDFIDENT. All the UNITS in
that GROUP are of the same kind.

In addition there is a tld UNIT (see Section 8.3 on page 161).

Architecture Neutral Distribution Format (XANDF) 99

ROUNDING_MODE Specification of XANDF Constructs

5.30 ROUNDING_MODE
Number of encoding bits: 3

Is coding extendable? Yes

ROUNDING_MODE specifies the way rounding is to be performed in floating point arithmetic.

5.30.1 rounding_mode_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ ROUNDINGMODE

The token is applied to the arguments to give a ROUNDING_MODE.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.30.2 rounding_mode_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM ROUNDING_MODE
e2: BITSTREAM ROUNDING_MODE

→ ROUNDINGMODE

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.30.3 round_as_state

Encoding number: 3

→ ROUNDINGMODE

Round as specified by the current state of the machine.

5.30.4 to_nearest

Encoding number: 4

→ ROUNDINGMODE

Signifies rounding to nearest. The effect when the number lies half-way is not specified.

100 X/Open Preliminary Specification

Specification of XANDF Constructs ROUNDING_MODE

5.30.5 toward_larger

Encoding number: 5

→ ROUNDINGMODE

Signifies rounding toward next largest.

5.30.6 toward_smaller

Encoding number: 6

→ ROUNDINGMODE

Signifies rounding toward next smallest.

5.30.7 toward_zero

Encoding number: 7

→ ROUNDINGMODE

Signifies rounding toward zero.

Architecture Neutral Distribution Format (XANDF) 101

SHAPE Specification of XANDF Constructs

5.31 SHAPE
Number of encoding bits: 4

Is coding extendable? Yes

SHAPEs express symbolic size and representation information about run time values.

SHAPEs are constructed from primitive SHAPEs which describe values such as procedures and
integers, and recursively from compound construction in terms of other SHAPEs.

5.31.1 shape_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ SHAPE

The token is applied to the arguments to give a SHAPE.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.31.2 shape_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM SHAPE
e2: BITSTREAM SHAPE

→ SHAPE

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.31.3 bitfield

Encoding number: 3

bf_var: BITFIELD_VARIETY
→ SHAPE

A BITFIELD is used to represent a pattern of bits which will be packed, provided that the
variety_enclosed constraints are not violated (see Section 7.24 on page 154).

A BITFIELD_VARIETY specifies the number of bits and whether they are considered to be
signed.

There are very few operations on BITFIELDs, which have to be converted to INTEGERs before
arithmetic can be performed on them.

An installer may place a limit on the number of bits it implements (see Section 7.25 on page 155).

102 X/Open Preliminary Specification

Specification of XANDF Constructs SHAPE

5.31.4 bottom

Encoding number: 4

→ SHAPE

BOTTOM is the SHAPE which describes a piece of program which does not evaluate to any
result. Examples include goto and return.

If BOTTOM is a parameter to any other SHAPE constructor, the result is BOTTOM.

5.31.5 compound

Encoding number: 5

sz: EXP OFFSET(x,y)
→ SHAPE

The SHAPE constructor COMPOUND describes cartesian products and unions.

The alignments x and y will be alignment (sx) and alignment (sy) for some SHAPEs sx and sy.

sz will evaluate to a constant, non-negative OFFSET (see Section 5.16.87 on page 69). The
resulting SHAPE describes a value whose size is given by sz .

5.31.6 floating

Encoding number: 6

fv: FLOATING_VARIETY
→ SHAPE

Most of the floating point arithmetic operations, floating_plus, floating_minus, and so on, are
defined to work in the same way on different kinds of floating point number. If these operations
have more than one argument, the arguments have to be of the same kind, and the result is of
the same kind.

See also Section 7.20 on page 152.

An installer may limit the FLOATING_VARIETIES it can represent. A statement of any such
limits shall be part of the specification of an installer. See Section 7.20 on page 152.

5.31.7 integer

Encoding number: 7

var: VARIETY
→ SHAPE

The different kinds of INTEGER are distinguished by having different VARIETYs. A
fundamental VARIETY (not a TOKEN or conditional) is represented by two SIGNED_NATs,
which are respectively the lower and upper bounds (inclusive) of the set of values belonging to
the VARIETY.

Architecture Neutral Distribution Format (XANDF) 103

SHAPE Specification of XANDF Constructs

Most architectures require that dyadic integer arithmetic operations take arguments of the same
size, and so XANDF does likewise. Because XANDF is completely architecture neutral and
makes no assumptions about word length, this means that the VARIETYs of the two arguments
must be identical. An example illustrates this. A piece of XANDF which attempted to add two
values whose SHAPEs were:

INTEGER(0, 60000)

and:

INTEGER(0, 30000)

would be undefined. The reason is that without knowledge of the target architecture’s word
length, it is impossible to guarantee that the two values are going to be represented in the same
number of bytes. On a 16-bit machine they probably would, but not on a 15-bit machine. The
only way to ensure that two INTEGERs are going to be represented in the same way in all
machines is to stipulate that their VARIETYs are exactly the same.

When any construct delivering an INTEGER of a given VARIETY produces a result which is not
representable in the space which an installer has chosen to represent that VARIETY, an integer
overflow occurs. Whether it occurs in a particular case depends on the target, because the
installers’ decisions on representation are inherently target-defined.

A particular installer may limit the ranges of integers that it implements. See Section 7.18 on
page 151.

5.31.8 nof

Encoding number: 8

n: NAT
s: SHAPE

→ SHAPE

The NOF constructor describes the SHAPE of a value consisting of an array of n values of the
same SHAPE, s.

5.31.9 offset

Encoding number: 9

arg1: ALIGNMENT
arg2: ALIGNMENT

→ SHAPE

The SHAPE constructor OFFSET describes values which represent the differences between
POINTERs, that is they measure offsets in memory. It should be emphasised that these are in
general run-time values.

An OFFSET measures the displacement from the value indicated by a POINTER (arg1) to the
value indicated by a POINTER (arg2). Such an offset is only defined if the POINTERs are
derived from the same original POINTER.

An OFFSET may also measure the displacement from a POINTER to the start of a
BITFIELD_VARIETY, or from the start of one BITFIELD_VARIETY to the start of another. Hence,
unlike the argument of pointer , arg1 or arg2 may consist entirely of BITFIELD_VARIETYs.

104 X/Open Preliminary Specification

Specification of XANDF Constructs SHAPE

The set arg1 will include the set arg2 .

See also Section 7.13 on page 147.

5.31.10 pointer

Encoding number: 10

arg: ALIGNMENT
→ SHAPE

A POINTER is a value which points to space allocated in a computer’s memory. The POINTER
constructor takes an ALIGNMENT argument. This argument will not consist entirely of
BITFIELD_VARIETYs. See Section 7.13 on page 147.

5.31.11 proc

Encoding number: 11

→ SHAPE

PROC is the SHAPE which describes pieces of program.

5.31.12 top

Encoding number: 12

→ SHAPE

TOP is the SHAPE which describes pieces of program which return no useful value. assign is an
example: it performs an assignment, but does not deliver any useful value.

Architecture Neutral Distribution Format (XANDF) 105

SIGNED_NAT Specification of XANDF Constructs

5.32 SIGNED_NAT
Number of encoding bits: 3

Is coding extendable? Yes

These are positive or negative integers of unbounded size.

5.32.1 signed_nat_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ SIGNED_NAT

The token is applied to the arguments to give a SIGNED_NAT.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.32.2 signed_nat_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM SIGNED_NAT
e2: BITSTREAM SIGNED_NAT

→ SIGNED_NAT

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.32.3 computed_signed_nat

Encoding number: 3

arg: EXP INTEGER(v)
→ SIGNED_NAT

arg will be an install-time constant. The result is that constant.

5.32.4 make_signed_nat

Encoding number: 4

neg: TDFBOOL
n: TDFINT

→ SIGNED_NAT

n is a non-negative integer of unbounded magnitude. The result is negative if neg is true.

106 X/Open Preliminary Specification

Specification of XANDF Constructs SIGNED_NAT

5.32.5 snat_from_nat

Encoding number: 5

neg: BOOL
n: NAT

→ SIGNED_NAT

The result is negated if neg is true.

Architecture Neutral Distribution Format (XANDF) 107

SORTNAME Specification of XANDF Constructs

5.33 SORTNAME
Encoding number: 5

Is coding extendable? Yes

These are the names of the SORTs which can be parameters of TOKEN definitions.

5.33.1 access

Encoding number: 1

→ SORTNAME

5.33.2 al_tag

Encoding number: 2

→ SORTNAME

5.33.3 alignment_sort

Encoding number: 3

→ SORTNAME

5.33.4 bitfield_variety

Encoding number: 4

→ SORTNAME

5.33.5 bool

Encoding number: 5

→ SORTNAME

5.33.6 error_treatment

Encoding number: 6

→ SORTNAME

108 X/Open Preliminary Specification

Specification of XANDF Constructs SORTNAME

5.33.7 exp

Encoding number: 7

→ SORTNAME

The SORT of EXP.

5.33.8 floating_variety

Encoding number: 8

→ SORTNAME

5.33.9 foreign_sort

Encoding number: 9

foreign_name: STRING(k,n)
→ SORTNAME

This SORT enables unanticipated kinds of information to be placed in XANDF.

5.33.10 label

Encoding number: 10

→ SORTNAME

5.33.11 nat

Encoding number: 11

→ SORTNAME

5.33.12 ntest

Encoding number: 12

→ SORTNAME

5.33.13 procprops

Encoding number: 13

→ SORTNAME

Architecture Neutral Distribution Format (XANDF) 109

SORTNAME Specification of XANDF Constructs

5.33.14 rounding_mode

Encoding number: 14

→ SORTNAME

5.33.15 shape

Encoding number: 15

→ SORTNAME

5.33.16 signed_nat

Encoding number: 16

→ SORTNAME

5.33.17 string

Encoding number: 17

→ SORTNAME

5.33.18 tag

Encoding number: 18

→ SORTNAME

The SORT of TAG.

5.33.19 transfer_mode

Encoding number: 19

→ SORTNAME

5.33.20 token

Encoding number: 20

result: SORTNAME
params: LIST(SORTNAME)

→ SORTNAME

This is the SORTNAME of a TOKEN. Note that it can have tokens as parameters, but not as
result.

110 X/Open Preliminary Specification

Specification of XANDF Constructs SORTNAME

5.33.21 variety

Encoding number: 21

→ SORTNAME

Architecture Neutral Distribution Format (XANDF) 111

STRING Specification of XANDF Constructs

5.34 STRING
Number of encoding bits: 3

Is coding extendable? Yes

5.34.1 string_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ STRING(k,n)

The token is applied to the arguments to give a STRING.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.34.2 string_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM STRING
e2: BITSTREAM STRING

→ STRING(k,n)

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.34.3 concat_string

Encoding number: 3

arg1: STRING(k,n)
arg2: STRING(k,m)

→ STRING(k,n+m)

This gives a STRING which is the concatenation of arg1 with arg2 .

5.34.4 make_string

Encoding number: 4

arg: TDFSTRING(k,n)
→ STRING(k,n)

This delivers the STRING identical to the arg .

112 X/Open Preliminary Specification

Specification of XANDF Constructs TAG

5.35 TAG
Number of encoding bits: 1

Is coding extendable? Yes

Linkable entity identification: tag

These are used to name values and variables in the run time program.

5.35.1 tag_apply_token

Encoding number: 2

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ TAGx

The token is applied to the arguments to give a TAG.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.35.2 make_tag

Encoding number: 1

tagno: TDFINT
→ TAGx

make_tag produces a TAG identified by tagno .

Architecture Neutral Distribution Format (XANDF) 113

TAGACC Specification of XANDF Constructs

5.36 TAGACC
Number of encoding bits: 0

Is coding extendable? No

This constructs a pair of a TAG and an OPTION(ACCESS) for use in make_proc.

5.36.1 make_tagacc

Encoding number: 0

tg: TAG POINTERvar_param_alignment
acc: OPTION(ACCESS)

→ TAGACC

This constructs the pair for make_proc.

114 X/Open Preliminary Specification

Specification of XANDF Constructs TAGDEC

5.37 TAGDEC
Number of encoding bits: 2

Is coding extendable? Yes

A TAGDEC declares a TAG for incorporation into a TAGDEC_PROPS.

5.37.1 make_id_tagdec

Encoding number: 1

t_intro: TDFINT
acc: OPTION(ACCESS)

signature: OPTION(STRING)
x: SHAPE

→ TAGDEC

A TAGDEC announcing that the TAG t_intro identifies an EXP of SHAPE x is constructed.

acc specifies the ACCESS properties of the TAG.

If there is a make_id_tagdec for a TAG then all other make_id_tagdec for the same TAG will
specify the same SHAPE and there will be no make_var_tagdec or common_tagdec for the TAG.

If two make_id_tagdecs specify the same tag and both have signatures present, the strings will
be identical. Possible uses of this signature argument are outlined in Section 7.28 on page 156.

5.37.2 make_var_tagdec

Encoding number: 2

t_intro: TDFINT
acc: OPTION(ACCESS)

signature: OPTION(STRING)
x: SHAPE

→ TAGDEC

A TAGDEC announcing that the TAG t_intro identifies an EXP of SHAPE POINTER
(alignment(x)) is constructed.

acc specifies the ACCESS properties of the TAG.

If there is a make_var_tagdec for a TAG then all other make_var_tagdec for the same TAG will
specify the same SHAPE and there will be no make_id_tagdec or common_tagdec for the TAG.

If two make_var_tagdecs specify the same tag and both have signatures present, the strings will
be identical. Possible uses of this signature argument are outlined in Section 7.28 on page 156.

Architecture Neutral Distribution Format (XANDF) 115

TAGDEC Specification of XANDF Constructs

5.37.3 common_tagdec

Encoding number: 3

t_intro: TDFINT
acc: OPTION(ACCESS)

signature: OPTION(STRING)
x: SHAPE

→ TAGDEC

A TAGDEC announcing that the TAG t_intro identifies an EXP of SHAPE POINTER
(alignment(x)) is constructed.

acc specifies the ACCESS properties of the TAG.

If there is a common_tagdec for a TAG then there will be no make_id_tagdec or
make_var_tagdec for that TAG. If there is more than one common_tagdec for a TAG, the one
having the maximum SHAPE shall be taken to apply for the CAPSULE. Each pair of such
SHAPES will have a maximum. The maximum of two SHAPES, a and b, is defined as follows:

1. If the a is equal to b, the maximum is a .

2. If a and b are COMPOUND (x) and COMPOUND (y) respectively and a is an initial
segment of b, then b is the maximum. Similarly if b is an initial segment of a , then a is the
maximum.

3. If a and b are NOF (n, x) and NOF (m, x) respectively and n is less than or equal to m,
then b is the maximum. Similarly if m is less than or equal to n, then a is the maximum.

4. Otherwise a and b have no maximum.

If two common_tagdecs specify the same tag and both have signatures present, the strings will
be identical. Possible uses of this signature argument are outlined in Section 7.28 on page 156.

116 X/Open Preliminary Specification

Specification of XANDF Constructs TAGDEC_PROPS

5.38 TAGDEC_PROPS
Number of encoding bits: 0

Is coding extendable? No

Unit identification: tagdec

5.38.1 make_tagdecs

Encoding number: 0

no_labels: TDFINT
tds: SLIST(TAGDEC)

→ TAGDEC_PROPS

no_labels is the number of local LABELs used in tds. tds is a list of TAGDECs which declare the
SHAPEs associated with TAGs.

Architecture Neutral Distribution Format (XANDF) 117

TAGDEF Specification of XANDF Constructs

5.39 TAGDEF
Number of encoding bits: 2

Is coding extendable? Yes

A value of SORT TAGDEF gives the definition of a TAG for incorporation into a
TAGDEF_PROPS.

5.39.1 make_id_tagdef

Encoding number: 1

t: TDFINT
signature: OPTION(STRING)

e: EXPx
→ TAGDEF

make_id_tagdef produces a TAGDEF defining the TAG x constructed from the TDFINT, t. This
TAG is defined to stand for the value delivered by e.

e will be a constant which can be evaluated at load-time or e will be some initial_value (E) (see
Section 5.16.48 on page 56).

t will be declared in the CAPSULE using make_id_tagdec. If both the make_id_tagdec and
make_id_tagdef have signatures present, the strings will be identical.

If x is PROC and the TAG represented by t is named externally via a CAPSULE_LINK, e will be
some make_proc or make_general_proc.

There will not be more than one TAGDEF defining t in a CAPSULE.

5.39.2 make_var_tagdef

Encoding number: 2

t: TDFINT
opt_access: OPTION(ACCESS)
signature: OPTION(STRING)

e: EXPx
→ TAGDEF

make_var_tagdef produces a TAGDEF defining the TAG POINTER (x) constructed from the
TDFINT, t. This TAG stands for a variable which is initialised with the value delivered by e. The
TAG is bound to an original pointer which has the evaluation of the program as its lifetime.

If opt_access contains visible , the meaning is that the variable may be used by agents external to
the capsule, and so it must not be optimised away. If it contains constant , the initialising value
will remain in it throughout the program.

e will be a constant which can be evaluated at load-time or e will be some initial_value (E) (see
Section 5.16.48 on page 56). t will be declared in the CAPSULE using make_var_tagdec. If both
the make_var_tagdec and make_var_tagdef have signatures present, the strings will be
identical.

There will not be more than one TAGDEF defining t in a CAPSULE.

118 X/Open Preliminary Specification

Specification of XANDF Constructs TAGDEF

5.39.3 common_tagdef

Encoding number: 3

t: TDFINT
opt_access: OPTION(ACCESS)
signature: OPTION(STRING)

e: EXPx
→ TAGDEF

common_tagdef produces a TAGDEF defining the TAG POINTER (x) constructed from the
TDFINT, t. This TAG stands for a variable which is initialised with the value delivered by e. The
TAG is bound to an original pointer which has the evaluation of the program as its lifetime.

If opt_access contains visible , the meaning is that the variable may be used by agents external to
the capsule, and so it must not be optimised away. If it contains constant , the initialising value
will remain in it throughout the program.

e will be a constant evaluable at load-time or e will be some initial_value (E) (see Section 5.16.48
on page 56).

t will be declared in the CAPSULE using common_tagdec. If both the common_tagdec and
common_tagdef have signatures present, the strings will be identical. Let the maximum SHAPE
of these (see Section 5.37.3 on page 116) be s.

There may be any number of common_tagdef definitions for t in a CAPSULE. Of the e
parameters of these, one will be a maximum. This maximum definition is chosen as the
definition of t. Its value of e will have SHAPE s.

The maximum of two common_tagdef EXPs, a and b, is defined as follows:

1. If a has the form make_value (s), b is the maximum.

2. If b has the form make_value (s), a is the maximum.

3. If a and b have SHAPE COMPOUND (x) and COMPOUND (y) respectively and the
value produced by a is an initial segment of the value produced by b, then b is the
maximum. Similarly if b is an initial segment of a , then a is the maximum.

4. If a and b have SHAPE NOF (n, x) and NOF (m, x) respectively and the value produced
by a is an initial segment of the value produced by b, then b is the maximum. Similarly if b
is an initial segment of a , then a is the maximum.

5. If the value produced by a is equal to the value produced by b, the maximum is a .

6. Otherwise a and b have no maximum.

Architecture Neutral Distribution Format (XANDF) 119

TAGDEF_PROPS Specification of XANDF Constructs

5.40 TAGDEF_PROPS
Number of encoding bits: 0

Is coding extendable? No

Unit identification: tagdef

5.40.1 make_tagdefs

Encoding number: 0

no_labels: TDFINT
tds: SLIST(TAGDEF)

→ TAGDEF_PROPS

no_labels is the number of local LABELs used in tds. tds is a list of TAGDEFs which give the EXPs
which are the definitions of values associated with TAGs.

5.41 TAGSHACC
Number of encoding bits: 0

Is coding extendable? No

5.41.1 make_tagshacc

Encoding number: 0

sha: SHAPE
opt_access: OPTION(ACCESS)

tg_intro: TAG
→ TAGSHACC

This is an auxiliary construction to make the elements of params_intro in make_proc.

120 X/Open Preliminary Specification

Specification of XANDF Constructs TDFBOOL

5.42 TDFBOOL
A TDFBOOL is the XANDF encoding of a boolean.

5.43 TDFIDENT
A TDFIDENT (k , n) encodes a sequence of n unsigned integers of size k bits. k will be a multiple
of 8.

This construction will not be used inside a BIT STREAM.

5.44 TDFINT
A TDFINT is the XANDF encoding of an unbounded unsigned integer constant.

5.45 TDFSTRING
A TDFSTRING (k , n) encodes a sequence of n unsigned integers of size k bits.

Architecture Neutral Distribution Format (XANDF) 121

TOKDEC Specification of XANDF Constructs

5.46 TOKDEC
Number of encoding bits: 1

Is coding extendable? Yes

A TOKDEC declares a TOKEN for incorporation into a UNIT.

5.46.1 make_tokdec

Encoding number: 1

tok: TDFINT
signature: OPTION(STRING)

s: SORTNAME
→ TOKDEC

The sort of the token tok is declared to be s. Note that s will always be a token SORT, with a list
of parameter SORTS (possible empty) and a result SORT.

If two make_tokdecs specify the same token and both have signatures present, the strings will be
identical. Possible uses of this signature argument are outlined in Section 7.28 on page 156.

5.47 TOKDEC_PROPS
Number of encoding bits: 0

Is coding extendable? No

Unit identification: tokdec

5.47.1 make_tokdecs

Encoding number: 0

tds: SLIST(TOKDEC)
→ TOKDEC_PROPS

tds is a list of TOKDECs which gives the sorts associated with TOKENs.

122 X/Open Preliminary Specification

Specification of XANDF Constructs TOKDEF

5.48 TOKDEF
Number of encoding bits: 1

Is coding extendable? Yes

A TOKDEF gives the definition of a TOKEN for incorporation into a TOKDEF_PROPS.

5.48.1 make_tokdef

Encoding number: 1

tok: TDFINT
signature: OPTION(STRING)

def: BITSTREAM TOKEN_DEFN
→ TOKDEF

A TOKDEF is constructed which defines the TOKEN tok to stand for the fragment of XANDF,
body , which may be of any SORT with a SORTNAME, except for token. The SORT of the result,
result_sort, is given by the first component of the BITSTREAM. See also Section 5.51.1 on page
125.

tok may have been introduced by a make_tokdec. If both the make_tokdec and make_tokdef
have signatures present, the strings will be identical.

At the application of this TOKEN, actual pieces of XANDF having SORT sn [i] are supplied to
correspond to the tk [i]. The application denotes the piece of XANDF obtained by substituting
these actual parameters for the corresponding TOKENs within body.

5.49 TOKDEF_PROPS
Number of encoding bits: 0

Is coding extendable? No

Unit identification: tokdef

5.49.1 make_tokdefs

Encoding number: 0

no_labels: TDFINT
tds: SLIST(TOKDEF)

→ TOKDEF_PROPS

no_labels is the number of local LABELs used in tds. tds is a list of TOKDEFs which gives the
definitions associated with TOKENs.

Architecture Neutral Distribution Format (XANDF) 123

TOKEN Specification of XANDF Constructs

5.50 TOKEN
Number of encoding bits: 2

Is coding extendable? Yes

Unit identification: token

These are used to stand for functions evaluated at installation time. They are represented by
TDFINTs.

5.50.1 token_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ TOKEN

The token is applied to the arguments to give a TOKEN.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.50.2 make_tok

Encoding number: 2

tokno: TDFINT
→ TOKEN

make_tok constructs a TOKEN identified by tokno .

5.50.3 use_tokdef

Encoding number: 3

tdef: BITSTREAM TOKEN_DEFN
→ TOKEN

tdef is used to supply the definition, as in make_tokdef. Note that TOKENS are only used in
x_apply_token constructions.

124 X/Open Preliminary Specification

Specification of XANDF Constructs TOKEN_DEFN

5.51 TOKEN_DEFN
Encoding number: 1

Is linking extendable? Yes

This is an auxiliary SORT used in make_tokdef and use_tokdef.

5.51.1 token_definition

Encoding number: 1

result_sort: SORTNAME
tok_params: LIST(TOKFORMALS)

body: result_sort
→ TOKEN_DEFN

This makes a token definition. result_sort is the SORT of body. tok_params is a list of formal
TOKENS and their SORTS. body is the definition, which can use the formal TOKENS defined in
tok_params .

The effect of applying the definition of a TOKEN is as if the following sequence was obeyed:

1. First, the actual parameters (if any) are expanded to produce expressions of the
appropriate SORTS. During this expansion, all token applications in the actual parameters
are expanded.

2. Second, the definition is copied, making fresh TAGS and LABELS where these are
introduced in identify, variable, labelled, conditional, make_proc, make_general_proc
and repeat constructions. Any other TAGS or LABELS used in body will be provided by
the context (see below) of the TOKEN_DEFN or by the expansions of the actual
parameters.

3. Third, the actual parameter expressions are substituted for the formal parameter tokens in
tok_params to give the final result.

The context of a TOKEN_DEFN is the set of names (TOKENS, TAGS, LABELS, AL_TAGS, and
so on) in scope at the site of the TOKEN_DEFN.

Thus, in a make_tokdef, the context consists of the set of TOKENS defined in its tokdef UNIT,
together with the set of linkable entities defined by the make_links of that UNIT. Note that this
does not include LABELS and the only TAGS included are ‘‘global’’ ones.

In a use_tokdef, the context may be wider, since the site of the TOKEN_DEFN need not be in a
tokdef UNIT; it may be an actual parameter of a token application. If this happens to be within
an EXP, there may be TAGS or LABELS locally within scope; these will be in the context of the
TOKEN_DEFN, together with the global names of the enclosing UNIT as before.

Early drafts of this specification limited token definitions to be non-recursive. There is no
intrinsic reason for the limitation on recursive TOKENs. Since the UNIT structure implies
different namespaces, there is very little implementation advantage to be gained from retaining
the limitation.

Architecture Neutral Distribution Format (XANDF) 125

TOKFORMALS Specification of XANDF Constructs

5.52 TOKFORMALS
Number of encoding bits: 0

Is coding extendable? No

5.52.1 make_tokformals

Encoding number: 0

sn: SORTNAME
tk: TDFINT

→ TOKFORMALS

This is an auxiliary construction to make up the elements of the lists in token_definition.

126 X/Open Preliminary Specification

Specification of XANDF Constructs TRANSFER_MODE

5.53 TRANSFER_MODE
Number of encoding bits: 3

Is coding extendable? Yes

A TRANSFER_MODE controls the operation of assign_with_mode, contents_with_mode and
move_some.

A TRANSFER_MODE acts like a set of the values overlap , trap_on_nil , complete and volatile . The
TRANSFER_MODE standard_transfer_mode acts like the empty set. add_modes acts like set
union.

5.53.1 transfer_mode_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ TRANSFER_MODE

The token is applied to the arguments encoded in the BITSTREAM token_args to give a
TRANSFER_MODE.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.53.2 transfer_mode_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM TRANSFER_MODE
e2: BITSTREAM TRANSFER_MODE

→ TRANSFER_MODE

control is evaluated. It will be a constant at install time under the constant evaluation rules. If it is
non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is zero then
e2 is installed at this point and e1 is ignored and never processed.

5.53.3 add_modes

Encoding number: 3

md1: TRANSFER_MODE
md2: TRANSFER_MODE

→ TRANSFER_MODE

A construction qualified by add_modes has both TRANSFER_MODES md1 and md2. If md1 is
standard_transfer_mode then the result is md2 and symmetrically. This operation is associative
and commutative.

Architecture Neutral Distribution Format (XANDF) 127

TRANSFER_MODE Specification of XANDF Constructs

5.53.4 overlap

Encoding number: 4

→ TRANSFER_MODE

If overlap is used to qualify a move_some or an assign_with_mode for which arg2 is a contents
or contents_with_mode, then the source and destination might overlap. The transfer shall be
made as if the data were copied from the source to an independent place and thence to the
destination.

See also Section 7.16 on page 151.

5.53.5 standard_transfer_mode

Encoding number: 5

→ TRANSFER_MODE

This TRANSFER_MODE implies no special properties.

5.53.6 trap_on_nil

Encoding number: 6

→ TRANSFER_MODE

If trap_on_nil is used to qualify a contents_with_mode operation with a nil pointer argument,
or an assign_with_mode whose arg1 is a nil pointer, or a move_some with either argument a nil
pointer, the XANDF exception nil_access is raised.

5.53.7 volatile

Encoding number: 7

→ TRANSFER_MODE

If volatile is used to qualify a construction, it shall not be optimised away.

This is intended to implement ANSI C’s volatile construction. In this use, any volatile identifier
should be declared as a TAG with used_as_volatile ACCESS.

5.53.8 complete

Encoding number: 8

→ TRANSFER_MODE

A transfer qualified with complete shall leave the destination unchanged if the evaluation of the
value transferred is left with a jump.

128 X/Open Preliminary Specification

Specification of XANDF Constructs UNIQUE

5.54 UNIQUE
Encoding number: 0

Is coding extendable? No

These are used to provide world-wide unique names for TOKENs and TAGs.

This implies a registry for allocating UNIQUE values.

5.54.1 make_unique

Encoding number: 0

text: SLIST(TDFIDENT)
→ UNIQUE

Two UNIQUE values are equal if they were constructed with equal arguments.

Architecture Neutral Distribution Format (XANDF) 129

UNIT Specification of XANDF Constructs

5.55 UNIT
Number of encoding bits: 0

Is coding extendable? No

A UNIT gathers together a PROPs and LINKs which relate the names by which objects are
known inside the PROPs and names by which they are to be known across the whole of the
enclosing CAPSULE.

5.55.1 make_unit

Encoding number: 0

local_vars: SLIST(TDFINT)
lks: SLIST(LINKS)

properties: BYTESTREAM PROPS
→ UNIT

local_vars gives the number of linkable entities of each kind. These numbers correspond (in the
same order) to the variable sorts in capsule_linking in make_capsule. The linkable entities will
be represented by TDFINTs in the range 0 to the corresponding nl − 1 .

lks gives the LINKs for each kind of entity in the same order as in local_vars .

The properties will be a PROPS of a form dictated by the unit identification (see Section 5.11.1 on
page 33).

The length of lks will be either 0 or equal to the length of capsule_linking in make_capsule.

130 X/Open Preliminary Specification

Specification of XANDF Constructs VARIETY

5.56 VARIETY
Number of encoding bits: 2

Is coding extendable? Yes

These describe the different kinds of integer which can occur at run time. The fundamental
construction consists of a SIGNED_NAT for the lower bound of the range of possible values, and
a SIGNED_NAT for the upper bound (inclusive at both ends).

There is no limitation on the magnitude of these bounds in XANDF, but an installer may specify
limits. See Section 7.18 on page 151.

5.56.1 var_apply_token

Encoding number: 1

token_value: TOKEN
token_args: BITSTREAMparam_sorts(token_value)

→ VARIETY

The token is applied to the arguments to give a VARIETY.

If there is a definition for token_value in the CAPSULE then token_args is a BITSTREAM encoding
of the SORTs of its parameters, in the order specified.

5.56.2 var_cond

Encoding number: 2

control: EXP INTEGER(v)
e1: BITSTREAM VARIETY
e2: BITSTREAM VARIETY

→ VARIETY

The control is evaluated. It will be a constant at install time under the constant evaluation rules.
If it is non-zero, e1 is installed at this point and e2 is ignored and never processed. If control is
zero then e2 is installed at this point and e1 is ignored and never processed.

5.56.3 var_limits

Encoding number: 3

lower_bound: SIGNED_NAT
upper_bound: SIGNED_NAT

→ VARIETY

lower_bound is the lower limit (inclusive) of the range of values which shall be representable in
the resulting VARIETY, and upper_bound is the upper limit (inclusive).

Architecture Neutral Distribution Format (XANDF) 131

VARIETY Specification of XANDF Constructs

5.56.4 var_width

Encoding number: 4

signed_width: BOOL
width: NAT

→ VARIETY

If signed_width is true then this construction is equivalent to var_limits (− 2width−1, 2width−1 − 1). If
signed_width is false then this construction is var_limits (0, 2width − 1).

132 X/Open Preliminary Specification

Specification of XANDF Constructs VERSION_PROPS

5.57 VERSION_PROPS
Number of encoding bits: 0

Unit identification: versions

This UNIT gives information about version numbers and user information.

5.57.1 make_versions

Encoding number: 0

version_info: SLIST(VERSION)
→ VERSION_PROPS

This contains version information.

Architecture Neutral Distribution Format (XANDF) 133

VERSION Specification of XANDF Constructs

5.58 VERSION
Number of encoding bits: 1

Is coding extendable? Yes

5.58.1 make_version

Encoding number: 1

major_version: TDFINT
minor_version: TDFINT

→ VERSION

These are the major and minor version numbers of the XANDF used. An increase in minor
version number means an extension of facilities. An increase in major version number means an
incompatible change. XANDF with the same major number but a lower minor number than the
installer shall install correctly.

For XANDF conforming to this specification, the major number will be 4 and the minor number
will be 0.

Every CAPSULE will contain at least one make_version construct.

5.58.2 user_info

Encoding number: 2

information: STRING(k,n)
→ VERSION

This is (usually character) information included in the XANDF for labelling purposes.

134 X/Open Preliminary Specification

Chapter 6

Supplementary UNIT

6.1 LINKINFO_PROPS
Number of encoding bits: 0

Unit identification: linkinfo

This is an additional UNIT which gives extra information about linking.

6.1.1 make_linkinfos

Encoding number: 0

no_labels: TDFINT
tds: SLIST(LINKINFO)

→ LINKINFO_PROPS

This makes the UNIT.

6.2 LINKINFO
Number of encoding bits: 2

Is coding extendable? Yes

6.2.1 static_name_def

Encoding number: 1

assexp: EXP
id: TDFSTRING

→ LINKINFO

assexp will be an obtain_tag construction which refers to a TAG which is defined with
make_id_tagdef, make_var_tagdef or common_tagdef. This TAG will not be linked to an
EXTERNAL.

The name id shall be used (but not exported, that is, static) to identify the definition for
subsequent linking.

Note: This construction is likely to be needed for profiling, so that useful names appear for
statically defined objects. It may also be needed when C++ is translated into C, in order
to identify global initialisers.

Architecture Neutral Distribution Format (XANDF) 135

LINKINFO Supplementary UNIT

6.2.2 make_comment

Encoding number: 2

n: TDFSTRING
→ LINKINFO

n shall be incorporated into the object file as a comment, if this facility exists. Otherwise the
construct is ignored.

6.2.3 make_weak_defn

Encoding number: 3

namer: EXP
val: EXP

→ LINKINFO

namer and val will be obtain_tag constructions which refer to TAGs which are defined with
make_id_tagdef, make_var_tagdef or common_tagdef. They shall be made synonymous.

6.2.4 make_weak_symbol

Encoding number: 4

id: TDFSTRING
val: EXP

→ LINKINFO

val will be an obtain_tag construction which refers to a TAG which is defined with
make_id_tagdef, make_var_tagdef or common_tagdef.

This TAG shall be made weak (in the same sense as in the SVID ABI Symbol Table), and id shall
be synonymous with it.

136 X/Open Preliminary Specification

Chapter 7

Notes

7.1 Binding
The following constructions introduce TAGs:

identify
variable
make_proc
make_general_proc
make_id_tagdec
make_var_tagdec
common_tagdec

During the evaluation of identify and variable a value, v, is produced which is bound to the
TAG during the evaluation of an EXP or EXPs. The TAG is ‘‘in scope’’ for these EXPs. This means
that in the EXP, a use of the TAG is permissible and will refer to the declaration.

The make_proc and make_general_proc construction introduces TAGs which are bound to the
actual parameters on each call of the procedure. These TAGs are in scope for the body of the
procedure.

If a make_proc or make_general_proc construction occurs in the body of another make_proc or
make_general_proc, the TAGS of the inner procedure are not in scope in the outer procedure,
nor are the TAGS of the outer in scope in the inner.

The apply_general_proc construction permits the introduction of TAGs whose scope is the
postlude argument. These are bound to the values of caller parameters after the evaluation of the
body of the procedure.

The make_id_tagdec, make_var_tagdec and common_tagdec constructions introduce TAGs
which are in scope throughout all the tagdef UNITs. These TAGs may have values defined for
them in the tagdef UNITs, or values may be supplied by linking.

The following constructions introduce LABELs:

conditional
repeat
labelled

The constructions themselves define EXPs for which these LABELs are ‘‘in scope’’. This means
that in the EXPs, a use of the LABEL is permissible and will refer to the introducing construction.

TAGs, LABELs and TOKENs (as TOKEN parameters) introduced in the body of a TOKEN
definition are systematically renamed in their scope each time the TOKEN definition is applied.
The scope will be completely included by the TOKEN definition.

Each of the values introduced in a UNIT will be named by a different TAG, and the labelling
constructions will use different labels, so no visibility rules are needed. The set of TAGs and
LABELs used in a simple UNIT are considered separately from those in another simple UNIT, so
no question of visibility arises. The compound and link UNITs provide a method of relating the
items in one simple UNIT to those in another, but this is through the intermediary of another set
of TAGs and TOKENs at the CAPSULE level.

Architecture Neutral Distribution Format (XANDF) 137

Character Codes Notes

7.2 Character Codes
XANDF does not have a concept of characters. It transmits integers of various sizes. So, if a
producer wishes to communicate characters to an installer, it will usually have to do so by
encoding them in some way as integers.

An ANSI C producer sending an XANDF program to a set of normal C environments may well
choose to encode its characters using the ASCII codes; an EBCDIC based producer transmitting
to a known set of EBCDIC environments might use the code directly; and a wide character
producer might likewise choose a specific encoding. For some programs, this way of proceeding
is necessary, because the codes are used both to represent characters and for arithmetic, so the
particular encoding is enforced. In these cases it will not be possible to translate the characters to
another encoding because the character codes will be used in the XANDF as ordinary integers,
which must not be translated.

Some producers may wish to transmit true characters, in the sense that something is needed to
represent particular printing shapes and nothing else. These representations will have to be
transformed into the correct character encoding on the target machine.

Probably the best way to do this is to use TOKENs. A fixed representation for the printing
marks could be chosen in terms of integers and TOKENs introduced to represent the translation
from these integers to local character codes, and from strings of integers to strings of local
character codes. These definitions could be bound on the target machine, and the installer should
be capable of translating these constructions into efficient machine code. To make this a
standard, unique TOKENs should be used.

However, this raises the question of who chooses the fixed representation and the unique
TOKENs and their specification? Clearly, XANDF provides a mechanism for performing the
standardisation without itself defining a standard.

Here, XANDF gives rise to the need for extra standards, especially in the specification of globally
named unique TOKENs.

138 X/Open Preliminary Specification

Notes Constant Evaluation

7.3 Constant Evaluation
Some constructions require an EXP argument which is constant at install time. For an EXP to
satisfy this condition it must be constructed according to the following rules after substitution of
token definitions and selection of exp_cond branches.

If it contains obtain_tag then the tag will be introduced within the EXP, or defined with
make_id_tagdef.

It may not contain any of the following constructions:

apply_proc
apply_general_proc
assign_with_mode
contents_with_mode
continue
current_env
error_jump
goto_local_lv
make_local_lv
move_some
repeat
round_as_state

Any use of contents or assign will be applied only to POINTERS derived from variable
constructions.

If it contains labelled, there will only be jumps to the LABELS from within starter, not from
within any of the places .

Any use of obtain_tag defined with make_id_tagdef will occur after the end of the
make_id_tagdef.

Note specifically that a constant EXP may contain env_offset.

Architecture Neutral Distribution Format (XANDF) 139

Division and Modulus Notes

7.4 Division and Modulus
Two classes of division(D) and remainder(M) construct are defined. The two classes have the
same definition if both operands have the same sign. Neither is defined if the second argument
is zero.

Class 1:

p D1 q = n

where:

p = n * q + (p M1 q)

sign(p M1 q) = sign(q)

0 <= | p M1 q | < | q |

Class 2:

p D2 q = n

where:

p = n * q + (p M2 q)

sign(p M2 q) = sign(p)

0 <= | p M2 q | < | q |

140 X/Open Preliminary Specification

Notes Equality of EXPs

7.5 Equality of EXPs
A definition of equality of EXPs would be a considerable part of a formal specification of
XANDF, and is not given here.

7.6 Equality of SHAPEs
Equality of SHAPEs is defined recursively.

Two SHAPEs are equal if they are both BOTTOM, or both TOP, or both PROC.

Two SHAPEs are equal if they are both integer or both floating, or both bitfield, and the
corresponding parameters are equal.

Two SHAPEs are equal if they are both NOF, the numbers of items are equal and the SHAPE
parameters are equal.

Two OFFSETs or two POINTERs are equal if their ALIGNMENT parameters are pairwise equal.

Two COMPOUNDs are equal if their OFFSET EXPS are equal.

No other pairs of SHAPEs are equal.

7.7 Equality of ALIGNMENTS
Two ALIGNMENTS are equal if and only if they are equal sets.

Architecture Neutral Distribution Format (XANDF) 141

Exceptions and Jumps Notes

7.8 Exceptions and Jumps
XANDF allows simply for labels and jumps within a procedure, by means of the conditional,
labelled and repeat constructions, and the goto, case and various test constructions. However,
there are two more complex jumping situations.

First there is the jump, known to stay within a procedure, but to a computed destination. Many
languages have discouraged this kind of construction, but it is still available in COBOL
(implicitly), and it can be used to provide other facilities (see below). XANDF allows it by
means of the POINTER({ code }). XANDF is arranged so that this can usually be implemented as
the address of the label. The goto_local_lv construction just jumps to the label.

The other kind of construction needed is the jump out of a procedure to a label which is still
active, restoring the environment of the destination procedure: this is the long jump. Related to
this is the notion of exception . Unfortunately long jumps and exceptions do not co-exist well.
Exceptions are commonly organised so that any necessary destruction operations are performed
as the stack of frames is traversed; long jumps commonly go directly to the destination. XANDF
must provide some facility which can express both of these concepts. Furthermore, exceptions
come in several different versions, according to how the exception handlers are discriminated
and whether exception handling is initiated if there is no handler which will catch the exception.

Fortunately the normal implementations of these concepts provide a suggestion as to how they
can be introduced into XANDF. The local label value provides the destination address, the
environment (produced by current_env) provides the stack frame for the destination, and the
stack re-setting needed by the local label jumps themselves provides the necessary stack
information. If more information is needed, such as which exception handlers are active, this can
be created by producing the appropriate XANDF.

So, XANDF takes the long_jump as the basic construction, and its parameters are a local label
value and an environment. Everything else can be built in terms of these.

The XANDF arithmetic constructions allow specifying a LABEL as destination if the result of the
operation is exceptional. This is sufficient for the kind of explicit exception handling found in
C++ and, in principle, could also be used to implement the kind of ‘‘automatic’’ exception
detection and handling found in Ada, for example.

However, many architectures have facilities for automatically trapping on exceptions, without
explicit testing. To take advantage of this, there is a trap ERROR_TREATMENT with associated
ERROR_CODEs. The action taken on an exception with trap ERROR_TREATMENT will be to
‘‘throw’’ the ERROR_CODE. Since each language has its own idea of how to interpret the
ERROR_CODE and handle exceptions, the onus is on the producer writer to describe how to
throw an ERROR_CODE.

The producer writer must give a definition of a TOKEN ˜Throw : NAT → EXP where the NAT
will be error_val for some ERROR_CODE. This token definition must be consistent with the
interpretation of the ERROR_CODE parameter and the method of handling exceptions. Usually
this will consist of decoding the ERROR_CODE and doing a long_jump on some globals set up
by the procedure in which the exception handling takes place.

The translator writer will provide a parameterless EXP TOKEN, ˜Set_signal_handler. This
TOKEN will use ˜Throw and must be applied before any possible exceptions. This implies that
the definition of both ˜Throw and ˜Set_signal_handler must be bound before translation of any
CAPSULE which uses them, presumably by linking with some XANDF libraries.

These tokens are specified in more detail in Section 9.4.1 on page 172.

142 X/Open Preliminary Specification

Notes Procedures

7.9 Procedures
The var_param of an apply_proc and the var_intro of the corresponding make_proc will either
both be present or both absent. If they are present, the body of the make_proc can access the
actual parameter by using OFFSET arithmetic relative to the POINTER TAG. This provides a
method of supplying a variable number of parameters, by composing them into a compound
value which is supplied as the var_param .

However, this has proved to be unsatisfactory for the implementation of variable number of
parameters in C — one cannot choose the POINTER alignment of the TAG independently from
the actual parameters in non-prototype calls.

The definition of caller parameters in general procedures addresses this difficulty by describing
the layout of caller parameters qualified by PROCPROPS var_callers. This allows both the call
and the body to have the same view of the OFFSETs within a parameter set, regardless of
whether or not the particular parameter has been named. Similar consideration applies to
accessing within the callee parameters.

All uses of return, untidy_return and tail_call in a procedure will return values of the same
SHAPE, and this will be the result_shape specified in all uses of apply_proc or
apply_general_proc calling the procedure .

The use of untidy_return gives a generalisation of local_alloc. It extends the validity of pointers
allocated by local_alloc within the immediately enclosing procedure into the calling procedure.
The original space of these pointers may be invalidated by local_free just as if it had been
generated by local_alloc in the calling procedure.

The PROCPROPS check_stack may be used to check that limit set by set_stack_limit is not
exceeded by the allocation of the static locals of a procedure body to be obeyed. If it is exceeded,
then the producer-defined TOKEN ˜Throw: (NAT → EXP) will be invoked as
˜Throw(error_val(stack_overflow)). Note that this will not include any space generated by
local_alloc; an explicit test is required to do check these.

Any SHAPE is permitted as the result_shape in an apply_proc or apply_general_proc.

Architecture Neutral Distribution Format (XANDF) 143

Frames Notes

7.10 Frames
XANDF states that while a particular procedure activation is current, it is possible to create a
POINTER, by using current_env, which gives access to all the declared variables and
identifications of the activation which are alive and which have been marked as visible. The
construction env_offset gives the OFFSET of one of these relative to such a POINTER. These
constructions may serve for several purposes.

One significant purpose is to implement such languages as Pascal, which have procedures
declared inside other procedures. One way of implementing this is by means of a display, that
is, a tuple of frame pointers of active procedures.

Another purpose is to find active variables satisfying some criterion in all the procedure
activations. This is commonly required for garbage collection. XANDF does not force the
installer to implement a frame pointer register, since some machines do not work best in this
way. Instead, a frame pointer is created only if required by current_env. The implication of this
is that this sort of garbage collection needs the collaboration of the producer to create XANDF
which makes the correct calls on current_env and env_offset and place suitable values in known
positions.

Programs compiled especially to provide good diagnostic information can also use these
operations.

In general, any program which wishes to manipulate the frames of procedures other than the
current one can use current_env and env_offset to do so.

A frame consists of three components: the caller parameters, callee parameters, and locals of the
procedure involved. Since each component may have different internal methods of access within
the frame, each has a different special frame alignment associated with pointers within them.
These are callers_alignment, callees_alignment and locals_alignment. The POINTER
produced by current_env will be some union of these special alignments, depending on how the
procedure was defined.

Each of these frame alignments are considered to contain any ALIGNMENT produced by
alignment from any SHAPE. Note that this does not say that they are the set union of all such
ALIGNMENTS. This is because the interpretation of pointer and offset operations (notably
add_to_pointer) may be different, depending on the implementation of the frames; they may
involve extra indirections.

Accordingly, because of the constraints on add_to_ptr, an OFFSET produced by env_offset can
only be added to a POINTER produced by current_env. It is a further constraint that such an
OFFSET will only be added to a POINTER produced from current_env used on the procedure
which declared the TAG.

144 X/Open Preliminary Specification

Notes Lifetimes

7.11 Lifetimes
TAGs are bound to values during the evaluation of EXPs, which are specified by the construction
which introduces the TAG. The evaluation of these EXPs is called the lifetime of the activation of
the TAG.

Note that lifetime is a different concept from that of scope . For example, if the EXP contains the
application of a procedure, the evaluation of the body of the procedure is within the lifetime of
the TAG, but the TAG will not be in scope.

A similar concept applies to LABELs.

Architecture Neutral Distribution Format (XANDF) 145

Alloca Notes

7.12 Alloca
The constructions involving alloca (last_local, local_alloc, local_free, local_free_all) as well as
the untidy_return construction imply a stack-like implementation which is related to procedure
calls. They may be implemented using the same stack as the procedure frames, if there is such a
stack, or it may be more convenient to implement them separately. However, note that if the
alloca mechanism is implemented as a stack, this may be an upward or a downward growing
stack.

The state of this notional stack is referred to here as the alloca state. The construction local_alloc
creates a new space on the alloca stack, the size of this space being given by an OFFSET. In the
special case that this OFFSET is zero, local_alloc in effect gives the current alloca state (normally
a POINTER to the top of the stack).

A use of local_free_all returns the alloca state to what it was on entry to the current procedure.

The construction last_local gives a POINTER to the top item on the stack, but it is necessary to
give the size of this (as an OFFSET) because this cannot be deduced if the stack is upward
growing. This top item will be the whole of an item previously allocated with local_alloc.

The construction local_free returns the state of the alloca machine to what it was when its
parameter POINTER was allocated. The OFFSET parameter will be the same value as that with
which the POINTER was allocated.

The ALIGNMENT of the POINTER delivered by local_alloc is alloca_alignment. This shall
include the set union of all the ALIGNMENTs which can be produced by alignment from any
SHAPE.

The use of alloca_alignment arises so that the alloca stack can hold any kind of value. The sizes
of spaces allocated must be rounded up to the appropriate ALIGNMENT. Since this includes all
value ALIGNMENTS, a value of any ALIGNMENT can be assigned into this space. Note that
there is no necessary relation with frame_alignment, though they must both contain all the
ALIGNMENTs which can be produced by alignment from any SHAPE

Stack pushing is local_alloc. Stack popping can be performed by use of last_local and
local_free. Remembering the state of the alloca stack and returning to it can be performed by
using local_alloc with a zero OFFSET and local_free.

Note that stack pushing can also be achieved by the use of a procedure call with untidy_return.

A transfer of control to a local label by means of goto, goto_local_lv, any test construction or any
error_jump will not change the alloca stack.

Note: If an installer implements identify and variable by creating space on a stack when they
come into existence, rather than doing the allocation for identify and variable at the
start of a procedure activation, then it may have to consider making the alloca stack into
a second stack.

146 X/Open Preliminary Specification

Notes Memory Model

7.13 Memory Model
The layout of data in memory is entirely determined by the calculation of OFFSETs relative to
POINTERs. That is, it is determined by OFFSET arithmetic and the add_to_ptr construction.

A POINTER is parameterised by the ALIGNMENT of the data indicated. An ALIGNMENT is a
set of all the different kinds of basic value which can be indicated by a POINTER. That is, it is a
set chosen from all VARIETIES, all FLOATING_VARIETIES, all BITFIELD_VARIETIES, proc ,
code , pointer and offset. There are also three special ALIGNMENTS, frame_alignment,
alloca_alignment and var_param_alignment.

The parameter of a POINTER will not consist entirely of BITFIELD_VARIETIES.

The implication of this is that the ALIGNMENT of all procedures is the same, the ALIGNMENT
of all POINTERs is the same, and the ALIGNMENT of all OFFSETS is the same.

At present this corresponds to the state of affairs for all machines. But it is certainly possible that,
for example, 64-bit pointers might be aligned on 64-bit boundaries while 32-bit pointers are
aligned on 32-bit boundaries. In this case it will become necessary to add different kinds of
pointer to XANDF. This will not present a problem, because, to use such pointers, similar
changes will have to be made in languages to distinguish the kinds of pointer if they are to be
mixed.

The difference between two POINTERs is measured by an OFFSET. Hence an OFFSET is
parameterised by two ALIGNMENTs, that of the start POINTER and that of the end POINTER.
The ALIGNMENT set of the first must include the ALIGNMENT set of the second.

The parameters of an OFFSET may consist entirely of BITFIELD_VARIETYs.

The operations on OFFSETs are subject to various constraints on ALIGNMENTs. It is important
not to read into offset arithmetic what is not there. Accordingly some rules of the algebra of
OFFSETs are given below:

• offset_add is associative.

• offset_mult corresponds to repeated offset_addition.

• offset_max is commutative, associative and idempotent.

• offset_add distributes over offset_max where they form legal expressions.

• offset_test(prob, ≥ , a, b) continues if offset_max(a,b) = a.

7.13.1 Simple Model

An example of the representation of OFFSET arithmetic is given below. This is not a definition,
but only an example. In order to make this example clear, a machine with bit-addressing is
hypothesised. This machine is referred to as the simple model .

In this machine, ALIGNMENTs will be represented by the number by which the bit address of
data must be divisible. For example, 8-bit bytes might have an ALIGNMENT of 8, longs of 32
and doubles of 64. OFFSETs will be represented by the displacement in bits from a POINTER.
POINTERs will be represented by the bit address of the data. Only one memory space will exist.
Then, in this example a possible conforming implementation would be as follows:

Architecture Neutral Distribution Format (XANDF) 147

Memory Model Notes

add_to_ptr is addition.

offset_add is addition.

offset_div and offset_div_by_int are exact division.

offset_max is maximum.

offset_mult is multiply.

offset_negate is negate.

offset_pad(a,x) is ((x + a - 1) / a) * a.

offset_subtract is subtract.

offset_test is integer_test.

offset_zero is 0.

shape_offset(s) is the minimum number of bits needed to be moved to move a value of
SHAPEs .

Note that these operations only exist where the constraints on the parameters are satisfied.
Elsewhere, the operations are undefined.

All the computations in this representation are obvious, but there is one point to make
concerning offset_max, which has the following arguments and result:

arg1: EXP OFFSET (x,y)
arg2: EXP OFFSET (z,y)

→ EXP OFFSET(unite_alignments(x,z)y

The SHAPES could have been chosen to be:

arg1: EXP OFFSET (x,y)
arg2: EXP OFFSET (z,t)

→ EXP OFFSET(unite_alignments(x,z),intersect_alignments(y,t))

where unite_alignments is set union and intersect_alignments is set intersection. This would have
expressed the most general reality. The representation of unite_alignments (x , z) is the maximum
of the representations of x and z in the simple model. Unfortunately the representation of
intersect_alignments (y , t) is not the minimum of the representations of y and t. In other words,
the simple model representation is not a homomorphism if intersect_alignments is used. Because
the choice of representation in the installer is an important consideration, the actual definition
was chosen instead. It seems unlikely that this will affect practical programs significantly.

7.13.2 Comparison of Pointers and Offsets

Two POINTERS to the same ALIGNMENT, a, are equal if and only if the result of subtract_ptrs
applied to them is equal to offset_zero (a).

The comparison of OFFSETS is reduced to the definition of offset_max and the equality of
OFFSETS in accordance with the definition in Section 5.16.89 on page 70.

148 X/Open Preliminary Specification

Notes Memory Model

7.13.3 Circular Types in Languages

It is assumed that circular types in programming languages will always involve the SHAPES
PROC or POINTER (x) on the circular path in their representation. Since the ALIGNMENT of
POINTER is { pointer } and does not involve the ALIGNMENT of the thing pointed at, circular
SHAPES are not needed. The circularity is always broken in ALIGNMENT (or PROC).

7.13.4 Special Alignments

There are seven special ALIGNMENTS. One of these is code_alignment — the ALIGNMENT of
the POINTER delivered by make_local_lv.

The ALIGNMENT of a parameter of SHAPE s is given by parameter_alignment(s) which will
always contain alignment(s).

The other five special ALIGNMENTS are alloca_alignment, callees_alignment,
callers_alignment, locals_alignment and var_param_alignment. Each of these contains the set
union of all the ALIGNMENTs which can be produced by alignment from any SHAPE.
However, they need not be equal to that set union, nor need there be any relation between them.

In particular they are not equal (in the sense of Section 7.7 on page 141).

Each of these five special ALIGNMENTs refer to alignments of various components of a frame.

Notice that pointers and offsets such as POINTER(callees_alignment(true)) and
OFFSET(callees_alignment(true) ,x), and so on, can have some special representation, and that
add_to_ptr and offset_add can operate correctly on these representations. However, it is
necessary that:

alignment(POINTER(A)) = { pointer }

for any ALIGNMENT A.

7.13.5 Atomic Assignment

At least one VARIETY shall exist such that assign and assign_with_mode are atomic operations.
This VARIETY shall be specified as part of the installer specification. It shall be capable of
representing the numbers 0 to 127.

Note: It is not necessary for this to be the same VARIETY on each machine. Normal practice
will be to use a TOKEN for this VARIETY and choose the definition of the TOKEN on
the target machine.

Architecture Neutral Distribution Format (XANDF) 149

Order of Evaluation Notes

7.14 Order of Evaluation
The order of evaluation is specified in certain constructions in terms of equivalent effect with a
canonical order of evaluation. These constructions are conditional, identify, labelled, repeat,
sequence and variable. Let these be called the order-specifying constructions.

The constructions which change control also specify a canonical order. These are apply_proc,
apply_general_proc, case, goto, goto_local_lv, long_jump, return, untidy_return,
return_to_label, tail_call, the test constructions, and all instructions containing the error_jump
and trap ERROR_TREATMENT.

The order of evaluation of the components of other constructions is that the components may be
evaluated in any order and with their components — down to the XANDF leaf level —
interleaved in any order. The constituents of the order specifying constructions may also be
interleaved in any order, but the order of the operations within an order specifying operation
shall be equivalent in effect to a canonical order.

Note that the rule specifying when error-jumps or traps are to be taken (see Section 5.15.4 on page
38) relaxes the strict rule that everything has to be as if completed by the end of certain
constructions. Without this rule, pipelines would have to stop at such points, in order to be sure
of processing any errors. Since this is not normally needed, it would be an expensive
requirement, so hence the existence of this rule. However, a construction will be required to
force errors to be processed in the cases where this is important.

7.15 Original Pointers
Certain constructions are specified as producing original pointers. They allocate space to hold
values and produce pointers to indicate that new space. All other pointer values are derived
pointers, which are produced from original pointers by a sequence of add_to_ptr operations.
Counting original pointers as being derived from themselves, every pointer is derived from just
one original pointer.

A null pointer is counted as an original pointer.

If procedures are called which come from outside the XANDF world (such as calloc) it is part of
their interface with XANDF to state if they produce original pointers, and what is the lifetime of
the pointer.

As a special case, original pointers can be produced by using current_env and env_offset(see
Section 5.16.25 on page 48).

Note that:

add_to_ptr(p,offset_add(q, r))

is equivalent to:

add_to_ptr(add_to_ptr(p,q),r)

In the case that p is the result of current_env and q is the result of env_offset, add_to_ptr (p,q) is
defined to be an original pointer. For any such expression, q will be produced by env_offset
applied to a TAG introduced in the procedure in which current_env was used to make p .

150 X/Open Preliminary Specification

Notes Overlapping

7.16 Overlapping
In the case of move_some, or assign or assign_with_mode in which arg2 is a contents or
contents_with_mode, it is possible that the source and destination of the transfer might overlap.

In this case, if the operation is move_some or assign_with_mode and the TRANSFER_MODE
contains overlap, then the transfer shall be performed correctly, that is, as if the data were copied
from the source to an independent place and then to the destination.

In all cases, if the source and destination do not overlap, the transfer shall be performed
correctly.

Otherwise the effect is undefined.

7.17 Incomplete Assignment
If the arg2 component of an assign or assign_with_mode operation is left by means of a jump,
the question arises as to what value is in the destination of the transfer.

If the TRANSFER_MODE complete is used, the destination shall be left unchanged if the arg2
component is left by means of a jump. If complete is not used and arg2 is left by a jump, the
destination may be affected in any way.

7.18 Representing Integers
Integer VARIETIES shall be represented by a range of integers which includes those specified by
the given bounds. This representation shall be twos-complement.

If the lower bound of the VARIETY is non-negative, the representing range shall be from 0 to
28n − 1 for some n. n is called the number of bytes in the representation. The number of bits in
the representation is 8n.

If the lower bound of the VARIETY is negative, the representing range shall be from −28n −1 to
28n −1 − 1 for some n. n is called the number of bytes in the representation. The number of bits in
the representation is 8n.

Installers may limit the size of VARIETY that they implement. A statement of such limits shall be
part of the specification of the installer. In no case may such limits be less than 64 bits, signed or
unsigned.

Note: It is intended that there should be no upper limit allowed at some future date.

Operations are performed in the representing VARIETY. If the result of an operation does not lie
within the bounds of the stated VARIETY, but does lie in the representation, the value produced
in that representation shall be as if the VARIETY had the lower and upper bounds of the
representation. The implication of this is usually that a number in a VARIETY is represented by
that same number in the representation.

If the bounds of a VARIETY, v, include those of a VARIETY, w, the representing VARIETY for v
shall include or be equal to the representing VARIETY for w.

The representations of two VARIETIES of the form var_limits (0, 2n − 1) and var_limits (−2n −1,
2n −1 − 1) shall have the same number of bits and the mapping of their ALIGNMENTS into the
target alignment shall be the same.

Architecture Neutral Distribution Format (XANDF) 151

Overflow and Integers Notes

7.19 Overflow and Integers
It is necessary first to define what overflow means for integer operations and second to specify
what happens when it occurs. The intention of XANDF is to permit the simplest possible
implementation of common constructions on all common machines while allowing precise
effects to be achieved, if necessary at extra cost.

Integer varieties may be represented in the computer by a range of integers which includes the
bounds given for the variety. An arithmetic operation may therefore yield a result which is
within the stated variety, or outside the stated variety but inside the range of representing
values, or outside that range. Most machines provide instructions to detect the latter case;
testing for the second case is possible but a little more costly.

In the first two cases, the result is defined to be the value in the representation. Overflow occurs
only in the third case:

• If the ERROR_TREATMENT is impossible, overflow will not occur. If it should happen to do
so, the effect of the operation is undefined.

• If the ERROR_TREATMENT is error_jump, a LABEL is provided to jump to if overflow
occurs.

• If the ERROR_TREATMENT is trap(overflow), a producer_defined TOKEN:

˜Throw: NAT → EXP

must be provided. On an overflow, the installer will arrange that ˜Throw(error_val(overflow))
is evaluated.

The wrap ERROR_TREATMENT is provided so that a useful defined result may be produced in
certain cases where it is usually easily available on most machines. This result is available on the
assumption that machines use binary arithmetic for integers. This is certainly so at present, and
there is no close prospect of other bases being used.

If a precise result is required, further arithmetic and testing may be needed which the installer
may be able to optimise away if the word lengths happen to suit the problem. In extreme cases it
may be necessary to use a larger variety.

7.20 Representing Floating Point
FLOATING_VARIETYs shall be implemented by a representation which has at least the
properties specified.

Installers may limit the size of FLOATING_VARIETY which they implement. A statement of
such limits shall be part of the specification of an installer.

The limit may also permit or exclude infinities.

Any installer shall implement at least one FLOATING_VARIETY with the following properties
(compare with IEEE doubles):

1. mantissa_digits shall not be less than 53.

2. minimum_exponent shall not be less than 1023.

3. maximum_exponent shall not be less than 1022.

Operations are performed and overflows detected in the representing FLOATING_VARIETY.

152 X/Open Preliminary Specification

Notes Representing Floating Point

Note: There shall be at least two FLOATING_VARIETIES, one occupying the same number of
bytes and having the same alignment as a VARIETY representation, and one occupying
twice as many bytes.

7.21 Floating Point Errors
The only permitted ERROR_TREATMENTs for operations delivering FLOATING_VARIETYs are
impossible, error_jump and trap(overflow).

The kinds of floating point error which can occur depend on the machine architecture (especially
whether it has IEEE floating point) and on the definitions in the ABI being obeyed.

Possible floating point errors depend on the state of the machine and may include overflow ,
divide_by_zero , underflow , invalid_operation and inexact . The setting of this state is performed
outside XANDF (at present).

If an error_jump or trap is taken as the result of a floating point error, the operations to test what
kind of error it was are outside the definition (at present).

7.22 Rounding and Floating Point
Each machine has a rounding state which shall be one of to_nearest, toward_larger,
toward_smaller or toward_zero. For each operation delivering a FLOATING_VARIETY, except
for make_floating, any rounding necessary shall be performed according to the rounding state.

7.23 Floating Point Accuracy
While it is understood that most implementations will use IEEE floating arithmetic operations,
there are machines which use other formats and operations. It is intended that they should not
be excluded from having XANDF implementations.

For XANDF to have reasonably consistent semantics across many platforms, one must have
some minimum requirements on the accuracies of the results of the floating point operations
defined in XANDF. The provisional requirements sketched below would certainly be satisfied by
an IEEE implementation.

Let ⊕ be some primitive dyadic arithmetic operator and ⊕’ be its XANDF floating-point
implementation. Let F be some FLOATING_VARIETY and F’ be a representational
variety of F.

Condition 1:
If a, b and a⊕b can all be represented exactly in F, then they will also be represented
exactly in F’. Extending the ’ notation in the obvious manner:

(a ⊕ b)’ = (a’ ⊕’ b’)
This equality will also hold using the XANDF equality test, that is:

(a ⊕ b)’ =’ (a’ ⊕’ b’)

Condition 2:
The operator ⊕’ is monotonic in the sense apposite to the operator ⊕. For example,
consider the operator +; if x is any number and a and b are as above:

(x > b) ((a’ +’ x’) ≥ (a + b)’)
and:

(x < b) ((a’ +’ x’) ≤ (a + b)’)

Architecture Neutral Distribution Format (XANDF) 153

Floating Point Accuracy Notes

and so on, reflecting the weakening of the ordering after the operation from > to ≥ and
< to ≤. Once again, the inequalities will hold for their XANDF equivalents, for example,
≥’ and >’.

Similar conditions can be expressed for the monadic operations.

For the floating-point test operation, there are obvious analogues to both conditions. The
weakening of the ordering in the monotonicity condition, however, may lead to surprising
results, arising mainly from the uncertainty of the result of equality between floating numbers
which cannot be represented exactly in F.

7.24 Representing Bitfields
BITFIELD_VARIETYs specify a number of bits and shall be represented by exactly that number
of bits in twos-complement notation. Producers may expect them to be packed as closely as
possible.

Installers may limit the number of bits permitted in BITFIELD_VARIETYs. Such a limit shall be
not less than 32 bits, signed or unsigned.

Note: It is intended that there should be no upper limit allowed at some future date.

Some offsets of which the second parameter contains a BITFIELD alignment are subject to a
constraint defined below. This constraint is referred to as variety_enclosed.

Note: The intent of this constraint is to force BITFIELDS to be implemented (in memory) as
being included in some properly aligned VARIETY value.

The constraint applies to:

x : offset (p , b)

and to:

sh = bitfield (bfvar_bits (s,n))

where alignment (sh) is included in b.

The constraint is as follows:

There will exist a VARIETY, v , and r : offset (p , q) where v is in q.

offset_pad(b, r) ≤ x

and:

offset_pad(b, r+sz (v)) ≥ offset_pad(b, x+sz (sh))

where the comparisons are in the sense of offset_test, + is offset_add and sz is
shape_offset.

154 X/Open Preliminary Specification

Notes Permitted limits

7.25 Permitted limits
An installer may specify limits on the sizes of some of the data SHAPES which it implements. In
each case there is a minimum set of limits such that all installers shall implement at least the
specified SHAPES. Part of the description of an installer shall be the limits it imposes. Installers
are encouraged not to impose limits if possible, though it is not expected that this will be feasible
for floating point numbers.

7.26 Least Upper Bound
The LUB of two SHAPEs, a and b is defined as follows:

• If a and b are equal shapes, then a .

• If a is BOTTOM then b.

• If b is BOTTOM then a .

• Otherwise TOP.

7.27 Read-only Areas
Consider three scenarios in increasingly static order:

• Dynamic loading.

A new module is loaded, initialising procedures are obeyed and the results of these are then
marked as read-only.

• Normal loading.

An ld program is obeyed which produces various (possibly circular) structures which are put
into an area which will be read-only when the program is obeyed.

• Using ROM.

Data structures are created (again possibly circular) and burnt into ROM for use by a
separate program.

In each case, program is obeyed to create a structure, which is then frozen. The special case
when the data is, say, just a string is not sufficiently general.

This XANDF specification takes the attitude that the use of read-only areas is a property of how
XANDF is used — a part of the installation process — and there should not be XANDF
constructions to say that some values in a CAPSULE are read-only. Such constructions could not
be sufficiently general.

Architecture Neutral Distribution Format (XANDF) 155

Tag and Token Signatures Notes

7.28 Tag and Token Signatures
In an XANDF program there will usually be references to TAGs which are not defined in
XANDF; their definitions are intended to be supplied by a host system in system specific
libraries.

These TAGs will be declared (but not defined) in an XANDF CAPSULE and will be specified by
external linkages of the CAPSULE with EXTERNALs containing either TDFIDENTS or
UNIQUEs. In early development drafts of this specification, the external names required by
system linking could only be derived from those EXTERNALs.

Version 4.0 gives an alternative method of constructing extra-XANDF names. Each global TAG
declaration can now contain a STRING signature field which may be used to derive the external
name required by the system.

This addition is principally motivated by the various name mangling schemes of C++. The
STRING signature can be constructed by concatenations and token expansions. Suitable usages
of TOKENs can ensure that the particular form of name-mangling can be deferred to installation
time and hence allow, at least conceptually, linking with different C++ libraries.

As well as TAG declarations, TAG definitions are allowed to have signatures. The restriction that
the signature (if present) of a TAG definition being identical to its corresponding definition could
allow type checking across separately compiled CAPSULEs.

Similar considerations apply to TOKENs; although token names are totally internal to XANDF,
it would allow checking that a token declared in one CAPSULE has the same type as its
definition in another.

7.29 Dynamic Initialisation
The dynamic initialisation of global variables is required for languages like C++. Previous to
version 4.0, the only initialisations permissible were those at load-time; in particular, no
procedure calls were allowed in forming the initialising value. Version 4.0 introduces the
constructor, initial_value, to remedy this situation.

Several different implementation strategies could be considered for this. Basically, one must
ensure that all the initial_value expressions are transformed into assignments to globals in some
procedure. One might expect that there would be one such procedure invented for each
CAPSULE and that somehow this procedure is called before the main program.

This raises problems on how we can name this procedure so that it can be identified as being a
special initialising procedure. Some UNIX linkers reserve a name like _init specially so that all
instances of it from different modules can be called before the main procedure. This is a possible
solution; however it would mean that the XANDF linker would have to be similarly modified to
construct the calling sequences for the init procedures in the different CAPSULEs.

The use of the chain_extern construct provides a means of linking similar constructions in
different CAPSULEs in a more generally applicable manner. Applying it to the initialisation
procedure problem, each initialisation procedure is given the same name ˜init, say, and will end
with a (tail) call to an external procedure also given a distinguished name ˜prev, say. By doing a
linking with chain_extern on ˜init and the link of ˜prev, a set of CAPSULEs can be XANDF
linked so that a ˜prev of one CAPSULE will become the ˜init of another, leaving the combined
CAPSULE with one ˜init which calls all of the others. Suitable linking could also ensure that the
final ˜prev is the main procedure of the program and thus a call of the final ˜init will run the
program.

156 X/Open Preliminary Specification

Notes Dynamic Initialisation

This, of course, raises the question of how one uses a system linker to perform the same kind of
operation for .o files produced by separately translated CAPSULEs. Some system linkers provide
some help in this, but most would require a pre-pass on the .o files to resolve this chaining
linkage.

Architecture Neutral Distribution Format (XANDF) 157

Notes

158 X/Open Preliminary Specification

Chapter 8

The Bit Encoding of XANDF

This is a description of the encoding used for XANDF.

Section 8.1 defines the basic level of encoding, in which integers consisting of a specified number
of bits are appended to the sequence of bytes. Section 8.2 defines the second level of encoding, in
which fundamental kinds of value are encoded in terms of integers of specified numbers of bits.
Section 8.3 defines the third level, in which XANDF is encoded using the previously defined
concepts.

8.1 The Basic Encoding
XANDF consists of a sequence of 8-bit bytes used to encode integers of a varying number of bits,
from 1 to 32. These integers will be called basic integers.

XANDF is encoded into bytes in increasing byte index, and within the byte the most significant
end is filled before the least significant. Let the bits within a byte be numbered from 0 to 7, 0
denoting the least significant bit and 7 the most significant. Suppose that the bytes up to n−1
have been filled and that the next free bit in byte n is bit k. Then bits k+1 to 7 are full and bits 0 to
k remain to be used. Now an integer of d bits is to be appended.

• If d is less than or equal to k, the d bits will occupy bits k−d+1 to k of byte n, and the next free
bit will be at bit k−d . Bit 0 of the integer will be at bit k−d+1 of the byte, and bit d−1 of the
integer will be at bit k .

• If d is equal to k+1 , the d bits will occupy bits 0 to k of byte n and the next free bit will be bit 7
of byte n+1. Bit d−1 of the integer will be at bit k of the byte.

• If d is greater than k+1 , the most significant k+1 bits of the integer will be in byte n, with bit
d−1 at bit k of the byte. The remaining d−k−1 least significant bits are then encoded into the
bytes, starting at byte n+1, bit 7 , using the same algorithm (that is, recursively).

8.2 Fundamental Encodings
This section describes the encoding of TDFINT, TDFBOOL, TDFSTRING, TDFIDENT, BIT
STREAM, BYTESTREAM, BYTE_ALIGN and extendable integers.

8.2.1 TDFINT

TDFINT encodes non-negative integers of unbounded size. The encoding uses octal digits
encoded in 4-bit basic integers. The most significant octal digit is encoded first, the least
significant last. For all digits except the last the 4-bit integer is the value of the octal digit. For the
last digit the 4-bit integer is the value of the octal digit plus 8.

Architecture Neutral Distribution Format (XANDF) 159

Fundamental Encodings The Bit Encoding of XANDF

8.2.2 TDFBOOL

TDFBOOL encodes a boolean, true or false. The encoding uses a 1-bit basic integer, with 1
encoding true and 0 encoding false.

8.2.3 TDFSTRING

TDFSTRING encodes a sequence containing n non-negative integers, each of k bits. The
encoding consists of first a TDFINT giving the number of bits; second a TDFINT giving the
number of integers, which may be zero; and third it contains n k-bit basic integers, giving the
sequence of integers required, the first integer being first in this sequence.

8.2.4 TDFIDENT

TDFIDENT also encodes a sequence containing n non-negative integers. These integers will all
consist of the same number of bits, which will be a multiple of 8. It is a property of the encoding
of the other constructions that TDFIDENTS will start on either bit 7 or bit 3 of a byte and end on
bit 7 or bit 3 of a byte. It thus has some alignment properties which are useful to permit fast
copying of sections of XANDF.

The encoding consists of first a TDFINT giving the number of bits; second a TDFINT giving the
number of integers, which may be zero, then if the next free bit is not bit 7 of some byte, it is
moved on to bit 7 of the next byte; and third it contains n k-bit integers. If the next free bit is not
bit 7 of some byte, it is moved on to bit 7 of the next byte.

8.2.5 BITSTREAM

It can be useful to be able to skip a construction without reading through it. BITSTREAM
provides a means of doing this.

A BITSTREAM encoding of X consists of a TDFINT giving the number of bits of encoding which
are occupied by the X. Hence to skip over a BITSTREAM while decoding, one should read the
TDFINT and then advance the bit index by that number of bits. To read the contents of a BIT
STREAM encoding of X, one should read and ignore a TDFINT and then decode an X. There will
be no spare bits at the end of the X, so reading can continue directly.

8.2.6 BYTESTREAM

It can be useful to be able to skip an XANDF construction without reading through it.
BYTESTREAM provides a means of doing this while remaining byte aligned, so facilitating
copying the XANDF. A BYTESTREAM will always start when the bit position is 3 or 7.

A BYTESTREAM encoding of X starts with a TDFINT giving a number, n. After this, if the
current bit position is not bit 7 of some byte, it is moved to bit 7 of the next byte. The next n bytes
are an encoding of X. There may be some spare bits left over at the end of X.

Hence to skip over a BYTESTREAM while decoding, one should read a TDFINT, n, move to the
next byte alignment (if the bit position is not 7) and advance the bit index over n bytes. To read a
BYTESTREAM encoding of X one should read a TDFINT, n, and move to the next byte, b (if the
bit position is not 7), and then decode an X. Finally the bit position should be moved to n bytes
after b.

160 X/Open Preliminary Specification

The Bit Encoding of XANDF Fundamental Encodings

8.2.7 BYTE_ALIGN

byte_align leaves the bit position alone if it is 7, and otherwise moves to bit 7 of the next byte.

8.2.8 Extendable Integer Encoding

A d-bit extendable integer encoding enables an integer greater than zero to be encoded given d, a
number of bits.

If the integer is between 1 and 2d−1 inclusive, a d-bit basic integer is encoded.

If the integer, i , is greater than or equal to 2d a d-bit basic integer encoding of zero is inserted and
then i−2d+1 is encoded as a d-bit extendable encoding.

8.3 The XANDF Encoding
The descriptions of SORTS and constructors contain encoding information which is interpreted
as follows to define the XANDF encoding:

1. An XANDF CAPSULE is an encoding of the SORT CAPSULE.

2. For each SORT, a number of encoding bits, b, is specified. If this is zero, there will only be
one construction for the class, and its encoding will consist of the encodings of its
components, in the given order.

3. If the number of encoding bits, b, is not zero, the SORT is described as extendable or as not
extendable. For each construction there is an encoding number given. If the SORT is
extendable, this number is output as an extendable integer. If the SORT is described as not
extendable, the number is output as a basic integer. This is followed by the encodings of
the components of the construction in the order given in the description of the construct.

4. For the classes which are named SLIST (x) — for example, SLIST (UNIT) — the encoding
consists of a TDFINT, n, followed by n encodings of x .

5. For the classes which are named LIST (x) — for example, LIST (EXP) — the encoding
consists of a 1-bit integer which will be 0, followed by an SLIST (x). The 1-bit integer is to
allow for extensions to other representations of LISTS.

6. For the classes which are named OPTION (x), the encoding consists of a 1-bit basic
integer. If this is zero, the option is absent and there is no more encoding. If the integer is 1,
the option is present and an encoding of x follows.

7. BITSTREAMS occur in only two kinds of place. One is the constructions with the form
x_cond , which are the install-time conditionals. For each of these the class encoded in the
BITSTREAM is the same as the class which is the result of the x_cond construction. The
other kind of place is as the token_args component of a construction with the form
x_apply_token . This component always gives the parameters of the TOKEN. It can only be
decoded if there is a token definition or a token declaration for the particular token being
applied, that is, for the token_value component of the construction. In this case, the SORTS
and hence the classes of the actual token arguments are given by the declaration or
definition, and encodings of these classes are placed in sequence after the number of bits. If
the declaration or definition are not available, the BITSTREAM can only be skipped.

8. BYTESTREAM X occurs in only one place, the encoding of the SORT UNIT. The SORT X is
determined by the UNIT identification which is given for each of the relevant SORTS.

9. The tld UNIT is encoded specially. It is always the first UNIT in a Capsule and is used to
pass information to the XANDF linker.

Architecture Neutral Distribution Format (XANDF) 161

The XANDF Encoding The Bit Encoding of XANDF

The first entry in a tld UNIT is a TDFINT giving the format of the remainder of the UNIT.
Currently, the linker supports formats 0 and 1, but others may be added to give greater
functionality while retaining compatibility. With format 0, the remainder of UNIT is
identical to a now obsolete tld2 UNIT. With format 1, the remainder of the UNIT is as
follows:

If n is the number of EXTERN_LINKs in the external_linkage argument of
make_capsule, the remainder consists of n sequences. These sequences are in the
order given by external_linkage . Each element of a sequence consist of one
TDFINT per linkable entity in the corresponding element of the
make_extern_link in the same order. These integers will describe proper ties of
the corresponding external links.

(In format 0, there are only two sequences, the first describing the token external
links and the second describing the tag external links.)

Bit 0: 1 means used in this capsule, 0 means not used in this capsule.

Bit 1: 1 means declared in this capsule, 0 means not declared in this capsule.

Bit 2: 0 means not defined in this capsule, 1 means defined in this capsule.

Bit 3: 0 means is uniquely defined, 1 means may be defined multiple times.

8.4 File Formats
There may be various kinds of files which contain XANDF bitstream information. Each will start
with a 4 byte magic-number identifying the kind of file, followed by 2 TDFINTs giving the major
and minor version numbers of the XANDF involved.

A CAPSULE file will have a magic-number TDFC. The encoding of the CAPSULE will be
byte-aligned following the version numbers.

An XANDF library file will have a magic-number TDFL. These files are constructed by the
XANDF linker.

An XANDF archive file will have a magic-number TDFA.

Other file formats introduced should follow a similar pattern.

The XANDF linker will refuse to link XANDF files with different major version numbers. The
resulting minor version number is the maximum of component minor version numbers.

162 X/Open Preliminary Specification

Chapter 9

Token Register

9.1 Introduction

9.1.1 Background

XANDF tokens offer a general encapsulation and expansion mechanism which allows any
implementation detail to be delayed to the most appropriate stage of program translation. This
provides a means for encapsulating any target dependencies in a neutral form, with specific
implementations defined through standard XANDF features. This raises a natural opportunity
for well-understood sets of XANDF tokens to be included along with XANDF itself as interface
between XANDF tools.

9.1.2 Token Register Objectives

As XANDF tokens may be used to represent any piece of XANDF, they may be used to
supplement any XANDF interface between software tools. However, that raises the issue of
control authority for such an interface. In many cases, the interfaces may be considered to
‘‘belong’’ to a particular tool. In other cases, the names and specifications of tokens need to be
recorded for common use.

This token register is used to record the names and specifications of tokens which may need to
be assumed by more than one software tool. It also defines a naming scheme which should be
used consistently to avoid ambiguity between tokens.

Five classes of tokens are identified:

1. target dependency tokens, which are concerned with describing target architecture or
translator detail

2. basic mapping tokens, which relate general language features to architecture detail

3. XANDF interface tokens, which may be required to complete the specification of some
XANDF constructs

4. language programming interfaces (LPI) which may be specific to a particular producer

5. application programming interfaces (API).

These classes are discussed separately, in Section 9.2 through Section 9.6 below.

9.1.3 Naming Scheme

A flat namespace will suffice for XANDF token names if producer writers adopt the simple
constraints described here. XANDF has separate provision for a hierarchic unique naming
scheme, but that was intended for a specific purpose which has not yet been realised.

External names for program or application specific tokens should be confined to ‘‘simple
names’’, which we define to mean that they consist only of letters, digits and underscore (the
characters allowed in C identifiers). Normally there will be very few such external names, as
tokens internal to a single capsule do not require to be named. All other token names will consist
of some controlled prefix followed by a simple name, with the prefix identifying the control
authority.

Architecture Neutral Distribution Format (XANDF) 163

Introduction Token Register

For API tokens, the prefix will consist of a sequence of simple names, each followed by a dot,
where the first simple name is the name of the API as listed or referred to in Section 9.6 on page
176.

The prefix for producer-specific and target-dependency tokens will begin and end with
characters that distinguish them from the above cases. However, common XANDF tools such as
DISP, TNC and PL-TDF assume that token names contain only letters, digits, underscore, dot,
and/or tilde (˜).

The following prefixes are currently reserved:

• ˜

XANDF interface tokens (as specified in the XANDF Interface Tokens, Section 9.4 on page
172) and LPI tokens specific to a C producer (see Section 9.5.1 on page 174)

• . ˜

Registered target dependency tokens (as specified in the Target Dependency Tokens Section
9.2) and basic mapping tokens (as specified in Basic Mapping Tokens Section 9.3 on page
169)

• . ET ˜

LPI tokens specific to a Fortran producer (see example in Section 9.5.2 on page 175).

9.2 Target Dependency Tokens
Target dependency tokens provide a common interface to simple constructs where the required
detail for any specific architecture can be expressed within XANDF, but the detail will be
architecture specific. Every installer should have associated with it a capsule containing the
installer specific definitions of all the tokens specified within this section.

Some of these tokens provide information about the integer and floating point variety
representations supported by an installer, in a form that may be used by XANDF analysis tools
for architecture specific analysis, or by library generation tools when generating an architecture
specific version of a library. Other target dependency tokens provide commonly required
conversion routines.

It is recommended that these tokens should not be used directly within application programs.
They are designed for use within LPI definitions, which can provide a more appropriate
interface for applications.

9.2.1 Integer Variety Representations

Since XANDF specifies integer representations to be twos-complement, the number of bits
required to store an integer variety representation fully specifies that representation. The
minimum or maximum signed or unsigned integer that can be represented within any variety
representation can easily be determined from the number of bits.

164 X/Open Preliminary Specification

Token Register Target Dependency Tokens

. ˜r ep_var_width

w: NAT
→ NAT

If w lies within the range of VARIETY sizes supported by the associated installer,
rep_var_width(w) will be the number of bits required to store values of VARIETY var_width(b,w)
for any BOOL b.

If w is outside the range of VARIETY sizes supported by the associated installer,
rep_var_width(w) will be 0.

. ˜ rep_atomic_width

→ NAT

. ˜ rep_atomic_width will be the number of bits required to store values of some VARIETY, v , such
that assign and assign_with_mode are atomic operations if the value assigned has SHAPE
integer (v). The XANDF specification guarantees existence of such a number.

9.2.2 Floating Variety Representations

Floating point representations are much more diverse than integers, but we may assume that
each installer will support a finite set of distinct representations. For convenience in
distinguishing between these representations within architecture specific XANDF, the set of
distinct representations supported by any specific installer are stated to be ordered into a
sequence of non-decreasing memory size. An analysis tool can easily count through this
sequence to determine the properties of all supported representations, starting at 1 and using
. ˜ rep_fv_width to test for the sequence end.

. ˜ rep_fv

n: NAT
→ FLOATING_VARIETY

. ˜ rep_fv(n) will be the FLOATING_VARIETY whose representation is the nth of the sequence of
supported floating point representations. n will lie within this range.

. ˜ rep_fv_width

n: NAT
→ NAT

If n lies within the sequence range of supported floating point representations, . ˜ rep_fv_width(n)
will be the number of bits required to store values of FLOATING_VARIETY . ˜ rep_fv(n).

If n is outside the sequence range of supported floating point representations, . ˜ rep_fv_width(n)
will be 0.

Architecture Neutral Distribution Format (XANDF) 165

Target Dependency Tokens Token Register

. ˜ rep_fv_radix

n: NAT
→ NAT

. ˜ rep_fv_radix(n) will be the radix used in the representation of values of FLOATING_VARIETY

. ˜ rep_fv(n)

n will lie within the sequence range of supported floating point representations.

. ˜ rep_fv_mantissa

n: NAT
→ NAT

. ˜ rep_fv_mantissa(n) will be the number of base . ˜ rep_fv_radix(n) digits in the mantissa
representation of values of FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

. ˜ rep_fv_min_exp

n: NAT
→ NAT

. ˜ rep_fv_min_exp(n) will be the maximum integer m such that (. ˜ rep_fv_radix(n))−m is exactly
representable (though not necessarily normalised) by the FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

. ˜ rep_fv_max_exp

n: NAT
→ NAT

. ˜ rep_fv_max_exp(n) will be the maximum integer m such that (. ˜ rep_fv_radix(n))−m is exactly
representable by the FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

. ˜ rep_fv_epsilon

n: NAT
→ EXP FLOATING . ˜ rep_fv(n)

. ˜ rep_fv_epsilon(n) will be the smallest strictly positive real x such that (1.0 + x) is exactly
representable by the FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

166 X/Open Preliminary Specification

Token Register Target Dependency Tokens

. ˜ rep_fv_min_val

n: NAT
→ EXP FLOATING . ˜ rep_fv(n)

. ˜ rep_fv_min_val(n) will be the smallest strictly positive real number that is exactly representable
(though not necessarily normalised)) by the FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

. ˜ rep_fv_max_val

n: NAT
→ EXP FLOATING . ˜ rep_fv(n)

. ˜ rep_fv_max_val(n) will be the largest real number that is exactly representable by the
FLOATING_VARIETY . ˜ rep_fv(n).

n will lie within the sequence range of supported floating point representations.

9.2.3 Non-numeric Representations

. ˜ ptr_width

→ NAT

. ˜ ptr_width will be the minimum . ˜ rep_var_width(w) for any w such that any pointer to any
alignment may be converted to an integer of VARIETY var_width(b,w), for some BOOL b, and
back again without loss of information, using the conversions . ˜ ptr_to_int and . ˜ int_to_ptr (see
Section 9.2.4 on page 168).

. ˜ best_div

→ NAT

. ˜ best_div is 1 or 2 to indicate preference for class 1 or class 2 division and modulus (as defined in
Section 7.4 on page 140). This token would be used in situations where either class is valid but
must be used consistently.

. ˜ little_endian

BOOL

. ˜ little_endian is a property of the relationship between different variety representations and
arrays. If an array of a smaller variety can be mapped onto a larger variety, and . ˜ little_endian is
true, then smaller indices of the smaller variety array map onto smaller ranges of the larger
variety. If . ˜ little_endian is false, no such assertion can be made.

Architecture Neutral Distribution Format (XANDF) 167

Target Dependency Tokens Token Register

9.2.4 Common Conversion Routines

This subsection contains a set of conversion routines between values of different shapes, that are
not required to have any specific meaning apart from reversibility. If the storage space
requirements for the two shapes are identical, the conversion can usually be achieved without
change of representation. When that is the case, and if the two shapes can be stored at a common
alignment, the conversion can simply be achieved by assignment via a common union, which
will ensure the required alignment consistency.

. ˜ ptr_to_ptr

a1: ALIGNMENT
a2: ALIGNMENT
p: EXP POINTER(a1)

→ EXP POINTER(a2)

. ˜ ptr_to_ptr converts pointers from one pointer shape to another.

If p is any pointer with alignment a1, then . ˜ ptr_to_ptr(a2 ,a1 ,. ˜ ptr_to_ptr(a1 ,a2 , p)) shall result
in the same pointer p, provided that the number of bits required to store a pointer with
alignment a2 is not less than that required to store a pointer with alignment a1 .

. ˜ ptr_to_int

a: ALIGNMENT
v: VARIETY
p: EXP POINTER(a)

→ EXP INTEGER(v)

. ˜ ptr_to_int converts a pointer to an integer. The result is undefined if the VARIETY v is
insufficient to distinguish between all possible distinct pointers p of alignment a .

. ˜ int_to_ptr

v: VARIETY
a: ALIGNMENT
i: EXP INTEGER(v)

→ EXP POINTER(a)

. ˜ int_to_ptr converts an integer to a pointer. The result is undefined unless the integer i was
obtained without modification from some pointer using . ˜ ptr_to_int with the same variety and
alignment arguments.

If p is any pointer with alignment a, and v is var_width(b ,. ˜ ptr_width) for some BOOL b, then
. ˜ int_to_ptr(v ,a ,. ˜ ptr_to_int(a , v , p))
shall result in the same pointer p .

168 X/Open Preliminary Specification

Token Register Target Dependency Tokens

. ˜ f_to_ptr

a: ALIGNMENT
fn: EXP PROC

→ EXP POINTER(a)

. ˜ f_to_ptr converts a procedure to a pointer. The result is undefined except as required for
consistency with . ˜ ptr_to_f .

. ˜ ptr_to_f

a: ALIGNMENT
p: EXP POINTER(a)

→ EXP PROC

. ˜ ptr_to_f converts a pointer to a procedure. The result is undefined unless the pointer p was
obtained without modification from some procedure f using . ˜ f_to_ptr(a , f) . The same
procedure f is delivered.

9.3 Basic Mapping Tokens
Basic mapping tokens provide-target specific detail for specific language features that are
defined to be target-dependent. This detail need not be fixed for a particular target architecture,
but needs to provide compatibility with any external library with which an application program
is to be linked.

Tokens specific to the C and Fortran language families are included. Like the target dependency
tokens, it is again recommended that these tokens should not be used directly within application
programs. They are designed for use within LPI definitions, which can provide a more
appropriate interface for applications.

Every operating system variant of an installer should have associated with it a capsule
containing the definitions of all the tokens specified within this section.

9.3.1 C Mapping Tokens

. ˜ char_width

→ NAT

. ˜ char_width is the number of bits required to store values of the representation VARIETY that
corresponds to the C type char.

. ˜ short_width

→ NAT

. ˜ short_width is the number of bits required to store values of the representation VARIETY that
corresponds to the C type short int.

Architecture Neutral Distribution Format (XANDF) 169

Basic Mapping Tokens Token Register

. ˜ int_width

→ NAT

. ˜ int_width is the number of bits required to store values of the representation VARIETY that
corresponds to the C type
B int .

. ˜ long_width

→ NAT

. ˜ long_width is the number of bits required to store values of the representation VARIETY that
corresponds to the C type long int.

. ˜ size_t_width

→ NAT

. ˜ size_t_width is the number of bits required to store values of the representation VARIETY that
corresponds to the C type size_t. It will be the same as one of . ˜ short_width , . ˜ int_width or
. ˜ long_width .

. ˜ fl_rep

→ NAT

. ˜ fl_rep is the sequence number (see Section 9.2.2 on page 165) of the floating point
representation to be used for values of C type float.

. ˜ dbl_rep

→ NAT

. ˜ dbl_rep is the sequence number of the floating point representation to be used for values of C
type double.

. ˜ ldbl_rep

→ NAT

. ˜ ldbl_rep is the sequence number of the floating point representation to be used for values of C
type long double.

170 X/Open Preliminary Specification

Token Register Basic Mapping Tokens

. ˜ pv_align

→ ALIGNMENT

. ˜ pv_align is the common alignment for all pointers that can be represented by the C generic
pointer type void*. For architecture independence, this would have to be a union of several
alignments, but for many installers it can be simplified to

alignment(integer(var_width(false,. ˜ char_width))).

. ˜ min_struct_rep

→ NAT

. ˜ min_struct_rep is the number of bits required to store values of the smallest C integral type
which share the same alignment properties as a structured value whose members are all of that
same integral type. It will be the same as one of . ˜ char_width , . ˜ short_width , . ˜ int_width or
. ˜ long_width .

. ˜ char_is_signed

→ BOOL

. ˜ char_is_signed is true if the C type char is treated as signed, or false if it is unsigned.

. ˜ bitfield_is_signed

→ BOOL

. ˜ bitfield_is_signed is true if bitfield members of structures in C are treated as signed, or false if
unsigned.

9.3.2 Fortran Mapping Tokens

. ˜ F_char_width

→ NAT

. ˜ F_char_width is the number of bits required to store values of the representation VARIETY that
corresponds to the Fortran77 type CHARACTER.

In most cases, . ˜ F_char_width is the same as . ˜ char_width .

. ˜ F_int_width

→ NAT

. ˜ F_int_width is the number of bits required to store values of the representation VARIETY that
corresponds to the Fortran77 type INTEGER.

In most cases, . ˜ F_int_width is the same as . ˜ int_width .

Architecture Neutral Distribution Format (XANDF) 171

Basic Mapping Tokens Token Register

. ˜ F_fl_rep

→ NAT

. ˜ F_fl_rep is the sequence number (see Section 9.2.2 on page 165) of the floating point
representation to be used for values of Fortran77 type REAL, with the constraint that:

. ˜ rep_fv_width(. ˜ F_fl_rep) = . ˜ F_int_width.

If this constraint cannot be met, . ˜ F_fl_rep will be 0.

. ˜ F_dbl_rep

→ NAT

. ˜ F_dbl_rep is the sequence number of the floating point representation to be used for values of
Fortran77 type DOUBLE PRECISION, with the constraint that

. ˜ rep_fv_width(. ˜ F_dbl_rep) = 2 * . ˜ F_int_width.

If this constraint cannot be met, . ˜ F_dbl_rep will be 0.

9.4 XANDF Interface Tokens
A very few specifically named tokens are referred to within this XANDF specification which are
required to complete the ability to use certain XANDF constructs. Responsibility for providing
appropriate definitions for these tokens is indicated with the specifications below.

The interface to an optional Diagnostic Extension is also introduced.

9.4.1 Exception Handling

˜ Throw

n: NAT
→ EXP BOTTOM

The EXP e defined as the body of this token will be evaluated on occurrence of any error whose
ERROR_TREATMENT is trap . The type of error can be determined within e from the NAT n,
which will be error_val(ec) for some ERROR_CODE ec. The token definition body e will
typically consist of a long_jump to some previously set exception handler.

Exception handling using trap and ˜ Throw will usually be determined by producers for
languages that specify their own exception handling semantics. Responsibility for the ˜ Throw
token definition will therefore normally rest with producers, by including this token within the
producer specific LPI.

172 X/Open Preliminary Specification

Token Register XANDF Interface Tokens

˜Set_signal_handler

→ EXP OFFSET(locals_alignment, locals_alignment)

˜Set_signal_handler must be applied before any use of the ERROR_TREATMENT trap, to
indicate the need for exception trapping. Responsibility for the ˜Set_signal_handler token
definition will rest with installers. Responsibility for applying it will normally rest with
producers.

The resulting offset value will contain the amount of space beyond any stack limit, which must
be reserved for use when handling a stack_overflow trap raised by exceeding that limit.

˜Sync_handler

→ EXP TOP

˜Sync_handler delays subsequent processing until any pending exceptions have been raised,
which is necessary to synchronise exception handler modification. It must be applied
immediately prior to any action that modifies the effect of ˜ Throw, such as assignment to a
variable holding an exception handler as long_jump destination. Responsibility for the
˜Sync_handler token definition will rest with installers. Responsibility for applying it will
normally rest with producers.

9.4.2 Diagnostic Extension

An optional extension to XANDF can be used to provide program diagnostic information that
can be transformed by installers to the form required by popular platform-specific debuggers.

This extension is not part of this XANDF specification. However, the following description
identifies the 4 tokens involved and outlines their form.

˜exp_to_source
˜diag_id_source
˜diag_type_scope
˜diag_tag_scope

bdy: EXP
. . : . .

→ EXP

Each of these 4 tokens has several arguments of which the first, bdy, is an EXP. In each case, the
default definition body, when no diagnostic information is required, is simply bdy.

Note that this description is quite sufficient to enable installers to ignore any diagnostic
information that may be included in produced XANDF.

Architecture Neutral Distribution Format (XANDF) 173

Language Programming Interfaces Token Register

9.5 Language Programming Interfaces
A Language Programming Interface (LPI) is here defined to mean a set of tokens, usually specific
to a particular producer, which will encapsulate language features at a higher level than basic
XANDF constructs, more convenient for the producer to produce.

Responsibility for the specification of individual LPIs lies with the appropriate producer itself.
Before an application can be installed on some target platform, the appropriate LPI token
definitions must have been built for that platform. In this sense, the LPI can be considered as a
primitive API, which is discussed in Section 9.6 on page 176.

The process by which the LPI token definition library or capsule is generated for any specific
platform will vary according to the LPI, and responsibility for defining that process will also lie
with the appropriate producer. Some LPIs can be fully defined by architecture neutral XANDF,
using the tokens specified in Section 9.2 on page 164 and Section 9.3 on page 169 to encapsulate
any target dependencies. When that is the case, the generation process can be fully automated.
For other LPIs the process may be much less automated. In some cases where the source
language implies a complex run-time system, this might even require a small amount of new
code to be written for each platform.

Generally, the individual LPI tokens do not need to be specified in the token registry, provided
they follow a registered naming scheme to ensure uniqueness (see Section 9.1 on page 163). In
exceptional circumstances it may be necessary for some XANDF tool to recognise individual LPI
tokens explicitly by name. This will be the case when experimenting with potential extensions to
XANDF, for example in the field of parallelism. In other cases, an XANDF installer or other tool
may recognise an LPI token by name rather than its definition by choice, for some unspecified
advantage. It is a pragmatic choice in such cases whether to include such token specifications in
the token registry. For widely used producers, one can assume availability of the LPI token
specifications, or standard definitions, separately from the token register, but one should expect
any such tokens to be specified within the register for all cases where significant advantage
could be taken by an installer only if it recognises the token by name.

9.5.1 C Producer LPI

A C producer LPI can be defined by an architecture neutral token definition capsule provided
with the producer. In this case, target specific detail is included only by use of the target
dependency tokens and C mapping tokens specified in Section 9.2 on page 164 and Section 9.3.1
on page 169, respectively. Target-specific versions of this capsule are obtained by
transformation, using an XANDF simplification tool to bind in the definitions of the target
dependency and C mapping tokens that are provided with the target installer. No special
treatment is required for any of the C LPI tokens, though translation time can be slightly
improved in a few cases if the names are recognised and standard token definition exercised
explicitly within some installers.

Such a C LPI would not need to include standard library features, for which the C language
requires header files. The standard C library is one example of an API, discussed in Section 9.6
on page 176.

174 X/Open Preliminary Specification

Token Register Language Programming Interfaces

9.5.2 Fortran LPI

The following tokens are suggested, though subject to detailed specification of argument and
result SORTs, as an example in case any installers may be able to produce better code than could
be achieved by normal token expansion. In particular, some installers may be able to inline
standard function calls.

.Et˜EXP: Exponential (e ** x) of any floating variety, including complex.

.Et˜LOG: (Natural) logarithm of any floating variety, including complex.

.Et˜LOG_10: Base 10 logarithm of any floating variety, including complex.

.Et˜LOG_2: Base 2 logarithm of any floating variety, including complex.

.Et˜SIN: Sine of any floating variety, including complex.

.Et˜COS: Cosine of any floating variety, including complex.

.Et˜TAN: Tangent of any floating variety, including complex.

.Et˜ASIN: Inverse sine of any floating variety, including complex.

.Et˜ACOS: Inverse cosine of any floating variety, including complex.

.Et˜ATAN: Inverse (one argument) tangent of any floating variety, including complex.

.Et˜ATAN2: Inverse (two arguments) tangent of any floating variety, excluding complex.

.Et˜SINH: Hyperbolic sine of any floating variety, including complex.

.Et˜COSH: Hyperbolic cosine of any floating variety, including complex.

.Et˜TANH: Hyperbolic tangent of any floating variety, including complex.

.Et˜ASINH: Inverse hyperbolic sine of any floating variety, including complex.

.Et˜ACOSH: Inverse hyperbolic cosine of any floating variety, including complex.

.Et˜ATANH: Inverse hyperbolic tangent of any floating variety, including complex.

.Et˜MOD: Floating point remainder of any floating variety, excluding complex.

Architecture Neutral Distribution Format (XANDF) 175

Application Programming Interfaces Token Register

9.6 Application Programming Interfaces
Application Programming Interfaces (APIs) are typically specified with a C mapping, which
defines the required contents for C header files which a portable C program must include by
name to gain access to target-specific implementations of an API library. The XANDF approach
to API specification includes using a ‘‘#pragma’’ token syntax within architecture neutral C
header files, such that all implementation dependencies are encapsulated by API specific tokens.
These API tokens are the XANDF representation of the API. Both the API library and API token
definitions are required before an XANDF program using the API can be installed on any
particular platform.

Platform-specific definitions for API tokens are produced automatically, with few exceptions, for
any platform with a conformant implementation of the API. This is achieved by a token library
building process which analyses the architecture neutral header files for the API concerned,
together with the platform specific header files that provide normal (non-XANDF) C access to
the API. The few exceptions occur where the platform-specific header files have been written to
make use of specific C compiler built-in features, typically recognised by identifiers with a prefix
such as ‘‘_builtin_’’. Such cases are very likely to require explicit recognition of the
corresponding token name in XANDF installers.

Generally, API token names and specifications are not detailed in this token register. The token
specifications are clearly dependent on the associated API specifications. Authority for
controlling the actual API token names, and the relationship between API tokens and the
various API standardisation authorities, remain separate subjects of discussion.

Names and specifications are given or implied below for those API tokens which frequently
require built-in support from installers, and for other cases where an installer may be able to
produce better code than could be achieved by normal token expansion, for example by inlining
standard function calls.

9.6.1 ANSI C Standard Functions

The set of tokens implied below all have the form:

ansi.<header>.<function>

. . . : . . .
→ EXP

Tokens are defined for all cases where <header> is ctype or string or math or stdlibn , and
<function> is the name of a function specified in the ANSI C standard library, declared within
the corresponding header <header.h>.

These tokens have arguments all of SORT EXP, whose number and shape, and token result
shape, all correspond to the implementation shape of the named ANSI C standard library
function parameters and result. For the few cases where the function is specified not to return
(for example, ansi.stdlib.abort), the result shape may be either TOP or BOTTOM.

176 X/Open Preliminary Specification

Token Register Application Programming Interfaces

9.6.2 Common Exceptional Cases

ansi.setjmp.setjmp

jb: EXP
→ EXP

ansi.setjmp.setjmp is a token which has the semantics and argument and result implementation
shapes corresponding to the ANSI C macro setjmp declared within <setjmp.h>.

ansi.setjmp.longjmp

jb: EXP
v: EXP

→ EXP

ansi.setjmp.longjmp is a token which has the semantics and argument implementation shapes
corresponding to the ANSI C macro longjmp declared within <setjmp.h>. The result shape may
be either TOP or BOTTOM.

˜alloca

i: EXP
→ EXP

˜alloca is a token which has the semantics and argument and result implementation shapes
corresponding to the BSD specified function alloca.

Architecture Neutral Distribution Format (XANDF) 177

Token Register

178 X/Open Preliminary Specification

Glossary

ABI
Application Binary Interface

ANDF
Architecture Neutral Distribution Format

ANSI
American National Standards Institute

API
Application Programming Interface.

argument
Information which is passed to a function or operation and which specifies the details of the
processing to be performed.

atom
An atom is a unique ID corresponding to a string name. Atoms are used to identify
properties, types and selections.

compiling
production of ANDF from some source language.

DRA
The United Kingdom Defence Research Agency.

EXP
short-form for ‘‘expression’’.

installing
linking and mapping of ANDF onto a concrete machine using processor-specific libraries
implementing the API calls and data formats.

LPI
Language Programming Interface

POSIX
IEEE Portable Operating System Interface

producing
production of ANDF from some source language (same meaning as ‘‘compiling’’).

translating
making a program for some specific platform from ANDF

XANDF
X/Open specification for the Architecture Neutral Distribution Format

Architecture Neutral Distribution Format (XANDF) 179

Glossary

180 X/Open Preliminary Specification

Index

ABI...179
alignment

alloca ...149
alloca_alignment ..146
code ...149
frame ...149
var_param..149

alloca ...146
alloca_alignment ..146

alloca_alignment...25
ANDF..179
ANSI..179
API...176, 179
API token..164
application programming interface....................176
argument ..179

notation...11
assignment, atomic ..149
atom...179
atomic assignment ...149
bitfields ...154
byte align..161
byte boundaries ..161
BYTESTREAM...160
C producer LPI..174
callees_alignment ...26
capsule

introduction ...5
code

for characters...138
code_alignment...26
compiling ...2, 179
constant

evaluation ..139
construct

abs..39
access ..108
access_apply_token ...17
access_cond ...17
add_accesses..18
add_modes ..127
add_procprops..97
add_to_ptr..40
alignment ...25
alignment_apply_token24
alignment_cond ..25

alignment_sort ..108
alloca_alignment ..25
al_tag...108
al_tag_apply_token..21
and...40
apply_general_proc ...41
apply_proc ...40
assign ..42
assign_with_mode ...43
bfvar_apply_token ...28
bfvar_bits ...28
bfvar_cond ...28
bitfield...102
bitfield_assign ...43
bitfield_assign_with_mode43
bitfield_contents ...44
bitfield_contents_with_mode44
bitfield_variety..108
bool..108
bool_apply_token...30
bool_cond...30
bottom...103
callees_alignment ...26
callers_alignment ...26
case ..44
chain_extern ..81
change_bitfield_to_int...45
change_floating_variety......................................45
change_int_to_bitfield...46
change_variety..45
check_stack ..97
code_alignment...26
common_tagdec ...116
common_tagdef ..119
comparable ..95
complete ...128
complex_conjugate ..46
complex_of_float ..85
complex_parms ..85
component ...46
compound..103
computed_nat ...91
computed_signed_nat.......................................106
concat_nof ..46
concat_string ...112
conditional ...47

Architecture Neutral Distribution Format (XANDF) 181

Index

constant ..18
contents ..47
contents_with_mode ...48
continue..37
current_env..48
div0..49
div1..49
div2..50
env_offset ...50
env_size ..51
equal..93
error_jump ...38
error_treatment...108
error_val ...91
errt_apply_token ..37
errt_cond ..37
exp ...109
exp_apply_token ..39
exp_cond ..39
fail_installer ...51
false..30
floating..103
floating_abs..51
floating_div..52
floating_maximum...52
floating_minimum ...53
floating_minus ..52
floating_mult ...53
floating_negate..53
floating_plus..54
floating_power..54
floating_test ...54
floating_variety...109
float_int...51
float_of_complex ..85
flvar_apply_token ..84
flvar_cond ..84
flvar_parms..84
foreign_sort..109
goto..55
goto_local_lv ...55
greater_than...93
greater_than_or_equal ..94
identify..55
ignorable...56
imaginary_part ...56
impossible ..38
initial_value ...56
inline..98
integer ...103
integer_test ..56

label ...109
labelled..57
label_apply_token ..87
last_local...57
less_than...94
less_than_or_equal...94
less_than_or_greater_than95
locals_alignment...26
local_alloc...58
local_alloc_check ..58
local_free ..59
local_free_all..59
long_jump..59
long_jump_access ..18
make_al_tag...21
make_al_tagdef...22
make_al_tagdefs ...23
make_callee_list..32
make_capsule..33
make_capsule_link...34
make_caselim ..35
make_complex ..60
make_compound..60
make_dynamic_callees32
make_extern_link ...83
make_floating..60
make_general_proc..61
make_group...86
make_id_tagdec..115
make_id_tagdef ..118
make_int...62
make_label ...87
make_link...88
make_linkextern ...89
make_links...90
make_local_lv ...62
make_nat ..92
make_nof..62
make_nof_int...62
make_null_local_lv ..63
make_null_proc ..63
make_null_ptr...63
make_otagexp ...96
make_proc..63
make_signed_nat..106
make_stack_limit..64
make_string ...112
make_tag ..113
make_tagacc ..114
make_tagdecs..117
make_tagdefs ..120

182 X/Open Preliminary Specification

Index

make_tagshacc ..120
make_tok..124
make_tokdec ...122
make_tokdecs..122
make_tokdef..123
make_tokdefs ..123
make_tokformals..126
make_top..65
make_unique...129
make_unit ..130
make_value..65
make_var_tagdec ...115
make_var_tagdef..118
make_version ..134
make_versions ..133
maximum...65
minimum..65
minus ..66
move_some..66
mult ...66
nat ..109
nat_apply_token...91
nat_cond...91
negate..67
nil_access..36
nof..104
not ..67
not_comparable ..95
not_equal..94
not_greater_than ..94
not_greater_than_or_equal94
not_less_than...95
not_less_than_and_not_greater_than..............95
not_less_than_or_equal95
no_long_jump_dest ...98
no_other_read ...18
no_other_write..18
ntest ...109
ntest_apply_token..93
ntest_cond..93
n_copies..67
obtain_al_tag ...27
obtain_tag ..67
offset..104
offset_add...68
offset_div..68
offset_div_by_int ..68
offset_max..69
offset_mult ...69
offset_negate..69
offset_pad...69

offset_subtract ...70
offset_test ...70
offset_zero..70
or ..71
original pointer ...58, 63
out_par..19
overflow ...36
overlap..128
parameter_alignment ..27
plus ..71
pointer...105
pointer_test ..71
power ..72
preserve ..19
proc..105
procprops...109
procprops_apply_token......................................97
procprops_cond..97
proc_test ...72
profile..72
real_part ...73
register ..19
rem0...73
rem1...73
rem2...74
repeat ..74
return...75
return_to_label..75
rotate_left ...75
rotate_right ..76
rounding_mode..110
rounding_mode_apply_token.........................100
rounding_mode_cond.......................................100
round_as_state..100
round_with_mode..75
same_callees ..32
sequence ...76
set_stack_limit ..76
shape ...110
shape_apply_token..102
shape_cond..102
shift_left..77
shift_right...78
signed_nat..110
signed_nat_apply_token...................................106
signed_nat_cond...106
snat_from_nat ...107
stack_overflow..36
standard_access ..19
standard_transfer_mode...................................128
string ...110

Architecture Neutral Distribution Format (XANDF) 183

Index

string_apply_token ..112
string_cond..112
string_extern..81
subtract_ptrs..78
tag ..110
tag_apply_token...113
tail_call..78
token..110
token_apply_token ..124
token_definition..125
top..105
toward_larger..101
toward_smaller...101
toward_zero ..101
to_nearest ...100
transfer_mode ...110
transfer_mode_apply_token............................127
transfer_mode_cond..127
trap ..38
trap_on_nil...128
true...30
unique_extern ...81
unite_alignments ..27
untidy..98
untidy_return..79
used_as_volatile ...19
use_tokdef..124
variable ...79
variety...111
var_apply_token...131
var_callees..98
var_callers ..98
var_cond...131
var_limits ...131
var_param_alignment ...27
var_width...132
visible ..20
volatile ..128
wrap ..38
xor..80

division
definition of kinds ..140

DRA...179
encoding

basic...159
boundary..13
extendable integer..161
extendible...12
number..12
number of bits ...12
of lists..161

of option ...161
of sorts ..161

equality
of ALIGNMENT...141
of EXP ...141
of SHAPE ...141

errors
in floating point ..153

evaluation
of constants..139
order of ...150

EXP ..179
extendable integer

encoding...161
extendible

encoding...12
floating point

errors ...153
representation ...152

Fortran LPI ...175
frame ...144
identification

linkable entity..12
unit...12

installing...179
integer

basic encoding...159
overflow ...152

integer extendable encoding161
integers

representation of...151
interface token...172
introduction

of tags..137
label

introduction...137
language programming interface........................174
least upper bound

shape ...155
limits

on varieties...155
linkable entity

identification..12
list

encoding...161
notation...11

locals_alignment ...26
LPI ...174, 179

C producer...174
Fortran ..175

LUB shape ..155

184 X/Open Preliminary Specification

Index

memory
model ..147
simple model...147

modulus
definition of kinds ..140

nil_access ..36
offset

arithmetic ...147
option

encoding...161
notation...11

order
of evaluation..150

original
pointers...150

original pointer
creation...79, 118-119, 150

overflow
integer ...152

overlapping..151
parameter_alignment ..27
pointer

arithmetic ...147
pointers

original..150
POSIX..179
producing...2, 179
read only...155
representation

of floating point ..152
of integers...151

result
notation...11

rounding...153
shape

least upper bound ..155
shape_offset ...77
tag

introduction...137
TDFBOOL ..160
TDFIDENT...160
TDFINT...159
tld...6, 161
token

introduction to ..9
token class ..163
token naming...163
token prefix..164
token register...163
token simple names ...163
tokens ..163

translating ..2, 179
types

circular..149
unit

al_tagdef ...6
identification..12
kinds of ...6
tagdec..6
tagdef ..6
tokdec..6
tokdef ..6

used_as_volatile..19
varieties

limits on..155
XANDF ...179

extending..10

Architecture Neutral Distribution Format (XANDF) 185

Index

186 X/Open Preliminary Specification

