
Preliminary Specification

Inter-domain Management:

Specification Translation

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Preliminary Specification

Inter-domain Management: Specification Translation

ISBN: 1-85912-150-0
Document Number: P509

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Preliminary Specification

Contents

Part 1 Introduction .. 1

Chapter 1 Introduction... 3
 1.1 Scope and Purpose.. 3
 1.2 Specification Translation ... 4
 1.3 Interaction Translation... 5
 1.4 Usage Overview.. 7
 1.5 Futures... 9
 1.6 Assumptions and Principles... 10
 1.7 Document Structure ... 11

Part 2 ASN.1 to OMG IDL Translation Algorithm 13

Chapter 2 ASN.1 Type to CORBA-IDL Translation................................. 15
 2.1 Introduction ... 16
 2.2 Outline of the Translation Process .. 18
 2.3 File Names and IDL Modules .. 19
 2.3.1 Standard Files for Specification Translation....................................... 19
 2.3.2 Example ... 20
 2.4 Lexical Translation.. 21
 2.4.1 Example ... 23
 2.5 Mapping ASN.1 Module to IDL Module... 24
 2.5.1 Mapping of Module Identifier... 25
 2.5.2 Mapping of Tag Default ... 25
 2.5.3 Mapping of Exports .. 25
 2.5.4 Mapping of Imports .. 25
 2.5.5 Mapping of Referencing Type and Value Definition........................ 26
 2.5.6 Mapping of Assigning Types .. 26
 2.5.7 Mapping of Assigning Values ... 26
 2.6 Mapping of ASN.1 Comments... 27
 2.7 Mapping of Primitive ASN.1 Types and Values................................... 28
 2.7.1 Mapping of ASN.1 Primitive Types... 28
 2.7.2 Mapping of Values... 29
 2.7.3 Mapping of NULL types .. 29
 2.7.4 Mapping of Boolean Type.. 29
 2.7.4.1 Examples... 29
 2.7.5 Mapping of Integer Type.. 30
 2.7.5.1 Examples... 30
 2.7.6 Mapping of Real Type... 31
 2.7.6.1 Examples... 31
 2.7.7 Mapping of Enumerated Type .. 32

Inter-domain Management: Specification Translation iii

Contents

 2.7.7.1 Examples... 32
 2.7.8 Mapping of Bit String Type.. 33
 2.7.8.1 PIDL for BitString Access Functions... 33
 2.7.8.2 Examples... 34
 2.7.9 Mapping of Octet String Type .. 35
 2.7.9.1 Examples... 35
 2.7.10 Mapping of ASN.1 String Types... 36
 2.7.10.1 Mapping of Useful Type.. 36
 2.7.10.2 PIDL for Time Access Functions ... 37
 2.7.11 Mapping of Object Identifier ... 38
 2.7.11.1 Examples .. 38
 2.7.12 Mapping of Any Type... 39
 2.7.12.1 Examples... 39
 2.7.13 Mapping of Tagged Type ... 39
 2.7.14 Mapping of External Type ... 39
 2.8 Mapping of Recursive Types.. 40
 2.8.0.1 Examples... 40
 2.9 Mapping of ASN.1 Constructed Types .. 41
 2.9.1 Composite Types ... 42
 2.9.1.1 Examples... 43
 2.9.2 Anonymous Elements and Items ... 44
 2.9.2.1 Examples... 44
 2.9.3 Mapping of Choice .. 45
 2.9.3.1 Examples... 46
 2.9.4 Mapping of Selection .. 48
 2.9.4.1 Examples... 48
 2.9.5 Mapping of Sequence and Set ... 49
 2.9.5.1 COMPONENTS OF <type> Production.. 49
 2.9.5.2 OPTIONAL Components ... 49
 2.9.5.3 DEFAULT Components... 49
 2.9.5.4 Translating to IDL... 49
 2.9.5.5 Examples... 50
 2.9.6 Mapping of Sequence Of and Set Of.. 52
 2.9.6.1 Examples... 52
 2.9.7 Mapping of EmbeddedPDV and Character String Types 52
 2.10 Mapping of Constraints and Subtypes... 53
 2.10.1 Mapping of Constrained Type .. 53
 2.10.2 Mapping of Subtype Elements.. 53
 2.10.2.1 Mapping of Value Range... 53
 2.10.2.2 Mapping of SingleValue .. 54
 2.10.2.3 Mapping of ASN.1 MIN and MAX ... 54
 2.10.2.4 Mapping of Permitted Alphabet.. 54
 2.10.2.5 Mapping of INCLUDES .. 55
 2.10.2.6 Mapping of InnerTypeConstraints.. 55
 2.10.2.7 Examples... 57
 2.11 IDL Modules for Builtin ASN.1 Types.. 58

iv Preliminary Specification

Contents

Part 3 GDMO to OMG IDL Translation Algorithm 59

Chapter 3 GDMO to CORBA-IDL Translation .. 61
 3.1 Outline of Translation Algorithm.. 63
 3.2 File Names and IDL Modules .. 64
 3.2.1 Standard Files for Specification Translation....................................... 65
 3.2.2 Example ... 65

Chapter 4 Mapping GDMO Templates to IDL Interfaces 69
 4.1 Error Handling .. 70
 4.2 Mapping Managed Object Templates to IDL.. 71
 4.3 Mapping an Attribute as a Set of IDL Operations 73
 4.4 Mapping Parameters to IDL Types ... 74
 4.4.1 Examples.. 74
 4.5 Mapping Actions to IDL Operations .. 75
 4.5.1 Mapping of Action Parameters... 75
 4.5.2 Mapping to an Operation on the Primary Interface 75
 4.5.3 Handling Multiple Replies... 76
 4.5.4 Examples.. 76
 4.6 Mapping Notifications to IDL Operations .. 77
 4.6.1 Mapping of Event Parameters... 78
 4.6.2 Mapping to Operations in Notification Modules 78
 4.6.3 Example ... 78
 4.7 Resolving Inheritance Collisions ... 80
 4.7.1 Examples.. 80

Part 4 OMG IDL to GDMO/ASN.1 Translation
Algorithm.. 85

Chapter 5 OMG IDL to GDMO/ASN.1 Translation................................ 87
 5.1 Mapping CORBA IDL to GDMO/ASN.1 .. 87
 5.1.1 Outline of the Translation Algorithm.. 87
 5.1.2 Generated GDMO/ASN.1 Documents ... 87
 5.1.3 JIDM GDMO Base Document ... 88
 5.1.4 Lexical Translation... 88
 5.1.5 Translation of IDL Identifiers to GDMO and ASN.1 Labels........... 88
 5.1.6 Allocation of Object Identifiers... 89
 5.1.7 Use of Object Identifiers ... 89
 5.1.8 Translation of Comments... 90
 5.1.9 Translation of Preprocessor Directives.. 90
 5.1.10 Translation of CORBA IDL .. 90
 5.1.10.1 Translation of IDL Interfaces .. 91
 5.1.10.2 Translation of IDL Attributes ... 92
 5.1.10.3 Translation of IDL Operations ... 92
 5.1.10.4 Translation of IDL Exceptions.. 92
 5.2 Name Bindings.. 94
 5.3 Mapping CORBA IDL Data Type Definitions 95
 5.3.1 Translation of IDL Data Types .. 95

Inter-domain Management: Specification Translation v

Contents

 5.3.1.1 Translation of IDL Base Types.. 95
 5.3.1.2 Translation of IDL Type Constructors .. 96
 5.3.2 Examples for Constructed Types.. 96
 5.3.3 Provision of CORBA ANY Type in GDMO/ASN.1 97
 5.3.3.1 ASN.1 Syntax for CORBA ANY Type Parameters......................... 97
 5.3.3.2 Free Form Representation of CORBA Any Parameters 97
 5.3.3.3 Free Form Type Code Representation in ASN.1............................. 97
 5.3.3.4 Free Form CORBA Any Value Representation in ASN.1 98
 5.4 Examples... 99
 5.4.1 Example 1 .. 99
 5.4.2 Example 2 .. 101
 5.5 JIDM Base GDMO Document .. 103
 5.5.1 Assigned X/Open JIDM Object Identifier .. 103
 5.5.2 JIDM Base Document Managed Object Class Template.................. 103
 5.5.3 JIDM Base Document Attribute Templates.. 103
 5.5.4 JIDM Base Document Name Binding Templates 104
 5.5.5 JIDM Base Document Parameter Templates 104
 5.5.6 JIDM Base Document ASN.1 Module ... 104
 5.5.7 ASN.1 Module for Representing CORBA ANY Type Parameters 105

Part 5 SNMP to OMG IDL Translation Algorithm................. 107

Chapter 6 Introduction... 109

Chapter 7 SNMPv2 to CORBA-IDL Translation.. 111
 7.1 Outline of the Translation Algorithm... 111
 7.2 SNMPv2 Application-specific Type Translation 114

Chapter 8 Mapping of SNMPv2 Information Modules......................... 115
 8.1 Lexical Translation.. 115
 8.2 Names and IDL Modules .. 116
 8.2.1 Standard Files for Specification Translation....................................... 116
 8.2.1.1 Contents of SNMPMgmt.idl file .. 116
 8.2.2 Mapping of Module Definition... 116
 8.2.3 Naming of the IDL File Output .. 117
 8.3 Mapping of IMPORTing Symbols... 118
 8.3.1 Example ... 119

Chapter 9 SNMPv2 Information Module Macros 121
 9.1 Macro Invocation .. 121
 9.2 SNMPv2-SMI MODULE-IDENTITY Macro ... 122
 9.2.1 Mapping of the LAST-UPDATED Clause... 122
 9.2.2 Mapping of the ORGANIZATION Clause... 122
 9.2.3 Mapping of the CONTACT-INFO Clause.. 122
 9.2.4 Mapping of the DESCRIPTION Clause .. 123
 9.2.5 Mapping of the REVISION Clause .. 123
 9.2.6 Mapping of the MODULE-IDENTITY Value..................................... 123
 9.2.7 Example ... 124

vi Preliminary Specification

Contents

 9.3 SNMPv2-SMI OBJECT-IDENTITY Macro... 125
 9.3.1 Mapping of the DESCRIPTION Clause .. 125
 9.3.2 Mapping of the REFERENCE Clause .. 125
 9.3.3 Mapping of the OBJECT-IDENTITY Value.. 125
 9.3.3.1 Example .. 126
 9.4 SNMPv2 OBJECT-TYPE Macro ... 127
 9.4.1 Base IDL Interface for SNMP Group or Table Entry 128
 9.4.2 Mapping of OBJECT-TYPE Macro for Table...................................... 130
 9.4.2.1 Example .. 130
 9.4.3 Mapping of OBJECT-TYPE Macro for Table Entry........................... 130
 9.4.3.1 Mapping of the Macro Descriptor... 131
 9.4.3.2 Mapping of the IndexPart clause to IDL.. 131
 9.4.3.3 Mapping of the DESCRIPTION Clause ... 131
 9.4.3.4 Mapping of the REFERENCE Clause ... 131
 9.4.3.5 Mapping of the OBJECT-TYPE Value... 131
 9.4.3.6 Example .. 131
 9.4.4 Mapping of SNMP Group.. 133
 9.4.4.1 Example 1 ... 134
 9.4.4.2 Example 2 ... 135
 9.4.5 Mapping of OBJECT-TYPE Macro for Variables............................... 136
 9.4.5.1 Mapping of the Macro Descriptor... 136
 9.4.5.2 Mapping of the SYNTAX Clause... 136
 9.4.5.3 Mapping of the MAX-ACCESS Clause .. 137
 9.4.5.4 Mapping of the UNITS Clause... 137
 9.4.5.5 Mapping of the STATUS Clause .. 137
 9.4.5.6 Mapping of the DESCRIPTION Clause ... 137
 9.4.5.7 Mapping of the REFERENCE Clause ... 138
 9.4.5.8 Mapping of the IndexPart Clause.. 138
 9.4.5.9 Mapping of the DEFVAL Clause ... 138
 9.4.5.10 Mapping of the OBJECT-TYPE Value... 138
 9.5 SNMPv2-SMI NOTIFICATION-TYPE Macro 140
 9.5.1 Mapping of the OBJECTS clause .. 140
 9.5.2 Mapping of the DESCRIPTION Clause .. 141
 9.5.3 Mapping of the REFERENCE Clause .. 141
 9.5.4 Mapping of the NOTIFICATION-TYPE Value.................................. 141
 9.5.5 Generation of Operation for Typed-Push Event Communication 142
 9.5.6 Generation of Operation for Typed-Pull Event Communication .. 143
 9.5.6.1 Example .. 143
 9.5.7 Operation Signatures for Typed-push/Typed-pull.......................... 146
 9.6 SNMPv2 TEXTUAL-CONVENTION Macros 147
 9.6.1 Mapping of the SYNTAX Clause.. 147
 9.6.2 Mapping of the DISPLAY-HINT Clause... 148
 9.6.3 Mapping of the STATUS Clause ... 148
 9.6.4 Mapping of the DESCRIPTION Clause .. 148
 9.6.5 Mapping of the REFERENCE Clause .. 148
 9.6.6 Example 1 .. 149
 9.6.7 Example 2 .. 150
 9.6.8 Example 3 .. 150

Inter-domain Management: Specification Translation vii

Contents

 9.7 SNMPv2 MODULE-COMPLIANCE Macros.. 151

Chapter 10 Mapping of SNMPv1 Traps ... 153
 10.1 SNMPv1 Traps... 153
 10.2 Mapping of TRAP-TYPE Macro in SNMPv1 .. 154
 10.2.1 Deriving Repository ID of IDL Operations for Traps 154
 10.2.2 Mapping of TRAP-TYPE Macros for Generic Traps......................... 154
 10.2.3 Example: Generic Traps.. 154
 10.2.4 Example: Enterprise-specific Trap.. 158

Part 6 OMG IDL to SNMP Translation Algorithm................. 161

Chapter 11 OMG IDL to SNMP Translation .. 163

Part 7 IDL Modules and Examples .. 165

Chapter 12 Basic Definitions .. 167
 12.1 Basic IDL Definitions.. 167
 12.1.1 ASN1Types.idl File .. 167
 12.1.2 ASN1Limits.idl File ... 168
 12.2 OSIMgmt.idl File... 169
 12.3 SNMPMgmt.idl File.. 171
 12.4 SNMPv1Trap.idl File.. 172

Chapter 13 Translation of X.721 and X.722 Modules.................................. 175

Chapter 14 Mapping of SNMPv2 RFC Modules .. 177
 14.1 Mapping of SNMPv2-SMI (RFC1442) .. 177
 14.2 Mapping of SNMPv2-TC (RFC1443) .. 179

Part 8 Object Model Comparison.. 185

Chapter 15 Introduction... 187
 15.1 Scope and Purpose.. 187
 15.2 Document Structure ... 188

Chapter 16 Comparison of Object Models... 189
 16.1 Goals of the Models.. 190
 16.1.1 Comparison... 190
 16.1.1.1 Intended Use.. 190
 16.1.1.2 Interoperability/Portability.. 190
 16.1.1.3 User Advantage... 190
 16.1.1.4 Re-usable Components.. 190
 16.1.2 Analysis.. 190
 16.2 Interfaces... 192
 16.2.1 Concepts .. 192
 16.2.2 Comparison... 192

viii Preliminary Specification

Contents

 16.2.2.1 Interface Type .. 192
 16.2.2.2 Carriage Protocol .. 193
 16.2.2.3 Open Interface ... 193
 16.2.2.4 Protocol Model .. 193
 16.2.2.5 Interface Concurrency ... 193
 16.2.3 Analysis.. 194
 16.3 Characteristics of Objects.. 195
 16.3.1 Concepts .. 195
 16.3.2 Comparison... 196
 16.3.2.1 Description... 196
 16.3.2.2 Object Operations ... 196
 16.3.2.3 Object Events ... 196
 16.3.2.4 Behaviour.. 197
 16.3.2.5 Attributes.. 197
 16.3.2.6 Attribute Operations .. 197
 16.3.2.7 Object Life-cycle Operations .. 198
 16.3.2.8 Attribute Behaviour.. 198
 16.3.2.9 Data Types.. 198
 16.3.2.10 Encapsulation.. 199
 16.3.2.11 Object Reference Data Type.. 199
 16.3.2.12 Interface Type References ... 199
 16.3.3 Analysis.. 199
 16.4 Object Specification and Instantiation.. 202
 16.4.1 Concepts .. 202
 16.4.2 Comparison... 202
 16.4.2.1 Attribute Specification ... 202
 16.4.2.2 Binding.. 202
 16.4.2.3 Object Instantiation .. 203
 16.4.2.4 Behaviour Specification ... 203
 16.4.2.5 Specification Tools .. 203
 16.4.3 Analysis.. 203
 16.5 Object Taxonomy .. 205
 16.5.1 Concepts .. 205
 16.5.2 Comparison... 205
 16.5.2.1 Object Class.. 205
 16.5.2.2 Taxonomy... 206
 16.5.2.3 Type System ... 206
 16.5.3 Analysis.. 206
 16.6 Object Reference.. 207
 16.6.1 Concepts .. 207
 16.6.2 Comparison... 207
 16.6.2.1 Object Reference.. 207
 16.6.2.2 Name... 208
 16.6.2.3 Naming Model .. 208
 16.6.2.4 Access Transparency.. 209
 16.6.2.5 Location Transparency .. 209
 16.6.2.6 Location Independence ... 209
 16.6.3 Analysis.. 209

Inter-domain Management: Specification Translation ix

Contents

 16.7 Object Selection and Address Resolution.. 210
 16.7.1 Concepts .. 210
 16.7.2 Comparison... 210
 16.7.2.1 Direct Selection.. 210
 16.7.2.2 Associative Selection.. 210
 16.7.2.3 AddressResolution .. 211
 16.7.3 Analysis.. 211

Chapter 17 Summary of Similarities and Differences 213
 17.1 Summary .. 213
 17.1.1 Interoperability and Portability .. 213
 17.1.2 Re-usable Components... 213
 17.1.3 Encapsulation ... 213
 17.1.4 Object Operations .. 213
 17.1.5 Behaviour... 214
 17.1.6 Attributes and Attribute Operations ... 214
 17.1.7 Taxonomy.. 214
 17.1.8 Direct Selection... 214
 17.1.9 Intended Use... 214
 17.1.10 Interface Type ... 214
 17.1.11 Interface Concurrency .. 215
 17.1.12 Protocol Model ... 215
 17.1.13 Multiple Replies ... 215
 17.1.14 Object Events .. 215
 17.1.15 Late Binding.. 215
 17.1.16 Associated Selection.. 216
 17.1.17 Associated Selection Scope.. 216
 17.1.18 Specification .. 216
 17.1.19 Specification Tools ... 216
 17.1.20 Specification Formality... 217
 17.2 Analysis of Similarities and Differences .. 218

Chapter 18 Reconciling the Models ... 219
 18.1 Changing the Models... 219
 18.2 Exploiting the Differences... 219
 18.3 Reconciling the Differences .. 220
 18.3.1 Model Subset Alignment ... 220
 18.3.2 Run-time Mediation ... 220
 18.3.3 Notation Translation Tools ... 221

Chapter 19 Conclusions ... 223

 Glossary ... 225

 Index... 227

x Preliminary Specification

Contents

List of Examples

2-1 File X501Inf.idl.. 20
2-2 Mapping of Boolean Type.. 29
2-3 Mapping of Integer Type.. 30
2-4 Mapping of Real Type... 31
2-5 Mapping of Enumerated Type .. 32
2-6 Mapping of Bit String Type.. 34
2-7 Mapping of Octet String Type .. 35
2-8 Mapping of Object Identifier ... 38
2-9 Mapping of Any Type... 39
2-10 Mapping of Recursive Types... 40
2-11 Mapping of ASN.1 Constructed Types ... 43
2-12 Anonymous Elements and Items ... 44
2-13 Examples of Choice and Recursion.. 46
2-14 Mapping of Selection .. 48
2-15 Mapping of Sequence and Set ... 50
2-16 Mapping of Sequence Of and Set Of.. 52
3-1 File X721Att.idl... 65
3-2 File X721Not.idl.. 66
3-3 File X721Par.idl... 66
3-4 File X721.idl... 67
3-5 File X721_N.idl ... 67
3-6 File X721_NP.idl... 68
4-1 Mapping Parameters to IDL Types .. 74
9-1 Conversion of SNMP MODULE-IDENTITY fizbin................................ 124
9-2 Mapping of OBJECTIDENTITY fizbin .. 126
9-3 Mapping of OBJECT-TYPE Macro for Table.. 130
9-4 Mapping of OBJECT-TYPE Macro for Table Entry................................. 132
9-5 Conversion of Group eval.. 134
9-6 Conversion of Group system .. 135
9-7 Conversion of OBJECT-TYPE macro... 138
9-8 Conversion of SNMP TextualConvention DisplayString 149
9-9 Conversion of SNMP TextualConvention .. 150
9-10 Conversion of SNMP TextualConvention .. 150

List of Figures

1-1 OSI/CORBA Interoperability Scenarios ... 7
1-2 SNMP/CORBA Interoperability Scenarios.. 8
2-1 Inputs and Outputs for ASN.1 Specification Translation 16
3-1 Inputs and Outputs for GDMO Specification Translation.................... 61
4-1 Inheritance Hierarchy of Interfaces of Managed Object Classes 69
4-2 Inheritance Hierarchy Showing Name Collision.................................... 80
4-3 Revised Inheritance Hierarchy of Managed Object Classes 83
7-1 Mapping of SNMP Information Module to IDL 113
9-1 Inheritance Hierarchy of IDL Interfaces for TableEntry/Group 129

Inter-domain Management: Specification Translation xi

Contents

List of Tables

2-1 Production of Module Definition ... 24
2-2 Mapping of ASN.1 Types to IDL Types .. 28
2-3 Mapping of ASN.1 Type Constructors to IDL Type Constructors 41
2-4 Mapping ASN.1 INTEGER with Value Range to IDL Types 54
4-1 Managed Object Class Template Structure .. 71
4-2 Mapping Attribute Properties to IDL Operations 73
4-3 Parameter Template Production... 74
4-4 Action Template Production ... 75
4-5 Notification Template Production.. 77
5-1 Translation of IDL Definitions... 91
5-2 Type Mapping... 95
5-3 Constructor Mapping ... 96
5-4 Type Code Kinds and Associated Parameter Lists 98
7-1 Mapping of SNMP ASN.1 Types.. 114
9-1 Production of ASN.1 Macro Definition Notation 121
9-2 Structure of OBJECT-TYPE Macro Clauses ... 127
9-3 Mapping SNMP Errors to CORBA Exceptions 136
9-4 Mapping ASN.1 Subtype in OBJECT-TYPE Macro SYNTAX Clause. 137
9-5 Mapping MAX-ACCESS Clause of OBJECT-TYPE Macro 137
9-6 Structure of NOTIFICATION-TYPE Macro ... 140
9-7 Structure of TEXTUAL CONVENTION Macro Clauses....................... 147
10-1 TRAP-TYPE Macro in SNMPv1.. 153

xii Preliminary Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Inter-domain Management: Specification Translation xiii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

xiv Preliminary Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Inter-domain Management: Specification Translation xv

Preface

This Document

This document was developed by the Joint Inter-Domain Management (JIDM) working group,
an activity jointly sponsored by X/Open and the Network Management Forum (NMF). It
addresses the need to provide tools that enable interworking between management systems
based on different technologies, notably OSI and SNMP network management and Object
Management Group (OMG) CORBA-based management frameworks.

Both OSI Management and SNMP form the basis for long-term network management solutions.
Similarly, object-oriented development tools such as those being specified by the OMG are
increasingly being used as the basis for systems management frameworks.

In order to facilitate integration between these different management disciplines it is necessary
to provide interworking between the different technologies that are employed. In addition, this
permits the introduction of technology from one domain into other domains, for example
allowing OMG CORBA technology to be integrated into OSI and SNMP network management
systems.

Structure

This document is divided into several parts:

• Part 1: Introduction

• Part 2: ASN.1 to OMG IDL Translation Algorithm

• Part 3: GDMO to OMG IDL Translation Algorithm

• Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm

• Part 5: SNMP to OMG IDL Translation Algorithm

• Part 6: OMG IDL to SNMP Translation Algorithm
This part of the document is currently not provided.

• Part 7: IDL Modules and Examples

• Part 8: Comparison of Object Models
This is an updated version of NMF Technical Report TR107.

Typographical Conventions

Within this dcoument the following conventions are used:

SNMP, ASN.1 and GDMO text fragments appear in Courier.

IDL text fragments appear in Helvetica Bold.

PIDL text fragments appear in Helvetica.

In a number of sections, grammars appear. In these grammars, <xxx> denotes a non-terminal
element and a bold typeface denotes literals.

xvi Preliminary Specification

Trademarks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.
.

Inter-domain Management: Specification Translation xvii

Acknowledgements

The Open Group acknowledges the work of the Joint Inter-domain Management (JIDM)
working group, comprising members of The Open Group and the Network Management Forum
(NMF). This document was developed by the JIDM, under the auspices of the Collaboration
Agreement between NMF and The Open Group. The Open Group and NMF wish to thank all
those experts who contributed to the development of this Inter-domain Management:
Specification Translation document. Special thanks are due to:

Colin Ashford BNR
Prabha Chadayammuri HP
Jesus Gonzalez Telefonica Investigacion y Desarrollo
Juan Jose Hierro Telefonica Investigacion y Desarrollo
Ulf Hollberg IBM
Martin Kirk The Open Group
Subrata Mazumdar Lucent Technologies (formerly at IBM Research Labs)
Tim Roberts BNR
Tom Rutt Lucent Technologies (formerly at AT&T Bell Labs)
Nader Soukouti SMILE (formerly at ESIGETEL)

xviii Preliminary Specification

Referenced Documents

The following documents are referenced in this specification:

ASN.1
ITU-T Recommendation X.208 | ISO 8824: 1990 Information Technology — Open Systems
Interconnection — Specification of Abstract Syntax Notation One (ASN.1).

ASN.1:1994
ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology —
Abstract Syntax Notation One (ASN.1): Specification of basic notation.

Boo91
Booch, G., Object-oriented Design with Applications, Benjamin/ Cummings, Redwood City,
CA, 1991.

CMIP
ITU-T Recommendation X.711 | ISO/IEC 9596-1: 1991, Information Technology — Open
Systems Interconnection — Common Management Information Protocol, Part 1:
Specification.

CORBA
The Common Object Request Broker: Architecure and Specification, OMG Document,
Revision 2.0, July 1995

COS,
CORBA Services: Common Object Services Specification, OMG Document Number 95-3-31,
Revised Edition, March 1995

DIR
ISO/IEC 9594: 1991, Information Technology — Open Systems Interconnection —
Management Information Services — The Directory.

ESS
Event Service Specification, chapter 4 in CORBA Services: Common Object Services
Specification, OMG Document Number 95-3-31, March 1995.

GDMO
ITU-T Recommendation X.722 | ISO/IEC 10165-4:1992, Information Technology — Open
Systems Interconnection — Structure of Management Information — Part 4: Guidelines for
the Definition of Managed Objects.

Gold89
Goldberg, A. and Robson, D., Smalltalk-80, Addison-Wesley, Reading, Mass,1989.

Hausz86
Hauzer, B. M. A Model for Naming, Addressing, and Routing. ACM Trans. Off. Inf.Sys, 4(4),
Oct 1986.

IADM RFC1445, J.R. Davin, J.M. Galvin, K.McCloghrie, Administrative Model for version 2 of
the Simple Network Management Protocol (SNMPv2), April 1993.

ISMI
RFC 1155, M. Rose and K. McCloghrie, Structure and Identification of Management
Information for TCP/IP based Internets, May 1990.

Inter-domain Management: Specification Translation xix

Referenced Documents

ISMIV2
RFC 1442, J.D. Case, K. McCloghrie, M.T. Rose, S.L.Waldbusser, Structure of Management
Information for version 2 of the Simple Network Management Protocol (SNMPv2), April
1993.

ISO/IEC 7498-4
ITU-T Recommendation X.700 | ISO/IEC 7498-4: 1989, Information Processing Systems —
Open Systems Interconnection — Basic Reference Model — Part 4: Management
Framework.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

Jacqm90
Jacqmot, C., Milgrom, E., Joosen, W, and Berbers, Y., Naming and Network Transparent
Process Migration in Loosely Coupled Distributed Systems.

In Decentralised Systems, Eds Cosnard, E and Girault, C, Elsevier, North-Holland, 1990.

Kent91
Kent, W., A Rigourous Model of Object Reference, Identity, and Existence, Journal of
Object-Oriented Programming, (4)3, June 1991.

Krug92
Krueger, C. W., Software Reuse, ACM Comput. Surv. 24(2), June 1992.

Lalon91
Lalonde, W. and Pugh, J., Subclassing vs. Subtyping, Journal of Object-oriented
Programming, (3)5, January 1991.

Mey88
Meyer, B., Object-Oriented Software Construction, Prentice Hall, Englewood Cliffs, NJ, 1988.

MPR
Network Management Forum, Modelling Principles for Managed Objects, TR102,
Bernardsville, NJ, 1991.

Naur68
Naur, P. and Randell, B., Eds., Software Engineering: Report on a Conference by the NATO
Science Committee, NATO Scientific Affairs Division, Brussels. 1968.

ODP93-2
ITU-T Recommendation X.902 | ISO/IEC 10746-2, Open Distributed Processing —
Reference Model — Part 2: Foundations.

ODP93-3
ITU-T Recommendation X.903 | ISO/IEC 10746-2, Open Distributed Processing —
Reference Model — Part 3: Architecture.

OMNI
Network Management Forum, Discovering OMNIPoint, PTR Prentice Hall, New Jersey.
1993.

OOM
Object Management Group/Object Model Task Force, The OMG Object Model V0.9,
Boulder, CO, 1991.

xx Preliminary Specification

Referenced Documents

XAP-ROSE
Preliminary Specification, January 1994, ACSE/Presentation: Remote Operations Service
Element API (XAP-ROSE) (ISBN: 1-872630-86-3, P302).

Rumb91
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

SMI
ITU-T Recommendation X.720 | ISO/IEC 10165-1 1991, Information Technology — Open
System Interconnection — Management Information Services — Structure of Management
Information — Part1: Management Information Model.

SNMP
RFC 1157, J.D. Case, M.S. Fedor, M.L. Schoffstall,C. Davin, Simple Network Management
Protocol (SNMP), May1990.

SNMPV2
RFC 1448, J.D. Case, K. McCloghrie, M.T. Rose, S.L.Waldbusser, Protocol Operations for
version 2 of the Simple Network Management Protocol (SNMPv2), April 1993.

Weg90
Wegner, P., Concepts and Paradigms of Object-oriented Programming, OOPS Messenger,
(1)1, August 1990.

Inter-domain Management: Specification Translation xxi

Referenced Documents

xxii Preliminary Specification

Preliminary Specification

Part 1:

Introduction

The Open Group

Part 1: Introduction 1

2 Preliminary Specification

Chapter 1

Introduction

1.1 Scope and Purpose
This document is the first deliverable from the Joint Inter-domain Management (JIDM) working
group, an activity jointly sponsored by The Open Group and the Network Management Forum
(NMF). This project was initiated in response to a perceived need to provide tools that would
enable interworking between management systems based on different technologies.

In the real world there are several technologies that are appropriate to solving this complex task.
Each has strengths and weaknesses and will undoubtedly feature in future network
management systems. The Open Group and Open-Network Management Forum Joint Inter-
domain Management (JIDM) group has identified three key technologies:

• CMIP (see reference CMIP)

• SNMP (see reference SNMP)

• CORBA (see reference CORBA),

and is seeking to enable interoperability between them, both within a single organisation and
between organisations. SNMP has a large embedded base in the general purpose computing
market, CMIP is mandated in the telecommunications arena by the TMN standard, and CORBA
is recognised as the emerging standard covering distributed object oriented programming. Each
technology has its strength; thus full interoperability will enable designers to select the most
appropriate technology to apply to any given problem. The Network Management Forum ISO-
Internet Management Coexistence (see reference IIMC) group has addressed SNMP/CMIP
interoperability. Thus JIDM has chosen to concentrate on CMIP/CORBA and SNMP/CORBA
interworking.

To enable interworking it is necessary to be able to map between the relevant object models and
to build on this to provide a mechanism to handle protocol conversion on the domain
boundaries. The results of comparing the object models of OSI Management, CORBA and
Internet Management is provided in Part 8 of this document. For a particular pair of domains,
the specification of the mapping is split into two parts:

• The first part, covered in this document, is referred to as Specification Translation, and is
expressed as a mechanism for translating between GDMO (the object definition language
used in conjunction with CMIP — see reference GDMO), SNMP MIB Definition language
(see references SNMPv2 and ISMIv2), and CORBA’s Interface Definition Language (IDL —
see reference the CORBA domain.

• The second part, to be detailed in a subsequent document, is known as Interaction
Translation and covers the mechanisms to dynamically convert between the protocols in one
domain and the protocols within the other without either party necessarily being aware of
the conversion. This allows objects in one domain to be represented in the other domain and
the interactions can be governed by the domain of choice rather than by the domain in which
the target object is implemented. For example, an object in the CORBA domain should be
able to interact with a GDMO object as if it were in the CORBA domain, ideally without
having to know that the target object is in a different domain. Naturally the converse is also
true, that an OSI Manager should be able to manage CORBA objects as if they were defined
in GDMO (this requires the reverse mapping).

Part 1: Introduction 3

Scope and Purpose Introduction

The main advantage of this is that the strength of CORBA (object oriented system with
wel-ldefined APIs which are aimed at standardising and simplifying the task of creating
distributed applications) can be combined with the strength of CMIP (powerful protocol with
strong wire compatibility allowing integration of multi-vendor hardware) to give the best of
both worlds. The implementor would have an effective environment in which to implement
manager or agent functionality and yet be able to easily integrate components from multiple
vendors. Figure 1-1 on page 7 illustrates the main interoperability scenarios identified for the
OSI and CORBA domains. Figure 1-2 on page 8 illustrates those for Internet and CORBA.

1.2 Specification Translation
Specification Translation covers the process by which specifications are translated from one
specification to another. It is a static process which may be required to generate additional
material for use in Interaction Translation. In this document an algorithm for the static
translation of GDMO specifications to and from IDL interfaces, and the static translation from
SNMP MIBs to IDL only, is described. This document does not attempt to detail the generation
of additional information required by Interaction Translation but does make reference to the
Interaction Translation process where this may impact on the static translation.

When translating from GDMO to IDL, trade-offs are encountered between enabling access to the
full power of CMIP and generating simple IDL representations which simplify the application
programmer’s task. Wherever possible, these have been resolved according to the principle of
keeping it simple in the most number of cases at the expense of making lesser used constructs
more complex.

4 Preliminary Specification

Introduction Interaction Translation

1.3 Interaction Translation
Interaction Translation covers the process by which interactions from one domain are mapped
onto one or more interactions from the other domain. A gateway, the entity responsible for
translating interactions, might receive a CMIP PDU and must map this into one or more requests
or replies on IDL interfaces. For example, if a scoped and filtered CMIP GET request is received,
the gateway would have to identify the set of objects matching the filter within the scope and
invoke the appropriate operation on each of those objects. The results would be collated and
formatted into one or more CMIP PDUs in reply. It is the responsibility of the Interaction
Translation document to define how this kind of translation is performed.

This is clearly a fundamental part of the work. To date, significant effort has been put in to
address the content of this. At this stage, it seems that production of a gateway for a particular
set of GDMO or SNMP MIB definitions is entirely feasible. The main outstanding issue is the
provision of dynamic access in the CORBA domain to Management Information about these
specifications, for example, for example, default values, sub-ranges not representable in IDL,
behaviours, etc. This dynamic access allows more powerful and generic tools to be constructed
and, in particular, a gateway that is independent of the particular object model could be
constructed.

In addition, Interaction Translation must cover initialisation identifying how the gateway is
initialised and populated. How it identifies the existing object population and what other service
instances it may need to use. The gateway will probably interact with existing standard services
in the CORBA domain, for example, OMG Name Service to resolve Distinguished Names, OMG
Lifecycle Service to create new object instances and the use of OMG Event Channels for event
distribution.

Interaction Translation requires that the interactions be captured by a gateway which converts
them in accordance with the mapping rules. Thus, in the OSI/CORBA scenarios, the gateway
must:

• receive any incoming CMIP SET/GET/ACTION request and translate it into one or more
invocations to methods supported by some object(s)

• receive any event generated by an application object and translate it into an EVENT-REPORT
request to be forwarded to remote systems that had register their interest in receiving events

• receive incoming method invocations and forward them as CMIP SET/GET/ACTION
requests to some OSI agent

• receive CMIP EVENT-REPORT requests and forward them as CORBA events to interested
parties in the CORBA domain

• receive any incoming CMIP CREATE/DELETE request and translate it into an invocation to
a method being supported by an object (for example, a factory object)

• receive method invocations for creating/deleting objects in a remote system and forward a
CMIP CREATE/DELETE request to some OSI agent.

This protocol conversion is complicated by such things as the need to map identifiers due to the
differences between GDMO and IDL scoping and case-sensitivity, to map between GDMO
Distinguished Names and CORBA Object References and to handle CMIP scoping and filtering
requests which may require one CMIP request to be mapped to multiple sequences of IDL
operations.

Whilst it may seem desirable to map the type ObjectInstance from CMIP (see reference
CMIP), directly to CORBA Object References, this is not the correct mapping because the
semantics are different. The translation maps the type ObjectInstance exactly as any other

Part 1: Introduction 5

Interaction Translation Introduction

ASN.1 defined compound type would be mapped, that is, retaining the Distinguished Name
format. The use of the DistinguishedName is entirely self consistent and does not require the
Specification Translation process to translate ObjectInstance as a special case. Also the
Interaction Translation process will require the ability to convert between ObjectInstance
and CORBA Object References, so run-time facilities will exist to do the mapping for
applications if necessary. These will be addressed within the the Interaction Translation
document.

6 Preliminary Specification

Introduction Usage Overview

1.4 Usage Overview

CORBA-OSI
Gateway

OSI-CORBA
Gateway

CORBA-OSI
Gateway

OSI-CORBA
Gateway

CORBA
Manager

OSI
Agent

OSI
Manager

CORBA
Agent

CORBA
Manager

CORBA
Agent

CORBA CMIS

CMIS CORBA

CORBA CMIS CORBA

Figure 1-1 OSI/CORBA Interoperability Scenarios

A common scenario is that a set of objects are defined in GDMO. The GDMO is statically
translated via the Specification Translation algorithm in this document, into IDL interfaces. A
manager implemented as a set of CORBA objects, would manage objects supported by an OSI
agent as if they were CORBA objects (that is, via the generated IDL interfaces). These interfaces
would be supported by a gateway supporting the Interaction Translation algorithm. This would
dynamically translate IDL requests into CMIP PDUs based on the original GDMO specification.
The Interaction Translation is obviously bi-directional translating CMIP PDUs originating from
the Agent into the appropriate IDL requests and replies. Conversely, if the Manager is an OSI
manager, it generates CMISE exactly as if the objects were supported by an OSI agent. The CMIP
protocol is terminated by the gateway which dynamically translated the CMIP PDUs into IDL
requests on the CORBA implemented object.

The final case illustrates the use of CMIP as an environment-specific interoperability protocol. It
allows both the Manager and the Agent to be implemented in the CORBA domain and yet to
offer the standard Q3 interface externally. Neither party is aware of the implementation of the
other but two gateways back-to-back ensure the smooth working of the system. This is
obviously less efficient than direct IDL invocation, however, it does allow use of CMIP as an
environment specific interoperability protocol, which could be used in the TMN environment.

Part 1: Introduction 7

Usage Overview Introduction

SNMP
Manager

CORBA
Agent

CORBA
Manager

SNMP
Agent

SNMP-CORBA
Gateway

CORBA-SNMP
Gateway

SNMP IDL

IDL SNMP

Figure 1-2 SNMP/CORBA Interoperability Scenarios

Figure 1-2 illustrates a similar set of scenarios between Internet management and CORBA.

A CORBA Agent is an Agent which has its object definitions specified in CORBA IDL. A
CORBA Manager is a Manager which has its object definitions defined in CORBA IDL.

Using the scenarios described in this section, a CORBA Manager may interact with OSI, SNMP,
and CORBA Agents.

8 Preliminary Specification

Introduction Futures

1.5 Futures
Figure 1-1 on page 7 identified a use of back-to-back gateways for interoperability. This
technique may be re-applied to provide multiple translations as required.

In addition, this gateway approach is entirely in line with the interoperability specification
adopted by the OMG as part of CORBA 2.0 (see reference CORBA). The OMG is currently in the
process of drafting a Request for Proposals (RFP) on CORBA-COM interoperability which is
likely to require the details of specification and interaction translation necessary to enable
interworking between Microsoft Windows applications and CORBA applications. This move by
the OMG to standardise interworking with non-CORBA domains should be extended to cover
GDMO and SNMP, so it is desirable that this document and its companions be submitted for
approval through the OMG using its fast-track process.

It should be noted that future work on Interaction Translation may introduce further
requirements on the translator.

Part 1: Introduction 9

Assumptions and Principles Introduction

1.6 Assumptions and Principles
The algorithms have been designed using a number of guiding principles to resolve issues:

• Completeness:
The aim was to provide a complete mapping insofar as it was possible. Rules have been
provided for all cases regardless of their frequency. In some cases, this means explicitly
ignoring information, (usually this will be addressed in Interaction Translation), but all cases
should be considered.

• Simplicity (The 80-20 rule):
ASN.1 allows many constructs that are difficult to map into IDL. Many of these are not
frequently used. In the light of the completeness principle, it was decided to select the
simplest mapping for 80% of the cases allowing the remaining, more obscure cases, to be
more complicated if necessary.

• Reuse of OMG services:
The CORBA domain does not have a Network Management architecture; it provides a
distributed processing environment. It is populated by an increasing number of Object
Services such as Naming and Events which are useful building blocks. The JIDM group has
tried to exploit these facilities where possible, for example, Event services are used for OSI
notifications.

• Freedom of implementation:
This document refrains from defining or constraining implementations unless it is absolutely
necessary. Whilst the group discussions have naturally established the feasibility of
implementation, the document does not attempt to provide hints.

10 Preliminary Specification

Introduction Document Structure

1.7 Document Structure
This document defines algorithms for translating between CORBA IDL and the OSI and SNMP
notations based on GDMO and ASN.1. Translations between OSI and SNMP notations are not
contained in this document as they have already been addressed by the ISO-Internet
Management Co-existence (IIMC) work sponsored by the NMF.

This document is divided into several parts:

Part 1: Introduction

Part 2: ASN.1 to OMG IDL Translation Algorithm
This part of the document provides common translation rules used by both the GDMO and
SNMP translation algorithms.

Part 3: GDMO to OMG IDL Translation Algorithm
This part of the document addresses the translation of OSI GDMO-based specifications into
OMG IDL.

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm
This part of the document addresses the translation of OMG IDL-based specifications into
GDMO.

Part 5: SNMP to OMG IDL Translation Algorithm
This part of the document addresses the translation of SNMP-based specifications into
OMG IDL.

Part 6: OMG IDL to SNMP Translation Algorithm
This part of the document is currently not provided.

Part 7: IDL Modules and Examples
This part of the document contains the standard IDL modules defined in the specification,
and also provides informative examples of the application of the algorithms defined within
the document. In the case of any discrepancies between the examples and the specification
of the algorithms, the specification is to be regarded as definitive.

Part 8: Comparison of Object Models
This part of the document provides a comparison of the OSI, SNMP and OMG object
models. It is an updated version of NMF Technical Report TR107.

Part 1: Introduction 11

Introduction

12 Preliminary Specification

Preliminary Specification

Part 2:

ASN.1 to OMG IDL Translation Algorithm

The Open Group

Part 2: ASN.1 to OMG IDL Translation Algorithm 13

14 Preliminary Specification

Chapter 2

ASN.1 Type to CORBA-IDL Translation

Part 2: ASN.1 to OMG IDL Translation Algorithm 15

Introduction ASN.1 Type to CORBA-IDL Translation

2.1 Introduction
In this part, the Specification Translation process for ASN.1 modules is described in terms of
inputs and outputs and a rough outline of the process is given. The process will be implemented
via a compiler which operates on a set of input files and results in some output files. Since IDL
definitions are processed in terms of files which determine the granularity and reusability of the
IDL definitions, it is necessary to specify which definitions are generated and what files they are
defined in. In addition, ASN.1 adds some complexities by using lengthy module names such as
InformationNetwork . Since such names are used to import parts of specifications, there must
be a way for the translation process to access the files containing these specifications. In
addition, it is desirable to be able to associate the resulting IDL files with the original ASN.1 to
facilitate browsing and reuse. This will be done by providing a ‘‘nickname database’’ which
maps from the unique registered name of the ASN.1 document (or relevant Object Identifier) to a
short nickname suitable for use as a filename base. This nickname will be used to find imported
files and to control the names of the generated IDL files.

ASN.1
specification

files

IDL
definition

files

Other outputs may support
Interaction Translation
and Gateway construction

nicknames.db

ASN.1
Translator

Figure 2-1 Inputs and Outputs for ASN.1 Specification Translation

Since nicknames will be used as the basis for naming files, generated IDL files will only be
reusable in an environments where identical nickname databases are used. Therefore, it is
desirable to make the nickname database as standard as possible (for example, have standard
nicknames for all registered ASN.1 modules). In order to facilitate this, the following nickname
selection method is recommended (but not mandatory):

• For ASN.1 modules, the nickname is formed by taking the nickname of the standard in which
the module occurs, followed by the first three characters of the module label. For example,
the InformationFramework module of X.501 would have the nickname X501Inf .

• Where more than one module label in a document has the same initial three letters, append a
number to the nicknames for the second and subsequent module labels to disambiguate.
This means that the first module would have no numeric suffix, the second colliding module
would have the suffix ‘‘1’’, the third ‘‘2’’ and so on.

16 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Introduction

As it is illegal to modify the existing contents of a standard in this context, it is assumed that the
nickname always refers to the latest version of the standard. If, for any reason, parts of the
original standard are modified in a revision, the last 2 digits of the revision year can be appended
to the nickname.

In order to translate between ASN.1 and CORBA IDL, (hereinafter referred to simply as IDL), it
is necessary to be able to map the basic definitions (that is, mapping between ASN.1 types and
IDL type definitions).

There are two versions of ASN.1 defined, ASN.1:1990 (see reference ASN1) and ASN.1:1994 (see
reference ASN1:1994). Since GDMO explicitly builds on ASN.1 and all new GDMO will provide
ASN.1:1990 versions (at least in the short term), this document focuses on that version.
However, translation is also provided for all the basic types (for example, BMPString and
UniversalString) from ASN.1:1994 as a step towards migration to ASN.1:1994. Further steps on
this path may be taken in the future.

In this document, unless otherwise noted, the unqualified name ASN.1 refers to ASN.1:1990.

ASN.1 has a much more complex type system than IDL. As a result, the translation necessarily
loses some information; for instance in terms of tag values, sub-range types, compound type
constants, etc. Capturing this information for subsequent use in the run-time system is a key
issue. A number of schemes have been proposed including the use of string constants and
#pragma directives, but the definitive statement is deferred to Interaction Translation.

In a number of cases, the complexity of some data types makes it desirable to define operations
for manipulating their values. In CORBA, the standard technique is to define pseudo-IDL (PIDL)
which allows a fairly tight definition of the operations but with the implication that these
operations have library implementations and can only be invoked locally. For example, this is
used to provide access methods to support manipulation of the BitString data type.

Part 2: ASN.1 to OMG IDL Translation Algorithm 17

Outline of the Translation Process ASN.1 Type to CORBA-IDL Translation

2.2 Outline of the Translation Process
The algorithm that is used to map ASN.1 modules comprises the following steps:

1. Use as input the original published document. The same order of identifiers is
fundamental to consistently generating the same IDL code.

2. Map each ASN.1 module to an IDL module in a separate IDL file.

3. Prior to mapping each of the clauses contained in an ASN.1 module, transform it into a
canonical form by means of:

— ignoring macros1

— expanding COMPONENTS OF, selection types and WITH COMPONENTSclauses as
described in the following sections in this document.

4. Traverse the contents of the canonical ASN.1 module in order, and map each of the clauses
as follows:

— Export clauses are ignored.

— Import clauses are mapped as described in the following sections in this document.

— Type assignments are mapped as described in the following sections in this document.
If expanded types are generated, lexical disambiguation of the named type names of
the structured outer type (SET, SEQUENCE, CHOICE) must be done prior to
anonymous type generation.

— Value assignments are mapped either into OMG IDL constants or into operations in a
constant interface at the end of the generated IDL module, as explained later in this
document.

Lexical disambiguation is done when generating the mapping in this step, as described in
the following sections in this document.

5. Re-order the generated IDL code to obtain valid OMG IDL code by eliminating forward
references.

1. Macros are not ignored when translating SNMP.

18 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation File Names and IDL Modules

2.3 File Names and IDL Modules
The output of the above translation is a set of IDL modules and interfaces. These must be
organised into files in a way which facilitates reuse and effective generation of code by the
CORBA IDL compiler. Thus the Specification Translation process results in potentially several
IDL files. During that process, the following rules determine the number and content of each file:

• Each file will start with a comment identifying the ASN.1 module from which it was
generated.

• Definitions contained in IDL generated files must be enclosed within #ifndef ... #endif
directives as shown below and will enclose mappings of ASN.1 template definitions.

#ifndef _<capitalised_nickname>_IDL_
#define _<capitalised_nickname>_IDL_
module <nickname> {

<generated-IDL-code>

};
#endif /* _<capitalised_nickname>_IDL_ */

• For each ASN.1 module that is contained in the input file, generate an IDL file named
<module_nickname>.idl containing an IDL module named <module_nickname>, where
<module_nickname> is the nickname that has been assigned to the ASN.1 module.

• For each ASN.1 module from which symbols are imported, add the directive:

#include "<module_nickname>.idl"

to the corresponding IDL file, where <module_nickname> is the nickname that has been
assigned to the imported ASN.1 module. This directive appears before the module being
defined.

2.3.1 Standard Files for Specification Translation

The specification translation assumes the existence of a number of standard files containing base
definitions and classes. These are as follows:

ASN1Types.idl contains the base definitions for translating ASN.1 types (see Section 2.11
on page 58).

ASN1Limits.idl contains the definitions for ASN.1 limits (see Section 12.1.2 on page 168).

Part 2: ASN.1 to OMG IDL Translation Algorithm 19

File Names and IDL Modules ASN.1 Type to CORBA-IDL Translation

2.3.2 Example

Using the recommended nickname convention, the nickname for the standard X.501
InformationFramework ASN.1 module will be X501Inf , and will also be used as the filename for
the generated IDL:

Example 2-1 File X501Inf.idl

// Generated from X501.asn1
// X501Inf.idl file:

#ifndef _X501INF_IDL_
#define _X501INF_IDL_

module X501Inf {

};

#endif /* _X501INF_IDL_ */

20 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Lexical Translation

2.4 Lexical Translation
Since the IDL uses ISO Latin-1 (ISO/IEC 8859-1) character set, each character in the ASN.1
character set maps to itself in IDL.

In ASN.1, names for type-references, identifiers, value-references and module-references consist
of an arbitrary sequence of one or more letters, digits, and hyphens. The letters and digits in
ASN.1 names are mapped directly retaining case. The ASN.1 hyphen (‘‘-’’) maps to IDL
underscore (‘‘_’’). Subject to the possible suffixing as described below, names will be preserved,
for example, CMISFilter type in ASN.1 will be mapped as CMISFilterType[n] in IDL.

ASN.1 names are case sensitive and IDL identifiers are not. In addition, ASN.1 has different
name-spaces for types-references, identifiers and value-references, whereas IDL has a single
namespace. Both have scoped naming spaces, but the naming scopes do not directly map. For
example, enumerated types create a new naming scope in ASN.1 but not in IDL. It is therefore
not possible to simply map ASN.1 names to IDL identifiers. To handle this, the translator must
maintain a table of all identifiers in each resulting IDL scope and modify colliding identifiers
within a given IDL scope to avoid such conflicts.

Not all conflicts arise from ASN.1 names. Additional conflicts could arise from clashes with IDL
reserved words such as ‘‘interface’’ and identifiers and types defined in the base IDL file
ASN1Types.idl and ASN1Limits.idl. The translator must take account of such existing
definitions and use the same disambiguating mechanism to avoid clashes.

Clearly, all identifiers could be modified in order to disambiguate, however the goal of the
translation mechanism to generate the simplest mapping where possible, leads to a slightly more
complex algorithm but preserves a direct mapping where no ambiguity arises. The mapping
used will therefore be context dependent and hence the final mapping will be a necessary input
to the Interaction Translation since any gateway must be able to replicate such mappings. The
rules for disambiguation are as follows:

Rule 1
The first identifier is mapped ‘‘as it is’’, that is, the case is preserved. Second and subsequent
identifiers in the same IDL scope that differ only in case will be suffixed with a double
underbar followed by a numeric disambiguator, for example, <__n> where n is the count of
such instances. Thus the first identifier will not have a suffix, and second and subsequent
clashing identifiers will have suffixes <__1>, <__2> and so on. For example, the ASN.1
identifiers aab , aAB and aaB would be translated as aab, aAB__1 and aaB__2 respectively.

This rule is also applied in the case where ‘‘Choice’’ and ‘‘Choice<__n>’’ is appended in
order to disambiguate CHOICEvalues.

Rule 2
The first type reference is mapped with the suffix ‘‘Type’’. Second and subsequent type
references in the same IDL scope that differ only in case will be suffixed with ‘‘Type<n>’’
where <n> is the count of such instances. Thus the first type reference will not have the
suffix ‘‘Type’’, and second and subsequent clashing type references will have suffixes
‘‘Type1’’, ‘‘Type2’’ and so on. The case of the type reference is always preserved. For
example, the ASN.1 type references Aab, AAB and AaB would be translated as AabType ,
AABType1 and AaBType2 respectively.

This rule is also applied in the case where ‘‘Choice’’ and ‘‘Choice<n>’’ is appended in order
to disambiguate CHOICEtypes.

Rule 3
Value-references are handled as identifiers.

Part 2: ASN.1 to OMG IDL Translation Algorithm 21

Lexical Translation ASN.1 Type to CORBA-IDL Translation

With this scheme, type references cannot clash with identifiers or value references and these
latter two are disambiguated numerically. Since the most commonly occurring clash is between
data type names and identifiers differentiated only by the case of the first letter, this algorithm
avoids the majority of clashes. For example, constructs such as eventRecord EventRecord
translate to EventRecordType eventRecord; . In addition, it is easy to recover the original ASN.1
type identifier by finding the ‘‘Type’’ suffix and removing it and all subsequent text from the
identifier. Giving preference to identifiers ensures minimum impact on the names of members of
sequences and sets and such like so that application code is minimally impacted. The
‘‘Type<n>’’ suffix marks all types explicitly which, in many ways, helps code readability.

Further ambiguity can arise from directly translated names colliding with generated names. For
example, a type may have name MyData , and a variable may have name myDataType . The
translation of MyData would be MyDataType and this would collide with the direct translation
of myDataType . This would be resolved by the normal disambiguation rule. In the same way,
translations of ASN.1 constructs may append Opt, Default, etc, to type names, so this must also
be considered during disambiguation.

The use of double underbar (‘‘__’’) to separate numeric disambiguators guarantees that there
will be no clash with ASN.1 identifiers since ‘‘--’’ (which would translate to ‘‘__’’) is an ASN.1
comment delimiter and thus cannot be part of an identifier. ‘‘_’’ is not a valid character for
ASN.1 identifiers.

In subsequent examples, it is assumed that there are no clashes with identifiers or types outside
the given ASN.1 text. Thus identifiers largely map unchanged and type identifiers are mapped
mapped with the ‘‘Type’’ suffix.

Warning
This disambiguation scheme is order sensitive. Thus changes to the ASN.1 which make
no difference to the meaning and hence are allowed, may impact the translation
changing some of the disambiguation. It is important that users are aware of this and
use identical source for both manager and agent sides. It is recommended that the
unmodified standard texts are used.

For lexical mapping collisions, a strict order of the ASN.1 input actually mapped to IDL is
applied. That is, identifiers, names or literals that are not used for the translation process, are not
considered for lexical collision purposes. This means that:

Whenever mapping says that the original ASN.1 code should first be modified or
expanded prior to being translated, the resulting code is the valid one for the lexical
mapping collision algorithm. This actually affects selection types, COMPONENTS
OF clauses, WITH COMPONENTSclauses, and other unused identifiers, (for
example, value numbers of an enumerated literal when the value is specified as a
defined value, or identifiers of unreachable code as in the examples below).

22 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Lexical Translation

2.4.1 Example

Here the ‘‘x’’ representing the value of the enumerated literal ‘‘b’’ in type ‘‘A’’ is not used in the
translation process:

A ::= ENUMERATED { a(1), b(x) }
B ::= ENUMERATED { x(1), y(2) }
x ::= INTEGER = 3

The defined value ‘‘x’’ of the ‘‘b’’ literal in ‘‘A’’ type is not mapped, so it is not considered. Thus
resulting mapping code would be:

enum AType = {a, b};
enum BType = {x, y};
const ASN1_Integer x__1 = 3;

Part 2: ASN.1 to OMG IDL Translation Algorithm 23

Mapping ASN.1 Module to IDL Module ASN.1 Type to CORBA-IDL Translation

2.5 Mapping ASN.1 Module to IDL Module
ASN.1 Modules are defined according to the production rules in Table 2-1 which are printed here
for reference for the discussion of the subsequent text.

<ModuleDefinition> ::=

<ModuleIdentifier> DEFINITIONS <TagDefault> ::= BEGIN

<ModuleBody>

END

<ModuleIdentifier> ::=

<modulereference>

<DefinitiveIdentifier>

<TagDefault> ::= EXPLICIT TAGS | IMPLICIT TAGS |

AUTOMATIC TAGS| empty

<ModuleBody> ::=

<Exports> <Imports> <AssignmentList> | empty

<Exports> ::=

EXPORTS<SymbolsList> ; | empty

<Imports> ::=

IMPORTS <SymbolsImported> ; | empty

<SymbolsImported> ::=

<SymbolsFromModuleList> | empty

<SymbolsFromModuleList> ::=

<SymbolsFromModule> | <SymbolsFromModuleList> <SymbolsFromModule>

<SymbolsFromModule> ::=

<SymbolList> FROM<GlobalModuleReference>

<GlobalModuleReference> ::=

<modulereference AssignedIdentifier>

<SymbolList> ::=

<Symbol> | <SymbolList> , <Symbol>

<AssignmentList> ::=

<Assignment> | <AssignmentList> <Assignment>

Table 2-1 Production of Module Definition

24 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping ASN.1 Module to IDL Module

2.5.1 Mapping of Module Identifier

A module identifier is mapped as the name of the corresponding IDL module. Module identifier
information is mapped as an IDL comment as follows:

// ModuleIdentifier:<ModuleIdentifier>

In addition, an IDL #pragma is generated as follows:

#pragma ID <moduleNickname> "OSIOID:<DefinitiveIdentifier>"

If there is no definitive identifier then nothing is generated.

2.5.2 Mapping of Tag Default

The information in the TagDefault production is ignored during the mapping of ASN.1 to IDL.

2.5.3 Mapping of Exports

The information pertaining to Exports productions is ignored during the mapping of ASN.1 to
IDL.

2.5.4 Mapping of Imports

IMPORTSclauses are mapped as a list of #include directives for the file corresponding to the
imported module inside the ASN.1 module and a list of typedefs and constants. The relevant
references enable the module to be disambiguated and hence its nickname identified. It should
also be noted that the compiler must parse any imported document in order to apply the
disambiguation rules for clashing identifiers. Naturally, this is recursive; when parsing an
imported document, any documents it imports must also be parsed. If a required document is
not available, the behaviour of the translator is implementation defined.

For each module imported from, an include directive is generated before the importing module
definitions as follows:

#include <module_nickname>.idl

The production:

IMPORTS <symbol1>, ..., <symboln> FROM <GlobalModuleReference>

is mapped as follows for imported types:

typedef <moduleNickname>::<mapped symbol1> <mapped symbol1>
........

typedef <moduleNickname>::<mapped symboln> <mapped symboln>

The two mapped symbols may be different as they are disambiguated in different naming
contexts - the imported from and the importing modules.

For imported ASN.1 values, code will be generated depending on whether their types are simple
or complex (see Section 2.7.2 on page 29). For simple types the following code will be generated:

const <type of imported const> <mapped symbol1> =
<moduleNickname>::<mapped symbol1>

...
const <type of imported const> <mapped symboln> =

<moduleNickname>::<mapped symboln>

For imported ASN.1 values of complex types, a method with a corresponding identifier will be
generated within the constValues interface of the IDL module being generated.

Part 2: ASN.1 to OMG IDL Translation Algorithm 25

Mapping ASN.1 Module to IDL Module ASN.1 Type to CORBA-IDL Translation

Note that <GlobalModuleReference> is only used to identify the unique module nickname and
does not appear in the IDL.

2.5.5 Mapping of Referencing Type and Value Definition

When identifiers from external modules are referenced, they must be mapped as IDL scoped
identifiers where the scope is <moduleNickname> since these are unique in the translation
environment, no further scoping is required.

Otherwise, they are mapped as per normal.

2.5.6 Mapping of Assigning Types

Type assignments are mapped to typedefs in IDL.

2.5.7 Mapping of Assigning Values

Each constant value defined in ASN.1 is mapped as the definition of a constant literal in IDL.
IDL supports constants for only the primitive types, and values not directly representable in IDL
are mapped via the mechanism in Section 2.7.2 on page 29.

26 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Comments

2.6 Mapping of ASN.1 Comments
The mapping of comments is optional. If they are mapped, it should be noted that re-ordering of
the IDL may fail to re-order the associated comments, thus rendering the translated comments of
doubtful value.

An ASN.1 comment commences with a pair of adjacent hyphens (‘‘--’’) and ends with the next
pair of adjacent hyphens or at the end of the line, which ever comes first. In IDL, comments are
delimited as per C++, using either /* and */ or // and end of line. The choice of which delimitation
to use is left as an implementation concern.

Part 2: ASN.1 to OMG IDL Translation Algorithm 27

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7 Mapping of Primitive ASN.1 Types and Values

2.7.1 Mapping of ASN.1 Primitive Types

Table 2-2 describes the default mapping of primitive ASN.1 types to IDL types. The algorithm
for mapping types is based on reducing all types to primitive elements and mapping each
primitive according to this table. As an aid to mapping back to the ASN.1 document, typedefs
are provided which define the ASN.1 primitive typename in IDL. For example, the ASN.1 type
INTEGER maps to the IDL type long. However, a typedef of the IDL identifier ASN1_Integer to
long is provided to improve consistency between the original document and the resultant IDL.

ASN.1 Type IDL Type
BOOLEAN typedef boolean ASN1_Boolean;

INTEGER typedef long ASN1_Integer;

REAL typedef double ASN1_Real;

typedef char ASN1_Null;
const ASN1_Null ASN1_NullValue = ’\x00’;

NULL

ENUMERATED enum <enumName> {<elem1>,., <elemn>};

BIT STRING typedef sequence<octet> ASN1_BitString;
// supported by PIDL

OCTET STRING typedef sequence<octet> ASN1_OctetString;

IA5 STRING typedef string ASN1_IA5String;
ISO646 STRING typedef string ASN1_ISO646String;
NUMERIC STRING typedef string ASN1_NumericString;
PRINTABLE STRING typedef string ASN1_PrintableString;
TELETEXT STRING typedef string ASN1_TeletextString;
T61 STRING typedef string ASN1_T61String;
VIDEO STRING typedef string ASN1_VideoString;
VISIBLE STRING typedef string ASN1_VisibleString;

GENERAL STRING typedef sequence<octet> ASN1_GeneralString;
GRAPHIC STRING typedef sequence<octet> ASN1_GraphicString;

BMP STRING typedef sequence<unsigned short> ASN1_BMPString;
UNIVERSAL STRING typedef sequence<unsigned long> ASN1_UniversalString;

OBJECT IDENTIFIER typedef string ASN1_ObjectIdentifier;

ANY typedef any ASN1_Any;
ANY DEFINED BY typedef any ASN1_DefinedAny;

Tagged as untagged type

struct ASN1_External {
ASN1_ObjectIdentifier syntax;
ASN1_DefinedAny data_value; // by ’syntax’
};

EXTERNAL

Table 2-2 Mapping of ASN.1 Types to IDL Types

28 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.2 Mapping of Values

IDL only permits constants of primitive types (integer, boolean, floating-point, character and
string types). As such it cannot adequately represent constant values of more complex ASN.1
types. Simple and typesafe access to these constants, which are widely used for such things as
default values, is important. For all constant values which cannot be represented in IDL, a
special constant values PIDL interface is defined in the same module as the module containing
the const declaration. Whilst this does not actually define a constant, the constant value is
accessible as the return value of an operation in this interface. The implementation of this
constant values interface is responsible for ensuring that the values returned correspond to the
declaration2.

Functions defined as translation of complex ASN.1 constants are included at the end of the IDL
modules in the ConstValues interface. In general, a constant declaration of type <ConstType>
with identifier <constName> would result in the generation of the operation:

interface ConstValues {
<ConstType> <constName>(); // returns "<text of constant value definition>"

........
};

For examples, see Section 2.7.8.2 on page 34.

2.7.3 Mapping of NULL types

The ASN.1 NULL type is a type which has only one value, NULL. This type is mostly used to
indicate the absence of a component of a sequence or set, or of an alternative of a choice, The
ASN.1 NULL type is mapped to a typedef and a constant with the value:

typedef char ASN1_Null;
const ASN1_Null ASN1_NullValue = ’\x00’;

2.7.4 Mapping of Boolean Type

ASN.1 BOOLEANtypes map directly to the IDL boolean type however, a typedef for the type
ASN1_Boolean is provided in IDL. This is used in the translation to give greater textual
correspondence to the source ASN.1.

2.7.4.1 Examples

Example 2-2 Mapping of Boolean Type

ASN.1 IDL
Married ::= BOOLEAN typedef ASN1_Boolean MarriedType;
maritalStatus Married ::= TRUE const MarriedType maritalStatus = TRUE;

2. These routines could be automatically generated as part of the translation process.

Part 2: ASN.1 to OMG IDL Translation Algorithm 29

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7.5 Mapping of Integer Type

Unconstrained ASN.1 INTEGERis mapped to the IDL type long . As the type ASN1_Integer is
provided in the IDL, the mapping uses this directly. ASN.1 integer subtypes with value ranges
have special mappings covered in Section 2.10.2.1 on page 53. It is assumed that non-subtyped
INTEGERcan be handled by 32-bit integer. In addition, name-number lists result in additional
IDL constants holding the named values.

For a named-number, the form <name>(<number>) within an integer type <type> generates
the IDL const declaration:

const <type>Type[n] <name> = <number>;

The form <name>(<identifier>) within an integer type <type> generates the IDL const
declaration:

const <type>Type[n] <name> = <translated identifier>;

Note that the identifier must also be translated in order to ensure that the right IDL identifier is
referenced. Note also that these named values are subject to disambiguation in the normal way.

2.7.5.1 Examples

Example 2-3 Mapping of Integer Type

ASN.1 IDL
T0 ::= INTEGER typedef ASN1_Integer T0;

a INTEGER ::= 1 const ASN1_Integer a = 1;

T1::= INTEGER { a(2) } typedef ASN1_Integer T1Type;
const T1Type a = 2;

ax INTEGER ::= 1 const ASN1_Integer ax = 1;
aX INTEGER ::= 2 const ASN1_Integer aX__1 = 2;
T2 ::= INTEGER { a(3), b(aX) } typedef ASN1_Integer T2Type;
c T2 ::= b const T2Type a = 3;
d T2 ::= a const T2Type b = aX__1;

const T2Type c = b;
const T2Type d = a;

30 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.6 Mapping of Real Type

The ASN.1 REAL type is mapped to IDL type double , and a typedef for the type ASN1_Real is
provided and is used in the translated IDL. The reason for selecting double is to provide
maximum precision since there is no way of determining the required precision.

ASN.1 constants PLUS-INFINITY and MINUS-INFINITY are mapped to IDL double
precision floating point constants plus_infinity and minus_infinity respectively. The values of
these constants are defined int the file ASN1Limits.idl. In ASN.1, a floating point value may be
defined as a triple of mantissa, base and exponent. In this case, the value of the constant is
calculated and the corresponding double precision decimal floating point constant is used

2.7.6.1 Examples

Example 2-4 Mapping of Real Type

ASN.1 IDL
AngleInRadians ::= REAL typedef ASN1_Real AngleInRadiansType;

pi REAL ::= { 3141592653897, 10, -12} const ASN1_Real pi =3.141592653897;

Part 2: ASN.1 to OMG IDL Translation Algorithm 31

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7.7 Mapping of Enumerated Type

As shown in Table 2-2 on page 28, ASN.1 ENUMERATEDis mapped to an IDL enum type. The
primary benefit of this mapping is that it is more natural for the programmer. With the OMGs
C++ mapping, IDL enum is mapped to a C++ enum so there is also strong type checking
available.

This does not preserve the actual values of the element values and the Interaction Translation
process would need to support the dynamic mapping between values received on the wire and
the corresponding enum values. As a consequence of this, any application requiring to access the
actual values would be able to retrieve them via the management knowledge at run-time. The
full details of the creation and maintenance of the management knowledge is addressed in the
Interaction Translation Document.

It is important to note that the names of values in an enumerated type are identifiers in the
enclosing scope since in IDL, enum does not define a new naming scope. This means that enum
names are subject to disambiguation in the normal way but in a slightly wider scope than might
otherwise be expected.

2.7.7.1 Examples

Example 2-5 Mapping of Enumerated Type

ASN.1 IDL
Message ::= ENUMERATED {basic(0),

extended(1)}
enum MessageType { basic, extended };

DayOfTheWeek ::= ENUMERATED {
sunday(0),monday(1), tuesday (2),
wednesday (3), thursday(4),
friday(5), saturday(7)}

first DayOfTheWeek ::= sunday

enum DayOfTheWeekType {
sunday, monday, tuesday,
wednesday, thursday,
friday, saturday };

interface ConstValues {
....

DayOfTheWeekType first(); // returns "sunday";
....

};

MaritalStatus ::= ENUMERATED {
single(0), married(2), widowed(1)}

}

enum MaritalStatusType {
single, married, widowed

};

32 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.8 Mapping of Bit String Type

ASN.1 BIT STRING is mapped to the IDL type ASN1_BitString defined as sequence<octet>
with global scope in the IDL file ASN1Types.idl. ASN1_BitString is defined as follows to match
the BER encoding of BIT STRING. The sequence of octet shall have an initial octet followed by
zero, one, or more subsequent octets.The bits in the bitstring, commencing with the first bit and
proceeding to the trailing bit, shall be placed in bits 8 to 1 of the second octet, followed by bits 8
to 1 of each octet in turn, followed by as many bits as are need in the final octet, commencing
with bit 8 (the notation ‘‘first bit’’ and ‘‘"trailing bit’’ is specified in ISO 8824). The initial octet
shall encode, as an unsigned binary integer with bit 1 as the least significant bit, the number of
unused bits in the final octet. The number shall be in the range zero to seven. If the bitstring is
empty, there shall be no subsequent octets, and the initial octet shall be zero.

BIT STRING literal values encoded in this way, cannot be represented as IDL constants and are
handled via the mechanism defined in Section 2.7.2 on page 29.

Each named bit is mapped as an IDL constant of type unsigned long with value equal to the
offset into the bit string. The name of the constant is the given name, disambiguated by the usual
rules:

const unsigned long <bitname> = <offset>;

Note that offset may be defined by another constant.

2.7.8.1 PIDL for BitString Access Functions

To facilitate manipulation of BitString values, the following PIDL interface is proposed. This
essentially defines a library of utility BitString access functions to standardise and simplify
BitString manipulation.

interface ASN1_BitStringHandler { // PIDL
typedef short BitValue;

ASN1_BitString createBitString (in unsigned long number_of_bits);

BitValue getBit (in ASN1_BitString bit_string, in unsigned long
position);

void setBit (inout ASN1_BitString bit_string, in unsigned long position,
in BitValue new_bit_value);

long length (in ASN1_BitString bit_string);

string asString (in ASN1_BitString bit_string);
// produces a string with binary values ("1001011B")

void setFromString (inout ASN1_BitString bit_string, in string
string_value);
};

Part 2: ASN.1 to OMG IDL Translation Algorithm 33

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7.8.2 Examples

Example 2-6 Mapping of Bit String Type

ASN.1 IDL
MessageFlag ::= BIT STRING {

posResp (0), negResp (1),
doNotForward (2) }

typedef ASN1_BitString MessageFlagType;
const unsigned long posResp = 0;
const unsigned long negResp = 1;
const unsigned long doNotForward = 2;

T0 ::= BIT STRING
a INTEGER ::= 1
T1::= INTEGER { a(2) }
T2 ::= BIT STRING { a(3), b(a) }

typedef ASN1_BitString T0Type;
const ASN1_Integer a = 1;
typedef ASN1_Integer T1Type;
const T1Type a__1 = 2;
typedef ASN1_BitString T2Type;
const unsigned long a__2 = 3;
const unsigned long b = a;

G3FacsimilePage ::= BIT STRING
-- a sequence of bits conforming to
-- Recommendation T.4
image G3FacsimilePage ::=

’100110100100001110110’B
trailer BIT STRING ::=

’0123456789ABCDEF’H

typedef ASN1_BitString G3FacsimilePageType;
interface ConstValues {
G3FacsimilePageType image();

// "’100110100100001110110’B";
BitString trailer();

// "’0123456789ABCDEF’H";
};

PersonalStatus ::= BIT STRING
{married (0), employed (1),

veteran(2), collegeGraduate (3)}
johnDoe PersonalStatus ::=

{married, employed,
collegeGraduate}

typedef ASN1_BitString PersonalStatusType;
const unsigned long married = 0;
const unsigned long employed = 1;
const unsigned long veteran = 2;
const unsigned long collegeGraduate = 3;
interface ConstValues {
PersonalStatusType johnDoe();

// "married, employed, collegeGraduate";
};

34 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.9 Mapping of Octet String Type

ASN.1 OCTET STRINGis mapped to the IDL type ASN1_OctetString which is defined as
sequence<octet> .

OCTET STRINGliterals can be either binary of hexadecimal strings. In either case, the value is
expanded from left to right as a sequence of bits with octets taken in order from the left. The
final octet is padded with 0 bits if necessary.

Octet string literals cannot be represented as constants in IDL and hence, are mapped in
accordance with Section 2.7.2 on page 29.

2.7.9.1 Examples

Example 2-7 Mapping of Octet String Type

ASN.1 IDL
G4FacsimilePage ::= OCTET STRING
-- a sequence of octets conforming to
-- Recommendation T.5 and T.6
image G4FacsimilePage ::=

’3FE2EABAD471005’H

typedef ASN1_OctetString G4FacsimilePageType;
interface ConstValues {
G4FacsimilePageType image();

// "’3FE2EABAD471005’H";
};

Part 2: ASN.1 to OMG IDL Translation Algorithm 35

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7.10 Mapping of ASN.1 String Types

Builtin ASN.1 string types can be divided into two categories: those that cannot contain value
X’00; in them and those that can. Strings in the first category are simply mapped as string .
Strings in the second category are further classified in two groups:

• strings containing single byte characters, mapped as sequence<octet>

• strings that support wide characters, mapped as sequence of wider types.

The IDL file ASN1Types.idl contains the following typedefs which can then be used directly in
the translated IDL:

// These can contain X’00’
typedef sequence<octet> ASN1_GeneralString;
typedef sequence<octet> ASN1_GraphicString;

// These should support wide characters
typedef sequence<unsigned long> ASN1_UniversalString;
typedef sequence<unsigned short> ASN1_BMPString;

// These cannot
typedef string ASN1_IA5String;
typedef string ASN1_ISO646String;
typedef string ASN1_NumericString;
typedef string ASN1_PrintableString;
typedef string ASN1_TeletexString;
typedef string ASN1_T61String;
typedef string ASN1_VideotexString;
typedef string ASN1_VisibleString;

2.7.10.1 Mapping of Useful Type

ASN.1 provides a further set of useful sub-types of string. The main difference between these
types and their base types is that they have well-defined Tags. Since the tag information is
ignored in Specification Translation, these types are defined by the following IDL typedefs and
they are used directly in generated IDL.

typedef ASN1_GraphicString ASN1_ObjectDescriptor;

GeneralizedTime and UTCTime are formatted string representations of time values (see
reference ASN.1, clause 32). As strings, these values are not particularly easy to manipulate, for
example, for comparison. For this reason PIDL functions are provided to manipulate these
values converting to and from a more useful form corresponding to the POSIX timeval structure.
Note that both GeneralizedTime and UTCTime optionally contain time zone information.
Where this is not present, all operations assume that the time is local time and work accordingly.

36 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.10.2 PIDL for Time Access Functions

This PIDL provides routines to convert between string and struct and also a comparison routine.
This routine takes two values, t1 and t2, and returns -1, 0 or 1 depending on whether t1 < t2, t1 =
t2 or t1 > t2 respectively.

#include "ASN1Types.idl"

interface ASN1_GeneralizedTimeHandler // PIDL
{

void set(inout ASN1_GeneralizedTime t, in unsigned long seconds,
in long useconds, in long tzp);

void get(in ASN1_GeneralizedTime t, out unsigned long seconds,
out long useconds, out long tzp);

short compare(in ASN1_GeneralizedTime t1, in ASN1_GeneralizedTime t2);
void setFromString(inout ASN1_GeneralizedTime t, in string s);
string asString(in ASN1_GeneralizedTime t);

}

interface ASN1_UTCTimeHandler // PIDL
{

void set(inout ASN1_UTCTime t, in unsigned long seconds,
in long useconds, in long tzp);

void get(in ASN1_UTCTime t, out unsigned long seconds,
out long useconds, out long tzp);

short compare(in ASN1_UTCTime t1, in ASN1_UTCTime t2);
void setFromString(inout ASN1_UTCTime t, in string s);
string asString(in ASN1_UTCTime t);

}

The format of the time strings is the ASN.1 value notation.

Part 2: ASN.1 to OMG IDL Translation Algorithm 37

Mapping of Primitive ASN.1 Types and Values ASN.1 Type to CORBA-IDL Translation

2.7.11 Mapping of Object Identifier

ASN.1 OBJECT IDENTIFIER is mapped to IDL type ASN1_ObjectIdentifier which is defined as
string :

typedef string ASN1_ObjectIdentifier;

The contents of an ASN.1_ObjectIdentifier will be one of the following:

• a CORBA scoped name — if the OBJECT IDENTIFIER is defined in a document

• the value of the ASN.1 object identifier in dot notation — if the OBJECT IDENTIFIER is not
defined in any document.

Constants of this ASN.1_ObjectIdentifier type are represented as string literals which contain the
CORBA scoped name instead of the original ASN.1 OBJECT IDENTIFIER . In addition to this
IDL const , a #pragma ID will be generated with the value of the original object identifier literal in
dot notation with the prefix of ‘‘OSIOID:’’. The use of this pragma makes this information
available via the CORBA Interface Repository as the RepositoryId field for use during Interaction
Translation or by any application which requires the OID value.

Note: This section of the document is likely to be impacted by subsequent work on
Interaction Translation.

The Interaction Translation process will need to map between OBJECT IDENTIFIER and
Management Meta-knowledge, , for example,.g IDL Typedefs, for resolving ANY DEFINED BY.
This is left as an issue for the Interaction Translation document.

2.7.11.1 Examples

Example 2-8 Mapping of Object Identifier

ASN.1 IDL
AttributeId ::= OBJECT IDENTIFIER typedef ASN1_ObjectIdentifier

AttributeIdType;

arfProbableCause OBJECT IDENTIFIER ::= {
joint-iso-ccitt ms(9) smi(3) part2(2)
standardSpecificExtension(0) arf(0)

}

adapterError OBJECT IDENTIFIER ::= {
arfProbableCause 1 }

const ASN1_ObjectIdentifier arfProbableCause =
"X721Att::arfProbableCause";

#pragma ID arfProbableCause "OSIOID:2.9.3.2.0.0"

const ASN1_ObjectIdentifier adapterError =
"X721Att::adapterError";

#pragma ID adapterError "OSIOID:2.9.3.2.0.0.1"

38 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Primitive ASN.1 Types and Values

2.7.12 Mapping of Any Type

ASN.1 ANY, ANY DEFINED BYare mapped to the IDL types ASN1_Any , ASN1_DefinedAny
respectively. The defined IDL types are derived from the IDL any type. This is because there is
no way of capturing the defining information available from ANY DEFINED BY. However, the
IDL any type is capable of carrying arbitrary types and ANY DEFINED BYprimarily references
parameters types which are mapped as IDL types and hence may be carried - only the strong
typing is lost. To preserve the information, the defining clause of an ANY DEFINED BYis
mapped as a comment.

2.7.12.1 Examples

Example 2-9 Mapping of Any Type

ASN.1 IDL
Attribute ::= SEQUENCE {

attributeId OBJECT IDENTIFIER,
attributeValue ANY DEFINED BY attributeId

}

struct AttributeType {
ASN1_ObjectIdentifier attributeId;
ASN1_DefinedAny attributeValue;

// defined by attributeId
};

2.7.13 Mapping of Tagged Type

Tag information is ignored during Specification Translation and a tagged type is mapped in the
same way as an untagged type. Mapping tag information is an issue for Interaction Translation.

2.7.14 Mapping of External Type

ASN.1 EXTERNALis mapped to the following IDL struct for simplicity:

struct ASN1_External {
ASN1_ObjectIdentifier syntax;
ASN1_DefinedAny data_value; // by ’syntax’

};

This mapping requires the gateway to fully resolve the encoded form of the External value it
receives and re-encoded it using the CORBA any type. This ensures that no CORBA objects need
support BER to handle this type. The Object Identifier for the abstract syntax is passed to
provide semantic information in cases where the function cannot be determined solely by the
type and also to enable the gateway to re-encode it when translating back to the OSI domain.

Part 2: ASN.1 to OMG IDL Translation Algorithm 39

Mapping of Recursive Types ASN.1 Type to CORBA-IDL Translation

2.8 Mapping of Recursive Types
Unlike ASN.1, IDL does not support recursive type definition (except with sequences), and it is
therefore necessary to take steps to address this issue. It is important to note that only direct
recursion can be supported. Indirect (mutual) recursion is explicitly not supported.

When recursion is detected, the following rules are applied, in the order given below:

Rule 1: ASN.1 recursive type definitions are mapped by converting the type reference to a
bounded IDL sequence of size 1. If a recursive reference occurs directly in a SET OF
or SEQUENCE OF, then the bound is omitted (see Example 2-13 on page 46).

Rule 2: ASN.1 recursive type definitions are expanded in place (see example below).

When a recursion is encountered together with OPTIONALfunctionality, Rule 2 is applied.

2.8.0.1 Examples

The following examples illustrate the application of these rules:

Example 2-10 Mapping of Recursive Types

ASN.1 IDL
NameTree ::= SEQUENCE
{

rdnInfo RDNINFO,
children SET OF NameTree

}

struct NameTreeType {
RDNInfoType rdnInfo;
sequence <NameTreeType> children;

}

NameTree ::= SEQUENCE
{

rdnInfo RDNInfo,
children SET OF NameTree OPTIONAL

}

struct NameTreeType {
RDNInfoType rdnInfo;
union childrenOpt switch (boolean) {

case TRUE: sequence <NameTreeType> value;
} children;

};

A ::= SET OF B
B ::= SEQUENCE { a INTEGER,

b A }

// It is not possible to translate this
// example of mutual recursion

40 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

2.9 Mapping of ASN.1 Constructed Types
Constructed types are those which are composed of several other types (constructed or not).
ASN.1 supports the following constructors: CHOICE, SET, SEQUENCE, SET OF and
SEQUENCE OF.

The approach to mapping constructed types is to map them according to Table 2-3. However,
there are some additional complexities which must be addressed. To facilitate type manipulation
by programmers, complex data structures will be simplified by creating new IDL intermediate
types (see Section 2.9.1 on page 42). Some ASN.1 constructs must be resolved to name-type
pairs and then translated. These include selection types and COMPONENTS OF. On the other
hand, OPTIONALelements are converted to an IDL union type which is then used as the type of
the optional element. Subtype constraints based on the use of WITH COMPONENTSclause will
be explained in the corresponding section for subtype mapping. It is anticipated that an
intermediate ASN.1 type is generated, equivalent to the original one but without the subtype
constraint, and then the common mapping is applied.

CHOICE, SET and SEQUENCEresult from the aggregation of other types. From the ASN.1
grammar point of view, they are a list of elements. Each element is basically formed by an ASN.1
Named Type and some optional extra features.

In the case of SETand SEQUENCEtype definitions, elements can be OPTIONALor have default
values. Also the COMPONENTS OFstructure may be specified instead of the set of elements it
represents.

In the case of the CHOICEtype definition, none of these features are allowed , but instead the
type of the Named Type can take the form of a selection type (which is not allowed for SET or
SEQUENCE).

SET OFand SEQUENCE OFresult from the aggregation of several instances of the same type
which will be called an ‘‘item’’ in this document.

ASN.1 Construct IDL Construct Comments
CHOICE union/switch An enum is to be defined for

switch case-constant.

SET struct struct members are declared in the
SEQUENCE same order as they are declared in

the ASN.1 type.

Selection Type mapped as type of selected that is, the selection type
element is first transformed to obtain

its real element type.

OPTIONAL union <mapped-type-name>Opt an extra type is created to indicate
switch (boolean) { whether the element is present.

case TRUE: <type> value;
};

SET-OF type sequence<mapped-type-name>
SEQUENCE-OF type

Table 2-3 Mapping of ASN.1 Type Constructors to IDL Type Constructors

Rules to map each element or item in a constructed type are provided below:

1. If element contains a selection type or it is a COMPONENTS OFclause, expand it to obtain
the correponding element(s).

Part 2: ASN.1 to OMG IDL Translation Algorithm 41

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2. Obtain the name of the element or item. Apply rules for Anonymous Elements and Items if
necessary. (See Section 2.9.2 on page 44).

3. Resolve name collisions with previous elements inside the scope of the constructed type.

4. Once the name of the element or item has been obtained, then obtain its corresponding
type:

— If recursion is found, apply rules described in Section 2.8 on page 40.

— Check for composite types and create corresponding new types if necessary. Follow
the rules described for Composite Types (see Section 2.9.1).

— If OPTIONALflag is present, create corresponding optional type following the rules
described in Section 2.9.5.2 on page 49.

5. Once the name and the type of the element/item is obtained, create the corresponding IDL
mapped element/item.

6. Finally, if default values were defined, create the corresponding constant as described in
Section 2.9.5.3 on page 49.

2.9.1 Composite Types

As described above, an element or item always has a type definition, and depending of its type,
special treatment may be needed. In such cases, these types are called Composite Types.
Composite Types include the following:

— Constructed type:

— CHOICE

— SET, SEQUENCE

— SET OF, SEQUENCE OF

— Enumeration

— Integer with Named Number List

— BitStrings with Named Bits.

When used in the elements or items of a constructed type, these are considered composite types.
To avoid nested type declarations, they are extracted and a new IDL type is defined (unless
recursion is detected). Thus a named IDL type definition is created.

The name of the new IDL type assignment is formed by concatenating the ASN.1 name of the
container type (that is, the name of the constructed type that contains the current element/item
without the ‘‘Type[<n>]’’ suffix) with the name of the element/item with an upper case first
letter. Note that if it is an element, disambiguation with prior element names in the same
constructed type must be done. Then the general rules for lexical mapping disambiguation of
types are applied (that is, the corresponding Type[<n>] suffix is added).

Note that if recursion is detected, no external IDL named types are created, as described in
Section 2.8 on page 40.

42 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

2.9.1.1 Examples

Example 2-11 Mapping of ASN.1 Constructed Types

ASN.1 IDL
-- example with elements
Bar ::= SEQUENCE {

-- definition of an composite type
paff SEQUENCE {

a INTEGER,
b VisibleString

},
-- definition of a composite type
dummy ENUMERATED {

one(1), two(2)
},
-- reference to primitive type,
c INTEGER

}

// mapping of the ASN.1 Bar type
struct BarPaffType
{

ASN1_Integer a;
ASN1_VisibleString b;

};

enum BarDummyType {one, two);

struct BarType
{

BarPaffType paff;
BarDummyType dummy;

ASN1_Integer c;
};

-- example with items (no composite type)
Array ::= SET OF INTEGER

//mapping of the ASN.1 Array type
typedef sequence<ASN1_Integer>ArrayType;

Part 2: ASN.1 to OMG IDL Translation Algorithm 43

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2.9.2 Anonymous Elements and Items

As stated before, an element is basically composed of an ASN.1 Named Type. This is composed
of an identifier which is the name of the Named Type and the type itself. The presence of this
name is optional in the ASN.1 grammar, though this is strongly discouraged (and is not allowed
in ASN.1:1994).

IDL does not fully support similar constructs, therefore the mapping needs to resolve these
issues.

An element without an explicit name is converted to an element with a name taking the form
elem<n> , where <n> specifies the position of such element within the definition of the
constructed type..

When dealing with an item, if it represents a composite type, a new type is created as described
above. A name has to be provided because these definition types have no name associated with
them. To provide an homogeneous way to solve the mapping, the identifier item will be used as
if it were the name of an element whose type is the one defined by the item. Thus the item
identifier will be used as the name of the item when Composite Type rules are to be applied (see
Section 2.9.1 on page 42).

Note that when SET OFand SEQUENCE OFconstructs have an item which is a Composite
Type, it is always an anonymous item also. This is because items do not have an identifier name
in the ASN.1 grammar.

2.9.2.1 Examples

Example 2-12 Anonymous Elements and Items

ASN.1 IDL
-- example with anonymous elements
A::=SEQUENCE {

INTEGER,
b INTEGER,

BOOLEAN,
ENUMERATED {

one(1), two(2)
}

}

//mapping of ASN.1 A type
enum AElem4Type {one, two};

struct AType {
ASN1_Integer elem1;
ASN1_Integer b;
ASN1_Boolean elem3;
AElem4Type elem4;

};

-- example of anonymous items
CorrelNotif ::= SET OF SEQUENCE {

correlNotif SET OF
NotificationIdentifier

}

// mapping of ASN.1 CorrelNotif type
typedef sequence <NotificationIdentifierType>

CorrelNotifItemCorrelNotifType;

struct CorrelNotifItemType {
CorrelNotifItemCorrelNotifType

correlNotif;
};

typedef sequence<CorrelNotifItemType>
CorrelNotifType;

44 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

2.9.3 Mapping of Choice

ASN.1 CHOICEtypes are mapped to IDL union types. Since IDL unions are discriminated, an
IDL enum type will be defined for the type of the discriminator. In order to do this it is first
necessary to transform any composite types in the list of alternates. This is done via the
mechanism described in Section 2.9.2 on page 44. Similarly SELECTION alternates are first
resolved as per Section 2.9.4 on page 48.

The IDL identifier for the type of the discriminator is formed by adding a suffix ‘‘Choice’’ to the
translated identifier of the CHOICEtype. For each alternate, there will be one identifier in the
discriminator type. This translated identifier is the identifier of the alternate suffixed by
‘‘Choice’’ and disambiguated within its IDL scope in the normal way.

Finally, the union type itself is constructed with one case for each alternate with label according
to the enum type and the type and identifier according to the (intermediate) alternate. The
resulting IDL looks like:

enum <choicetype>Choice {
<translated-identifier>Choice,
....... // one for each alternate

}

union <choicetype> switch (<choicetype>Choice) {
case <translated-identifier>Choice: <type> <translated-identifier>;
....... // one for each alternate

}

where <choicetype> is the name of the translated type (including ‘‘Type’’ suffix and numeric
disambiguator if necessary).

Part 2: ASN.1 to OMG IDL Translation Algorithm 45

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2.9.3.1 Examples

The following shows examples of Choice and Recursion. Note that Composite Type Removal is
not illustrated.

Example 2-13 Examples of Choice and Recursion

ASN.1 IDL
Context ::= CHOICE {

id INTEGER,
data EXTERNAL

}

enum ContextTypeChoice { idChoice, dataChoice };
union ContextType switch (ContextTypeChoice) {

case idChoice: ASN1_Integer id;
case dataChoice: ASN1_External data;

};

Filter::= CHOICE {
item [8] FilterItem,
and [9] IMPLICIT SET OF Filter,
or [10] IMPLICIT SET OF Filter,
not [11] Filter

}

enum FilterTypeChoice {itemChoice, andChoice,
orChoice, notChoice};

union FilterType switch (FilterTypeChoice) {
case itemChoice: FilterItemType item;
case andChoice: sequence<FilterType> and;
case orChoice: sequence<FilterType> or;
case notChoice: sequence<FilterType,1> not;

};
-- note the replacement of the ’not’ alternate
-- (a self-referential type) with SET (SIZE(1)
-- OF Filter a sequence of size 1 which results in
-- an IDL sequence

Here is a fragment of the X.721 | ISO/IEC 10165-2 (1992) definition of ProbableCause showing
the constants adapterError and applicationSubsystemFailure .

Attribute-ASN1Module {
joint-iso-ccitt ms(9) smi(3) part2(2) asn1Module(2) 1}
DEFINITIONS IMPLICIT TAGS ::= BEGIN

IMPORTS;
....
adapterError ProbableCause ::= globalValue : { arfProbableCause 1 }
applicationSubsystemFailure ProbableCause ::=

globalValue : { arfProbableCause 2 }
..........
ProbableCause ::= CHOICE {

globalValue OBJECT IDENTIFIER, localValue INTEGER
}
..........

END

46 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

This translates as (assuming that X721Att is the nickname for the Attribute module):

module X721Att {
enum ProbableCauseTypeChoice {

globalValueChoice,
localValueChoice

};

union ProbableCauseType switch (ProbableCauseTypeChoice) {
case globalValueChoice: ASN1_ObjectIdentifier globalValue;
case localValueChoice: ASN1_Integer localValue;

};
...
interface ConstValues {

ProbableCauseType adapterError();
ProbableCauseType applicationSubsystemFailure();
...

};
};

Then an application program might access the values along the following lines:

// obtain access to the predefined ConstValue object for accessing the
// interface defined constants. This would probably be a pseudo object
X721Att::ConstValues constants (...);
// use constant in an assignment
ProbableCauseType pc; pc = constants.adapterError();

Part 2: ASN.1 to OMG IDL Translation Algorithm 47

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2.9.4 Mapping of Selection

The ASN.1 SELECTION construct provides a mechanism where a type may be defined by
reference to a named element of a CHOICE. This is handled by first resolving the SELECTIONto
the selected <identifier,type> pair and using these instead. Where SELECTION is used to
identify a type, it is resolved to the named type of the selected element only. When it is used as a
name-type pair, it is resolved to the selected <identifier,type> pair.

2.9.4.1 Examples

Example 2-14 Mapping of Selection

ASN.1 IDL
Attribute ::= CHOICE {

number INTEGER,
name VisibleString

}
Ident ::= CHOICE {

id number < Attribute,
name < Attribute

}

// map the Attribute type
enum AttributeTypeChoice {

numberChoice,
nameChoice

};
union AttributeType switch

(AttributeTypeChoice) {
case numberChoice:ASN1_Integer number;
case nameChoice: ASN1_VisibleString name;

};
// map the Ident type
enum IdentTypeChoice {

idChoice,
nameChoice__1

};
union IdentType switch (IdentTypeChoice) {

case idChoice: ASN1_Integer id;
case nameChoice__1: ASN1_VisibleString name;

};

48 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

2.9.5 Mapping of Sequence and Set

In ASN.1, a SEQUENCEtype is an ordered collection of components which are typed and
potentially named. SET types are identical except that the elements are unordered. Since IDL
has no unordered record type, both of these types are handled identically and are mapped to an
IDL struct. However, ASN.1 has some additional complexities in that it has additional
mechanisms to extract elements of sub-records (via the COMPONENTS OF <type>construct)
and also allows components to be declared as OPTIONAL.

2.9.5.1 COMPONENTS OF <type> Production

When a sequence or set type appears as <type> in COMPONENTS OF <type>, that sequence
type is resolved to its list of elements before translating to IDL (that is, each component of the
sub-record is extracted out effectively flattening the record structure).

2.9.5.2 OPTIONAL Components

If an element of a SEQUENCEor SET type is declared OPTIONAL, then that component may or
may not be present. This is mapped to an IDL union with a boolean switch with only the True
case having a value being that of the optional element. This new type is named by appending the
type of the optional element with ‘‘Opt’’. The translator must take steps to avoid duplicating
these types and this optional type should be generated at most once per module. For the ASN.1
clause:

SEQUENCE { <identifier> <type> OPTIONAL}

the resultant IDL would be:

union <mapped type name>Opt switch (boolean) {case TRUE: <mapped type name> value;};

2.9.5.3 DEFAULT Components

In ASN.1, clause 20.5 states that if DEFAULT occurs, the omission of a value of that type is
exactly equivalent to insertion of the default value. This means that the value is mandatory, but
that implementations need not put it on the wire. There is no direct equivalent in IDL hence
access is simply provided to the default value; either as a constant or via a PIDL function
returning the value. Where a programmer in the CORBA domain wants to use the default value,
this constant or function call must be explicitly used. So if an ASN.1 DEFAULTvalue is present
for a set or sequence element, an IDL constant will be generated, named by appending ‘‘Default’’
to the element’s identifier and defined as the given default value , for example:

const <mapped type name> <element-name>Default = <value>;

If the type of the element precludes the use of an IDL constant then the mechanism of Section
2.7.2 on page 29 applies. Disambiguation Rule 2, (see Section 2.4 on page 21), must be applied to
the generated constant name.

2.9.5.4 Translating to IDL

Once any COMPONENTS OFand OPTIONAL clauses have been translated, an IDL struct is
generated. Now each element is mapped as a member of the IDL struct in the order in which
they appear in the resolved member list.

Part 2: ASN.1 to OMG IDL Translation Algorithm 49

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2.9.5.5 Examples

Example 2-15 Mapping of Sequence and Set

ASN.1 IDL
T::= SEQUENCE {a Ta, b Tb, c Tc}
E::= SEQUENCE {f1 E1, f2 T, f3 E3}

struct TType {TaType a; TbType b; TcType c;};
struct EType {E1Type f1; TType f2; E3Type
f3;};

T::= SEQUENCE {
a Ta,
b SEQUENCE {b1 T1, b2 T2,b3 T3}
c Tc }

struct TbType
{T1Type b1; T2Type b2; T3Type b3;}; struct

TType
{TaType a; TbType b; TcType c;}; // The

algorithm results in an additional // type
TbType for the composite SEQUENCE // type
in T.

W ::= SEQUENCE {x Wx, COMPONENTS OF
T, y Wy}

struct WbType {
T1Type b1; T2Type b2; T3Type b3; };

struct WType {
WxType x;
TaType a;
WbType b;
TcType c;
WyType y; }; // The algorithm expands the //

COMPONENTS OF part of W before //
translating to IDL.

UserName ::= SET { -- SET treated as
-- SEQUENCE

personalName VisibleString,
countryName VisibleString OPTIONAL

}

union ASN1_VisibleStringOpt
switch (boolean) {

case TRUE: ASN1_VisibleString value;
}; struct UserName {
ASN1_VisibleString personalName,
ASN1_VisibleStringOpt countryName, };

A ::= SET {
a ENUMERATED {a, b},
b ENUMERATED {a, b} }

enum AaType {a, b}; enum AbType {a__1,
b__1}; struct AType {

AaType a;
AbType b; };

50 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of ASN.1 Constructed Types

ASN.1 IDL
Data ::= SEQUENCE {

replaceWithDefault
BOOLEAN DEFAULT FALSE,

defaultValue ValueSpecifier,
keyword SEQUENCE {

type-reference DefinedType,
field Identifier

} OPTIONAL,
createModifier BIT STRING {

withRefObject
(0),withAutoNaming (1)

} }

const ASN1_Boolean
replaceWithDefaultDefault=FALSE; struct

DataKeywordType {
DefinedTypeType type_reference,
IdentifierType field, }; union

DataKeywordTypeOpt switch (boolean) {
case TRUE: DataKeywordType value; };

typedef ASN1_BitString
DataCreateModifierType; const unsigned long
withRefObject=0; const unsigned long
withAutoNaming=1; struct DataType {

ASN1_Boolean replaceWithDefault;
ValueSpecifierType defaultValue;
DataKeywordTypeOpt keyword;
DataCreateModifierType createModifier; }

The last example is worth looking at in more detail. First all composite types are handled by
explicitly generating named types, DataKeywordType , DataKeywordTypeOpt and
DataCreateModifierType .

Next, apply the rules for OPTIONALand DEFAULT, generating a named value for the default
and a union type in place of the OPTIONALcomponent, that is, replaceWithDefaultDefault and
DataKeywordTypeOpt .

Now all the problem cases have been removed, the translation proceeds naturally resulting in
the IDL as shown in the table above.

Part 2: ASN.1 to OMG IDL Translation Algorithm 51

Mapping of ASN.1 Constructed Types ASN.1 Type to CORBA-IDL Translation

2.9.6 Mapping of Sequence Of and Set Of

ASN.1 SEQUENCE OFis an ordered list of items of the same type. SET OFis similar except
that the list is unordered. Both of these are mapped into the IDL sequence construct. Again, first
remove Composite Types by generating a new type on the same basis as Section 2.9.1 on page 42
and Section 2.9.2 on page 44. That is, using item as the name of the item in the concatenation to
generate the new type name.

2.9.6.1 Examples

Example 2-16 Mapping of Sequence Of and Set Of

ASN.1 IDL
RDNSequence: := SEQUENCE OF RDN typedef sequence<RDNType>

RDNSequenceType;

Status ::= SEQUENCE OF INTEGER { typedef ASN1_Integer StatusItemType;
initializationRequired (0), const StatusItemType initializationRequired = 0;
notInitialized (1), const StatusItemType notInitialized = 1;
initializing (2), const StatusItemType initializing= 2;
reporting(3), const StatusItemType reporting = 3;
terminating (4) const StatusItemType terminating = 4;

}

typedef sequence<StatusItemType> StatusType;

A ::= SEQUENCE OF typedef sequence<ASN1_Integer> AItemType;
SEQUENCE OF typedef sequence<AItemType> AType;

INTEGER

2.9.7 Mapping of EmbeddedPDV and Character String Types

Mapping of EmbeddedPDVType and CHARACTER STRINGfrom ASN.1:1994 to IDL is not
addressed at this point. A good approach would be to use the associated SEQUENCEtype for
value definition and subtyping.

52 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Constraints and Subtypes

2.10 Mapping of Constraints and Subtypes

2.10.1 Mapping of Constrained Type

When a size constraint is used for either SET OF and SEQUENCE OFconstructions, it is
mapped to IDL as a bounded sequence , where the upper bound of the IDL sequence is
determined by the upper bound on the permitted integer values specified in the constraint. In
addition a constant giving the permitted values list is given. The resulting definition is along the
lines of:

typedef sequence <<ItemType>, <upper-bound>> <type>;

where <ItemType> is the type of the SEQUENCE OF/SET OFitem and <type> is the translated
name of the compound type. For example:

T1 ::= SEQUENCE SIZE(0..10) OF ObjectInstance
T2 ::= SEQUENCE SIZE(1|3|5) OF INTEGER

maps to:

typedef sequence<ObjectInstanceType, 10> T1Type;
// T1Type SIZE(0..10)
typedef sequence<ASN1_Integer, 5> T2Type;
// T2Type SIZE(1|3|5)

Dynamic access to size information in order to ensure validity may be covered as part of
Interaction Translation.

When a size constraint is applied to BIT STRING types, a constant integer literal is generated
in the IDL. The identifier for the integer literal is generated by adding ‘‘_size’’ as a suffix to the
translated parent type. This is because the mapping of BIT STRING to sequence of octet does
not have the necessary granularity to usefully bound the sequence.

When a size constraint is applied to OCTET STRINGor other STRINGderived types, these are
mapped as string or bounded sequences depending on the original type definition, where the
upper-bound of the sequence in IDL is determined by the upper-end-value of the size constraint.

More complex type constraints are ignored by Specification Translation and may be addressed in
Interaction Translation.

2.10.2 Mapping of Subtype Elements

ASN.1 supports different constructs from IDL and, in particular, subtypes are not easy to
represent in IDL. Where possible, a fairly coarse grained approach has been defined. It is left as
an implementation concern to check other value ranges and the details are left to the Interaction
Translation.

2.10.2.1 Mapping of Value Range

When a value range is applied to a type INTEGERor a type derived from it, it will be mapped to
one of several IDL integer types, depending on the value range, as shown in Table 2-4 on page
54. The default mapping of INTEGERwith no subtyping is long.

Part 2: ASN.1 to OMG IDL Translation Algorithm 53

Mapping of Constraints and Subtypes ASN.1 Type to CORBA-IDL Translation

Table 2-4 illustrates the selection of the IDL integer subtype based on the ASN.1 value range
interval (Min,Max):

Type Min Max Condition IDL Native Type
ASN1_Unsigned16 0 2ˆ16-1 none unsigned short
ASN1_Unsigned 0 2ˆ32-1 2ˆ16 <= upper unsigned long
ASN1_Unsigned64 0 2ˆ64-1 2ˆ32 <= upper unsigned long[2]
ASN1_Integer16 -2ˆ15 2ˆ15-1 lower < 0 short
ASN1_Integer -2ˆ31 2ˆ31-1 lower < 0 && long

(lower < -2ˆ15 || 2ˆ15 <=upper)
ASN1_Integer64 -2ˆ63 2ˆ63-1 lower < 0 && long[2]

(lower < -2ˆ31 || 2ˆ31 <= upper)

Table 2-4 Mapping ASN.1 INTEGER with Value Range to IDL Types

The lower and upper bounds for the ASN.1 INTEGER subtype must be within the minimum
and maximum stated values for the corresponding IDL type (inclusive), and they should also
fulfill the corresponding condition. In the table, the lower bound value of the ASN.1 value range
INTEGER subtype is referred to as ‘‘lower’’, and the corresponding upper bound value as
‘‘upper’’

If the ASN.1 type has a value range INTEGERsubtype specification that is beyond the stated
limits for ASN1_Unsigned64 and ASN1_Integer64 , an ASN1_Unsigned64 will be generated if the
lower bound has a positive or 0 value, otherwise an ASN1_Integer64 will be generated. The user
will be informed of the translation limitation.

REALis mapped as double in IDL. Value ranges are ignored.

2.10.2.2 Mapping of SingleValue

Even if a type is constrained to one or more single values, then this is still a type and translated
accordingly. In addition, the set of allowable values is translated as a comment. The type is
generated according to the same rules in Section 2.10.2.1 on page 53, with the ‘‘lower’’ and
‘‘upper’’ bounds being the extremes of the set of allowable values. Thus constructs such as:

A ::= INTEGER(1|3|5|7)

would be translated as

typedef ASN1_Unsigned16 AType; // AType (1|3|5|7)

2.10.2.3 Mapping of ASN.1 MIN and MAX

ASN.1 supports the literals MIN and MAX in value range constraints to denote the smallest resp.
the biggest value of the parent type. The use of one of these special values will cause the
compiler to select the appropriate ASN1_Integer type as defined in Section 2.10.2.1 on page 53.

2.10.2.4 Mapping of Permitted Alphabet

If the sub-typing restricts the alphabet of a type then an IDL constant will be generated. Its value
will be the allowable alphabet and its identifier is formed based on the rules described for the
mapping of Single Values, with the addition of the suffix ‘‘_permittedAlphabet’’.

54 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Constraints and Subtypes

2.10.2.5 Mapping of INCLUDES

INCLUDEScontained subtypes are ignored. The translator will generate an unconstrained type.

2.10.2.6 Mapping of InnerTypeConstraints

Inner Type Constraints can be applied to SET OF, SEQUENCE OF, SET, SEQUENCEand
CHOICEtypes or types formed from them by tagging.

Single Type Constraint (WITH COMPONENT) is ignored during Specification Translation. The
specified type is generated without constraints.

Multiple Type Constraints (WITH COMPONENTS) are used for SET, SEQUENCEand CHOICE.
This kind of constraint contains a list of constraints on the component of types of the parent
type. The inner type to which the constraint applies is determined by the identifier.

When Full Specification is used there is an implied presence constraint of ABSENTon all inner
types which can be constrained to be absent and which is not explicitly listed.

When Partial Specification is used and the parent type is a SETor SEQUENCEtype, there are no
implied constraints and any inner type can be omitted from the list. When an empty Presence
Constraint is used, it is equivalent to a constraint PRESENT for a SET or SEQUENCE
component marked OPTIONAL. In a Partial Specification no such constraint is imposed.

When Partial Specification is used and the parent type is a CHOICE type, there is implied
presence constraint of PRESENTon all inner types which are not explicitly listed.

When Multiple Type Constraints are used to define a type from another type, the translation
process generates a new type. Its components depend on the Multiple Type Constraints. The
rules are as follows:

1. Define an intermediate ASN.1 type as that of that parent type. The type reference of the new
type is that of the constrained type. The new ASN.1 type and the parent are of identical type
(SET, SEQUENCEor CHOICE)

2. for each NamedConstraint in TypeConstraint of Full Specification:

2.1 if the parent type is a SETor SEQUENCEthen:

2.1.1 if ValueConstraint is not empty, PresenceConstraint is empty and if the
corresponding component type is OPTIONAL, then the corresponding
component is copied from parent type to the new ASN.1 type. The
ValueConstraint is applied as ConstrainedType of the form Type Constraint for
the component.

2.1.2 if PresenceConstraint is not empty:

2.1.2.1 if PRESENTis used then the corresponding component is copied from
parent type to the new ASN.1 type; if the ValueConstraint in
ComponentConstraint is not empty then the ValueConstraint is applied
as ConstrainedType of the form TypeConstraint for the component. If
the component has OPTIONAL label, this label will be dropped from
the component in the new type.

2.1.2.2 if OPTIONAL is used then the corresponding component is copied
from parent type to the new ASN.1 type; if the ValueConstraint in
ComponentConstraint is not empty then the ValueConstraint is applied
as ConstrainedType of the form TypeConstraint for the component. If
the component does not have an OPTIONALlabel then component will
be labelled OPTIONAL.

Part 2: ASN.1 to OMG IDL Translation Algorithm 55

Mapping of Constraints and Subtypes ASN.1 Type to CORBA-IDL Translation

2.2 if the parent type is a CHOICE:

2.2.1 if PresenceConstraint is not empty:

2.2.1.1 if ABSENTis used then the corresponding component is not copied
from the parent type to the new ASN.1 type; if the ValueConstraint in
ComponentConstraint is not empty then the ValueConstraint is applied
as ConstrainedType of the form TypeConstraint for the component.

3. For each NamedConstraint in TypeConstraint of Partial Specification:

3.1 if the parent type is a SETor SEQUENCEand:

3.1.1 if PresenceConstraint is not empty:

3.1.1.1 if PRESENTis used then the corresponding component is copied from
parent type to the new ASN.1 type; if the ValueConstraint in
ComponentConstraint is not empty then the ValueConstraint is applied
as ConstrainedType of the form TypeConstraint for the component. If
the component has OPTIONAL label, this label will be dropped from
the component in the new type.

3.1.1.2 if OPTIONAL is used then the corresponding component is copied
from parent type to the new ASN.1 type; if the ValueConstraint in
ComponentConstraint is not empty then the ValueConstraint is applied
as ConstrainedType of the form TypeConstraint for the component. If
the component does not have an OPTIONALlabel then component will
be labelled OPTIONAL.

3.1.2 if ValueConstraint is not empty then the corresponding component is copied
from parent type to the new ASN.1 type and the ValueConstraint is applied as
ConstrainedType of the form TypeConstraint for the component.

3.1.3 if both ValueConstraint and PresenceConstraint are empty then the
corresponding component is copied from parent type to the new ASN.1 type
and labelled OPTIONAL. If the ValueConstraint in ComponentConstraint is not
empty then the ValueConstraint is applied as ConstrainedType of the form
TypeConstraint for the component.

3.2 if the parent type is a CHOICE:

3.2.1 if PresenceConstraint is not empty then copy all the components of parent type
to the component:

3.2.1.1 if ABSENTis used then remove the corresponding component from the
new ASN.1 type.

4. Finally, map the new ASN.1 type to IDL as defined for any other ASN.1 type.

When the Inner Type Constraint is applied to a base type that is defined in a different module, it
may occur that the types of some of the members of the new subtype are not known in the scope
of the current module. In this case they must be explicitly imported from the module in which
the base type is defined3.

3. This module may have imported the type from yet another module, but there is no need to follow a chain back to the original
definition.

56 Preliminary Specification

ASN.1 Type to CORBA-IDL Translation Mapping of Constraints and Subtypes

2.10.2.7 Examples

Example 1

PDU ::= SET {
alpha INTEGER,
beta IA5String OPTIONAL,
gamma SEQUENCE OF Parameter,
delta BOOLEAN

}
TestPDU ::= PDU (WITH COMPONENTS { ..., delta (FALSE),

alpha (MIN..<0) }) -- PartialSpecification
FurtherTestPdu ::= TestPDU (WITH COMPONENTS {... ,

beta (SIZE (5|12)) PRESENT})

is treated as if it were the following equivalent ASN.1 form which can be translated to IDL via
the usual rules.

TestPDU ::= SET {
alpha INTEGER (MIN..<0),
beta IA5String OPTIONAL,
gamma SEQUENCE OF Parameter OPTIONAL,
delta BOOLEAN (FALSE)

}
FurtherTestPdu ::= SET {

alpha INTEGER (MIN..<0) OPTIONAL,
beta IA5String (SIZE (5|12) ,
gamma SEQUENCE OF Parameter OPTIONAL,
delta BOOLEAN (FALSE) OPTIONAL

}

Example 2

TestPDU ::= PDU (WITH COMPONENTS { delta (FALSE),
alpha (MIN..<0) }) -- FullSpecification

would change the equivalent ASN.1 form to:

TestPDU ::= SET {
alpha INTEGER (MIN..<0),
delta BOOLEAN (FALSE)

}

Now apply the SetType mapping scheme for ASN.1 to IDL on TestPDU and FurtherTestPDU.

Z ::= CHOICE { a A, b B, c C, d D, e E}
V::= Z (WITH COMPONENTS { ..., a ABSENT,

b ABSENT}) -- TaU & TbU must be absent
W::= Z (WITH COMPONENTS { ...,

a PRESENT }) -- TaU must be present
X::= Z (WITH COMPONENTS { a PRESENT })

-- TaU must be present
Y::= Z (WITH COMPONENTS { a ABSENT, b, c})

-- TaU, TdU and TeU must be absent

is treated as the following equivalent ASN.1 form:

V ::= CHOICE { c C, d D, e E}
W ::= CHOICE { a A, b B, c C, d D, e E}
X ::= CHOICE { a A}
W ::= CHOICE { b B, c C}

Part 2: ASN.1 to OMG IDL Translation Algorithm 57

IDL Modules for Builtin ASN.1 Types ASN.1 Type to CORBA-IDL Translation

2.11 IDL Modules for Builtin ASN.1 Types
Two modules are declared automatically. The first, stored in a file, called ASN1Types.idl,
declares all the IDL types used to translate builtin ASN.1 types. This file will be imported into all
other IDL modules which do not, therefore, need to redefine these IDL types. The second, stored
in a file called ASN1Limits.idl, contains implementation-defined values for some ASN.1 limits.
It is automatically included with the ASN1Types.idl file, and therefore never needs to be
explicitly imported.

The two files are contained in Section 12.1.1 on page 167 and Section 12.1.2 on page 168.

58 Preliminary Specification

Preliminary Specification

Part 3:

GDMO to OMG IDL Translation Algorithm

The Open Group

Part 3: GDMO to OMG IDL Translation Algorithm 59

60 Preliminary Specification

Chapter 3

GDMO to CORBA-IDL Translation

In this chapter, the Specification Translation process is described in terms of inputs and outputs
and a rough outline of the process is given. The process will be implemented via a compiler
which operates on a set of input files and results in some output files. Since IDL definitions are
processed in terms of files which determine the granularity and reusability of the IDL
definitions, it is necessary to specify which definitions are generated and what files they are
defined in. In addition, GDMO adds some complexities since GDMO specifications use full text
names, for example, CCITT Rec. X.721 (1992) | ISO/IEC 10165-2 : 1992. Since such names are
used to import parts of specifications, there must be a way for the translation process to access
the files containing these specifications. In addition, it is desirable to be able to associate the
resulting IDL files with the original GDMO to facilitate browsing and reuse. This is achieved by
providing a "nickname database" which maps from the unique registered name of the GDMO
document (or relevant Object Identifier) to a short nickname suitable for use as a filename base.
This nickname is used to find imported files and to control the names of the generated IDL files.

GDMO
specification

files

IDL
definition

files

Other outputs may support
Interaction Translation
and Gateway construction

nicknames.db

GDMO
Translator

Figure 3-1 Inputs and Outputs for GDMO Specification Translation

Since nicknames will be used as the basis for naming files, generated IDL files will only be
reusable in an environments where identical nickname databases are used. Therefore, it is
desirable to make the nickname database as standard as possible (for example, have standard
nicknames for all registered GDMO documents and their ASN.1 modules). In order to facilitate
this, the following nickname selection method is recommended (but not mandatory):

• For documents, use the ITU recommendation number where it exists. For example, DMI
would be called X721 .

• For ASN.1 modules, the nickname is formed by taking the nickname of the document in
which the module occurs, followed by the first three characters of the module label. For
example, the Attribute module of X.721 would have the nickname X721Att .

• Where more than one module label in a document has the same initial three letters, append a
number to the nicknames for the second and subsequent module labels to disambiguate.
This means that the first module would have no numeric suffix, the second colliding module
would have the suffix ‘‘1’’, the third ‘‘2’’ and so on.

Part 3: GDMO to OMG IDL Translation Algorithm 61

GDMO to CORBA-IDL Translation

As it is illegal to modify the existing contents of a standard in this context, it is assumed that the
nickname always refers to the latest version of the standard. If, for any reason, parts of the
original standard are modified in a revision, the last 2 digits of the revision year can be appended
to the nickname.

62 Preliminary Specification

GDMO to CORBA-IDL Translation Outline of Translation Algorithm

3.1 Outline of Translation Algorithm
The algorithm for translating a GDMO specification to a CORBA-IDL specification is fully
detailed in Chapter 4. It assumes that GDMO will not allow the use of CMIP version 2 to
support extensible types. The basic approach is as follows:

1. Generate an OMG IDL file for each ASN.1 module that is contained in a given GDMO
document and name it with the nickname that has been assigned to the module (see
Chapter 2 on page 15).

2. Generate an OMG IDL file for each GDMO document and name it with the nickname
assigned to the document. That file will contain a module that is named the same as the file
and contains interfaces generated for each managed object class template defined in the
GDMO document and other information described below.

3. Generate up to two OMG IDL files containing interfaces for handling Notifications via
push and/or pull model when requested.

It should be noted that the mechanism used to handle Notifications is designed to work with
OMG Event Services (see reference COSS). It enables the use of typed or untyped events
delivered via push or pull models. This gives maximum flexibility to implementors to select the
most appropriate mechanisms.

Part 3: GDMO to OMG IDL Translation Algorithm 63

File Names and IDL Modules GDMO to CORBA-IDL Translation

3.2 File Names and IDL Modules
The output of the above translation is a set of IDL modules and interfaces. These must be
organised into files in a way which facilitates reuse and effective generation of code by the
CORBA IDL compiler. Thus the Specification Translation process results in potentially many
IDL files. During that process, the following rules determine the number and content of each file:

• Each file will start with a comment identifying the GDMO document from which it was
generated.

• Definitions contained in IDL generated files must be enclosed within #ifndef ... #endif
directives as shown below and will enclose mappings of GDMO template definitions.

#ifndef _<capitalised_nickname>_IDL_
#define _<capitalised_nickname>_IDL_
module <nickname> {

<idl-mapped-macro-invocations>

};
#endif /* _<capitalised_nickname>_IDL_ */

• For each GDMO document, generate an IDL file named <nickname>.idl containing an IDL
module named <nickname>, and two IDL file named <nickname>_N.idl and
<nickname>_NP.idl to contain interfaces for notifications. Here <nickname> is the
nickname that has been assigned to the document.

• For each ASN.1 module that is contained in a given GDMO document, translate it as
described in Chapter 2 on page 15.

It is permissible for an implementation to only generate the mapping for selected classes
from an input document. However, if this is done, all the appropriate superclasses must be
included. In addition, the full translation must be performed before the selected classes are
output in order to ensure that the name disambiguation rules are applied correctly.

• For each ASN.1 module defined in a given GDMO document, add the directive:

#include "<module_nickname>.idl"

to the corresponding IDL file, where <module_nickname> is the nickname that has been
assigned to the defined ASN.1 module.

This approach results in many IDL files being generated. However, the _N and _NP files are
generated to provide implementation choice and could all be omitted if untyped event delivery
mechanisms are used. In addition, the other files need only be generated once and may be reused
by many translated documents. This in turn allows more efficient code generation by the IDL
compiler. Since files are of a finer granularity, documents which build on earlier definitions may
extract only the portions that they use by import rather than requiring the whole referenced
document to be reviewed. As a side benefit, collision between identically named ASN.1 modules
may be avoided by using different nicknames for those modules. Module nicknames are not
guaranteed to be unique unless they have the unique <nickname> of their containing GDMO
document as a prefix. Another side-effect is that references to types imported from other
documents need only be scoped by the module’s nickname, which must be unique in the
environment.

64 Preliminary Specification

GDMO to CORBA-IDL Translation File Names and IDL Modules

3.2.1 Standard Files for Specification Translation

The specification translation assumes the existence of a number of standard files containing base
definitions and classes. These are as follows:

ASN1Types.idl contains the base definitions for translating ASN.1 types (see Section 2.11
on page 58).

ASN1Limits.idl contains the definitions for ASN.1 limits (see Section 12.1.2 on page 168).

OSIMgmt.idl contains everything which is needed to use CMIS services based on the
mapping defined in this document.

In addition, the following standard files, should be delivered with an implementation of the
GDMO to IDL translator:

X219Rem.idl ROSE errors

X227ACS.idl ACSE types

X711CMI.idl CMIP types

X501Inf.idl Information framework

3.2.2 Example

Using the recommended nickname convention:

• the nickname for the standard X.721 ASN.1/GDMO document (see reference GDMO), will
be X721

• X721Att , X721Not , X721Par will be the nicknames assigned to the different ASN.1 modules,

resulting in the following IDL files:

Example 3-1 File X721Att.idl

// Generated from X721.gdmo
// X721Att.idl file:

#ifndef _X721ATT_IDL_
#define _X721ATT_IDL_

#include <ASN1Types.idl>
#include "X711CMI.idl"
#include "X227ACS.idl"
#include "X501Inf.idl"

module X721Att {
<exports-imports-clause-mapping>
<ASN.1-definition-mapping-list>

};

#endif /* _X721ATT_IDL_ */

Part 3: GDMO to OMG IDL Translation Algorithm 65

File Names and IDL Modules GDMO to CORBA-IDL Translation

Example 3-2 File X721Not.idl

// Generated from X721.gdmo
// X721Not.idl file:

#ifndef _X721NOT_IDL_
#define _X721NOT_IDL_

#include <ASN1Types.idl>
#include "X721Att.idl"
#include "X711CMI.idl"

module X721Not {
<exports-imports-clause-mapping>
<ASN.1-definition-mapping-list>

};

#endif /* _X721NOT_IDL_ */

Example 3-3 File X721Par.idl

// Generated from X721.gdmo
// X721Par.idl file:

#include <ASN1Types.idl>
#ifndef _X721PAR_IDL_
#define _X721PAR_IDL_

module X721Par {
<exports-imports-clause-mapping>
<ASN.1-definition-mapping-list>

};

#endif /* _X721PAR_IDL_ */

66 Preliminary Specification

GDMO to CORBA-IDL Translation File Names and IDL Modules

Example 3-4 File X721.idl

// Generated from X721.gdmo
// X721.idl file:

#ifndef _X721_IDL_
#define _X721_IDL_

#include <OSIMgmt.idl>
#include "X721Att.idl"
#include "X721Not.idl"
#include "X721Par.idl"

module X721 {
...........................

};

#endif /* _X721_IDL_ */

Example 3-5 File X721_N.idl

// Generated from X721.gdmo
// X721_N.idl file:

#ifndef _X721_N_IDL_
#define _X721_N_IDL_

#include "X721Not.idl"

module X721_N {
interface Notifications {
...........................
};

};

#endif /* _X721_N_IDL_ */

Part 3: GDMO to OMG IDL Translation Algorithm 67

File Names and IDL Modules GDMO to CORBA-IDL Translation

Example 3-6 File X721_NP.idl

// Generated from X721.gdmo
// X721_NP.idl file:

#ifndef _X721_NP_IDL_
#define _X721_NP_IDL_

#include <OSIMgmt.idl>
#include "X721Not.idl"

module X721_NP {
interface PullNotifications {
...........................
};

};

#endif /* _X721_NP_IDL_ */

68 Preliminary Specification

Chapter 4

Mapping GDMO Templates to IDL Interfaces

For every GDMO managed object class template, an IDL interface is defined which supports the
operations exported by members of the corresponding managed object type. In addition, a
module is defined which contain interfaces supporting notifications. Figure 4-1 describes the
inheritance hierarchy of management IDL interfaces derived from MANAGED OBJECT CLASS
template definitions. The base interface for all IDL management interfaces is ManagedObject
(which implicitly inherits from CORBA::Object as do all IDL interfaces). No attribute or
operation is defined for ManagedObject yet. It is provided as a place holder for attributes and
operations needed to implement managed object interfaces in a generic way.

Figure 4-1 Inheritance Hierarchy of Interfaces of Managed Object Classes

,iX "managed object class"

Since all generated IDL interfaces inherit from ManagedObject , the necessary functionality to
support CMIS request and responses can be provided through the implementation of the
OSIMgmt::ManagedObject interface. It is envisaged that the ManagedObject interface will
provide support for such things as scoping, filtering, and attribute groups, by declaring
operations on a per object basis for use by the gateway to fulfill scoped and filtered requests.
This issue is deferred to the definition of Interaction Translation and of the ManagedObject
interface in a separate document.

GDMO identifiers are subject to the same lexical translation and disambiguation rules defined
for ASN.1 identifiers in Section 2.4 on page 21. As ‘‘/’’ is a legal character in GDMO identifiers
(but not in ASN.1), it will be translated as the literal string ‘‘_SLASH_’’.

GDMO template order is determined by its use inside Managed Object classes. Templates not
used (for example, Name Bindings, Parameters, Attributes, Packages, etc, that are declared but
are not used or not accessible from Managed Object classes in the document) are not mapped.
Imported templates are considered as if they were local to the current document for lexical
purposes.

With the exception of managed object classes, each template REGISTERED ASclause is not
mapped into the IDL files generated by the specification translation.

Part 3: GDMO to OMG IDL Translation Algorithm 69

Error Handling Mapping GDMO Templates to IDL Interfaces

4.1 Error Handling
Both CMIP and CORBA provide mechanisms to handle errors. CMIP provides a basic set of
errors (augmented by ROSE errors) one of which, processingFailure , may carry additional
data defined in PARAMETERtemplates with context SPECIFIC-ERROR. This polymorphism is
handled via the ANY DEFINED BY clause, which in turn is mapped to the IDL
ASN1_DefinedAny type (which is derived from the IDL any type). CORBA provides a two-tiered
exception handling mechanism consisting of standard exceptions (which carry very little data)
and user exceptions which may carry arbitrary data types as defined in the IDL. In order to
preserve the data capability, user defined exceptions are provided for each of the CMIP errors
with data types as translated from the CMIP module (see reference CMIP). This is included by
all translated objects via the file OSIMgmt.idl. An initial version of the OSIMgmt.idl file is
contained in Section 12.2.0 on page 169. It will further defined in the Interaction Translation
document.

This solution will allow any invokers of an IDL operation to handle CMIP errors through
exceptions. To enhance IDL readability, macros are provided defining the set of exceptions
which each operation type might raise. A convenient side-effect of this is that PARAMETERs in
general and SPECIFIC-ERRORs in particular need only be mapped to a type-declaration, so
that a suitable TypeCode would be generated for use with IDL any.

70 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Mapping Managed Object Templates to IDL

4.2 Mapping Managed Object Templates to IDL
During translation from a managed object class template to an IDL interface, mandatory and
conditional packages of the managed object class are distinguished only through the use of
comments. The attributes, actions and notifications of conditional packages are translated in the
same way as those of mandatory packages. Whether a conditional package is present or not is an
implementation issue. When an attempt is made to access a conditional package that is not
present, the implementation should raise the CORBA standard system exception
NO_IMPLEMENT.

For each template in a GDMO specification, the method for translating from that template to the
appropriate IDL definitions is described. This is done recursively starting from the MANAGED
OBJECT CLASStemplate shown in Table 4-1.

<class-label> MANAGED OBJECT CLASS

[DERIVED FROM<class-label> [, <class-label>]* ;]

[CHARACTERIZED BY<package-label> [, <package-label>]* ;]

[CONDITIONAL PACKAGES<package-label> PRESENT IF

<condition-definition>

[, <package-label> PRESENT IF <condition-definition>]* ;]

REGISTERED ASobject-identifier ;

Table 4-1 Managed Object Class Template Structure

A managed object class, maps to a management IDL interface with the same name plus
additional interfaces which support notifications. Interface top inherits from ManagedObject and
#includes OSIMgmt.idl. All other management interfaces multiply inherit from the interfaces
corresponding to the managed object classes in the DERIVED FROMclause and must #include
the files where IDL interface definitions corresponding to those managed object class templates
have been generated. Then for each package, CONDITIONAL or otherwise, do the following
steps (output to management IDL interface unless otherwise stated):

• Generate IDL comments containing the name of the package and, if it is CONDITIONAL, the
PRESENT IFtext.

• List the names of the attributes, actions and notifications as comments.

• Copy the behaviours of the package as comments.

• Copy the attribute-group information as comments.

• Declare a set of IDL operations for each attribute in each package as described in Section 4.3
on page 73. Copy any behaviour text and/or attribute specification relating to the attribute
as comments in order to include information about default-values, permitted-values,
required-values, etc.

• For each Action, declare an IDL operation, as described in Section 4.5.2 on page 75. If the
action has a WITH REPLY SYNTAXclause, then generate the IDL necessary to support the
handling of multiple replies.

• For each Notification, copy the behaviour text of the corresponding NOTIFICATION
template as a comment. In addition, generate IDL operations in the _N and _NP modules (as
described in Section 4.6.2 on page 78).

Part 3: GDMO to OMG IDL Translation Algorithm 71

Mapping Managed Object Templates to IDL Mapping GDMO Templates to IDL Interfaces

The REGISTERED ASclauses are translated as:

// <class-label> ... REGISTERED AS { a b c d e f }

#pragma ID <mapped-class-label> "OSIOID:a.b.c.d.e.f"

This allows the object identifier to be re-used as an Interface Repository ID.

This is only done for Managed Object Class templates.

72 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Mapping an Attribute as a Set of IDL Operations

4.3 Mapping an Attribute as a Set of IDL Operations
Associated with each Attribute in a GDMO package is a property-list which identifies the access
mechanisms to the attribute. These may be GET, REPLACE, GET-REPLACE, ADD, REMOVE,
ADD-REMOVEor REPLACE-WITH-DEFAULT. In addition CMIP may raise a number of different
errors (possibly with parameters given in SPECIFIC-ERROR parameters) such as
processingError or illegalValue . These are mapped to IDL as User Exceptions so that
the additional data may be carried and this is the main reason why GDMO attributes are not
mapped directly to IDL attributes; access operations on IDL attributes cannot raise user
exceptions. All attribute operations may raise the same set of errors defined by the macro
ATTRIBUTE_ERRORS from OSIMgmt.idl defined in Section 4.1 on page 70. Each attribute maps
to one or more of five possible IDL operations:

<type> <attribute-label>Get() raises (ATTRIBUTE_ERRORS);
void <attribute-label>Set(in <type> value)

raises (ATTRIBUTE_ERRORS);
void <attribute-label>Add(in <type> value)

raises (ATTRIBUTE_ERRORS);
void <attribute-label>Remove(in <type> value)

raises (ATTRIBUTE_ERRORS);
<type> <attribute-label>SetDefault()

raises (ATTRIBUTE_ERRORS);

where <type> is the ASN.1 for the Attribute type translated to IDL via the mechanisms defined
in Chapter 2 on page 15. Note that <attribute-label> is the attribute identifier after
disambiguation (that is, it may have a suffix of the form <__n>). Note that Add and Remove
operations manipulate sets and hence take values of the same type as the attribute itself.

For each attribute property in the list, IDL operations are generated according to Table 4-2. Each
operation is generated at most once for each attribute in an interface.

Property IDL Operations Required
GET <attribute-label>Get

REPLACE <attribute-label>Set

GET-REPLACE <attribute-label>Get and <attribute-label>Set

ADD <attribute-label>Add

REMOVE <attribute-label>Remove

ADD-REMOVE <attribute-label>Add and <attribute-label>Remove

REPLACE-WITH-DEFAULT <attribute-label>SetDefault

Table 4-2 Mapping Attribute Properties to IDL Operations

Part 3: GDMO to OMG IDL Translation Algorithm 73

Mapping Parameters to IDL Types Mapping GDMO Templates to IDL Interfaces

4.4 Mapping Parameters to IDL Types
In GDMO, a PARAMETERis provided in order to resolve ANY DEFINED BYclauses in
ACTIONS, NOTIFICATIONS and the CMIP Error processingFailure . The ASN.1 ANY
DEFINED BYconstruct maps to an IDL any and to use this requires a suitable TypeCode to be
available. Since a TypeCode is automatically generated when a type is defined in IDL, the
corresponding typedef in IDL is simply generated. Applications that wish to use the
PARAMETERclauses can then use the TypeCode to insert their data into the relevant IDL any
field. As an additional programming aid, a comment is also generated for each parameter
template.

<parameter-template> ::=

<parameter-label> PARAMETER

CONTEXT<context-type> ;

<syntax-or-attribute-choice> ;

[BEHAVIOUR <behaviour-definition-label>

[, <behaviour-definition-label>]* ;]

[REGISTERED ASobject-identifier] ;

<context-type> ::= <context-keyword> | ACTION-INFO |

ACTION-REPLY | EVENT-INFO |

EVENT-REPLY | SPECIFIC-ERROR

<context-keyword> ::= <type-reference>.<identifier>

<syntax-or-attribute-choice> ::= WITH SYNTAX<type-reference> |

ATTRIBUTE <attribute-label>

Table 4-3 Parameter Template Production

The mapping proceeds by translating the syntax of the attribute to an IDL type. If the
ATTRIBUTE construct is used, the IDL type is the type of the reference attribute. Behaviour
definitions are transcribed as comments, as is the CONTEXTtype information. The mapping
generates a new IDL type declaration, where the new type is named after parameter label and
the type is the translation of the WITH SYNTAXor ATTRIBUTEconstructs.

4.4.1 Examples

Example 4-1 Mapping Parameters to IDL Types

GDMO IDL
not-running PARAMETERS typedef ActionModule::ServerState

CONTEXT SPECIFIC-ERROR; not_runningType;
WITH SYNTAX // SPECIFIC-ERROR

ActionModule.ServerState;

74 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Mapping Actions to IDL Operations

4.5 Mapping Actions to IDL Operations
In GDMO objects, action templates may have parameters and replies. Where actions have a
reply syntax, objects have the option of using multiple replies (that is, returning a sequence of
PDUs, each of the type given in the reply syntax, containing part of the reply). The behaviour
clause of an action template indicates whether multiple replies may be used. Multiple replies
allow data to be returned as it becomes available and have been used for monitoring progress.
Whilst these are not widely used and could easily be replaced by notifications, it was regarded
as necessary to provide for this capability. To do this, an additional interface which operates in
the reverse direction is necessary (that is, the object instance would be the client of the interface
and the manager would be the server). To achieve this, the managed object raises an exception to
indicate that it will generate multiple replies.

As an additional complexity, actions may be either confirmed or unconfirmed, and this may be
selected at run-time.

<action-template> ::=

<action-label> ACTION

<behaviour-clause>

<action-mode>

[PARAMETERS<param1>[, <param>]* ;]

<action-info-syntax>

<action-reply-syntax>

REGISTERED ASobject-identifier ;

<action-mode> ::= MODE CONFIRMED; | empty

<action-info-syntax> ::= WITH INFORMATION SYNTAX<type-reference> ; | empty

<action-reply-syntax> ::= WITH REPLY SYNTAX<type-reference> ; | empty

Table 4-4 Action Template Production

4.5.1 Mapping of Action Parameters

Any parameters contained in the PARAMETERSclause of the action template are mapped as
comments.

4.5.2 Mapping to an Operation on the Primary Interface

Each ACTION template is mapped to at least one operation in the management IDL interface.
The name of the mandatory operation is the <action-label> of the ACTIONtemplate which may
need disambiguating via the usual rules. It is possible for the name of an action to clash with an
operation generated for an attribute. In this case, the attribute operation takes precedence and
the name of the action is changed according to the usual rules (that is, add a suffix of the form
<__n>). The operation may raise any of the CMIP errors associated with ACTION invocation
(defined by the macro ACTION_ERRORS from OSIMgmt.idl in Section 4.1 on page 70). If the
action template has a WITH INFORMATION SYNTAXclause, the operation has an in parameter
with type translated from the WITH INFORMATION SYNTAXclause named actionInfo . If the
action template has a WITH REPLY SYNTAXclause, then the action may result in multiple
replies (this is determined by the text in the behaviour clause but this information is not
available to the compiler). In this case, the operation has a return type which is the translation of
the WITH REPLY SYNTAXclause and may raise an additional user exception named UsingMR
to indicate if it is using multiple replies.

Part 3: GDMO to OMG IDL Translation Algorithm 75

Mapping Actions to IDL Operations Mapping GDMO Templates to IDL Interfaces

4.5.3 Handling Multiple Replies

The handling of multiple replies is a matter for the Interaction Translation specification. The
general mechanism to handle multiple replies does not need any special treatment from the
GDMO to IDL translation process except for the UsingMR exception raised by the operations
derived from the ACTION translation (see Section 4.5.2 on page 75). If the manager is to handle
multiple replies, it must detect the UsingMR exception and take the appropiate steps.

4.5.4 Examples

Example 1

Consider a simple case of ACTION template:

suspend ACTION
MODE CONFIRMED
PARAMETERS not-supported, not-running;
WITH INFORMATION SYNTAX ActionModule.Suspend;
WITH REPLY SYNTAX ActionModule.ServerState;

REGISTERED AS{ 1 2 3 4 9 };
not-supported PARAMETER

CONTEXT SPECIFIC-ERROR;
WITH SYNTAX ActionModule.ReasonCode;

REGISTERED AS{ 1 2 3 4 10 };
not-running PARAMETER

CONTEXT SPECIFIC-ERROR;
WITH SYNTAX ActionModule.ServerState;

REGISTERED AS{ 1 2 3 4 11 };

This would translate in the primary interface as follows:

typedef ActionModule::ReasonCodeType not_supportedType; // SPECIFIC-ERROR
typedef ActionModule::ServerStateType not_runningType; // SPECIFIC-ERROR

ActionModule::ServerStateType suspend(in ActionModule::SuspendType actionInfo)
raises (ACTION_ERRORS, UsingMR);

// PARAMETERS not-supported, not-running;

Example 2

If the ACTION template definition for suspend was:

suspend ACTION
PARAMETERS not-supported, not-running, time-delay;
WITH INFORMATION SYNTAX ActionModule.Suspend;

REGISTERED AS{ 1 2 3 4 9 };

The operation definitions in the primary interface would look like this:

void suspend (in ActionModule::SuspendType actionInfo)
raises (ACTION_ERRORS);

// PARAMETERS not-supported, not-running, time-delay;

oneway void suspendUnconfirmed (in ActionModule::SuspendType actionInfo);

76 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Mapping Notifications to IDL Operations

4.6 Mapping Notifications to IDL Operations
The interfaces described below are contained in several separate files. This allows applications
that do not wish to make use of some or all of these features to simply discard the files. It is,
however, required that the files are generated.

Mapping of notifications must enable the use of typed or untyped events via the push or pull
models. The mapping generates two sets of operations in the interfaces of the <nickname>_N and
<nickname>_NP modules. However, due to issues surrounding the GDMO/CMIP notification
mechanisms, the issue of how notification handling is setup is deferred to the Interaction
Translation document. It is recommended that a comment be generated, listing the notifications
on the primary interface.

CORBA event channels do not allow for operations which have a return type. In GDMO it is
allowable for notifications to have reply syntaxes; however this is not believed to be used. In
view of this it was decided not to map reply syntaxes for notifications. For similar reasons, no
user exceptions are raised by notification operations.

<notification-template> ::=

<notification-label> NOTIFICATION

<behaviour-clause>

[PARAMETERS<param1>[, <param>]* ;]

<notification-info-syntax>

<notification-reply-syntax>

REGISTERED ASobject-identifier

<notification-info-syntax> ::= WITH INFORMATION SYNTAX

<type-reference>

<notification-attribute-ids> ; |

empty

<notification-attribute-ids> ::= AND ATTRIBUTE IDS

<attribute-id> [, <attribute-id>]* |

empty

<notification-reply-syntax> ::= WITH REPLY SYNTAX<type-reference> ; |

empty

Table 4-5 Notification Template Production

To maximise the flexibility of events, two alternatives are supported. Pure untyped events are
supported by the CMIP header data as well as an any to carry the data. This results in the
necessary type code being generated. Alternatively, interfaces supporting fully typed events are
also generated in both push and pull flavours. Note that operations supporting typed delivery
of notifications are produced in two interfaces per document (one for push and one for pull).
These interfaces are called Notifications and PullNotifications and are scoped within a module
with the same name as the file to ensure uniqueness.

Part 3: GDMO to OMG IDL Translation Algorithm 77

Mapping Notifications to IDL Operations Mapping GDMO Templates to IDL Interfaces

4.6.1 Mapping of Event Parameters

Any parameters contained in the PARAMETERSclause of the notification template which have a
context type of EVENT-REPLYor SPECIFIC-ERROR are ignored because reply syntaxes are
not supported. Any parameter having a context type of EVENT-INFO are mapped as comments.

4.6.2 Mapping to Operations in Notification Modules

To support typed events under the push model, operations are generated in the _N module.
Since notification can be confirmed or unconfirmed as selected at run-time, two operations are
generated, one for confirmed events and one for unconfirmed. The unconfirmed event is defined
as oneway in IDL. These operations have the following in parameters for the CMIP header
components:

in ASN1_ObjectIdentifier sourceObjectClass,
in X711CMI::ObjectInstanceType sourceObjectInstance,
in ASN1_ObjectIdentifier eventType,
in X711CMI::ASN1_GeneralizedTimeOpt eventTime,

followed by an in parameter of type translated from the WITH INFORMATION SYNTAXclause
named notifInfo . The operations are named as <notificaton-label> and <notification-
label>Unconfirmed respectively. Both operations have the return type void .

Similarly, the pull model is supported by two operations generated in the _NP module. These
have the following out parameters for the CMIP header components:

out ASN1_ObjectIdentifier sourceObjectClass,
out X711CMI::ObjectInstanceType sourceObjectInstance,
out ASN1_ObjectIdentifier eventType,
out X711CMI::ASN1_GeneralizedTimeOpt eventTime,

followed by an out parameter of type translated from the WITH INFORMATION SYNTAX
clause named notifInfo . The operations are named as pull_<notification-label> and
try_<notification-label> and have void and boolean return types respectively. Note that with the
pull model, event delivery is inherently confirmed.

To support the untyped event mechanism, a suitable IDL type will be defined in the
OSIMgmt.idl file. However, definition of such a type is postponed to Interaction Translation.

4.6.3 Example

The following NOTIFICATION template:

objectCreation NOTIFICATION
BEHAVIOUR objectCreationBehaviour;
WITH INFORMATION SYNTAX Notification-ASN1Module.ObjectInfo

AND ATTRIBUTE IDS
sourceIndicator SourceIndicator,
attributeList AttributeList,
notificationIdentifier NotificationIdentifier,
correlatedNotifications CorrelatedNotifications,
additionalText AdditionalText,
additionalInformation AdditionalInformation;

REGISTERED AS { joint-iso-ccitt ms(9) smi(3) part2(2) notification(10) 6}

78 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Mapping Notifications to IDL Operations

would be translated as follows:

// in X721_N module
void objectCreation (

in ASN1_ObjectIdentifier sourceObjectClass,
in X711CMI::ObjectInstanceType sourceObjectInstance,
in ASN1_ObjectIdentifier eventType,
in X711CMI::ASN1_GeneralizedTimeOpt eventTime,
in X711Not::ObjectInfoType notifInfo);

oneway void objectCreationUnconfirmed (
in ASN1_ObjectIdentifier sourceObjectClass,
in X711CMI::ObjectInstanceType sourceObjectInstance,
in ASN1_ObjectIdentifier eventType,
in X711CMI::ASN1_GeneralizedTimeOpt eventTime,
in X711Not::ObjectInfoType notifInfo);

// in X721_NP module
void pull_objectCreation (

out ASN1_ObjectIdentifier sourceObjectClass,
out X711CMI::ObjectInstanceType sourceObjectInstance,
out ASN1_ObjectIdentifier eventType,
out X711CMI::ASN1_GeneralizedTimeOpt eventTime,
out X711Not::ObjectInfoType notifInfo);

boolean try_objectCreation (
out ASN1_ObjectIdentifier sourceObjectClass,
out X711CMI::ObjectInstanceType sourceObjectInstance,
out ASN1_ObjectIdentifier eventType,
out X711CMI::ASN1_GeneralizedTimeOpt eventTime,
out X711Not::ObjectInfoType notifInfo);

Part 3: GDMO to OMG IDL Translation Algorithm 79

Resolving Inheritance Collisions Mapping GDMO Templates to IDL Interfaces

4.7 Resolving Inheritance Collisions
In CORBA IDL, an attribute or operation cannot be inherited from more than one interface,
whereas in GDMO such multiple declaration is allowed. This can arise from both single and
multiple inheritance. In order to solve issues of inheritance collision, the algorithm described
here will produce the correct output.

The following steps should be applied in order to each managed object class of the input GDMO
document. Before processing a class, all its ancestors in the inheritance tree must be processed,
and the results of that processing taken into account:

1. Check for repetition of attribute/operation names across all ancestors in inheritance tree.

2. Revise ancestor name collisions by revising the inheritance hierarchy, if required.

3. Add only non-redundant attribute/operation methods from the current object.

4. Map the revised derived managed object class to IDL interface.

Implementation of this (or an equivalent) algorithm is optional. If a translator does not
implement such an algorithm, it will not be able to successfully translate GDMO documents that
cause inheritance collisions.

This algorithm was chosen because it maintains the inheritance tree as large as possible, and it
also results in the generation of cleaner IDL code.

4.7.1 Examples

Figure 4-2 Inheritance Hierarchy Showing Name Collision

Figure 4-2 describes the inheritance hierarchy of managed object classes, where the same
attributes are declared in inherited interfaces by the following GDMO:

80 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Resolving Inheritance Collisions

aObject MANAGED OBJECT CLASS
DERIVED FROM "dmi":top;
CHARACTERIZED BY aObjectPkg1 PACKAGE

ATTRIBUTES aAttr1 GET, aAttr2 GET; ;
REGISTERED AS {xxx ?};

bObject MANAGED OBJECT CLASS
DERIVED FROM "dmi":top;
CHARACTERIZED BY bObjectPkg1 PACKAGE

ATTRIBUTES aAttr2 GET-REPLACE, bAttr1 GET; ;
REGISTERED AS {xxx ?};

cObject MANAGED OBJECT CLASS
DERIVED FROM "dmi":top;
CHARACTERIZED BY cObjectPkg1 PACKAGE

ATTRIBUTES cAttr1 GET;;
REGISTERED AS {xxx ?};

dObject MANAGED OBJECT CLASS
DERIVED FROM cObject;
CHARACTERIZED BY dObjectPkg1 PACKAGE

ATTRIBUTES aAttr1 GET-REPLACE, dAttr1 GET; ;
REGISTERED AS {xxx ?};

abObject MANAGED OBJECT CLASS
DERIVED FROM aObject, bObject;
CHARACTERIZED BY abObjectPkg1 PACKAGE

ATTRIBUTES abAttr1 GET; ;
REGISTERED AS {xxx ?};

adObject MANAGED OBJECT CLASS
DERIVED FROM aObject, dObject;
CHARACTERIZED BY acObjectPkg1 PACKAGE

ATTRIBUTES cAttr1 GET-REPLACE; ;
REGISTERED AS {xxx ?};

-- Assume for simplicity that all attributes have WITH SYNTAX "AttrType"

Part 3: GDMO to OMG IDL Translation Algorithm 81

Resolving Inheritance Collisions Mapping GDMO Templates to IDL Interfaces

The IDL interfaces for aObject, bObject, cObject and dObject are:

interface aObject : X721::top
{

AttrType aAttr1Get() raises (ATTRIBUTE_ERRORS);
AttrType aAttr2Get() raises (ATTRIBUTE_ERRORS);

};

interface bObject : X721::top
{

AttrType aAttr2Get() raises (ATTRIBUTE_ERRORS);
void aAttr2Set(in AttrType value) raises (ATTRIBUTE_ERRORS);
AttrType bAttr1Get() raises (ATTRIBUTE_ERRORS);};

interface cObject : X721::top
{

AttrType cAttr1Get() raises (ATTRIBUTE_ERRORS);
};

interface dObject : cObject
{

AttrType aAttr1Get();
aAttr1Set(in AttrType value) raises (ATTRIBUTE_ERRORS);
AttrType dAttr1Get() raises (ATTRIBUTE_ERRORS);

};

If abObject is mapped as inheriting from interfaces aObject and bObject, then there is collision
on attribute aAttr2. In this case the inheritance tree is modified such that abObject is inherited
only from aObject and include the attribute and operation of bObject that is not present in
aObject and as well as its own attributes and operations to get:

interface abObject : aObject
{

void aAttr2Set(in AttrType value) raises (ATTRIBUTE_ERRORS);
AttrType bAttr1Get() raises (ATTRIBUTE_ERRORS);
AttrType abAttr1Get() raises (ATTRIBUTE_ERRORS);

};

If adObject is mapped as inheriting from interfaces aObject and dObject, then there is a collision
on attribute aAttr1. In this case the inheritance tree is modified such that adObject is inherited
from aObject and cObject. In the revised object include the attribute and operation of dObject
that is not present in aObject and cObject and its own attributes and operations to get:

interface adObject : aObject, cObject
{

void aAttr1Set(in AttrType value) raises (ATTRIBUTE_ERRORS);
AttrType dAttr1Get() raises (ATTRIBUTE_ERRORS);
void cAttr1Set(in AttrType value) raises (ATTRIBUTE_ERRORS);

};

82 Preliminary Specification

Mapping GDMO Templates to IDL Interfaces Resolving Inheritance Collisions

Figure 4-3 describes the modified inheritance hierarchy of managed object classes shown in
Figure 4-2 on page 80.

Figure 4-3 Revised Inheritance Hierarchy of Managed Object Classes

Part 3: GDMO to OMG IDL Translation Algorithm 83

Mapping GDMO Templates to IDL Interfaces

84 Preliminary Specification

Preliminary Specification

Part 4:

OMG IDL to GDMO/ASN.1 Translation Algorithm

The Open Group

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 85

86 Preliminary Specification

Chapter 5

OMG IDL to GDMO/ASN.1 Translation

5.1 Mapping CORBA IDL to GDMO/ASN.1
Mapping from CORBA IDL to GDMO/ASN.1 is simpler in that GDMO/ASN.1 has more
expressive power than CORBA IDL.

A CORBA IDL specification consists of one or several input files. A specification may contain
global declarations and a possibly empty sequence of IDL modules which themselves can
contain declarations, interfaces and nested modules which allow for further nesting. This
specification does not support global declarations and requires that all declaration be contained
within a module.

A GDMO document consists of a sequence of GDMO templates and/or ASN.1 modules. No
further formal structuring is possible.

5.1.1 Outline of the Translation Algorithm

The translation alorithm defined in this chapter applies the following translation rules. It
generates:

• one or more GDMO documents per CORBA IDL specification file; each outermost IDL
module in the IDL specification file will have its own GDMO document

• one MOC template per interface

• one attribute template per attribute and interface

• one action template per operation and interface

• one ASN.1 type per IDL datatype.

Nested IDL modules are unravelled to the outermost module.

No templates are generated for attribute groups, behaviour and notifications. Package templates
are only generated in-line.

5.1.2 Generated GDMO/ASN.1 Documents

A separate GDMO document is generated for each outermost module of the IDL file.

The translator moves every nested IDL declaration to the GDMO document scope. All IDL
datatype declarations are moved into a single ASN.1 module.

Any resulting collisions between identifiers are resolved by appending a suffix "-<n>" where <n>
is an increasing integer starting with 1, as necessary within the mapped module.

The CORBA IDL input accepted by the IDL to GDMO translator may contain one or a sequence
of outermost IDL modules, which may contain declarations of data types, constants, interfaces
and nested modules.

• For each outermost module, a GDMO document (that is, a file) is generated. If the input
contains a sequence of outermost modules, several GDMO documents will be generated in
accordance with the algorithm explained below. The name of the generated GDMO
document will be the same as the name of the mapped outermost IDL module.

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 87

Mapping CORBA IDL to GDMO/ASN.1 OMG IDL to GDMO/ASN.1 Translation

• For each outermost module, all the data type definitions of all nested modules in the input
are put into a single ASN.1 module with the nickname <IDL-module-name>-ASN1 .

• All interface definitions of all nested modules are put into a single GDMO document (file), as
explained below.

• Any cross module references definitions used within an IDL specification to be translated
must be replaced in the corresponding GDMO document with the proper externalized
GDMO document reference, or ASN.1 IMPORTclause.

5.1.3 JIDM GDMO Base Document

A single file with the new GDMO document ‘‘JIDMbaseDocument’’ with the necessary basic
definitions is part of this specification:

corbaObject A Managed Object Class used as the inheritance root for all IDL
derived managed object classes. (It is a subclass of X721:Top).

corbaSystem A Managed Object Class used as the local naming root for all IDL
derived managed object instances. (It is a subclass of corbaObject).

corbaNameBinding A Name Binding for corbaObject and subclasses under corbaSystem.

jidmRoot An ASN.1 OBJECT IDENTIFIER used as root or prefix for the
generated (see Section 5.1.6 on page 89).

5.1.4 Lexical Translation

The alphabet for IDL specifications is based on the ISO Latin-1 standard (reference ISO 8859-1)
with a rich set of graphic characters. The character set of GDMO and ASN.1 is more restricted.

For the use in the generated specification itself, the rules for identifiers and constant value
declarations are of major concern (see below). The permissible alphabets for strings are mapped
as close as possible to the appropriate ASN.1 string types.

5.1.5 Translation of IDL Identifiers to GDMO and ASN.1 Labels

IDL identifiers must start with one alphabetic character and may consist of any sequence of any
alphabetic or digit characters or the underbar (‘‘_’’) character. Identifiers that differ only in the
case (upper or lower) of the letters are regarded as equal.

For GDMO and ASN.1, identifiers may consist of letters and digits as in IDL but may contain the
dash (‘‘-’’) instead of the underbar. As additional requirement, GDMO and ASN.1 expect a
lower case first letter for structure members and value specifications, and an upper case first
letter for ASN.1 Type productions. All GDMO templates must have names beginning in lower
case.

The translation algorithm replaces each underbar by a dash and applies the rule for the first
letter to all identifiers.

IDL type identifiers are unique within their interfaces with respect to module naming scope. As
the nested structure of modules and interfaces will be lost in the generated ASN.1 files, conflicts
between these type identifiers may occur. In this case, the string ‘‘-[i]’’ is appended to the
second and subsequent colliding identifiers with ‘‘i’’ incremented by one upon each usage. This
is similar to the approach taken for the GDMO to CORBA IDL mapping.

For each generated GDMO document, with a given nickname, the translator must produce a text
output file, named <nickname>.ide , which contains a line for each IDL identifier translated into
corresponding definitions in that GDMO document. Each line of the <nickname>.ide file will

88 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Mapping CORBA IDL to GDMO/ASN.1

have the following three fields, using ‘‘,’’ as a field delimiter:

<IDL fully scoped identifier name>,<gdmo identifier used>,<object identifier in string dot notation>

The first and second fields are always present. The third field may not be present if no object
identifier has been generated for the IDL identifier.

For ASN.1 production names defined in the ASN.1 module <IDL-module-name>-ASN1 , the
second field will be scoped as in GDMO SPECIFIC-ERROR.

5.1.6 Allocation of Object Identifiers

The OBJECT IDENTIFIERS for each of the GDMO templates are automatically allocated,
given an OBJECT IDENTIFIER value for the IDL specification in which the definitions are
contained.

Part of compiling an IDL file into GDMO will require specifying an OBJECT IDENTIFIER root
for the IDL file. This OBJECT IDENTFIERroot may be obtained through any valid registration
authority for ASN.1 OBJECT IDENTIFIER values.

As an alternative, a mechanism4 is described below which will allow a unique identifier to be
easily generated. In many IDL environments, a generator of DCE uuid values (uuidgen) is
available. DCE uuid values are globally unique 128 bit values. Corresponding values for
OBJECT IDENTIFIERS based upon DCE uuid values can be generated below a common root id
supplied by The Open Group:

xOpenJIDMrootOid OBJECT IDENTIFIER ::=
{ iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) jidm(9) }

The actual OID must be based on appending as the next level of the OBJECT IDENTIFIER a
uuid generated by the invoker of the translator making use of the DCE tool uuidgen. It should
be noted that this approach guarantees unique OIDs under The Open Group JIDM root OID
without a further need for registration. In addition, once a single uuid has been generated, the
user is free to allocate the resulting sub-tree as they desire:

jIDM<document>oid OBJECT IDENTIFIER ::= { xOpenJIDMrootOid (<uuid>) }

5.1.7 Use of Object Identifiers

Given an OBJECT IDENTIFIER value ‘‘jIDM<document>oid’’ for the IDL specification,
separate OBJECT IDENTIFIER values can be generated for each outermost module in the IDL
file. The value 0 is reserved, and each successive outermost module takes the next available
number, starting with 1 for the first module in the sequence of outermost modules. For example:

jIDMdocMod1 OBJECT IDENTIFIER ::= { jIDM<document>oid 1 }
.
.
.

jIDMdocMod8 OBJECT IDENTIFIER ::= { jIDM<document>oid 8 }

Note there is a unique OBJECT IDENTIFIER value for each GDMO document generated from
the IDL file. Using jIDMdocMod1 as an example root for the GDMO document corresponding to
the first outermost module of the jIDMdocument, it is possible to further derive the following
categories, which serve as registration nodes for each category of IDL defined items within the

4. It is possible that additional mechanisms of generating unique OIDs under a common root may be defined in the future.

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 89

Mapping CORBA IDL to GDMO/ASN.1 OMG IDL to GDMO/ASN.1 Translation

module. It should be noted that these assignments are fully in line with the GDMO standard
(see reference GDMO, clause 6.4.3):

jIDMdocMod1ASN1Module OBJECT IDENTIFIER ::= { jIDMdocMod1 2 }
jIDMdocMod1ManagedObjectClass OBJECT IDENTIFIER ::= { jIDMdocMod1 3 }
jIDMdocMod1Parameter OBJECT IDENTIFIER ::= { jIDMdocMod1 5 }
jIDMdocMod1NameBinding OBJECT IDENTIFIER ::= { jIDMdocMod1 6 }
jIDMdocMod1Attribute OBJECT IDENTIFIER ::= { jIDMdocMod1 7 }
jIDMdocMod1Action OBJECT IDENTIFIER ::= { jIDMdocMod1 9 }
jIDMdocMod1IDLtype OBJECT IDENTIFIER ::= { jIDMdocMod1 11 }

At a given nesting level, defined items of a given category (for example, action) are sequentially
assigned integers corresponding to relative position in the specification.

The jIDMdocMod1IDLtype is supplied as a local root for assigning OBJECT IDENTIFIER
values for each type defined in the module, for use in the ASN.1 ANY type (see below) as
identifiers, without resorting to the free form of IDL any representation.

Given an interface foo which is the first interface in the first module, its OID value would be:

foo OBJECT IDENTIFIER ::= { jIDMdocMod1ManagedObjectClass 1 }

Given an operation foobar which is the second operation defined in the first module of the
specification, its OID value will be:

foobar OBJECT IDENTIFIER ::= { jIDMdocMod1Action 2 }

5.1.8 Translation of Comments

Mapping of comments is optional. Because the nested modules are unravelled in the translation
process, there might be some reordering of the IDL which may fail to re-order the associated
comments, thus rendering the translated comments of doubtful value.

IDL uses the same syntax for comments as C++ does: either a full line of text starting from ‘‘//’’
or any portion of the input text between ‘‘/*’’ and ‘‘*/’’.

Both forms are translated into the ASN.1 comment ‘‘--’’.

5.1.9 Translation of Preprocessor Directives

IDL uses the same syntax and inventory of preprocessor directives as C++. As GDMO/ASN.1
does not support any preprocessor directives, the IDL files should be preprocessed according to
the normal rules established in the CORBA specification (see reference CORBA).

The identifier file associated with each GDMO document must be consulted to determine the
proper GDMO reference or ASN.1 Import for each of the external definitions used within the
translated IDL specification file.

5.1.10 Translation of CORBA IDL

Table 5-1 on page 91 gives an overview on the mapping of CORBA IDL entities into GDMO
templates.

90 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Mapping CORBA IDL to GDMO/ASN.1

CORBA IDL GDMO/ASN.1
Interface (multiple MANAGED OBJECT (multiple inheritance)

inheritance, no override)

Operation (in, out, and in-out ACTION WITH INFORMATION SYNTAX

parameters, optional return SEQUENCE {(in, and in-out params)}

result value, one-way option) WITH REPLY SYNTAX

SEQUENCE{return result value,

(in-out and out params)}

Attribute (get value, set value) ATTRIBUTE (GET, or GET-REPLACE)

Exception (standard and user SPECIFIC ERRORS (with parameters

defined with parameters) carried by ROER processing failure)

Table 5-1 Translation of IDL Definitions

5.1.10.1 Translation of IDL Interfaces

CORBA interfaces are mapped directly to Managed Object Class templates. Each IDL interface
is translated into a GDMO managed object class template as in the following:

<interface-name>[-<n>] MANAGED OBJECT CLASS
DERIVED FROM <super-classes>
[CHARACTERIZED BY <interface-name>Package[-<n>] PACKAGE
[ATTRIBUTES <list of attributes and properties>;]
[ACTIONS <list of operation names>;]]

REGISTERED AS { <managed-object-class-oid> };

where <super-classes> are those of the interface or ‘‘jIDMbaseDocument:corbaObject’’ if
none is specified.

There is no need to generate a package if an interface contains neither attributes nor operations.

The interface-name, and its corresponding inline package name, is given the ‘‘-<n>’’ suffix,
where <n> increases from 1, as required to disambiguate any colliding interface names caused
by the nested module unravelling.

The properties of the attributes depend on the readonly token of the IDL attribute. If it is present,
the attribute gets the property GET, otherwise the attribute is read-write and it gets the property
GET-REPLACE.

If an attribute has its base type as an IDL sequence, then the mapped ASN.1 attribute syntax will
be SEQUENCE OF, thus the list of properties may not be extended by ADD-REMOVE, which is
only allowed for set-valued attributes. (A set-valued attribute is one whose syntax is SET OF.
CMIS has the further restriction that set-valued attributes cannot repeat values (see reference
CMIS clause 3.1.5.9).

The GDMO properties SET TO DEFAULT, INITIAL VALUE and PERMITTED VALUE cannot be
generated because IDL does offer comparable information. All translated attributes and actions
must include the specific error parameter corbaStandardException .

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 91

Mapping CORBA IDL to GDMO/ASN.1 OMG IDL to GDMO/ASN.1 Translation

5.1.10.2 Translation of IDL Attributes

Each IDL attribute declared in an IDL interface will be translated to a GDMO attribute template:

<attribute-name>[-<n>] ATTRIBUTE
WITH ATTRIBUTE SYNTAX <IDL-module-name>-ASN1.<attribute-name>[-<n>];
MATCHES FOR <matching rules>;

REGISTERED AS { <attribute-oid> };

where <matching rules> is determined based on characteristics of the attribute’s base type:

EQUALITY for every type

ORDERING for integer, real and string types

SUBSTRING for string types

SET-COMPARISON cannot be used, since an IDL attribute will never be a set-valued
attribute

SET-INTERSECTION cannot be used, since an IDL attribute will never be a set-valued
attribute.

Any collisions in attribute names within the module are resolved using sequential ‘‘-<n>’’
suffixes, where <n> increases from 1, as required to disambiguate.

5.1.10.3 Translation of IDL Operations

Each IDL attribute declared in an IDL interface will be translated into a GDMO ACTION
template:

<operation-name>[-<n>] ACTION
[WITH INFORMATION SYNTAX

<IDL-module-name>-ASN1.<operation-name>[-<n>];]
[WITH REPLY SYNTAX

<IDL-module-name>-ASN1.<operation-name>[-<n>];]
REGISTERED AS { <action-oid> };

The type of an action information (reply) is a structure of type SEQUENCE which is composed
of fields corresponding to all in and inout arguments (retVal , inout and out arguments). The
name of each field the name of the corresponding formal parameter of the operation. The name
of the field that represent the operation return value is retVal.

The exceptions raised on the IDL operations must be mapped to specific errors for the ACTION
when used in the package definition.

5.1.10.4 Translation of IDL Exceptions

IDL exceptions are defined and are used in the context of a method invocation as form of error
return. This sematics is different from that of GDMO notifications which spontaneously indicate
an event (not only an error) from the remote side.

Thus, each IDL exception declared in an IDL interface will be translated into a GDMO
PARAMETERtemplate with the context of SPECIFIC-ERROR:

<exception-name>[-<n>] PARAMETER
CONTEXT SPECIFIC-ERROR
WITH SYNTAX <IDL-module-name>-ASN1-<exception-name>[-<n>]

REGISTERED AS { <parameter oid> };

The exception name is appended with a ‘‘-<n>’’ suffix, with <n> increasing from 1 as required to
disambiguate naming collisions within the outermost IDL module.

92 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Mapping CORBA IDL to GDMO/ASN.1

The corbaStandardException specific error parameter, defined in the JIDM base GDMO
document (see Section 5.5 on page 103) must be added as a SPECIFIC-ERRORparameter for all
translated IDL operations and attributes.

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 93

Name Bindings OMG IDL to GDMO/ASN.1 Translation

5.2 Name Bindings
As the IDL world does not know about name bindings and introduces naming/containment
hierarchies through the use of COSS:naming services, the mapping defines a flat naming
hierarchy, that is, every generated GDMO MOC will be named by a common root object called
JIDM:corbaSystem with a naming attribute defined as:

CORBAName ::= SEQUENCE OF SEQUENCE {
id GRAPHIC STRING,
val GRAPHIC STRING

}

The name binding template is defined as follows:

corbaSystem-corbaObject NAME BINDING
SUBORDINATE OBJECT CLASS corbaObject AND SUBCLASSES;
NAMED BY

SUPERIOR OBJECT CLASS corbaSystem AND SUBCLASSES;
WITH ATTRIBUTE corbaName;

REGISTERED AS { jIDMbaseDocumentNameBinding 1 };

94 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Mapping CORBA IDL Data Type Definitions

5.3 Mapping CORBA IDL Data Type Definitions
The following sections explain how CORBA IDL interface definitions can be mapped onto
GDMO/ASN.1.

5.3.1 Translation of IDL Data Types

5.3.1.1 Translation of IDL Base Types

The generated common ASN.1 modules should import the common IDL base types as defined in
the jIDMbaseDocument ASN1Module, as required by the translated IDL types. This will allow
the translator to not include ranges each time it translates an integer and thus renders the
generated code clearer.

For each IDL attribute type, operation argument type, and for each function return value type,
generate an ASN.1 typed as in the following:

• The identifier of an attribute type is <attribute-name>[-<n>] which must start with an
upper-case letter.

• The identifier of a typedef is of the form <IDL-type-name>[-<n>] which must start with an
upper-case letter.

• The identifier for the information syntax of an action is of the form <action-name>Info[-<n>]
which must start with an upper-case letter.

• The identifier for the reply syntax of an action is of the form <action-name>Reply[-<n>] which
must start with an upper-case letter.

• The identifier of a exception is of the form <IDL-exception-name>[-<n>] which must start with
an upper-case letter.

• The identifier of each constant declaration is <constant-name>[-<n>] which must start with a
lower-case letter.

CORBA IDL GDMO/ASN.1
integer (long, short, Integer (with optional subtype_spec)

unsigned long, unsigned short)

floating point (float, double) Real

char GraphicString

string GraphicString

octet OCTET STRING (size constraint of 1)

boolean BOOLEAN

any ANY DEFINED BY or

SEQUENCE{ typecode, anyValue }

See discussion below.

string GraphicString

object <or any other ObjectInstance (X.500 Distinguished name)

object reference> Use one of the names from the OMG name

service, and convert to X.500 format

Table 5-2 Type Mapping

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 95

Mapping CORBA IDL Data Type Definitions OMG IDL to GDMO/ASN.1 Translation

5.3.1.2 Translation of IDL Type Constructors

CORBA IDL GDMO/ASN.1
struct SEQUENCE

union Choice (with ASN.1 TAGs)

enum ENUMERATED

array SEQUENCE OF (with sizeConstraint subtype)

sequences SEQUENCE OF (with optional SizeConstraint

subtype for IDL bounds)

Table 5-3 Constructor Mapping

When translating complex IDL structures (structures containing structures, sequence ..., or
sequence of sequence ...), no generation of intermediate types is required. Keep one ASN.1 type
per one IDL type.

When multiple declarators are used, generate a type/constant for each declarator.

5.3.2 Examples for Constructed Types

module m{
typedef struct A{

sequence <string <10>, 15 > u;
long v[10][20];
struct B {

long x;
short y;} w;

sequence<long,10> z[3];
union B switch (long){

case 1: short x;
case 2: enum C{ red, black } y;

} q;
};

};

the translation to ASN.1 is:

A ::= SEQUENCE {
u SEQUENCE SIZE(15) OF GraphicString(SIZE(10)),
v SEQUENCE SIZE(10) OF SEQUENCE SIZE(20) OF Long,
w SEQUENCE {

x Long ,
y Short },

z SEQUENCE SIZE(3) OF SEQUENCE SIZE(10) OF Long,
q CHOICE {

x Short,
y ENUMERATED { red(0),
black(1)}

}
}

96 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Mapping CORBA IDL Data Type Definitions

5.3.3 Provision of CORBA ANY Type in GDMO/ASN.1

The CORBA IDL Any type is able to contain any structured value. In addition to the value, the
type of the value and its components can be determined during run time and be interpreted
during access. This is similar to the ASN.1 ANY DEFINED BYtype, but in contrast, the type
information is outside of the scope of the ASN.1 specifications. For the translation, a mapping
from IDL Any to ASN.1 ANY DEFINED BYis needed.

5.3.3.1 ASN.1 Syntax for CORBA ANY Type Parameters

Given the OBJECT IDENTIFIER allocation scheme provides an OBJECT IDENTIFIER for
CORBA IDL Typedefs in CORBA specifications which are translated to GDMO, the generated
OBJECT IDENTIFIER can be used to identify each IDL TypeDef. This object identifier can serve
as the typeCode in an ASN.1 representation of CORBA any, based on the ANY DEFINED BY
construct.

The resulting mapping is to the CORBAANY production:

CORBAANY ::= SEQUENCE {
identifiedTypeOID OBJECT IDENTIFIER,
identifiedTypeValue ANY DEFINED BY identifiedTypeOID

}

5.3.3.2 Free Form Representation of CORBA Any Parameters

For cases where CORBA ANY is used to carry a parameter for which there is no translated
CORBA IDL module in existence to provide the identifiedTypeOID, a recursive representation of
type codes and ANY values can be used. For such uses of CORBA ANY, this specification
registers an ASN.1 OBJECT IDENTIFIER VALUE:

freeFormCORBAANYSyntax OBJECT IDENTIFIER ::= {jIDMbaseDocumentASN1Module 2 1}

for use in the CORBAANY production, described in Section 5.3.3.1, to signal that the
identifiedTypeValue has the free form ANYtype syntax described in Section 5.3.3.2.

The ASN.1 syntax production for a free form CORBA ANYvalue, can be used for CORBA ANY
when the associated CORBA Type definition is not within a translated CORBA IDL specification
(that is, does not have a registered OBJECT IDENTIFIER value for the type. Although more
complex, this alternative conveys information on the contents of Any values which have types
defined at run time (that is, not defined within a translated CORBA specification).

The ASN.1 syntax is specified in the FreeCORBAAny production in the ASN.1 module in this
Chapter.

5.3.3.3 Free Form Type Code Representation in ASN.1

Conceptually, a CORBA IDL TypeCode is a recursive structure, which allows any IDL defined
type to be represented. It is used to unravel the anyValue field in the Any type.

The syntax of Type codes is specified by the TCKind , TCParm and TypeCode productions in the
ASN.1 module in this Chapter.

To represent recursive types (for example, struct foo { sequence <foo> bar }) a
special TCKind value (−1) is used. Its parameter list includes an integer which indicates the
number of upward nest levels required to access the recursively referenced type code.

The parameter list is populated for the various KINDs as indicated in Table 5-4 on page 98,
which allows for all CORBA 2.0 valid any parameter types to be passed using the ASN.1 syntax
for Type code.

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 97

Mapping CORBA IDL Data Type Definitions OMG IDL to GDMO/ASN.1 Translation

5.3.3.4 Free Form CORBA Any Value Representation in ASN.1

The value for the Any type is represented as a nested choice structure, which can be unraveled
using the type code information. The ASN.1 syntax is specified in the CORBAAnyValue
production specified in the ASN.1 module at the end of this chapter.

KIND PARAMETER LIST ‘‘{...}’’ (denotes repetition of contents)
tk-null ‘‘none‘‘
tk-void ‘‘none‘‘
tk-short ‘‘none‘‘
tk-long ‘‘none‘‘
tk-ushort ‘‘none‘‘
tk-ulong ‘‘none‘‘"
tk-float ‘‘none‘‘
tk-double ‘‘none‘‘
tk-boolean ‘‘none‘‘
tk-char ‘‘none‘‘
tk-octet ‘‘none‘‘
tk-any ‘‘none‘‘
tk-TypeCode ‘‘"none‘‘
tk-principal ‘‘none‘‘
tk-interfaceRef string(repository ID), string (name)
tk-struct string(repository ID), string(name), integer(count)
tk-except { string(member name), TypeCode(member type) }
tk-union string(repository ID), string(name), TypeCode(discriminant type),

integer(default used), integer(count),
{ anyVal(label-value), string(member name), TypeCode(member type) }
/*Note: type of label anyVal determined by third parameter,
discriminant type */

tk-enum string(repository ID), string(name), integer(count),
{ string(member name }

tk-string integer(max length) /* for unbounded strings, this value is zero */
tk-sequence TypeCode(element type), integer(bounds)
tk-array TypeCode(element type), integer(length)
tk-alias string(repository ID), string(name), TypeCode
tk-nested integer(number of nest levels up to referenced type code)

/*use to represent recursive type definitions */

Table 5-4 Type Code Kinds and Associated Parameter Lists

98 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Examples

5.4 Examples

5.4.1 Example 1

Assume a simple CORBA IDL specification containing the module ‘‘Example’’ with an assigned
object identifier of ‘‘exo’’:

module example
{ /* only some data types */

interface int1
{

const long c1 = 6;

enum ExEnum { x, y, z};
struct ExStruct{

long x;
boolean y;

};

union ExUnion switch(long){
case 1: boolean state;
case 2: ExStruct info[55] ;

};
};

};

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 99

Examples OMG IDL to GDMO/ASN.1 Translation

This results in the following GDMO/ASN.1 definitions:

-- allocated object identifier

exo OBJECT IDENTIFIER ::= { xopenJIDMrootOid <x> }
exoMod1 OBJECT IDENTIFIER ::= {exo 1 }
exoMod1ASN1Module OBJECT IDENTIFIER ::= { exoMod1 2 }
exoMod1ManagedObjectClass OBJECT IDENTIFIER ::= { exoMod1 3 }
exoMod1Package OBJECT IDENTIFIER ::= { exoMod1 4 }
exoMod1Parameter OBJECT IDENTIFIER ::= { exoMod1 5 }
exoMod1NameBinding OBJECT IDENTIFIER ::= { exoMod1 6 }
exoMod1Attribute OBJECT IDENTIFIER ::= { exoMod1 7 }
exoMod1AttributeGroup OBJECT IDENTIFIER ::= { exoMod1 8 }
exoMod1Action OBJECT IDENTIFIER ::= { exoMod1 9 }
exoMod1IDLtypes OBJECT IDENTIFIER ::= { exoMod1 11 }

-- GDMO template definitions

int1 MANAGED OBJECT CLASS
DERIVED FROM "JIDMbaseDocument":corbaObject;
CHARACTERIZED BY int1Package PACKAGE;

REGISTERED AS { exoMod1ManageObjectClass int1(1) };

-- ASN.1 Module definitions
example-ASN1 { exoMod1ASN1Module 1}
DEFINITIONS ::= BEGIN

IMPORTS ObjectInstance FROM ... ;
-- need to incorporate the common base types mapping here

c1 INTEGER ::= 6
ExEnum ::= ENUMERATED { x(0), y(1), z(2)}
ExStruct ::= SEQUENCE{ x INTEGER, y BOOLEAN}
ExUnion ::= CHOICE { state BOOLEAN,

info SIZE(55) ExStruct}

END

100 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation Examples

5.4.2 Example 2

Assume a simple CORBA IDL specification containing the module ‘‘Example2’’ with an
assigned object identifier of ‘‘exo2’’:

module example2
{

const long c1 = 6;

typedef long ExArray[10];

typedef sequence <long, c1> limitedSeq;

exception reject { long reason; string info;};

interface int1
{

attribute long a;
readonly attribute sequence<octet> b;

attribute float c;

long act1 (in ExArray a, out limitedSeq b, inout ExArray c)
raises (reject);

};
};

This results in the following GDMO/ASN.1 definitions:

-- allocated object identifier

exo2 OBJECT IDENTIFIER ::= { xopenJIDMrootOid <x> }
exo2Mod1 OBJECT IDENTIFIER ::= { exo2 1 }
exo2Mod1ASN1Module OBJECT IDENTIFIER ::= { exo2Mod1 2 }
exo2Mod1ManagedObjectClass OBJECT IDENTIFIER ::= { exo2Mod1 3 }
exo2Mod1Package OBJECT IDENTIFIER ::= { exo2Mod1 4 }
exo2Mod1Parameter OBJECT IDENTIFIER ::= { exo2Mod1 5 }
exo2Mod1NameBinding OBJECT IDENTIFIER ::= { exo2Mod1 6 }
exo2Mod1Attribute OBJECT IDENTIFIER ::= { exo2Mod1 7 }
exo2Mod1AttributeGroup OBJECT IDENTIFIER ::= { exo2Mod1 8 }
exo2Mod1Action OBJECT IDENTIFIER ::= { exo2Mod1 9 }
exo2Mod1IDLtypes OBJECT IDENTIFIER ::= { exo2Mod1 11 }

-- GDMO template definitions

int1 MANAGED OBJECT CLASS
DERIVED FROM "JIDMbaseDocument":corbaObject;
CHARACTERIZED BY int1Package PACKAGE

ATTRIBUTES
a GET-REPLACE PARAMETERS corbaStandardException,
b GET PARAMETERS corbaStandardException,
c GET-REPLACE PARAMETERS corbaStandardException;

ACTIONS
act1 PARAMETERS reject, corbaStandardException; ;;

REGISTERED AS { exo2Mod1ManagedObjectClass 1 };

a ATTRIBUTE
WITH ATTRIBUTE SYNTAX example2-ASN1.A;
MATCHES FOR EQUALITY, ORDERING ;

REGISTERED AS { exo2Mod1Attribute 1 };

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 101

Examples OMG IDL to GDMO/ASN.1 Translation

b ATTRIBUTE
WITH ATTRIBUTE SYNTAX example2-ASN1.B;
MATCHES FOR EQUALITY;

REGISTERED AS { exo2Mod1Attribute 2 };

c ATTRIBUTE
WITH ATTRIBUTE SYNTAX example2-ASN1.C;
MATCHES FOR EQUALITY, ORDERING ;

REGISTERED AS { exo2Mod1Attribute 3 };

act1 ACTION
PARAMETERS reject -- not sure if belongs here, as opposed to
package template
WITH INFORMATION SYNTAX example2-ASN1.Act1Info;
WITH REPLY SYNTAX example2-ASN1.Act1Reply;

REGISTERED AS { exo2Mod1Action 1 };

reject PARAMETER
CONTEXT SPECIFIC-ERROR;
WITH SYNTAX example2-ASN1.Reject;

REGISTERED AS { exo2Mod1Parameter 1 };

example2-ASN1 { exo2Mod1ASN1Module 1 }
DEFINITIONS ::= BEGIN

IMPORTS ObjectInstanceType
FROM {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3) };

-- need to incorporate the base type mapping here
c1 INTEGER ::= 6
ExArray ::= SEQUENCE SIZE(10) OF INTEGER
LimitedSeq ::= SEQUENCE SIZE(c1) OF INTEGER
Reject ::= SEQUENCE { reason INTEGER,

info OCTET STRING}

A ::= INTEGER
B ::= SEQUENCE OF IdlOctet
C ::= REAL

Act1Info ::= SEQUENCE { a SEQUENCE OF ExArray,
c ExArray}

Act1Reply: := SEQUENCE { retVal INTEGER,
b LimitedSeq,
c ExArray}

END

102 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation JIDM Base GDMO Document

5.5 JIDM Base GDMO Document
This section gives the full specification of the JIDM base document for use with GDMO/ASN.1
specifications which have been translated from CORBA IDL specifications.

5.5.1 Assigned X/Open JIDM Object Identifier
jIDMbaseDocument OBJECT IDENTIFIER ::=

{iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) jidmbase(10)}

jIDMbaseDocumentASN1Module OBJECT IDENTIFIER ::= { jIDMbaseDocument 2 }
jIDMbaseDocumentManagedObjectClass OBJECT IDENTIFIER ::= { jIDMbaseDocument 3 }
jIDMbaseDocumentPackage OBJECT IDENTIFIER ::= { jIDMbaseDocument 4 }
jIDMbaseDocumentParameter OBJECT IDENTIFIER ::= { jIDMbaseDocument 5 }
jIDMbaseDocumentNameBinding OBJECT IDENTIFIER ::= { jIDMbaseDocument 6 }
jIDMbaseDocumentAttribute OBJECT IDENTIFIER ::= { jIDMbaseDocument 7 }
jIDMbaseDocumentAction OBJECT IDENTIFIER ::= { jIDMbaseDocument 9 }
jIDMbaseDocumentIDLtypes OBJECT IDENTIFIER ::= { jIDMbaseDocument 11 }

5.5.2 JIDM Base Document Managed Object Class Template

corbaObject MANAGED OBJECT CLASS
DERIVED FROM "DMI":top;
CHARACTERIZED BY corbaObjectPackage

ATTRIBUTES
corbaName GET;
commonNameAttribute GET;

NOTIFICATIONS
;

REGISTERED AS { jIDMbaseDocumentManagedObjectClass 1 };

corbaSystem MANAGED OBJECT CLASS
DERIVED FROM corbaObject;
CHARACTERIZED BY corbaSystemPackage

ATTRIBUTES
"DMI":SystemTitle GET
"DMI":SystemId GET;

;
REGISTERED AS { jIDMbaseDocumentManagedObjectClass 2 };

5.5.3 JIDM Base Document Attribute Templates

corbaName ATTRIBUTE
WITH ATTRIBUTE SYNTAX Common.corbaName;
MATCHES FOR EQUALITY, SUBSTRING, ORDERING;

REGISTERED AS { jIDMbaseDocumentAttribute 1 };

commonNameAttribute ATTRIBUTE
WITH ATTRIBUTE SYNTAX

"Recommendation X.721:1992":Attribute-ASN1Module.SimpleNameType
MATCHES FOR EQUALITY, SUBSTRINGS, ORDERING;

REGISTERED AS {jIDMbaseDocumenbtAttribute 2};

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 103

JIDM Base GDMO Document OMG IDL to GDMO/ASN.1 Translation

5.5.4 JIDM Base Document Name Binding Templates

The following name binding is provided for use when the IDL interface has a COS name. Other
name bindings may be defined for alternative naming schemes. This is why there are two
naming attributes in corbaObject .

corbaSystem-corbaObject NAME BINDING
SUBORDINATE OBJECT CLASS corbaObject AND SUBCLASSES;
NAMED BY

SUPERIOR OBJECT CLASS corbaSystem AND SUBCLASSES;
WITH ATTRIBUTE corbaName;

REGISTERED AS { jIDMbaseDocumentNameBinding 1 };

5.5.5 JIDM Base Document Parameter Templates

corbaStandardException PARAMETER
CONTEXT SPECIFIC-ERROR
WITH SYNTAX Common.CorbaStandardException

REGISTERED AS { jIDMbaseDocumentParameter 1 } ;

5.5.6 JIDM Base Document ASN.1 Module

Common MODULE { jIDMbaseDocumentASN1module 1 }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN

corbaName ::= SEQUENCE OF SEQUENCE {
id GRAPHIC STRING,
val GRAPHIC STRING

}
Octet ::= OCTET STRING (SIZE(1))
Long ::= INTEGER (-2147483648. .2147483647)
ULong ::= INTEGER (0..4294967295)
Short ::= INTEGER (-32768. .32767)
UShort: :=INTEGER (0..65535)

Completion-Status ::= ENUMERATED {
COMPLETED-YES(0),
COMPLETED-NO(1),
COMPLETED-MAYBE(2) }

CorbaStandardException ::= SEQUENCE{
exceptionName IA5STRING, -- standard exception name
minor Ulong, -- minor code for exception
completed Completion-Status
}

END

104 Preliminary Specification

OMG IDL to GDMO/ASN.1 Translation JIDM Base GDMO Document

5.5.7 ASN.1 Module for Representing CORBA ANY Type Parameters
CORBAAnyModule { jIDMbaseDocumentASN1module 2 }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS

ObjectInstance FROM CMIP-1 {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3) };

CORBAANY ::= SEQUENCE {
identifiedTypeOID OBJECT IDENTIFIER,
identifiedTypeValue ANY DEFINED BY identifiedTypeOID

}

freeFormCORBAANYSyntax ::= OBJECT IDENTIFIER { jIDMbaseDocumentASN1Module 2 1 }

-- This OBJECT IDENTIFIER value serves as identifiedTypeOID for the
-- following free form value syntax for representing CORBAANY parameters
-- which do not have their own OID.

FreeCORBAAny ::= SEQUENCE {
typeCodeField TypeCode,
anyValueField CORBAAnyValue

}

TCKind ::= INTEGER {
tk-null (0), tk-void(1), tk-short(2), tk-long(3),
tk-ushort(4), tk-ulong(5), tk-float(6), tk-double(7),
tk-boolean(8), tk-char(9), tk-octet(10), tk-any(11),
tk-TypeCode(12), tk-Principal(13), tk-interfaceRef(14),
tk-struct(15), tk-union(16), tk-enum(17), tk-string(18),
tk-sequence(19), tk-array(20), tk-alias(21),tk-except(22),
tk-nested(-1)

}

TCParm ::= CHOICE {
tcParm-string GeneralString,
tcParm-typeCode TypeCode,
tcParm-integer INTEGER,
tcParm-anyVal [3] CORBAAnyValue

}

TypeCode :: = SEQUENCE {
tcKind TCKind,
numberTCParms INTEGER,
tcParmList SEQUENCE OF TCParm -- may be empty (if tcKind <= 13)

}

--the contents of the parameter list for each TCKind is specified above.

CORBAAnyValue ::= CHOICE {
nullVal [0] NULL,
voidVal [1] NULL,
intVal INTEGER, -- used for short, long, ushort and ulong IDL types
realVal REAL, -- used for float and double IDL types
booleanVal BOOLEAN,
stringVal GeneralString,

-- used for string and char IDL types, size not constrained
-- for char due to escape sequences

octetVal OCTET STRING SIZE INTEGER(1),
typeCodeVal [8] TypeCode,
interfaceRefVal [9] ObjectInstance,
structVal [10] SEQUENCE OF CORBAAnyValue,
unionVal [11] SEQUENCE{ discrimVal CORBAAnyValue, valChosen CORBAAnyValue},
enumVal INTEGER, -- position in enumeration definition, start with 1

Part 4: OMG IDL to GDMO/ASN.1 Translation Algorithm 105

JIDM Base GDMO Document OMG IDL to GDMO/ASN.1 Translation

sequenceVal [13] SEQUENCE OF CORBAAnyValue,
arrayVal [14] SEQUENCE OF CORBAAnyValue,
principalVal [15] OCTET STRING, -- contents depend on implementation
anyVal [16] SEQUENCE { typeCodeVal TypeCode,

anyValField CORBAAnyValue } -- nested any
}

END

106 Preliminary Specification

Preliminary Specification

Part 5:

SNMP to OMG IDL Translation Algorithm

The Open Group

Part 5: SNMP to OMG IDL Translation Algorithm 107

108 Preliminary Specification

Chapter 6

Introduction

This part of the document describes the translation of SNMP MIB Specifications into CORBA
IDL. It does not address how the messages in the SNMP protocol are converted into the
messages in the CORBA environment. The translation scheme can also be applied to MIBs
specified in SNMP version 1 format together with the mapping of TRAP-TYPE macro
(described in Chapter 10 on page 153).

Figure 1-2 on page 8 describes possible scenarios using CORBA-based SNMP managers and
agents. The specification of the SNMP Gateway will be addressed in the Interaction Translation
specification.

The SNMP MIB definition language is built on ASN.1 and this section reuses the translation
given in Chapter 2 on page 15.

The organisation of this section is as follows:

• Chapter 7 on page 111 describes the basic operation of the SNMPv2 to CORBA-IDL compiler.

• Chapter 8 on page 115 describes the mapping of ASN.1 modules to IDL file and module.

• Chapter 9 on page 121 describes the mapping of SNMP macros.

Part 5: SNMP to OMG IDL Translation Algorithm 109

Introduction

110 Preliminary Specification

Chapter 7

SNMPv2 to CORBA-IDL Translation

7.1 Outline of the Translation Algorithm
The basic scheme for translation of a SNMP MIB specification to CORBA-IDL specification is as
follows:

1. Map an SNMP Information module (SMI document) into an IDL module:

• All interfaces, types and constant generated from a SNMP information module will be
within the scope of the corresponding IDL module.

• Declare the imported types in the information module as typedef of imported IDL type.

• Declare two IDL interfaces, called SnmpNotifications and PullSnmpNotifications , (N in
Figure 7-1 on page 113), if there is at least one NOTIFICATION-TYPE macro in the
SNMP information module. The SnmpNotifications interface will be used for
typed-push event communication and the PullSnmpNotifications interface will be used
for typed-pull communication.

• Declare a pseudo IDL interface, called DefaultValues (D in Figure 7-1), if there is at least
one OBJECT-TYPE macro with DEF-VAL clause; Pseudo IDL interfaces generate
library code similar to the specification of the CORBA::TypeCode interface.

• Declare a pseudo IDL interface, called TextualConventions (TC in Figure 7-1), if there is
at least one TEXTUAL-CONVENTIONmacro with DISPLAY-HINT clause.

2. Map each ASN.1 type into IDL type using the translation scheme defined in Chapter 2 on
page 15. A complex ASN.1 data type (used to describe PDUs for SNMP) may generate
more than one IDL data type.

3. Map the value-specification of SYNTAXclause of TEXTUAL-CONVENTIONmacro, such as
DisplayString , into an IDL type:

• If DISPLAY-HINT clause is present, define two operations within the scope of the
TextualConventions interface for converting the typed value to string and string to
typed value.

4. Map the value of the invocation of the MODULE-IDENTITY macros into a constant IDL
literal of type string.

5. Map the value of the invocation of the OBJECT-IDENTITY macros into a constant IDL
literal of type string.

6. Map the value of the invocation of the OBJECT-TYPEmacros into a constant IDL literal of
type ASN1_ObjectIdentifier .

7. Each group is mapped with one IDL interface generated for the group (G in Figure 7-1),
and one IDL interface (T in Figure 7-1), generated for entries of the each of the tables in the
group:

• Non-tabular variables of a group are mapped as IDL attribute within the scope of the
IDL interface for the group. Column variables of the tables are mapped as attributes
within the scope of the IDL interface for the entries of the table:

Part 5: SNMP to OMG IDL Translation Algorithm 111

Outline of the Translation Algorithm SNMPv2 to CORBA-IDL Translation

— Use the descriptor of the OBJECT-TYPEmacro of the corresponding variable as the
identifier of attribute.

— Acquire the IDL type of the attribute from the SYNTAXclause of the OBJECT-
TYPEmacro of the corresponding variable.

— Acquire the mode of the attribute from the MAX-ACCESSclause of the OBJECT-
TYPEmacro of the corresponding variable.

• If a DEFVALcluase is present, define an operation within the scope of DefaultValues
interface that returns the default value in typed form.

8. Map the value of the invocation of the NOTIFICATION-TYPE macros into a constant IDL
literal of type ASN1_ObjectIdentifier :

• Map the value-specification of the OBJECTSclause to an IDL struct which has one
item for each variable in the OBJECTclause; the type of the items of the struct are
defined as name-index-value triplet and the type of the value is derived from the
variable being mapped.

• Define an operation within the scope of SnmpNotifications interface of this module for
typed-push event communication. The in parameters of the operation are source SNMP
party OID, context OID, time-stamp of the event, and the IDL struct defined for the
value-specification of the OBJECTS clause. Use the descriptor of the macro as the
identifier for the operation.

• Define two operations (try_<op> and pull_<op>) within the scope of the
PullSnmpNotifications interface of this module, where <op> is the identifier of the
corresponding operation in the SnmpNotifications interface. The parameters of the
operations are same as push-event model but as out parameter.

9. Assign the OIDs of macros as RepositoryId (using #pragma ID declaration) to all IDL
identifiers that corresponds to macro descriptor.

10. Ignore the macros related to MODULE-COMPLIANCErules.

See Chapter 9 on page 121 for the mapping of each clause of the SNMPv2 macros.

112 Preliminary Specification

SNMPv2 to CORBA-IDL Translation Outline of the Translation Algorithm

SNMPv2 IDL
Compiler

Group

Group

SNMPv2_SMI

SNMPv2_SMI.idl

SNMP

Group

Group
PullN

SNMPv2
Information

Module

T

T TT TG G

TG GT T

N

D

TC

ASN.1 Types Notifications

MACROs

Figure 7-1 Mapping of SNMP Information Module to IDL

Part 5: SNMP to OMG IDL Translation Algorithm 113

SNMPv2 Application-specific Type Translation SNMPv2 to CORBA-IDL Translation

7.2 SNMPv2 Application-specific Type Translation
Table 7-1 describes the mapping of SNMPv2 application-specific ASN.1 types to IDL types.

For detailed description on mapping of ASN.1 type to IDL types including all primitive types,
see Chapter 2 on page 15.

SNMPv2 IDL
Integer32 typedef long Integer32;

IpAddress typedef sequence<octet, 4> IpAddressType;

Counter32 typedef unsigned long Counter32Type;

Gauge32 typedef unsigned long Gauge32Type;

TimeTicks typedef unsigned long TimeTicksType;

Opaque typedef sequence<octet> OpaqueType;

NsapAddress typedef ASN1_OctetString NsapAddressType;

Counter64 typedef long Counter64Type [2];

UInteger32 typedef unsigned long UInteger32Type;

Table 7-1 Mapping of SNMP ASN.1 Types

114 Preliminary Specification

Chapter 8

Mapping of SNMPv2 Information Modules

8.1 Lexical Translation
The lexical translation for the ASN.1 character set and identifiers follow the rules defined in the
ASN.1->IDL translation document (Chapter 2 on page 15).

The suffix ‘‘Type’’ is added to all types generated from the ASN.1 types and the SYNTAXclause
of the OBJECT-TYPEand TEXTUAL-CONVENTIONmacros defined in a SNMPv2 Information
module.

Part 5: SNMP to OMG IDL Translation Algorithm 115

Names and IDL Modules Mapping of SNMPv2 Information Modules

8.2 Names and IDL Modules

8.2.1 Standard Files for Specification Translation

The specification translation assumes the existence of the following files:

ASN1Types.idl contains the base definitions for translating ASN.1 types (see Section 2.11 on
page 58).

SNMPMgmt.idl contains the definition for base IDL interface for SNMP groups or Tables; it
also contains the IDL types for untyped event communication and interfaces
for generic typed event communication.

8.2.1.1 Contents of SNMPMgmt.idl file

The SNMPMgmt.idl file contains the definitions for the base interface for the IDL interface for
SNMP groups or table-entries. The base interface is called SmiEntry and defined within the
module named SNMPMgmt. The IDL interface for SmiEntry is defined in Section 12.3 on page
171.

This file also defines IDL type for untyped event communication and interfaces generic typed
communications (both push and pull style). The structure for untyped event communication is
defined from NOTIFICATION PDU format. The parameters of the operations of interfaces for
typed communications are also derived from NOTIFICATION PDU format. The types and
interfaces are defined in Section 12.3 on page 171.

8.2.2 Mapping of Module Definition

The DEFINITIONS/BEGIN statement is used to start an SNMPv2 information module in the
following format:

<module-identifier> DEFINITIONS ::= BEGIN
<macro-instances>

END

The DEFINITIONS statement is mapped to IDL as follows:

module <module-name> {
<idl-mapped-macro-invocations>

};

where <module-identifier> is mapped as an ASN.1 identifier as defined in Chapter 2 on page 15.
The END statement at the end of the information module is mapped to the closing brace and
semi-colon for the IDL module.

The SNMP→IDL compiler-generated IDL file follows the following rules:

• For each SNMPv2 information module in a SNMP file, the compiler generates an IDL file. The
IDL file is named based on the <module-identifier> defined in the corresponding information
module.

• The information in an IDL file must be enclosed using #ifndef/#endif in the following way:

116 Preliminary Specification

Mapping of SNMPv2 Information Modules Names and IDL Modules

#ifndef _<module-identifier>_IDL_
#define _<module-identifier>_IDL_
module <module-identifier> {

<idl-mapped-macro-invocations>

};
#endif /* !_<module-identifier>_IDL_ */

8.2.3 Naming of the IDL File Output

The <module-identifier> is used to name the IDL file generated by the SNMP→IDL compiler.
The file name is formed by concatenating .idl to the <module-identifier>.

Part 5: SNMP to OMG IDL Translation Algorithm 117

Mapping of IMPORTing Symbols Mapping of SNMPv2 Information Modules

8.3 Mapping of IMPORTing Symbols
In SNMPv2 information modules, the IMPORTSstatement is used to reference an external object
by identifying both the descriptor and the module defining the descriptor, in the following
format:

IMPORTS <descriptor1> [, <descriptor2 ... [, descriptorn]] FROM <module-name>

Descriptors which are not macro references or macro descriptors in the IMPORTSstatement are
declared within the scope of the IDL module by way of typedefs as defined in Section 2.5.4 on
page 25, yielding the following IDL:

typedef <module-name>::<descriptor1>Type <descriptor1>Type;
typedef <module-name>::<descriptor2>Type <descriptor2>Type;
........

typedef <module-name>::<descriptor1>Type <descriptor1>Type;

Note the addition of the Type suffix to all types that are defined in another module. Since base
ASN.1 types are assumed to be globally defined and they are not explicitly imported, the rule is
always consistent.

If there are no IMPORTS ... FROM statements in the SNMP module, then the following
include directives will be added at the beginning of the file:

#include <ASN1Types.idl>
#include <SNMPMgmt.idl>

in order to include the global ASN.1 types and base IDL interface.

Each FROM<module-name> will map to an include statement at the beginning of the file as
follows:

#include <<module-name>.idl>

If there is at least one imported module then it is not necessary to explicitly import the standard
IDL files.

118 Preliminary Specification

Mapping of SNMPv2 Information Modules Mapping of IMPORTing Symbols

8.3.1 Example

By way of example, the following definition in RFC1450:

SNMPv2-MIB DEFINITIONS ::= BEGIN
IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
ObjectName, Integer32, Counter32, snmpModules FROM SNMPv2-SM
TruthValue, DisplayString, TestAndIncr, TimeStamp FROM SNMPv2-T
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CON
system, ifIndex, egpNeighAddr FROM RFC1213-MIB
partyEntry FROM SNMPv2-PARTY-MIB;
....

END

maps to following definition in a file named SNMPv2_MIB.idl:

#ifndef SNMPv2_MIB_IDL
#define SNMPv2_MIB_IDL
#include <SNMPv2_SMI.idl>
#include <SNMPv2_TC.idl>
#include <SNMPv2_CONF.idl>
#include <RFC1213_MIB.idl>
#include <SNMPv2_PARTY_MIB.idl>

module SNMPv2_MIB {
// MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE are ignored
typedef SNMPv2_SMI::ObjectNameType ObjectNameType;
typedef SNMPv2_SMI::Integer32Type Integer32Type;
typedef SNMPv2_SMI::Counter32Type Counter32Type;
// snmpModules is macro descriptor so it is ignored
typedef SNMPv2_TC::TruthValueType TruthValueType;
typedef SNMPv2_TC::DisplayStringType DisplayStringType;
typedef SNMPv2_TC::TestAndIncrType TestAndIncrType;
typedef SNMPv2_CONF::TimeStampType TimeStampType;
// system, ifIndex, egpNeighAddr are ignored because they are macro-descriptors
// partyEntry is ignored because its is macro-descriptor
........

}; /* End of SNMPv2_MIB module */
#endif /* !SNMPv2_MIB_IDL */

Part 5: SNMP to OMG IDL Translation Algorithm 119

Mapping of SNMPv2 Information Modules

120 Preliminary Specification

Chapter 9

SNMPv2 Information Module Macros

9.1 Macro Invocation
Within an information module, each macro invocation appears as:

<descriptor> <macro> <clauses> ::= <value>

where:

<descriptor> corresponds to an ASN.1 identifier

<macro> names the macro being invoked

<clauses> and <value> depend on the definition of the macro.

Table 9-1 describes the production of an ASN.1 macro.

MacroDefinition ::= macroreference MACRO "::=" MacroSubstance
MacroSubstance ::= BEGIN MacroBody END | macroreference | Externalmacroreference
MacroBody ::= TypeProduction | ValueProduction | SupportingProductions
TypeProduction ::= TYPE NOTATION "::=" MacroAlternativeList
MacroAlternativeList ::= SymbolList
SymbolList ::= SymbolElement | SymbolList SymbolElement
SymbolElement ::= SymbolDefn | EmbeddedDefinitions

Table 9-1 Production of ASN.1 Macro Definition Notation

Part 5: SNMP to OMG IDL Translation Algorithm 121

SNMPv2-SMI MODULE-IDENTITY Macro SNMPv2 Information Module Macros

9.2 SNMPv2-SMI MODULE-IDENTITY Macro
The MODULE-IDENTITY macro is used to provide contact and revision history for each
information module. It appears exactly once in every information module.

The <descriptor> of the MODULE-IDENTITY macro is mapped to an IDL constant, where the
identifier for the literal is the <descriptor> and the IDL scoped name of the identifier for the
<descriptor> is used as the value of the constant.

const string <descriptor> = "::<Module-Scoped-Name>: :<descriptor>";

The value of an invocation of the OBJECT-IDENTITY macros is mapped into an IDL pragma.

The value-specification of the other clauses of MODULE-IDENTITY are mapped as block
comments below the IDL literal for the OBJECT IDENTIFIER of the MODULE-IDENTITY
macro. The comments for the clauses are generated in the order they are encountered.

9.2.1 Mapping of the LAST-UPDATED Clause

The LAST-UPDATEDclause, which must be present, contains the date and time that this SNMP
information module was last edited. The value-specification for this clause is mapped as part of
the block-comment below the string literal for macro-descriptor:

/*
LAST-UPDATED : <value-specification>
*/

9.2.2 Mapping of the ORGANIZATION Clause

The ORGANIZATIONclause, which must be present, contains a textual description of the
organisation under whose auspices this information module was developed.

The value-specification for this clause is mapped as block-comment below the string literal for
macro-descriptor:

/*
ORGANIZATION : <value-specification>
*/

9.2.3 Mapping of the CONTACT-INFO Clause

The CONTACT-INFO clause, which must be present, contains the name, postal address,
telephone number, and electronic mail address of the person to whom technical queries
concerning this information module should be sent.

The value-specification for this clause is mapped as block-comment below the string literal for
macro-descriptor:

/*
CONTACT-INFO : <value-specification>
*/

122 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2-SMI MODULE-IDENTITY Macro

9.2.4 Mapping of the DESCRIPTION Clause

The DESCRIPTIONclause, which must be present, contains a high-level textual description of
the contents of this information module:

The value-specification for this clause is mapped as block-comment below the string literal for
macro-descriptor:

/*
DESCRIPTION : <value-specification>
*/

9.2.5 Mapping of the REVISION Clause

The REVISION clause, which need not be present, is repeatedly used to describe the revisions
made to this information module, in reverse chronological order. Each instance of this clause
contains the date and time of the revision.

The value-specification for each of this clause and its description is mapped as block comment
below the string literal for macro-descriptor:

/*
REVISION : <revision-value-specification>
REVISION-DESCRIPTION : <description-value-speci fication>

....
REVISION : <revision-value-specification>
REVISION-DESCRIPTION : <description-value-speci fication>
*/

9.2.6 Mapping of the MODULE-IDENTITY Value

The value of an invocation of the MODULE-IDENTITY is an OBJECT IDENTIFIER and this
value is used as authoritative registration identifier for referencing. The value of the invocation
is mapped as a #pragma declaration for the IDL literal for the descriptor of the macro as
identifier.

Part 5: SNMP to OMG IDL Translation Algorithm 123

SNMPv2-SMI MODULE-IDENTITY Macro SNMPv2 Information Module Macros

9.2.7 Example

Example 9-1 illustrates the mapping of an instance of SNMP MODULE-IDENTITYmacro, called
fizbin .

Note that the block-comments generated from individual clauses of a macro have been merged
into a single block comment. This approach will be followed in the rest of the document
whenever it is possible.

Example 9-1 Conversion of SNMP MODULE-IDENTITY fizbin

MODULE IDENTITY IDL Interface
fizbin MODULE-IDENTITY

LAST-UPDATED "9210070433Z"
ORGANIZATION "JIDM Task Force"
CONTACT-INFO

"JIDM Task Force
Postal: X/Open Company Ltd.
Apex Plaza, Forbury Road
Reading, Berks, RG1 1AX, ENGLAND
Tel: +44 118 950 8311
E-mail: XoJIDM@xopen.org"

DESCRIPTION
"The MIB module for entities
implementing the xxxx protocol."

REVISION "9210070433Z"
DESCRIPTION

"Initial version of this MIB module."
-- contact IANA for actual number
::= { experimental 555}
-- Assuming 555 is not used

module FIZ_MIB {
const string moduleIdentity = "fizbin";
const ASN1_ObjectIdentifier fizbin

= "::FIZ-MIB::fizbin";
#pragma ID fizbin "1.3.6.1.3.555";
/*
LAST-UPDATED: : "9210070433Z"
ORGANIZATION: : "JIDM Task Force"
CONTACT-INFO :
"JIDM Task Force
Postal: X/Open Company Ltd.
Apex Plaza, Forbury Road
Reading, Berks, RG1 1AX, ENGLAND
Tel: +44 118 950 8311
E-mail: XoJIDM@xopen.org"
DESCRIPTION :
The MIB module for entities
implementing the xxxx protocol.
REVISIONS : 9210070433Z
REVISION-DESCRIPTION:
Initial version of this MIB module.
*/
....

}; // End of FIZ_MIB module

124 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2-SMI OBJECT-IDENTITY Macro

9.3 SNMPv2-SMI OBJECT-IDENTITY Macro
The OBJECT-IDENTITY macro is used to define information about an OBJECT IDENTIFIER
assignment.

The macro is mapped as IDL constant literal of type string. The identifier of the constant is the
descriptor of the macro and the value of the constant is IDL scoped name of the constant. The
value of the invocation is mapped as a #pragma declaration for the IDL literal for the descriptor
of the macro. All other clauses are mapped within a block comment below the constant for the
value of the macro.

const string <descriptor> = "<Module-ScopedName>::<descriptor>";
#pragma ID <descriptor> = "<OID>";

If the value-specification of the STATUS clause of an OBJECT-IDENTITY macro is either
deprecated or obsolete, then the macro is not mapped to IDL.

9.3.1 Mapping of the DESCRIPTION Clause

The DESCRIPTIONclause contains a high-level textual description of the object assignment and
it must be present. The value-specification for this clause is mapped as block comment below
the IDL constant for the value of the macro in the following form:

/*
DESCRIPTION : <value-specification>
*/

9.3.2 Mapping of the REFERENCE Clause

The REFERENCEclause contains a textual cross-reference to an object assignment defined in
some other module and it need not be present. If the clause is present then the value-
specification for this clause is mapped as block comment below the IDL constant for the value of
the macro in the following form:

/*
REFERENCE: <value-specification>
*/

9.3.3 Mapping of the OBJECT-IDENTITY Value

The value of an invocation of the OBJECT-IDENTITY is an OBJECT IDENTIFIER , and this
value is used as the authoritative registration identifier for referencing.

The value of the invocation is mapped as a #pragma declaration for the IDL literal for the
descriptor of the macro as identifier.

Part 5: SNMP to OMG IDL Translation Algorithm 125

SNMPv2-SMI OBJECT-IDENTITY Macro SNMPv2 Information Module Macros

9.3.3.1 Example

Example 9-2 shows the mapping of an OBJECT-IDENTITY macro, called fizbin69 to the
corresponding IDL literal.

Example 9-2 Mapping of OBJECTIDENTITY fizbin

OBJECT IDENTITY IDL Interface
FIZ-MIB DEFINITIONS ::= BEGIN

......
fizbinChipSets OBJECT IDENTIFIER

::= { fizbin 1 }
fizbin69 OBJECT-IDENTITY

STATUS current
DESCRIPTION

"The authoritative identity
of the Fizbin 69 chipset."
::= { fizbinChipSets 1 }

......
END

module FIZ_MIB {
......

const string fizbinChipSets
= "::FIZ_MIB::fizbinChipSets";

#pragma ID fizbinChipSets "1.3.6.1.3.555.1"

const string fizbin69 = "::FIZ_MIB::fizbin";
#pragma ID fizbin69 "1.3.6.1.3.555.1.1"
/* DESCRIPTION :

"The authoritative identity of the
Fizbin 69 chipset"

*/
......

// End of FIZ_MIB module

126 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

9.4 SNMPv2 OBJECT-TYPE Macro
Table 9-2 describes the structure of the OBJECT-TYPE Macro. The OBJECT-TYPE macro is used
to define the Table, TableEntry and the variables in SNMP information module.

OBJECT-TYPE MACRO ::=

BEGIN

TYPE NOTATION ::=

"SYNTAX" type(Syntax)

UnitsPart

"MAX-ACCESS" Access

"STATUS" Status

"DESCRIPTION" Text

ReferPart

IndexPart

DefValPart

VALUE NOTATION ::= value (VALUE ObjectName)

UnitsPart ::= "UNITS" Text | empty

Access ::= "not-accessible" | "read-only" | "read-write" | "read-create"

Status ::= "current" | "deprecated" | "obsolete"

ReferPart ::= "REFERENCE" Text | empty

IndexPart ::= "INDEX" "{" IndexTypes "}" | "AUGMENTS" "{" Entry "}" | empty

IndexTypes ::= IndexType | IndexTypes "," IndexType

IndexType ::= "IMPLIED" Index | Index

Index ::= value (Indexobject ObjectName)

Entry ::= value (Entryobject ObjectName)

DefValPart ::= "DEFVAL" "{" value (Defval Syntax) "}" | empty

-- uses the NVT ASCII character set

Text ::= """" string """"

END

Table 9-2 Structure of OBJECT-TYPE Macro Clauses

Part 5: SNMP to OMG IDL Translation Algorithm 127

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

9.4.1 Base IDL Interface for SNMP Group or Table Entry

In RFC1442, a conceptual table is defined as follows:

"A conceptual table has SYNTAXof the form:

SEQUENCE OF <EntryType>

where <EntryType> refers to the SEQUENCEtype of its subordinate
conceptual row".

A conceptual row has SYNTAXof the form:

<EntryType>

where <EntryType> is of type SEQUENCE. <EntryType> is defined as follows:

<EntryType> ::= SEQUENCE { <type1>, ... , <typeN> }

where there is one <type> for each subordinate object, and each <type> is of the form:

<descriptor> <syntax>

where <descriptor> is the descriptor naming a subordinate object, and <syntax> has the value of
that subordinate object’s SYNTAXclause, optionally omitting the sub-typing information.

Although no special syntax exists for defining an abstract group, a group object can be easily
identified based on the description of the objects subordinate to the group object in the
Object-Identifier hierarchy. An abstract group is considered as a special case of the conceptual
table where there exists only one row for an abstract group.

The rows of a conceptual table are realised by mapping each row of the table to an instance of an
object class, which is described by an IDL interface. The instances of the variables of an SNMP
group object are realised by the values of the attribute of an instance object, described by an IDL
interface. In other words, an individual row of a table is treated as an instance of object, and
attributes of this object represent the instances of the variables in the row of an SNMP table.

Note that this mapping scheme is consistent with the modelling principle defined by IIMC for
translating an SNMP document to GDMO document.

The IDL interface SmiEntry defines the base class for both the rows of a table and group objects.
Figure 9-1 on page 129 describes the inheritance hierarchy for IDL interfaces for the rows of
tables or group objects. No attribute or operation is defined for the SmiEntry . It will be addressed
in the Interaction Translation specification. It is provided as a place holder for attributes and
operations needed to implement the SNMP access to the instances of the IDL interface for
TableEntry or Group objects in a generic way.

128 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

The IDL interface for SmiEntry is defined in a separate IDL file, called SNMPMgmt.idl, as shown
in Section 12.3 on page 171.

SmiEntry

eval evalEntry system

Figure 9-1 Inheritance Hierarchy of IDL Interfaces for TableEntry/Group

Part 5: SNMP to OMG IDL Translation Algorithm 129

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

9.4.2 Mapping of OBJECT-TYPE Macro for Table

The OBJECT-TYPE macro for a table is mapped as IDL constant literal of type string. The
identifier of the constant is the descriptor of the macro and the value of the constant is the IDL
scoped name of the constant. The value of the invocation is mapped as #pragma declaration for
the IDL literal for the descriptor of the macro. All other clauses are mapped within a block
comment below the constant for the value of the macro.

const string <descriptor> = <Module-ScopedName>::<descriptor>;
#pragma ID <descriptor> = <OID>;

The value specification of the DESCRIPTION clause is copied below the IDL literal as block
comment in the following form:

/*
DESCRIPTION: <description-value-speci fication>
*/

9.4.2.1 Example

Example 9-3 Shows the mapping of OBJECT-TYPEmacro for a table (called evalTable) to a
corresponding IDL literal. The instances of OBJECT-TYPE macro whose STATUSclause is
either deprecated or obsolete are ignored.

Example 9-3 Mapping of OBJECT-TYPE Macro for Table

OBJECT IDENTITY IDL
FIZ-MIB DEFINITIONS ::= BEGIN

......
evalTable OBJECT-TYPE

SYNTAX SEQUENCE OF EvalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The (conceptual)
evaluation table."
::= {eval 2}

.......
END

const string evalTable = "::FIZ_MIB::evaltable";
#pragma ID evalTable "1.3.6.1.3.555.2.2";
/* DESCRIPTION :

"The (conceptual) evaluation table."
*/

9.4.3 Mapping of OBJECT-TYPE Macro for Table Entry

The OBJECT-TYPEmacros for TableEntry are mapped as IDL interfaces. The macro descriptor
is used as the identifier of the IDL interface.

The attributes of the IDL interface are identified based on the descriptors defined in the ASN.1
SEQUENCEin the SYNTAXclause of the OBJECT-TYPEmacro of the table entry.

See Section 9.4.5 on page 136 for the generation of attributes for the IDL interface from the
OBJECT-TYPEmacro for the column-variables of the table.

The value specification of the other clauses of this macro is mapped as IDL comment.

130 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

9.4.3.1 Mapping of the Macro Descriptor

The descriptor in OBJECT-TYPE macro for TableEntry is used as the identifier for the
corresponding IDL interface. IDL interface for OBJECT-TYPE macro for TableEntry always
inherits the SNMPMgmt::SmiEntry IDL interface.

9.4.3.2 Mapping of the IndexPart clause to IDL

An IndexPart clause contains either an INDEX clause or an AUGMENTclause. It may not be
present at all. The INDEX or AUGMENTclause must be present if that object corresponds to
conceptual row. The value-specification of this clause is mapped as comment below the
declaration of the IDL interface in the following form:

/*
INDEX : { <value-specification> }
or
AUGMENTS : { <value-specifications> }
*/

9.4.3.3 Mapping of the DESCRIPTION Clause

The DESCRIPTION clause, which must be present, contains a textual definition of the object
which provides all semantic definition necessary for implementation. The value-specification of
this clause is mapped as comment below the declaration of the IDL interface in the following
form:

/*
DESCRIPTION: <value-specification>
*/

9.4.3.4 Mapping of the REFERENCE Clause

The REFERENCEclause, which need not be present, contains a textual cross-reference to an
object defined in some other information module. If this clause is present then, the value-
specification for this clause is mapped as comment below the IDL interface declaration in the
following form:

/*
REFERENCE: <value-specification>
*/

9.4.3.5 Mapping of the OBJECT-TYPE Value

The value of an invocation of the OBJECT-TYPEis an OBJECT IDENTIFIER and this value is
used as authoritative registration identifier for referencing.

The value of the invocation of the OBJECT-TYPEmacro for TableEntry is mapped as a #pragma
declaration for the IDL literal for the descriptor of the macro.

9.4.3.6 Example

The following example illustrates the mapping of the Table Entry evalEntry to its
corresponding IDL interface evalEntry . The interface evalEntry is a subtype of
SNMPMgmt::SmiEntry . The descriptors in the ASN.1 type EvalEntry are used to identify the
IDL attributes for the interface evalEntry .

Part 5: SNMP to OMG IDL Translation Algorithm 131

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

Example 9-4 Mapping of OBJECT-TYPE Macro for Table Entry

OBJECT IDENTITY IDL
FIZ-MIB DEFINITIONS ::= BEGIN

......
evalEntry OBJECT-TYPE

SYNTAX EvalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry. The (conceptual row)
in the evaluation table."

INDEX { evalIndex }
::= {evalTable 1 }

EvalEntry ::= SEQUENCE {
evalIndex Integer32,
evalString DisplayString,
evalValue Integer32,
evalStatus RowStatus

}
......

END

module FIZ_MIB {
......

interface evalEntry : SNMPMgmt::SmiEntry {
#pragma ID evalEntry "1.3.6.1.3.555.2.2.1"
/*
INDEX : { evalIndex }
DESCRIPTION:

An entry. The (conceptual row) in the
evaluation table.
Registered As:2.3.6.1.3.555.2.2.1

*/
readonly attribute Integer32 evalIndex;
/*
DESCRIPTION :

The auxiliary variable used for
identifying instances of the
columnar objects in the evaluation
table.

*/
readonly attribute DisplayString evalString;
#pragma ID evalString "1.33.6.1.33.555.2.2.1.2"
/*
DESCRIPTION :

The Index Number of first unassigned
entry in the evaluation table.

*/
readonly attribute Integer32 evalValue;
#pragma ID evalValue "1.33.6.1.3.555.2.2.1.3"
/*
DESCRIPTION :

The value when eval string was last executed.
DEFVAL : 0
*/
readonly attribute RowStatusType evalStatus;
#pragma ID evalStatus "1.3.6.1.3.555.2.2.1.4"
/*
DESCRIPTION :

The status column used for creating,
modifying, and deleting instances of
the columnar objects in the evaluation table.

*/
}; // End of evalEntry interface

/* pseudo */
interface DefaultValues {
// DEFVAL : 0

Integer32 evalValue();
// DEFVAL : active

RowStatusType evalStatus();
}:

}; // End of FIZ_MIB module

132 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

9.4.4 Mapping of SNMP Group

Although no special syntax exists for defining an abstract group, a group object can be easily
identified based on the description of the objects subordinate to the group object in the Object-
Identifier hierarchy. An abstract group is considered as a special case of the conceptual table
where there exists only one row for an abstract group.

If an OBJECT IDENTIFIER assignment in the following form:

<descriptor> OBJECT IDENTIFIER ::= ObjectIdentifierValue

is deduced to be a group from its subordinate objects in the Object-Identifier hierarchy, then the
assignment is implicitly mapped to OBJECT-TYPE macro first before mapping to an IDL
interface. The clauses for implicit OBJECT-TYPEmacro is defined as follows:

<descriptor> OBJECT-TYPE
SYNTAX <cap-descriptor>Entry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION ""
-- Reference, INDEX and DEFVAL are not present

::= ObjectIdentifierValue

The ASN.1 syntax for <cap-descriptor>Entry is deduced based on the non-tabular objects below
the group object in object-identifier hierarchy:

<cap-descriptor>Entry ::= SEQUENCE {
<descriptor> <syntax> -- one line for each non-tabular

-- object in the group
}

where <descriptor> is the descriptor for a non-tabular subordinate object, and <syntax> has the
value-specification of that subordinate object’s SYNTAX clause (omitting the sub-typing
information).

One IDL interface is generated for each SNMP group in an SNMP information module. The
descriptor of the OBJECT IDENTIFIER assignment for a group is used as the identifier for the
IDL interface. The value of the OBJECT IDENTIFIER assignment is mapped as a #pragma
declaration for the identifier of the IDL interface. The non-tabular objects of a SNMP group are
mapped as attributes of the corresponding IDL interface. Only those non-tabular objects whose
value-specification STATUSclause is current are mapped as attributes.

See Section 9.4.5 on page 136 for the generation of attributes from the OBJECT-TYPEmacro for
the non-tabular subordinate objects of the group object.

Part 5: SNMP to OMG IDL Translation Algorithm 133

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

9.4.4.1 Example 1

Example 9-5 describes the mapping of the group eval to its corresponding IDL interface eval .
The interface eval inherits the base interface, called SNMPMgmt::SmiEntry . The variables of the
eval group are represented as the IDL attribute in the interface eval . Note that the evalTable is
not mapped as IDL attribute of the eval interface.

Example 9-5 Conversion of Group eval

SNMP Groups IDL Interface
FIZ-MIB DEFINITIONS ::= BEGIN

......
eval OBJECT IDENTIFIER = {fizbin 2 }

-- eval group has object called evalSlot
evalSlot OBJECT-TYPE

SYNTAX INTEGER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

""
::= {eval 1}

evalTable OBJECT-TYPE
SYNTAX SEQUENCE OF EvalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The (conceptual) evaluation table."
::= {eval 2}

......
END

module FIZ_MIB {
......

interface eval : SNMPMgmt::SmiEntry {
#pragma ID eval "1.3.6.1.3.555.2"
/*
DESCRIPTION:
INDEX:
*/
readonly attribute ASN1_Integer evalSlot;
#pragma ID evalSlot "1.3.6.1.3.555.2.1"
/*
DESCRIPTION :

The Index Number of first unassigned
entry in the evaluation table

.....
*/
// Ignore evalTable even if it is a
// subordinate object to eval group
// because it is a tabular object.

};
const evaTable evalTable = "::FIZ_MIB::evaltable";

#pragma ID evalTable "1.3.6.1.3.555.2.2"
/*
DESCRIPTION :

"The (conceptual) evaluation table."
*/

134 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

9.4.4.2 Example 2

Example 9-6 describes the mapping of the SNMP group system to IDL.

Example 9-6 Conversion of Group system

SNMP Groups IDL Interface
RFC1213-MIB DEFINITIONS ::= BEGIN

......
system OBJECT IDENTIFIER ::= {mib-2 1}

......
END
_

module RFC1213_MIB {
......

interface system : SNMPMgmt::SmiEntry {
#pragma ID system "1.3.6.1.2.1.1"
/*
DESCRIPTION:
INDEX:
*/
readonly attribute DisplayStringType sysDescr;
#pragma ID sysDescr "1.3.6.1.2.1.1.1"
/*
DESCRIPTION :
*/
readonly attribute ASN1_ObjectIdentifier sysObjectID;
#pragma ID sysObjectID "1.3.6.1.2.1.1.2"
/*
DESCRIPTION :
*/
readonly attribute TimeTicksType sysUpTime;
#pragma ID sysUpTime "1.3.6.1.2.1.1.3"
/*
DESCRIPTION :
*/
attribute DisplayStringType sysName;
#pragma ID sysName "1.3.6.1.2.1.1.4"
/*
DESCRIPTION :
*/
attribute DisplayStringType sysLocation;
#pragma ID sysLocation "1.3.6.1.2.1.1.5"
/*
DESCRIPTION :
*/
attribute DisplayStringType sysServices;
#pragma ID sysServices "1.3.6.1.2.1.1.6"
/*
DESCRIPTION :
*/

};
......

}; // End of RFC1213_MIB

Part 5: SNMP to OMG IDL Translation Algorithm 135

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

9.4.5 Mapping of OBJECT-TYPE Macro for Variables

For each OBJECT-TYPE macro, that defines a leaf-object in the ASN1_ObjectIdentifier
hierarchy, an IDL attribute is defined within the scope of the IDL interface for the corresponding
parent object. The instances of OBJECT-TYPEmacro whose STATUS clause is either deprecated
or obsolete are not mapped to IDL.

Note that in the GDMO-to-IDL translation, all attributes are mapped as IDL operations, whereas
in the SNMPv2-to-IDL translation variables are mapped as attributes. The main reason for
mapping GDMO attributes to IDL operations is to support specific-errors for attributes. In
mapping SNMPv2 to IDL such cases do not arise, and the IDL NO_IMPLEMENT exception is
sufficient to take care of most of the situations.

SNMP errors are mapped to CORBA exceptions as follows:

SNMP Error CORBA Exception
noError NO_EXCEPTION
inconsistentValue BAD_PARAM
resourceUnavailable NO_RESOURCE
authorizationError NO_PERMISSION

Table 9-3 Mapping SNMP Errors to CORBA Exceptions

The other SNMP errors are not related to MIB variable access and will not occur as they will be
intercepted by the gateway.

9.4.5.1 Mapping of the Macro Descriptor

The macro-descriptor in OBJECT-TYPEmacro is mapped as identifier for the corresponding
IDL attribute.

9.4.5.2 Mapping of the SYNTAX Clause

The SYNTAXclause, which must be present, defines the abstract data-structure corresponding to
that object. The data structure must be one of the alternatives defined in the ObjectSyntax
CHOICE. Full ASN.1 subtyping is allowed.

The value-specification of the SYNTAXclause is mapped as type of the corresponding attribute.

If the value of the SYNTAXclause is defined to be an ASN.1 subtype, then the subtype definition
is first used to define a new ASN.1 type and then the new ASN.1 type is used as type of attribute.
The new ASN.1 type is mapped as IDL type within the scope of the interface, and the identifier
for the new ASN.1 type is formed by capitalizing the first character of the descriptor for the
OBJECT-TYPEmacro. During the conversion from ASN.1 to IDL, a Type suffix will be added to
the IDL type identifier.

Table 9-4 on page 137 describes the mapping of ASN.1 subtype in the SYNTAX clause.

136 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

SNMP OBJECT-TYPE Macro IDL Attributes
evalString OBJECT-TYPE

SYNTAX OCTET STRING (SIZE (0..255))
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"The string to evaluate.
evaluation table."

::= {evalEntry 2 }

typedef sequence<octet, 256> EvalStringType;
// The above typedef is derived from
// the following ASN.1 type
// EvalString ::= OCTET STRING (SIZE (0..255))

attribute EvalStringType evalString;

Table 9-4 Mapping ASN.1 Subtype in OBJECT-TYPE Macro SYNTAX Clause

9.4.5.3 Mapping of the MAX-ACCESS Clause

The MAX-ACCESSclause, which must be present, defines whether it makes ‘‘protocol-sense’’ to
read, write or create an instance of the object.

The mapping of the value-specification of the MAX-ACCESSclause of a variable is described in
Table 9-5.

SNMP MAX-ACCESS IDL Attribute Mode
read-only readonly
read-write <empty>
read-create <empty>
not-accessible <comment>

Table 9-5 Mapping MAX-ACCESS Clause of OBJECT-TYPE Macro

9.4.5.4 Mapping of the UNITS Clause

The UNITS clause, which need not be present, contains a textual definition of the units
associated with that object. If this clause is present then the value-specification for this clause is
mapped as IDL comment below the attribute in the following form:

/*
UNITS : <value-specification>
*/

9.4.5.5 Mapping of the STATUS Clause

The STATUSclause, which must be present, indicates whether this definition is current or
historic. Possible values of STATUS clause are current, deprecated or obsolete . Only those
OBJECT-TYPEmacros whose value-specification for STATUSclause is current are mapped.

9.4.5.6 Mapping of the DESCRIPTION Clause

The DESCRIPTION clause, which must be present, contains a textual definition of the object
which provides all semantic definition necessary for implementation. The value-specification for
this clause is mapped as comment below the corresponding IDL attribute in the following form:

/*
DESCRIPTION: <value-specification>
*/

Part 5: SNMP to OMG IDL Translation Algorithm 137

SNMPv2 OBJECT-TYPE Macro SNMPv2 Information Module Macros

9.4.5.7 Mapping of the REFERENCE Clause

The REFERENCEclause, which need not be present, contains a textual cross-reference to an
object defined in some other information module. If this clause is present then, the value-
specification for this clause is mapped as comment below the corresponding IDL attribute in the
following form:

/*
REFERENCE: <value-specification>
*/

9.4.5.8 Mapping of the IndexPart Clause

This clause is not applicable for column-variables in a table or a non-tabular object for a group.

9.4.5.9 Mapping of the DEFVAL Clause

The DEFVALclause, which need not be present, defines an acceptable default value which may
be used at the discretion of an SNMPv2 entity acting as agent role when an object instance is
created. The value of the DEFVALclause must correspond to the SYNTAXclause for the object.

If this clause is present then an operation is defined within the scope of the DefaultValues pseudo
IDL interface in the following form:

/* pseudo */
interface DefaultValues {

// DEFVAL: <value-specification>
<Type> <macro-descriptor>();

};

The value-specification of this clause is mapped as a comment before the operation declaration.
<Type> is derived from the mapping of SYNTAXclause of the macro. IDL pseudo interfaces are
mapped as a library API (like the CORBA::TypeCode interface) in contrast to the client and server
side skeletons.

9.4.5.10 Mapping of the OBJECT-TYPE Value

The value of an invocation of the OBJECT-TYPEis an OBJECT IDENTIFIER and this value is
used as the authoritative registration identifier for referencing.

The value of the invocation of the OBJECT-TYPEmacro for a variable is mapped as a #pragma
declaration for the identifier of the corresponding attribute.

Example

Example 9-7 illustrates the mapping of two Object-Types, called evalIndex and
evalString , that represent the columnar variable in the table evalTable .

Example 9-7 Conversion of OBJECT-TYPE macro

138 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 OBJECT-TYPE Macro

SNMP OBJECT-TYPE Macro IDL Attributes
5evalIndex OBJECT-TYPE

SYNTAX Integer32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The auxiliary variable used
for identifying instances of
the columnar objects in the
evaluation table."

::= {evalEntry 1}
evalString OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-create
STATUS current
DEFVAL "InitialString"
DESCRIPTION

"The string to evaluate.
evaluation table."

::= {evalEntry 2 }

readonly attribute Integer32Type evalIndex;
#pragma ID evalIndex "1.3.6.1.3.555.2.2.1.1"
/*
DESCRIPTION :

The auxiliary variable used
for identifying instances of
the columnar objects in the
evaluation table.

*/
readonly attribute DisplayStringType evalString;
#pragma ID evalString "1.3.6.1.3.555.2.2.1.2"
/*
DESCRIPTION :

The Index Number of first unassigned entry
in the evaluation table.

*/

/* pseudo */
interface DefaultValues {
// DEFVAL: "Initial String"

DisplayStringType evalString();
};

Part 5: SNMP to OMG IDL Translation Algorithm 139

SNMPv2-SMI NOTIFICATION-TYPE Macro SNMPv2 Information Module Macros

9.5 SNMPv2-SMI NOTIFICATION-TYPE Macro
The NOTIFICATION-TYPE macro is used to define the information contained within an
unsolicited transmission of management information. Table 9-6 shows the structure of the
NOTIFICATION-TYPE macro.

NOTIFICATION-TYPE MACRO ::=

BEGIN

TYPE NOTATION ::=

ObjectsPart

"STATUS" Status

"DESCRIPTION" Text

ReferPart

VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)

ObjectsPart ::= "OBJECTS" "{" Objects "}" | empty

Objects ::= Object | Objects "," Object

Object ::= value (Name ObjectName)

Status ::= "current" | "deprecated" | "obsolete"

ReferPart ::= "REFERENCE" Text | empty

-- uses the NVT ASCII character set

Text ::= """" string """"

END

Table 9-6 Structure of NOTIFICATION-TYPE Macro

The instances of NOTIFICATION-TYPE macro whose STATUSclause is either deprecated or
obsolete are ignored.

SNMPv1 traps are mapped as described in Chapter 10 on page 153.

9.5.1 Mapping of the OBJECTS clause

The OBJECTSclause, which need not be present, defines the ordered sequence of MIB objects
which are contained within every instances of notification.

If the ObjectsPart clause is present then the value-specification of this clause is mapped to an
IDL struct (to be used as event-data) as follows:

• Define a new IDL struct (based on the <name, index, value> triplet) for each of the variable in
the value-specification of the clause. The identifier of the new struct type is derived by
capitalising the first character of the variable and then appending Type to it. The type of
name and index elements are ASN1_ObjectIdentifier , and the type of the value is derived from
the value of the SYNTAXclause of the corresponding object.

— If the same variable is defined in more than one NOTIFICATION-TYPE macro within
same SNMPv2 module, then ignore this step for this variable when it is defined for the
second and subsequent time.

• Define an IDL struct where the identifier of elements of the struct are defined based on the
name of the object in the value specification of the clause. The types of the elements of the
IDL struct are based on IDL type defined for the corresponding object (as defined above). The
identifier for the new IDL type is formed using following rules:

— capitalise the first character of the descriptor for the NOTIFICATION-TYPE macro

— append "Type" string to the capitalised macro-descriptor.

140 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2-SMI NOTIFICATION-TYPE Macro

The new IDL types (as described above) are defined within the scope of the corresponding IDL
module.

The main advantage of mapping the OBJECTSclause to an IDL struct is that the information
about the objects can be used in the NOTIFICATION-TYPE macro as event information. This
event information can be exchanged both as typed or untyped event data based on the OMG
Event Services Specification (see reference ESS).

9.5.2 Mapping of the DESCRIPTION Clause

The DESCRIPTION clause, which must be present, contains a textual definition of the
notification which provides all semantic definition necessary for implementation. The value-
specification for this clause is mapped as a comment above the IDL operations (both push and
pull modes), in the following form:

/*
DESCRIPTION: <value-specification>
*/

9.5.3 Mapping of the REFERENCE Clause

The REFERENCEclause, which need not be present, contains a textual cross-reference to an
notification defined in some other module. The value-specification for this clause is mapped as
comment above the IDL operations (both push and pull modes) in the following form:

/*
REFERENCE: <value-specification>
*/

9.5.4 Mapping of the NOTIFICATION-TYPE Value

The value of an invocation of the NOTIFICATION-TYPE is an OBJECT IDENTIFIER and this
value is used as the authoritative registration identifier for referencing.

The value of the invocation of the NOTIFICATION-TYPE macro is used to derive the ID for the
#pragma declaration for the identifier of the corresponding operations within the interface for
both push and pull style event communication.

For push operations in the SnmpNotifcation interface (for push-style communication), the
#pragma ID is derived from the OID of NOTIFICATION-TYPE macro by appending ::push to
OIDvalue.

For pull operations in the PullSnmpNotifcation interface (for pull-style communication), the
#pragma ID is derived from the OID of NOTIFICATION-TYPE macro by appending ::pull to the
OID value.

For try operations in PullSnmpNotifcation interface (for pull-style communication), the #pragma
ID is derived from the OID of the NOTIFICATION-TYPE macro by appending ::try to the OID
value.

Part 5: SNMP to OMG IDL Translation Algorithm 141

SNMPv2-SMI NOTIFICATION-TYPE Macro SNMPv2 Information Module Macros

9.5.5 Generation of Operation for Typed-Push Event Communication

Define an operation within the scope of SnmpNotifications interface of this module for typed-
push event communication. The mandatory in parameters of the operation are source SNMP,
party OID, context OID and #time-stamp" (of the event). See the example in Section 9.5.6.1 on page
143 for the types of these parameters. The optional in parameter of the operation is the IDL
struct defined for the value-specification of the OBJECTSclause, as described in Section 9.5.1 on
page 140. If the OBJECT clause is not present, then this parameter is not generated. The
descriptor of the macro is used as the identifier for the operation. The return value of the
operation is of type void.

142 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2-SMI NOTIFICATION-TYPE Macro

9.5.6 Generation of Operation for Typed-Pull Event Communication

Define two operations (try_<op> and pull_<op>) within the scope of the PullSnmpNotifications
interface of this module, where <op> is the identifier of the corresponding operation in the
SnmpNotifications interface. The in parameter of the push operation will be converted to an out
parameter. The return value of try_<op> is boolean and pull_<op> is void. See the ‘‘Typed Pull
Model’’ section of the OMG Event Services Specification (see reference ESS) for details about
defining an interface for typed-pull event communication.

9.5.6.1 Example

Consider the mapping of an SNMPv2 Notification-Type macro, called linkUp , into an IDL
interface. The SNMP definition is as follows:

SNMPv2-MIB DEFINITIONS ::= BEGIN
......

coldStart NOTIFICATION-TYPE
STATUS current
DESCRIPTION
"A coldStart trap signifies that the SNMPv2 entity, acting in an agent
role, is reinitializing
itself such that its configuration may be altered."
::= { snmpTraps 1 }

warmStart NOTIFICATION-TYPE
STATUS current
DESCRIPTION
"A warmStart trap signifies that the SNMPv2 entity, acting in an agent
role, is reinitializing
itself such that its configuration is unaltered."
::= { snmpTraps 2 }

linkDown NOTIFICATION-TYPE
OBJECTS { ifIndex }
STATUS current
DESCRIPTION
"A linkDown trap signifies that the SNMPv2 entity, acting in an agent
role, recognises a failure
in one of the communication links represented in its configuration."
::= { snmpTraps 3 }

linkUp NOTIFICATION-TYPE
OBJECTS { ifIndex }
STATUS current
DESCRIPTION
"A linkUp trap signifies that the SNMPv2 entity, acting in an agent
role, recognises that one of
the communication links represented in its configuration has come up."
::= { snmpTraps 4 }

......
END

The following IDL will be generated. Note that an IDL type called LinkUpType is defined. The
element of the struct is defined based on the IDL type IfIndexType , generated from the object
ifIndex . The type of ‘‘var_value’’ item in IfIndexType is obtained from the value-specification of
the SYNTAXclause of the OBJECT-TYPE macro, called ‘‘ifIndex’’. Only one IfIndexType is
generated, even though ifIndex object is present in both linkUp and linkDown notification
macros. For coldStart and warmStart macros, no IDL type is generated since the OBJECTclause

Part 5: SNMP to OMG IDL Translation Algorithm 143

SNMPv2-SMI NOTIFICATION-TYPE Macro SNMPv2 Information Module Macros

is not present in the macro and as such no parameter is defined in the corresponding operations.

module SNMPv2_MIB {
......

IfIndexType {
ASN1_ObjectIdentifier var_name; // Only Instance Info part
ASN1_ObjectIdentifier var_index; // Only Instance Info part
ASN1_INTEGER var_value;

};

struct LinkDownType {
IfIndexType ifIndex;

};

struct LinkUpType {
IfIndexType ifIndex;

};

interface SnmpNotifications { // for typed-push event communication
/*DESCRIPTION:

"A coldStart trap signifies that the SNMPv2 entity,
acting in an agent role, is reinitializing itself
such that its configuration may be altered"

*/
void coldStart (

in ASN1_ObjectIdentifier src_party,
in ASN1_ObjectIdentifier snmp_context,
in SNMPv2TC::TimeStampType event_time

);
#pragma ID coldStart "1.3.6.1.6.3.1.1.5.1: :push"

/* DESCRIPTION:
"A warmStart trap signifies that the SNMPv2 entity,
acting in an agent role, is reinitializing itself
such that its configuration is unaltered."

*/
void warmStart (

in ASN1_ObjectIdentifier src_party,
in ASN1_ObjectIdentifier snmp_context,
in SNMPv2TC::TimeStampType event_time

);
#pragma ID coldStart "1.3.6.1.6.3.1.1.5.2: :push"

/* DESCRIPTION:
"A linkDown trap signifies that the SNMPv2 entity,
acting in an agent role, recognizes a failure in
one of the communication links represented in
its configuration."

*/
void linkdown (

in ASN1_ObjectIdentifier src_party,
in ASN1_ObjectIdentifier snmp_context,
in SNMPv2TC::TimeStampType event_time,
in LinkDownType notification_info

);
#pragma ID linkDown "1.3.6.1.6.3.1.1.5.3: :push"

/*
DESCRIPTION:

144 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2-SMI NOTIFICATION-TYPE Macro

"A linkUp trap signifies that the SNMPv2 entity,
acting in an agent role, recognises that one of
the communication links represented in its
configuration has come up."

*/
void linkUp (

in ASN1_ObjectIdentifier src_party,
in ASN1_ObjectIdentifier snmp_context,
in SNMPv2TC::TimeStampType event_time,
in LinkUpType notification_info

);
#pragma ID linkUp "1.3.6.1.6.3.1.1.5.4: :push"

};

interface PullSnmpNotifications { // for typed-pull event communication
void pull_coldStart (

out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time

);
#pragma ID pull_coldStart "1.3.6.1.6.3.1.1.5.1: :pull"

boolean try_coldStart (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time

);
#pragma ID try_coldStart "1.3.6.1.6.3.1.1.5.1: :try"

void pull_warmStart (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time,

);
#pragma ID pull_warmStart "1.3.6.1.6.3.1.1.5.2: :pull"

boolean try_warmStart (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time

);
#pragma ID try_warmStart "1.3.6.1.6.3.1.1.5.2: :try"

void pull_linkdown (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time,
out LinkDownType notification_info

);
#pragma ID pull_linkDown "1.3.6.1.6.3.1.1.5.3: :pull"

boolean try_linkdown (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time,
out LinkDownType notification_info

);
#pragma ID try_linkDown "1.3.6.1.6.3.1.1.5.3: :try"

Part 5: SNMP to OMG IDL Translation Algorithm 145

SNMPv2-SMI NOTIFICATION-TYPE Macro SNMPv2 Information Module Macros

void pull_linkUp (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time,
out LinkUpType notification_info

);
#pragma ID pull_linkUp "1.3.6.1.6.3.1.1.5.4: :pull"

boolean try_linkUp (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out SNMPv2TC::TimeStampType event_time,
out LinkUpType notification_info

);
#pragma ID try_linkUp "1.3.6.1.6.3.1.1.5.4: :try"

}

9.5.7 Operation Signatures for Typed-push/Typed-pull

Section 12.3 on page 171 also defines the operation signatures for the typed-push and typed-pull
event communication. The operation signature for typed-push communication is linkUp () which
is defined within the scope of the SnmpNotifications interface. The operation signatures for
typed-pull communication are pull_linkUp () and try_linkup () which are defined within the scope
of the PullSnmpNotifications interface. Note that there will be only one interface for typed-push
event communication and only one for typed-pull event communication, for each SNMP
information module. During the connection set-up for event channel, the fully-scoped IDL
interface name (that is, <moduleName>::SnmpNotifications and
<moduleName>::PullSnmpNotifications) would be passed.

146 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 TEXTUAL-CONVENTION Macros

9.6 SNMPv2 TEXTUAL-CONVENTION Macros
The TEXTUAL-CONVENTIONmacro is used to convey the syntax and semantics associated with
a textual convention. Only those TEXTUAL-CONVENTIONmacros are considered for mapping
whose STATUSclause value specification is current. Table 9-7 describes the structure of the
TEXTUAL-CONVENTIONmacro.

TEXTUAL-CONVENTION MACRO ::=

BEGIN

TYPE NOTATION ::=

DisplayPart

"STATUS" Status

"DESCRIPTION" Text

ReferPart

"SYNTAX" type(Syntax)

VALUE NOTATION ::= value (VALUE Syntax)

DisplayPart ::= "DISPLAY-HINT" Text | empty

Status ::= "current" | "deprecated" | "obsolete"

ReferPart ::= "REFERENCE" Text | empty

-- uses the NVT ASCII character set

Text ::= """" string """"

END

Table 9-7 Structure of TEXTUAL CONVENTION Macro Clauses

Based on SYNTAXclause, an IDL type is defined for each TEXTUAL-CONVENTIONmacro. The
identifier of the IDL type for an instance of TEXTUAL-CONVENTIONmacro is the corresponding
identifier for the descriptor for the macro. If a DISPLAY-HINT clause is present, or the SYNTAX
is an enumerated INTEGERvalue, then two operations are declared to convert the value of an
object to a displayable string and the displayable string to the typed value.

9.6.1 Mapping of the SYNTAX Clause

The SYNTAXclause, which must be present, defines the abstract data-structure corresponding to
the textual convention. The data structure must be one of the alternatives defined in the
ObjectSyntax CHOICE. Full ASN.1 subtyping is allowed.

The type defined in the SYNTAXclause is first mapped to an ASN.1 type, where the identifier of
the ASN.1 type is the descriptor for the TEXTUAL-CONVENTIONmacro, and then converted to
IDL by using the ASN1 to IDL translation scheme defined in Chapter 2 on page 15. The IDL type
is defined within the scope of the IDL module for the SNMPv2 module for Textual-Convention.
Note that as the ASN.1 to IDL translation scheme is used, a Type suffix will be added to the
ASN.1 type name in order to generate the identifier for the IDL type.

If the value specification clause is an enumerated INTEGERvalue, then two operations will be
declared (as described in Section 9.6.2 on page 148) within the scope of TextualConvention
interface for mapping the integer value to an enumerated value and vice-versa.

Part 5: SNMP to OMG IDL Translation Algorithm 147

SNMPv2 TEXTUAL-CONVENTION Macros SNMPv2 Information Module Macros

9.6.2 Mapping of the DISPLAY-HINT Clause

The DISPLAY-HINT clause, which need not be present, gives a hint as to how the value of an
instance of an object with the syntax defined using this textual convention might be displayed.
If this clause is present then two operations are declared to convert the value of an object to a
displayable string and the displayable string to the typed value. The value-specification for this
clause is mapped as IDL block comment above the operation declarations:

/* pseudo */
interface TextualConventions {

/*
DISPLAY-HINT : <value-specification>.
DESCRIPTION: <value-specification> of DESCRIPTION clause
*/
string <macro-descriptor>ToString (in <Type> Value);
<Type> <macro-descriptor>FromString (in string str);

};

<Type> is derived from the SYNTAXclause as defined in Section 9.6.1 on page 147.

9.6.3 Mapping of the STATUS Clause

The STATUSclause, which must be present, indicates whether this definition is current or
historic. The value-specification of this clause is used to determine if an IDL type will be defined
for this macro. Only those TEXTUAL-CONVENTIONmacro whose value-specification is current
is mapped to IDL. All others are ignored.

9.6.4 Mapping of the DESCRIPTION Clause

The DESCRIPTIONclause, which must be present, contains a textual definition of the textual
convention which provides all semantic definition necessary for implementation. The value-
specification for this clause is mapped as IDL comment below the IDL type in the following
form:

/*
DESCRIPTION : <value-specification>
*/

If the DISPLAY-HINT clause is present, the value-specification of this is also declared as a block
comment before the declaration of the operations for the DISPLAY-HINT clause.

9.6.5 Mapping of the REFERENCE Clause

The REFERENCEclause, which need not be present, contains a textual cross-reference to a
related item defined in some other published work. The value-specification for this clause is
mapped as IDL comment below the IDL type in the following form:

/*
REFERENCE : <value-specification>
*/

148 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 TEXTUAL-CONVENTION Macros

9.6.6 Example 1

Example 9-8 illustrates the mapping of a TEXTUAL-CONVENTION macro, called DisplayString ,
into the associated IDL type. The IDL type DisplayStringType is mapped from the following
ASN.1 type:

DisplayString ::= OCTET STRING (SIZE (0..255))

Example 9-8 Conversion of SNMP TextualConvention DisplayString

Textual Convention IDL Interface
DisplayString ::= TEXTUAL-CONVENTION

DISPLAY-HINT "255a"
STATUS current
DESCRIPTION

"Represents textual information
taken from the NVT ASCII character
set, as defined in pages 4, 10-11
of RFC 854. Any object defined
using this syntax may not exceed
255 characters in length."

SYNTAX OCTET STRING (SIZE (0..255))

// Following ASN.1 type is derived
// from SYNTAX clause of DisplayString
// and mapped to IDL type
// DisplayString ::= OCTET STRING (SIZE (0..255))
typedef sequence<octet, 256> DisplayStringType;
/*
DISPLAY-HINT = 255a
DESCRIPTION:

"Represents textual information
taken from the NVT ASCII character
set, as defined in pages 4, 10-11
of RFC 854. Any object defined
using this syntax may not exceed
255 characters in length."

*/

/* pseudo */
interface TextualConventions {
/*

DISPLAY-HINT = 255a
DESCRIPTION:

"Represents textual information
taken from the NVT ASCII character
set, as defined in pages 4, 10-11
of RFC 854. Any object defined
using this syntax may not exceed
255 characters in length."

*/
string DisplayStringToString(in DisplayStringType value);
DisplayStringType DisplayStringFromString(in string str);

};

Part 5: SNMP to OMG IDL Translation Algorithm 149

SNMPv2 TEXTUAL-CONVENTION Macros SNMPv2 Information Module Macros

9.6.7 Example 2

Example 9-9 illustrates the mapping of a TEXTUAL-CONVENTION macro, called TruthValue ,
into an IDL type. The IDL type TruthValueType is mapped from the following ASN.1 type:

TruthValue ::= INTEGER { true (1) , false (2) }

Example 9-9 Conversion of SNMP TextualConvention

Textual Convention IDL Interface
TruthValue ::= TEXTUAL-CONVENTION

STATUS current
DESCRIPTION

"Represents a boolean value."
SYNTAX INTEGER { true (1) , false (2) }

// Following ASN.1 type is derived from SYNTAX
// clause of TruthValue and mapped to IDL type
// TruthValue ::= INTEGER { true (1) , false (2) }
typedef ASN1_Integer TruthValueType;
const TruthValueType true = 1;
const TruthValueType false = 2;
const string TruthValue_NameNumberList =

" true (1) , false (2) ";
/*
DESCRIPTION = "Represents a boolean value."
*/

/* pseudo */
interface TextualConventions {
/*

DESCRIPTION = Represents a boolean value."
*/

string TruthValueToString(in TruthValueType value);
TruthValueType TruthValueFromString(in string str);

};

9.6.8 Example 3

Example 9-10 also illustrates the mapping of a TEXTUAL-CONVENTIONmacro, called
TimeStamp, into the IDL type TimeStampType .

Example 9-10 Conversion of SNMP TextualConvention

Textual Convention IDL Interface
TimeStamp ::= TEXTUAL-CONVENTION

STATUS current
DESCRIPTION

""
SYNTAX TimeTicks

// Following ASN.1 type is derived from SYNTAX clause
// of TimeStamp and mapped to IDL type
// TimeStamp ::= TimeTicks
typedef TimeTicksType TimeStampType;
/*
DESCRIPTION

"The value of MIB-II’s sysUpTime object at which a
specific occurrence happened. The specific
occurrence must be defined in description of
any object defined using this type."

*/

150 Preliminary Specification

SNMPv2 Information Module Macros SNMPv2 MODULE-COMPLIANCE Macros

9.7 SNMPv2 MODULE-COMPLIANCE Macros
The MODULE-COMPLIANCEmacro is used to convey a minimum set of requirements with
respect to implementation of one or more MIB modules.

Since IDL interfaces do not specify implementation requirements, the macros related to
MODULE-COMPLIANCEmacro in a SNMPv2 information module are not mapped to IDL.

Part 5: SNMP to OMG IDL Translation Algorithm 151

SNMPv2 Information Module Macros

152 Preliminary Specification

Chapter 10

Mapping of SNMPv1 Traps

10.1 SNMPv1 Traps
Although the mapping of tables for SNMPv2 can also be applied to the SNMPv1 specs, the same
can not be said for SNMPv1 traps. The SNMP-to-IDL mapping addresses the MIB specification
written for SNMPv2.

SNMPv1 traps definitions are different from SNMPv2 Notification in specification as well as in
the PDU structure. In SNMPv1, traps are defined using TRAP-TYPE macros (see Table 10-1)
which are described in RFC1215.

ourcompany OBJECT IDENTIFIER ::= { enterprises 9999 }

myAlarm TRAP-TYPE

ENTERPRISE ourcompany

VARIABLES { alarmReason }

DESCRIPTION ""

::= 1

Table 10-1 TRAP-TYPE Macro in SNMPv1

The SNMPv1Trap.idl file (see Section 12.4 on page 172) is defined to support conversion of traps
in SNMPv1 to OMG Event Services specification and vice-versa. This file describes data types
(SNMPv1_TrapInfo) and interfaces (SNMPv1_Notification and PullSNMPv1_Notification) to support
conversion of SNMPv1 traps to untyped events in the CORBA domain.

The data types are defined based on the data structure of Trap PDU in SNMPv1 and the
TRAP-TYPEmacro defined in RFC1215. A CORBA-based object implementation can ignore the
first two parameters of SNMPv1_TrapInfo (agent_ip_address and community_name) of the event
information. In that case, the CORBA/SNMP gateway must set them before forwarding an event
in the CORBA domain as a trap in the SNMP domain.

Part 5: SNMP to OMG IDL Translation Algorithm 153

Mapping of TRAP-TYPE Macro in SNMPv1 Mapping of SNMPv1 Traps

10.2 Mapping of TRAP-TYPE Macro in SNMPv1
The mapping of TRAP-TYPEmacro for SNMPv1 specification to IDL operation is similar to the
mapping of NOTIFICATION-TYPE macro in SNMPv2 specification. In both cases, a set of
operations are generated within the scope of the SnmpNotifications and the
PullSnmpNotifications interfaces. The VARIABLES clause is mapped in the same way as the
OBJECTSclause in the NOTIFICATION-TYPE macro. Since the TRAP-TYPE macro does not
assign any OID to the trap definition, an OID is created based on the ENTERPRISEclause and
the integer value of the macro. The other difference is that the parameters of the IDL operation
are generated based on the SNMPv1 Trap PDU as described in Chapter 10 on page 153.

10.2.1 Deriving Repository ID of IDL Operations for Traps

It is necessary to assign a repository ID for IDL operations for Traps using #pragma ID , such that
it is possible to recover the information about the enterprise and the specific trap type in the
SNMP domain from a trap originated in the CORBA domain.

The repository ID is derived based on the value of the ENTERPRISEclause of the TRAP-TYPE
macro and the integer value of the invocation of the macro. The repository ID is formed using
the following format.

"<enterprise-oid>.Traps.<trap-type-macro-value>: :<push|pull|try>"

10.2.2 Mapping of TRAP-TYPE Macros for Generic Traps

In order to support SNMPv1 generic traps using typed interfaces for event communication in the
CORBA domain, a set of operations are defined based on the usage examples in section 2.2.2 of
RFC1215.

10.2.3 Example: Generic Traps

The following example illustrates the mapping of the TRAP-TYPE macros (as defined in
RFC1215) for generic traps. Although the Repository ID for the generic traps are defined based
on Section 10.2.1, it is necessary to convert the enterprise oid to the sysObjectID (as described in
section 2.1.1 of RFC1215) at the gateway. Thus, a CORBA/SNMP gateway has to detect if a trap
in the SNMP domain or event in the CORBA domain is based on a generic trap before
forwarding it to the other domain. Since the ENTERPRISEclause of a generic trap is always
RFC1213.snmp (1.3.6.1.2.1.11), it is easy to detect if an event is based on a generic trap by looking
at the Repository ID of the operations in the CORBA domain. Similarly if the generic-trap in an
SNMPv1 PDU is one of the generic trap types, it can easily generate the Repository ID of the
corresponding IDL operation from the SNMPv1 Trap-PDU.

154 Preliminary Specification

Mapping of SNMPv1 Traps Mapping of TRAP-TYPE Macro in SNMPv1

SNMPv1-GenericTraps DEFINITIONS ::= BEGIN
....

coldStart NOTIFICATION-TYPE
ENTERPRISE snmp
DESCRIPTION
"A coldStart trap signifies that the

SNMPv2 entity, acting in an agent role,
is reinitializing itself such that its
configuration may be altered."

::= 0

warmStart NOTIFICATION-TYPE
ENTERPRISE snmp
DESCRIPTION
"A warmStart trap signifies that the

SNMPv2 entity, acting in an agent role,
is reinitializing itself such that its
configuration is unaltered."

::= 1

linkDown NOTIFICATION-TYPE
ENTERPRISE snmp
VARIABLES { ifIndex }
DESCRIPTION
"A linkDown trap signifies that the

SNMPv2 entity, acting in an agent role,
recognizes a failure in one of the
communication links represented in its
configuration."

::= 2

linkUp NOTIFICATION-TYPE
ENTERPRISE snmp
VARIABLES { ifIndex }
DESCRIPTION
"A linkUp trap signifies that the

SNMPv2 entity, acting in an agent role,
recognizes that one of the communication
links represented in its configuration
has come up."

::= 3

....
END

maps to the following IDL:

Part 5: SNMP to OMG IDL Translation Algorithm 155

Mapping of TRAP-TYPE Macro in SNMPv1 Mapping of SNMPv1 Traps

// File name is SNMPv1_GenericTraps.idl
module SNMPv1_GenericTraps
{
..............
struct IfIndexType {

ASN1_ObjectIdentifier var_name;
// IDL Scoped-Name of the object

ASN1_ObjectIdentifier var_index;
// Only Instance Info part

ASN1_INTEGER var_value;
};

struct LinkDownType {
IfIndexType ifIndex;

};

struct LinkUpType {
IfIndexType ifIndex;

};

interface SnmpNotifications {
// for typed-push event communication
void coldStart (

in string agent_ip_address,
in string community_name,
in ASN1_ObjectIdentifier snmp_context,
in RFC1155_SMI::TimeTicksType event_time

);
#pragma ID coldStart "1.3.6.1.2.1.11.Traps.0::push"

void warmStart (
in string agent_ip_address,
in string community_name,
in RFC1155_SMI::TimeTicksType event_time

);
#pragma ID warmStart "1.3.6.1.2.1.11.Traps.1::push"

void linkDown (
in string agent_ip_address,
in string community_name,
in RFC1155_SMI::TimeTicksType event_time,
in LinkDownType notification_info

);
#pragma ID linkDown "1.3.6.1.2.1.11.Traps.2::push"

void linkUp (
in string agent_ip_address,
in string community_name,
in RFC1155_SMI::TimeTicksType event_time,
in LinkUpType notification_info

);
#pragma ID linkUp "1.3.6.1.2.1.11.Traps.3::push"

};

interface PullSnmpNotifications {
// for typed-pull event communication
void pull_coldStart (

out string agent_ip_address,

156 Preliminary Specification

Mapping of SNMPv1 Traps Mapping of TRAP-TYPE Macro in SNMPv1

out string community_name,
out RFC1155_SMI::TimeTicksType event_time

);
#pragma ID pull_coldStart "1.3.6.1.2.1.11.Traps.0::pull"

boolean try_coldStart (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time

);
#pragma ID try_coldStart "1.3.6.1.2.1.11.Traps.0::try"

void pull_warmStart (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time

);
#pragma ID pull_warmStart "1.3.6.1.2.1.11.Traps.1::pull"

boolean try_warmStart (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time

);
#pragma ID try_warmStart "1.3.6.1.2.1.11.Traps.1::try"

void pull_linkdown (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out LinkDownType notification_info

);
#pragma ID pull_linkDown "1.3.6.1.2.1.11.Traps.2::pull"

boolean try_linkdown (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out LinkDownType notification_info

);
#pragma ID try_linkDown "1.3.6.1.2.1.11.Traps.2::try"

void pull_linkUp (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out LinkUpType notification_info

);
#pragma ID pull_linkUp "1.3.6.1.2.1.11.Traps.3::pull"

boolean try_linkUp (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out LinkUpType notification_info

);
#pragma ID try_linkUp "1.3.6.1.2.1.11.Traps.3::try"

};

Part 5: SNMP to OMG IDL Translation Algorithm 157

Mapping of TRAP-TYPE Macro in SNMPv1 Mapping of SNMPv1 Traps

}; // End of module SNMPv2_MIB

10.2.4 Example: Enterprise-specific Trap

The following example illustrates the mapping of the enterprise-specific traps in SNMPv1
information modules.

SNMPv1-TrapExamples DEFINITIONS ::= BEGIN
....
ourcompany OBJECT IDENTIFIER

::= { enterprises 9999 }
myAlarm TRAP-TYPE -- notice that they use

-- a TRAP-TYPE macro
ENTERPRISE ourcompany

VARIABLES { alarmReason }
DESCRIPTION ""

::= 1 -- Repository ID of this trap
-- is derived by concatenating
-- the OID in ENTERPRISE clause,
-- "Traps" string,
-- and the Id number

END

maps to:

158 Preliminary Specification

Mapping of SNMPv1 Traps Mapping of TRAP-TYPE Macro in SNMPv1

module SNMPv1_TrapExamples
{

typedef sequence<octet, 255> DisplayString;
struct AlarmReasonType {

// Derived from variables in Object Clause
ASN1_ObjectIdentifier var_name;

// IDL Scoped-Name of the object
ASN1_ObjectIdentifier var_index;

// Only Instance Info part
DisplayString var_value;

};
struct MyAlarmType {

// Derived from variables in Object Clause
AlarmReasonType alarmReason;

};

interface SnmpNotifications {
// for typed-push event communication

void myAlarm (
in string agent_ip_address,
in string community_name,
in RFC1155_SMI::TimeTicksType event_time,
in MyAlarmType notification_info

);
#pragma ID myAlarm "1.3.6.1.4.1.11.9999. Traps.1::push"

};

interface PullSnmpNotifications {
// follow the SNMPv2 notification
// macro mapping for operations in
// PullSnmpNotifications interface.
void pull_myAlarm (

out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out MyAlarmType notification_info

);
#pragma ID pull_myAlarm "1.3.6.1.4.1.11.9999. Traps.1::pull"

boolean try_myAlarm (
out string agent_ip_address,
out string community_name,
out RFC1155_SMI::TimeTicksType event_time,
out MyAlarmType notification_info

);
#pragma ID try_myAlarm "1.3.6.1.4.1.11.9999. Traps.1::try"

};
}; // End of SNMPv1_TrapExamples module

Part 5: SNMP to OMG IDL Translation Algorithm 159

Mapping of SNMPv1 Traps

160 Preliminary Specification

Preliminary Specification

Part 6:

OMG IDL to SNMP Translation Algorithm

The Open Group

Part 6: OMG IDL to SNMP Translation Algorithm 161

162 Preliminary Specification

Chapter 11

OMG IDL to SNMP Translation

During the development of this specification, it was felt that there was no requirement for
translating from OMG IDL to SNMP. Accordingly, this part of the document is intentionally left
blank.

If it is subsequently decided that such a translation requirement does exist after all, and suitable
text is available, this part of the document may be completed in a future release.

Part 6: OMG IDL to SNMP Translation Algorithm 163

OMG IDL to SNMP Translation

164 Preliminary Specification

Preliminary Specification

Part 7:

IDL Modules and Examples

The Open Group

Part 7: IDL Modules and Examples 165

166 Preliminary Specification

Chapter 12

Basic Definitions

This part of the document provides informative examples of the application of the algorithms
defined within the document.

In the case of any discrepancies between the examples and the specification of the algorithms,
the specification is to be regarded as definitive.

ASN1Types.idl and ASN1Limits.idl are required by all implementations. OSIMgmt.idl is
specific to OSI implementations, and the SNMP files SNMPMgmt.idl and SNMPv1Trap.idl are
both specific to SNMP implementations.

12.1 Basic IDL Definitions
The following sections in this chapter illustrate the basic IDL definitions.

12.1.1 ASN1Types.idl File

//
// ASN1Types.idl
//

#ifndef _ASN1TYPES_IDL_
#define _ASN1TYPES_IDL_

// ASN.1 base types

// Null type
typedef char ASN1_Null;
const ASN1_Null ASN1_NullValue = ’\x00’;

typedef boolean ASN1_Boolean;

// unsigned integers
typedef unsigned short ASN1_Unsigned16;
typedef unsigned long ASN1_Unsigned;
typedef unsigned long ASN1_Unsigned64[2];

// integers
typedef short ASN1_Integer16;
typedef long ASN1_Integer;
typedef long ASN1_Integer64[2];

// others
typedef double ASN1_Real;
typedef sequence<octet> ASN1_BitString; // PIDL defined
typedef sequence<octet> ASN1_OctetString;
typedef string ASN1_ObjectIdentifier;
typedef any ASN1_Any;
typedef any ASN1_DefinedAny;

struct ASN1_External {
ASN1_ObjectIdentifier syntax;
ASN1_DefinedAny data_value; // by syntax

Part 7: IDL Modules and Examples 167

Basic IDL Definitions Basic Definitions

};

// ASN.1 strings (which may not contain binary zeros)

typedef string ASN1_IA5String;
typedef string ASN1_NumericString;
typedef string ASN1_PrintableString;
typedef string ASN1_TeletexString;
typedef string ASN1_T61String;
typedef string ASN1_VideotexString;
typedef string ASN1_VisibleString;
typedef string ASN1_ISO646String;

// PIDL defined
typedef ASN1_VisibleString ASN1_GeneralizedTime;
typedef ASN1_VisibleString ASN1_UTCTime;

// ASN.1 strings of octets (which may contain binary zeros)

typedef sequence<octet> ASN1_GeneralString;
typedef sequence<octet> ASN1_GraphicString;

// ASN.1 strings of wide characters (which may contain binary zeros)

typedef sequence<unsigned short> ASN1_BMPString;
typedef sequence<unsigned long> ASN1_UniversalString;

typedef ASN1_GraphicString ASN1_ObjectDescriptor;

// define constants for ASN.1 Real infinity

#include<ASN1Limits.idl>

#endif /* _ASN1TYPES_IDL_ */

12.1.2 ASN1Limits.idl File

//
// ASN1Limits.idl
//

#ifndef _ASN1LIMITS_IDL_
#define _ASN1LIMITS_IDL_

// Substitute <MAX> and <MIN> by the max and min (lowest negative) float values your
// machine can hold for IDL interfaces.

const ASN1_Real plus_infinity = <MAX>;
const ASN1_Real minus_infinity = <MIN>;

#endif /* _ASN1LIMITS_IDL_ */

168 Preliminary Specification

Basic Definitions OSIMgmt.idl File

12.2 OSIMgmt.idl File
//
// OSIMgmt.idl
//

#ifndef _OSIMGMT_IDL_
#define _OSIMGMT_IDL_

// include all needed data types

#include <ASN1Types.idl> // base ASN1 types
#include <X711CMI.idl> // the types defined in the CMIP ASN.1 module

module OSIMgmt
{

// OSIMgmt::exceptions
// Corba User exceptions based on ROSE and CMIS.

// ROSE originated exceptions

exception ROSEerror { X711CMI::InvokeProblemType errorInfo; };

// CMIS originated exceptions

exception AccessDenied { };
exception ClassInstanceConflict { X711CMI::BaseManagedObjectIdType errorInfo; };
exception ComplexityLimitation { X711CMI::ComplexityLimitationType errorInfo; };
exception GetListError { X711CMI::GetListErrorType errorInfo; };
exception InvalidArgumentValue { X711CMI::InvalidArgumentValueType errorInfo; };
exception InvalidFilter { X711CMI::CMISFilterType errorInfo; };
exception InvalidScope { X711CMI::ScopeType errorInfo; };
exception InvalidObjectInstance { X711CMI::ObjectInstanceType errorInfo; };
exception NoSuchAction { X711CMI::NoSuchActionType errorInfo; };
exception NoSuchArgument { X711CMI::NoSuchArgumentType errorInfo; };
exception NoSuchAttribute { X711CMI::AttributeIdType errorInfo; };
exception NoSuchObjectClass { X711CMI::ObjectClassType errorInfo; };
exception NoSuchObjectInstance { X711CMI::ObjectInstanceType errorInfo; };
exception NoSuchReferenceObject { X711CMI::ObjectInstanceType errorInfo; };
exception ProcessingFailure { X711CMI::ProcessingFailureType errorInfo; };
exception SetListError { X711CMI::SetListErrorType errorInfo; };
exception SyncNotSupported { X711CMI::CMISSyncType errorInfo; };

//
// ManagedObject
// the base interface for all generated managed object class interfaces
// Its visible attributes and methods will be defined during the
// Interaction Translation specification phase of the NMF-X/Open JIDM working
// group.
//

interface ManagedObject
{

// to be defined in the Interaction Translation Specification

};

Part 7: IDL Modules and Examples 169

OSIMgmt.idl File Basic Definitions

// exception for multiple replies to actions

exception UsingMR{ /* to de defined in Interaction Translation */ };

};

// macros for use in the ’raises’ clause of interface methods:

#define ACTION_ERRORS OSIMgmt::ROSEerror, \
OSIMgmt::AccessDenied, OSIMgmt::ClassInstanceConflict, \
OSIMgmt::ComplexityLimitation, OSIMgmt::InvalidScope, \
OSIMgmt::InvalidArgumentValue, OSIMgmt::InvalidFilter, \
OSIMgmt::NoSuchAction, OSIMgmt::NoSuchArgument, \
OSIMgmt::NoSuchObjectClass, OSIMgmt::NoSuchObjectInstance, \
OSIMgmt::ProcessingFailure, OSIMgmt::SyncNotSupported

#define ATTRIBUTE_ERRORS OSIMgmt::ROSEerror, \
OSIMgmt::AccessDenied, OSIMgmt::ClassInstanceConflict, \
OSIMgmt::ComplexityLimitation, OSIMgmt::GetListError, \
OSIMgmt::SetListError, OSIMgmt::InvalidScope, \
OSIMgmt::InvalidFilter, OSIMgmt::NoSuchObjectClass, \
OSIMgmt::NoSuchObjectInstance, OSIMgmt::ProcessingFailure, \
OSIMgmt::SyncNotSupported

#define UsingMR OSIMgmt::UsingMR

#endif /* _OSIMGMT_IDL_ */

170 Preliminary Specification

Basic Definitions SNMPMgmt.idl File

12.3 SNMPMgmt.idl File
The IDL interface SmiEntry is stored in a file called SNMPMgmt.idl:

//
// SNMPMgmt.idl
//

#ifndef _SNMPMGMT_IDL_
#define _SNMPMGMT_IDL_

#include <SNMPv2_TC.idl>

module SNMPMgmt
{

interface SmiEntry
{

// Note that no attribute or operations are defined.
};

struct SNMPv2_NotificationInfo {
// to be sent when using untyped event channel
ASN1_ObjectIdentifier src_party;
ASN1_ObjectIdentifier snmp_context;
ASN1_ObjectIdentifier event_type; // Repository ID of event
SNMPv2TC::TimeStampType event_time; any notification_info;

};

interface SNMPv2_Notification {
void snmp_notification (

in ASN1_ObjectIdentifier src_party,
in ASN1_ObjectIdentifier snmp_context,
in ASN1_ObjectIdentifier event_type, // Repository ID of event
in SNMPv2TC::TimeStampType event_time,
in any notification_info

);
};

interface PullSNMPv2_Notification {
boolean try_snmp_notification (

out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out ASN1_ObjectIdentifier event_type,
out SNMPv2TC::TimeStampType event_time,
out any notification_info

);

void pull_snmp_notification (
out ASN1_ObjectIdentifier src_party,
out ASN1_ObjectIdentifier snmp_context,
out ASN1_ObjectIdentifier event_type,
out SNMPv2TC::TimeStampType event_time,
out any notification_info

);
};

}; /* End of Module */
#endif /* !_SNMPMgmt_idl_ */

Part 7: IDL Modules and Examples 171

SNMPv1Trap.idl File Basic Definitions

12.4 SNMPv1Trap.idl File
The following file is defined in order to support SNMPv1 Traps:

//
// SNMPv1Trap.idl
//

#ifndef _SNMPv1Trap_idl_
#define _SNMPv1Trap_idl_
#include <SNMPMgmt.idl>
#include <RFC1155_SMI.idl>

module SNMPMv1Trap
{

struct SNMPv1_TrapInfo { // to be sent when using untyped event channel
string agent_ip_address;
string community_name;
ASN1_ObjectIdentifier event_type; // <enterprise-oid>.Traps.trap-id>
RFC1155_SMI::TimeTicksType event_time;
any notification_info;

};

/*
Example: (in the form of ASN.1 value in string)
SNMPv1_TrapInfo : {

agent_ip_address 999.00.60.14,
community_name public,
event_type 1.3.6.1.4.1.3.1.1,
event_time 0,
notification_info LinkUpType : {

ifIndex {
var_name "::RFC1213_MIB::ifEntry::ifIndex",
var_index "1",
var_value 1

}
}

}
*/

interface SNMPv1_Notifications {
void snmpv1_trap(

in string agent_ip_address,
in string community_name,
in ASN1_ObjectIdentifier event_type,
in RFC1155_SMI::TimeTicksType event_time,
in any notification_info

);
};

interface PullSNMPv1_Notifications {
boolean try_snmpv1_trap(

out string agent_ip_address,
out string community_name,
out ASN1_ObjectIdentifier event_type,
out RFC1155_SMI::TimeTicksType event_time,
out any notification_info

);

172 Preliminary Specification

Basic Definitions SNMPv1Trap.idl File

void pull_snmpv1_trap(
out string agent_ip_address,
out string community_name,
out ASN1_ObjectIdentifier event_type,
out RFC1155_SMI::TimeTicksType event_time,
out any notification_info

);
};

}; /* End of SNMPMv1Trap Module */
#endif /* !_SNMPv1Trap_idl_ */

Part 7: IDL Modules and Examples 173

Basic Definitions

174 Preliminary Specification

Chapter 13

Translation of X.721 and X.722 Modules

It is intended that example translations of important GDMO specifications will be included
when this document is revised to become a CAE Specification.

As an interim measure, examples may be posted on the World Wide Web, in the Distributed
Systems Management area, on URL:

http://www.opengroup.org

Part 7: IDL Modules and Examples 175

Translation of X.721 and X.722 Modules

176 Preliminary Specification

Chapter 14

Mapping of SNMPv2 RFC Modules

14.1 Mapping of SNMPv2-SMI (RFC1442)
SNMPv2-SMI Module (RFC1442) is mapped to a file named SNMPv2_SMI.idl .

This SNMPv2_SMI.idl file contains the following IDL types and interfaces as translated from RFC
1442:

#ifndef _SNMPv2_SMI_idl
#define _SNMPv2_SMI_idl
#include <ASN1Types.idl>
#include <SNMPMgmt.idl>

module SNMPv2_SMI {

typedef long Integer32Type;
typedef unsigned long UInteger32Type;

typedef sequence<octet, 4> IpAddressType;
typedef unsigned long Counter32Type;
typedef long Counter64Type[2];
typedef unsigned long Gauge32Type;
typedef unsigned long TimeTicksType;
typedef sequence<octet> OpaqueType;
typedef ASN1_OctetString NsapAddressType;

typedef ASN1_ObjectIdentifier ObjectNameType;

enum SimpleSyntaxChoice {
integerValueChoice,
stringValueChoice,
objectIDValueChoice,
bitValueChoice

};

union SimpleSyntaxType switch(SimpleSyntaxChoice) {
case integerValueChoice : ASN1_INTEGER integerValue;
case stringValueChoice : ASN1_OctetString stringValue;
case objectIDValueChoice : ASN1_ObjectIdentifier objectIDValue;
case bitValueChoice : ASN1_BitString bitValue;

};

enum ApplicationSyntaxChoice {
ipAddressValueChoice,
counterValueChoice,
gaugeValueChoice,
timeticksValueChoice,
arbitaryValueChoice,
nsapAddressValueChoice,
bigCounterValueChoice,

Part 7: IDL Modules and Examples 177

Mapping of SNMPv2-SMI (RFC1442) Mapping of SNMPv2 RFC Modules

unsignedIntegerValue
};

union ApplicationSyntaxType switch(ApplicationSyntaxChoice) {
case ipAddressValueChoice : IpAddressType ipAddressValue;
case counterValueChoice : Counter32Type counterValue;
case gaugeValueChoice : Gauge32Type gaugeValue;
case timeticksValueChoice : TimeTicksType timeticksValue;
case arbitaryValueChoice : OpaqueType arbitaryValue;
case nsapAddressValueChoice : NsapAddressType nsapAddressValue;
case bigCounterValueChoice : Counter64Type bigCounterValue;
case unsignedIntegerValueChoice : UInteger32Type unsignedIntegerValue;

};

enum ObjectSyntaxChoice {
simpleChoice,
applicationWideChoice

};

union ObjectSyntaxType switch(ObjectSyntaxChoice) {
case simpleChice : SimpleSyntaxType simple;
case applicationWideChoice : ApplicationSyntaxType application_wide;

};

}; /* End of SNMPv2_SMI Module.*/

178 Preliminary Specification

Mapping of SNMPv2 RFC Modules Mapping of SNMPv2-TC (RFC1443)

14.2 Mapping of SNMPv2-TC (RFC1443)
SNMPv2-TC Module (RFC1443) is mapped to a file named SNMPv2_TC.idl , which contains the
following IDL types and interfaces as translated from RFC 1443:

#ifndef _SNMPv2_TC_idl
#define _SNMPv2_TC_idl
#include <SNMPv2_SMI.idl>

module SNMPv2_TC {

typedef SNMPv2_SMI::ObjectSyntaxType ObjectSyntaxType;
typedef SNMPv2_SMI::Integer32Type Integer32Type;
typedef SNMPv2_SMI::TimeTicksType TimeTicksType;

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// DisplayString ::= OCTET STRING (SIZE (0..255))
typedef sequence<octet, 256> DisplayStringType;

/*
DISPLAY-HINT: 255a
DESCRIPTION:

Represents textual information taken from the NVT
ASCII character set, as defined in pages 4, 10-11
of RFC 854. Any object defined using this syntax
may not exceed 255 characters in length.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// PhysAddress ::= OCTET STRING
typedef ASN1_OctetString PhysAddressType;

/*
DISPLAY-HINT: 1x:
DESCRIPTION: Represents a media or physical-level address.
*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// MacAddress ::= OCTET STRING (SIZE (6))
typedef sequence<octet, 6> MacAddressType;

/*
DISPLAY-HINT: 1x:
DESCRIPTION:

Represents an 802 MAC address represented in the
canonical order defined by IEEE 802.1a, taht is,
as if it were transmitted least significant bit
first, even though 802.5 (in contrast to other
802.x protocols) requires MAC addresses to be
transmitted most significant bit first.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// TruthValue ::= INTEGER { true (1) , false (2) }

Part 7: IDL Modules and Examples 179

Mapping of SNMPv2-TC (RFC1443) Mapping of SNMPv2 RFC Modules

typedef ASN1_INTEGER TruthValueType;

/*
DESCRIPTION: Represents a boolean value.
*/
const TruthValueType true = 1;
const TruthValueType false = 2;
const string TruthValue_NameNumberList = "true (1) , false (2)";

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// TestAndIncr ::= INTEGER (0..2147483647)
typedef ASN1_INTEGER TestAndIncrType;

/*
DESCRIPTION:

Represents integer-valued information used for
atomic operations.
See RFC 1443 for detailed description.

const string TestAndIncr_ValueRange = "0..2147483647";
*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// AutonomousType ::=OBJECT IDENTIFIER
typedef ASN1_ObjectIdentifier AutonomousTypeType;

/*
DESCRIPTION:

Represents an independently extensible type
identification value. It may, for example,
indicate a particular sub-tree with further MIB
definitions, or define a particular type of
protocol or hardware.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// InstancePointer ::= OBJECT IDENTIFIER
typedef ASN1_ObjectIdentifier InstancePointerType;

/*
DESCRIPTION:

A pointer to a specific instance of a conceptual
row of a MIB table in the managed device. By
convention, it is the name of the particular
instance of the first columnar object in the
conceptual row.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// TimeStamp = TimeTicks
typedef TimeTicksType TimeStampType;

/*
DESCRIPTION:

The value of MIB-IIs sysUpTime object at which a

180 Preliminary Specification

Mapping of SNMPv2 RFC Modules Mapping of SNMPv2-TC (RFC1443)

specific occurrence happened. The specific
occurrence must be defined in description of
any object defined using this type.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// TimeInterval ::= INTEGER (0..2147483647)
typedef ASN1_INTEGER TimeIntervalType;

/*
DESCRIPTION: A period of time, measured in units of 0.01 seconds.
*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// RowStatus ::= INTEGER {active(1), notInService(2),
// notReady(3), createAndGo(4),
// createAndWait(5), destroy(6) }
typedef ASN1_INTEGER RowStatusType;
const RowStatusType active = 1;
const RowStatusType notInService = 2;
const RowStatusType notReady = 3;
const RowStatusType createAndGo = 4;
const RowStatusType createAndWait = 5;
const RowStatusType destroy = 6;
const string RowStatus_NamedNumberList = ""
"active (1), notInService (2), notReady (3),
createAndGo (4), createAndWait (5), destroy (6)";

/*
DESCRIPTION:

The RowStatus textual convention is used to manage
the creation and deletion of conceptual
rows, and is used as the value of the SYNTAX /clause
for the status column of a conceptual row
See RFC 1443 for detailed description.

*/

// Following ASN.1 type is derived from SYNTAX clause
// and mapped to IDL type
// DateAndTime ::= OCTET STRING (SIZE (8 | 11))
typedef sequence<octet, 11> DateAndTimeType;

/*
DISPLAY-HINT: 2d-1d-1d,1d:1d:1d.1d,1a1d:1d
DESCRIPTION:

A date-time specification.
See RFC 1443 for detailed description.
For example, Tuesday May 26, 1992 at
1:30:15 PM EDT would be displayed as:

1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then
timezone information (fields 8-10) is not present.

*/

/* pseudo */
interface TextualConventions {

Part 7: IDL Modules and Examples 181

Mapping of SNMPv2-TC (RFC1443) Mapping of SNMPv2 RFC Modules

/*
DISPLAY-HINT: 255a
DESCRIPTION:

Represents textual information taken from
the NVT ASCII character set, as defined in
pages 4, 10-11 of RFC 854. Any object defined
using this syntax may not exceed 255
characters in length.

*/
string DisplayStringToString(in DisplayStringType value);
DisplayStringType DisplayStringFromString(in string str);

/*
DISPLAY-HINT: 1x
DESCRIPTION: Represents a media or physical-level address.
*/
string PhysAddressToString(in PhysAddressType value);
PhysAddressType PhysAddressFromString(in string str);

/*
DISPLAY-HINT: 1x
DESCRIPTION:
*/
string MacAddressToString(in MacAddressType value);
MacAddressType MacAddressFromString(in string str);

/*
DESCRIPTION: Represents a boolean value.
*/
string TruthValueToString(in TruthValueType value);
TruthValueType TruthValueFromString(in string str);

/*
DESCRIPTION:

The RowStatus textual convention is used to manage
the creation and deletion of conceptual rows,
and is used as the value of the SYNTAX /clause for
the status column of a conceptual row.
See RFC 1443 for detailed description.

*/
string RowStatusToString(in RowStatusType value);
RowStatusType RowStatusFromString(in string str);

/*
DISPLAY-HINT: 2d-1d-1d,1d:1d:1d.1d,1a1d:1d
DESCRIPTION:

A date-time specification. See RFC 1443 for detailed
description. For example, Tuesday May 26, 1992 at
1:30:15 PM EDT would be displayed as:

1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then timezone
information (fields 8-10) is not present.

*/
string DateAndTimeToString(in DateAndTimeType value);
DateAndTimeType DateAndTimeFromString(in string str);

}; // End of TextualConvention interface

182 Preliminary Specification

Mapping of SNMPv2 RFC Modules Mapping of SNMPv2-TC (RFC1443)

}; /* End of SNMPv2_TC Module.*/
#endif /* _SNMPv2_TC_idl */

Part 7: IDL Modules and Examples 183

Mapping of SNMPv2 RFC Modules

184 Preliminary Specification

Preliminary Specification

Part 8:

Object Model Comparison

The Open Group

Part 8: Object Model Comparison 185

186 Preliminary Specification

Chapter 15

Introduction

15.1 Scope and Purpose
The publication by the Network Management Forum (NMF) of network-management
agreements contained in OMNIPoint (see reference OMNI) has focused industry attention on
the issues of effective development of conformant network-management products. In
developing the Open System Interconnection (OSI) management standards on which
OMNIPoint is based, the International Organization for Standardisation (ISO) and the
International Telegraph and Telephone Consultative Committee (CCITT, now known as ITU-T)
pioneered the specification of an object-oriented approach to modeling the resources that are to
be managed.

Over the last few years the information technology industry has been rapidly developing
object-oriented software development environments (languages, library tools, databases, etc.)
for the realisation of object-oriented designs in computer systems. It is therefore natural for
implementors of OSI management to expect to use these environments in the development of
OSI-conformant network-management products. The fundamental enabling factor in realising
this expectation is the compatibility of the underlying object models, so an evaluation of the OSI
Management Model with those used in software development environments is required.

Such a comparison begs the question of which model the OSI Management Model should be
compared against. In particular, the following have identified user needs for comparison:

• The Object Management Group (OMG), since it has forged an industry consensus in this
respect, offers an important candidate.

• Another ISO/CCITT effort — Open Distributed Processing (ODP) — has wider scope than
OMG, but provides a reference model and framework to assist comparisons of OMG and OSI
management. There are expectations that most, if not all, of OMG will find its way into ODP
related standards in the near future.

With regard to OMG, comparisons to the following have been developed:

ODP in that OMG can be placed into the scope of the ODP reference
model so that standardisation efforts involving OMG can be best
directed.

Internet Management in that OMG tools might be used to implement managers of
embedded SNMP agents.

This Object Model Comparison report sets out to compare the three object models developed
by:

• ISO/CCITT OSI management (SMI, CMIP)

• OMG CORBA for object-oriented software development (CORBA)

• Internet Management (SNMP).

Internet Management is included in the comparison, but the analysis in this report concentrates
on comparing OSI management and OMG CORBA.

Part 8: Object Model Comparison 187

Scope and Purpose Introduction

The definitions in this document make reference to concepts defined in the ISO/CCITT ODP
reference model (see references ODP93-2 and ODP93-3). This aids efforts to relate the three
object models, using concepts from the ODP perspective.

The following comparison is, in itself, a necessary stage leading towards the larger objective to
capitalise on the synergistic aspects of the three models, the synergistic aspects of the work that
went into their respective development, and the maximum possible synergistic goals of the three
groups. As will be shown, there is overwhelming agreement between OSI management and
OMG models, but there are also a number of significant differences. Some are complementary
and some are conflicting. Further JIDM documents are planned which will describe approaches
for reconciling these differences.

The objective of this report is to provide a comparison of the three models by documenting the
similarities, the complementary differences, and the conflicting differences;

Some knowledge of the OSI Management and OMG models is assumed. Readers are referred to
the referenced documents SMI, CMIP and OOM for further information on the respective
models.

15.2 Document Structure
The structure of this Object Model Comparison report is as follows:

• Chapter 16 provides a detailed comparison of the object models.

• Chapter 17 provides a summary of the similarities and differences.

• Chapter 18 briefly outlines the scope of work being undertaken to reconcile the models.

• Chapter 19 offers some concluding remarks.

188 Preliminary Specification

Chapter 16

Comparison of Object Models

This chapter gives a detailed comparison of the various aspects of the OSI (SMI, CMIP), OMG
(CORBA) and Internet (SNMP) management models, under the following headings:

• goals

• interfaces

• elements of objects

• object specification

• object taxonomy

• object reference

• object selection.

Each section begins with a glossary of basic concepts (incorporating relevant ODP terms). This
is followed by a matrix comparison of the way the basic concepts are interpreted in the two
models, and the section is then concluded with comparative analysis.

Trying to provide a glossary of generally-agreed concepts in object-oriented modeling is a
difficult task, and the outcome is inevitably contentious. However, the works of many
authorities on the subject have been consulted including Wegner (see reference Weg90), Meyer
(see reference Mey88), Goldberg (see reference Gold89), Rumbaugh et al (see reference rumb91),
Booch (see reference Boo91) and Kent (see reference Kent91). It is believed that the concepts
defined here provide a reasonable basis on which to conduct the comparison.

Part 8: Object Model Comparison 189

Goals of the Models Comparison of Object Models

16.1 Goals of the Models
Each model has been developed to meet specific business needs. These are summarized in the
following sub-section.

16.1.1 Comparison

16.1.1.1 Intended Use

OSI Mgmt Network Management.

OMG Object-oriented distributed systems development.

Internet Mgmt Management of the Internet and TCP/IP-based networked devices.

16.1.1.2 Interoperability/Portability

OSI Mgmt At the syntactic and semantic level. No code portability, communications
interoperability.

OMG At the syntactic and semantic level. Code portability. CORBA 2.0
provides interoperability.

Internet Mgmt At the syntactic and semantic level. No code portability.
Communications interoperability.

16.1.1.3 User Advantage

OSI Mgmt Management of heterogeneous network components.

OMG Transparency to applications of underlying heterogeneous platforms.

Internet Mgmt Management of heterogeneous inter-networked devices.

16.1.1.4 Re-usable Components

OSI Mgmt Library/catalogue of management information.

OMG Interface Type library.

Internet Mgmt Management Information Base (MIB) specifications.

16.1.2 Analysis

Portability Portability for OSI and Internet management is provided by the the XMP
(see reference XMP) and XOM (see reference XOM) interfaces.

Interoperability There are two aspects to component interoperability: agreement on the
syntax and agreement on the semantics of information interchange.
Achieving interoperability requires conformance to both.

The strategic objective of each group is identical — to promote syntactic
and semantic interoperability between heterogeneous computing
components. The models differ only in their approaches to specifying
such interoperability and their choices of the interface points at which the
interoperability is to exist. For OSI Management and OMG, as can be
seen in Section 16.2 on page 192, far from conflicting, these choices are
complementary.

190 Preliminary Specification

Comparison of Object Models Goals of the Models

Re-usability A common theme running through the statement of objectives of the OSI
management and OMG models is that of component re-usability with
emphasis on type/object libraries, portability of applications, and
heterogeneous management components. Ever since the identification of
the software crisis (see reference Naur68) some quarter of a century ago,
the re-use of software components has been promoted as a solution (see
reference Krug92).

Part 8: Object Model Comparison 191

Interfaces Comparison of Object Models

16.2 Interfaces
As was pointed out in the previous section, the groups have chosen different positions for their
interfaces — OSI Management has chosen a communications interface between computer
systems, whereas OMG has chosen a programmatic interface between components within a
computer system. These choices have dictated a different style of interface but, nonetheless, a
number of important concepts apply to all three.

16.2.1 Concepts

Interface The boundary at which a prescribed specification is supported. The
reference model for ODP supports multiple object interfaces and
viewpoints. An ODP Interface type is a predicate that characterises an
interface. An interface signature can be described using an interface
definition language. Interfaces can have behaviour specifications
described using formal description techniques.

The three models compared in this document describe the following
interface types:

OSI managed object communication interface, operations and
notifications

OMG programmatic interface between invoker and object

SNMP get and set operations upon instrumentation variables.

Open Interface An interface that supports a published protocol and at which
conformance may be tested.

Protocol A set of syntactic and semantic rules for exchanging information.

Carriage Protocol A protocol to which invocations, notifications, and replies are added to
form a complete protocol.

Interface Concurrency
The property of an interface such that it will accept protocol elements at
any time.

Exception A condition that precludes normal execution.

16.2.2 Comparison

16.2.2.1 Interface Type

OSI Mgmt Communications interface between a managing-system and a
managed-system; an agent, resident in the managed system, mediates
between the managing system and a managed object.

OMG Programmatic interface between an invoker and object. The interface
includes signature only.

Internet Mgmt Communications interface between a Network Management Station
(manager) and Device (agent). The agent supports one or more MIBs.

192 Preliminary Specification

Comparison of Object Models Interfaces

16.2.2.2 Carriage Protocol

OSI Mgmt The syntax and semantics of the carriage protocol are defined in ISO/IEC
9596-1 (see reference CMIP).

OMG Independent of carriage protocol. Interoperability dictates one or more
protocols.

Internet Mgmt The syntax and semantics of the carriage protocol are defined in RFC 1157
(see reference SNMPv2).

16.2.2.3 Open Interface

OSI Mgmt ISO/IEC 9596-1 is an international standard and many managed-object
specifications are publicly available, for example, OMNIPoint (see
reference (OMNI).

OMG IDL is specified in referenced document CORBA. Standard interfaces
have been defined using IDL by object service specifications (see
reference COS).

Internet Mgmt RFC 1157 (SNMPv1) is an Internet standard; RFC 1448 (SNMPv2) is a
proposed draft Internet standard. Many MIB specifications are publicly
available for SNMPv1, with on-line access provided via the Internet.

16.2.2.4 Protocol Model

OSI Mgmt The remote operations protocol model is one of non-blocking
message-passing with normal and exception reply-types. A single
initiating message may result in multiple replies.

OMG The protocol model has two execution semantic styles: at most once
(blocking with exceptions); best effort (non blocking, no guarantee of
delivery). Delivery of events is not guaranteed by COSS event services
(see reference ESS).

Internet Mgmt The protocol model is primarily manager-initiated message-passing,
without guaranteed delivery. A single initiating message results in (at
most) a single reply.

16.2.2.5 Interface Concurrency

OSI Mgmt A management association which supports operations and transfer of
event reports requires interactions to be processed concurrently. Support
for confirmed event reports requires interface concurrency.

OMG Not precluded by the object model.

Internet Mgmt Polling driven, manager controls concurrency. Traps are not confirmed.

Part 8: Object Model Comparison 193

Interfaces Comparison of Object Models

16.2.3 Analysis

Interface Types The choices of interface made by the OSI management and OMG groups
reflects their different preoccupations: OSI chose network management
communications, while OMG chose software development. These
choices are synergistic: object-oriented network-management systems
have to be implemented, and implementors will require object-oriented
software tools.

Protocol Model The use of OMG client stubs implies a blocking procedure-call model.
However implementation support for a dynamic invocation interface is
defined, which allows deferred synchronous operation. OMG
implementations can be designed to employ callbacks to the original
invoking client application for return of operation results, thus permitting
asynchronous operations. However, some implementations of CORBA
do not provide a callback location as part of receiving an operation
invocation. Thus to be safe, a CORBA operation which is designed to be
followed by callback operations should provide an input parameter
containing an ObjectReference upon which to invoke the callback.

OSI Management has, through the use of ROSE (see reference XAP-
ROSE), chosen a non-blocking message-passing model. Exception
handling mechanisms will have to be aligned.

Protocol Specification
There are three aspects to the specification of a protocol: the rules for
exchanging information; the semantics of the information; and the syntax
of the information. OSI Management has chosen to specify all three
aspects, whilst OMG in CORBA 1 has chosen to specify no protocol for
interoperability. However CORBA 1 does specify a language mapping to
C. Other language mappings are defined by the OMG (including C++,
SmallTalk).

CORBA 2.0 provides interoperability between different ORB
implementations, and protocols have been specified for use between
ORBs.

194 Preliminary Specification

Comparison of Object Models Characteristics of Objects

16.3 Characteristics of Objects
This section deals with the most fundamental aspects of the object models — the objects
themselves, what they are, and what they are about. To compare the characteristics of objects,
notwithstanding the notion of encapsulation, it is necessary first to consider the abstractions
underlying the internal nature of objects including their state, behaviour, and methods. From
there, the attributes appearing at the interface of objects and the signals crossing the interface
can be compared.

In ODP terms, all objects have a type , which is a predicate that determines if an object is of that
type. The extension of all the object instances of a given type is called the class derived by that
type . Instances of a class are generated to adhere to the specifications of a class template , which
specifies the behaviour of the object. Objects are characterised by the interfaces they support. In
ODP, an object can support multiple interfaces, bound to a common state.

16.3.1 Concepts

Object A collection of behaviours that share the same state.

State A stable internal condition of an object.

Behaviour A change in the state of an object.

Attribute A set of data values (that is, a data-type) and qualifiers over those data values;
the data values are built from literals.

Literal A set of data values (that is, a data-type) which, by convention, have fixed
semantics (for example, integer, boolean).

Encapsulation A property of an object such that its state can only be accessed by means of
prescribed signals across the object boundary or by means of prescribed
relationships between objects.

Operation A behaviour of an object. It is normally initiated by the reception of an
invocation.

Event An autonomous behaviour of an object. It may be signalled by the emission of
a notification.

Invocation A signal, possibly parameterised, requesting that an operation be performed
by an object.

Notification A signal, possibly parameterised, indicating that an event has occurred.

Reply A signal, possibly parameterised, indicating a response to an invocation or
notification; replies are often classified as normal or exceptions.

Parameter A data value whose syntax conforms to that of a prescribed protocol.

Method The implementation of an operation.

Qualifier An additional semantic applied to an attribute (for example, concerning
accessibility or default values).

Part 8: Object Model Comparison 195

Characteristics of Objects Comparison of Object Models

16.3.2 Comparison

16.3.2.1 Description

OSI Mgmt A managed object is described by the Management Framework (see
reference ISO/IEC7498-4) as ‘‘a view of a resource that may be managed
through the use of OSI Management protocols’’. A managed object enforces
encapsulation, and it is characterised by the attributes it makes available,
its behaviour, and the invocations and notifications that cross its
boundary. A managed object can optionally present itself as if it were a
superclass (allomorphism) of that of which it is instantiated.

OMG An object is described as ‘‘a package of data and code used to implement a
computational construct or to model an application entity’’ (see reference
OOM). An OMG object enforces encapsulation and is characterised by
the attributes it makes available, its behaviour, and the signals that cross
its boundary. An object may have more than one interface, but only
inheritance is explicitly provided as a mechanism in IDL to specify
multiple interfaces.

Internet Mgmt As described by RFC1155 (see reference ISMI), ‘‘managed objects are
accessed via a virtual information store, termed MIB ... Each type of object has
a name, a syntax, and an encoding’’ (see reference ISMIV2). Internet objects
represent individual variables which can be manipulated using SNMP
protocol; the Internet SMI provides no mechanism for collecting together
all variables which together might encapsulate a resource. Also, in
Internet objects, the notion of interface inheritance is not supported.

16.3.2.2 Object Operations

OSI Mgmt An operation may be initiated by receiving an invocation. A confirmed
operation will generate one or more replies; a non-confirmed operation
will not. Exceptions are signalled by means of exception replies.
Invocations and replies may be parameterised.

OMG An operation is initiated either by a generated stub or by the dynamic
invocation interface. The normal execution of an operation results in a
reply (and the return of control to the invoker). An exception is indicated
by means of an exception signal and the transfer of control to an
exception handler. Invocations, replies, and exception signals may be
parameterised.

Internet Mgmt An operation is initiated by the receiving of a request. Each request
generates a single response (although SNMPv2 Get-Bulk provides a self-
repeating operator for conceptual table traversal). Exceptions are signalled
as responses. Requests and responses may be parameterised.

16.3.2.3 Object Events

OSI Mgmt Behaviour unconnected with operations may be signalled by means of a
notification. A confirmed notification requires a reply; a non-confirmed
notification does not. Notifications and replies may be parameterised

OMG Objects which generate events invoke an operation on the event
notification service (see reference ESS). Event distribution is via push
model or pull model. Event notification service does not indicate

196 Preliminary Specification

Comparison of Object Models Characteristics of Objects

failure/success of delivery to Invoker. No standard event filtering is yet
defined (other than by grouping originating objects into channels). The
receiver of typed events indicates support of each event.

Internet Mgmt Significant events unconnected with operations may be signalled by
means of a non-confirmed Trap notification (intended for infrequent
generation by managed devices) or a confirmed Inform-Request (intended
for use between managers). Notifications are specified as part of the
carriage protocol, and are unrelated to object type definitions. Event
philosophy has been characterised as trap-directed polling .

16.3.2.4 Behaviour

OSI Mgmt Behaviour can be in any language (natural or formal), but is most
commonly written in English. This is normative information and can be
subjected to conformance testing. This would normally require an
intermediate step to represent the behaviour in a testable form.

OMG Side effects are permitted but are not specified in IDL. Basic OMG IDL
has no formal way to specify what event types may be generated (event
generation is independent of interfaces an object supports). A Receiver
only knows which channel an event came from (channels can have
multiple object sources) but event data could be defined to include
originating objectReference.

Internet Mgmt Textual specification may be included in the description clause of an
object type definition, describing the behaviour of an individual variable.
This may include description of an entire conceptual table or table row,
but otherwise does not specify the behaviour of encapsulated resources.
Notification behaviour specifications are unrelated to object type
behaviour specifications.

16.3.2.5 Attributes

OSI Mgmt An attribute is characterised by a set of data values and qualifiers which
specify matching rules, range restrictions, initial and default values, and
access restrictions. Attributes can also be manipulated by specifying an
attribute group name that identifies one or more attributes.

OMG An attribute is characterised by an identifier, a type, and an optional read-
only qualifier. There is no mechanism for grouping attributes.

Internet Mgmt An attribute is embodied by an object type specification, which identifies
the object name, syntax, description, access, status, and default value (if
any). Syntax may include range and/or value restrictions. There is no
mechanism for grouping attributes.

16.3.2.6 Attribute Operations

OSI Mgmt Built-in operations on attributes are get attribute, replace attribute and
replace attribute with default. Set-valued attributes have add-member
and remove-member. Built-in operations support manipulation of
multiple attributes or attribute groups within a single operation. A
built-in operation supports the cancellation of the get built-in operation.
Arbitrary exceptions (specific errors) may be specified on attribute
operations.

Part 8: Object Model Comparison 197

Characteristics of Objects Comparison of Object Models

OMG Built-in operations on attributes are set attribute and get attribute.
Built-in operations can only get/set the value of a single attribute within
one invocation. Only standard exceptions are supported on attribute
operations.

Internet Mgmt Built-in operations on attributes (object types) are get attribute and set
attribute. Aggregate conceptual tables and table rows are supported by
the ASN.1 construct SEQUENCE [OF]. Built-in operations are get-next
(SNMPv1) and get-bulk (SNMPv2). However, these operations serve
only to navigate through conceptual tables; individual object types are
the only accessible elements. Built-in operations support manipulation of
multiple attributes within a single operation. Some standard exceptions
are supported on attribute operations.

16.3.2.7 Object Life-cycle Operations

OSI Mgmt Built-in operations to agent for create and delete of object instances.
Creator may specify name or may rely on agent to supply name. It has no
standard protocol to move object instances between systems.

OMG No built-in operation for instantiation of object interfaces by client
demand. However, factory objects may be defined which allow clients to
create application specific object interfaces. COSS (see reference ESS)
life-cycle services specify deletion of objects, as well as copy/move of
object implementations.

Internet Mgmt No direct support for life cycle operations. SNMP v2 has notion of
special variable in table rows which allows for a set operation to make a
new table row available.

16.3.2.8 Attribute Behaviour

OSI Mgmt The behaviour of attribute-oriented operations is defined. The interaction
between attribute operations is left to the package definition.

OMG get and set operations are defined for attributes. Behaviour specification
is only available through textual comments.

Internet Mgmt The behaviour of attribute-oriented operations is defined; interaction
between operations is not.

16.3.2.9 Data Types

OSI Mgmt All primitive ASN.1 built-in types are supported, including BOOLEAN;
INTEGER; BIT STRING; OCTET STRING; NULL; ANY DEFINED
BY, CharacterString; OBJECT IDENTIFIER; REAL;
ENUMERATED;and Generalized Time . The following constructed
types are supported: SET, SET OF, SEQUENCE, SEQUENCE OF,
CHOICE.

OMG Primitive types are integer, floating point, character, octet, boolean, and
ANY (type descriptor, data fields). Built in access methods exist for ANY
type. Aggregate attribute values and operation parameters are supported
by the collection types, which are Sequences (variable length ordered list);
struct, Union, Enum, Array (fixed size). In IDL, recursion within
constructed Type declarations is only allowed if there is an intervening
Sequence.

198 Preliminary Specification

Comparison of Object Models Characteristics of Objects

Internet Mgmt The following primitive ASN.1 built-in types are supported by SNMPv1:
INTEGER, OCTET STRING, NULL, OBJECT IDENTIFIER . The only
ASN.1 constructed type permitted is SEQUENCE [OF], used to generate
either lists or tables. New application-wide types may be defined, but
only if they resolve into one of the above implicitly defined ASN.1 types.
RFC1155 (see reference ISMI) defines the following application-wide
types: NetworkAddress, IpAddress, Counter, Gauge, TimeTicks, Opaque.
RFC1442 (see reference ISMIV2) specifies revisions for SNMPv2,
including addition of BIT STRING, unsigned INTEGER , and 64-bit
Counters.

16.3.2.10 Encapsulation

OSI Mgmt Supported.

OMG Supported.

Internet Mgmt Not supported (except where encapsulating any individual variable).

16.3.2.11 Object Reference Data Type

OSI Mgmt ObjectInstance (Distinguished Name), used extensively as
communication interface parameter. X.500 syntax used.

OMG Object reference (type name Object). Interface operations may employ
the object reference type for their parameters. Its syntax is opaque to the
application using it.

Internet Mgmt Object type identifier, appended to an object instance identifier (row
index) for objects contained within a conceptual table.

16.3.2.12 Interface Type References

OSI Mgmt Managed object class, attribute id, notification id and action id are all
specified with a globally unique OBJECT IDENTIFIER value, as well as a
document specific textual ASN.1 reference label. Textual reference labels
are case sensitive.

OMG Interface type has global reference id through Module Names. Attributes,
types and operations are referred to using scoped names defined within
the interface specification. IDL identifiers are case insensitive.

Internet Model Object type is specified with globally unique OBJECT IDENTIFIER value,
as well as document-specific textual ASN.1 reference label. SNMPv2 also
specifies globally unique OBJECT IDENTIFIER values for Notifications,
Module Identities, Groups, and Compliance Modules.

16.3.3 Analysis

Description At first sight, the descriptions of objects in the OSI management and
OMG models appear different, the OSI Managed object being a ... view of a
resource ... and the OMG object being ... a package of code and data In fact,
both object models enforce strict encapsulation: objects are characterised
by how they appear to the outside world, not how they are constructed
internally. With the exception of notifications and the support of built-in
operations to support manipulating multiple attributes with a single
invocation, differences between the models are surprisingly few. In

Part 8: Object Model Comparison 199

Characteristics of Objects Comparison of Object Models

practice, objects from both models will be constructed of code and data
and be run on computer processors.

From the ODP perspective managers and agents can be modelled as ODP
objects. However, OSI management, OMG and Internet management
each limit specification of an object to that of a performer of operations.
Invoker behaviour is not specified in OSI management, OMG, or Internet
management.

Operations Both the OSI and OMG models support the notion of an extensible set of
operation types, although particular objects are only required to support
a fixed set of operation types. The mechanism for invoking such
operations is defined by the underlying protocol.

There is a need to define a generic OMG factory object interface to
support the OSI managed object M-CREATE operation for managed
objects mapped to CORBA interfaces.

Events The major difference between the OMG and OSI management models is
the way of specifying autonomous events.

In OSI, management events are behaviour unconnected with operations;
they reflect the active, autonomous nature of managed objects. Typically,
event notifications are caused by alarm conditions (for example, loss of
signal) in the resource represented by a managed object. The event
notifications which an object may emit are specified as part of the
Managed Object definition. An event report management function
determines which event notifications are forwarded as event reports to
designated destinations.

The notion of events has been accommodated in the OMG object services.
The main difference between OMG events is that they are specified as
being supported by the receiver of the events. In effect, OMG event
services models events as operations in the other direction.

Attributes In OSI management and OMG (unlike Internet management), the models
differentiate between attributes and objects:

• there are distinct type systems for objects and attributes

• objects ontologically precede attributes (that is, attributes can only be
accessed within the context of an objects)

• there are built-in operations to manipulate attributes.

This is in-line with popular programming models such as Eiffel (see
reference Mey88) and C++ (see reference Strou87), but is at variance with
models such as Smalltalk (see reference Gol89), where everything is an
object. Both the OMG and OSI Models support aggregate attribute types.

OSI Management allows specification of specific user-defined errors on
attribute operations, and defines operations to manipulate members of
set-valued attributes (add, remove). If OSI management attributes are
mapped to OMG attributes, then only CORBA standard errors can be
used, resulting in a loss of information. In addition, there would be no
way of using CORBA operations to add or remove members of set-valued
attributes. An alternative would be to map some OSI managed object
attributes to custom CORBA IDL operations, in cases where user defined

200 Preliminary Specification

Comparison of Object Models Characteristics of Objects

exceptions or set member operations are required.

Encapsulation Both the OSI and OMG models have similar notions of encapsulations:
the state of an object can only be accessed by means of signals across the
object boundary or by means of relationships between objects. However,
the OSI management interface definition includes, in addition to
operations the object can perform, the notifications that an object may
emit.

Part 8: Object Model Comparison 201

Object Specification and Instantiation Comparison of Object Models

16.4 Object Specification and Instantiation

16.4.1 Concepts

Specification Binding The irrevocable merging of specifications.

Object Instantiation The process by which instances of objects are created.

16.4.2 Comparison

16.4.2.1 Attribute Specification

OSI Mgmt Attributes and qualifiers are specified independently of managed-object
classes.

OMG Attributes and qualifiers are defined only within scope of Object interface
types.

Internet Mgmt Attributes (object types) are specified individually, not within any object
class context. Object types may be aggregated into conceptual tables, but
the same object type may not appear in multiple tables. SNMPv2 Textual
Conventions may be used to specify behaviour and syntax to be reused
by multiple object types.

16.4.2.2 Binding

OSI Mgmt Specifications of attributes, operations, and events may be bound into
packages by means of a package specification. The package specification
may specify additional constraints over the attributes (for example, for
example, range restrictions) and over operations and events (for example,
for example, constraining variable-type parameters); it also specifies the
semantics of the package as a whole (for example, the meaning of a
statistics package). IDD

Package specifications themselves may be bound into a managed-object
class by means of a managed-object-class specification. These bindings
are qualified as either mandatory (a managed-object instance must reflect
the specifications contained in the package) or conditional (a
managed-object instance may reflect the specifications contained in the
package).

OMG Specifications of attributes and operations are combined into interfaces.
Interfaces may be further combined into modules. Optionality is not
supported for interface specifications. However, attribute and parameter
values can include null choices, and there is a standard
NOT_IMPLEMENTED exception type defined for CORBA.

The OMG Event Service has events defined as operations of an interface
which operates in the reverse direction (that is, events are raised by the
Object invoking an operation). Thus, a managed object can define one or
more interface containing all the events which it can generate. The
manager needs to support that interface.

Internet Mgmt Individual object types may be combined into conceptual table rows, but
no additional constraints or semantics are imposed there. In SNMPv2,
individual object types may be combined into Object Groups which specify
the semantics of the group as a whole, but do not otherwise impose

202 Preliminary Specification

Comparison of Object Models Object Specification and Instantiation

additional constraints. Also in SNMPv2, individual object groups and
types may be referenced by Module Compliance macros which specify
access and/or value constraints permitted for conformance to a given
MIB module. Object type status does not indicate presence/absence, its
values are current and obsolete. A Module Compliance macro specifies
object groups as mandatory or otherwise for the purpose of conformance.

16.4.2.3 Object Instantiation

OSI Mgmt Instantiation may be from what alreadty exists, by local means, or by
means of a CMIP create operation.

OMG Instantiation may be from what already exists, or by means of an
operation invocation on an application specific factory interface. No
standard factory interfaces are defined for CORBA.

Internet Mgmt Instantiation may be from what already exists, by local means, or by
means of a set operation involving a conceptual table row status variable.

16.4.2.4 Behaviour Specification

OSI Mgmt Unstructured natural language behaviour clause, with a recommendation
to state pre-conditions, post-conditions, and invariants.

OMG Unstructured natural language, using IDL comments.

Internet Mgmt Unstructured natural language.

16.4.2.5 Specification Tools

OSI Mgmt GDMO templates.

OMG IDL.

Internet Mgmt ASN.1 macros (OBJECT-TYPE, NOTIFICATION, MODULE-
IDENTITY, MODULE-COMPLIANCE, OBJECT-GROUP).

16.4.3 Analysis

Specification techniques
The major difference in specification techniques is between the OSI
Management piecemeal approach and the more monolithic approach
taken by OMG. The OSI Management approach of separate specifications
bound into packages which are subsequently bound into object classes, is
claimed to improve the potential for re-use of specifications.
Conditionally-bound packages are a form of late binding. They meet OSI
Management’s need for controlled variation in managed-object class
specifications, but if used liberally they can cause ambiguity for
implementors (see reference MPR). In the OSI Management model, the
union of the object-class identification with the identification of the
packages present serves as the indicator of a particular managed object’s
characteristics. For implementors, packages complicate the type
hierarchy.

The OMG specification technique is more monolithic over the type and
does not admit late binding (it specifies that ‘‘the object type is an absolute
indication of the characteristics of a type instance’’). Re-use is achieved by
inheritance (possibly multiple) of interface definitions. However, there is

Part 8: Object Model Comparison 203

Object Specification and Instantiation Comparison of Object Models

a standard exception (NOT IMPLEMENTED) which must be dealt with
by invokers when an object implementation does not support an
operation defined in its interface.

Conditional packages can lead to situations where all members of a class
may not be the same. Usage of null values for attributes/parameters to
simulate optionality does not change this.

Behavioural Specification
The behavioural aspects of managed objects are specified using natural
language (see reference SMI), although it is recommended that such
specifications should be expressed in terms of pre-conditions, post-
conditions, and invariants. There have been attempts to use formal
techniques for the specification of the behaviour particular managed-
object classes (see reference SMI). The OMG also proposes the use of
natural language to specify the behavioral aspects of objects.

ODP behaviour specifications will use Formal Description Techniques
(FDTs). Dynamic type checking may use assertions about behaviour.

Specification Tools OSI Management provides two tools for formally specifying the syntax of
managed objects and the associated messages:

• a template language (see reference GDMO) for defining the
characteristics managed objects

• a data-definition language (see reference ASN.1) for defining the data
types associated with attributes and parameters.

The OMG CORBA 1.0 model does not prescribe a language for defining
the syntax of the associated messages. For IDL (see reference CORBA), a
language similar to C++ is used to define the programmatic interface
signature.

The OMG model defines objects by defining interface operations using in
IDL. The word object in CORBA is equivalent to object interface in ODP.

204 Preliminary Specification

Comparison of Object Models Object Taxonomy

16.5 Object Taxonomy
A taxonomy permits reasoning about real-world things by grouping instances of those things
into classes or types and by relating the different classes or types. In day-to-day discourse, the
terms class and type are used synonymously, but in the world of object-oriented systems, classes
and types are different. In ODP, a class is the extension of (that is, the set of instances which
satisfy) a type .

16.5.1 Concepts

Object Type A predicate over the characteristics of an object. Objects are said to
conform to a type .

Object Subtype An additional predicate over the characteristics of a supertype.

Object Class The set of objects which are of the same type. Objects in a class can have
one or more compatible templates used for the generation and
management of objects. Every type defines a class; however, the converse
is not necessarily true. In ODP, the term class is used to represent the set
of instances that satisfy a type, and a template represents the object
specifications.

Object Sub-class A modification to the template of a superclass.

Inheritance A mechanism for deriving the specification of a descendant from the
specification of an ancestor, such that in addition to its own
characteristics, a descendant acquires all (strict inheritance), or part, of the
characteristics of its ancestor. A descendant may have a single immediate
ancestor (single inheritance) or multiple immediate ancestors (multiple
inheritance). The super/sub relationship resulting from single
inheritance may be represented by a tree; that resulting from multiple
inheritance may be represented by a directed, acyclic graph.

At first glance, the subtyping and subclassing relationships in the OMG and OSI models appear
similar. They both involve the development of new types or classes by means of inheritance and
by the addition of new predicates or template modifications. The difference is that the subtyping
relationship is one of substitutability, whereas the subclassing relationship is one of
implementation sharing (see reference Lalon91). Thus an instance of a subtype may be
substituted for an instance of a supertype without any change in behaviour visible at the object
interface. A subclass, by comparison, shares the implementation of its superclass, and an
instance of a subclass cannot always be reliably substituted for an instance of a superclass.

16.5.2 Comparison

16.5.2.1 Object Class

OSI Mgmt The Management Information Model (see reference SMI) classifies
managed objects into classes. Class specifications are documented by
templates.

OMG The OMG model specifies objects by their interface. There is no direct
concept of Object Class in OMG. However an object template can be
derived from the inheritance graph of interface definitions.

Internet Mgmt The Internet SMI (see references ISMI and ISMIV2) defines object types
which classify individual variables.

Part 8: Object Model Comparison 205

Object Taxonomy Comparison of Object Models

16.5.2.2 Taxonomy

OSI Mgmt Managed-object classes are related in quasi type-hierarchy by means of
strict, multiple inheritance. The root of the hierarchy is the managed-
object class TOP, which specifies attributes for specifying static properties
common to all classes (for example, the actual Managed object class,
which of the conditional packages are instantiated, and which classes the
instance may respond to requests as). It is legal to inherit from two class
definitions which include the same action or attribute, since the
properties of the common named operations are merged (for example, get
and get-replace become get-replace in the derived class).

OMG Object types are related in a type hierarchy of supported interfaces by
means of multiple inheritance. The root of the hierarchy is the object type
object . It is currently illegal to inherit from two interfaces with the same
operation or attribute name, or to redefine an operation or attribute name
in the derived interface.

Internet Mgmt Object types are related in a naming hierarchy that reflects conceptual
table and object group organisation. The root of the naming hierarchy is
the OBJECT IDENTIFIER assigned to the entire MIB. There is no support
for inheritance of any type, although SNMPv2 conceptual tables may
augment existing conceptual tables specified elsewhere.

16.5.2.3 Type System

OSI Mgmt The managed-object types are distinct from other types (for example,
attributes, actions, notifications) in the model.

OMG Object interface types are integrated into a single type-hierarchy for all
the types in the model.

Internet Mgmt Object types are distinct from each other, and from other types in the
model.

16.5.3 Analysis

The taxonomies used in the OSI and OMG models are largely similar. They are both specified in
terms of object interfaces, and both use a multiple-inheritance discipline. The OSI Management
Model specifies a number of attributes in TOP (objectClass and nameBinding). Thus all managed
objects contain instances of those attributes.

The OMG model support the notion of substitutability by means of subtyping (that is, support
for each inherited interface is required when supporting a derived interface). The OSI
Management Model supports a similar notion by means of a limited subtyping capability
termed compatibility (see reference SMI).

Representing GDMO managed object inheritance in the case of repeated attributes or actions in
the inherited packages will require special treatment when translating to OMG CORBA IDL.

206 Preliminary Specification

Comparison of Object Models Object Reference

16.6 Object Reference
Understanding the term object reference requires special care. Confusion and overlap exists
between the identity of an object and its name. Informally, the identity of an object is that which
distinguishes it from all others (see reference Khosh86), and a name is a mnemonic handle used
to refer to an object (see reference Hauze86). Thus, the identity of a person could be the
molecules that make up that person (although the molecules keep changing) and the name of a
person could be the symbols that appear on their birth certificate. Identity (that is, object
reference) is difficult to define in formal sense, but intuitively it is ‘‘something enduring about an
object’’ (see reference Kent91). A name on the other hand is easier to define, being a token used
to refer to an object. However, names of objects can change with time, and the same name could
apply to many objects over time.

Both object references and names refer to objects, but generally object references have no structure
and are implemented as long bit-strings to facilitate effective machine processing. Their main
use is to ‘‘resolve predicates of sameness and equality’’ (see reference Kent91). Names, on the other
hand, are normally symbolic and mnemonic and oriented towards human consumption.

16.6.1 Concepts

It is important to have a formal framework for object reference and object naming within a
distributed system. The following definitions are offered:

Object Identity A unique property of an object that unambiguously distinguishes it from
all other objects in the universe of discourse for all time.

Object Reference A unique token used to unambiguously refer to an object during its
lifetime. Object references are assigned at object creation time and are
never subsequently re-assigned. Thus, the mapping function of object
reference to object, if it is valid, is both single-valued and singular (1:1)
during the life-time of the object, and invalid afterwards.

Name A token used to refer to an object. Different objects may be assigned the
same name and the object may be assigned different names. Names may
be re-assigned during the lifetime of the object. Thus the mapping
function of name to object, if it is valid, may be both multi-valued and
non-singular, and may change with time.

Access Transparency A reference to an object does not expose/define the carriage protocol to
that object.

Location Transparency
A reference to an object does not expose its location.

Location Independence
A reference to an object remains valid after the object changes location.

16.6.2 Comparison

16.6.2.1 Object Reference

OSI Mgmt There is no specific concept of an object reference for a managed object
other than the object instance (distinguished name).

OMG In CORBA, Object Reference is an opaque type (that is, it is not externally
defined and thus has no particular format). Objects may have more than
one reference. Objects are assigned object references at creation. Object
references are local entities and may not be globally unique.

Part 8: Object Model Comparison 207

Object Reference Comparison of Object Models

Internet Mgmt An object’s reference is its name (that is, ASN.1 OBJECT IDENTIFIER).
All agents use identical names for objects of a given types. In SNMP V2,
the community field (or whatever it is now called) can be used to select
the particular Agent which will serve as the scope for the object
references passed in the protocol operations.

16.6.2.2 Name

OSI Mgmt A managed object must have a single distinguished name, comprised of a
sequence of Relative Distinguished Names (RDNs), corresponding to a
name scope hierarchy of instance containment (not necessarily physical
containment). Each RDN is a single, mandatory attribute/value pair
associated with the managed object. The RDN attribute value is assigned
at object creation-time and may not be changed during the lifetime of the
object, although it may be reused afterwards.

OMG Objects may have an arbitrary number of names. The scope is a name
context. Names are distinct from objects — objects need not have names.
There is mapping between name values and objects. The mapping may be
changed at any time.

Internet Mgmt An object instance name is formed by concatenating the OBJECT
IDENTIFIER assigned to the object type, with either the value zero (for
singular objects), or one or more object values representing conceptual
table row indices. Index object types do not need to be part of the
conceptual table row. Any given conceptual row always has the same
index value(s), although that row may be conceptually created and
deleted many times over.

16.6.2.3 Naming Model

OSI Mgmt A hierarchically-qualified set of naming contexts, based on object
containment, is prescribed to ensure object names are unique and
unambiguous within an agent system’s local context (local distinguished
name), as well as in a global context (distinguished name). Aliases are
not permitted.

OMG The Name Service provides a directed, potentially cyclic, graph of
naming contexts. This may have many roots. All names are mapped to an
ObjectRef (possibly of another naming context). Thus an object may have
many names and a single point in the graph may be reached via many
routes.

Internet Mgmt A hierarchically-qualified set of naming contexts, based on the object type
registration tree, provides names that are locally unique and
unambiguous within a single agent. To provide global uniqueness, object
instance names must be used in conjunction with the agent’s network
address. Aliases are not permitted.

208 Preliminary Specification

Comparison of Object Models Object Reference

16.6.2.4 Access Transparency

OSI Mgmt Unsupported. CMIP as defined in ISO/IEC 9596-2 (see reference CMIP) is
required. CMIP may run over Internet Protocol (IP), LLC I, or OSI lower
layers.

OMG Supported. ORBs may use whatever protocol is most appropriate. ORBs
may employ Internet Protocol (IP), or OSI lower layers. CORBA
interoperability requires support of a standard protocol.

Internet Mgmt Unsupported. SNMPv1 or SNMPv2 as defined by referenced documents
SNMP and SNMP is required. SNMP may run over a wide variety of
Internet and non-Internet transports, as described by RFC1449.

16.6.2.5 Location Transparency

OSI Mgmt Not supported when objects are named within the scope of the System
object. For OSI management, OSI protocol machines are naturally named
within the scope of the open system they are part of, and thus location
transparency is meaningless. However, not all managed objects have to
be named within the scope of the System managed object, so location
transparency is not precluded.

OMG Supported in CORBA. Lifecycle services include Move operations.

Internet Mgmt Not supported.

16.6.2.6 Location Independence

OSI Mgmt Not supported for managed objects named within the scope of System.

OMG Supported in CORBA.

Internet Mgmt Not supported.

16.6.3 Analysis

At first sight, the object reference schemes seem very different. In the OMG model, identity is
determined by an opaque object reference value, while in the OSI Management model it is
determined by name. However, if the user were to forbid the renaming or moving of managed
objects (which will largely be the case in practice) and were to carefully manage the re-use of
managed-object names, the two mechanisms are broadly equivalent, since managed-object
names are unique and unambiguous, and aliases are not permitted.

Part 8: Object Model Comparison 209

Object Selection and Address Resolution Comparison of Object Models

16.7 Object Selection and Address Resolution

16.7.1 Concepts

Selection The mechanism by which object instances are selected to receive
invocations.

Associative Selection
A reference constructed from predicates over the characteristics of
objects. Such a reference can resolve to zero or more objects.

Address Resolution The mechanism by which a name is mapped to an address (see reference
Jacqm90).

16.7.2 Comparison

16.7.2.1 Direct Selection

OSI Mgmt By name.

OMG In OMG, an Object Reference is an address, that is, it is all that is
necessary to connect to that object, regardless of its current location. ORB
interoperability is provided in CORBA 2.0 (see reference CORBA), which
includes resolving object references between different ORB
implementations.

Internet Mgmt By name.

16.7.2.2 Associative Selection

OSI Mgmt Support of associative references by means of filters is optionally
supported. The syntax and semantics of filters are defined. The scope is
the whole, or some sub-tree, of the tree of managed objects. With CMIP,
the invocation is made directly on the scope and filter — the agent
implementation sorts out the targets.

OMG Associative reference to a set of names could be done by traversal of the
naming graph, or by a Trader Service. A standard OMG mechanism is
not yet defined. Commands addressed to a set of objects via an
associative reference would require a two phase mechanism: one which
resolves to a set of objects via constraint matching on properties of the
object’s supported services; and the other which iterates over the objects
invoking the operation on it. Clearly a scoping and filtering service could
be written, but none appears specifically in the current OMG Roadmap
(at the time of publication).

OMG has a Relationship Service, which may also provide a different
mechanism. The OMG Object Services activity might fast-track a Trader
Service (such as ODP trader) which provides associative references
employing constraint matching on properties of services supported by
object instances. Support for such associative references is permitted but
not required. A standard OMG trader has not yet been specified, and it is
expected that the ODP trader can be used.

Internet Mgmt SNMP get-next and get-bulk operators allow reference to a conceptual
table entry which is lexicographically after a named entry. The scope is
the agent’s network address, the entire registration tree, and

210 Preliminary Specification

Comparison of Object Models Object Selection and Address Resolution

lexicographic ordering within that tree. However, the receiver of these
operation responses must do any necessary filtering out of unwanted
variables. RFC1445 (see reference IADM) defines MIB Views which are
subsets of all instances of all object types.

16.7.2.3 Address Resolution

OSI Mgmt The model does not prescribe a mechanism for address resolution, but it
could be provided by the Directory (see reference DIR).

OMG The ORB provides address resolution. Mapping from a name to an object
reference is done by the Name Service. An ORB resolves only a single
target, and it is an application concern to sort out the targets.

Internet Mgmt The model does not prescribe a mechanism for address resolution, but it
could be provided by any directory service, including the Internet
Domain Name Server.

16.7.3 Analysis

Both OSI and OMG models permit similar features with respect to object selection. The OSI
model permits a direct selection of a single object by name, and the OMG model permits it by
object identifier. Both provide associative selection over some subset of objects that may resolve
to zero or more objects. In both cases, the responsibility for address resolution is delegated.

The OSI Management model defines specific syntax and semantics of the supporting
mechanism. The OMG model does not.

ODP is specifying the syntax and semantics of a Trader service, which is expected to be used for
associated selection of OMG objects.

Part 8: Object Model Comparison 211

Comparison of Object Models

212 Preliminary Specification

Chapter 17

Summary of Similarities and Differences

This chapter gives a summary and analysis of the similarities and differences between the OSI,
OMG and Internet Management Models.

17.1 Summary

17.1.1 Interoperability and Portability

OSI Mgmt CMIP allows different implementations to interoperate through
specification of communications interface. However application
portability is not provided.

OMG Application portability is provided by specification of programmatic
interface. CORBA 2.0 provides a common protocol for different
implementations to interoperate.

Internet Mgmt SNMP allows different implementations to interoperate through
specification of communications interface. However application
portability is not provided.

17.1.2 Re-usable Components

OSI Mgmt Library/catalogue of management information.

OMG Type library (interface repository).

Internet Mgmt MIBs containing object type definitions.

17.1.3 Encapsulation

OSI Mgmt Supported.

OMG Supported.

Internet Mgmt Not supported.

17.1.4 Object Operations

OSI Mgmt Supported.

OMG Supported. No built-in create service provided.

Internet Mgmt Not supported.

Part 8: Object Model Comparison 213

Summary Summary of Similarities and Differences

17.1.5 Behaviour

OSI Mgmt Supported.

OMG Supported.

I0ernet Mgmt Supported.

17.1.6 Attributes and Attribute Operations

OSI Mgmt Supported. Specific exceptions can be specified.

OMG Supported. Specific exceptions cannot be specified.

Internet Mgmt Supported.

17.1.7 Taxonomy

OSI Mgmt Managed object class type-hierarchy/graph supported by multiple
inheritance. Attributes, actions, and notifications may be repeated in
derived classes, with additional properties.

OMG Interface Type hierarchy/graph supported by multiple inheritance.
Attributes and operations cannot be repeated in a derived interface
specification.

Internet Mgmt No inheritance supported.

17.1.8 Direct Selection

OSI Mgmt By global or local distinguished name.

OMG By object reference. The form of object references is ORB-specific.

Internet Mgmt By object name (OID + index).

17.1.9 Intended Use

OSI Mgmt Distributed network management.

OMG Object-oriented software development.

Internet Mgmt Management of inter-networked devices.

17.1.10 Interface Type

OSI Mgmt Communications.

OMG Programmatic.

Internet Mgmt Communications.

214 Preliminary Specification

Summary of Similarities and Differences Summary

17.1.11 Interface Concurrency

OSI Mgmt Support required for confirmed events and operations/notifications on
the same association.

OMG Not required, but concurrency is implicit in the model, especially where
deferred synchronous calls are made (as in the DII).

Internet Mgmt Not precluded.

17.1.12 Protocol Model

OSI Mgmt Remote operations (invoke, returnResult, returnError, and reject
messages).

OMG Procedure call. CORBA2 defines protocol(s) for interoperability.

Internet Mgmt Message passing, requests have agent responses, traps are sent by agent
and are unconfirmed.

17.1.13 Multiple Replies

OSI Mgmt Supported explicitly by CMIP.

OMG Although not specified explicitly in CORBA, multiple replies can be
achieved by passing a reference on the call and implementing a call-back
style of programming, by defining pairs or sets of definitions going in
both directions. The service may invoke many calls on the reference to
pass results and the return on the original request.

Internet Mgmt Not supported (although the SNMPv2 get-bulk operator provides a
self-repeating request which provokes several responses).

17.1.14 Object Events

OSI Mgmt Supported by CMIP. Notifications are specified as part of managed object
definition.

OMG There is now a standard models of events — the OMG Event Service.
Notifications are not specified as part of the sender’s interface definition.
The event receiver registers the event receipt interface. Typed events are
specified as part of a receiver’s interface definition. Fine filtering of events
is not supported.

Internet Mgmt Provides limited event support in the form of Traps and Inform-Requests.
The philosophy is typically characterised as trap-directed polling .

17.1.15 Late Binding

OSI Mgmt Some degree of optionality is handled in GDMO via conditional binding
of a package to a managed object instance of a class defined with
conditional packages.

OMG In OMG, the implementation of a particular object instance is determined
when the instance is created, by the implementation repository. It is even
possible to change implementations, although the semantics are currently
unclear. Attribute and parameter values may be defined with
discriminated choice types including a NULL alternative.

Part 8: Object Model Comparison 215

Summary Summary of Similarities and Differences

IDL has no direct equivalent of managed object class. However, simply
supporting an interface does not actually require an implementation of all
operations. An object is perfectly at liberty to implement a function
simply by raising an exception. Clearly this is not covered in the
specification part.

Internet Mgmt Not formally supported, except through compliance specifications.

17.1.16 Associated Selection

OSI Mgmt Supported through scoping and filtering on the managed object instance
tree.

OMG Permitted. Trader services will enable this in the future.

Internet Mgmt Very limited support.

17.1.17 Associated Selection Scope

OSI Mgmt Sub-trees of the tree of managed object instances.

OMG Eventually will have an arbitrary scope when using a Trader for two
phase selection.

Internet Mgmt Agent’s entire MIB registration tree, or a subset (MIB View) of that tree.

17.1.18 Specification

OSI Mgmt Piecemeal, in that Attributes, Notifications, Actions, and Parameters are
defined first, then combined into packages, which are then combined into
managed object class definitions.

OMG Object specification in OMG is at the granularity of interfaces. Via
inheritance, an object may support many interfaces, so it is not really
monolithic. Operations and attributes specified separately could be
achieved by putting these individual declarations in their own interface
and combining them as required.

Internet Mgmt Largely monolithic. There is little specification re-useuse except as
provided by SNMPv2 (Textual Conventions and Table Augmentation).

17.1.19 Specification Tools

OSI Mgmt GDMO.

OMG IDL.

Internet Mgmt ASN.1 macros.

216 Preliminary Specification

Summary of Similarities and Differences Summary

17.1.20 Specification Formality

OSI Mgmt Syntax.

OMG Syntax.

Internet Mgmt Syntax.

Part 8: Object Model Comparison 217

Analysis of Similarities and Differences Summary of Similarities and Differences

17.2 Analysis of Similarities and Differences
Up to and including Section 17.1.8, there is an encouraging degree of agreement between the
fundamental aspects of the OSI and OMG models. The basic notions of objects, object taxonomy,
attributes, operations, state, behaviour, and encapsulation are virtually identical. This is
important in realising our goal of using object-oriented software development systems to
implement OSI-conformant network-management products. The closer the two models are, the
less incidental code has to be written to fit the specification (that is, OSI management) model to
the implementation (that is, OMG) model. This will not only result in less code, but will also
improve accuracy and robustness of implementation.

The OSI and OMG models differ:

• in four major aspects:

— support for events

— support for multiple replies

— support for attribute groups

— late binding.

• in a number of incidental aspects, such as specification techniques and associative references

• in two complementary aspects:

— interface type

— intended use.

Therefore, the OSI management and OMG models only fundamentally differ in late binding
(possibly) and multiple replies. The latter is implementable and is a common style for event
driven systems, for example, X-windows (DII even enables callback style of programming). The
possibility of interworking is strengthened by existence of OMG Object Services.

The following chapter outlines the approach to reconciling the differences between these object
models.

218 Preliminary Specification

Chapter 18

Reconciling the Models

In the previous chapters of this Object Model Comparison report, it has been established that,
in spite of some differences, the OSI and OMG models are fundamentally in alignment.

This chapter explores how some of the differences can be exploited, and how the remainder can
be reconciled.

18.1 Changing the Models
In principle, the models could be reconciled by demanding changes to one or the other, in order
to simplify the mappings between them.

The JIDM working group decided that such an approach is not practical, in that large
investments have been made based on each of the existing models. It was assumed that
mappings between specifications in each model are constrained to the existing definitions of
each model.

However, it is anticipated that this JIDM work might be used to suggest enhancements in future
revisions to the models, to aid mappings of specifications between each other.

18.2 Exploiting the Differences
Two of the differences between the models (the intended use and interface type) are, as has been
pointed out earlier, complementary. Network management systems have to be implemented,
ideally using object-oriented software-development tools.

The system aspects of the OMG model can be represented as an invoker invokes operations on a
performer (one or more objects), using an abstract procedure-call protocol (abstract in the sense
that the syntactical details of what is sent on the wire are not specified). The OSI and Internet
Management models exhibit similar invoker/performer characteristics but using a
precisely-specified message-passing protocol. Conceptually, the models could be merged, with
management protocol intervening between OMG programmatic interface service boundaries.

This approach would satisfy both models. The OMG model would be unaware of the
intervening Management protocol, and the end-systems would conform to MGMT protocols. Of
course it not quite that simple. Difficult issues such as support for asynchronous operation of
the OSI Management model with the potentially synchronous operation of the OMG model
would have to be resolved.

Asynchronous OSI MGMT versus synchronous OMG is not a problem if an OMG
implementation supports concurrency and/or deferred synchronous calls.

Part 8: Object Model Comparison 219

Reconciling the Differences Reconciling the Models

18.3 Reconciling the Differences
Having exploited the complementary differences, it is next necessary to reconcile fundamental
and incidental differences. There are a number of approaches:

1. align the models

2. provide run-time mediation between implementations of the models

3. provide notational mapping tools.

The following sections explore each of these approaches.

18.3.1 Model Subset Alignment

Ideally, all of the conflicting differences between the models would be resolved by complete
alignment. However, this is impractical. Each model is the result of many man-years of
unrelated consensus-building, and it is unlikely that agreements to align the models can be
quickly reached. Nevertheless, attempting to develop more compatible subsets of the two
models is feasible.

The OMG is restructuring its documentation (see reference OOM) to reflect the notion of a core
part and a number of component parts, and it is envisaged that profiles based upon this
structure will be defined for various applications.

OSI Management has, in its turn, a similar concept. Standards define kernel functionality to
guarantee a basic level of interoperability, and a number of additional functional units to permit
extended capabilities. Indeed, OMNIPoint is itself a set of agreements based on OSI standards.

This has the practical disadvantage that there are a multitude of existing definitions of managed
objects using all of the glory of GDMO. Profiling would not allow interoperability for systems
which must implement heavier object definitions than allowed by the profile.

In particular, since recursive attribute SYNTAX structures cause problems for translation to
OMG IDL, they should be used with caution in Managed Object definitions. Such recursive
structures may require special consideration for mapping to CORBA IDL, and may in some
cases require manual intervention in the translation process.

18.3.2 Run-time Mediation

Run-time mediation essentially requires the development of incidental software to match the
differences between the specification (for example, OSI Management) model to the
implementation (for example, OMG) model. In particular software needs to be developed to
handle notifications, late binding, and multiple replies. It is anticipated that agreed approaches
to developing such software will be developed.

The IIMC work, which deals with OSI Management and Internet Management coexistence, has
used the term proxy to describe devices which perform such run-time mediation. The proxy
needs to translate service requests and messages from one domain format to that of another.

Mechanisms for run-time mediation, in general, will depend on tools for notation translation. It
is likely that to work properly, any run-time mediation mechanism will require knowledge of
the base notation in both the original notation form and the translated notation form. With such
knowledge of the notation translation, the run-time mediation mechanisms could dynamically
translate messages and service invocations from either form to the other. Thus, the dynamic
message translation process may work in either direction, although one notation was chosen as
the base and the other notation was derived by notation translation.

220 Preliminary Specification

Reconciling the Models Reconciling the Differences

18.3.3 Notation Translation Tools

Considerable investment has been made in the notational tools:

• GDMO, used by OSI Management

• SNMP Macros, used by Internet Management

• IDL, used by the OMG.

This investment takes the form of syntax checkers, data-structure generators, and ASN.1
compilers, and also published specifications giving definitions of object types. Alignment of the
tools is thus impractical. However, there is good reason to believe that automatic, or at least
semi-automatic, translation between any two models is feasible.

The IIMC has specified translation algorithms between Internet Management and OSI
Management formal definitions. Their experience has proved that the concept is practical.
However the static notational mappings are not invertible, that is, taking a translated definition
through the reverse algorithm does not bring back the original definition. Thus, care must be
taken as to which notation is selected as the base. However, once a translation of notation from
the base to the derived notation is developed, it may be used by the run-time mediation process
to convert services/messages from one domain into those of the other.

Part 8: Object Model Comparison 221

Reconciling the Models

222 Preliminary Specification

Chapter 19

Conclusions

It has been shown that the object model defined by the OMG for object-oriented software
development and that defined by OSI Management for network management are fundamentally
aligned. There are, however, a number of major, and a number of incidental, differences; some
are complementary and some are conflicting. In order for implementors of network
management products to be able to use development tools and run-time components meeting
OMG specifications, the conflicting differences will have to be reconciled. Methods are
proposed to achieve this: the development of run-time mediation software; and the
development of software to translate between the notational tools.

Part 8: Object Model Comparison 223

Conclusions

224 Preliminary Specification

Glossary

Abstract Syntax Notation One
(ASN.1) A notation defined in the OSI standards that allows data to be described in a machine-
independent fashion.

CCITT
Consultative Committee of International Telegraph and Telephone — an international
committee whose membership is composed of government postal, telephone and telegraph
agencies (PTTs). Now known by the name ITU-T (International Telcommunications Union -
Telecommunications Standardisation Sector).

CMIP
Common Management Information Protocol, defined in ISO/IEC 9596-1: 1991.

CMIS
Common Management Information Service, defined in ISO/IEC 9596: 1991.

CORBA
Common Object Request Broker Architecture.

GDMO
Guidelines for the Definition of Managed Objects: OSI Structure of Management Information,
Part 4.

IDL
Interface Definition Language. Since there are several versions/sources of such languages in
existence, this specification makes clear it uses the OMG CORBA IDL.

ISO
International Organization for Standardization. A standards organisation with the membership
composed of the standards organisations from each participating country. OSI working groups
generate the OSI Protocol Suite standards.

ITU-T
International Telcommunications Union - Telecommunications Standardisation Sector — an
international committee whose membership is composed of government postal, telephone and
telegraph agencies (PTTs). Formerly known as the CCITT (Consultative Committee of
International Telegraph and Telephone).

MIB
Management Information Base.

NMF
Network Management Forum.

ODP
Open Distributed Processing: ITU-T Recommendations X.902 and X.903.

OMG
Object Management Group.

RFC
OMG organization’s Request for Comments process, whereby a proposer of some technology
which the OMG has not (yet) itself proposed submits it in specification form to the OMG ‘‘for
comment’’, with the objective of adoption of that technology by the OMG. Compare this with

Part 8: Object Model Comparison 225

Glossary

the OMG RFP process.

RFP
OMG organization’s Request for Proposals process, whereby the OMG issues a requirements
document for some technology, and calls for proposals which answer all or part of the issued
requirement. Compare this with the OMG RFC process.

Open Systems Interconnection
(OSI) A set of ISO standards that define a network architecture based on a 7-layer model for
communication between open systems. OSI management standards define Configuration, Fault,
Performance, Security and Accounting Management.

Protocol Data Unit
The data unit exchanged by peer protocol entities. Examples are APDU (Application Layer),
PPDU (Presentation Layer) and SPDU (Session Layer).

PIDL
Pseudo Interface Definition Language.

Simple Network Management Protocol
(SNMP) A protocol for managing IPS networks.

TMN
Telecommunications Management Network.

226 Preliminary Specification

Index

Abstract Syntax Notation One.............................225
agent..109
algorithm..4, 167
allocation of object identifiers................................89
anonymous elements and items............................44
application of algorithms......................................167
ASN.1 algorithm...18
ASN.1 Definition to IDL..24
ASN.1 label ..88
ASN.1 macro definition notation121
ASN.1 module to IDL file115
ASN.1 module to IDL module.............................115
ASN.1 to IDL

anonymous elements and items........................44
any type ..39
ASN.1 string type ...36
assigning types..26
assigning values..26
bit string type ..33
boolean types ..29
builtin ASN.1 types..58
character string types ..52
choice ..45
comments ...27
constrained type ...53
constructed types ...41
embeddedPDV..52
enumerated type...32
exports ..25
external type..39
IDL modules..116
import symbols...118
imports..25
INCLUDE...55
InnerTypeConstraints ..55
integer type..30
lexical translation ...115
MAX ..54
MIN ...54
module definition...116
module identifier ..25
names..116
naming of IDL output file.................................117
null types..29
object identifier ...38
octet string type ..35

permitted alphabet...54
primitive types..28
real type..31
recursive type..40
referencing type ..26
selection..48
sequence ...49
sequence of ..52
set...49
set of ..52
singlevalue...54
standard files ...116
subtype elements..53
tag default ..25
tagged type ..39
useful type ...36
value definition...26
value range ..53
values ..29

ASN.1 Type to CORBA-IDL15
ASN1Limits.idl ...168
ASN1Types.idl ..167
base GDMO document..103
basic definitions ..167
CCITT..225
CMIP ...3, 225
CMIS..225
comparison of object models189
COMPONENTS OF ...49
composite types ..42
CORBA...3, 9, 187, 225
CORBA IDL to GDMO/ASN.1..............................87
disambiguation rules ...21
domain ..3
file name ...19
file names..64
GDMO ..3, 9, 225
GDMO base document..88
GDMO label...88
GDMO Templates to IDL Interfaces.....................69
GDMO to CORBA-IDL..61

inputs and outputs...61
GDMO to IDL

action parameters ...75
actions to IDL operations....................................75
attribute ..73

Inter-domain Management: Specification Translation 227

Index

error handling ...70
event parameters ..78
file names ...64
IDL modules..64
inheritance ...69
inheritance collisions ...80
managed object templates71
multiple replies ...76
notifications to IDL operations..........................77
parameters to IDL types74
process ..63
standard files ...65
X.721 and X.722 modules..................................175

generated GDMO/ASN.1 documents..................87
IDL...3, 225
IDL basic definition..167

ASN1Limits.idl ...168
ASN1Types.idl ..167
OSIMgmt.idl..169
SNMPMgmt.idl...171
SNMPv1Trap.idl...172

IDL identifiers..88
IDL module..19
IDL modules ..64
IDL operations set ..73
IDL to GDMO/ASN.1

attributes ..92
base document ..88
comments ...90
CORBA Any type ...97
CORBA IDL ...90
data type definitions ..95
data types ...95
exceptions ..92
generated documents ..87
IDL identifiers ...88
interfaces ..91
lexical translation ...88
name bindings...94
object identifiers..89
operations ..92
preprocessor directives90
process ..87
type constructors ..96

IDL to SNMP translation163
inheritance hierarchy ...69
interaction translation...........3, 5, 9, 77-78, 109, 128
Internet Management ..3
Internet management ..187
interoperability ..7-8
interoperability scenarios..4

interworking ..3
ISO ...225
ITU-T...225
JIDM ..3
JIDM base GDMO document...............................103
lexical translation..21
managed object templates71
management

Internet (SNMP) ...187, 213
OMG (CORBA)...187, 213
OSI (CMIP..187
OSI (CMIP) ..213

management
Internet ...189
OMG..189
OSI ...189

manager..109
mapping of SNMP macros121
mapping SNMPv1 traps..153
MIB ..3, 225
MIB definition language..109
name bindings...94
naming ..19
nickname..16, 61
nickname selection ...16
NMF..3, 187, 225
object identifier..61
object model...3
object model comparison......................................187
object models

address resolution..210
changing the models..219
characteristics of objects195
comparison ..189
differences..213, 218
exploiting differences between models219
goals ..190
interfaces ..192
object reference ...207
object selection..210
object specification and instantiation.............202
object taxonomy ...205
reconciling differences between models220
reconciling the models219
similarities ...213, 218

object-oriented ..187
ODP...187, 225
OMG..3, 225
OMG management...187
OMNIPoint ...187
open distributed processing.................................187

228 Preliminary Specification

Index

Open Systems Interconnection............................226
OSI Management ..3
OSI management ..187
OSIMgmt.idl ..169
PIDL...226
process..18, 63, 87, 111
Protocol Data Unit..226
reconciling object models219
report on object model comparison....................187
RFC ..225
RFC1442..177
RFC1443..179
RFP...226
set of IDL operations..73
Simple Network Management Protocol226
SNMP..3, 9, 177

to ..153-154, 158
SNMP agent...109
SNMP manager...109
SNMP MIB to CORBA IDL...................................109
SNMP to IDL

ASN.1 macro definition notation121
mapping of SNMP macros121
MODULE-COMPLIANCE macro...................151
MODULE-IDENTITY macro122
NOTIFICATION-TYPE macro140
OBJECT-IDENTITY macro...............................125
OBJECT-TYPE macro ..127
textual convention macro.................................147

SNMPMgmt.idl...171
SNMPv1 traps ...153
SNMPv1Trap.idl ...172
SNMPv2 information module macros121
SNMPv2 information modules............................115
SNMPv2 RFC Modules ...177
SNMPv2 to CORBA-IDL.......................................111

information module mapping.........................113
process ..111
type translation...114

SNMPv2 to IDL...177
SNMPv2_SMI.idl ..177
SNMPv2_TC.idl ..179
specification translation ..4
standard files ...19
TMN..3, 7, 226
translation process ...18
usage..7
use of object identifiers..89
X.721 and X.722 modules......................................175
X501Inf.idl ..20

Inter-domain Management: Specification Translation 229

Index

230 Preliminary Specification

