
Appendix K

IPX/SPX Transport Provider

K.1 General
This appendix is a Preliminary Specification. It specifies protocol-specific information that is
relevant for mapping XTI functions to SPX and IPX transport providers.

The description given here is limited to the IPX protocol and the enhanced SPX (or SPXII)
protocol. All references to the SPX protocol refer to this version unless specifically noted. In
compliance with the X/Open Interface Adoption Criteria, this protocol is obtainable from
multiple sources.

Notes:

1. Neither IPX nor SPX supports expedited data. All data is handled on a first-come,
first-served basis.

2. The protocol-specific data structures used by IPX and SPX (most notably, the
T_SPX2_OPTIONS structure) are likely to grow in the future.

K.2 Namespace

K.2.1 IPX

If the header xti_ipx.h is included, identifiers with the prefixes, suffixes or complete names
shown are reserved for any use by the implementation.

Header Prefix
<xti_ipx.h> t_ipx

If the header xti_ipx.h is included, macros with the following prefixes may be defined. After the
last inclusion of xti_ipx.h an application may use identifiers with the following prefixes for its
own purpose, provided their use is preceded by an #undef of the macro.

Header Prefix
<xti_ipx.h> T_IPX_

XTI — IPX/SPX Transport Provider January 1996 1

Namespace IPX/SPX Transport Provider

K.2.2 SPX

If the header xti_spx.h is included identifiers with the prefixes, suffixes or complete names
shown are reserved for any use by the implementation.

Header Prefix
t_spx, T_SPX<xti_spx.h>

If the header xti_spx.h is included, macros with the prefixes may be defined. After the last
inclusion of xti_spx.h an application may use identifiers with the following prefixes for its own
purpose, provided there use is preceded by an #undef of the macro.

Header Prefix
<xti_spx.h> T_SPX_

K.3 Options

K.3.1 IPX-level Options

IPX options are association related. IPX options may be negotiated in all XTI states except
T_UNBND and T_UNINIT. The level associated with each option is T_IPX_OPT. The name
member should be set to T_IPX_OPTS_V1. IPX options are stored in a structure of type
t_ipxOptions that follows the XTI t_opthdr structure containing at least the following members:

typedef struct t_ipxOptions {
unsigned short ipx_checksum /* Checksum */
unsigned char ipx_packet_type /* IPX Packet type */
} t_ipxOpts_t;

This option may only be manipulated using the t_sndudata () or t_rcvudata () functions.

Other options may be defined in the future.

At least the following packet types are known to IPX:

T_IPX_NULL_PACKET_TYPE Used for all packets not classified by any other type

T_IPX_NCP_PACKET_TYPE Used for NCP packets (that is, Netware Control Protocol)

T_IPX_SPX_PACKET_TYPE Sequenced packet protocol used for SPX packets

2 X/Open Preliminary Specification

IPX/SPX Transport Provider Options

K.3.2 SPX-level Options

Some values of the SPX options are association-related as defined below. Unless otherwise
noted, they may be negotiated in all XTI states except T_UNBND and T_UNINIT. The level
associated with each option is T_SPX_OPT. The name member is set to T_SPX_OPTS_V1. SPX
options are stored following the XTI t_opthdr structure in a format defined by the following data
structure:

typedef struct t_spx2_options {
unsigned int versionNumber;
unsigned int spxIIOptionNegotiate;
unsigned int spxIIRetryCount;
unsigned int spxIIMinimumRetryDelay;
unsigned int spxIIMaximumRetryDelta;
unsigned int spxIIWatchdogTimeout;
unsigned int spxIIConnectionTimeout;
unsigned int spxIILocalWindowSize;
unsigned int spxIIRemoteWindowSize;
unsigned int spxIIConnectionID;
unsigned int spxIIInboundPacketSize;
unsigned int spxIIOutboundPacketSize;
unsigned int spxIISessionFlags;
} T_SPX2_OPTIONS;

An application passing a t_opthdr structure followed by a T_SPX2_OPTIONS structure to a
function that can support options information will get information about all legal options on
each call.

Each of this structure’s members is described below.

versionNumber
The application must set this member to T_SPX_OPTIONS_VERSION. This member is
used to manage forward compatibility as this structure is extended in the future. Access is
through the t_optmgmt() or other functions that use the t_call data structure.
T_SPX_OPTIONS_VERSION is currently set to 1.

spxIIOptionNegotiate
This value is association-related. This member can be set to
T_SPX_NEGOTIATE_OPTIONS (default) to indicate that an endpoint wishes to exchange
option data with a remote endpoint, or to T_SPX_NO_NEGOTIATE_OPTIONS to indicate
that it does not wish to do this. This is a negotiable value, and may be manipulated through
the t_optmgmt() function or through functions that use the t_call data structure.

spxIIRetryCount
This value specifies the number of unsuccessful transmission attempts that SPX will make
before aborting a connection. Setting this value to 0 causes the default value (10) to be used.
This is a negotiable value, and may be manipulated through the t_optmgmt() function or
through functions that use the t_call data structure.

spxIIMinimumRetryDelay
An internal round-trip time algorithm normally calculates the delay before a transmission
retry. Setting this member to a non-zero value overrides this algorithm and uses the value
as the fixed number of milliseconds before a retransmit. The default value is 300
milliseconds. This is a negotiable value, and may be manipulated through the t_optmgmt()
function or through functions that use the t_call data structure.

XTI — IPX/SPX Transport Provider January 1996 3

Options IPX/SPX Transport Provider

spxIIMaximumRetryDelta
The value of this member is added to spxIIMinimumRetryDelay or to the current round-trip
time to determine the maximum retry delay. Setting this value to 0 causes the default delay
(5 seconds) to be used. This is a negotiable value, and may be manipulated through the
t_optmgmt() function or through functions that use the t_call data structure.

spxIIWatchdogTimeout
This value determines the number of seconds that SPX will wait on an inactive connection
before sending a still-alive query to the remote endpoint. This is a negotiable value, and
may be manipulated through the t_optmgmt() function or through functions that use the
t_call data structure.

spxIIConnectionTimeout
This value is the number of seconds that SPX will wait after a successful connect request
before the first session packet must arrive. If a packet does not arrive in this interval, the
connection is aborted. This is a negotiable value, and may be manipulated through the
t_optmgmt() function or through functions that use the t_call data structure.

spxIILocalWindowSize
This value is association-related. This member sets the size of the local endpoint’s receive
window in packets. A zero setting requests the driver to negotiate the window size. The
local driver default is 8. This is a negotiable value, and may be manipulated through the
t_optmgmt() function or through functions that use the t_call data structure.

spxIIRemoteWindowSize
This value is association-related. This member is meaningful only after a connection has
been established, that is, in states T_OUTCON, T_INCON, T_DATAXFER. It contains the
number of packets in the remote endpoint’s receive window. This is a non-negotiable value
and is retrieved through functions that use the t_call data structure. Attempts to set this
value with the T_NEGOTIATE flag set will have no effect.

spxIIConnectionID
This value is association-related. This member is meaningful only after a connection has
been established, that is, in states T_OUTCON, T_INCON, T_DATAXFER. It contains the
local endpoint connection ID. This a non-negotiable value and is retrieved through
functions that use the t_call data structure. Attempts to set this value with the
T_NEGOTIATE flag set will have no effect.

spxIIInboundPacketSize
This value is association-related. This member is meaningful only after a connection has
been established, that is, in states T_OUTCON, T_INCON, T_DATAXFER. It contains the
number of bytes in each incoming data packet. This value may change due to a route
change in mid-connection. There is no way to notify an application that this has occurred.
This is a non-negotiable value and is retrieved through functions that use the t_call data
structure. Attempts to set this value with the T_NEGOTIATE flag set will have no effect.

spxIIOutboundPacketSize
This value is association-related. This member is meaningful only after a connection has
been established, that is, in states T_OUTCON, T_INCON, T_DATAXFER. It contains the
number of bytes in each outgoing data packet. This value may change due to a route
change in mid-connection. There is no way to notify an application that this has occurred.
This is a non-negotiable value and is retrieved through functions that use the t_call data
structure. Attempts to set this value with the T_NEGOTIATE flag set will have no effect.

4 X/Open Preliminary Specification

IPX/SPX Transport Provider Options

spxIISessionFlags
This value is association-related. This bit member contains flags that control physical layer
characteristics of SPX packets. These may include checksums, data encryption, or data
signing. The following flags have been defined:

Flag Value Description
T_SPX_SF_NONE 0x00 Options off
T_SPX_SF_IPX_CHECKSUM 0x01 Packet checksums on
T_SPX_SF_SPX2_SESSION 0x02 Compatibility flag

The T_SPX_SF_NONE and T_SPX_SF_IPX_CHECKSUM flags are read/write, and
accessible through the t_optmgmt() function and functions using the t_call data structure.
The T_SPX_SF_SPX2_SESSION flag is read-only and is accessible through functions that use
the t_call data structure.

K.4 Functions
t_accept() No special considerations.

t_bind() For IPX and SPX:

IPX and SPX support static and dynamic port assignment. If the application
does not wish to chose a port, it sets req to NULL or req→addr.len to 0. In this
case, the provider assigns a dynamic port in the range 0x4000 to 0x7fff.

If the application wishes to bind to a specific port (that is, a static port),
req→addr.buf must point to an addressing structure.

A process without sufficient privilege can only request a port in the range 0x8000
to 0xffff. If the request is for a port outside the static port range, t_bind() will fail
and t_errno will be set to TACCESS. A process with appropriate privilege can
request any port number.

For SPX:

SPX allows only a single transport endpoint to be bound to a port. If a requested
port is already bound to another endpoint, t_bind() will fail and set t_errno to
[TADDRBUSY].

t_connect() SPX does not support connect user data.

t_getinfo() The default characteristics returned by t_getinfo () in the info structure for an IPX
endpoint are:

XTI — IPX/SPX Transport Provider January 1996 5

Functions IPX/SPX Transport Provider

Parameters Before call After call
info→addr / x
info→options / x
info→tsdu / x (1)
info→etsdu / −2
info→connect / −2
info→discon / −2
info→servtype / T_CLTS
info→flags / 0

(1) ‘‘x’’ is the smallest of the maximum size of transport data units supported
by connected LANs.

The default characteristics returned by t_getinfo () in the info structure for an
SPX endpoint are:

Parameters Before call After call
info->addr / x
info->options / x
info->tsdu / −1
info->etsdu / −2
info->connect / −2
info->discon / −2
info->servtype / T_COTS_ORD
info->flags / 0

t_listen() SPX does not support connect user data.

An option buffer, as described in Section K.3.2, ‘‘SPX-level Options’’ will be
passed to the user (unless call→opt.maxlen is zero.

t_open() The default characteristics returned by t_open() in the info structure for an IPX
endpoint are the same as those listed in the table above for t_getinfo ().

Similarly, the default characteristics returned by t_open() in the info structure
for an SPX endpoint are the same as those listed in the table above for
t_getinfo ().

t_optmgmt() For IPX:

No IPX options are currently available through the t_optmgmt() function.

For SPX:

Options may be set or retrieved using the t_optmgmt() function only when the
endpoint is in the state T_IDLE.

SPX supports the standard options buffer using the t_opthdr structure. The
t_opthdr structure is followed by a T_SPX2_OPTIONS structure, as described
in Section K.3, Options.

SPX supports options that may be examined and negotiated with the
t_optmgmt() function. The options are listed and described in Section K.3,
Options.

t_rcv() SPX does not support expedited data, so the T_EXPEDITED flag will not be set.

SPX allows logical units of data to be unlimited in length.

6 X/Open Preliminary Specification

IPX/SPX Transport Provider Functions

If the SPX watchdog (see Section K.3.2, ‘‘SPX-level Options’’ determines that the
remote transport endoint is no longer participating in the connection, the SPX
watchdog generates a disconnect indication which causes t_rcv() to return with
a [T_LOOK] error.

t_rcvdis() SPX does not support disconnect user data.

On return, the discon→reason member is set to one of the following:

T_SPX_CONNECTION_TERMINATED
Indicates that no error occurred and an SPX terminate connection packet
was received from the remote endpoint. This reason code indicates success.

T_SPX_CONNECTION_FAILED
Indicates that the remote endpoint failed to acknowledge a transmission.

t_rcvudata() The t_rcvudata function is issued on an IPX endpoint.

On return from the function, unitdata→addr.buf points to the address information
for the remote endpoint, and unitdata→opt.buf points to an options buffer as
described in Section K.3.1, ‘‘IPX-level Options’’.

If a packet received by a t_rcvudata () request did not have the checksum
calculated and verified, the t_ipx_checksum member of the struct t_ipxOptions, is
set to 0xFFFF. Any other value indicates that the provider has calculated and
verified the checksum of the received packet. For all received packets, the
t_ipx_packet_type member is set to the packet type of the received packet.

t_snd() SPX does not support expedited data so the T_EXPEDITED flag must not be set.

t_snddis() SPX does not support the sending of user data or options with a disconnect
request.

t_sndudata() If unitdata→opt.len is zero, then a packet type of T_IPX_NULL_PACKET_TYPE
is used and no checksum is generated.

To send any other packet type, unitdata->opt must reference an options buffer as
defined in Section K.3.1. ‘‘IPX-level Options’’. The IPX packet type must be
defined. A checksum will be generated if t_ipx_checksum" is set to
T_IPX_CHECKSUM_TRIGGER.

XTI — IPX/SPX Transport Provider January 1996 7

IPX/SPX Transport Provider

8 X/Open Preliminary Specification

