
X/Open Preliminary Specification

Common Object Services, Volume 2

X/Open Company Ltd.

 October 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Preliminary Specification

Common Object Services, Volume 2

ISBN: 1-85912-125-X
X/Open Document Number: P502

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

This work is published by X/Open Company Ltd., U.K. under the terms of its agreement with
the Object Management Group. Ownership of the intellectual property rights remain vested
with the Object Management Group and the authors listed here:

AT&T/NCR Corporation
BNR Europe Limited
Digital Equipment Corporation
Groupe Bull
Hewlett-Packard Company
HyperDesk Corporation
ICL plc
Ing. C. Olivetti & C. SpA
IBM Corporation

Iona Technologies, Ltd.
Itasca Systems, Inc.
Novell, Inc.
O2 Technology, SA
Object Design, Inc.
Objectivity, Inc.
Ontos, Inc.
Oracle Corporation
Persistence Software, Inc.

Servio Corporation
Siemens Nixdorf Informationssysteme AG
SunSoft, Inc.
Tandem Computers, Inc.
Teknekron Software Systems, Inc.
Tivoli Systems, Inc.
Transarc Corporation
Versant Object Technology Corporation

This document is equivalent to parts of OMG Document Number 94-1-1.

ii X/Open Preliminary Specification (1995)

Contents

Chapter 1 Introduction... 1
 1.1 Persistent Object Service ... 1
 1.2 Transaction Service... 1
 1.3 Concurrency Control Service ... 2
 1.4 Relationship Service ... 2
 1.5 Externalization Service .. 3

Chapter 2 General Design Principles ... 5
 2.1 Service Design Principles .. 5
 2.1.1 CORBA Concepts .. 5
 2.1.2 Basic Flexible Services... 5
 2.1.3 Generic Services ... 5
 2.1.4 Local and Remote Implementations.. 6
 2.1.5 Quality of Service... 6
 2.1.6 Objects Conspire .. 6
 2.1.7 Use of Callback Interfaces.. 7
 2.1.8 Global Identifier Spaces.. 7
 2.1.9 Finding and Using Services ... 8
 2.2 Interface Style Consistency... 9
 2.2.1 Exceptions and Return Codes ... 9
 2.2.2 Explicit versus Implicit Operations ... 9
 2.2.3 Interface Inheritance.. 9
 2.3 Key Design Decisions... 10
 2.3.1 Naming Service Issues.. 10
 2.3.2 Universal Object Identity ... 10
 2.4 Integration with Future Object Services .. 11
 2.4.1 Archive Service... 11
 2.4.2 Backup/Restore Service ... 11
 2.4.3 Change Management Service.. 12
 2.4.4 Data Interchange Service.. 12
 2.4.5 Implementation Repository Service .. 12
 2.4.6 Interface Repository Service.. 12
 2.4.7 Internationalization Service... 12
 2.4.8 Logging Service .. 12
 2.4.9 Query Service.. 13
 2.4.10 Recovery Service .. 14
 2.4.11 Replication Service .. 14
 2.4.12 Security Service .. 14
 2.4.13 Startup Service.. 14
 2.5 Service Dependencies .. 15
 2.5.1 Naming Service .. 15
 2.5.2 Event Service... 15

Common Object Services, Volume 2 iii

Contents

 2.5.3 Life Cycle Service... 15
 2.5.4 Persistent Object Service .. 15
 2.5.5 Relationship Service .. 15
 2.5.6 Externalization Service ... 16
 2.5.7 Transaction Service.. 16
 2.5.8 Concurrency Control Service .. 17
 2.6 Relationship to CORBA... 18
 2.6.1 ORB Interoperability Considerations .. 18
 2.7 Relationship to Object Model... 20
 2.8 Conformance to Existing Standards ... 20

Chapter 3 Persistent Object Service Specification.................................... 21
 3.1 Introduction ... 21
 3.2 Goals and Properties .. 23
 3.2.1 Basic Capabilities ... 23
 3.2.2 Object-oriented Storage.. 23
 3.2.3 Open Architecture ... 24
 3.2.4 Views of Service ... 25
 3.3 Service Structure ... 27
 3.4 The CosPersistencePID Module .. 29
 3.4.1 The PID Interface ... 29
 3.4.2 Example PIDFactory Interface .. 30
 3.5 The CosPersistencePO Module.. 32
 3.5.1 The PO Interface... 32
 3.5.2 The POFactory Interface... 34
 3.5.3 The SD Interface ... 34
 3.6 The CosPersistencePOM Module.. 35
 3.7 Persistent Data Service (PDS) Overview ... 38
 3.8 The CosPersistencePDS Module.. 39
 3.9 The Direct Access (PDS_DA) Protocol ... 40
 3.10 The CosPersistencePDS_DA Module ... 41
 3.10.1 The PID_DA Interface... 42
 3.10.2 The Generic DAObject Interface... 42
 3.10.3 The DAObjectFactory Interface .. 43
 3.10.4 The DAObjectFactoryFinder Interface .. 43
 3.10.5 The PDS_DA Interface .. 43
 3.10.6 Defining and Using DA Data Objects.. 44
 3.10.7 The DynamicAttributeAccess Interface .. 46
 3.10.8 The PDS_ClusteredDA Interface .. 46
 3.11 The ODMG-93 Protocol ... 48
 3.12 The Dynamic Data Object (DDO) Protocol ... 49
 3.13 The CosPersistenceDDO Module.. 51
 3.14 Other Protocols.. 53
 3.15 Datastores: The CosPersistenceDS_CLI Module 54
 3.15.1 The UserEnvironment Interface ... 56
 3.15.2 The Connection Interface ... 56
 3.15.3 The ConnectionFactory Interface ... 56
 3.15.4 The Cursor Interface.. 57

iv X/Open Preliminary Specification (1995)

Contents

 3.15.5 The CursorFactory Interface.. 57
 3.15.6 The PID_CLI Interface .. 57
 3.15.7 The Datastore_CLI Interface ... 58
 3.16 Other Datastores ... 61
 3.17 Standards Conformance.. 61

Chapter 4 Concurrency Control Service Specification 63
 4.1 Service Description... 63
 4.1.1 Basic Concepts of Concurrency Control ... 63
 4.2 Locking Model... 66
 4.2.1 Lock Modes ... 66
 4.2.2 Multiple Possession Semantics ... 67
 4.3 Two-phase Transactional Locking... 68
 4.4 Nested Transactions ... 69
 4.5 The CosConcurrencyControl Module.. 70
 4.5.1 Types and Exceptions ... 71
 4.5.2 The LockCoordinator Interface... 72
 4.5.3 The LockSet Interface.. 72
 4.5.4 The TransactionalLockSet Interface ... 73
 4.5.5 The LockSetFactory Interface .. 74

Chapter 5 Externalization Service Specification .. 75
 5.1 Service Description... 75
 5.2 Service Structure ... 76
 5.2.1 Client Model of Externalization.. 76
 5.2.2 Stream Model of Externalization.. 76
 5.2.3 Object Model of Externalization... 77
 5.2.4 Object Model of Internalization.. 79
 5.3 Object and Interface Hierarchies ... 82
 5.4 Interface Summary ... 84
 5.5 The CosExternalization Module.. 86
 5.5.1 The StreamFactory Interface.. 86
 5.5.2 The FileStreamFactory Interface... 87
 5.5.3 The Stream Interface ... 87
 5.6 The CosStream Module... 89
 5.6.1 The StreamIO Interface... 90
 5.6.2 The Streamable Interface.. 91
 5.6.3 The StreamableFactory Interface .. 92
 5.7 The CosCompoundExternalization Module... 93
 5.7.1 The Node Interface .. 94
 5.7.2 The Role Interface .. 95
 5.7.3 The Relationship Interface ... 95
 5.7.4 The PropagationCriteriaFactory Interface.. 96
 5.8 Specific Externalization Relationships ... 97
 5.9 The CosExternalizationContainment Module...................................... 98
 5.10 The CosExternalizationReference Module.. 99
 5.11 Standard Stream Data Format.. 100
 5.11.1 Externalized Repeated Reference Data ... 101

Common Object Services, Volume 2 v

Contents

 5.11.2 Externalized NIL Data .. 101

Chapter 6 Relationship Service Specification ... 103
 6.1 Service Description... 103
 6.1.1 Key Features of the Relationship Service.. 104
 6.1.2 The Relationship Service versus CORBA Object References 105
 6.1.3 Resolution of Technical Issues .. 106
 6.2 Service Structure ... 108
 6.2.1 Levels of Service... 108
 6.2.2 Hierarchy of Relationship Interface... 111
 6.2.3 Hierarchy of Role Interface.. 111
 6.2.4 Interface Summary .. 112
 6.3 The Base Relationship Model... 114
 6.3.1 Relationship Attributes and Operations... 115
 6.3.2 Higher Degree Relationships .. 115
 6.3.3 Operations... 117
 6.3.4 Consistency Constraints... 119
 6.3.5 Implementation Strategies... 119
 6.3.6 The CosObjectIdentity Module... 119
 6.3.6.1 The IdentifiableObject Interface .. 120
 6.3.7 The CosRelationships Module.. 120
 6.3.7.1 The RelationshipFactory Interface .. 123
 6.3.7.2 The Relationship Interface .. 124
 6.3.7.3 The Role Interface ... 125
 6.3.7.4 The RoleFactory Interface ... 128
 6.3.7.5 The RelationshipIterator Interface .. 129
 6.4 Graphs of Related Objects... 130
 6.4.1 Graph Architecture.. 130
 6.4.2 Traversing Graphs of Related Objects ... 132
 6.4.3 Compound Operations... 133
 6.4.4 An Example Traversal Criteria.. 134
 6.4.5 The CosGraphs Module ... 135
 6.4.5.1 The TraversalFactory Interface .. 137
 6.4.5.2 The Traversal Interface .. 138
 6.4.5.3 The TraversalCriteria Interface .. 138
 6.4.5.4 The Node Interface ... 139
 6.4.5.5 The NodeFactory Interface ... 140
 6.4.5.6 The Role Interface ... 140
 6.4.5.7 The EdgeIterator Interface .. 141
 6.5 Specific Relationships .. 142
 6.5.1 Containment and Reference .. 142
 6.5.2 The CosContainment Module... 142
 6.5.3 The CosReference Module... 143

Chapter 7 Transaction Service Specification .. 145
 7.1 Service Description... 145
 7.1.1 Overview of Transactions .. 145
 7.1.2 Transactional Applications .. 146

vi X/Open Preliminary Specification (1995)

Contents

 7.1.3 Definitions ... 147
 7.1.4 Transaction Service Functionality .. 149
 7.1.5 Principles of Function, Design and Performance 151
 7.2 Service Architecture ... 155
 7.2.1 Typical Usage.. 156
 7.2.2 Transaction Context .. 156
 7.2.3 Context Management.. 157
 7.2.4 Data Types... 157
 7.2.5 Exceptions ... 158
 7.2.5.1 Standard Exceptions... 158
 7.2.5.2 Heuristic Exceptions .. 158
 7.2.5.3 Other Exceptions... 159
 7.3 Transaction Service Interfaces.. 160
 7.3.1 The Current Interface.. 160
 7.3.2 The TransactionFactory Interface ... 163
 7.3.3 The Control Interface .. 163
 7.3.4 The Terminator Interface.. 164
 7.3.5 The Coordinator Interface.. 165
 7.3.6 The RecoveryCoordinator Interface .. 168
 7.3.7 The Resource Interface ... 168
 7.3.8 The SubtransactionAwareResource Interface 170
 7.3.9 The TransactionalObject Interface.. 171
 7.4 The User View ... 172
 7.4.1 Application Programming Models .. 172
 7.4.1.1 Direct Context Management .. 172
 7.4.1.2 Indirect Context Management ... 173
 7.4.2 Interfaces.. 174
 7.4.3 Checked Transaction Behaviour... 175
 7.4.4 X/Open Checked Transactions... 175
 7.4.5 Implementing a Transactional Client: Heuristic Completions 176
 7.4.6 Implementing a Recoverable Server.. 176
 7.4.7 Application Portability ... 177
 7.4.8 Distributed Transactions .. 177
 7.4.9 Applications Using Both Checked and Unchecked Services.......... 178
 7.4.10 Examples.. 178
 7.4.11 Model Interoperability.. 180
 7.4.12 Failure Models .. 183
 7.4.12.1 Transaction Originator... 183
 7.4.12.2 Transactional Server... 183
 7.4.12.3 Recoverable Server ... 184
 7.5 The Implementor View.. 185
 7.5.1 Transaction Service Protocols.. 185
 7.5.1.1 General Principles... 185
 7.5.1.2 Normal Transaction Completion... 186
 7.5.1.3 Failure and Recovery ... 191
 7.5.1.4 Transaction Completion after Failure... 192
 7.5.2 ORB/TS Implementation Considerations .. 194
 7.5.2.1 Transaction Propagation ... 194

Common Object Services, Volume 2 vii

Contents

 7.5.2.2 Transaction Service Interoperation ... 195
 7.5.2.3 Transaction Service Portability .. 197
 7.5.2.4 The Transaction Service Callbacks.. 199
 7.5.2.5 Behaviour of the Callback Interfaces .. 200
 7.5.3 Model Interoperability.. 200
 7.6 The CosTransactions Module... 202
 7.6.1 The CosTSInteroperation Module.. 204
 7.6.2 The CosTSPortability Module... 205

Appendix A The Transaction Service and TP Standards 207
 A.1 Support of X/Open TX interface ... 207
 A.1.1 Requirements.. 207
 A.1.2 TX Mappings .. 207
 A.2 Support of X/Open Resource Managers ... 209
 A.2.1 Requirements.. 209
 A.2.2 XA Mappings.. 209
 A.2.3 XID.. 209
 A.2.3.1 Interactions with an XA-compliant RM... 210
 A.3 Interoperation with Transactional Protocols .. 213
 A.3.1 OSITP Interoperability.. 213
 A.3.2 SNA LU 6.2 Interoperability.. 214
 A.3.3 ODMG Standard .. 216
 A.4 ODMG Model .. 217

 Glossary ... 219

 Index... 225

List of Figures

2-1 Event Channel Managing Multiple Simultaneous Consumer
Clients... 7

3-1 Roles in the Persistent Object Service.. 21
3-2 Major Components of the POS and their Interactions........................... 28
3-3 Example to Illustrate POM Functions ... 37
3-4 Direct Access Protocol Interfaces ... 40
3-5 Structure of a DDO.. 50
5-1 Externalization Control Flow (Streamable Object is Not a Node) 78
5-2 Externalization Control Flow (Streamable Object is a Node) 79
5-3 Internalization Control Flow (Streamable Object is Not a Node) 80
5-4 Internalization Control Flow (Streamable Object is a Node) 81
5-5 Object Externalization Service Booch Class (=Interface) 83
5-6 Internalizing a Node Returns New Object and Corresponding

Roles ... 94
6-1 Base Relationships ... 108
6-2 Navigation Functionality of Base Relationships 109
6-3 Example Graph of Related Objects .. 110
6-4 Relationship Interface Hierarchy ... 111

viii X/Open Preliminary Specification (1995)

Contents

6-5 Role Interface Hierarchy .. 111
6-6 Simple Relationship Type: Documents Reference Books...................... 114
6-7 Simple Relationship Instance: My Document References the

Book War and Peace .. 115
6-8 Satisfactory Ternary Check-out Relationship .. 116
6-9 Unsatisfactory Ternary Check-out Relationship..................................... 116
6-10 Another Unsatisfactory Representation ... 117
6-11 Creating a Role for an Object .. 117
6-12 Fully Established Binary Relationship... 118
6-13 Two Binary One-to-many Containment Relationships 123
6-14 Example Graph of Related Objects .. 131
6-15 Traversal of a Graph for a Compound copy() Operation..................... 134
6-16 deep, shallow and none Propagation Values ... 135
7-1 Application Including Definitions ... 147
7-2 Major Components and Interfaces of the Transaction Service............. 155
7-3 X/Open Client.. 181
7-4 X/Open Server ... 181
7-5 Example Transaction Export ... 182
7-6 Model Interoperability Example... 201

List of Tables

4-1 Lock Compatibility.. 67
5-1 Client Functional Interfaces... 84
5-2 Service Construction Interfaces .. 84
5-3 Compound Externalization Interfaces .. 85
6-1 Interfaces Defined in the CosObjectIdentity Module............................. 112
6-2 Interfaces Defined in the CosRelationship Module................................ 112
6-3 Interfaces Defined in the CosGraph Module ... 113
6-4 Interfaces Defined in the CosReferences Module 113
6-5 Interfaces Defined in the CosContainments Module............................. 113
7-1 Use of Transaction Service Functionality.. 174

Common Object Services, Volume 2 ix

Contents

x X/Open Preliminary Specification (1995)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Common Object Services, Volume 2 xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open Preliminary Specification (1995)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document defines the common object services for persistent objects, transactions,
concurrency control, relationships and externalisation. It is equivalent to parts of OMG
Document Number 94-1-1.

Structure

This document is organised as follows:

• Chapter 1 provides a summary of key features of each service.

• Chapter 2 describes the design principles used in this specification. It addresses:

— service dependencies

— relationship to CORBA

— relationship to the OMG Object Model

— standards conformance.

• Chapter 3 describes the Persistent Object Service specification.

• Chapter 4 describes the Transaction Service specification.

• Chapter 5 describes the Concurrency Control Service specification.

• Chapter 6 describes the Relationship Service.

• Chapter 7 describes the Externalization Service.

Each service definition chapter begins with an overview, and includes sections on design
principles and resolution of technical issues (raised in the OMG Object Services Architecture).

Appendix A describes the relationship of the transaction service to TP standards.

A glossary and index are included at the end.

Common Object Services, Volume 2 xiii

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

Helvetica Pseudo-IDL language elements.

Helvetica bold IDL language and syntax elements.

Courier C-language elements.

Code examples written in pseudo-IDL and C are further identified by means of a comment;
unidentified examples are written in IDL.

xiv X/Open Preliminary Specification (1995)

Trade Marks

COSSTM is a trade mark of the Object Management Group, Inc.

OMG and Object Management are registered trade marks of the Object Management Group,
Inc.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Common Object Services, Volume 2 xv

Referenced Documents

The following X/Open documents are referenced in this specification:

CLI
X/Open CAE Specification, March 1995, Data Management: SQL Call Level Interface (CLI)
(ISBN: 1-85912-081-4, C451).

CORBA 1.2
X/Open CAE Specification, July 1994, The Common Object Request Broker: Architecture
and Specification (ISBN: 1-85912-044-X, C432), in conjunction with the Object Management
Group (OMG).

CORBA 2.0
X/Open Preliminary Specification, October 1995, The Common Object Request Broker:
Architecture and Specification (ISBN: 1-85912-140-3, P431), in conjunction with the Object
Management Group (OMG).

COS, Volume 1
X/Open Preliminary Specification, July 1994, Common Object Services, Volume 1
(ISBN: 1-85912-482-2, P432), in conjunction with the Object Management Group (OMG).

CPI-C, Version 2
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419).

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

TX
X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification (ISBN: 1-85912-094-6, C504).

TxRPC
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The TxRPC
Specification (ISBN: 1-85912-115-2, C505).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

XATMI
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The XATMI
Specification (ISBN: 1-85912-130-6, C506).

The following non-X/Open documents are referenced in this specification:

• IDAPI Working Draft, Borland International, August 1993.

• ISO/IEC 10026-3: 1992 Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 3: Protocol Specification.

• ITU-T X.900 Series, ISO/IEC 10746, Reference Model — Open Distributed Processing

• ITU-T X.Trader, ISO/IEC 13235, Open Distributed Processing Trader.

xvi X/Open Preliminary Specification (1995)

Referenced Documents

• J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed Computing.

• J.N. Gray, Notes on Database Operating Systems in Operating Systems: An Advanced Course, Ed.
Bayer, Graham and Seegmuller.

• J.N. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.

• James Rumbaugh, Controlling Propagation of Operations using Attributes on Relations, OOPSLA
1988 Proceedings.

• James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen,
Object-oriented Modelling and Design, Prentice Hall 1991.

• Object Services Architecture, Document Number 92-8-4, Object Management Group,
Framingham, MA 1992.

• Microsoft Open Database Connectivity Software Development Kit, Programmer Reference,
Version 1.0, Microsoft Corporation, 1992.

• P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in Database
Systems.

• Richard M. Soley, Ph.D., Object Management Architecture Guide, Revision 2.0, Second Edition,
Ed., Object Management Group, Inc., Framingham, MA 1992.

• R.G.G. Cattell, T. Atwood, J. Duhl, G. Ferran, M. Loomis, D. Wade, The Object Database
Standard: ODMG-93, Object Database Management Group, Morgan Kaufmann, 1993.

• Systems Network Architecture: LU 6.2 Reference: Peer Protocols, Order Number SC31-6806,
International Business Machines Corporation.

Common Object Services, Volume 2 xvii

Referenced Documents

xviii X/Open Preliminary Specification (1995)

Chapter 1

Introduction

This chapter provides a summary of the key features described in this specification.

1.1 Persistent Object Service
The Persistent Object Service (POS) provides a set of common interfaces to the mechanisms used
for retaining and managing the persistent state of objects.

The object ultimately has the responsibility of managing its state, but can use or delegate to the
Persistent Object Service for the actual work. A major feature of the Persistent Object Service is
its openness. In this case, that means that there can be a variety of different clients and
implementations of the Persistent Object Service, and they can work together. This is
particularly important for storage, where mechanisms useful for documents may not be
appropriate for employee databases, or the mechanisms appropriate for mobile computers do
not apply to mainframes.

1.2 Transaction Service
The Transaction Service supports multiple transaction models, including the flat (mandatory)
and nested (optional) models.

The Transaction Service supports interoperability between different programming models. For
example, some users want to add object implementations to existing procedural applications
and to augment object implementations with code that uses the procedural paradigm. To do so
in a transaction environment requires the object and procedural code to share a single
transaction.

Network interoperability is also supported, since users need communication between different
systems, including the ability to have one transaction service interoperate with a cooperating
transaction service using different ORBs.

The Transaction Service supports both implicit (system-managed transaction) propagation and
explicit (application-managed) propagation. With implicit propagation, transactional behaviour
is not specified in the operation’s signature. With explicit propagation, applications define their
own mechanisms for sharing a common transaction.

The Transaction Service can be implemented in a TP monitor environment, so it supports the
ability to execute multiple transactions concurrently, and to execute clients, servers and
transaction services in separate processes.

Common Object Services, Volume 2 1

Concurrency Control Service Introduction

1.3 Concurrency Control Service
The Concurrency Control Service enables multiple clients to coordinate their access to shared
resources. Coordinating access to a resource means that when multiple, concurrent clients
access a single resource, any conflicting actions by the clients are reconciled so that the resource
remains in a consistent state.

Concurrent use of a resource is regulated with locks. Each lock is associated with a single
resource and a single client. Coordination is achieved by preventing multiple clients from
simultaneously possessing locks for the same resource if the client’s activities might conflict.
Hence, a client must obtain an appropriate lock before accessing a shared resource. The
Concurrency Control Service defines several lock modes, which correspond to different
categories of access. This variety of lock modes provides flexible conflict resolution. For
example, providing different modes for reading and writing lets a resource support multiple
concurrent clients on a read-only transaction. The Concurrency Control Service also defines
intention locks that support locking at multiple levels of granularity.

1.4 Relationship Service
The Relationship Service allows entities and relationships to be explicitly represented. Entities
are represented as CORBA objects. The Relationship Service defines two new kinds of objects:
relationships and roles. A role represents a CORBA object in a relationship. The relationship
interface can be extended to add relationship-specific attributes and operations. In addition,
relationships of arbitrary degree can be defined. Similarly, the Role interface can be extended to
add role-specific attributes and operations.

Type and cardinality constraints can be expressed and checked. Exceptions are raised when the
constraints are violated.

The Life Cycle Service defines operations to copy, move and remove graphs of related objects,
while the Relationship Service allows graphs of related objects to be traversed without
activating the related objects.

Distributed implementations of the Relationship Service can have navigation performance and
availability similar to CORBA object references: role objects can be located with their objects and
need not depend on a centralised repository of relationship information. As such, navigating a
relationship can be a local operation.

The Relationship Service supports the compound life cycle component of the Life Cycle Service
by defining object graphs.

2 X/Open Preliminary Specification (1995)

Introduction Externalization Service

1.5 Externalization Service
The Externalization Service defines protocols and conventions for externalizing and
internalizing objects. Externalizing an object is to record the object state in a stream of data (in
memory, on a disk file, across the network, and so on) and then be internalized into a new object
in the same or a different process. The externalized object can exist for arbitrary amounts of
time, be transported by means outside of the ORB, and be internalized in a different,
disconnected ORB. For portability, clients can request that externalized data be stored in a file
whose format is defined with the Externalization Service specification.

The Externalization Service is related to the Relationship Service and parallels the Life Cycle
Service in defining externalization protocols for simple objects, for arbitrarily related objects, and
for facilities, directory services and file services.

Common Object Services, Volume 2 3

Introduction

4 X/Open Preliminary Specification (1995)

Chapter 2

General Design Principles

This chapter describes the design principles used in this specification.

2.1 Service Design Principles

2.1.1 CORBA Concepts

The service designs use and build on CORBA concepts:

• separation of interface and implementation

• object references are typed by interfaces

• clients depend on interfaces, not implementations

• use of multiple inheritance of interfaces

• use of subtyping to extend, evolve and specialise functionality.

Other related principles that the designs adhere to include:

• Assume good ORB and object services implementations.

Specifically, it is assumed that CORBA-compliant ORB implementations can and are being
built that support efficient local and remote access to fine-grain objects and have performance
characteristics that place no major barriers to the pervasive use of distributed objects for
virtually all service and application elements and entities.

• Do not build non-type properties into interfaces.

2.1.2 Basic Flexible Services

The services are designed to do one thing well and are only as complicated as they need to be.
Individual services are by themselves relatively simple yet they can, by virtue of their
structuring as objects, be combined together in interesting and powerful ways.

For example, the Event and Life Cycle Services, plus a Relationship Service, may play together to
support graphs of objects. Object graphs commonly occur in the real world and must be
supported in many applications. A functionally-rich Folder compound object, for example, may
be constructed using the Life Cycle, Naming, Event and Relationship Services as building blocks.

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the client object
nor, in general, on the type of data passed in requests. For example, the event channel interfaces
accept event data of any type. Clients of the service can dynamically determine the actual data
type and handle it appropriately.

Common Object Services, Volume 2 5

Service Design Principles General Design Principles

2.1.4 Local and Remote Implementations

In general, the services are structured as CORBA objects with OMG IDL interfaces that can be
accessed locally or remotely, and which can have local library or remote server styles of
implementation. This allows considerable flexibility with regard to the location of participating
objects. So, for example, if the performance requirements of a particular application dictate it,
objects can be implemented to work with a Library Object Adapter that enables their execution
in the same process as the client.

2.1.5 Quality of Service

Service interfaces are designed to allow a wide range of implementation approaches depending
on the quality of service required in a particular environment. For example, in the Event Service,
an event channel can be implemented to provide fast but unreliable delivery of events, or slower
but guaranteed delivery. However, the interfaces to the event channel are the same for all
implementations and all clients. Because rules are not wired into a complex type hierarchy,
developers can select particular implementations as building blocks and easily combine them
with other components.

2.1.6 Objects Conspire

Services are typically decomposed into several distinct interfaces that provide different views for
different kinds of clients of the service. For example, the Event Service is composed of
PushConsumer , PullSupplier and EventChannel interfaces. This simplifies the way in which a
particular client uses a service. A particular service implementation can support the constituent
interfaces as a single CORBA object or as a collection of distinct objects. This allows
considerable implementation flexibility. A client of a service may use a different object reference
to communicate with each distinct service function. Conceptually, these internal objects conspire
to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer and
EventChannel interfaces for use by different kinds of client. A particular client sends a request
not to a single event channel object, but to an object that implements either the PushConsumer or
EventChannel interface. Hidden to all clients, these objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces as the
means to distinguish and coordinate different clients without relying on the existence of an
object equality test or some special way of identifying clients. Using the Event Service again as
an example, when an event consumer is connected with an event channel, a new object is
created that supports the PullSupplier interface. An object reference to this object is returned to
the event consumer, which can then request events by invoking the appropriate operation on the
new supplier object. Because each client uses a different object reference to interact with the
event channel, the event channel can keep track of and manage multiple simultaneous clients.
This is shown in Figure 2-1 on page 7.

6 X/Open Preliminary Specification (1995)

General Design Principles Service Design Principles

PullConsumer

PullConsumer

PullSupplier

PullSupplier

PushSupplier

PushConsumer

supplier

event channel

consumer

consumer

Figure 2-1 Event Channel Managing Multiple Simultaneous Consumer Clients

The graphical notation shown in Figure 2-1 is used throughout this document and in other
service specifications. An arrow with a vertical bar is used to show that the target object
supports the interface named adjacent to it, and that clients holding an object reference to it of
this type can invoke operations. In shorthand, the object reference (held by the client) supports
the interface. The arrow points from the client to the target (server) object. A closed irregular
shape indicates a conspiracy of one or more objects. In other words, it corresponds to a
conceptual object that may be composed of one or more CORBA objects that together provide
some coordinated service to potentially multiple clients making requests using different object
references.

2.1.7 Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a client object is
required to support to enable a service to call back to it to invoke some operation. The callback
may be, for example, to pass back data asynchronously to a client. Callback interfaces have two
major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation invocation
(object reference) mechanisms.

2.1.8 Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The service
designs do not assume or rely on any global identifier service or global ID spaces in order to
function. The scope of identifiers is always limited to some context. For example, in the Naming
Service, the scope of names is the particular naming context object.

In the case where a service generates IDs, clients can assume that an ID is unique within its
scope, but should not make any other assumption.

Common Object Services, Volume 2 7

Service Design Principles General Design Principles

2.1.9 Finding and Using Services

Finding a service is at a higher level and orthogonal to using a service. These services do not
dictate a particular approach. They do not, for example, mandate that all services must be found
by means of the Naming Service. Because services are structured as objects, there does not need
to be a special way of finding objects associated with services — general-purpose finding
services can be used. Solutions are anticipated to be application- and policy-specific.

8 X/Open Preliminary Specification (1995)

General Design Principles Interface Style Consistency

2.2 Interface Style Consistency

2.2.1 Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional conditions
such as error returns. Normal return codes are passed back by means of output parameters. An
example of this is the use of a DONE return code to indicate iteration completion.

2.2.2 Explicit versus Implicit Operations

Operations are always explicit rather than implied; for example, by a flag passed as a parameter
value to some umbrella operation. In other words, there is always a distinct operation
corresponding to each distinct function of a service.

2.2.3 Interface Inheritance

Interface inheritance (subtyping) is used whenever it appears that client code should depend on
less functionality than the full interface. Services are often partitioned into several unrelated
interfaces when it is possible to partition the clients into different roles. For example, an
administrative interface is often unrelated and distinct in the type system from the interface
used by normal clients.

Common Object Services, Volume 2 9

Key Design Decisions General Design Principles

2.3 Key Design Decisions

2.3.1 Naming Service Issues

Distinct from Property and Trading Services, naming contexts have some similarity to property
lists; that is, lists of values associated with objects though not necessarily part of the object’s
state, and the Naming Service in general, have elements in common with a Trading Service.
However, following the bauhaus principle of keeping services as simple and as orthogonal as
possible, these services have been kept distinct and are being addressed separately.

2.3.2 Universal Object Identity

These services do not require the concept of universal object identity.

10 X/Open Preliminary Specification (1995)

General Design Principles Integration with Future Object Services

2.4 Integration with Future Object Services
This section discusses how the object services could evolve to integrate with future services,
such as:

• Archive

• Backup/Restore

• Change Management (Versioning)

• Data Interchange

• Implementation Repository

• Interface Repository

• Internationalization

• Logging

• Query

• Recovery

• Replication

• Security

• Startup.

2.4.1 Archive Service

Persistent Object Service. The Archive Service copies objects from an active/persistent store to
a backup store and vice versa. This service should be able to archive objects stored with the
Persistent Object Service.

Externalization Service. The Archive Service copies objects from an active/persistent store to a
backup store and vice versa. This service could use the Externalization Service to get the internal
state of objects for saving and to subsequently recreate objects with this stored state. If only
persistent objects need to be archived, then the Persistent Object Service could be used instead.

2.4.2 Backup/Restore Service

Externalization Service. The Backup/Restore Service provides recovery after a system failure
or a user error. This service could use the Externalization Service as an underlying mechanism
for objects, regardless of whether they are persistent.

Persistent Object Service. The Backup/Restore Service provides recovery after a system failure
or a user error. This service could use the Persistent Object Service as an underlying mechanism
for persistent objects.

Transaction Service. The permanence of effect property of a transaction implies that the state
established by the commitment of a transaction will not be lost. To guarantee this property, the
storage media on which the objects updated by the transaction are stored must be backed-up to
secondary storage to ensure that they are not lost should the primary storage media fail.
Similarly, the storage media used by the logging service must be restorable should the media
fail. Since there are multiple components which require backup services, a single interface
would be advantageous.

Common Object Services, Volume 2 11

Integration with Future Object Services General Design Principles

2.4.3 Change Management Service

Persistent Object Service. The Change Management Service supports the identification and
consistent evolution of objects including version and configuration management. This service
should work with the Persistent Object Service to allow persistent objects to evolve from the old
to new versions.

2.4.4 Data Interchange Service

Persistent Object Service. The Data Interchange Service enables objects to exchange some or all
of their associated state. This service should work with the Persistent Object Service to allow
state to be exchanged when one or more of the objects are persistent.

Externalization Service. The Data Interchange Service enables objects to exchange some or all
of their associated state. This service could use the Externalization Service to allow state to be
exchanged regardless of whether the objects are persistent.

2.4.5 Implementation Repository Service

Persistent Object Service. The Implementation Repository Service supports the management of
object implementations. The Persistent Object Service may depend on this to determine what
persistent data an object contains. This dependency is at the implementation level.

2.4.6 Interface Repository Service

Persistent Object Service. The Interface Repository Service supports run-time access to OMG
IDL-specified definitions such as object interfaces and type definitions. The Persistent Object
Service depends on this to determine whether a persistent object supports certain interfaces.

2.4.7 Internationalization Service

Naming Service. Naming Service interfaces may also need to be extended (for example, the
structure of names extended, additional name resolution operations added) to better support
representing and resolving names for some languages and cultures.

2.4.8 Logging Service

Transaction Service. A Logging Service implements the abstract notion of an infinitely long,
sequentially-accessible, append-only file. It typically supports multiple log files, where each log
file consists of a sequence of log records. New log records are written to the end of a log file, old
log records can be read from any position in the file. To stop log files from growing too large for
the underlying storage medium, a log service must provide an operation to archive old log
records to allow the log file to be truncated.

Various components of a transaction processing system may require the services of a log service:

• Transaction Service: During the two-phase commit protocol the Transaction Service must log
its state to ensure that the outcome of the committing transaction can be determined should
there be a failure.

• Recoverable (transactional) objects: A log can be used to record old and new versions of a
recoverable object for the purposes of supporting recovery.

• Locking Service: A log can be used to record the locks held on an object at prepare time to
facilitate recovery.

12 X/Open Preliminary Specification (1995)

General Design Principles Integration with Future Object Services

Since there are multiple components within a distributed transaction processing system that
require the services of a log service, a single log service interface (and potentially server) that is
shared between the components is clearly advantageous.

The correctness of a Transaction Service depends upon the services of a Logging Service. For
this reason, the Logging Service must meet the following requirements:

1. Restart

A restart facility allows rapid recovery from the cold start of an application. The Recovery
Service used by the application (indirectly through the application’s use of recoverable
objects) would use the restart facility to establish a checkpoint; a consistent point in the
execution state of the application from which the recovery process can proceed. In the
absence of a checkpoint the Recovery Service would have to scan the entire log to ensure
restart recovery occurs correctly.

2. Buffering and forcing operations

A Logging Service should provide two classes of operation for writing log records:

— An operation to buffer a log record (the record is not written directly to the underlying
storage medium). Used during the execution of a transaction. Since the log record is
buffered, the write is inexpensive.

— An operation to force a log record to the underlying storage medium. Used during the
two-phase commit protocol to guarantee the correctness of the transaction. Forcing a
log record also flushes all previously written, but buffered, log records.

3. Robustness

The log service should ensure the consistency of the underlying storage medium in which
log files are stored. This usually involves the log service employing protocols that update
the storage in a manner that would not result in the loss of any existing data (that is,
careful updates), along with support for mirroring the storage media to tolerate media
failures.

4. Archival

A Logging Service should provide support for archiving log records. Archival is necessary
to allow the log to be truncated to ensure that it does not grow without bounds.

5. Efficiency

Since the Logging Service may be written to by multiple components within a transaction,
the addition of log records must be efficient to avoid the bandwidth of log from becoming
a bottleneck in the system.

2.4.9 Query Service

Persistent Object Service. The Query Service supports operations on sets and collections of
objects which may result in sets or collections of objects. This service should work with the
Persistent Object Service to support queries on persistent objects.

Common Object Services, Volume 2 13

Integration with Future Object Services General Design Principles

2.4.10 Recovery Service

Transaction Service. As recoverable objects are updated during a transaction, they (as Resource
Managers) keep a record of the changes made to their state that is sufficient to undo the updates
should the transaction rollback. The component responsible for this task is termed the Recovery
Service. Various different forms of recovery are possible; however, the most common form is
called value logging and involves the recoverable object recording both the old and new values
of the object. When a transaction is recovered due to failure, the old value of an object is used to
undo changes made to the object during the transaction. Most recovery services employ the
services of a Logging Service to maintain the undo information.

2.4.11 Replication Service

Persistent Object Service. The Replication Service provides for the explicit replication of objects
in a distributed environment and for the management of consistency of replicated copies. This
service could use the Persistent Object Service to manage persistent replicas.

2.4.12 Security Service

Naming Service. Name resolution has been factored into the design in anticipation of security
failures managed by a Security Service. The introduction of ACLs into the model should not
effect existing clients of the Naming Service OMG IDL interfaces.

Persistent Object Service. The Security Service provides access control, encryption and audit
control for objects and interfaces. This service should work with the Persistent Object Service to
provide access control on persistent objects.

2.4.13 Startup Service

Persistent Object Service. The Startup Service supports bootstrapping and termination of
object services. This service should support bootstrapping and termination of the Persistent
Object Service.

14 X/Open Preliminary Specification (1995)

General Design Principles Service Dependencies

2.5 Service Dependencies
The interface designs of all the services are general in nature and do not presume or require the
existence of specific supporting software in order to implement them. An implementation of the
Naming Service, for example, could use naming or directory services provided in a general-
purpose networking environment. For example, an implementation may be based on the
naming services provided by ONC or DCE. Such an implementation could provide enterprise-
wide naming services to both object-based and non-object-based clients. Object-based software
would see such services through the use of NamingContext objects.

Although the object services do not depend upon specific software, some dependencies and
relationships do exist between services.

2.5.1 Naming Service

The Naming Service does not depend upon other services.

2.5.2 Event Service

The Event Service does not depend upon other services.

2.5.3 Life Cycle Service

Interfaces for the Life Cycle Service depend on the Naming Service.

The Life Cycle Service also defines compound operations that depend on the Relationship
Service for the definition of object graphs. Appendix C, Life Cycle Operations on Distributed
Object Graphs of Common Object Services, Volume 1 describes the topic of compound life cycle,
and its dependence on the Relationship Service, in detail.

2.5.4 Persistent Object Service

The Externalization Service provides functions that provide for the transformation of an object
into a form suitable for storage on an external media or for transfer between systems. The
Persistent Object Service uses this service as a POS protocol.

The Life Cycle Service provides operations for managing object creation, deletion, copy and
equivalence. The Persistent Object Service depends on this service for creating and deleting all
required objects.

The Naming Service provides mappings between user-comprehensible names and CORBA
object references. The Persistent Object Service depends on this service to obtain the object
reference of, say, a PDS from its name or ID.

2.5.5 Relationship Service

The Relationship Service does not depend on other services. Note especially that the
Relationship Service does not depend on any common storage service.

For guidelines about when to use the Relationship Service and when to use CORBA object
references, refer to Section 6.1.2 on page 105.

Common Object Services, Volume 2 15

Service Dependencies General Design Principles

2.5.6 Externalization Service

The Externalization Service works with the Life Cycle Service in defining externalization
protocols for simple objects, for arbitrarily related objects, and for graphs of related objects that
support compound operations. Specifically, this service uses the Life Cycle Service to create and
remove Stream and StreamFactory objects. ORB services may be used in Stream
implementations to identify InterfaceDef and ImplementationDef objects corresponding to an
externalized object, and to support finding an appropriate factory for recreating that object at
internalization time.

The Externalization Service can also work with the Relationship Service. Implementations of
Stream and StreamIO operations could use the Relationship Service to ensure that multiple
references to the same object or circular references do not result in duplication of objects at
internalization time or in the external representation.

In addition, the Externalization Service adds compound externalization semantics to the
containment and reference relationships in the Relationship Service. Detailed information is
provided in Section 5.8 on page 97.

2.5.7 Transaction Service

As concurrent requests are processed by an object, a mechanism is required to mediate access.
This is necessary to provide the transaction property of isolation. The Concurrency Control
Service is one possible implementation of a Locking Service.

The Transaction Service depends upon the Concurrency Control Service in the following ways:

• The Concurrency Control Service must support transaction duration locks, which provide
isolation of concurrent requests by different transactions.

• The Concurrency Control Service must record transaction duration locks on persistent
media, such as a log, as part of the prepare phase of commitment.

• If nested transactions are supported by the Transaction Service, then the Concurrency
Control Service must also support locks that provide isolation between siblings in a
transaction family and provide inheritance of locks owned by a subtransaction to its parent
when the subtransaction commits.

• Transactional clients of the Concurrency Control Service are responsible for ensuring that all
locks held by a transaction are dropped after all recovery or commitment operations have
taken place. The drop_locks () operation is provided by the LockCoordinator interface for this
purpose.

The Transaction Service supports atomicity and durability properties through the Persistent
Object Service. The Transaction Service can work with the Persistent Object Service to support
atomic execution of operations on persistent objects. Transactions and persistence are not
provided by the same service. When coordination of multiple state changes is required to
persistent data, a Persistent Object Service requires a Transaction Service. The Persistent Object
Service can be used to provide persistence, but its implementation will need to be changed to
support transactional behaviour. There are no changes to the interfaces of the POS to support
transactions. The following discussion applies to support of persistence when a Transaction
Service is required.

Support for persistence can be built from a number of other, more specialised, services that can
also be shared by other object services. Examples include:

• Recovery Service: This supports the atomicity and durability properties.

16 X/Open Preliminary Specification (1995)

General Design Principles Service Dependencies

• Logging Service: This is used by the Recovery Service to assist in supporting the atomicity
and durability properties. It is also used by the Transaction Service to support the two-phase
commit protocol.

• Backup/Restore Service: This supports the isolation property.

This view is consistent with the X/Open Distributed TP Model which separates the transaction
manager service (that is, the implementation of a generalised two-phase commit protocol) from
a Resource Manager which provides the set of services for data which has a life beyond process
execution. This permits both transactions on transient objects, and persistent objects without
transactions, each of which is desirable.

2.5.8 Concurrency Control Service

The Concurrency Control Service does not depend on any other service as such. Nevertheless, it
is designed to work with the Transaction Service.

Common Object Services, Volume 2 17

Relationship to CORBA General Design Principles

2.6 Relationship to CORBA
This section provides information about the relationship of other services to the CORBA
Specification.

2.6.1 ORB Interoperability Considerations

Naming Service

Entities that are not CORBA objects — that is, not objects accessed via an Object Request Broker
— are used for names (in the guise of pseudo-objects). In both cases, the interfaces to these
entities conform as closely as possible to OMG IDL while satisfying the specific service design
requirements, in order to enable maximum flexibility in the future. Specifically, in the Naming
Service, name objects are pseudo-objects with interfaces defined in pseudo IDL (PIDL). These
objects look like CORBA objects but are specifically designed to be accessed using a
programming language binding. This is done for reasons based on the expected use of these
objects.

Life Cycle Service

The Life Cycle Service assumes CORBA implementations support object relocation.

Persistent Object Service

The Persistent Object Service requires CORBA Interface Repositories.

Relationship Service

The Relationship Service requires CORBA Interface Repositories to support the ability to
dynamically determine whether an InterfaceDef conforms to another InterfaceDef ; that is, if it is a
subtype. This is needed to implement type constraints for particular relationships.

Transaction Service

Some implementations of the Transaction Service will support:

• The ability of a single application to use both object and procedural interfaces to the
Transaction Service. This is described as part of the specification, particularly in Section 7.4
on page 172 and Section 7.5 on page 185.

• The ability for different Transaction Service implementations to interoperate across a single
ORB. This is provided as a consequence of this specification, which defines OMG IDL
interfaces for all interactions between Transaction Service implementations.

• The ability for the same Transaction Service to interoperate with another instance of itself
across different ORBs. (This ability is supported by the Interoperability specification of
CORBA 2.0.)

• The ability for different Transaction Service implementations to interoperate across different
ORBs. (This ability is supported by the Interoperability specification of CORBA 2.0.)

• A critical dependency for Transaction Service interoperation across different ORBs is the
handling of the propagation_context between ORBs. This includes the following:

— efficient transformation between different ORB representations of the
propagation_context

18 X/Open Preliminary Specification (1995)

General Design Principles Relationship to CORBA

— the ability to carry the ID information (typically an X/Open XID) between interoperating
ORBs

— the ability to do interposition to ensure efficient local execution of the
is_same_transaction () operation.

Common Object Services, Volume 2 19

Relationship to Object Model General Design Principles

2.7 Relationship to Object Model
All specifications contained in this document conform to the OMG Object Model. No additional
components or profiles are required by any service.

2.8 Conformance to Existing Standards
In general, existing relevant standards do not have object-oriented interfaces nor are they
structured in a form that is easily mapped to objects. These specifications have been influenced
by existing standards, and services have been designed which minimise the difficulty of
encapsulating supporting software. The Naming Service specification is believed to be
compatible with X.500, DCE CDS and ONC NIS and NIS+.

These specifications are broadly conformant to emerging ODP standards:

• ITU-T X.900 Series, ISO/IEC 10746, Reference Model — Open Distributed Processing

• ITU-T X.Trader, ISO/IEC 13235, Open Distributed Processing Trader.

20 X/Open Preliminary Specification (1995)

Chapter 3

Persistent Object Service Specification

3.1 Introduction
The goal of the Persistent Object Service (POS) is to provide common interfaces to the
mechanisms used for retaining and managing the persistent state of objects. The Persistent
Object Service will be used in conjunction with other object services; for example, Naming,
Relationship, Transaction, Life Cycle, and so on. The Persistent Object Service has the primary
responsibility for storing the persistent state of objects, with other services providing other
capabilities.

Object Reference

Persistent state

Persistent Object Service

Object

Dynamic state

Client

Figure 3-1 Roles in the Persistent Object Service

Figure 3-1 shows the participants in the Persistent Object Service. The state of the object can be
considered in two parts: the dynamic state, which is typically in memory and is not likely to exist
for the whole lifetime of the object (for example, it would not be preserved in the event of a
system failure), and the persistent state, which the object could use to reconstruct the dynamic
state.

Although the ORB provides the ability for an object reference to be persistent, it cannot ensure
that the state of the object will be available just because the object reference is still valid.

The object ultimately has the responsibility of managing its state, but can use or delegate to the
Persistent Object Service for the actual work. There is no requirement that any object use any
particular persistence mechanism. For example, it may write its data to files using non-CORBA
interfaces, or a single-level-store mechanism may be used. However, the Persistent Object
Service provides capabilities that should be useful to a wide variety of objects.

Common Object Services, Volume 2 21

Introduction Persistent Object Service Specification

Whether or not the client of an object is aware of the persistent state is a choice the object has.

CORBA already provides a persistent reference handling interface (that is, object_to_string ,
string_to_object , release , and so on). We expect that this will be sufficient for most clients to
manage persistence of their referenced objects. But, because certain kinds of flexibility require
the client to manage reference objects’ persistence, the Persistent Object Service defines object
interfaces for doing so. If this flexibility is not required, then these interfaces need not be
supported or used.

The size, structure, access patterns and other properties of the dynamic and persistent state of
the object varies tremendously. For many objects, their primary semantics are the efficient
storage and access of their state for particular purposes. It is critical that the Persistent Object
Service is able to support greatly different styles of usage and implementation in order to be
useful to as many objects as possible.

As usual for object services, the primary task of this persistence specification is to define the
interfaces that are needed to use the Persistent Object Service, and the conventions for how
objects can work together using it.

The architecture of the Persistent Object Service defines multiple components and interfaces. In
a particular situation, different parts of the service may be used. In no case does this
specification assume the use of a particular implementation of a component, and it is expected
that different implementations of the components will in fact work together.

Section 3.2 describes the overall goals and properties of the Persistent Object Service.

Section 3.3 defines the components which compose it.

Section 3.4 presents the CosPersistencePID module which defines the Persistence Identifier
(PID).

Section 3.5 presents the CosPersistencePO module with interfaces borne by Persistent Objects.

Section 3.6 presents the interface to the Persistent Object Manager (POM).

Section 3.7 presents an overview of the Persistent Data Service (PDS) which interfaces both to
the Protocol which communicates between PO and PDS, and to the Datastore which actually
stores the data; following this, Section 3.8 on page 39 defines the CosPersistencePDS module
which defines base functionality inherited by every protocol. Three protocols are presented in
this specification, although more are possible:

• The Direct Access Protocol (PDS_DA) is described in Section 3.9, and its OMG IDL module is
presented in Section 3.10.

• The ODMG-93 Protocol is described in Section 3.11.

• The Dynamic Data Object (DDO) Protocol is described in Section 3.12, and its OMG IDL
module is presented Section 3.13. Other possible protocols are discussed briefly in Section
3.14. One possible datastore, implementable using a number of database and file
mechanisms, is described in Section 3.15; other possible datastores are discussed in Section
3.16.

22 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Goals and Properties

3.2 Goals and Properties
The Persistent Object Service plays a key role in structuring the object system. The model of
how many objects work is critically dependent on consistent and integrated use of persistence.
Like other object services, the Persistent Object Service provides interfaces that can support
different implementations in order to obtain different qualities of service. Those interfaces allow
different components to work together.

The overall persistence architecture has multiple components. Each will be introduced in turn in
this section, following presentation of some basic capabilities and properties provided by the
overall architecture.

3.2.1 Basic Capabilities

The principle requirement to be supported is for an object to be able to make all or part of its
state persistent. Although CORBA defines object references as persistent (that is, they are usable
until they are released regardless of the lifetime of their containing address space), it defines no
particular way for the object to make its state persistent. The Persistent Object Service is
intended ultimately to be the most common way to implement this. Therefore, there must be a
way for the object to decide what state needs to be made persistent, and ways to store and
retrieve that state.

It is often necessary to expose the persistent state from an object, so that the client can control
the object’s persistence to achieve certain types of flexibility. The Persistent Object Service
defines a convention for doing this. Clients of objects sometimes need ways to refer to the
persistent state, and request various operations on it. It is often not necessary to expose the
persistent state from an object, so that the object implementation itself determines its
persistence. In these cases, no persistence-specific object interfaces need be supported.

3.2.2 Object-oriented Storage

In existing non-object-oriented systems, persistence is accomplished by a number of data storage
mechanisms. Generally, such mechanisms do not provide the key properties that object systems
provide — uniform interfaces, self-description and abstraction. The Persistent Object Service
brings these properties to storage by applying object technology and principles.

Interfaces to Data

To manage object persistence, the POS defines an architecture with interfaces defined using the
CORBA IDL type system. Whether detailing the particular data to be stored, describing the
protocol for accessing the state, or defining the convention for making state visible for client
control, the same language is used. This makes persistence a natural part of the software
environment. These interfaces are designed to be used in a wide variety of situations, creating
uniformity by encouraging most objects to support them, while allowing optimisation and
evolution.

By accessing data through an interface, many problems of data manipulation and exchange can
be avoided. For example, programs always see data in the representation that is appropriate for
the machine, programming language, and so on, of the application. Data can be translated as
needed to facilitate use in different object types and implementations and for different storage
formats or underlying persistent storage mechanisms (for example, stream files, record files or
various databases) when it is accessed through the interface.

Common Object Services, Volume 2 23

Goals and Properties Persistent Object Service Specification

Self-description

A powerful characteristic of object-oriented systems is that the elements are self-describing. It is
possible to determine from an object what kind of object it is and what interfaces it supports. In
the persistence architecture this means, for example, that a client can determine whether or not
an object wishes to make its persistent state visible by checking to see if the object supports the
interface for doing so.

It also means that the data can be manipulated to some degree independently of the objects
whose state they represent. This can allow generic facilities such as backup, migration, storage
accounting, and so on, to be done independently of the objects whose state is being stored.

Abstraction

In order to support a wide and evolving set of uses, a service must be able to improve and
replace its implementations without affecting the clients of that service. The desire for reuse of
objects requires that those objects do not depend too strictly on other objects and services, but
rather are willing to work with any other components that support the required interface.

A variety of value-added products are also possible assuming that the objects depend only on
the defined interfaces. By interposing unexpected implementations, for example, it may be
possible to support features such as replication or versioning in a transparent way.

3.2.3 Open Architecture

A major feature of the Persistent Object Service (and the OMG Object Services Architecture) is its
openness. In this case, that means that there can be a variety of different clients and
implementations of the Persistent Object Service, and they can work together. This is
particularly important for storage, where the mechanisms that are useful for documents may not
be appropriate for employee databases, or the mechanisms appropriate for mobile computers
may not be appropriate for mainframes.

Implementations can be lightweight, consisting of mostly library code, or powerful, leveraging
decades of experience with database systems. Of course, the architecture specifies several
interfaces, but also shows how new interfaces can be introduced when needed while still
exploiting the rest of the architecture.

As with other object services, the Persistent Object Service is intended to be part of a collection of
services. As a result, it does not attempt to solve all problems that might relate to storage.
Rather, it assumes other services will provide the solutions. For example, the Persistent Object
Service does not do naming, but assumes that the Naming Service will perform that function; it
does not do transactions, but assumes that they will be added as appropriate; it does not handle
issues of general compound objects, but assumes that there will be a scheme that spans
Persistent Object, Life Cycle, Print and other services.

A key idea in object systems that is critical for persistence is the ability for new and existing
storage services to be able to integrate into the architecture. The requirement for such
components to ‘‘plug-and-play’’ together is paramount, since one cannot expect all data to be
maintained in a particular kind of file or database system. Thus, the architecture has features to
allow existing databases or other storage mechanisms to be used for persistence, and for new
storage mechanisms to be developed that can support both Persistent Object Service clients and
other kinds of clients.

The POS architecture is open with respect to PersistentDataService , Datastore , Protocol and PID
interfaces. Although we define some minimum requirements for these in some cases, many
alternatives are allowed, including ones that have not yet been defined.

24 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Goals and Properties

3.2.4 Views of Service

There are multiple views of the service, and each participant may need to consider only a part of
the architecture.

Client

It is common for clients of objects to need to control or to assist in managing persistence. In
particular, the timing of when the persistent state is preserved or restored, and the identification
of which persistent state is to be used for an object, are two aspects often of interest to clients.
The ability of a client to see the object and its data separately allows different object
implementations to be used with the same data and allows different files or databases and
formats to be used with the same object implementation.

However, the client need only deal with such complexity when this type of functionality is
necessary. The client of the object can be completely ignorant of the persistence mechanism, if
the object chooses to hide it.

The Persistent Object Service provides an interface for objects to use when they want to expose
their persistence to their clients. The interface does not completely abandon encapsulation, but
gives the client visibility to those functions it needs. In fact, the client is generally unaware of
how or if the object uses other parts of the Persistent Object Service.

Object Implementation

The object has the most involvement with persistence, and the most options in deciding how to
use it. Defining and manipulating the persistent state of the object is often the most crucial part
of its implementation. The first decision the object makes is what interface to its data it needs.
The Persistent Object Service captures that choice in the selection of the Protocol used by the
object. Some Protocols provide simple interfaces and limited functionality; others may provide
more control and more powerful operations.

The object also has the choice of delegating the management of its persistent data to other
services, or maintaining fine-grained control over it. The Persistent Object Service defines a
Persistent Object Manager that handles much of the complexity of establishing connections
between objects and storage, allowing new components to be introduced without affecting the
objects or their clients.

The object may also provide the ability for its clients to manipulate its persistent state in various
ways. This is important for creating a uniform view of persistence in the system.

Persistent Data Service

The Persistent Data Service (PDS) actually implements the mechanism for making data
persistent and manipulating it. A particular PDS supports a Protocol defining the way data is
moved in and out of the object, and an interface to an underlying Datastore.

The PDS has the responsibility of translating from the object world above it to the storage world
below it. It plays critical roles in identifying the storage as well as providing convenient and
efficient access to it.

We define multiple kinds of PDSs, each tuned to a particular protocol and data storage
mechanism, since the range of requirements for performance, cost and qualitative features is so
large. Multiple PDSs must work together to create the impression of a uniform persistence
mechanism. The Persistent Object Manager provides the framework for PDSs to cooperate this
way.

Common Object Services, Volume 2 25

Goals and Properties Persistent Object Service Specification

Datastore

The lowest-level interface we define is a Datastore. Although Datastore interfaces are the least
visible part of the persistence architecture, they may be the most valuable, since there are so
many different Datastores offering a wide spectrum of trade-offs between availability, data
integrity, resource consumption, performance and cost, and it is expected that more will be
created. By having an interface that is hidden from objects and their clients, a Datastore can
provide service to any and all objects that indirectly use the Datastore interface.

The Datastore plays a key role in interoperating with other storage services. It is the
manifestation in the object world of the various means of storing data that are not objects.
Generally, standards for Datastore interfaces have already been defined for different kinds of
data repositories — relational, object-oriented and file systems.

26 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Service Structure

3.3 Service Structure
This section presents an overview of each of the major components and how they interrelate.
Subsequent sections present the OMG IDL as divided into modules which correspond closely
(but not exactly) to these components.

The major components of the Persistent Object Service are illustrated in Figure 3-1 on page 21.
They are:

• Persistent Identifier (PID)

This describes the location of an object’s persistent data in some Datastore and generates a
string identifier for that data.

• Persistent Object (PO)

This is an object whose persistence is controlled externally by its clients.

• Persistent Object Manager (POM)

This component provides a uniform interface for the implementation of an object’s
persistence operations. An object has a single POM to which it routes its high-level
persistence operations to achieve plug-and-play.

• Persistent Data Service (PDS)

This component provides a uniform interface for any combination of Datastore and Protocol,
and coordinates the basic persistence operations for a single object.

• Protocol

This component provides one of several ways to get data in and out of an object.

• Datastore

This component provides one of several ways to store an object’s data independently of the
address space containing the object.

Common Object Services, Volume 2 27

Service Structure Persistent Object Service Specification

Client

PO PID

POM

PDS

Datastore

PersistentDataService

Protocol

Persistent Object Persistent Identifier

PersistentObjectManager

Figure 3-2 Major Components of the POS and their Interactions

The term persistent object is used to refer to objects whose persistence is controlled internally or
externally. Either kind of persistent object can be supported by the Persistent Object Service’s
POM, PDS, Protocol and Datastore interfaces. The PO interface supports externally controlled
persistence.

28 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePID Module

3.4 The CosPersistencePID Module
The CosPersistencePID module contains the basic interface for retrieving a PID: the PID interface.

This section describes this interface, plus an example factory interface, and their operations in
detail.

The CosPersistencePID module is shown below:

module CosPersistencePID {

interface PID {
attribute string datastore_type;
string get_PIDString();

};
};

The PID identifies one or more locations within a Datastore that represent the persistent data of
an object and generates a string identifier for that data. An object must have a PID in order to
store its data persistently. The client can create a PID, initialize its attributes, and connect it to
the object. A persistent object’s implementation uses the POM interface by passing the object
and the PID as parameters.

The PID should not be confused with the CORBA object reference (OID). They are similar in
that both have an operation that produces a string form that can be stored or communicated in
whatever ways strings may be manipulated, and later used to get the original PID or OID. They
differ in that the PID identifies data while the OID identifies a CORBA object.

For example, assume mySpreadSheet object is referenced by both myDoc and yourDoc objects. If
mySpreadSheet ’s OID is stored persistently with myDoc and yourDoc and then all three are
brought into memory, both documents will always see the same spreadsheet object. If
mySpreadSheet ’s PID is stored persistently with myDoc and yourDoc and then all three object are
brought into memory, each document will see a different spreadsheet object whose states will be
the same initially but will diverge over time.

3.4.1 The PID Interface

The OMG IDL definition for the PID interface is as follows:

interface PID {
attribute string datastore_type;
string get_PIDString();

};

The PID interface contains at least one attribute:

attribute string datastore_type;

This identifies the interface of a Datastore. Example datastore_types might be DB2, PosixFS and
ObjectStore . The PDS hides the Datastore’s interface from the client, the persistent object and the
POM, but PDS implementations are dependent on the Datastore’s interface.

Other attributes can be added via subtyping the PID base type to reflect more specialised PIDs.
Unless the datastore_type contains only a single object’s persistent data, there is a need for more
specific location information in the PID. The following example PID subtypes illustrate this:

#include "CosPersistencePID.idl"

interface PID_DB : CosPersistencePID::PID {
attribute string database_name; // name of a database

};

Common Object Services, Volume 2 29

The CosPersistencePID Module Persistent Object Service Specification

interface PID_SQLDB : PID_DB {
attribute string sql_statement; // SQL statement

};

interface PID_OODB : PID_DB {
attribute string segment_name;// segment within database
attribute unsigned long oid; //object id within a segment

};

The PID interface provides a single operation:

string get_PIDString();

This operation returns a string version of the PID called the PIDString . A client should only
obtain the PIDString using the get_PIDString operation. This allows the PID implementation to
decide the form of the PIDString .

Some implementations may simply concatenate the PID attributes. Others may return a more
compact form specialised for specific Datastores or even databases within a Datastore. Still
others may return a universally unique identifier (UUID) that facilitates movement of its
persistent data either within a single Datastore or between Datastores. A UUID-based PID
might be implemented by overriding the get and set attribute operations and the get_PIDString ()
operation to bind and lookup the mapping between UUID and location information in a special
context in the Naming Service. Using such a UUID-based PID, when an object is moved, the
new location would be changed by setting the attributes to indicate the new location, and the
PID would make the modification in the Naming Service. The PIDString would contain the
UUID that does not change when an object’s data is moved, so that references remain intact.

Some applications need to be able to restore an object given a PID but without knowing which
type or implementation to use. The PID can be subtyped to accommodate this by adding the
type or implementation as a PID attribute.

3.4.2 Example PIDFactory Interface

The OMG IDL definition for an example PIDFactory is as follows (others are also possible):

interface PIDFactory {
CosPersistencePID::PID create_PID_from_key(in string key);
CosPersistencePID::PID create_PID_from_string(

in string pid_string);
CosPersistencePID::PID create_PID_from_string_and_key(

in string pid_string, in string key);
};

This example PIDFactory provides three ways of creating a PID:

• CosPersistencePID::PID create_PID_from_key(in string key);

This creates an instance of a PID given a key that identifies a particular PID implementation.

• CosPersistencePID::PID create_PID_from_string(in string pid_string);

This creates an instance of a PID given a PIDString . The PIDString must include some way to
identify a particular PID implementation (the PID’s key) that allows this operation to extract
the PID’s key from the PIDString . This key identifies the PID implementation for the newly
created PID.

• CosPersistencePID::PID create_PID_from_string_and_key(in string id_string, in string key);

This creates an instance of a PID whose implementation is identified by the key in the input
parameter instead of the key in the PIDString , and whose value is determined by the

30 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePID Module

PIDString . This is useful for when persistent data is moved between Datastores that require
different PID interfaces.

Common Object Services, Volume 2 31

The CosPersistencePO Module Persistent Object Service Specification

3.5 The CosPersistencePO Module
The CosPersistencePO module collects the interfaces which are borne by a persistent object to
allow its clients and the POM to control the PO’s relationship with its persistent data. This
module includes two interfaces:

• the PO interface

• the SD interface

plus an example factory interface.

The PO interface is borne by the PO and used by the client. The SD interface is borne by the PO
and used by the POM.

This section describes these interfaces and their operations in detail.

The CosPersistencePO module is shown below:

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePO {

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};
interface SD {

void pre_store();
void post_restore();

};
};

3.5.1 The PO Interface

The PO interface provides two mechanisms for allowing a client to externally control the PO’s
relationship with its persistent data:

Connection This mechanism establishes a close relationship between the PO and its
Datastore where the two data representations can be viewed as one for the
duration of the connection. When the connection is ended, the data is the
same in the PO and the Datastore, and the relationship between them no
longer exists. An object can have only one connection at a time.

Store/Restore These operations allow the client to move data between the PO and its
Datastore in each direction separately, with each movement in each direction
explicitly initiated by the client.

The PO interface operations allow client control of a single PO’s persistent data. When one of
these operations is performed on a PO, the data included in these operations is up to that PO’s
implementation. For example, only part of the PO’s private data may be included. Other POs
may be included based on any criteria. If other POs are included, the target PO’s
implementation becomes their client and is responsible for controlling their persistence.

A PO client is responsible for the following:

32 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePO Module

• Creating a PID for the PO and initializing the PID. For storage, whatever location
information is not specified will be determined by the Datastore. For a retrieval or delete
operation, the location information must be complete.

• Controlling the relationship between the data in the PO and the Datastore. This is done by
asking the PO to connect (), disconnect (), store (), restore () or delete () itself.

The OMG IDL definition for a PO is as follows:

interface PO {
attribute CosPersistencePID::PID p;
CosPersistencePDS::PDS connect (

in CosPersistencePID::PID p);
void disconnect (in CosPersistencePID::PID p);
void store (in CosPersistencePID::PID p);
void restore (in CosPersistencePID::PID p);
void delete (in CosPersistencePID::PID p);

};

The PO interface has the following operations:

• CosPersistencePDS::PDS connect (in CosPersistencePID::PID p);

This begins a connection between the data in the PO and the Datastore location indicated by
the PID. The persistent state may be updated as operations are performed on the object. This
operation returns the PDS that handles persistence for use by those Protocols that require the
PO to call the PDS.

• void disconnect (in CosPersistencePID::PID p);

This ends a connection between the data in the PO and the Datastore location indicated by
the PID. It is undefined whether or not the object is usable if not connected to persistent
state. The PID can be nil.

• void store (in CosPersistencePID::PID p);

This copies the persistent data out of the object in memory and puts it in the Datastore
location indicated by the PID. The PID can be nil.

• void restore (in CosPersistencePID::PID p);

This copies the object’s persistent data from the Datastore location indicated by the PID and
inserts it into the object in memory. The PID can be nil.

• void delete (in CosPersistencePID::PID p);

This deletes the object’s persistent data from the Datastore location indicated by the PID.
The PID can be nil.

To adhere to the plug-and-play philosophy, objects pass these requests through to the POM, so
that the interface for PO parallels that of the POM. This delegation to the POM allows objects to
change PDSs (combination of Datastore and Protocol) without changing their implementation.

Common Object Services, Volume 2 33

The CosPersistencePO Module Persistent Object Service Specification

3.5.2 The POFactory Interface

The OMG IDL definition for an example POFactory is as follows (others are also possible):

#include "CosPersistencePO.idl"
// CosPersistencePO.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

interface POFactory {
CosPersistencePO::PO create_PO (

in CosPersistencePID::PID p,
in string pom_id);

};

The example POFactory provides the following operation:

• CosPersistencePO::PO create_PO(in CosPersistencePID::PID p, in string pom_id);

This creates an instance of a PO that knows which POM to use and with its pid attribute
already assigned.

3.5.3 The SD Interface

Some objects may be implemented knowing they are going to be persistent. Many such objects
have both transient and persistent data. The Synchronized Data (SD) interface is provided to
allow such objects to synchronise their transient and persistent data. Operations on the SD are
invoked only by the POM. Persistent objects whose persistence is controlled either internally or
externally (PO) can support the SD interface.

The OMG IDL definition for SD is as follows:

interface SD {
void pre_store();
void post_restore();

};

The interface for SD provides two operations:

• void pre_store();

This ensures that the persistent data is synchronised with the transient data.

• void post_restore();

This ensures that the transient data is synchronised with the persistent data.

A word processing document provides a good example of how these operations might be
implemented. Suppose the document type is implemented with the following data:

• text buffer (persistent)

• attributes (persistent)

• text cache (transient)

• cursor location (transient).

The document could be implemented such that all work is done in the text cache. Then at store
time, the text buffer needs to be updated, since it contains the actual data that will be stored. As
such, the pre_store () operation should be implemented such that any updates in the text cache
are propagated to the text buffer. The post_restore () operation should be implemented such
that the text cache is initialized with a state consistent with the text buffer.

34 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePOM Module

3.6 The CosPersistencePOM Module
The CosPersistencePOM module contains the interface which is borne by the POM and used by
the PO. It contains a single interface: the POM interface.

This section describes this interface and its operations in detail.

The CosPersistencePOM module is shown below:

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePOM {

interface Object;
interface POM {

CosPersistencePDS::PDS connect (
in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};
};

Clients of a PO will see the operations of the POM interface indirectly through the PO interface.
The implementation of a persistent object with either externally or internally controlled
persistence can use the POM interface. The POM provides a uniform interface across all PDSs, so
different PDSs (combination of Datastore and Protocol) can be used without changing the
object’s implementation.

The OMG IDL definition of the POM is as follows:

interface POM {
CosPersistencePDS::PDS connect (

in Object obj,
in CosPersistencePID::PID p);

void disconnect (
in Object obj,
in CosPersistencePID::PID p);

void store (
in Object obj,
in CosPersistencePID::PID p);

void restore (
in Object obj,
in CosPersistencePID::PID p);

void delete (
in Object obj,
in CosPersistencePID::PID p);

};

Common Object Services, Volume 2 35

The CosPersistencePOM Module Persistent Object Service Specification

The POM interface has the following operations:

• CosPersistencePDS::PDS connect (in Object obj, in CosPersistencePID::PID p);

This begins a connection between data in the object and the Datastore location indicated by
the PID. The persistent state may be updated as operations are performed on the object. This
operation returns the PDS that is assigned the object’s PID for use by those Protocols that
require the PO to call the PDS.

• void disconnect (in Object obj, in CosPersistencePID::PID p);

This ends a connection between the data in the object and the Datastore location indicated by
the PID. It is undefined whether or not the object is usable if not connected to persistent
state. The PID can be nil.

• void store (in Object obj, in CosPersistencePID::PID p);

This gets the persistent data out of the object in memory and puts it in the Datastore location
indicated by the PID. The PID can be nil.

• void restore (in Object obj, in CosPersistencePID::PID p);

This gets the object’s persistent data from the Datastore location indicated by the PID and
inserts it into the object in memory. The PID can be nil.

• void delete (in Object obj, in CosPersistencePID::PID p);

This deletes the object’s persistent data from the Datastore location indicated by the PID.
The PID can be nil.

The major function of the POM is to route requests to a PDS that can support the combination of
Protocol and Datastore needed by the persistent object. To do this, the POM must know which
PDSs are available and which Protocol and Datastore combinations they support. There are
several possible ways that this information can be made available to a POM:

• How a Protocol is associated with an object.

One possibility is for the client to set the Protocol for that object. Another possibility is for
the Protocol to be associated with the object’s type or implementation.

• How a POM finds out the set of available PDSs and which Protocol (or object type) and
Datastores they support.

One possibility is for the POM to find the information in a configuration file or a registry.
Another possibility is to provide an interface to the POM for registering the information. The
best or most natural technique may depend on the environment.

Because there are multiple ways to accomplish the above and more experience is needed to
better understand whether there is a better way and what that might be, a POM interface for
registering this information in the POM is not specified at this time.

When the POM is asked to store an object, the following steps logically occur:

• From the PID, the POM gets the datastore_type attribute.

• Regardless of how the Protocol is associated with the object, the POM uses the combination
of Protocol and datastore_type to determine the PDS.

• The POM passes the store request through to the PDS.

• The PDS gets data from the object using a Protocol and stores the data in the Datastore.

36 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePOM Module

The routing function of the POM serves to shield the client from having to know the details of
how actual data storage/retrieval takes place. A client can change the repository of an object by
changing the PID. The change will result in routing the next store () or restore () request to
whatever the appropriate PDS is for the new Datastore.

Figure 3-3 on page 38 illustrates an example of the routing logic for the storage of myDoc in a
DB2 database. This figure and the following example steps assume that, for this POM, the
Protocol is associated with object type:

• The POM is asked to perform a store on myDoc with pid1 .

• The POM finds the datastore_type associated with pid1 (for example, DB2).

• The POM finds the object type of myDoc (for example, document).

• The POM determines that myDoc will use a particular PDS (for example, pds1).

• The POM routes the store () or restore () to pds1 .

• The PDS gets the persistent data using protocol1 and stores the data in the DB2 Datastore at
pid1 .

myDoc yourDoc

protocol1 protocol2

protocol2

MySpreadSheet

pid1 pid2 pid1

datastore_type=DB2
. . .

datastore_type=ObjectStore
. . .

datastore_type=FS
. . .

POM

pds1 pds2 pds3

 document,DB2

object_type, datastore_type

PDS Registry

PDS

pds1

pds2

pds3document,FS

spreadSheet, ObjectStore

DB 2 ObjectStore FS

Figure 3-3 Example to Illustrate POM Functions

Common Object Services, Volume 2 37

The CosPersistencePOM Module Persistent Object Service Specification

3.7 Persistent Data Service (PDS) Overview
The PDS implementation is responsible for the following:

• Interacting with the object to get data in and out of the object using a Protocol. Protocols are
introduced in this section; three example Protocols and a discussion of additional Protocols
are presented in Section 3.9 through Section 3.14.

• Interacting with the Datastore to get data in and out of the object. Datastores are introduced
in this section, and an example Datastore plus a discussion of implementing additional
Datastores are presented in Section 3.15 and Section 3.16.

A PDS performs the work for moving data into and out of an object and moving data into and
out of a Datastore. There can be a wide variety of implementations of PDSs which provide
different performance, robustness, storage efficiency, storage format or other characteristics, and
which are tuned to the size, structure, granularity or other properties of the object’s state.

Because the range of storage requirements is so large, there may be different ways in which the
object can best access its persistent data, and there may be different ways in which the PDS can
store that data. The way in which the object interacts with the PDS is called the Protocol. A
Protocol may consist of calls from the object to the PDS, calls from the PDS to the object, implicit
operations implemented with hidden interfaces, or some combination. The interaction might be
explicit (for example, asking the object to stream out its data), or implicit (for example, the object
might be mapped into persistent virtual memory). The Protocol is initiated when an object’s
persistent state is stored, restored or connected; this may be initiated by a POM or by the object
itself. What happens after that depends on the particular Protocol. An object that uses a
particular Protocol can work with any PDS that supports that Protocol. There is no ‘‘standard’’
Protocol. This specification defines three protocols: the Direct Attribute (DA) Protocol, the
ODMG Protocol and the Dynamic Data Object (DDO) Protocol. A PDS might also use a
programming language-specific or run-time environment-specific or other Protocol.

A PDS may use either a standard or a proprietary interface to its Datastore. A Datastore might
be a file, virtual memory, some kind of database, or anything that can store information. This
specification defines one Datastore interface that can be implemented by a variety of databases.

The PDS component interface is specified here as one module containing only the base PDS
interface, plus one additional module per Protocol. Each Protocol-specific module inherits from
the base module, augmenting the base functionality as needed.

38 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePDS Module

3.8 The CosPersistencePDS Module
The CosPersistencePDS module contains the base interface upon which protocol-specific
interfaces are built. It contains a single interface: the PDS interface.

This section describes this interface and its operations in detail.

The CosPersistencePDS module is shown below.

Some protocols may require specialisation of the PDS interface. However, no matter what
Protocol or Datastore is used, a PDS always supports at least the following interface:

#include "CosPersistencePID.idl"

module CosPersistencePDS {

interface Object;
interface PDS {

PDS connect (in Object obj,
in CosPersistencePID::PID p);

void disconnect (in Object obj,
in CosPersistencePID::PID p);

void store (in Object obj,
in CosPersistencePID::PID p);

void restore (in Object obj,
in CosPersistencePID::PID p);

void delete (in Object obj,
in CosPersistencePID::PID p);

};
};

The exact semantics of the connect (), disconnect (), store () and restore () operations depend on
the Protocol, since there may be other steps involved in the Protocol. In all four operations, the
persistent state is determined by the PID of the object.

• PDS connect (in Object obj, in CosPersistencePID::PID p);

This connects the object to its persistent state, after disconnecting any previous persistent
state. The persistent state may be updated as operations are performed on the object.

• void disconnect (in Object obj, in CosPersistencePID::PID p);

This disconnects the object from the persistent state. It is undefined whether or not the object
is usable if not connected to persistent state.

• void store (in Object obj, in CosPersistencePID::PID p);

This saves the object’s persistent state.

• void restore (in Object obj, in CosPersistencePID::PID p);

This loads the object’s persistent state. The persistent state will not be modified unless a
store or other mutating operation is performed on the persistent state.

• void delete (in Object obj, in CosPersistencePID::PID p);

This disconnects the object from its persistent state and deletes the object’s persistent data
from the Datastore location indicated by the PID.

Common Object Services, Volume 2 39

The Direct Access (PDS_DA) Protocol Persistent Object Service Specification

3.9 The Direct Access (PDS_DA) Protocol
The first Protocol to be described here is the PDS_DA or Direct Access Protocol. The Direct
Access Protocol supports direct access to persistent data through typed attributes organised in
data objects that are defined in a Data Definition Language (DDL). An object using this Protocol
would represent its persistent data as one or more interconnected data objects. For uniformity,
the persistent data of an object is described as a single data object; however, that data object
might be the root of a graph of data objects interconnected by stored data object references. If an
object uses multiple data objects, the object traverses the graph by following stored data object
references.

An object must define the types of the data objects it uses. Those types are specified in DDL,
which is a subset of the OMG Interface Definition Language (OMG IDL) in which objects consist
solely of attributes. The state of the data object is accessed using the attribute access operations
defined in the CORBA Specification in conjunction with the appropriate programming language
mapping.

data objects

PDS_DAA B

Object (Client of PDS)

Data Object References PDS Object Reference

i=1
j=4

i=3

x=0
y=7
z=9

x=5

x=1

Figure 3-4 Direct Access Protocol Interfaces

The PDS_DA Protocol has two parts, as shown in Figure 3-4. When connected to a PDS, the
object (which is effectively the client of the PDS) has an object representing the PDS which
supports the PDS_DA interface. The object performs operations defined in the PDS_DA interface
to get references to the data objects in the PDS. The persistent data is manipulated by
performing operations using the data object references to get and set attributes on the collection
of data objects in the PDS.

40 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePDS_DA Module

3.10 The CosPersistencePDS_DA Module
The CosPersistencePDS_DA module is a collection of interfaces which together define the
Protocol. This module contains the following interfaces:

• the PID_DA interface

• the DAObject interface

• the DAObjectFactory interface

• the DAObjectFactoryFinder interface

• the PDS_DA interface

• the DynamicAttributeAccess interface

• the PDSClustered_DA interface.

This section describes these interfaces and their operations in detail.

The CosPersistencePDS_DA module is shown below.

#include "CosPersistencePDS.idl"
// CosPersistencePDS.idl #includes CosPersistencePID.idl

module CosPersistencePDS_DA {

typedef string DAObjectID;

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};
interface DAObject {

boolean dado_same(in DAObject d);
DAObjectID dado_oid();
PID_DA dado_pid();
void dado_remove();
void dado_free();

};

interface DAObjectFactory {
DAObject create();

};

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid(); PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

Common Object Services, Volume 2 41

The CosPersistencePDS_DA Module Persistent Object Service Specification

};

typedef string ClusterID;
typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA{

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(

in PDS_DA source);
};

};

3.10.1 The PID_DA Interface

The Persistent Identifiers (PIDs) used by the PDS_DA interface contain an object identifier that is
local to the particular PDS. This value may be accessed with the following extension to the
CosPersistencePID interface:

interface PID_DA : CosPersistencePID::PID {
attribute DAObjectID oid;

};

The DAObjectID has the following attribute:

• DAObjectID oid();

This returns the data object identifier used by this PDS for the data object specified by the
PID. The DAObjectID type is defined as an unbounded sequence of bytes that may be
vendor-dependent.

3.10.2 The Generic DAObject Interface

The DAObject interface defined below provides operations that many data object clients need. A
Datastore implementation may provide support for these operations automatically for its data
objects. A data object is not required to support this interface. A client can obtain access to these
operations by narrowing a data object reference to the DAObject interface:

interface DAObject {
boolean dado_same(in DAObject d);
DAObjectID dado_oid(); PID_DA dado_pid();
void dado_remove();
void dado_free();

};

The DAObject has the following operations:

• boolean dado_same(in DAObject d);

This returns true if the target data object and the parameter data object are the same data
object. This operation can be used to test data object references for identity.

• DataObjectID dado_oid();

This returns the object identifier for the data object. The scope of data object identifiers is
implementation-specific, but is not guaranteed to be global.

42 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePDS_DA Module

• PID_DA dado_pid();

This returns a PID_DA for the data object.

• void dado_remove();

This deletes the object from the persistent store and deletes the in-memory data object.

• void dado_free();

This informs the PDS that the data object is not required for the time being, and the PDS may
move it back to persistent store. The data object must be preserved and must be brought
back the next time it is referenced. This operation is only a hint and is provided to improve
performance and resource usage.

3.10.3 The DAObjectFactory Interface

The scheme for factories follows the Life Cycle Service specification. The factory supports the
following interface:

interface DAObjectFactory {
DAObject create();

};

The DAObjectFactory has the following operation:

• DAObjectFactory create();

This creates a new data object in the PDS.

3.10.4 The DAObjectFactoryFinder Interface

This scheme for factories follows the Life Cycle Service specification. The factory finder
supports the following interface:

interface DAObjectFactoryFinder {
DAObjectFactory find_factory(in string key);

};

The DAObjectFactoryFinder has the following operation:

• DAObjectFactoryFinder find_factory(in string key);

This finds a factory for data objects as specified by the key.

3.10.5 The PDS_DA Interface

The DA Protocol uses an extended PDS interface called PDS_DA:

interface PDS_DA : CosPersistencePDS::PDS {
DAObject get_data();
void set_data(in DAObject new_data);
DAObject lookup(in DAObjectID id);
PID_DA get_pid(); PID_DA get_object_pid(in DAObject dao);
DAObjectFactoryFinder data_factories();

};

The PDS_DA interface provides the following operations:

• DAObject get_data();

This returns the single root data object of the PDS.

Common Object Services, Volume 2 43

The CosPersistencePDS_DA Module Persistent Object Service Specification

• void set_data(in DAObject new_data);

This sets the single root data object

• DAObject lookup(in DAObjectID id);

This finds a data object by object id .

• PID_DA get_pid();

This constructs a PID that corresponds to the single root data object of this PDS.

• PID_DA get_object_pid(in DAObject dao);

This constructs a PID that corresponds to the specified data object, which must be in this
PDS.

• DAObjectFactoryFinder data_factories();

This returns a factory finder. The factory finder will provide factories for the creation of new
data objects within the PDS.

3.10.6 Defining and Using DA Data Objects

A PDS_DA implements data objects that have a set of attributes defined in a Data Definition
Language (DDL). DDL is a subset of OMG IDL. In DDL, all interfaces consist only of attributes;
that is, there are no operations. The programming interface for accessing the persistent state is
the CORBA-defined attribute access operations as specified in the particular programming
language mapping. A PDS_DA implements those accessor operations and transfers the
persistent state between the Datastore and data objects as necessary.

DA data objects are used like normal CORBA objects. They are manipulated using object
references, sometimes called data object references. Language mappings to data object
interfaces are generated just like language mappings for other interfaces.

To define a DA data object (DADO), the developer decides what state must be made persistent.
For example, suppose the object’s persistent data consists of two values, one integer and one
floating point number. The developer would define a data object interface MyDataObject
describing this data:

interface MyDataObject {
attribute short my_short;
attribute float my_float;

};

The DDL definition must be compiled, installed and linked with the object implementation as
necessary for the particular PDS and CORBA environment. Mechanisms similar to those for
creating stubs for OMG IDL interfaces are used to provide the callable routines and create the
run-time information necessary for the PDS implementation. The precise mechanisms are not
defined in this specification.

Once the object has been connected to the PDS, the factory operations described above are used
to create the data object and set it as the root object in the PDS. The object gets or sets values for
the attributes using the CORBA accessor operations, for example:

// PDS_DA Examples
// C++ code
// Include OMG IDL compiler output from CosPersistencePDS_DA.idl
#include "CosPersistencePDS_DA.xh"
// CosPersistencePDS_DA.idl #includes CosPersistencePDS.idl
// CosPersistencePDS.idl #includes CosPersistencePID.idl

44 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePDS_DA Module

// connect to PDS
CosPersistencePDS_DA::PDS_DA my_pds =

pom->connect(my_object,my_PID);
// get factory finder
DAObjectFactoryFinder daoff = my_pds->data_factories();
// get factory for MyDataObject
DAObjectFactory my_factory =

daoff->find_factory(MyDataObject);
// create an instance of MyDataObject
MyDataObjectRef my_obj =

my_factory->create();
// set the object to be the root object
my_pds->set_data(my_obj);
// put persistent state in attributes
my_obj->my_short(42);
my_obj->my_float(3.14159);
// use persistent state
my_obj->my_short(my_obj->my_short()+12);

The DA Protocol allows developers to build simple object implementations that just read and
write attribute values whenever they need to. There is no need for an object to cache persistent
data in its transient store or to explicitly request it to be read or written.

Attributes can be defined using the full flexibility of the DDL type system. A particular PDS may
restrict the attribute types it supports.

A data object may contain object references to other data objects and to ordinary CORBA objects.
Here is an example that extends the previous example by adding a data object reference
attribute and an ordinary CORBA object reference:

interface MyDataObject {
attribute short my_short;
attribute float my_float;
attribute MyDataObject next_data;
attribute SomeOtherObject my_object_ref; };

This example allows an instance of MyDataObject to refer to another instance. A Datastore
implementation might restrict the scope of stored data object references. For example, it might
permit only references to data objects in the same Datastore.

DDL interfaces support inheritance with semantics identical to OMG IDL. In the following
example, a new type of data object is defined that has all the attributes of MyDataObject , plus an
additional integer:

interface DerivedObject : MyDataObject {
attribute short my_extra; };

Like other CORBA objects, data objects support operations on object references. In particular,
the get_interface () operation, which returns an interface repository reference to the object’s most
derived interface, is useful for dynamically determining the type of a data object.

Common Object Services, Volume 2 45

The CosPersistencePDS_DA Module Persistent Object Service Specification

3.10.7 The DynamicAttributeAccess Interface

Because data objects are CORBA objects, the CORBA Dynamic Invocation interface can be used
to get and set data object attributes dynamically, using strings to identify attributes at run time.
However, to simplify dynamic access to data object attributes, the DynamicAttributeAccess
interface is defined. This interface defines operations that allow determination of the names of
the attributes of a data object and getting and setting individual attribute values by name. A
data object is not required to support this interface. It can be determined whether or not a data
object supports these operations by narrowing a data object reference to the
DynamicAttributeAccess interface.

typedef sequence<string> AttributeNames;
interface DynamicAttributeAccess {

AttributeNames attribute_names();
any attribute_get(in string name);
void attribute_set(in string name, in any value);

};

• AttributeNames attribute_names();

This returns a sequence containing the names of the object’s attributes.

• any attribute_get(in string name);

This returns the value of the specified attribute.

• void attribute_set(in string name, in any value);

This sets the value of the named attribute to the value specified by the any parameter.

3.10.8 The PDS_ClusteredDA Interface

It is often useful to group data objects together within a PDS. Common reasons include locking,
sharing, performance, and so on. The PDS_ClusteredDA is an extension to the PDS_DA. A non-
clustered PDS_DA is effectively a single cluster.

Each cluster is represented as a distinct instance of the PDS_ClusteredDA interface, although they
will typically all be implemented by the same service using the same Datastore.

In addition to supporting the normal PDS_DA interface, a clustered PDS_DA has the following
interface:

typedef string ClusterID; typedef sequence<ClusterID> ClusterIDs;
interface PDS_ClusteredDA : PDS_DA {

ClusterID cluster_id();
string cluster_kind();
ClusterIDs clusters_of();
PDS_ClusteredDA create_cluster(in string kind);
PDS_ClusteredDA open_cluster(in ClusterID cluster);
PDS_ClusteredDA copy_cluster(in PDS_DA source); };

• ClusterID cluster_id();

This returns the id of this cluster.

• string cluster_kind();

This returns the kind of this cluster.

• ClusterIDs clusters_of();

This returns a sequence of ClusterIDs listing all of the clusters in this Datastore.

46 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistencePDS_DA Module

• PDS_ClusteredDA create_cluster(in string kind);

This creates a new cluster of the specified kind in this Datastore and returns a
PDS_ClusteredDA instance to represent it.

• PDS_ClusteredDA open_cluster(in ClusterID cluster);

This opens an existing cluster that has the specified ClusterID.

• PDS_ClusteredDA copy_cluster(inPDS_DA source);

This creates a new cluster, loading its state from the specified cluster, which may be
implemented in a different Datastore.

Common Object Services, Volume 2 47

The ODMG-93 Protocol Persistent Object Service Specification

3.11 The ODMG-93 Protocol
A group of Object-Oriented Database Management System (ODBMS) vendors has recently
endorsed and published a common ODBMS specification called ODMG-93. This specification
defines an extended version of OMG IDL for defining ODBMS object types as well as
programming language interfaces for object manipulation.

The ODMG-93 Protocol is similar to the DA Protocol, in that the object accesses attributes
organised as data objects. The primary difference is that the ODMG-93 Protocol uses the Object
Definition Language (ODL) defined in ODMG-93 instead of DDL, and it uses the programming
language mapping defined for data objects specified in ODMG-93, rather than the CORBA IDL
attribute operations.

If the ODMG-93 database object inherits the PDS_DA interface, then the database object can be
used with the rest of this specification. Objects using the ODMG-93 Protocol would manipulate
persistent data using the interfaces specified in ODMG-93.

Note that in addition to using the ODMG-93 interface as another protocol, it would be
straightforward to implement the DA Protocol using an ODMG-93 ODBMS as a PDS. Since the
DA Protocol is a subset of the functionality in ODMG-93, in most programming languages the
language mapping for the DDL attributes would be a trivial layer on the ODMG-93 mapping.
Using the ODMG-93 Protocol would fully exploit the capabilities of ODMG-93; using an
ODMG-93 ODBMS to implement the DA Protocol captures those objects that use DA Protocol.

48 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The Dynamic Data Object (DDO) Protocol

3.12 The Dynamic Data Object (DDO) Protocol
The DDO Protocol is a Datastore-neutral representation of an object’s persistent data. Its purpose
is to contain all of the data for a single object. Figure 3-5 on page 50 illustrates an example of a
DDO. A DDO has a single PID, object_type and set of data items whose cardinality is
data_count . Each piece of data has a data_name , data_value and a set of properties whose
cardinality is property_count . Each property has a property_name and a property value.

Although any data can be stored in a DDO, the following example illustrates how it might map
onto a row in a table:

DDO a row

data_count number of rows

data_item column

data_name column name

data_value column value

property_count number of column properties

property_name for example, type or size

property_value for example, character or 255.

Common Object Services, Volume 2 49

The Dynamic Data Object (DDO) Protocol Persistent Object Service Specification

PID

a DDO

a data item a data item

data_count=2 object_type

data_id=1 data_id=2

data_name="" data_name=""data_value=any data_value=any

property_count=2 property_count=1

a property

property_id=1

property_name=""

property_value=any

a property

property_id=1

property_name=""

property_value=any

a property

property_id=2

property_name=""

property_value=any

Figure 3-5 Structure of a DDO

A DDO provides a Protocol when the persistent object supports the DDO interface. In this case,
the DDO interface is used to get data in and out of the persistent object. It may even provide the
way that the persistent object stores its internal data, in which case a copy and reformat step is
avoided.

To facilitate fast and simple storage and retrieval in specialised types of Datastore, DDOs can be
used with particular conventions that are more suitable to different types of Datastore. If the
DDO is used for both a Protocol and as a direct way to get data in and out of a Datastore, then
copy and format costs are greatly reduced.

50 X/Open Preliminary Specification (1995)

Persistent Object Service Specification The CosPersistenceDDO Module

3.13 The CosPersistenceDDO Module
The CosPersistenceDDO module contains the OMG IDL to support the DDO protocol. The
module contains one interface: the DDO interface.

This section describes the CosPersistenceDDO module in detail.

The CosPersistenceDDO module is shown below.

#include "CosPersistencePID.idl"

module CosPersistenceDDO {

interface DDO {
attribute string object_type;
attribute CosPersistencePID::PID p;
short add_data(); short add_data_property (in short data_id);
short get_data_count();
short get_data_property_count (in short data_id);
void get_data_property (in short data_id,

in short property_id,
out string property_name,
out any property_value);

void set_data_property (in short data_id,
in short property_id,
in string property_name,
in any property_value);

void get_data (in short data_id,
out string data_name,
out any data_value);

void set_data (in short data_id,
in string data_name,
in any data_value);

};
};

A DDO has two attributes:

• attribute string object_type;

This identifies the object_type that this DDO is associated with.

• attribute CosPersistencePID::PID p;

This identifies the PID of the DDO.

A DDO has the following operations for getting data in and out of the DDO:

• short add_data();

This adds a new data item and returns a new data_id that can be used to access it.

• short add_data_property (in short data_id);

This adds a new property within the data item identified by data_id and returns the new
property_id that can be used to access it within the context of the data item.

• short get_data_count();

This gets the number of data items in the DDO.

Common Object Services, Volume 2 51

The CosPersistenceDDO Module Persistent Object Service Specification

• short get_data_property_count (in short data_id);

This gets the number of properties associated with the data item identified by data_id .

• void get_data_property (in short data_id, in short property_id, out string property_name, out
any property_value);

This gets the name and value of the property identified by property_id within the data item
identified by data_id .

• void set_data_property (in short data_id, in short property_id, in string property_name, in any
property_value);

This sets the name and value of the property identified by property_id within the data item
identified by data_id .

• void get_data (in short data_id, out string data_name, out any data_value);

This gets the name and value of the data item identified by data_id .

• void set_data (in short data_id, in string data_name, in any data_value);

This sets the name and value of the data item identified by data_id .

52 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Other Protocols

3.14 Other Protocols
This specification includes three Protocols, but other Protocols can be supported in this
architecture. The proliferation of Protocols would reduce the commonality of different objects,
so it is desirable to use an existing Protocol if that is possible. However, when a new Protocol is
required, it is still possible to use other parts of the Persistent Object Service with it. In general,
the Protocol should be independent of the Datastore interface, although some Datastore
interfaces will be better suited to some Protocols.

Some Protocols are already defined and are not specified here. Such standard interfaces as
POSIX files are already in wide use, and there is no need to re-specify them. In this case, the PID
would include the filename, and the Protocol would consist of reads and writes.

Other protocols are intended to be value-added and non-standard. For example, a LISP-specific
PDS might take advantage of knowledge of the LISP run-time environment to create the
appearance of a single-level store of LISP objects. Although such a PDS would not be usable
from other programming languages, it could provide significant value to LISP programmers. Of
course, it is also possible for a particular value-added protocol to be implemented as a layer on a
standard protocol.

This specification allows such protocols to be integrated in the overall POS architecture without
changing that architecture.

Common Object Services, Volume 2 53

Datastores: The CosPersistenceDS_CLI Module Persistent Object Service Specification

3.15 Datastores: The CosPersistenceDS_CLI Module
The last major component in the architecture is a Datastore, which provides operations on a data
repository underneath the Protocols already discussed. As with Protocols, a variety of Datastore
interfaces may be defined. There is no standard Datastore interface. Only one kind of Datastore
is defined here, for record-oriented databases, because other standard interfaces already exist at
this level and many customers may choose to omit this level of the architecture altogether for
performance in an object-oriented database by using the DA or ODMG Protocol directly on the
DBMS.

Datastore_CLI provides a uniform interface for accessing many different Datastores either
individually or simultaneously. The acronym CLI refers to the X/Open CLI Specification on
which the module is based. Datastore_CLI is especially suited for record database and file
systems (for example, relational, IMS, hierarchical databases and VSAM file systems) that
support user sessions, connections, transactions and scanning through data items using cursors.

The specification of this framework, where appropriate, is consistent with the X/Open CLI
Specification, the IDAPI standard and the ODBC standard. These are industry standards which
specify procedure-oriented application programming interfaces for accessing data stored in any
type of Datastore.

More detailed explanations and enumeration of the options in the Datastore_CLI operations can
be found in the X/Open CLI Specification.

DDOs are used as the way data is passed into the Datastore_CLI interface. If DDO is also being
used as the Protocol, the PDS can use this DDO directly as a parameter to calls to the
Datastore_CLI . When a different Protocol is being used, the PDS must create a new DO and
populate it with data prior to calling the Datastore_CLI .

The CosPersistenceDS_CLI module contains the interfaces derived from the ODBC standard and
the IDAPI standard, providing cursors into relational and other databases. The module contains
the following interfaces:

• the UserEnvironment interface

• the Connection interface

• the ConnectionFactory interface

• the Cursor interface

• the CursorFactory interface

• the PID_CLI interface

• the Datastore_CLI interface.

This section describes these interfaces and their operations in detail.

The CosPersistenceDS_CLI module is shown below:

#include "CosPersistenceDDO.idl"
// CosPersistenceDDO.idl #includes CosPersistencePID.idl

module CosPersistenceDS_CLI {
interface UserEnvironment {

void set_option (in long option,in any value);
void get_option (in long option,out any value);
void release();

};

54 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Datastores: The CosPersistenceDS_CLI Module

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id;

};

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);

Common Object Services, Volume 2 55

Datastores: The CosPersistenceDS_CLI Module Persistent Object Service Specification

Cursor execute (in Connection connection,
in string command);

};
};

3.15.1 The UserEnvironment Interface

The UserEnvironment OMG IDL is as follows:

interface UserEnvironment {
void set_option (in long option,in any value);
void get_option (in long option,out any value); void release();

};

The UserEnvironment interface has the following operations:

• void set_option (in long option, in any value);

This sets the option to the desired value. The list of settable options is specified in the
X/Open CLI Specification and the IDAPI standard.

• void get_option (in long option, out any value);

This gets the value of the option. The list of gettable options is the same as that for
set_option ().

• void release();

This releases all resources associated with the UserEnvironment .

3.15.2 The Connection Interface

The Connection OMG IDL is as follows:

interface Connection {
void set_option (in long option,in any value);
void get_option (in long option,out any value);

};

The Connection interface contains the following operations:

• void set_option (in long option, in any value);

This sets the option to the desired value. The list of settable options is specified in the IDAPI
standard.

• void get_option (in long option, out any value);

This gets the value of the option. The list of gettable options is the same as that for
set_option ().

3.15.3 The ConnectionFactory Interface

The ConnectionFactory OMG IDL is as follows:

interface ConnectionFactory {
Connection create_object (

in UserEnvironment user_envir);
};

The ConnectionFactory interface has the following operation:

56 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Datastores: The CosPersistenceDS_CLI Module

• Connection create_object (in UserEnvironment user_envir);

This creates an instance of Connection . A Connection is created within the context of a single
UserEnvironment .

3.15.4 The Cursor Interface

The Cursor OMG IDL is as follows:

interface Cursor {
void set_position (in long position,in any value);
CosPersistenceDDO::DDO fetch_object();

};

A Cursor is a movable pointer into a list of DDOs, through which a client can move about the list
or fetch a DDO from the list. The Cursor interface has the following operations:

• void set_position (in long position, in any value);

This sets the Cursor position to the desired value. The list of settable positions is specified in
the IDAPI standard.

• CosPersistenceDDO::DDO fetch_object();

This fetches the next DDO from the list, based on the current position of the Cursor .

3.15.5 The CursorFactory Interface

The CursorFactory OMG IDL is as follows:

interface CursorFactory {
Cursor create_object (

in Connection connection);
};

The CursorFactory has the following operations:

• Cursor create_object (in Connection);

This creates an instance of Cursor . A Cursor is created within the context of a single
Connection . See the X/Open CLI Specification and the IDAPI standard for more information.

3.15.6 The PID_CLI Interface

The PID_CLI OMG IDL is as follows:

interface PID_CLI : CosPersistencePID::PID {
attribute string datastore_id;
attribute string id; };

PID_CLI subtypes the PID base type (see Section 3.4.1 on page 29), adding attributes required for
the Datastore_CLI interface. The PID_CLI interface has the following attributes:

• attribute string datastore_id;

This identifies the specific datastore in use. Most datastore products support multiple
Datastores. For a relational database, this might be the name of a particular database
containing multiple tables. For a POSIX file system, this might be the pathname of a file.

• attribute string id;

This identifies a particular data element within a Datastore. For a relational database, this
might be a table name and primary key indicating a particular row in a table. For a POSIX

Common Object Services, Volume 2 57

Datastores: The CosPersistenceDS_CLI Module Persistent Object Service Specification

file system, this might be a logical offset within the file indicating where the data starts.

3.15.7 The Datastore_CLI Interface

The Datastore_CLI OMG IDL is as follows:

interface Datastore_CLI {
void connect (in Connection connection,

in string datastore_id,
in string user_name,
in string authentication);

void disconnect (in Connection connection);
Connection get_connection (

in string datastore_id,
in string user_name);

void add_object (in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void delete_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void update_object (
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

void retrieve_object(
in Connection connection,
in CosPersistenceDDO::DDO data_obj);

Cursor select_object(
in Connection connection,
in string key);

void transact (in UserEnvironment user_envir,
in short completion_type);

void assign_PID (in PID_CLI p);
void assign_PID_relative (

in PID_CLI source_pid,
in PID_CLI target_pid);

boolean is_identical_PID (
in PID_CLI pid_1,
in PID_CLI pid_2);

string get_object_type (in PID_CLI p);
void register_mapping_schema (in string schema_file);
Cursor execute (in Connection connection,

in string command);
};

In general, a client goes through the following steps to store, restore or delete DDOs:

1. Create a UserEnvironment and set the appropriate options to their desired values.

2. Create a Connection and set the appropriate options to their desired values. Open a
connection to the Datastore, via connect ().

3. To store a DDO, call add_object () or update_object (). To restore a DDO, call
retrieve_object (). To delete a DDO, call delete_object ().

4. If necessary, call transact () to commit or abort a Datastore transaction.

5. Repeat steps 3. and 4. as necessary.

6. Close the connection to the Datastore, via disconnect (). Delete the corresponding
Connection .

58 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Datastores: The CosPersistenceDS_CLI Module

7. Delete the UserEnvironment .

The Datastore_CLI connection operations are:

• void connect (in connection connection, in string datastore_id, in string user_name, in string
authentication);

This opens a connection to the Datastore using the Connection . A client can establish more
than one Connection , but only one Connection can be current at a time. The Connection that
connect () establishes becomes the current Connection .

• void disconnect (in Connection connection);

This closes the Connection .

• Connection get_connection (in string datastore_id, in string user_name);

This returns the Connection associated with the datastore_id .

When any of the data manipulation operations is called, a Datastore transaction begins
implicitly if the Connection involved is not already active. A Connection becomes active once
the transaction begins and remains active until transact () is called.

The Datastore_CLI data manipulation operations are:

• void add_object (in Connection connection, in CosPersistenceDDO::DDO data_obj);

This adds the DDO to the Datastore. If necessary, get the mapping schema information for
the DDO first.

• void delete_object (in Connection connection, in CosPersistenceDDO::DDO data_obj);

This deletes the DDO from the Datastore. If necessary, get the mapping schema information
for the DDO first.

• void update_object (in Connection connection, in CosPersistenceDDO::DDO data_obj);

This updates the DDO in the Datastore. If necessary, get the mapping schema information
for the DDO first.

• void retrieve_object (in Connection connection, in CosPersistenceDDO::DDO data_obj);

This retrieves the DDO from the Datastore. If necessary, get the mapping schema
information for the DDO first. To improve performance, the DBDatastore_CLI may obtain
access to more than one DDO at a time and cache these.

• Cursor select_object (in Connection connection, in string key);

This selects and retrieves the DDO(s) which match the key from the Datastore. The DDO(s)
are returned through the Cursor . If necessary, get the mapping schema information for the
key first. This operation is provided to support the Query Service. In addition, the
Datastore_CLI will support any other operation required by the Query Service.

The Datastore_CLI functions as a Resource Manager for the DDOs that it manages. As such,
it will support all Resource Manager operations specified by the Transaction Service. When
the Transaction Service is not being used, a transaction is initiated implicitly by either a
Connection or a transact (), and ended with a transact ().

• void transact (in UserEnvironment user_envir,in short completion_type);

This completes (commit or rollback) a Datastore transaction. Transaction completion enacts
or undoes any add_object (), update_object () or delete_object () operations performed on any
Connection within the UserEnvironment since the connection was established or since a

Common Object Services, Volume 2 59

Datastores: The CosPersistenceDS_CLI Module Persistent Object Service Specification

previous call to transact () for the same UserEnvironment . The values of completion_type are
specified in the X/Open CLI Specification.

The Datastore_CLI PID operations are:

• void assign_PID (in PID_CLI p);

This assigns a value for the id attribute of the PID. The first attribute, datastore_type , must be
filled in before calling this operation. If only the first attribute is filled in, then this operation
will fill in the second attribute, datastore_id , as well.

• void assign_PID_relative (in PID_CLI source_pid, in PID_CLI target_pid);

This assigns values for the attributes of the target_pid based on the values of the source_pid .
The target_pid ’s first two attributes, datastore_type and datastore_id , will be assigned the
same values as those of the source_pid . Its id attribute will be assigned a new value which is
based on some relationship with that of the source_pid . The algorithm defining that
relationship is up to the implementation.

• boolean is_identical_PID (in PID_CLI pid_1, in PID_CLI pid_2);

This tests to see if the two PIDs are identical. In order for the two PIDs to be identical, the
following conditions must be true:

1. Both PIDs must be managed by this PDS.

2. All three attributes of the PIDs must be identical individually.

• string get_object_type (in PID_CLI p);

This gets the object_type of the PID.

Other Datastore_CLI operations are:

• void register_mapping_schema (in string schema_file);

This registers the mapping schema information contained within the schema_file with the
Datastore_CLI . The mapping schema generally consist of individual mappings each of which
is applicable to a given pair of object_type and datastore_type .

• Cursor execute (in Connection connection, in string command);

This executes a command on the Datastore. If there are any DDOs to be returned as a result,
this is done through the Cursor .

60 X/Open Preliminary Specification (1995)

Persistent Object Service Specification Other Datastores

3.16 Other Datastores
There are other Datastore interfaces that can be used by PDSs. Some of these interfaces are not
CORBA object interfaces, in that they are not defined in OMG IDL and the Datastores are not
objects.

Some Datastores are simple, such as POSIX files. Others may be databases, and may use generic
interfaces for databases and record files such as SQL, the X/Open CLI Specification, the IDAPI
standard and the ODBC standard. Some Datastores are tuned to support nested documents or
other specific kinds of objects, such as Bento.1

Because the Datastore interface is not exposed to object implementations or clients, the choice of
Datastore interface is up to the PDS. As long as the PDS can support its Protocol using the
particular Datastore interface, any implementation of the Datastore can be used by that PDS.
The identification of data within different types of Datastores is facilitated by the PID, which can
be specialised to each Datastore type.

3.17 Standards Conformance
This service is specified in standard OMG IDL.

The Datastore_CLI portion of the Persistent Object Service is consistent with the X/Open CLI
Specification.

The ODMG-93 PDS object protocol incorporates the ODMG-93 specification.

1. Jed Harris and Ira Rubin, The Bento Specification, Revision 1.0d5, Apple Computer, Inc., July 1993.

Common Object Services, Volume 2 61

Persistent Object Service Specification

62 X/Open Preliminary Specification (1995)

Chapter 4

Concurrency Control Service Specification

4.1 Service Description
The purpose of the Concurrency Control Service is to mediate concurrent access to an object
such that the consistency of the object is not compromised when accessed by concurrently
executing computations.

The Concurrency Control Service consists of multiple interfaces that support both transactional
and non-transactional modes of operation. The user of the Concurrency Control Service can
choose to acquire locks in one of two ways:

• On behalf of a transaction (transactional mode).

The Transaction Service drives the release of locks as the transaction commits or aborts.

• By acquiring locks on behalf of the current thread (that must be executing outside the scope
of a transaction).

In this non-transactional mode, the responsibility for dropping locks at the appropriate time
lies with the user of the Concurrency Control Service.

The Concurrency Control Service ensures that transactional and non-transactional clients are
serialised. Hence a non-transactional client that attempts to acquire a lock (in a conflicting
mode) on an object that is locked by a transactional client will block until the transactional client
drops the lock.

4.1.1 Basic Concepts of Concurrency Control

Clients and Resources

The Concurrency Control Service enables multiple clients to coordinate their access to shared
resources. Coordinating access to a resource means that when multiple, concurrent clients
access a single resource, any conflicting actions by the clients are reconciled so that the resource
remains in a consistent state.

The Concurrency Control Service does not define what a resource is. It is up to the clients of the
Concurrency Control Service to define resources and to properly identify potentially conflicting
uses of those resources. In a typical use, an object would be a resource, and the object
implementation would use the Concurrency Control Service to coordinate concurrent access to
the object by multiple clients.

Transactions as Clients

The Concurrency Control Service differentiates between two types of client: a transactional client
and a non-transactional client. Conflicting access by clients of different types is managed by the
Concurrency Control Service, thereby ensuring that clients always see the resource in a
consistent state.

The Concurrency Control Service does not define what a transaction is. Transactions are defined
by the Transaction Service. The Concurrency Control Service is designed to be used with the
Transaction Service to coordinate the activities of concurrent transactions.

Common Object Services, Volume 2 63

Service Description Concurrency Control Service Specification

The Transaction Service supports two modes of operation: implicit and explicit. When operating
in the implicit mode, a transaction is implicitly associated with the current thread of control.
When executing in the explicit mode, a transaction is specified explicitly by the reference to the
coordinator that manages the current transaction. To simplify the model of locking supported
by the Concurrency Control Service when a transactional client is operating in the implicit
transaction mode, transactional clients are limited to a single thread per transaction (nested
transactions can be used when parallelism is necessary) and that thread can be executing on
behalf of at most one transaction at a time.

Locks

The Concurrency Control service coordinates concurrent use of a resource using locks. A lock
represents the ability of a specific client to access a specific resource in a particular way. Each
lock is associated with a single resource and a single client. Coordination is achieved by
preventing multiple clients from simultaneously possessing locks for the same resource if the
activities of those clients might conflict. To achieve coordination, a client must obtain an
appropriate lock before accessing a shared resource.

Lock Modes

The Concurrency Control Service defines several lock modes, which correspond to different
categories of access. Having a variety of lock modes allows more flexible conflict resolution. For
example, providing different modes for reading and writing allows a resource to support
multiple concurrent clients that are only reading the data of the resource. The Concurrency
Control Service also defines intention locks that support locking at multiple levels of granularity.

Lock Granularity

The Concurrency Control Service does not define the granularity of the resources that are
locked. It defines a lock set, which is a collection of locks associated with a single resource. It is
up to clients of the Concurrency Control Service to associate a lock set with each resource.
Typically, if an object is a resource, the object would internally create and retain a lock set.
However, the mapping between objects and resources (and lock sets) is up to the object
implementation; the mapping could be one-to-one, but it could also be one-to-many, many-to-
many or many-to-one.

Conflict Resolution

A client obtains a lock on a resource using the Concurrency Control Service. The service will
grant a lock to a client only if no other client holds a lock on the resource that would conflict
with the intended access to the resource. The decision to grant a lock depends upon the modes
of the locks held or requested. For example, a read lock conflicts with a write lock. If a write
lock is held on a resource by one client, a read lock will not be granted to another client.

Conflict Resolution for Transactions

The decision to grant a lock also depends upon the relationships among the transactions that
hold or request a lock. In particular, if the transactions are related by nesting (nested
transactions), a lock may be granted that would otherwise be denied.

64 X/Open Preliminary Specification (1995)

Concurrency Control Service Specification Service Description

Lock Duration

Typically, a transaction will retain all of its locks until the transaction is completed (either
committed or aborted). This policy supports serialisability of transactional operations. Using
the two-phase commit protocol, locks held by a transaction are automatically dropped when the
transaction completes.

There are also situations where levels of isolation that are weaker than serialisability are
acceptable, such as when an application does not want other applications to change an object
while reading it and does not refer to the object again within the transaction. In these
circumstances, it is acceptable to release locks before the containing transaction completes,
hence the duration will be shorter than the containing transaction.

To manage the release of the locks held by a transaction, the Concurrency Control Service
defines a LockCoordinator . Lock sets that are related (for example, by being created by a
Resource Manager for resources of the same type) and that should drop their locks together
when a transaction commits or aborts, may share a LockCoordinator . It is up to clients of the
Concurrency Control Service to associate lock sets together and to release the locks when a
transaction commits or aborts.

Common Object Services, Volume 2 65

Locking Model Concurrency Control Service Specification

4.2 Locking Model
This section covers a number of important issues that relate to the locking model supported by
the Concurrency Control Service. For a complete discussion of these issues the reader is directed
to one of the standard texts on the subject.2

Section 4.2.1 applies to clients that operate in both transactional and non-transactional modes.
Section 4.2.2 on page 67, Section 4.3 on page 68 and Section 4.4 on page 69 are relevant only to
clients that operate in transactional mode.

4.2.1 Lock Modes

Read, Write and Upgrade Locks

The Concurrency Control Service defines read (R) and write (W) lock modes that support the
conventional multiple readers, one writer policy. Read locks conflict with write locks, and write
locks conflict with other write locks.

In addition, the Concurrency Control Service defines an upgrade (U) mode. An upgrade mode
lock is a read lock that conflicts with itself. It is useful for avoiding a common form of deadlock
that occurs when two or more clients attempt to read and then update the same resource. If
more than one client holds a read lock on the resource, a deadlock will occur as soon as one of
the clients requests a write lock on the resource. If each client requests a single upgrade lock
followed by a write lock, this deadlock will not occur.

Intention Read and Intention Write Locks

The granularity of the resources locked by an application determines the concurrency within the
application. Coarse granularity locks incur low overhead (since there are fewer locks to
manage) but reduce concurrency since conflicts are more likely to occur. Fine granularity locks
improve concurrency but result in a higher locking overhead since more locks are requested.
Selecting a suitable lock granularity is a balance between the lock overhead and the degree of
concurrency required. Using the Concurrency Control service, an application can be developed
to use coarse or fine granularity locks by defining the associated resources appropriately.

In addition, the Concurrency Control Service supports variable granularity locking using two
additional lock modes, intention read (IR) and intention write (IW). These additional lock modes
are used to exploit the natural hierarchical relationship between locks of different granularity.

For example, consider the hierarchical relationship inherent in a database: a database consists of
a collection of files, with each file holding multiple records. To access a record, a coarse grain
lock may be set on the database, but at the cost of restricting other clients from accessing the
database. Clearly, this level of locking is unsuitable. However, only setting a lock on the record
is also inappropriate, because another client might set a lock on the file holding the record and
delete or modify the file.

Using variable granularity locking, a client first obtains intention locks on the ancestor(s) of the
required resource. To read a record in the database; for example, the client obtains an intention
read lock (IR) on the database and the file (in this order) before obtaining the read lock (R) on the
record. Intention read locks (IR) conflict with write locks (W), and intention write locks (IW)

2. See the referenced Concurrency Control and Recovery in Database Systems or the referenced Transaction Processing: Concepts and
Techniques.

66 X/Open Preliminary Specification (1995)

Concurrency Control Service Specification Locking Model

conflict with read (R) and write (W) locks.

Lock Mode Compatibility

Granted Mode Requested Mode
IR R U IW W

Intention Read *
Read (R) * *
Upgrade (U) * * *
Intention Write (IW) * * *
Write * * * * *

Table 4-1 Lock Compatibility

Table 4-1 defines the compatibility between the various locking modes (the symbol * is used to
indicate when locks conflict). When a client requests a lock on a resource that cannot be granted
because another client holds a lock on the resource in a conflicting mode, the client must wait
until the holding client releases its lock. The Concurrency Control Service enforces a queueing
policy such that all clients waiting for a new lock are serviced in a first in, first out order, and
subsequent requests are blocked by the first request waiting to be granted the lock, unless the
requesting client is a transaction that is a member of the same transaction family as an existing
holder of the lock.

4.2.2 Multiple Possession Semantics

The Concurrency Control Service interface supports a locking model called multiple possession
semantics. In this model, a client can hold multiple locks on the same resource simultaneously.
The locks can be of different modes. In addition, a client can hold multiple locks of the same
mode on the same resource; effectively, a count is kept of the number of locks of a given mode
that have been granted to the client. When a client holds locks on a resource in more than one
mode, other clients will not be granted a lock on the resource unless the requested lock mode is
compatible with all of the modes of the existing locks.

In contrast, using the conventional locking model,3 when a client holding a lock on a resource
requests a lock on the same resource in a stronger mode, the existing lock is promoted from the
weaker mode to the stronger mode (once the stronger lock can be granted without causing a
conflict). Since lock modes form only a partial order, there will not always be a stronger mode;
in cases where neither mode is stronger, the lock will be promoted to the weakest mode that is at
least as strong as either of the two modes.

3. See the referenced Notes on Database Operating Systems.

Common Object Services, Volume 2 67

Two-phase Transactional Locking Concurrency Control Service Specification

4.3 Two-phase Transactional Locking
The Concurrency Control Service provides primitives to support locking. Transaction duration
locking is a special case of strict two-phase locking. In the first phase (the growing phase), a
transaction obtains locks that are kept until the second phase (the shrinking phase), at which
point they are released. A transaction must not release locks during the first phase, and must
not obtain new locks during the second phase, otherwise concurrent computations may be able
to view intermediate results of the transaction.

Two-phase locking is sufficient to guarantee serialisability, hence this technique is used by
transactions. During the normal execution of a transaction, no locks will be automatically
dropped before the end of the transaction. When the transaction completes, the Concurrency
Control Service must be informed so that the locks the transaction holds may be released. While
releasing locks, no new locks may be obtained by the transaction.

When a transaction holds a lock that is no longer needed to ensure the transaction or if a weaker
level of isolation is acceptable, it is permissible to release the lock. The Concurrency Control
Service therefore provides an operation that releases individual locks. This operation should be
used with caution to ensure that the isolation level is appropriate for the application.

68 X/Open Preliminary Specification (1995)

Concurrency Control Service Specification Nested Transactions

4.4 Nested Transactions
Lock conflicts within a transaction family are treated somewhat differently than conflicts
between unrelated transactions. The underlying principle is the same for both: transactions
must not be able to observe the effects of other transactions that might later abort. Unrelated
transactions can abort independently; therefore, one transaction must not be permitted to
acquire a lock that conflicts with a lock on the same resource held by an unrelated transaction.

Nesting imposes abort dependencies among related transactions. A parent transaction cannot
abort without causing all of its children to abort. A child transaction that ends successfully
cannot abort without causing its parent to abort. A transaction that cannot abort without
causing another related transaction to abort (according to these guidelines and logical
deductions) is said to be committed relative to that other transaction.

These dependencies make it possible to relax the rule that two transactions cannot acquire locks
of conflicting modes on the same resource, without breaking the underlying principle. No
partial effects can be observed and committed if all transactions that have done work cannot
abort without the observer being aborted. This property translates into a simple rule for nested
locking: if all transactions holding locks on a resource are committed with respect to a
transaction trying to acquire a lock on the resource, no conflict exists.

The multiple possession model (see Section 4.2.2 on page 67) facilitates the use of locks with
nested transactions. In this model, multiple related transactions may hold locks of conflicting
modes on a resource at the same time. When a nested transaction requests a lock, it is granted if
all of the transactions holding locks on the resource are committed relative to the requestor.
Both the requestor and previous holders are then considered to hold locks on the resource.

A child transaction can acquire a lock on a resource locked by its parent and then drop that lock
without causing its parent to lose its lock. A transaction cannot drop a lock that it did not
acquire itself. The lock possession semantics also require that each transaction acquire locks on
its own behalf. It is improper to take locks on behalf of another transaction or to depend on
locks held by other transactions.

Other approaches to nested transactions4 treat a resource as being locked by a single transaction
at a time. When a nested transaction requests a lock on a resource that is already locked by an
ancestor transaction, the nested transaction becomes the new owner of the lock. When a nested
transaction commits, ownership of all of its locks is transferred to its parent. When a nested
transaction aborts, ownership of its locks reverts to the previous owners. The Concurrency
Control Service performs these lock transfers automatically. The multiple possession semantics
model is functionally equivalent to this model, but it supports simpler interfaces.

4. See the referenced Nested Transactions: An Approach to Reliable Distributed Computing.

Common Object Services, Volume 2 69

The CosConcurrencyControl Module Concurrency Control Service Specification

4.5 The CosConcurrencyControl Module
The Concurrency Control Service is defined by the CosConcurrencyControl module, which
provides interfaces that support both transactional and non-transactional modes of operation.
This section defines the interfaces and describes the operations they support.

• The interfaces provide two modes of operation that correspond to those supported by the
Transaction Service; in both modes, locks are identified by the lock set they are associated
with and the mode of the lock.

• A client of the Concurrency Control Service may operate in an implicit mode such that locks
are acquired on behalf of the current transaction (for transactional clients) or current thread
(for non-transactional clients).

• For transactional clients, a second alternative is possible that involves the client identifying
the transaction by means of a reference to the transaction’s coordinator object (the explicit
mode of operation).

Locks are acquired on lock sets. Two sets of operations are provided by the LockSetFactory
interface to create lock sets. One creates a lock set that can be used by clients operating in the
implicit mode (the LockSet interface), the other creates a lock set for explicit mode transactional
clients (the TransactionalLockSet interface). In addition, the LockCoordinator interface is
provided to allow a client to release all the locks held by a specific transaction.

The following sections define the types and exceptions common to both types of interface, the
interfaces themselves. The responsibilities of a user for managing transaction-duration locks are
also described.

OMG IDL for the CosConcurrencyControl module is shown below:

#include <CosTransactions.idl>
module CosConcurrencyControl {

enum lock_mode {
read,
write,
upgrade,
intention_read,
intention_write

};
exception LockNotHeld{ };

interface LockCoordinator
{

void drop_locks();
};
interface LockSet
{

void lock(in lock_mode mode);
boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);

void change_mode(in lock_mode held_mode,
in lock_mode new_mode)

raises(LockNotHeld);
LockCoordinator get_coordinator(

in CosTransactions::Coordinator which);
};

70 X/Open Preliminary Specification (1995)

Concurrency Control Service Specification The CosConcurrencyControl Module

interface TransactionalLockSet
{

void lock(in CosTransactions::Coordinator current,
in lock_mode mode);

boolean try_lock(in CosTransactions::Coordinator current,
in lock_mode mode);

void unlock(in CosTransactions::Coordinator current,
in lock_mode mode)
raises(LockNotHeld);

void change_mode(in CosTransactions::Coordinator current,
in lock_mode held_mode,
in lock_mode new_mode)
raises(LockNotHeld);

LockCoordinator get_coordinator(
in CosTransactions::Coordinator which);

};
interface LockSetFactory
{

LockSet create();
LockSet create_related(in LockSet which);
TransactionalLockSet create_transactional();
TransactionalLockSet create_transactional_related(

in TransactionalLockSet which);
};

};

4.5.1 Types and Exceptions

The types and exceptions described in this section apply to both the LockSet and
TransactionalLockSet interfaces.

module CosConcurrencyControl {
enum lock_mode {

read,
write,
upgrade,
intention_read,
intention_write

};

exception LockNotHeld{ };

• lock_mode

The lock_mode type represents the types of lock that can be acquired on a resource.

• LockNotHeld

The LockNotHeld exception is raised when an operation to unlock or change the mode of a
lock is called and the specified lock is not held.

Common Object Services, Volume 2 71

The CosConcurrencyControl Module Concurrency Control Service Specification

4.5.2 The LockCoordinator Interface

The LockCoordinator interface enables a transaction service to drop all locks held by a
transaction. The LockSet and TransactionalLockSet interfaces create instances of the
LockCoordinator for each transaction. The LockCoordinator interface provides a single operation:

interface LockCoordinator {
void drop_locks();

};

• drop_locks

This releases all locks held by the transaction. This call is designed to be used by
transactional clients when a transaction commits or aborts. For nested transactions, this
operation must be called when the nested transaction aborts, but the call need only be made
once for a transaction family when that family commits (recall that nested transaction
commits are handled implicitly by the Concurrency Control Service).

4.5.3 The LockSet Interface

For clients operating in the implicit mode, locks are acquired and released on lock sets which are
defined by means of the LockSet interface. The LockSet interface only provides operations to
acquire and release locks on behalf of the calling thread or transaction. The interface does not
provide support for transactional clients that use the explicit Transaction Service interfaces.

interface LockSet {
void lock(in lock_mode mode);

boolean try_lock(in lock_mode mode);

void unlock(in lock_mode mode)
raises(LockNotHeld);

void change_mode(in lock_mode held_mode,
in lock_mode new_mode)

raises(LockNotHeld);

LockCoordinator get_coordinator(in
CosTransactions::Coordinator which);

};

When calls to acquire or release locks are made outside the scope of a transaction then it is
assumed that the client is operating in the non-transactional mode (the Concurrency Control
Service implementation must use the appropriate Transaction Service operation to determine
whether the current thread is executing on behalf of a transaction).

• lock ()

This acquires a lock on the specified lock set in the specified mode. If a lock is held on the
same lock set in an incompatible mode by another client, then the operation will block the
calling thread of control until the lock is acquired. If a call that is on behalf of a transactional
client is blocked and the transaction is aborted, then the call will return with the
Transactions::TransactionRolledBack exception.

• try_lock ()

This attempts to acquire a lock on the specified lock set. If the lock is already held in an
incompatible mode by another client, then the operation returns a FALSE result to indicate
that the lock could not be acquired.

72 X/Open Preliminary Specification (1995)

Concurrency Control Service Specification The CosConcurrencyControl Module

• unlock ()

This drops a single lock on the specified lock set in the specified mode (recall that a lock can
be held multiple times in the same mode). Calls to drop a lock that is not held result in the
LockNotHeld exception being raised

• change_mode ()

This changes the mode of a single lock (recall that multiple locks may be held on the same
lock set). If the new mode conflicts with an existing mode held by an unrelated client, then
the change_mode () operation blocks the calling thread of control until the new mode can be
granted. Like the lock call, if the client is a transaction and it aborts while the thread of
control is blocked, then the Transactions::TransactionRolledBack exception will be raised.
Similarly, when a call is made to change the mode of a lock, but the lock is not held in the
specified mode, the LockNotHeld exception will be raised.

• get_coordinator ()

This returns the LockCoordinator associated with the specified transaction.

4.5.4 The TransactionalLockSet Interface

The TransactionalLockSet interface provides operations to acquire and release locks on a lock set
on behalf of a specific transaction. The operations that make up the TransactionalLockSet
interface are:

interface TransactionalLockSet {
void lock(in CosTransactions::Coordinator which,

in lock_mode mode);

boolean try_lock(in CosTransactions::Coordinator which,
in lock_mode mode);

void unlock(in CosTransactions::Coordinator which,
in lock_mode mode)

raises(LockNotHeld);

void change_mode(in CosTransactions::Coordinator which,
in lock_mode held_mode,
in lock_mode new_mode)

raises(LockNotHeld);

LockCoordinator get_coordinator(in
CosTransactions::Coordinator which);

};

The operations provided by the TransactionalLockSet interface operate in an identical manner to
the equivalent operations provided by the LockSet interface. The interfaces differ in that for the
TransactionalLockSet interface the identity of the transaction is passed explicitly as a reference to
the coordinator for the transaction instead of implicitly through an association with the calling
thread.

Common Object Services, Volume 2 73

The CosConcurrencyControl Module Concurrency Control Service Specification

4.5.5 The LockSetFactory Interface

Lock sets are created using the LockSetFactory interface.

interface LockSetFactory {
LockSet create();
LockSet create_related(in LockSet which);

TransactionalLockSet create_transactional();
TransactionalLockSet

create_transactional_related(in
TransactionalLockSet which);

};

This interface provides two sets of operations that return new LockSet and TransactionalLockSet
instances.

• create ()

This creates a new lock set and lock Coordinator .

• create_related ()

This creates a new lock set that is related to an existing lock set. Related lock sets drop their
locks together.

• create_transactional ()

This creates a new transactional lock set and lock Coordinator for explicit mode transactional
clients.

• create_transactional_related ()

This creates a new transactional lock set that is related to an existing lock set. Related lock
sets drop their locks together.

74 X/Open Preliminary Specification (1995)

Chapter 5

Externalization Service Specification

5.1 Service Description
The Externalization Service specification defines protocols and conventions for externalizing and
internalizing objects. To externalize an object is to record the object’s state in a stream of data.
Objects which support the appropriate interfaces and whose implementations adhere to the
proper conventions can be externalized to a Stream (in memory, on a disk file, across the
network, and so on) and subsequently be internalized into a new object in the same or a different
process. The externalized form of the object can exist for arbitrary amounts of time, be
transported by means outside of the ORB, and can be internalized in a different, disconnected
ORB.

Many different externalized data formats and storage mediums can be supported by service
implementations. But, for portability, clients can request that externalized data be stored in a file
using a standardised format that is defined as part of this Externalization Service specification.

Externalizing and internalizing an object are similar to copying the object. The copy () operation
creates a new object that is initialized from an existing object. The new object is then available to
provide service. Furthermore, with the copy () operation, there is an assumption that it is
possible to communicate via the ORB between the here and there. Externalization, on the other
hand, does not create an object that is initialized from an existing object. Externalization ‘‘stops
along the way’’. New objects are not created until the Stream is internalized. Furthermore, there
is no assumption that it is possible to communicate via the ORB between here and there.

The Externalization Service is related to the Relationship Service. It also parallels the Life Cycle
Service in defining externalization protocols for simple objects, for arbitrarily related objects, and
for graphs of related objects that support compound operations (for more information, see
Section 2.5 on page 15.)

The Externalization Service defines Protocols in these areas:

• Client’s view of externalization, composed of the interfaces used by a client to externalize
and internalize objects. The client’s view of externalization is defined by the Stream interface.

• Object’s view of externalization, composed of the interfaces used by an externalizable object
to record and retrieve their object state to and from the Stream’s external form. The object’s
view is defined by the StreamIO interface.

• Stream’s view of externalization, composed of the interfaces used by the Stream to direct an
externalizable object or graph of objects to record or retrieve their state from the Stream’s
external form. The Stream’s view of externalization is given by the Streamable , Node , Role
and Relationship interfaces.

Common Object Services, Volume 2 75

Service Structure Externalization Service Specification

5.2 Service Structure
This section explains the model of externalization for client and Stream . It also describes the
model of externalization and internalization for objects.

5.2.1 Client Model of Externalization

A client has a simple view of the Externalization Service. A client that wishes to externalize an
object first must have an object reference for a Stream object. A Stream object owns and provides
access to the externalized form of one or more objects. Streams may be provided that hold
externalized data on various mediums such as in memory or on disk. All Externalization Service
implementors provide a Stream object that saves the externalized data in a file. A client may
create a Stream object using the create () operation on a StreamFactory object, or may specify that
a file be used to store the externalized data using the create () operation of a FileStreamFactory
object.

The client can create a Stream object that supports a standardised externalization data format.
Externalization data that follows this format will be internalizable on all CORBA-compliant
ORBs that can locate compatible object implementations. By including support for a specific
external representation format in the Externalization Service, portability of object state is
provided across different CORBA-compliant implementations and hardware architectures.

Once a client has a Stream object, the client may externalize an object by issuing an externalize ()
request on the Stream object, providing the object reference to the object that should be
externalized. In general, the client is unaware of whether externalizing an object causes any
other related objects to be externalized. An externalizable object may represent a simple object, a
set of objects, or a graph of related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the same Stream ,
the client issues a begin_context () request before the first externalize request, and then issues an
end_context () following the last externalize request for that same Stream .

The externalized form of the object can exist in the Stream object for arbitrary amounts of time,
be transported by means outside of the ORB, and can be internalized in a different, disconnected
ORB.

A client that wishes to internalize an object issues an internalize () request on the appropriate
Stream object, providing a factory finder. The Stream object interacts with the specified factory
finder, or uses other implementation-dependent mechanisms, to create an implementation of the
object that matches the externalized data. The client is returned an object reference to the newly
internalized object.

5.2.2 Stream Model of Externalization

A Stream object provides the Stream interface for use by clients. The Stream object is also
responsible for providing an object that supports a StreamIO interface interface for actually
reading and writing data to the externalized data form. The Stream object may support the
StreamIO interfaces itself, or may create another object that supports the StreamIO interfaces.
This is considered an implementation detail.

Note: When the behaviour described in this section may be implemented in either the Stream
or StreamIO objects (or other internal objects they may use), the term Stream service is
used.

When a Stream object receives an externalize request from a client, it also gets an object reference
to the object to be externalized. The Stream cooperates with the externalizable object to
accomplish externalization and internalization, using the object’s Streamable interfaces.

76 X/Open Preliminary Specification (1995)

Externalization Service Specification Service Structure

The Stream service uses the read-only Key attribute of the externalizable object to decide what
information to put into the external data in order to be able to find the correct factory and
implementation with which to subsequently internalize an equivalent object. The Stream service
then issues an externalize_to_stream () request to the externalizable object, providing an object
reference to a StreamIO object that is to be used by the externalizable object to record its state in
the Stream service’s external data.

When a Stream object receives an internalize request from a client, it also gets a factory finder.
The Stream service holds the external form of the object, or set of objects, to be internalized. The
Stream service reads the key from its externalized data. It may then pass the key to the factory
finder to locate a factory that can create an object with an implementation that matches the
recorded object state. The Stream service implementation may use other implementation-
specific ways of creating an appropriate object. The Stream service then issues an
internalize_from_stream () request to the newly created object, providing an object reference to a
StreamIO object that is used by the externalizable object to initialize its state according to the
Stream service’s externalized data.

When a Stream object receives a begin_context () request, the Stream service sets up a context
during which the Stream service ensures that externalizing multiple objects that may have
overlapping object references and/or object relationships produces single instances of those
objects on internalization. An end_context () request causes the Stream service to remove the
previous internal context, and externalize subsequent objects without regard to whether they
have already been externalized in this Stream’s data.

5.2.3 Object Model of Externalization

Every object that wishes to be externalizable must support the Streamable interface, and follow
conventions on use of the StreamIO interfaces to record and retrieve their object state from a
Stream’s data.

When a Streamable object receives an externalize_to_stream () request from the Stream service, it
must write all of its state necessary for internalization to the StreamIO object provided by the
Stream service. StreamIO provides write_<type> () operations for writing each of the CORBA
basic data types, plus string types. If an object has object references that are part of its state, the
StreamIO write_object () operation may be used to cause the object specified by an object
reference to also be externalized to the Stream’s data.

Common Object Services, Volume 2 77

Service Structure Externalization Service Specification

Client calls Stream::externalize (Streamable object)

Stream writes a key for this object to the external representation.

If Streamable object is a node in a graph of related objects, flow is given
in Figure 5-2.

Streamable object writes out its non-object data using the primitive
StreamIO::write_...(data) functions.

Streamable object writes out other objects using the
Stream-IO::write_object(Streamable object) function.

Stream calls the Streamable::write_to_stream(StreamIO this_sio) so that the
object can write out whatever internal state it needs to save.

Figure 5-1 Externalization Control Flow (Streamable Object is Not a Node)

A Streamable object may be a node in a graph of related objects; that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundExternalization: :Node interface. Such a Streamable object simply delegates the
Streamable::externalize_to_stream () request back to the Stream service, using the
StreamIO::write_graph () operation.

The Stream service then coordinates the externalization of the graph and calls the object back
using the object’s CosCompoundExternalization: :Node interface.

78 X/Open Preliminary Specification (1995)

Externalization Service Specification Service Structure

Streamable object, recognising that it is a node in a graph of related objects,
delegates the externalization of the graph to the stream service using
StreamIO::write_graph(this_node) operation.

StreamIO object externalizes the involved relationships using
Relationship::externalize(). StreamIO writes traversal scoped IDs for the
externalized roles and relationships to the Stream's data.

StreamIO::write_graph coordinates the externalization of the graph using
Node::externalize_node(this_sio) operation.

Node writes out other objects using the
StreamIO::write_object(Streamable object) function.

Node writes out its role objects using the
Role::externalize_role(this_sio) operation.

StreamIO::write_graph uses propagation value to determine next nodes
and writes a key for next node.

Node writes out its non-object data using the primitive
StreamIO::write_...(data) functions.

Figure 5-2 Externalization Control Flow (Streamable Object is a Node)

5.2.4 Object Model of Internalization

When a Streamable object receives an internalize_from_stream () request from a Stream , it must
read data from the StreamIO object provided by the Stream service, and initialize its state to
match the externalized state. The externalizable object requests data from the Stream service
using the StreamIO read_<type> () operation for basic data and string types. If the object being
internalized includes a reference to another object as part of its state, the StreamIO read_object ()
operation may be used to have that object also internalized from the Stream’s data.

Common Object Services, Volume 2 79

Service Structure Externalization Service Specification

Client calls Streamable = Stream::internalize(FactoryFinder f)

Stream reads key from the external representation, and uses this and the factory
finder to create an object of the correct interface and implementation. The
stream may use the StreamableFactory interface.

If Streamable object is a node in a graph of related objects, flow is given
in Figure 5-4.

Streamable object reads in its non-object data using the primitive
StreamIO::read_...(data) functions.

Streamable object internalizes other objects using the Streamable =
StreamIO::read_object() function.

Stream calls the Streamable::read_from_stream(StreamIO this_sio) so that the
object can read the data in its external representation and reset or calculate its
internal state.

Figure 5-3 Internalization Control Flow (Streamable Object is Not a Node)

A Streamable object may be a node in a graph of related objects; that is, it may use the
Relationship Service to connect to other objects and support the
CosCompoundExternalization: :Node interface. Such a Streamable object simply delegates the
Streamable::internalize_from_stream () request back to the Stream service, using the
StreamIO::write_graph () operation.

The Stream service then coordinates the externalization of the graph and calls the object back
using the object’s CosCompoundExternalization: :Node interface.

80 X/Open Preliminary Specification (1995)

Externalization Service Specification Service Structure

Streamable object, recognising that it is a node in a graph of related objects,
delegates the internalization of the graph to the stream service using
StreamIO::read_graph(this_node) operation.

StreamIO object internalizes the traversal scoped identifiers for the
externalized roles and relationships and internalizes the relationships using
Relationship::internalize().

StreamIO::read_graph coordinates the internalization of the graph using
Node::internalize_node(this_sio) operation.

Node reads other objects using the StreamIO::read_object(Streamable
object) function.

Node reads its role objects using the Role::internalize_role(this_sio)
operation.

StreamIO::read_graph reads the key for next node and uses the
StreamableFactory interface to create the next node.

Node reads its non-object data using the primitive
StreamIO::read_...(data) functions.

Figure 5-4 Internalization Control Flow (Streamable Object is a Node)

Common Object Services, Volume 2 81

Object and Interface Hierarchies Externalization Service Specification

5.3 Object and Interface Hierarchies
This section identifies the objects required for the Externalization Service and important
inheritance and use relationships that exist between their interfaces.

The Externalization Service can only externalize and internalize objects that inherit the
Streamable interface. Streamable does not inherit any other interfaces. However, it must have
an associated StreamableFactory that the Externalization Service implementation can find and
use when internalizing the object.

Stream inherits the LifeCycleObject interface because clients of the Externalization Service need
to remove these objects. The StreamFactory or FileStreamFactory interfaces may be used to
create Stream objects.

In addition to the inheritance relationships described above, the class diagram in Figure 5-5 on
page 83 also shows the usage relationships between the service objects. Stream::externalize ()
and internalize () operations invoke the Streamable externalize_to_stream () and
internalize_from_stream () operations to write and read the appropriate object internal state. A
StreamIO object is passed as an argument to these operations. The externalized object
determines how much of its state must be put in the external representation, and can minimise
saved state by recreating some state upon internalization. The Streamable
externalize_to_stream () and internalize_from_stream () use StreamIO operations to actually put
various data types and contained object references in the external representation. This allows
StreamIO to put appropriate headers in the external representation so that the object can be
recreated correctly during internalization. The Stream is responsible for providing an object that
supports the StreamIO interface. The Stream object may support the StreamIO interface itself, or
create another object that supports the StreamIO interface. The Stream and StreamIO
implementations decide on the storage medium and data type representation conversion for
different hardware, without requiring different implementation of the objects being externalized.

82 X/Open Preliminary Specification (1995)

Externalization Service Specification Object and Interface Hierarchies

StreamableFactory

LifeCycleObject IdentifiableObject

Streamable

Stream

StreamIO

Relationship

Role

Node

StreamFactory

external_form_id
externalize_to_stream()
internalize_from_stream()

write_object()
read_object()
write_graph()
read_graph()
write_...
read_...

B B inherits from A

B A has B

B A uses B

A

A

A

Figure 5-5 Object Externalization Service Booch Class (=Interface)

Common Object Services, Volume 2 83

Interface Summary Externalization Service Specification

5.4 Interface Summary
The Externalization Service defines interfaces (using OMG IDL) to support the functionality
described in the previous sections. The following tables give high-level descriptions of the
Externalization Service interfaces. Subsequent sections describe the interfaces in more detail.

Interface Purpose Primary Client
Stream Holds external form of

objects.
Clients that need to externalize and
internalize objects.

StreamFactory Creates and initializes
Stream objects.

Clients that need to create Stream
objects.

FileStreamFactory Creates and initializes
Stream objects that store
data in a file.

Clients that need to create Stream
objects, and want the externalized date
in a file.

Table 5-1 Client Functional Interfaces

Table 5-1 shows the client functional interfaces which support the client model of
externalization.

Interface Purpose Primary Client
Streamable Provides its state to a

Stream for externalization,
and gets its state from the
Stream on internalization.

The Stream service implementation of
externalization and internalization.

StreamableFactory Creates and initializes
Streamable objects.

The Stream service internalization
implementation.

StreamIO Part of Stream
implementation that writes
and reads object state to
apparently converted
external form.

The externalizable objects that need to
record and retrieve their state from a
Stream .

Table 5-2 Service Construction Interfaces

Table 5-2 lists the service construction interfaces which support the service implementation
model of externalization.

84 X/Open Preliminary Specification (1995)

Externalization Service Specification Interface Summary

Interface Purpose Primary Client
Node Defines externalization and

internalization operations
on nodes on graphs of
related objects.

The Stream service implementation of
externalization and internalization.

Relationship Defines externalization and
internalization operations
on relationships.

The Stream service implementation of
externalization and internalization.

Role Defines externalization and
internalization operations
on relationships.

The Stream service implementation of
externalization and internalization.

Table 5-3 Compound Externalization Interfaces

Table 5-3 lists the compound externalization interfaces which support the service
implementation model graph of externalization.

Externalization Service Architecture: Audience/Bearer Mapping

Stream and StreamFactory are solely functional interfaces. Their audience is the client of the
Externalization Service.

Streamable , StreamableFactory and StreamIO are solely construction interfaces. The audience for
Streamable is both the Stream and StreamIO objects. To be externalizable, objects must inherit
the Streamable interface and provide implementations of its operations. The audience for the
StreamIO interface is the externalizable Streamable and StreamableNode objects. The StreamIO
objects are part of the Externalization Service implementation.

The Stream , StreamFactory and StreamIO objects are specific objects because their purpose is to
provide a part of the Externalization Service. However, there may be many Stream and StreamIO
instances in a system, since each represents a particular external representation of an object or
group of objects.

Streamable and StreamableFactory objects are generic objects because their primary purpose is
unrelated to the Externalization Service. Any definer or implementor of an object may choose to
inherit the Streamable interface in order to support externalization/internalization of that object.

In summary:

• Stream and StreamFactory are specific functional interfaces.

• Streamable and StreamableFactory are generic construction interfaces.

• StreamIO is a specific construction interface.

Common Object Services, Volume 2 85

The CosExternalization Module Externalization Service Specification

5.5 The CosExternalization Module
The client-functional interfaces defined by the CosExternalization module are:

• StreamFactory interface, which creates a Stream .

• FileStreamFactory interface, which has an operation that lets clients cause externalized data
be stored in a file or internalize objects from a file they have been given.

• Stream interface, which can externalize one object or a group of objects, finalise the
externalization, and internalize an object.

#include <LifeCycle.idl>
#include <Stream.idl> module CosExternalization {

exception InvalidFileNameError{ };
exception ContextAlreadyRegistered{ };
interface Stream: CosLifeCycle::LifeCycleObject{

void externalize(
in CosStream::Streamable theObject);

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle::NoFactory,
CosStream::StreamDataFormatError);

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();
void flush();

};
interface StreamFactory {

Stream create();
};
interface FileStreamFactory {

Stream create(
in string theFileName)

raises(InvalidFileNameError);
};

};

5.5.1 The StreamFactory Interface

Creating a Stream Object

stream create();

Clients of the Externalization Service must create a Stream object before they can externalize or
internalize any objects. Two factory interfaces are supported: the StreamFactory interface and
the FileStreamFactory interface. The StreamFactory interface has a create () operation that creates
a Stream without specifying any special characteristics of the implementation.

86 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosExternalization Module

5.5.2 The FileStreamFactory Interface

Creating a Stream Object

Stream create(
in string theFileName)

raises(InvalidFileNameError);

For clients that want to cause the externalized data stored in a file, or that need to internalize
objects from a file they have been given, the FileStreamFactory interface has a create () operation
that takes a string input parameter. The client sets this string to the filename of the file that will
be used by the Stream service to hold the external representation of the objects externalized, or
that contains the external representation of objects that the client wishes to internalize.
Stream::externalize () requests will append to any existing data in the file associated with a
Stream .

5.5.3 The Stream Interface

Externalizing an Object

void externalize(in CosStream::Streamable theObject);

Clients of the Externalization Service invoke externalize () on a Stream object passing the object
reference of a CosStream::Streamable object, theObject , to be externalized. Only objects that are
of type CosStream::Streamable can be externalized. Subsequently, clients invoke the
internalize () operation on the Stream containing the external representation, and Stream
internalize () operation creates a new object with state identical to what was externalized and
returns the new object reference.

The implementation of externalize () writes implementation-specific header information to the
external representation it is maintaining, so that the correct object can be recreated at
internalization time. This could be the factory key that was used to create the
CosStream::Streamable object, or could include the interface type, implementation repository, or
factory object names. The factory key may be obtained by from the external_form_id attribute of
theObject . The externalize () implementation must then invoke the CosStream::Streamable
externalize_to_stream () operation on theObject to cause the object’s internal state to be written
to the external representation. The Stream is responsible for providing an object that supports
the StreamIO interfaces for the externalizable object to use in writing data to the Stream service.

Externalizing Groups of Objects

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();

If a client wishes to externalize a set of objects with overlapping references and/or object
relationships, the client invokes begin_context () on the Stream . This must be called before
externalizing any of the set of objects, and end_context () must be called on the Stream after the
entire set of objects has been externalized and before the Stream is used with another set of
objects.

The Stream implementation establishes an association with the specified Stream object and a
logical context. The Stream ensures that all objects externalized to this Stream while this
association lasts will be externalized in such a way that internalization will not create any
duplicate objects. That is, the implementation of Stream checks for context, and for objects
externalized in the same context handles overlapping or circular references and/or relationships

Common Object Services, Volume 2 87

The CosExternalization Module Externalization Service Specification

between those objects. The association lasts until end_context () is called. The Stream raises the
ContextAlreadyRegistered exception if begin_context () is called and a context is already
established, perhaps through some other implementation-dependent mechanism or perhaps
because end_context () has not been called following a previous begin_context ().

Completing Externalization

void flush () ;

Clients invoke flush () to request that the external representation is committed to its final storage
medium, whatever that may be. The implementation of flush () should attempt to ensure that
the external representation is completely up-to-date in its final storage (for example, memory
buffer, file, tape, and so on).

Internalizing an Object

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)

raises(CosLifeCycle: :NoFactory,
CosStream::StreamDataFormatError);

The implementation of internalize () must create an object with the correct interface and
implementation to match the externalized representation and return a pointer to the new
CosStream::Streamable object. The internalize () implementation must then invoke the
internalize_from_stream () operation on the new object. The CosStream::StreamDataFormatError
exception should be raised if an error is detected in the data format of the object header. The
CosLifeCycle::NoFactory exception should be raised if the object cannot be created because an
appropriate factory cannot be found. If the object cannot be created due to other reasons, an
ObjectCreationError exception should be raised. Additional CosStream::StreamDataFormat
exceptions may be raised by the read_<type> () operations invoked by internalize_from_stream ()
operation due to errors in the externalized data format.

88 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosStream Module

5.6 The CosStream Module
The service construction interfaces defined by the CosStream module are:

• Streamable interface

• StreamableFactory interface

• StreamIO interface.

#include <LifeCycle.idl>
#include <ObjectIdentity.idl>
#include <CompoundExternalization.idl>
module CosStream {

exception ObjectCreationError{ };
exception StreamDataFormatError{};
interface StreamIO;

interface Streamable:
CosObjectIdentity: :IdentifiableObject {

readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(

in StreamIOtargetStreamIO);
void internalize_from_stream(

in StreamIOsourceStreamIO,
in FactoryFinder there);

raises(CosLifeCycle::NoFactory,
ObjectCreationError,
StreamDataFormatError);

};

interface StreamableFactory {
Streamable create_uninitialized();

};

interface StreamIO {
void write_string(in string aString);
void write_char(in char aChar);
void write_octet(in octet anOctet);
void write_unsigned_long(

in unsigned long anUnsignedLong);
void write_unsigned_short(

in unsigned short anUnsignedShort);
void write_long(in long aLong);
void write_short(in short aShort);
void write_float(in float aFloat);
void write_double(in double aDouble);
void write_boolean(in boolean aBoolean);
void write_object(in Streamable aStreamable);
void write_graph(in CosCompoundExternalization: :Node);
string read_string()

raises(StreamDataFormatError);
char read_char()

raises(StreamDataFormatError);
octet read_octet()

raises(StreamDataFormatError);
unsigned long read_unsigned_long()

raises(StreamDataFormatError);
unsigned short read_unsigned_short()

raises(StreamDataFormatError);

Common Object Services, Volume 2 89

The CosStream Module Externalization Service Specification

long read_long()
raises(StreamDataFormatError);

short read_short()
raises(StreamDataFormatError);

float read_float()
raises(StreamDataFormatError);

double read_double()
raises(StreamDataFormatError);

boolean read_boolean()
raises(StreamDataFormatError);

Streamable read_object(
in FactoryFinder there,
in Streamable aStreamable)

raises(StreamDataFormatError);
void read_graph(

in CosCompoundExternalization: :Node starting_node,
in FactoryFinder there) raises(StreamDataFormatError);

};
};

5.6.1 The StreamIO Interface

The write_<type> () and read_<type> () operations on StreamIO are used by Streamable
externalize_to_stream () and internalize_from_stream () operations to cause internal object state to
be written to or read from the external representation. The externalize_to_stream () decomposes
the internal state of an object in a series of primitive data type values that can be written and
read with these operations. StreamIO supports writing and reading all the CORBA basic data
types.

The implementation of the write... () and read... () operations are responsible for any desired
conversion of the data and transferring the data to or from the desired external representation.
Actual transfer of the representation to the final storage medium may be deferred until the
flush () operation. All details of the external representation format, storage medium and
buffering are specific to the implementation. Different implementations may support buffering
of the external representation data in memory, converting data values to a canonical binary form
for exchange across big/little endian CPU hardware, conversion of data to a canonical text form
for readability, or to facilitate mailing objects across networks, use of various storage mediums
such as memory, filesystem, tape or other differences. See Section 5.11 on page 100 for
information on a portable external representation. A StreamDataFormatError exception should
be raised if errors are detected in the data format of the external representation.

In support of integrating the Externalization Service with the Transaction and Persistent Object
Services, the read_object () operation supports the internalization to existing objects. The
semantics of the operation are that if the Streamable parameter is Null , then the FactoryFinder
parameter is used to create an instance for internalize. If the Streamable parameter is not Null ,
then the StreamIO implementation will internalize to the Streamable object. This semantic
allows the Externalization Service to be used as a Persistent Object Service protocol and to
support the restore () operation on existing objects in the case of an aborted transaction.

90 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosStream Module

5.6.2 The Streamable Interface

Object implementors must inherit from the Streamable interface if they want an object to be
externalizable. Three operations must be implemented.

Comparing Streamable Objects

boolean CosObjectIdentity: :IdentifiableObject::is_identical(
in CosObjectIdentity: :IdentifiableObject anObject);

readonly unsigned long constant_random_id;

A Streamable object inherits from CosObjectIdentity: :IdentifiableObject , and therefore must
support a constant_random_id attribute and an is_identical () operation. The Stream service uses
these to compare objects when detecting cycles or overlapping references in objects being
externalized to the same Stream in the same context or within the same graph. The
constant_random_id attribute value does not have to be unique, but a unique value may
substantially speed up the externalization process.

Creation Key for a Streamable Object

readonly attribute CosLifeCycle::Key external_form_id;

A Streamable object must support a read-only attribute, external_form_id , which is a key that can
be given to a factory finder in order to find a factory that could have created this object. The
Stream service may use this attribute during internalization to create an object that can
reinitialize itself from the externalized data.

Writing the Object State to a Stream

void externalize_to_stream(
in StreamIOtargetStreamIO);

The externalize_to_stream () operation is responsible for decomposing an externalizable object’s
internal state into a series of primitive data type values and object references. The
externalize_to_stream () function must write out all the necessary primitive data values using the
write_<type> () operations on the targetStreamIO for non-object data types. If this object has
other object references, then, normally, those objects should also be written out using the
write_object () operation on the targetStreamIO . However, it is up to the Streamable implementor
to decide which referenced objects should be externalized with this object. The primitive data
values must all be written before any of the embedded object references are written.

If the Streamable object is a node in a graph, then it should delegate the externalize_to_stream ()
to the StreamIO by invoking write_graph (). The object would subsequently receive an
externalize_node_to_stream () and write out its internal state as described above. Node objects
should not call write_object () for other nodes in their graph, but may call write_object () for
object references that are not for nodes in their graph.

Reinitializing the Object State from a Stream

void internalize_from_stream(
in StreamIOsourceStreamIO,
in FactoryFinder there);

The internalize_from_stream () operation is responsible for reinitializing the object’s internal state
from the series of primitive data type values and object references that are written/flattened
during externalize_to_stream (). The internalize_from_stream () operation should read in all the
necessary internal state of the object using the read_<type> () operations on the sourceStreamIO

Common Object Services, Volume 2 91

The CosStream Module Externalization Service Specification

for non-object data types. If this object has other object references that were externalized using
write_object (), then those objects should be recreated using the read_object () operation on the
sourceStreamIO with the same FactoryFinder argument as the there parameter passed in to the
internalize_from_stream () operation. The read_<type> () and read_object () operations for the
various portions of the object’s internal state must be invoked in the same order in which they
are written by the externalize_to_stream () implementation. The internalize_from_stream () must
also initialize any additional state that was not externalized because it can be derived from other
state information. Therefore, the externalize_to_stream () and internalize_from_stream ()
operations must be designed to complement each other.

If the Streamable object is a node in a graph, then it should delegate the internalize_to_stream ()
to the sourceStreamIO by invoking read_graph () with the same FactoryFinder argument as the
there parameter passed in to the internalize_from_stream () operation. The Streamable (also
Node) object would subsequently receive an internalize_node_to_stream () and read in its internal
state as described above. Node objects should not call read_object () for other nodes in their
graph, but may call read_object () for object references that are not for nodes in their graph.

The ObjectCreationError and StreamDataFormatError exceptions originate from the read_<type> ()
operations on the sourceStreamIO , and are not explicitly raised by the internalize_from_stream ()
code.

5.6.3 The StreamableFactory Interface

Creating a Streamable Object

Streamable create_uninitialized ();

The Stream service must be able to create a Streamable object in order to internalize an object
from the Stream’s externalized data. For any externalizable object, a StreamableFactory object
must exist that supports creation of that object. This factory must be findable using the read-
only external_form_id Key attribute of the Streamable object. The Stream service implementation
could store this key during externalization and use it during internalization to find the factory
that can create the externalized object. However, a Stream implementation may use other means
to create the object during internalization. The create_uninitialized () operation on the
StreamableFactory should create the associated Streamable object. This Streamable object does
not have to be initialized, since that can be done on the subsequent internalize_from_stream ()
operation on the newly created Streamable object.

92 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosCompoundExternalization Module

5.7 The CosCompoundExternalization Module
If a Streamable object participates as a node in a graph of related objects, the Streamable object
can delegate the externalization operation to the Stream service. In particular, the Streamable
object simply uses the write_graph () operation. The write_graph () operation expects a
Streamable object reference as a starting node. The Stream service narrows the Streamable object
reference to CosCompoundExternalization: :Node . The write_graph () then coordinates the orderly
externalization of the graph of related objects. For more details on compound operations, see
Chapter 6 on page 103 and the Life Cycle Service specification in Common Object Services,
Volume 1.

The CosCompoundExternalization module defines the Node , Role , Relationship and
PropagationCriteriaFactory interfaces for use by the write_graph () operation.

The CosCompoundExternalization module is shown below. Detailed descriptions of the
interfaces follow.

#include <Graphs.idl>
#include <Stream.idl>

module CosCompoundExternalization {
interface Node;
interface Role;
interface Relationship;
interface PropagationCriteriaFactory;

struct RelationshipHandle {
Relationship theRelationship;
::CosObjectIdentity: :ObjectIdentifier constantRandomId;

};
interface Node : ::CosGraphs::Node, ::CosStream::Streamable{

void externalize_node (in ::CosStream::StreamIO sio);
void internalize_node (in ::CosStream::StreamIO sio,

in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);
};

interface Role : ::CosGraphs::Role {
void externalize_role (in ::CosStream::StreamIO sio);
void internalize_role (in ::CosStream::StreamIO sio);
::CosGraphs::PropagationValue externalize_propagation (

in RelationshipHandle rel,
in ::CosRelationships: :RoleName toRoleName,
out boolean sameForAll);

};
interface Relationship :

::CosRelationships: :Relationship {
void externalize_relationship (

in ::CosStream::StreamIO sio);
void internalize_relationship(

in ::CosStream::StreamIO sio,
in ::CosGraphs::NamedRoles newRoles);

::CosGraphs::PropagationValue externalize_propagation (
in ::CosRelationships: :RoleName fromRoleName,
in ::CosRelationships: :RoleName toRoleName,
out boolean sameForAll);

};

Common Object Services, Volume 2 93

The CosCompoundExternalization Module Externalization Service Specification

interface PropagationCriteriaFactory {
::CosGraphs::TraversalCriteria create_for_externalize();

};
};

5.7.1 The Node Interface

The Node interface defines operations to internalize and externalize a node.

Externalizing a Node

void externalize_node (in ::CosStream::StreamIO sio);

The externalize_node () operation transfers the Node’s state to the Stream given by the sio
parameter. It is the Node’s responsibility to externalize it’s roles as well. The Node can
accomplish this by writing the role’s key to the Stream and using the Role::externalize_role ()
operation.

Internalizing a Node

void internalize_node (in ::CosStream::StreamIO sio,
in ::CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (::CosLifeCycle::NoFactory);

The internalize_node () operation causes a Node and its roles to be internalized from the Stream
sio .

It is the Node’s responsibility to create and internalize its roles. It can do this by reading the key
for a role from the Stream and using the CosStream::StreamableFactory interface to create the
uninitialized role and the CosCompoundExternalization: :internalize_role () operation to
internalize the role. The new roles should be co-located with the factory finder given by the
there parameter.

The result of an internalize_node () operation is a sequence of roles.

Figure 5-6 illustrates the result of an internalize (). A Node , when it is born, is not in any
relationships with other objects. That is, the roles in the new Node are disconnected. It is the
read_graph () operation’s job to correctly establish new relationships.

internalized
document

Figure 5-6 Internalizing a Node Returns New Object and Corresponding Roles

If an appropriate factory to internalize the roles cannot be found, the NoFactory exception is
raised. The exception value indicates the key used to find the factory.

94 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosCompoundExternalization Module

In addition to the NoFactory exception, implementations may raise standard CORBA exceptions.
For example, if resources cannot be acquired for the internalized node, NO_RESOURCES will be
raised.

5.7.2 The Role Interface

The Role interface defines operations to externalize and internalize a role. The Role interface
also defines an operation to return the propagation value for the externalize () operation.

The implementation of a CompoundExternalization: :Node () operation can call these operations
on roles. For example, an implementation of externalize on a node can call the externalize ()
operation on the Role .

Externalizing a Role

void externalize_role (in ::CosStream::StreamIO sio);

The externalize_role () operation transfers the Role’s state to the Stream sio .

Internalizing a Role

void internalize_role (in ::CosStream::StreamIO sio);

The internalize_role () operation causes a Role to read its state from the Stream given by sio .

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in::CosRelationships: :RoleName toRoleName,
out boolean sameForAll);

The externalize_propagation () operation returns the propagation value to the role toRoleName
for the externalize () operation and the relationship rel . If the Role can guarantee that the
propagation value is the same for all relationships in which it participates, sameForAll is true.

5.7.3 The Relationship Interface

The Relationship interface defines operations to externalize and internalize a relationship. The
Relationship interface also defines an operation to return the propagation values for the
externalize () operation.

Externalizing the Relationship

void externalize_relationship (
in ::CosStream::StreamIO sio);

The externalize_role () operation transfers the Role’s state to the Stream sio .

Internalizing the Relationship

void internalize_relationship(
in ::CosStream::StreamIO sio,
in::CosGraphs::NamedRoles newRoles);

The internalize_relationship () operation internalizes the state of a relationship from the Stream
given by sio .

The values of the internalized relationship’s attributes are defined by the implementation of this
operation. However, the named_roles attribute of the newly created relationship must match

Common Object Services, Volume 2 95

The CosCompoundExternalization Module Externalization Service Specification

newRoles . That is, the internalized relationship relates objects represented by the newRoles
parameter, not by the original relationship’s named roles.

Getting a Propagation Value

::CosGraphs::PropagationValue externalize_propagation (
in::CosRelationships: :RoleName fromRoleName,
in::CosRelationship: :RoleName toRoleName,
out boolean sameForAll);

The propagation_for () operation returns the relationship’s propagation value from the role
fromRoleName to the role toRoleName for the externalize () operation. If the role named by
fromRoleName can guarantee that the propagation value is the same for all relationships in
which it participates, SameForAll is true.

5.7.4 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for traversing a
graph of related objects. The service accepts a call-back object supporting the
::CosGraphs::TraversalCriteria interface. Given a node, this object defines which edges to emit
and which nodes to visit next.

The PropagationCriteriaFactory creates a TraversalCriteria object that determines which edges to
emit and which nodes to visit based on propagation values for the compound externalization
operations.

Create a Traversal Criteria Based on Externalization Propagation

::CosGraphs::TraversalCriteria create_for_externalize();

The create () operation returns a TraversalCriteria object for an operation op () that determines
which edges to emit and which nodes to visit based on propagation values for op (). For a more
detailed discussion see Section 6.4.2 on page 132.

96 X/Open Preliminary Specification (1995)

Externalization Service Specification Specific Externalization Relationships

5.8 Specific Externalization Relationships
The Relationship Service defines two important relationships: containment and reference.
Containment is a one-to-many relationship. A container can contain many containees; a
containee is contained by one container. Reference, on the other hand, is a many-to-many
relationship. An object can reference many objects; an object can be referenced by many objects.

Containment is represented by a relationship with two roles: the ContainsRole and the
ContainedInRole . Similarly, reference is represented by a relationship with two roles:
ReferencesRole and ReferencedByRole .

Compound externalization adds externalization semantics to these specific relationships. That
is, it defines propagation values for containment and reference.

Common Object Services, Volume 2 97

The CosExternalizationContainment Module Externalization Service Specification

5.9 The CosExternalizationContainment Module
The CosExternalizationContainment module defines the following interfaces:

• Relationship interface

• ContainsRole interface

• ContainedInRole interface.

#include <Containment.idl>
#include <CompoundExternalization.idl>

module CosExternalizationContainment {

interface Relationship :
::CosCompoundExternalization: :Relationship,
::CosContainment::Relationship { };

interface ContainsRole :
::CosCompoundExternalization: :Role,
::CosContainment::ContainsRole { };

interface ContainedInRole :
::CosCompoundExternalization: :Role,
::CosContainment::ContainedInRole { }; };

The CosExternalizationContainment module does not define new operations. It merely mixes in
interfaces from the CosCompoundExternalization and CosContainment modules. Although it
does not add any new operations, it refines the semantics of these operations.

The CosExternalizationContainment: :ContainsRole::propagation_for () operation returns the
following:

ContainsRole to ContainedInRoleOperation

externalize () deep

The CosExternalizationContainment: :ContainedInRole: :propagation_for operation returns the
following:

ContainedInRole to ContainsRoleOperation

externalize () None.

The CosRelationships: :RoleFactory::create_role operation will raise the RelatedObjectTypeError if
the related object passed as a parameter does not support the
CosCompoundExternalization: :Node interface.

The CosRelationships: :RelationshipFactory::create () operation will raise DegreeError if the
number of roles passed as arguments is not 2. It will raise RoleTypeError if the roles are not
CosExternalizationContainment: :ContainsRole and
CosExternalizationContainment: :ContainedInRole . It will raise MaxCardinalityExceeded if the
CosExternalizationContainment: :ContainedInRole is already participating in a relationship.

98 X/Open Preliminary Specification (1995)

Externalization Service Specification The CosExternalizationReference Module

5.10 The CosExternalizationReference Module
The CosExternalizationReference module defines these interfaces:

• Relationship interface

• ReferencesRole interface

• ReferencedByRole interface.

#include <Reference.idl>
#include <CompoundExternalization.idl>

module CosExternalizationReference {

interface Relationship :
::CosCompoundExternalization: :Relationship,
::CosReference::Relationship { };

interface ReferencesRole :
::CosCompoundExternalization: :Role,
::CosReference::ReferencesRole { };

interface ReferencedByRole :
::CosCompoundExternalization: :Role,
::CosReference::ReferencedByRole { }; };

The CosExternalizationReference module does not define new operations. It merely mixes in
interfaces from the CosCompoundExternalization and CosReference modules. Although it does
not add any new operations, it refines the semantics of these operations.

The CosExternalizationReference: :ReferencesRole::propagation_for () operation returns the
following:

ReferencesRole to ReferencedByRoleOperation

externalize () None.

The CosExternalizationReference: :ReferencedByRole::propagation_for () operation returns the
following:

ReferencedByRole to ReferencesRoleOperation

externalize () None.

The CosRelationships: :RoleFactory::create_role () operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not support the
CosCompoundExternalization: :Node interface.

The CosRelationships: :RelationshipFactory::create () operation will raise DegreeError if the
number of roles passed as arguments is not 2. It will raise RoleTypeError if the roles are not
CosExternalizationReference: :ReferencesRole and
CosExternalizationReference: :ReferencedByRole .

Common Object Services, Volume 2 99

Standard Stream Data Format Externalization Service Specification

5.11 Standard Stream Data Format
An externalization client may create a Stream that supports a specific external representation
data format that is intended to be portable across different CORBA implementations and on
different CPU hardware. A client creates such a Stream object using a factory found by
specifying a Key whose only NameComponent has a NameComponent::id whose value is the
string literal StandardExternalizationFormat .

That format is described in this section.

Externalized Object Data

1 byte
tag byte = x’F0’ Key info Object info

A leading ‘‘tag’’ byte with a value of x’F0’ marks the beginning of an object’s externalized data.
Following this is data associated with a Key that can be used to internalize the object. The Key
information is then followed by the data written to the StreamIO for the object’s state.

Key Info

1 byte
length = i 1st id string 2nd id string ... i’th id string

The Key information consists of a byte containing an integer value, ‘‘i’’, that indicates how many
Naming::NameComponents make up the associated Key .

This byte is followed by ‘‘i’’ null-terminated sequences of char values that represent the
Naming::NameComponent::id values for the Key . These values correspond to the C mapping of a
CORBA string type. The NameComponent::kind values are not stored in this external data
format.

Object Info

1 byte 1 byte
tag byte data value tag byte data value ...

The object information is the sequence of bytes generated for one or more write_<type> ()
operations. For each write_<type> () operation, a single ‘‘tag’’ byte identifying the type of the
primitive data is followed by the data. The tag byte gives the internalization implementation
enough information to skip past object state for objects that cannot be created; for example,
when a compatible implementation cannot be found on the internalizing ORB.

The tag byte values and data formats for each type are as indicated below for basic CORBA data
types:

100 X/Open Preliminary Specification (1995)

Externalization Service Specification Standard Stream Data Format

Tag CORBA Type Data Format
x’F1’ Char one byte
x’F2’ Octet one byte
x’F3’ Unsigned Long four bytes, big_endian format
x’F4’ Unsigned Short two bytes, big_endian format
x’F5’ Long four bytes, big_endian format
x’F6’ Short two bytes, big_endian format

four bytes, IEEE 754 single precision format, sign
bit first byte

x’F7’ Float

eight bytes, IEEE 754 single precision format,
sign bit first byte

x’F8’ Double

x’F9’ Boolean TRUE => one byte == 1, FALSE => one byte == 0
x’FA’ String null terminated sequence of bytes

5.11.1 Externalized Repeated Reference Data

1 byte 4 bytes
x’04’ Object number

This format is used only when multiple objects reference the same object. Instead of storing the
referenced object multiple times, the duplicate reference objects are stored in this format. Note
that the object is represented by a long object number which indicates that the object has been
stored already.

5.11.2 Externalized NIL Data

1 byte
x’05’

This is a special format used to indicate that there is no object stored in the Stream .

Common Object Services, Volume 2 101

Externalization Service Specification

102 X/Open Preliminary Specification (1995)

Chapter 6

Relationship Service Specification

6.1 Service Description
Distributed objects are frequently used to model entities in the real world. As such, distributed
objects do not exist in isolation. They are related to other objects.

Consider some examples of real-world entities and relationships:

• A person owns cars; a car is owned by one or more persons.

• A company employs one or more persons; a person is employed by one or more companies.

• A document contains figures; a figure is contained in a document.

• A document references a book; a book is referenced by one or more documents.

• A person checks out books from libraries. A library checks out books to people. A book is
checked out by a person from a library.

These examples demonstrate several relationships:

• ownership relationships between people and cars

• employment relationships between companies and people

• containment relationships between documents and figures

• reference relationships between books and documents

• check out relationships between people, books and libraries.

Such relationships can be characterised along a number of dimensions:

• Type

Related entities and the relationships themselves are typed. In the examples, employment is a
relationship defined between people and companies. The type of the relationship constrains
the types of entities in the relationship; a company cannot employ a monkey since a monkey
is not a person. Furthermore, employment is distinct from other relationships between
people and companies.

• Roles of Entities in Relationships

A relationship is defined by a set of roles that entities have. In an employment relationship, a
company plays an employer role and a person plays an employee role.

A single entity can have different roles in distinct relationships. Note that a person can play
the owner role in an ownership relationship and the employee role in an employment
relationship.

• Degree

Degree refers to the number of required roles in a relationship. The check out relationship is
a ternary relationship; it has three roles: the borrower role, the lender role and the material
role. A person plays the borrower role, a library plays the lender role, and a book plays the
material role. Ownership, employment, containment and reference, on the other hand, are
degree 2, or binary relationships.

Common Object Services, Volume 2 103

Service Description Relationship Service Specification

• Cardinality

For each role in a relationship type, the maximum cardinality specifies the maximum number
of relationships that may involve that role.

The containment relationship is a many-to-one relationship; a document contains many
figures; a figure is contained in exactly one document. A many-to-many relationship is
between two sets of entities. The ownership example is a many-to-many relationship; a
person can own multiple cars; a car can have multiple owners. The check out relationship is
a many-to-one-to-many relationship. A person can check out many books from many
libraries. A book is checked out by one person from one library and a library can loan many
books to many people.

• Relationship Semantics

Relationships often have relationship-specific semantics; that is, they define operations and
attributes. For example, job title is an attribute of the employment relationship, while it is not
an attribute of an ownership relationship. Similarly, due date is an attribute of the check out
relationship.

For more discussion on object-oriented modelling and design with relationships, see the
referenced Object-oriented Modelling and Design.

6.1.1 Key Features of the Relationship Service

• The Relationship Service allows entities and relationships to be explicitly represented.
Entities are represented as CORBA objects. The service defines two new kinds of objects:
relationships and roles. A role represents a CORBA object in a relationship. A relationship is
created by passing a set of roles to a relationship factory.

• Relationships of arbitrary degree can be defined.

• Type and cardinality constraints can be expressed and checked. Exceptions are raised when
cardinality and type constraints are violated. The Relationship Service does not define a new
type system. Instead, the OMG IDL type system is used to represent relationship and role
types. This allows the service to leverage CORBA solutions for type federation.

• The Relationship interface can be extended to add relationship-specific attributes and
operations. Similarly, the Role interface can be extended to add role-specific attributes and
operations.

• The Relationship Service defines three levels of service: base, graph and specific.

• The base level defines relationships and roles.

• When objects are related, they form graphs of related objects. The graph level extends the
base level service with nodes and traversal objects. Traversal objects iterate through the
edges of a graph. Traversals are useful in implementing compound operations on graphs,
among other things.

• Specific relationships are defined by the third level.

A conforming Relationship Service implementation must implement level 1 or levels 1 and 2 or
levels 1, 2 and 3.

• Appendix C, Life Cycle Operations on Distributed Object Graphs, of Common Object
Services, Volume 1 defines operations to copy, move and remove graphs of related objects.

• The Relationship Service requires a notion of object identity. As such, it defines a simple,
efficient mechanism for supporting object identity in a heterogeneous, CORBA-based

104 X/Open Preliminary Specification (1995)

Relationship Service Specification Service Description

environment. This mechanism may be used for other services.

• Distributed implementations of the Relationship Service can have navigation performance
and availability similar to CORBA object references; role objects can be co-located with their
objects and need not depend on a centralised repository of relationship information. As
such, navigating a relationship can be a local operation.

• The Relationship Service allows so-called immutable objects to be related. There are no
required interfaces that objects being related must support. As such, objects whose state and
implementation were defined prior to the definition of the Relationship Service can be related
objects.

• The Relationship Service allows graphs of related objects to be traversed without activating
related objects.

• The Relationship Service is extensible. Programmers can define additional relationships.

6.1.2 The Relationship Service versus CORBA Object References

The CORBA Specification defines object references that clients use to issue requests on objects.
Object references can be stored persistently. When is it appropriate to use object references and
when is it appropriate to use the Relationship Service?

The Relationship Service is appropriate to use when an application needs any of the following
capabilities that are not available with CORBA object references.

Relationships that are Multi-directional

When objects are related using the Relationship Service, the relationship can be navigated from
any role to any other role. The service maintains the relationship between related objects.
CORBA object references, on the other hand, are unidirectional. Objects that possess CORBA
object references to each other can only do so in an ad hoc fashion; there is no way to maintain
and manipulate the relationship between the objects.

Relationships that Allow Third-party Manipulation

Since roles and relationships are themselves CORBA objects, they can be exported to third
parties. This allows third parties to manipulate the relationship. For example, a third party
could create, destroy or navigate the relationship. Third parties cannot manipulate object
references.

Traversals that are Supported for Graphs of Related Objects

When objects are related using the Relationship Service, they form graphs of related objects.
Interfaces are defined by the Relationship Service to support traversing the graph.

Relationships and Roles that can be Extended with Attributes and Behaviour

Relationships have relationship-specific semantics. For example, the employment relationship
has a job title attribute. Since relationships and roles are objects with well-defined OMG IDL
interfaces, they can be extended through OMG IDL inheritance to add such relationship-specific
attributes and operations.

Common Object Services, Volume 2 105

Service Description Relationship Service Specification

6.1.3 Resolution of Technical Issues

Modelling and Relationship Semantics

An application designer models a problem as a set of objects and the relationships between
those objects. Using OMG IDL, the application designer directly represents the objects of the
model. Using the Relationship Service, the application designer directly represents the roles and
relationships of the model.

The Relationship and Role interfaces can be extended using OMG IDL inheritance to add
relationship and role-specific attributes and operations. For example, a designer might define
the employment relationship to have an operation returning a job title.

Managing Relationships

The RelationshipFactory interface defines an operation to create a relationship, given a set of
roles. The Role and Relationship interfaces define operations to delete and navigate
relationships between objects.

Constraining Relationships

Type, cardinality and degree constraints on relationships are expressed in the interfaces.

The RoleFactory::create_role operation can raise a RelatedObjectTypeError exception. This
allows implementations of the Role interface to place further constraints on the type of the
related objects. For example, an EmployedByRole can ensure related objects are people. An
attempt to have it represent a monkey would raise a RelatedObjectTypeError exception.

Similarly, the RelationshipFactory::create () operation can raise a RoleTypeError exception. This
allows implementations of the Relationship interface to put constraints on the type of the roles.
For example, an employment relationship can ensure there is an EmployerRole and an
EmployeeRole .

The RelationshipFactory::create () operation can also raise a DegreeError exception. This ensures
that there are the correct number of roles.

Maximum cardinality constraints are enforced by the role objects themselves. A role can raise a
MaxCardinalityExceeded exception and refuse to participate in a relationship if its maximum
cardinality would be exceeded. Roles define an operation to ask if their minimum cardinality
constraint is being met.

Referential Integrity

If the Relationship Service is used in an environment supporting transactions, strict referential
integrity is achieved. That is, if a related object refers to another (via a relationship), then the
other related object will also refer to it. Without transactions, strict referential integrity cannot
be achieved since a failure during execution of the relationship construction protocol could
cause a dangling reference.

106 X/Open Preliminary Specification (1995)

Relationship Service Specification Service Description

Relationships and Roles as First Class Objects

Our design defines both relationships and roles as first class objects. This is extremely important
because it encapsulates and abstracts the state to represent the relationship, allows third-party
manipulation of the relationship, and allows the roles and relationships themselves to support
operations and attributes.

Different Models for Navigating and Constructing Relationships

The Relationship Service defines interfaces for constructing and navigating relationships
component-by-component. These building block operations can be used by a higher-level
service, such as a query service.

Efficiency Considerations

Our design has several features that allow for highly optimised implementations. Performance
optimisations are achieved by clustering and/or caching of connection information.

Clients can cluster related objects and their roles by their selection of factories.

Our design defines the containment relationship logically. It does not imply physical clustering
of state or execution. However, it serves as a good hint to implementations for clustering. An
environment can choose to cluster containers and contained objects.

The get_other_related_object () operation can be implemented to cache remote related objects.
The cached information is immutable; once a relationship is established, the roles and related
objects will not change.

Common Object Services, Volume 2 107

Service Structure Relationship Service Specification

6.2 Service Structure
This section provides information about the levels of service; the specification is organised
around these levels. It also describes the hierarchy of Relationship Service interfaces and
explains the main purpose of each interface.

6.2.1 Levels of Service

The Relationship Service defines three levels of service: base relationships, graphs of related objects
and specific relationships. The specification is organised around these levels.

Level One: Base Relationships

The Relationship and Role interfaces define the base Relationship Service. Figure 6-1 illustrates
two instances of the containment relationship. The document plays the container role; the figure
and the logo play the containee role.

The diamond is an object supporting the Relationship interface. The small circles are objects
supporting the Role interface.

document

figure

logo

Figure 6-1 Base Relationships

Roles represent objects in relationships. Roles have a maximum cardinality. As illustrated, the
container role can be involved in many instances of a relationship. The containee roles can only
be involved in a single instance of a relationship.

Figure 6-2 on page 109 illustrates the navigation functionality of relationships; for example, the
arrow between a role and another role indicates it is possible to navigate from one role to
another. The arrow does not, however, indicate that the object reference to the other role is
necessarily stored by the role.

108 X/Open Preliminary Specification (1995)

Relationship Service Specification Service Structure

document figure

Figure 6-2 Navigation Functionality of Base Relationships

Figure 6-2 lists the interfaces to support relationships and roles. Section 6.3 on page 114 specifies
the interfaces in detail.

Level Two: Graphs of Related Objects

Distributed objects do not exist in isolation. They are connected together. Objects connected
together form graphs of related objects. The Relationship Service defines the Traversal interface.
The Traversal interface defines an operation to traverse a graph. The traversal object cooperates
with extended roles supporting the CosGraphs::Role interface and objects supporting the Node
interface.

Figure 6-3 on page 110 illustrates a graph of related objects. The folder, the figure, the logo and
the book all support the Node interface. The small circles are roles supporting the
CosGraphs::Role interface.

Common Object Services, Volume 2 109

Service Structure Relationship Service Specification

document

folder

book

library

person

logo

figure

containment

reference

check_out

Figure 6-3 Example Graph of Related Objects

Figure 6-3 lists the interfaces to support graphs of related objects. Section 6.4 on page 130
specifies the interfaces in detail.

Level Three: Specific Relationships

Containment and reference are two important relationships. The Relationship Service defines
these two binary relationships.

Figure 6-4 on page 111 and Figure 6-5 on page 111 list the interfaces defining specific
relationships. Section 6.5 on page 142 specifies the interfaces in detail.

110 X/Open Preliminary Specification (1995)

Relationship Service Specification Service Structure

6.2.2 Hierarchy of Relationship Interface

The Relationship interfaces are arranged into the interface hierarchy illustrated in Figure 6-4.

Relationship

Containment Reference

CosRelationships module
(Base level)

specific relationships

Figure 6-4 Relationship Interface Hierarchy

6.2.3 Hierarchy of Role Interface

The Role interfaces are arranged into the interface hierarchy illustrated in Figure 6-5.

CosGraphs::Role

CosRelationships::Role

ReferencesRole

ReferencedByRoleContainedInRole

ContainsRole

CosGraphs module
(graph level)

CosRelationships module
(Base level)

specific relationships

Figure 6-5 Role Interface Hierarchy

The Role interface defines operations to efficiently navigate relationships between related
objects.

The CosGraphs::Role interface defines an operation to return the edges that involve the role.
This is used by the traversal service defined at the graph level.

Finally, ContainsRole , ContainedInRole , ReferencesRole and ReferencedByRole are specific roles
for two important relationships: containment and reference.

Common Object Services, Volume 2 111

Service Structure Relationship Service Specification

6.2.4 Interface Summary

The Relationship Service defines interfaces to support the functionality described in Section 6.2
on page 108.

Table 6-1 through Table 6-5 on page 113 give high-level descriptions of the Relationship Service
interfaces. This chapter also describes the interfaces in detail.

Interface Purpose Primary Clients
CosObjectIdentity: :
IdentifiableObject

To determine whether two
objects are identical.

There are many clients. The
graph level of the Relationship
Service is one.

Table 6-1 Interfaces Defined in the CosObjectIdentity Module

Interface Purpose Primary Clients
CosRelationships: :
Relationship

Represents an instance of a
relation type.

Clients that navigate between
related objects.

RelationshipFactory Supports the creation of
relationships.

Clients establishing
relationships.

Role Defines navigation operations
for relationships. Implements
type and cardinality constraints.

Clients that navigate between
related objects. Relationship
factories.

RoleFactory Supports the creation of roles. Objects participating in
relationships.

RelationshipIterator Iterates the relationships in
which a particular role object
participates.

Clients that navigate
relationships.

Table 6-2 Interfaces Defined in the CosRelationship Module

112 X/Open Preliminary Specification (1995)

Relationship Service Specification Service Structure

Interface Purpose Primary Clients
CosGraphs::
Traversal

Defines an operation to traverse
a graph, given a starting node
and traversal criteria.

Clients that want a standard
service to traverse graphs.

TraversalFactory Supports the creation of a
traversal object.

Clients that want a standard
service to traverse graphs.

TraversalCriteria Provides navigation behaviour
between nodes.

Traversal implementations.

Role Extends the
CosRelationships: :Role interface
to return edges.

Clients that traverse graphs of
related objects.

EdgeIterator Returns additional edges from a
role.

Clients that traverse graphs of
related objects.

Node Defines operations for a related
object to reveal its roles.

Clients that traverse graphs of
related objects.

NodeFactory

Supports the creation of nodes. Clients that create nodes in
graphs.

Table 6-3 Interfaces Defined in the CosGraph Module

Interface Purpose Primary Clients
CosReferences::
Relationship

Clients that depend on reference
relationship type.

Many-to-many relationship.

ReferencesRole Represents an object that
references other objects.

Clients that navigate reference
relationships between objects.

ReferencedByRole Represents an object that is
referenced by other objects.

Clients that navigate reference
relationships between objects.

Table 6-4 Interfaces Defined in the CosReferences Module

Interface Purpose Primary Clients
CosContainments::
Relationship

Clients that depend on
containment relationship type.

One-to-many relationship.

ContainsRole Represents an object that
contains other objects.

Clients that navigate
containment relationships
between objects.

ContainedInRole Represents an object that is
contained in other objects.

Clients that navigate
containment relationships
between objects.

Table 6-5 Interfaces Defined in the CosContainments Module

Common Object Services, Volume 2 113

The Base Relationship Model Relationship Service Specification

6.3 The Base Relationship Model
The base level of the Relationship Service defines interfaces that support relationships between
two or more CORBA objects. Objects that participate in a relationship are called related objects.
Relationships that share the same semantics form relationship types. A relationship is an instance
of a relationship type and has an identity.

Each related object is connected with the relationship via a role. Roles are objects which
characterise a related object’s participation in a relationship type. Role types are used for
expressing the role’s characteristics by an OMG IDL interface. Cardinality represents the
number of relationship instances connected to a role. Degree represents the number of roles in a
relationship. All characteristics are expressed by corresponding OMG IDL interfaces.
Relationship and role types are built by subtyping the Relationship and Role interfaces.

Figure 6-6 gives a graphical representation of a simple relationship type. It illustrates that
documents reference books. Documents are in the ReferencesRole and books are in the
ReferencedByRole . Documents, reference, the roles and books are all types; there are interfaces
(written in OMG IDL) for all five.

Document

Book

ReferencesRole

Reference Relationship

attribute date_of_reference

ReferencedByRole

Figure 6-6 Simple Relationship Type: Documents Reference Books

Figure 6-7 on page 115, on the other hand, gives a graphical representation of an instance of a
relationship type. It illustrates that my document, an instance of Document , references War and
Peace, an instance of Book .5

5. Most of the figures in this specification represent instances of related objects, roles and relationships. Figures describing object
and relationship type are clearly marked.

114 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

my doc

War and Peace

ReferencesRole

Reference Relationship

May 30, 1994

ReferencedByRole

Figure 6-7 Simple Relationship Instance: My Document References the Book War and Peace

6.3.1 Relationship Attributes and Operations

Relationships may have attributes and operations. For example, the reference relationship of
Figure 6-6 on page 114 has an attribute indicating the date the reference from the document to
the book was established.

Rationale for Relationship Attributes and Operations

If relationships are not allowed to define attributes and operations, they will have to be assigned
to one of the related objects. This approach is prone to misunderstandings and inconsistencies.
The approach to define an artificial related object, which then carries the attributes, is equally
unsatisfactory.

The date attribute of the example of Figure 6-7 is clearly an attribute of the relationship, not one
of related objects. It cannot be an attribute of my document since my document can reference
many books on different dates. Similarly, it cannot be an attribute of War and Peace since War
and Peace can be referenced by many books on different dates.

6.3.2 Higher Degree Relationships

The reference relationship in Figure 6-6 on page 114 is a binary relationship; that is, it is defined
by two roles. The Relationship Service can also support relationships with more than two roles.
The fact that three or more related objects may be part of a relationship can be expressed directly
by means of the same concept as in the binary case. The degree represents the number of roles in
a relationship. The Relationship Service supports higher degree relationships; that is,
relationships with degree greater than two.

Figure 6-8 on page 116 shows a ternary ‘‘check out’’ relationship between books, libraries and
persons. The semantics of this relationship are that a person borrows a book from a library. The
relationship also defines an attribute that indicates the date when the book is due to be returned
by the person to the library.

Common Object Services, Volume 2 115

The Base Relationship Model Relationship Service Specification

Book

Library

Person

material role

lender role

check_out relationship
attribute due_date

borrower role

Figure 6-8 Satisfactory Ternary Check-out Relationship

Rationale for Supporting Higher Degree Relationships

The Relationship Service represents higher degree relationships directly. It clearly defines the
number of expected related objects as well as other integrity constraints. It is more readable,
more understandable and easier to enforce consistency constraints for related objects with a
direct representation than with alternative representations that simulate higher degree
relationships using a set of binary relationships. When simulating higher degree relationships,
the relationship information is spread over multiple object and relationship type definitions, as
are the corresponding integrity constraints.

Figure 6-9 shows an alternative representation of the ternary relationship from Figure 6-8 using
binary relationships. Note that the first representation is not equivalent to that of Figure 6-8
since cardinalities and other integrity constraints cannot be expressed correctly in this
alternative representation.

Book

Library Person

Figure 6-9 Unsatisfactory Ternary Check-out Relationship

Figure 6-10 on page 117 illustrates a second alternative representation of the ternary relationship
of Figure 6-8. It uses an additional (artificial) related object type. This representation is
equivalent to Figure 6-8 if check_out is constrained to participate in exactly one instance of each
of the three binary relationship types. However, this alternative needs three relationship types
and one additional related object type (check_out) instead of only one relationship type, and
therefore is much more complex and harder to capture when compared to the representation
using one relationship type with degree 3.

116 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

Book

Library Person

Check_out

Figure 6-10 Another Unsatisfactory Representation

Since the Relationship Service supports higher order relationships directly, the user of the
service need not resort to the unsatisfactory representations using binary relationships of Figure
6-9 on page 116 and Figure 6-10.

6.3.3 Operations

The base-level Relationship Service provides operations to:

• create role and relationship objects

• navigate relationships

• destroy roles and relationships

• iterate over the relationships in which a role participates.

Creation

Roles are constructed independently using a role factory. Roles represent an existing related
object that is passed as a parameter to the RoleFactory::create () operation. When creating a new
role object, the type of the related object can be checked by the factory. The minimum and
maximum cardinality (for example, the minimal and the maximal number of relationship
instances to which the new role object may be connected) are indicated by attributes on the
factory.

Figure 6-11 illustrates a newly created role.

Object

Figure 6-11 Creating a Role for an Object

A new relationship is created by passing a sequence of named roles to a factory for the
relationship. The expected degree and role types for the new relationship are indicated by

Common Object Services, Volume 2 117

The Base Relationship Model Relationship Service Specification

attributes on the factory. During the creation of the new relationship, the role types and the
maximum cardinality can be checked. Duplicate role names are not allowed since the names are
used to distinguish the roles in the scope of the relationship.

When creating a relationship, the factory creates ‘‘links’’ between the roles and the relationship
using the link () operation on the role.

Figure 6-12 illustrates a fully established binary relationship.6

document figure

Figure 6-12 Fully Established Binary Relationship

Navigation

Figure 6-12 illustrates the navigational functionality of a relationship. In particular:

• A relationship defines an attribute that indicates a read-only attribute that indicates the
named roles of the relationship.

• A role defines a read-only attribute that indicates the related object that the role represents.

• A role supports the get_other_role () operation, that given a relationship object and a role
name, returns the other role object.

• A role supports the get_other_related_object () operation, that given a relationship object and
a role name, returns the related object that the named role represents in the relationship.

• A role supports the get_relationships () operation which returns the relationships in which
the role participates.

Destruction

For both roles and relationship objects, the Relationship Services introduces a destroy ()
operation. The destroy () operation for relationship objects also destroys the links between the
relationship and all of the role objects.

6. Figure 6-12 represents navigation functionality; it does not necessarily represent stored object references. A variety of
implementation strategies are described in Section 6.3.5 on page 119.

118 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

6.3.4 Consistency Constraints

For each role, two cardinalities are defined: minimum and maximum.

• The minimum cardinality indicates the minimum number of relationship instances in which
a role must participate.

• The maximum cardinality indicates the maximum number of relationship instances in which
a role can participate.

Maximum cardinality constraint can be checked when relationships are created. Note that the
relationship mechanism cannot, by itself, enforce the minimum cardinality constraint. However,
a role can be asked explicitly whether it meets its minimum cardinality constraint using the
check_minimum_cardinality () operation.

Type integrity is preserved by CORBA mechanisms because related objects, roles and
relationships are instances of CORBA object types. Type constraints can be checked when roles
and relationships are created.

6.3.5 Implementation Strategies

Figure 6-12 on page 118 illustrates the navigational functionality of a fully established binary
relationship. There are a variety of implementation strategies possible. The get_other_role ()
and the get_other_related_object () operations can be:

• implemented by caching object references to other roles and related objects

• computed when needed using the relationship object.

The appropriate implementation strategy typically depends on distribution boundaries. If the
roles and relationship objects are clustered, then only storing the values at the relationship object
optimises space. If, on the other hand, the roles and the related objects are clustered, caching
object references to other roles and related objects at the roles allows the relationship to be
efficiently navigated without involving a remote relationship object.

Role implementations that cache object references to other roles and related objects need not
worry about updating the cache. Once the related objects and relationships are established, they
cannot be changed.

6.3.6 The CosObjectIdentity Module

The CORBA Specification does not define a notion of object identity for objects. The
Relationship Service requires object identity for the objects it defines. As such, the Relationship
Service assumes the CosObjectIdentity module specified below. This is defined in a separate
module; other object services may find this module to be generally useful.

module CosObjectIdentity {

typedef unsigned long ObjectIdentifier;

interface IdentifiableObject {
readonly attribute ObjectIdentifier constant_random_id;

boolean is_identical (
in IdentifiableObject other_object);

};
};

Common Object Services, Volume 2 119

The Base Relationship Model Relationship Service Specification

6.3.6.1 The IdentifiableObject Interface

Objects that support the IdentifiableObject interface implement an attribute of type
ObjectIdentifier and the is_identical () operation. This mechanism provides an efficient and
convenient method of supporting object identity in a heterogeneous CORBA-based
environment.

constant_random_id

readonly attribute ObjectIdentifier constant_random_id;

Objects supporting the IdentifiableObject interface define an attribute of type ObjectIdentifier .
The value of the attribute must not change during the lifetime of the object.

A typical client use of this attribute is as a key in a hash table. As such, the more randomly
distributed the values are, the better.

The value of this attribute is not guaranteed to be unique; that is, another identifiable object can
return the same value. However, if objects return different identifiers, clients can determine that
two identifiable objects are not identical.

To determine whether two identifiable objects are identical, the is_identical () operation must be
used.

is_identical()

boolean is_identical (
in IdentifiableObject other_object);

The is_identical () operation returns True if the object and the other_object are identical.
Otherwise, the operation returns False .

6.3.7 The CosRelationships Module

The CosRelationships module defines the interfaces of the base-level Relationship Service. In
particular, it defines:

• Relationship and Role interfaces to represent relationships and roles

• RelationshipFactory and RoleFactory interfaces to create relationships and roles

• RelationshipIterator interface to enumerate the relationships in which a role participates.

The CosRelationships module is shown below:

#include <ObjectIdentity.idl>

module CosRelationships {

interface RoleFactory;
interface RelationshipFactory;

interface Relationship; interface Role;
interface RelationshipIterator;

typedef Object RelatedObject;
typedef sequence<Role> Roles;
typedef string RoleName;
typedef sequence<RoleName> RoleNames;

struct NamedRole {RoleName name; Role aRole;};
typedef sequence<NamedRole> NamedRoles;

120 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

struct RelationshipHandle {
Relationship the_relationship;

CosObjectIdentity: :ObjectIdentifier constant_random_id;
};
typedef sequence<RelationshipHandle> RelationshipHandles;

interface RelationshipFactory {
struct NamedRoleType {

RoleName name;
::CORBA::InterfaceDef named_role_type;

};
typedef sequence<NamedRoleType> NamedRoleTypes;
readonly attribute ::CORBA::InterfaceDef relationship_type;
readonly attribute

unsigned short degree;
readonly attribute NamedRoleTypes named_role_types;
exception RoleTypeError {NamedRoles culprits;};
exception MaxCardinalityExceeded {

NamedRoles culprits;};
exception DegreeError {unsigned short required_degree;};

exception
DuplicateRoleName {NamedRoles culprits;};

exception UnknownRoleName {NamedRoles culprits;};

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError,
DuplicateRoleName,
UnknownRoleName);

};
interface Relationship :

CosObjectIdentity: :IdentifiableObject {
exception CannotUnlink {

Roles offending_roles;
};
readonly attribute NamedRoles named_roles;
void destroy () raises(CannotUnlink);

};
interface Role { exception UnknownRoleName { };

exception UnknownRelationship { };
exception RelationshipTypeError { };
exception CannotDestroyRelationship {

RelationshipHandles offenders;
};
exception ParticipatingInRelationship {

RelationshipHandles the_relationships;
};
readonly attribute RelatedObject related_object;
RelatedObject

get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

Role get_other_role (in RelationshipHandle rel,

Common Object Services, Volume 2 121

The Base Relationship Model Relationship Service Specification

in RoleName target_name)
raises (UnknownRoleName,

UnknownRelationship);
void get_relationships (

in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

void destroy_relationships()

raises(CannotDestroyRelationship);
void destroy() raises(ParticipatingInRelationship);
boolean check_minimum_cardinality ();
void link (in RelationshipHandle rel,

in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,

RelationshipTypeError);
void unlink (in RelationshipHandle rel)

raises (UnknownRelationship);
};
interface RoleFactory {

exception NilRelatedObject { };
exception RelatedObjectTypeError { };
readonly attribute ::CORBA::InterfaceDef role_type;
readonly attribute unsigned long max_cardinality;
readonly attribute unsigned long min_cardinality;
readonly attribute sequence

<::CORBA::InterfaceDef> related_object_types;
Role create_role (in RelatedObject related_object)

raises (NilRelatedObject, RelatedObjectTypeError);
};
interface RelationshipIterator {

boolean next_one (out RelationshipHandle rel);
boolean next_n (in unsigned long how_many,

out RelationshipHandles rels);
void destroy ();

};
};

Example of Containment Relationships

The example given in Figure 6-13 on page 123 is referred to throughout the following sections to
describe roles and relationships. It represents two binary one-to-many containment
relationships between a document, a figure and a logo.

122 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

document

figure

logo

ContainedInRole A

relationship B

ContainsRole C

relationship D

ContainedInRole E

Figure 6-13 Two Binary One-to-many Containment Relationships

6.3.7.1 The RelationshipFactory Interface

The RelationshipFactory interface defines an operation for creating an instance of a relationship
among a set of related objects. The factory also defines two attributes that specify the degree
and role types of the relationships it creates.

Creating a Relationship

Relationship create (in NamedRoles named_roles)
raises (RoleTypeError,

MaxCardinalityExceeded,
DegreeError, DuplicateRoleName,
UnknownRoleName);

The create () operation creates a new instance of a relationship. The factory is passed a sequence
of named roles that represent the related objects in the newly created relationship. The factory,
in turn, informs the roles about the new relationship using the link () operation.

Roles implement maximum cardinality constraints. A role may refuse to participate in a new
relationship because it would violate a cardinality constraint. In such a case, the
MaxCardinalityExceeded exception is raised and the offending roles are returned in the exception.

The number of roles passed to the create () operation must be the same as the value of the degree
attribute. If not, the DegreeError exception is raised.

Role names are used to associate each actual role object with one of the formal roles expected by
the relationship to be created.

The set of role names passed to the create () operation must be the same as the set of role names
in the factory’s named_role_types attribute. If not, the UnknownRoleName exception is raised,
and the unrecognised names are returned in the exception. The sequence order of the
named_roles parameter and the sequence order of the named_role_types need not correspond.

Common Object Services, Volume 2 123

The Base Relationship Model Relationship Service Specification

The type of each role passed to the create () operation must be of the same type as the type
indicated for the corresponding role name in the named_role_types attribute. If not, the
RoleTypeError is raised and the offending roles are returned in the exception.

The names of the roles passed to the create () operation must be unique within the scope of this
relationship type. If not, the DuplicateRoleName exception is raised.

In Figure 6-13 on page 123 the document and the figure were related; that is, relationship B was
created by passing roles A and C to the create () operation of the relationship factory. Similarly,
the document and the logo were related by passing roles C and E to the relationship factory for
relationship D.

Determining the Created Relationship Type

readonly attribute ::CORBA::InterfaceDef relationship_type;

The relationship created by a factory may be a subtype of the Relationship interface. The
relationship_type attribute indicates the actual types of the relationships created by the factory.

Determining the Degree of a Relationship Type

readonly attribute unsigned short degree;

The degree attribute indicates the number of roles for the relationships created by the factory.

For example, in Figure 6-13 on page 123 the relationship factory for containment has a degree
attribute whose value is 2 because containment is a binary relationship.

Determining Names and Types of the Roles of a Relationship Type

readonly attribute NamedRoleTypes named_role_types;

The named_role_types attribute indicates the required names and types of roles for the
relationships created by the factory. NamedRoleTypes are defined as structures where the role
type is given by the CORBA::InterfaceDef for the role objects.

For example, in Figure 6-13 on page 123 the relationship factory for containment has an attribute
whose value is a sequence of two CORBA::InterfaceDefs : one for ContainsRole and one for
ContainedInRole .

6.3.7.2 The Relationship Interface

The Relationship interface defines an attribute whose value is the named roles of the relationship
and an operation to destroy the relationship.

Determining the Roles of a Relationship and Their Names

readonly attribute NamedRoles named_roles;

The named_roles attribute returns the roles of the relationship. The roles have the names that
were indicated in the create () operation defined by the RelationshipFactory interface.

For example, in Figure 6-13 on page 123 relationship B has an attribute whose value is a
sequence:

<"A", InterfaceDef for ContainedInRole; "C", InterfaceDef for ContainsRole>

Similarly, relationship D has an attribute whose value is a sequence:

<"E", InterfaceDef for ContainedInRole; "C", InterfaceDef for ContainsRole>

124 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

Destroying a Relationship

void destroy () raises(CannotUnlink);

The destroy () operation destroys the relationship between the objects. The roles are unlinked by
the relationship implementation before it is destroyed. If roles cannot be unlinked, the
CannotUnlink exception is raised and the roles that could not be unlinked are returned in the
exception.

For example, in Figure 6-13 on page 123 if destroy () is requested of relationship B, the unlink ()
operation is requested of both roles A and C and the relationship B is destroyed.

6.3.7.3 The Role Interface

The Role interface defines operations to:

• navigate the relationship from one role to another

• enumerate the relationships in which the role participates

• destroy all relationships in which the role participates

• link a role to a newly created relationship

• unlink a role in the destruction process of a relationship

• destroy the role itself.

Determining the Related Object that a Role Represents

readonly attribute RelatedObject related_object;

The related_object attribute indicates the related object that the role represents. The related
object that the role represents is specified as a parameter to the create () operation defined by the
RoleFactory interface.

Getting Another Related Object

RelatedObject get_other_related_object (
in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName,
UnknownRelationship);

The get_other_related_object () operation navigates the relationship rel to the related object
represented by the role named target_name .

If the role does not know about a role named target_name , the UnknownRoleName exception is
raised. If the role does not know about the relationship rel , the UnknownRelationship exception
is raised.

For example, in Figure 6-13 on page 123, assuming role A is named ‘‘A’’, requesting
get_other_related_object(B,‘ ‘A’’) of role C returns the figure. On the other hand, requesting
get_other_related_object(D,‘ ‘E’’) of role C returns the logo.

Common Object Services, Volume 2 125

The Base Relationship Model Relationship Service Specification

Getting Another Role

Role get_other_role (in RelationshipHandle rel,
in RoleName target_name)

raises (UnknownRoleName, UnknownRelationship);

The get_other_role () operation navigates the relationship rel to the role named target_name . The
role is returned.

If the role does not know about a role named target_name for the relationship rel , the
UnknownRoleName exception is raised. If the role does not know about the relationship rel , the
UnknownRelationship exception is raised.

For example, in Figure 6-13 on page 123, assuming role A is named ‘‘A’’, requesting
get_other_role(B,‘ ‘A’’) of role C returns role A. On the other hand, requesting
get_other_role(D,‘ ‘E’’) of role C returns role E.

Getting All Relationships in which a Role Participates

void get_relationships (
in unsigned long how_many,
out RelationshipHandles rels,
out RelationshipIterator iterator);

The get_relationships () operation returns the relationships in which the role participates.

The size of the list is determined by the how_many argument. If there are more relationships
than specified by the how_many argument, an iterator is created and returned with the
additional relationships. If there are no more relationships, a nil object reference is returned for
the iterator. (The RelationshipIterator interface is a standard iterator described in the next
section.)

For example, in Figure 6-13 on page 123, requesting get_relationships () on role C would return
the relationships B and D.

Destroying All Relationships in which a Role Participates

void destroy_relationships()
raises(CannotDestroyRelationship);

The destroy_relationships () operation destroys all relationships in which the role participates.

The destroy_relationships () operation is semantically equivalent to requesting destroy of each
relationship in which the role participates. The operation is not required to be implemented in
that fashion.

If the destroy_relationships () operation cannot destroy one of the relationships, then the
CannotDestroyRelationship exception is raised and the relationships that could not be destroyed
are returned in the exception.

For example, in Figure 6-13 on page 123 requesting destroy_relationships () of role A causes
relationship B to be destroyed. On the other hand, requesting destroy_relationships () of role C
causes relationships B and D to be destroyed.

126 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

Destroying a Role

void destroy() raises(ParticipatingInRelationship);

The destroy () operation destroys the role. The role must not be participating in any
relationships. If it is, the ParticipatingInRelationship exception is raised and the relationships in
which the role participates are returned in the exception.

For example, in Figure 6-13 on page 123 requesting destroy_role () of role A destroys relationship
B and role A.

Checking Minimum Cardinality of a Role

boolean check_minimum_cardinality ();

The check_minimum_cardinality () operation returns true if a role satisfies its minimum
cardinality constraints. Otherwise, the operation returns false .

For example, in Figure 6-13 on page 123 requesting check_minimum_cardinality () of role A
would return true since it is participating in relationship B.

Linking a Role in a Newly Created Relationship

void link (in RelationshipHandle rel,
in NamedRoles named_roles)

raises(RelationshipFactory::MaxCardinalityExceeded,
RelationshipTypeError);

Note: The link () operation is not intended for general-purpose clients that create, navigate
and destroy relationships. Instead, it is an operation intended for implementations of
the relationship factory create () operation.

The link () operation informs the role that a new relationship is being created. The role is passed
a relationship and a set of named roles that represent related objects in the relationship.

A role can have a maximum cardinality; that is, it may limit the number of relationships in
which it participates. If the link () request would cause the maximum to be exceeded, the
MaxCardinalityExceeded exception is raised. If the type of the relationship does not agree with
the relationship type that the role expects, the RelationshipTypeError exception is raised.

For example, in Figure 6-13 on page 123, when creating relationship B, the factory for B
requested the link(B,A,C) operation on roles A and C. This allows roles A and C to support the
navigation and administration operations for relationship B.

Removing a Role from a Relationship

void unlink (in RelationshipHandle rel)
raises (UnknownRelationship);

Note: The unlink () operation is not intended for general-purpose clients that create, navigate
and destroy relationships. Instead, it is an operation intended for implementations of
the relationship destroy () operation.

The unlink () operation causes the role to delete its record of the relationship.

If the relationship passed as an argument is unknown to the role, the UnknownRelationship
exception is raised.

For example, in Figure 6-13 on page 123 the implementation of the destroy () operation on
relationship B requests unlink(B) of roles A and C. This causes roles A and C to forget their
participation in relationship B.

Common Object Services, Volume 2 127

The Base Relationship Model Relationship Service Specification

6.3.7.4 The RoleFactory Interface

The RoleFactory interface defines attributes describing the roles that it creates and a single
operation to create a role.

Creating a Role

Role create_role (in RelatedObject related_object)
raises (NilRelatedObject, RelatedObjectTypeError);

The create_role () operation creates a role for the related object passed as a parameter.

A role must represent a related object. If a nil object reference is passed to the factory for the
related object, the NilRelatedObject exception is raised.

Role factories can restrict the type of objects the roles they create will represent. If the interface
of the related object does not conform, the RelatedObjectTypeError exception is raised.

For example, in Figure 6-13 on page 123 clients that created roles A, C and E used the create ()
operation of factories that support the RoleFactory interface.

Determining the Created Role Type

readonly attribute ::CORBA::InterfaceDef role_type;

The role created by a factory may be a subtype of the Role interface. The role_type attribute
indicates the actual types of the roles created by the factory.

Determining the Maximum Cardinality of a Role

readonly attribute unsigned long max_cardinality;

The max_cardinality attribute indicates the maximum number of relationships in which a role
(created by the factory) participates.

For example, in Figure 6-13 on page 123 the factory for role A returns 1, since a ContainedInrole
can be in no more than one relationship. Attempts to add role A to more than one relationship
result in MaxCardinalityExceeded exceptions. (See the create () operation of the
RelationshipFactory interface and the link () operation of the Role interface.)

Determining the Minimum Cardinality of a Role

readonly attribute unsigned long min_cardinality;

The min_cardinality attribute indicates the minimum number of relationships in which a role
(created by the factory) participates.

Note that, unlike maximum cardinality, minimum cardinality cannot be enforced since roles will
be below their minimum during relationship construction. Roles do support the
check_minimum_cardinality () operation to report if they are below their minimum.

For example, in Figure 6-13 on page 123 the factory for role A returns 1, since a ContainedIn role
should be in one relationship.

128 X/Open Preliminary Specification (1995)

Relationship Service Specification The Base Relationship Model

Determining the Related Object Types for a Role

readonly attribute sequence
<::CORBA::InterfaceDef> related_object_types;

The factory creates roles that represent related objects in relationships. The related objects must
support at least one of the interfaces indicated by the related_object_type attribute.

For example, in Figure 6-13 on page 123 the factory for role C returns the CORBA::InterfaceDef
for a document.

6.3.7.5 The RelationshipIterator Interface

The RelationshipIterator interface is returned by the get_relationships () operation defined by the
Role interface. It allows clients to iterate through any additional relationships in which the role
participates.

next_one()

boolean next_one (out RelationshipHandle rel);

The next_one () operation returns the next relationship; if no more relationships exist, it returns
false .

next_n()

boolean next_n (in unsigned long how_many,
out RelationshipHandles rels);

The next_n () operation returns at most the requested number of relationships; if no more
relationships exist, it returns false .

destroy()

void destroy ();

The destroy () operation destroys the iterator.

Common Object Services, Volume 2 129

Graphs of Related Objects Relationship Service Specification

6.4 Graphs of Related Objects
When objects are related using the Relationship Service, graphs of related objects are formed.
This section focuses on how the Relationship Service supports graphs of related objects. We first
describe the graph architecture supported by the service, describe support for traversing the
graph and implementing compound operations and then specify the CosGraphs module in
detail.

Graphs are important for distributed, object-oriented applications. A few examples of graphs
are:

• Distributed Desktops

Folders and objects are connected together. Folders contain some objects and reference
others. Folders may contain or reference other folders. The objects are distributed; they span
multiple machines. The distributed desktop is a distributed graph.

• Composed Applications

Applications are built out of existing objects that are connected together. An example of
such a composed application is a shared white board. The composed application is a graph.

• User Interface Hierarchies

Presentation objects visualise semantic objects for users. Presentations contain other
presentation objects. For example, a window might contain a button. The user interface
hierarchy is a graph.

• Compound Documents

A compound document architecture allows graphics, animation, sound, video, and so on, to
be connected together to give the user the impression of a single document. The compound
document is a graph.

6.4.1 Graph Architecture

A graph is a set of nodes and a set of edges, involving those nodes. Nodes are related objects
that support the Node interface and edges are represented by the relationships that relate nodes.

Figure 6-14 on page 131 illustrates an example of a graph.

130 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

document

folder

book

library

person

logo

figure

containment

reference

check_out

Figure 6-14 Example Graph of Related Objects

The folder, book, document, figure, library, person and logo are nodes in the graph. The edges of
the graph are represented by the relationships:

• containment: the folder and document

• containment: the document and the figure

• containment: the document and the logo

• reference: the figure and the logo

• reference: the document and the book

• check_out: the book, the library and the person.

The graph architecture supports multiple kinds of relationships. For example, in Figure 6-14,
there are containment, reference and check_out relationships. The small circles depict roles for a
reference relationship, the solid circles depict roles for a containment relationship, and the
shaded circles represent the roles of the check_out relationship.

Common Object Services, Volume 2 131

Graphs of Related Objects Relationship Service Specification

A node can participate in more than one kind of relationship and thus have more than one role.
In the example, the document has three kinds of role:

• the ContainsRole

• the ContainedInRole

• the ReferencesRole .

Nodes

Nodes are identifiable objects that support the Node interface. Nodes collect roles of a related
object and the related object itself. A node enables standard traversals of graphs of related
objects because it supports the following:

• a read-only attribute defining all of its roles

• an operation allowing roles of a particular type to be returned

• operations to add and remove roles.

The Node interface can be inherited by related objects, or an object implementing the Node
interface can be instantiated and interposed in front of related objects. Interposition is
particularly useful in these cases:

• when connecting immutable objects, which are objects that are not aware of the Relationship
Service

• in order to traverse graphs of related objects without activating the related objects.

As such, the Node interface defines an attribute whose value is the related object it represents.

6.4.2 Traversing Graphs of Related Objects

The Relationship Service defines a traversal object that, given a starting node, produces a
sequence of directed edges of the graph. A directed edge corresponds to a relationship. In
particular, it consists of:

• an instance of a relationship

• a starting node and a starting named role of the edge to indicate direction

• a sequence containing the remaining nodes and named roles — for binary relationships, there
is a single remaining node and role; for n-ary relationships, there are n−1 remaining nodes
and roles.

The traversal object works like an iterator, where directed edges are the items being returned.

The traversal object, the nodes and the roles cooperate in traversing the graph. Through the
operations of the Node interface, the node reveals its roles to the traversal object. Through the
operations of the CosGraphs::Role interface, a role reveals its directed edges to other nodes.
(The CosGraphs::Role interface defines an operation allowing a role to reveal directed edges.)

In traversing a graph, the traversal object must detect and represent cycles, and determine the
relevant nodes and edges.

132 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

Detecting and Representing Cycles

In order to terminate, a traversal must be able to detect a cycle in the graph. In Figure 6-14 on
page 131 the document, the figure and the logo form a cycle.

To detect cycles in the graph, the traversal object depends on the fact that nodes are identifiable
objects, that is they support the IdentifiableObject interface defined in Section 6.3.6 on page 119.

To represent cycles in the graph, the traversal object defines a scope of identifiers for the nodes
and relationships in the graph. That is, a given traversal assigns identifiers to the nodes and
relationships that are guaranteed to be unique within the scope of the traversal.

Determing the Relevant Nodes and Edges

A traversal begins at the starting node, emits directed edges, and may continue to other related
nodes. The traversal object is programmable in the criteria it uses for determining the edges to
emit and the nodes to visit. The traversal object depends on a ‘‘call-back’’ object supporting the
TraversalCriteria interface.

Given a node, the traversal criteria computes a sequence of directed edges to include in the
traversal. For each edge, the traversal criteria can indicate whether the traversal should continue
to an adjacent node. Based on the results of the traversal criteria, the traversal object emits edges
and visits other nodes. The process continues until there are no more edges to emit and no more
nodes to visit.

Three standard traversal modes are defined to allow clients flexibility in controlling the search
order:

• depth first

• breadth first

• best first.

In order to understand the differences between the modes, consider that the traversal maintains
an ordered list of the edges which have been produced by visiting nodes. This list initially
contains the edges which result from visiting the root node. In each iteration the first edge is
removed from the list to be returned and its destination nodes are visited. Depending upon the
traversal mode, these edges are inserted in the beginning of the list (depth first), appended to the
end of the list (breadth first), or inserted into the list which is sorted by the edge’s weight (best
first).

6.4.3 Compound Operations

Traversal objects are especially important in implementing compound operations on graphs of
related objects. By compound operations, we mean operations that apply to some subset of the
nodes and edges in the graph. Examples of compound operations include operations such as
copy , move , remove , externalize , print , and so on.

Note: The Relationship Service defines a framework for compound operations but does not
define specific compound operations. The Life Cycle and the Externalization Service
specifications define compound operations that depend on the Relationship Service.

A compound operation may be implemented either in one or two passes. A compound
operation implemented in one pass traverses the graph itself and applies the operation as it
proceeds.

A compound operation implemented in two passes uses the traversal object defined by the
Relationship Service to determine the relevant nodes and detect and represent cycles. The

Common Object Services, Volume 2 133

Graphs of Related Objects Relationship Service Specification

second pass simply applies the operation to the results of the first pass.

A compound operation implemented in two passes provides a TraversalCriteria object for the
traversal service.

6.4.4 An Example Traversal Criteria

Consider a traversal of a graph with a traversal criteria object that uses propagation values
defined by the relationships to determine whether to emit an edge and whether to proceed to
another node. The traversal criteria is given a node by the traversal. The traversal criteria then
requests propagation values from each of the node’s roles.

Figure 6-15 illustrates a traversal of a graph using a traversal criteria for a compound copy ()
operation. Using the propagation_for () operation defined by the CompoundLifeCycle::Role
interface, the traversal criteria obtains the propagation value for the copy () operation from each
of the node’s roles.

document logo

TraversalCriteria

RoleRole

NodeNode

copy=deep copy=shallow

Figure 6-15 Traversal of a Graph for a Compound copy() Operation

Propagation

Compound operations may propagate from one node to another depending on the semantics of
the relationship between the nodes. The propagation semantics of a relationship depend on the
direction the relationship is being traversed. A propagation value is either deep , shallow , inhibit
or none .

deep means that the operation is applied to the node, to the relationship and to the related
objects. In the example of Figure 6-15, the propagation value for the copy () operation is deep
from the document to the logo; the copy () propagates from the document to the logo across the
containment relationship. The traversal criteria for copy () that encounters a deep propagation
value would instruct the traversal object to emit the edge and visit the logo.

shallow means that the operation is applied to the relationship but not to the related objects. In
Figure 6-15, the propagation value for the copy () operation from the logo to the document is
shallow . The traversal criteria for copy () that encounters a shallow propagation value would
instruct the traversal object to emit the edge but the document is not visited.

none means that the operation has no effect on the relationship and no effect on the related
objects. A traversal criteria that encounters a none propagation value would not return any
edges and related nodes are not visited.

134 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

Figure 6-16 summarises how deep , shallow and node propagation values affect nodes, roles and
relationships.

shallow

deep

none

Figure 6-16 deep, shallow and none Propagation Values

inhibit means that the operation should not propagate to the node via any of the node’s roles.
inhibit is particularly meaningful for the remove () operation to provide so-called ‘‘existence-
ensuring relationships’’.

For more discussion of propagation values, see the referenced Controlling Propogation of
Operations Using Attributes on Relations.

6.4.5 The CosGraphs Module

The CosGraphs module defines the support for graphs of related objects. It defines the following
interfaces:

• TraversalFactory interface for creating traversal objects

• Traversal interface for enumerating directed edges of a graph

• TraversalCriteria ‘‘call-back’’ interface to allow programmability of the traversal object

• Node interface for collecting the roles of a related object

• NodeFactory interface for creating nodes

• Role interface to support traversals.

The CosGraphs module is shown below:

#include <Relationships.idl>
#include <ObjectIdentity.idl>

module CosGraphs {

interface TraversalFactory;
interface Traversal;
interface TraversalCriteria;
interface Node;
interface NodeFactory;
interface Role;
interface EdgeIterator;

struct NodeHandle {
Node the_node;
::CosObjectIdentity: :ObjectIdentifier constant_random_id;

};

Common Object Services, Volume 2 135

Graphs of Related Objects Relationship Service Specification

typedef sequence<NodeHandle> NodeHandles;

struct NamedRole {
Role the_role;
::CosRelationships: :RoleName the_name;

};
typedef sequence<NamedRole> NamedRoles;

struct EndPoint {
NodeHandle the_node;
NamedRole the_role;

};
typedef sequence<EndPoint> EndPoints;

struct Edge {
EndPoint from;
::CosRelationships: :RelationshipHandle the_relationship;

EndPoints relatives;
};
typedef sequence<Edge> Edges;

enum PropagationValue {deep, shallow, none, inhibit};
enum Mode {depthFirst, breadthFirst, bestFirst};

interface TraversalFactory {
Traversal create_traversal_on (

in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

};
interface Traversal {

typedef unsigned long TraversalScopedId;
struct ScopedEndPoint {

EndPoint point;
TraversalScopedId id;

};
typedef sequence<ScopedEndPoint> ScopedEndPoints;
struct ScopedRelationship {

::CosRelationships: :RelationshipHandle
scoped_relationship;
TraversalScopedId id;

};
struct ScopedEdge {

ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;
boolean next_one (out ScopedEdge the_edge);
boolean next_n (in short how_many,

out ScopedEdges the_edges);
void destroy ();

};
interface TraversalCriteria {

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};

136 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

typedef sequence<WeightedEdge> WeightedEdges;
void visit_node(in NodeHandle a_node,

in Mode search_mode);
boolean next_one (out WeightedEdge the_edge);
boolean next_n (in short how_many,

out WeightedEdges the_edges);
void destroy();

};
interface Node: ::CosObjectIdentity: :IdentifiableObject {

typedef sequence<Role> Roles;
exception NoSuchRole { };
exception DuplicateRoleType { };

readonly attribute ::CosRelationships: :RelatedObject
related_object;

readonly attribute Roles roles_of_node;
Roles roles_of_type (

in ::CORBA::InterfaceDef role_type);
void add_role (in Role a_role)

raises (DuplicateRoleType);
void remove_role (in ::CORBA::InterfaceDef of_type)

raises (NoSuchRole);
};

interface NodeFactory {
Node create_node (in Object related_object);

};
interface Role : ::CosRelationships: :Role {

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);

};
interface EdgeIterator {

boolean next_one (out Edge the_edge);
boolean next_n (in unsigned long how_many,

out Edges the_edges);
void destroy ();

};
};

6.4.5.1 The TraversalFactory Interface

The TraversalFactory interface creates traversal objects. The Traversal interface is used by clients
that want to traverse graphs of related objects according to some traversal criteria.

create_traversal_on()

Traversal create_traversal_on (
in NodeHandle root_node,
in TraversalCriteria the_criteria,
in Mode how);

The create_traversal_on () operation creates a traversal object starting at the root_node . The
created traversal object uses the TraversalCriteria object to determine which directed edges to
emit and which nodes to visit. The mode parameter indicates whether the traversal will proceed
in a depth first, breadth first or best first fashion.

Common Object Services, Volume 2 137

Graphs of Related Objects Relationship Service Specification

6.4.5.2 The Traversal Interface

Traversal objects iterate through ScopedEdges of the graph according to the traversal criteria
and the mode established when the traversal was created. The traversal also defines a scope for
the nodes and edges it returns; that is, it assigns identifiers to the nodes and edges it returns.
The identifiers are unique within the scope of a given traversal. ScopedEdges are given by the
following structure:

struct ScopedEdge {
ScopedEndPoint from;
ScopedRelationship the_relationship;
ScopedEndPoints relatives;

};
typedef sequence<ScopedEdge> ScopedEdges;

A ScopedEdge consists of a distinguished scoped end point, a scoped relationship and a
sequence of scoped end points. The distinguished scoped end point indicates the direction of
the edge. The scoped end point consists of a node, a role and an identifier for the node that is
unique within the scope of the traversal.

next_one()

boolean next_one (out ScopedEdge the_edge);

The next_one () operation returns the next scoped edge; if no more scoped edges exist, it returns
false.

next_n()

boolean next_n (in short how_many,
out ScopedEdges the_edges);

The next_n () operation returns at most the requested number of scoped edges.

destroy()

void destroy ();

The destroy () operation destroys the traversal.

6.4.5.3 The TraversalCriteria Interface

The TraversalCriteria interface is used by the traversal object to determine which edges to emit
and which nodes to visit from a given node. The traversal criteria behaves like an iterator of
weighted edges. Weighted edges are given by the following structure:

struct WeightedEdge {
Edge the_edge;
unsigned long weight;
sequence<NodeHandle> next_nodes;

};
typedef sequence<WeightedEdge> WeightedEdges;

A WeightedEdge consists of an edge, a weight and a sequence of nodes indicating whether the
traversal should continue to the nodes. The weight is only meaningful for the best first traversal.

138 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

next_one()

boolean next_one (out WeightedEdge the_edge);

The next_one () operation returns the next weighted edge; if no more weighted edges exist, it
returns false .

next_n()

boolean next_n (in short how_many,
out WeightedEdges the_edges);

The next_n () operation returns at most the requested number of weighted directed edges.

destroy()

void destroy();

The destroy () operation destroys the traversal criteria.

visit_node()

void visit_node(in NodeHandle a_node,
in Mode search_mode);

The visit_node () operation establishes the node for which the traversal criteria will iterate and
indicates the current search mode. As the traversal object traverses the graph, it visits nodes by
requesting the visit_node () operation of the traversal criteria, followed by next_one () or
next_n () requests to obtain the outgoing edges from the node.

For depthFirst and breadthFirst modes, the weight field in the weighted edges is ignored. In the
bestFirst mode, the weight value is utilised to order the traversal’s edges list which is sorted by
this value in ascending order.

If weighted edges from a previous node remain when visit_node () is requested, the traversal
criteria discards the previous edges.

6.4.5.4 The Node Interface

The Node interface defines operations that are useful in navigating graphs of related objects. In
particular, it defines:

• a read-only attribute giving all of the node’s roles

• an operation allowing roles conforming to a particular type to be returned

• operations to add and remove roles.

Roles are distinguished in nodes in the OMG IDL of their interfaces.

A node cannot possess two roles where one role is a subtype of the other. This is precluded by
the add_role () operation.

A node can possess two or more roles that have a common supertype. The set of roles can be
obtained by passing the common supertype to the roles_of_type () operation.

Common Object Services, Volume 2 139

Graphs of Related Objects Relationship Service Specification

related_object

readonly attribute ::CosRelationships: :RelatedObject
related_object;

The related_object attribute gives the related object that the node represents. This is useful when
relating immutable objects.

roles_of_node

readonly attribute Roles roles_of_node;

The roles_of_node attribute gives all of the node’s roles.

roles_of_type()

Roles roles_of_type (
in ::CORBA::InterfaceDef role_type);

The roles_of_type () operation returns the node’s roles that conform to the role_type parameter.
A role conforms to role_type if it’s interface is the same or is a subtype of role_type .

add_role()

void add_role (in Role a_role)
raises (DuplicateRoleType);

The add_role () operation adds a role to the node. If the node possesses a role of the same type, a
supertype or a subtype of a_role , the DuplicateRoleType exception is raised.

remove_role()

void remove_role (in ::CORBA::InterfaceDef of_type)
raises (NoSuchRole);

The remove_role () operation removes all the roles that conform to the of_type parameter. If no
roles conform to the of_type parameter, the NoSuchRole exception is raised.

6.4.5.5 The NodeFactory Interface

The NodeFactory interface defines a single operation for creating nodes.

create_node()

Node create_node (in Object related_object);

The create_node () operation creates a node whose related_object attribute is initialized to the
related_object parameter.

6.4.5.6 The Role Interface

The CosGraphs::Role interface extends the CosRelationships: :Role interface with a single
operation to return a role’s view of it’s relationships. The role’s view of a relationship is given by
the following Edge structure:

struct Edge {
EndPoint from;
::CosRelationships: :RelationshipHandle the_relationship;

EndPoints relatives;
};
typedef sequence<Edge> Edges;

140 X/Open Preliminary Specification (1995)

Relationship Service Specification Graphs of Related Objects

The Edge structure is defined by an end point, a relationship and the other end points. The from
end point is the role and its related object.

get_edges()

void get_edges (in long how_many,
out Edges the_edges,
out EdgeIterator the_rest);

The get_edges () operation returns the edges in which the role participates.

The size of the list is determined by the how_many argument. If there are more edges than
specified by the how_many argument, an iterator is created and returned. If there are no more
edges, a nil object reference is returned for the iterator.

6.4.5.7 The EdgeIterator Interface

The EdgeIterator interface is returned by the get_edges () operation defined by the
CosGraphs::Role interface. It allows clients to iterate through any additional relationships in
which the role participates.

next_one()

boolean next_one (out Edge the_edge);

The next_one () operation returns the next edge; if no more edges exist, it returns false .

next_n()

boolean next_n (in unsigned long how_many,
out Edges the_edges);

The next_n () operation returns at most the requested number of edges.

destroy()

void destroy ();

The destroy () operation destroys the iterator.

Common Object Services, Volume 2 141

Specific Relationships Relationship Service Specification

6.5 Specific Relationships
The Relationship Service defines two important relationships: containment and reference. The
example used throughout this specification has been written in terms of these two relationships.

6.5.1 Containment and Reference

Containment is a one-to-many relationship. A container can contain many containees; a
containee is contained by one container.

Reference, on the other hand, is a many-to-many relationship. An object can reference many
objects; an object can be referenced by many objects.

Containment and reference are examples of relationships. However, since containment and
reference are very common relationships, the Relationship Service defines them as standard.

Containment is defined by interfaces for a relationship and two roles:

• the CosContainment::Relationship interface

• the CosContainment::ContainsRole interface

• the CosContainment::ContainedInRole interface.

Relationship is a subtype of CosRelationships: :Relationship , and ContainedInRole and
ContainsRole are subtypes of CosGraphs::Role .

Similarly, reference is defined by interfaces for a relationship and two roles:

• the CosReference::Relationship interface

• the CosReference::ReferencesRole interface

• the CosReference::ReferencedByRole interface.

Relationship is a subtype of CosRelationships: :Relationship , and ReferencesRole and
ReferencedByRole are subtypes of CosGraphs::Role .

6.5.2 The CosContainment Module

The CosContainment module is given below:

#include <Graphs.idl>

module CosContainment {

interface Relationship :
::CosRelationships: :Relationship { };

interface ContainsRole : ::CosGraphs::Role { };

interface ContainedInRole : ::CosGraphs::Role { };
};

The CosContainment module does not define new operations. It introduces new OMG IDL types
to represent containment. Although it does not add any new operations, it refines the semantics
of these attributes and operations:

142 X/Open Preliminary Specification (1995)

Relationship Service Specification Specific Relationships

RelationshipFactory
Attribute Value

relationship_type CosContainment::Relationship

degree 2
named_role_types "ContainsRole", CosContainment::ContainsRole;

"ContainedInRole", CosContainment::ContainedInRole

The CosRelationships: :RelationshipFactory::create () operation will raise DegreeError if the
number of roles passed as arguments is not 2. It will raise RoleTypeError if the roles are not
CosContainment::ContainsRole and CosContainment::ContainedInRole . It will raise
MaxCardinalityExceeded if the CosContainment::ContainedInRole is already participating in a
relationship.

RoleFactory Attribute
for ContainsRole Value

role_type CosContainment::ContainsRole

maximum_cardinality unbounded

minimum_cardinality 0
related_object_types CosGraphs::Node

The CosRelationships: :RoleFactory::create_role () operation will raise RelatedObjectTypeError if
the related object passed as a parameter does not support the CosGraphs::Node interface. The
CosRelationships: :RoleFactory::link () operation will raise RelationshipTypeError if the rel
parameter does not conform to the CosContainment::Relationship interface.

RoleFactory Attribute
for ContainedInRole Value

role_type CosContainment::ContainedInRole

maximum_cardinality 1
minimum_cardinality 1
related_object_types CosGraphs::Node

The CosRelationships: :RoleFactory::create_role () operation will raise RelatedObjectTypeError if
the related object passed as a parameter does not support the CosGraphs::Node interface. The
CosRelationships: :RoleFactory::link () operation will raise RelationshipTypeError if the rel
parameter does not conform to the CosContainment::Relationship interface. The
CosRelationships: :RoleFactory::link () operation will raise MaxCardinalityExceeded if it is already
participating in a containment relationship.

6.5.3 The CosReference Module

The CosReference module is given below.

#include <Graphs.idl>

module CosReference {

interface Relationship :
::CosRelationships: :Relationship { };

interface ReferencesRole : CosGraphs::Role { };

interface ReferencedByRole : ::CosGraphs::Role { };
};

Common Object Services, Volume 2 143

Specific Relationships Relationship Service Specification

The CosReference module does not define new operations. It introduces new OMG IDL types to
represent reference. Although it does not add any new operations, it refines the semantics of
these attributes and operations:

RelationshipFactory
Attribute Value

relationship_type CosReference::Relationship

degree 2
named_role_types "ReferencesRole", CosReference::ReferencesRole;

"ReferencedByRole", CosReference::ReferencedByRole

The CosRelationships: :RelationshipFactory::create () operation will raise DegreeError if the
number of roles passed as arguments is not 2. It will raise RoleTypeError if the roles are not
CosReference::ReferencesRole and CosReference::ReferencedByRole .

RoleFactory Attribute
for ReferencesRole Value

role_type CosReference::ReferencesRole

maximum_cardinality unbounded

minimum_cardinality 0
related_object_types CosGraphs::Node

The CosRelationships: :RoleFactory::create_role () operation will raise RelatedObjectTypeError if
the related object passed as a parameter does not support the CosGraphs::Node interface. The
CosRelationships: :RoleFactory::link () operation will raise RelationshipTypeError if the rel
parameter does not conform to the CosReference::Relationship interface.

RoleFactory Attribute
for ReferencedByRole Value

role_type CosReference::ReferencedByRole

maximum_cardinality unbounded

minimum_cardinality 0
related_object_types CosGraphs::Node

The CosRelationships: :RoleFactory::create_role () operation will raise RelatedObjectTypeError if
the related object passed as a parameter does not support the CosGraphs::Node interface. The
CosRelationships: :RoleFactory::link () operation will raise RelationshipTypeError if the rel
parameter does not conform to the CosRelationship::Relationship interface.

144 X/Open Preliminary Specification (1995)

Chapter 7

Transaction Service Specification

This chapter provides the following information about the Transaction Service:

• a description of the service, which explains the functional, design and performance
requirements that are satisfied by this specification

• an overview of the Transaction Service that introduces the concepts used throughout this
chapter

• a description of the Transaction Service’s architecture and a detailed definition of the
Transaction Service, including definitions of its interfaces and operations

• a user’s view of the Transaction Service as seen by the application programmer, including
client and object implementor

• an implementor’s view of the Transaction Service, which will interest Transaction Service and
ORB providers.

Appendix A on page 207 explains the relationship between the Transaction Service and TP
standards.

7.1 Service Description
The concept of transactions is an important programming paradigm for simplifying the
construction of reliable and available applications, especially those that require concurrent
access to shared data. The transaction concept was first deployed in commercial operational
applications where it was used to protect data in centralised databases. More recently, the
transaction concept has been extended to the broader context of distributed computation.
Today, it is widely accepted that transactions are the key to constructing reliable distributed
applications.

The Transaction Service described in this specification brings together the transaction paradigm,
essential to developing reliable distributed applications, and the object paradigm, key to
productivity and quality in application development, to address the business problems of
commercial transaction processing.

7.1.1 Overview of Transactions

The Transaction Service supports the concept of a transaction. A transaction is a unit of work
that has the following (ACID) characteristics:

• A transaction is atomic; if interrupted by failure, all effects are undone (rolled back).

• A transaction produces consistent results; the effects of a transaction preserve invariant
properties.

• A transaction is isolated; its intermediate states are not visible to other transactions.
Transactions appear to execute serially, even if they are performed concurrently.

• A transaction is durable; the effects of a completed transaction are persistent; they are never
lost (except in a catastrophic failure).

A transaction can be terminated in two ways: the transaction is either committed or rolled back.
When a transaction is committed, all changes made by the associated requests are made

Common Object Services, Volume 2 145

Service Description Transaction Service Specification

permanent. When a transaction is rolled back, all changes made by the associated requests are
undone.

The Transaction Service defines interfaces that allow multiple, distributed objects to cooperate to
provide atomicity. These interfaces enable the objects to either commit all changes together or to
rollback all changes together, even in the presence of (non-catastrophic) failure. No
requirements are placed on the objects other than those defined by the Transaction Service
interfaces.

Transaction semantics can be defined as part of any object that provides ACID properties.
Examples are OODBMS and persistent objects. The value of a separate transaction service is
that it allows:

• transactions to include multiple, separately defined, ACID objects

• the possibility of transactions which include objects and resources from the non-object world.

7.1.2 Transactional Applications

The Transaction Service provides transaction synchronisation across the elements of a
distributed client/server application.

A transaction can involve multiple objects performing multiple requests. The scope of a
transaction is defined by a transaction context that is shared by the participating objects. The
Transaction Service places no constraints on the number of objects involved, the topology of the
application, or the way in which the application is distributed across a network.

In a typical scenario, a client first begins a transaction (by issuing a request to an object defined
by the Transaction Service), which establishes a transaction context associated with the client
thread. The client then issues requests. These requests are implicitly associated with the client’s
transaction; they share the client’s transaction context. Eventually, the client decides to end the
transaction (by issuing another request). If there were no failures, the changes produced as a
consequence of the client’s requests would then be committed; otherwise, the changes would be
rolled back.

In this scenario, the transaction context is transmitted implicitly to the objects, without direct
client intervention (see Section 7.4.1 on page 172). The Transaction Service also supports
scenarios where the client directly controls the propagation of the transaction context. For
example, a client can pass the transaction context to an object as an explicit parameter in a
request. An implementation of the Transaction Service might limit the client’s ability to
explicitly propagate the transaction context, in order to guarantee transaction integrity (see
Explicit Propagation on page 172).

The Transaction Service does not require that all requests are performed within the scope of a
transaction. A request issued outside the scope of a transaction has no associated transaction
context. It is up to each object to determine its behaviour when invoked outside the scope of a
transaction; an object that requires a transaction context can raise a standard exception.

146 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Description

7.1.3 Definitions

Applications supported by the Transaction Service consist of the following entities:

• transactional client (TC)

• transactional objects (TO)

• recoverable objects

• transactional servers

• recoverable servers.

Figure 7-1 shows a simple application which includes these basic elements.

Distributed
Client/Server Application

Transactional
Client

Transactional
Server

Recoverable
Server

Participates in
transaction completion

begin or
end
transaction

not involved in
transaction completion,
may force rollback

registers resource in
transaction completion,
may force rollback

Transaction Service

Transactional
Operation

transaction
context

Transactional
Object Resource

Transactional
Operation

Figure 7-1 Application Including Definitions

Common Object Services, Volume 2 147

Service Description Transaction Service Specification

Transactional Client

A transactional client is an arbitrary program that can invoke operations of many transactional
objects in a single transaction.

The program that begins a transaction is called the transaction originator.

Transactional Object

We use the term transactional object to refer to an object whose behaviour is affected by being
invoked within the scope of a transaction. A transactional object typically contains or indirectly
refers to persistent data that can be modified by requests.

The Transaction Service does not require that all requests have transactional behaviour, even
when issued within the scope of a transaction. An object can choose to not support transactional
behaviour, or to support transactional behaviour for some requests but not others.

We use the term non-transactional object to refer to an object none of whose operations are
affected by being invoked within the scope of a transaction.

If an object does not support transactional behaviour for a request, then the changes produced
by the request might not survive a failure and the changes will not be undone if the transaction
associated with the request is rolled back.

An object can also choose to support transactional behaviour for some requests but not others.
This choice can be exercised by both the client and the server of the request.

The Transaction Service permits an interface to have both transactional and non-transactional
implementations. No OMG IDL extensions are introduced to specify whether or not an
operation has transactional behaviour. Transactional behaviour can be a quality of service that
differs in different implementations.

Transactional objects are used to implement two types of application servers:

• transactional server

• recoverable server.

Recoverable Objects and Resource Objects

To implement transactional behaviour, an object must participate in certain protocols defined by
the Transaction Service. These protocols are used to ensure that all participants in the
transaction agree on the outcome (commit or rollback) and to recover from failures.

To be more precise, an object is required to participate in these protocols only if it directly
manages data whose state is subject to change within a transaction. An object whose data is
affected by committing or rolling back a transaction is called a recoverable object.

A recoverable object is by definition a transactional object. However, an object can be
transactional but not recoverable by implementing its state using some other (recoverable)
object. A client is concerned only that an object is transactional; a client cannot tell whether a
transactional object is or is not a recoverable object.

A recoverable object must participate in the Transaction Service protocols. It does so by
registering an object called a resource with the Transaction Service. The Transaction Service
drives the commit protocol by issuing requests to the resources registered for a transaction.

A recoverable object typically involves itself in a transaction because it is required to retain in
stable storage certain information at critical times in its processing. When a recoverable object
restarts after a failure, it participates in a recovery protocol based on the contents (or lack of

148 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Description

contents) of its stable storage.

A transaction can be used to coordinate non-durable activities which do not require permanent
changes to storage.

Transactional Server

A transactional server is a collection of one or more objects whose behaviour is affected by the
transaction, but which have no recoverable states of their own. Instead, it implements
transactional changes using other recoverable objects. A transactional server does not
participate in the completion of the transaction, but it can force the transaction to be rolled back.

Recoverable Server

A recoverable server is a collection of objects, at least one of which is recoverable.

A recoverable server participates in the protocols by registering one or more Resource objects
with the Transaction Service. The Transaction Service drives the commit protocol by issuing
requests to the resources registered for a transaction.

7.1.4 Transaction Service Functionality

The Transaction Service provides operations to:

• control the scope and duration of a transaction

• allow multiple objects to be involved in a single, atomic transaction

• allow objects to associate changes in their internal state with a transaction

• coordinate the completion of transactions.

Transaction Models

The Transaction Service supports two distributed transaction models: flat transactions and nested
transactions. An implementation of the Transaction Service is not required to support nested
transactions.

Flat Transactions

The Transaction Service defines support for a flat transaction model. The definition of the
function provided, and the commitment protocols used, are modelled on the X/Open
Distributed TP Model.

A flat transaction is considered to be a top-level transaction (see Nested Transactions) that
cannot have a child transaction.

Nested Transactions

The Transaction Service also defines a nested transaction model. Nested transactions provide
for a finer granularity of recovery than flat transactions. The effect of failures that require
rollback can be limited so that unaffected parts of the transaction need not rollback.

Nested transactions allow an application to create a transaction that is embedded in an existing
transaction. The existing transaction is called the parent of the subtransaction; the subtransaction
is called a child of the parent transaction.

Multiple subtransactions can be embedded in the same parent transaction. The children of one
parent are called siblings.

Common Object Services, Volume 2 149

Service Description Transaction Service Specification

Subtransactions can be embedded in other subtransactions to any level of nesting. The ancestors
of a transaction are the parent of the subtransaction and (recursively) the parents of its ancestors.
The descendants of a transaction are the children of the transaction and (recursively) the children
of its descendants.

A top-level transaction is one with no parent. A top-level transaction and all of its descendants
are called a transaction family.

A subtransaction is similar to a top-level transaction in that the changes made on behalf of a
subtransaction are either committed in their entirety or rolled back. However, when a
subtransaction is committed, the changes remain contingent upon commitment of all of the
transaction’s ancestors.

Subtransactions are strictly nested. A transaction cannot commit unless all of its children have
completed. When a transaction is rolled back, all of its children are rolled back.

Objects that participate in transactions must support isolation of transactions. The concept of
isolation applies to subtransactions as well as to top-level transactions. When a transaction has
multiple children, the children appear to other transactions to execute serially, even if they are
performed concurrently.

Subtransactions can be used to isolate failures. If an operation performed within a
subtransaction fails, only the subtransaction is rolled back. The parent transaction has the
opportunity to correct or compensate for the problem and complete its operation.
Subtransactions can also be used to perform suboperations of a transaction in parallel, without
the risk of inconsistent results.

Transaction Termination

A transaction is terminated by issuing a request to commit or rollback the transaction. Typically,
a transaction is terminated by the client that originated the transaction, the transaction originator.
Some implementations of the Transaction Service may allow transactions to be terminated by
Transaction Service clients other than the one which created the transaction.

Any participant in a transaction can force the transaction to be rolled back (eventually). If a
transaction is rolled back, all participants rollback their changes. Typically, a participant may
request the rollback of the current transaction after encountering a failure. It is implementation-
specific whether the Transaction Service itself monitors the participants in a transaction for
failures or inactivity.

Transaction Integrity

Some implementations of the Transaction Service impose constraints on the use of the
Transaction Service interfaces in order to guarantee integrity equivalent to that provided by the
interfaces which support the X/Open Distributed TP Model. This is called checked transaction
behaviour.

For example, allowing a transaction to commit before all computations acting on behalf of the
transaction have completed can lead to a loss of data integrity. Checked implementations of the
Transaction Service will prevent premature commitment of a transaction.

Other implementations of the Transaction Service may rely completely on the application to
provide transaction integrity. This is called unchecked transaction behaviour.

150 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Description

Transaction Context

As part of the environment of each ORB-aware thread, the ORB maintains a transaction context.
The transaction context associated with a thread is either null (indicating that the thread has no
associated transaction) or it refers to a specific transaction. It is permitted for multiple threads to
be associated with the same transaction at the same time, in the same execution environment or
in multiple execution environments.

The transaction context can be implicitly transmitted to transactional objects as part of a
transactional operation invocation. The Transaction Service also allows programmers to pass a
transaction context as an explicit parameter of a request.

7.1.5 Principles of Function, Design and Performance

The Transaction Service defined in this specification fulfills a number of functional, design and
performance requirements.

Functional Requirements

The Transaction Service defined in this specification addresses the following functional
requirements:

1. Support for Multiple Transaction Models

The flat transaction model, which is widely supported in the industry today, is a
mandatory component of this specification. The nested transaction model, which provides
finer granularity isolation and facilitates object reuse in a transactional environment, is an
optional component of this specification.

2. Evolutionary Deployment

An important property of object technology is the ability to ‘‘wrapper’’ existing programs
(coarse grain objects) to allow these functions to serve as building blocks for new business
applications. This technique has been successfully used to marry object-oriented end-user
interfaces with commercial business logic implemented using classical procedural
techniques.

It can similarly be used to encapsulate the large body of existing business software on
legacy environments and leverage that in building new business applications. This will
allow customers to gradually deploy object technology into their existing environments,
without having to re-implement all existing business functions — an essential element for
commercial success in this marketplace.

3. Model Interoperability

Customers desire the capability to add object implementations to existing procedural
applications and to augment object implementations with code that uses the procedural
paradigm. To do so in a transaction environment requires that a single transaction is
shared by both the object and procedural code. This includes the following:

— a single transaction which includes ORB and non-ORB applications and resources

— interoperability between the object transaction service model and the X/Open
Distributed TP Model

— access to existing (non-object) programs and Resource Managers by objects

— access to objects by existing programs and Resource Managers

Common Object Services, Volume 2 151

Service Description Transaction Service Specification

— coordination by a single transaction service of the activities of both object and non-
object Resource Managers

— the network case: a single transaction, distributed between an object and non-object
system, each of which has its own transaction service.

The Transaction Service design accommodates this requirement for implementations
where interoperability with X/Open Distributed TP-compliant transactional applications
is necessary.

4. Network Interoperability

Customers require the ability to interoperate between systems offered by multiple
vendors:

— single transaction service, single ORB

It must be possible for a single transaction service to interoperate with itself using a
single ORB.

— multiple transaction services, single ORB

It must be possible for one transaction service to interoperate with a cooperating
transaction service using a single ORB.

— single transaction service, multiple ORBs

It must be possible for a single transaction service to interoperate with itself using
different ORBs.

— multiple transaction services, multiple ORBs

It must be possible for one transaction service to interoperate with a cooperating
transaction service using different ORBs.

The Transaction Service defined in this document specifies all required interactions
between cooperating Transaction Service implementations necessary to support a single
ORB. The Transaction Service depends on ORB interoperability (as defined by the CORBA
Specification) to provide cooperating Transaction Services across different ORBs.
Requirements are identified in Section 7.5.2 on page 194.

5. Flexible Transaction Propagation Control

Both client and object implementations can control transaction propagation:

— A client controls whether or not its transaction is propagated with an operation.

— A client can invoke operations on objects with transactional behaviour and objects
without transactional behaviour within the execution of a single transaction.

— An object can specify transactional behaviour for its interfaces.

The Transaction Service supports both implicit (that is, system managed) propagation and
explicit (application managed) propagation. With implicit propagation, transactional
behaviour is not specified in the operation’s signature. With explicit propagation,
applications define their own mechanisms for sharing a common transaction.

6. Support for TP Monitors

Customers require the ability to use object technology in building mission-critical
applications. These applications are deployed on commercial transaction processing
systems where a TP Monitor is used to provide both efficient scheduling and the sharing of
resources by a large number of users. It must be possible to implement the Transaction

152 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Description

Service in a TP monitor environment. This includes:

— the ability to execute multiple transactions concurrently

— the ability to execute clients, servers and transaction services in separate processes.

The Transaction Service defined in this specification is usable in a TP Monitor
environment.

Design Requirements

The Transaction Service defined by this specification supports the following design
requirements:

1. Exploitation of OO Technology

The specification permits a wide variety of ORB and Transaction Service implementations
and uses objects to enable ORB-based, secure implementations. The architecture of the
Transaction Service is defined in terms of the CORBA Specification. All architected
interactions among components are defined by OMG IDL and realised using the ORB. The
ORB has sole responsibility for communication.

Consideration has been given to providing the programmer with simple, easy-to-use
interfaces which hide some of the complexity inherent in the generality of the complete
specification. Meaningful user applications can be constructed using a set of interfaces
that are as simple or simpler than their procedural equivalents.

2. Low Implementation Cost

The Transaction Service specification has considered cost from the perspective of three
users of the service — clients, ORB implementors and Transaction Service providers.

— For clients, it allows a range of implementations which are compliant with the
proposed architecture. Many ORB implementations will exist in client workstations
which have no requirement to understand transactions within themselves, but will find
it highly desirable to interoperate with server platforms that implement transactions.

— The specification provides for minimal impact to the ORB. Where feasible, function is
assigned to an object service implementation to permit the ORB to continue to provide
high performance object access when transactions are not used.

— Since this Transaction Service will be supported by existing (procedural) Transaction
Managers, the specification allows implementations that reuse existing procedural
Transaction Manager implementations.

3. Portability

The Transaction Service specification provides for portability of applications. It also
defines an interface between the ORB and the Transaction Service that enables individual
Transaction Service implementations to be ported between individual ORB
implementations.

4. Avoidance of OMG IDL Interface Variants

The Transaction Service allows a single interface to be supported by both transactional and
non-transactional implementations. This approach avoids a potential ‘‘combinatorial
explosion’’ of interface variants that differ only in their transactional characteristics. For
example, the existing object services interfaces can support transactional behaviour
without change.

Common Object Services, Volume 2 153

Service Description Transaction Service Specification

5. Support for Both Single-threaded and Multi-threaded Implementations

The Transaction Service defines a flexible model that supports a variety of programming
styles. For example, a client with an active transaction can make requests for the same
transaction on multiple threads. Similarly, an object can support multiple transactions in
parallel by using multiple threads.

6. Wide Spectrum of Implementation Choices

The Transaction Service allows implementations to choose the degree of checking
provided to guarantee legal behaviour of its users. This permits both robust
implementations which provide strong assurances for transaction integrity and
lightweight implementations where such checks are not warranted.

Performance Requirements

The Transaction Service is expected to be implemented on a wide range of hardware and
software platforms ranging from desktop computers to massively parallel servers and in
networks ranging in size from a single LAN to worldwide networks. To meet this wide range of
requirements, consideration must be given to algorithms which scale, efficient communications,
and the number and size of accesses to permanent storage. Much of this is implementation, and
therefore not visible to the user of the service. Nevertheless, the expected performance of the
Transaction Service was compared to its procedural equivalent, the X/Open Distributed TP
Model, in the following areas:

1. the number of network messages required

2. the number of disk accesses required

3. the amount of data logged.

The objective of the specification was to achieve parity with the X/Open Distributed TP Model
for equivalent function, where technically feasible.

154 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Architecture

7.2 Service Architecture
Figure 7-2 illustrates the major components and interfaces defined by the Transaction Service.

The transaction originator is an arbitrary program that begins a transaction. The recoverable
server implements an object with recoverable state that is invoked within the scope of the
transaction, either directly by the transaction originator or indirectly through one or more
transactional objects.

recoverable server

(transmitted with request)

Current Current

Factory
Control
Terminator

Control
Coordinator
RecoveryCoordinator

Transaction Service

transaction
context

transaction
context

transaction
context

Resource
SubtransactionAwareResource

(associated with thread)(associated with thread)

transaction originator

Figure 7-2 Major Components and Interfaces of the Transaction Service

The transaction originator creates a transaction using a Factory ; a Control is returned that
provides access to a Terminator and a Coordinator . The transaction originator uses the Terminator
to commit or rollback the transaction. The Coordinator is made available to recoverable servers,
either explicitly or implicitly (by implicitly propagating a transaction context with a request). A
recoverable server registers a Resource with the Coordinator . The Resource implements the
two-phase commit protocol which is driven by the Transaction Service. A recoverable server
can also register a specialised resource called a SubtransactionAwareResource to track the
completion of subtransactions. A Resource uses a RecoveryCoordinator in certain failure cases to
determine the outcome of the transaction and to coordinate the recovery process with the
Transaction Service.

To simplify coding, most applications use the Current pseudo-object, which provides access to
an implicit per-thread transaction context.

Common Object Services, Volume 2 155

Service Architecture Transaction Service Specification

7.2.1 Typical Usage

A typical transaction originator uses the Current object to begin a transaction, which becomes
associated with the transaction originator’s thread.

The transaction originator then issues requests. Some of these requests involve transactional
objects. When a request is issued to a transactional object, the transaction context associated
with the invoking thread is automatically propagated to the thread executing the method of the
target object. No explicit operation parameter or context declaration is required to transmit the
transaction context. Propagation of the transaction context can extend to multiple levels if a
transactional object issues a request to a transactional object.

Using the Current object, the transactional object can unilaterally roll back the transaction and
can enquire about the current state of the transaction. Using the Current object, the transactional
object also can obtain a Coordinator for the current transaction. Using the Coordinator , a
transactional object can determine the relationship between two transactions, to implement
isolation among multiple transactions.

Some transactional objects are also recoverable objects. A recoverable object has persistent data
that must be managed as part of the transaction. A recoverable object uses the Coordinator to
register a Resource object as a participant in the transaction. The resource represents the
recoverable object’s participation in the transaction; each resource is implicitly associated with a
single transaction. The Coordinator uses the resource to perform the two-phase commit protocol
on the recoverable object’s data.

After the computations involved in the transaction have been completed, the transaction
originator uses the pseudo-object to request that the changes be committed. The Transaction
Service commits the transaction using a two-phase commit protocol wherein a series of requests
is issued to the registered resources.

7.2.2 Transaction Context

The transaction context associated with a thread is either null (indicating that the thread has no
associated transaction) or it refers to a specific transaction. It is permitted for multiple threads to
be associated with the same transaction at the same time.

When a thread in an object server is used by an object adapter to perform a request on a
transactional object, the object adapter initializes the transaction context associated with that
thread by effectively copying the transaction context of the thread that issued the request. An
implementation of the Transaction Service may restrict the capabilities of the new transaction
context. For example, an implementation of the Transaction Service might not permit the object
server thread to request commitment of the transaction.

The object adapter is not required to initialize the transaction context of every request handler.
It is required to initialize the transaction context only if the interface supported by the target
object is derived from the TransactionalObject interface. Otherwise, the initial transaction
context of the thread is undefined.

When a thread retrieves the response to a deferred synchronous request, an exception may be
raised if the thread is no longer associated with the transaction that it was associated with when
the deferred synchronous request was issued. (See Section 7.2.5 on page 158 for a more precise
definition.)

When nested transactions are used, the transaction context remembers the stack of nested
transactions started within a particular execution environment (for example, process) so that
when a subtransaction ends, the transaction context of the thread is restored to the context in
effect when the subtransaction was begun. When the context is transferred between execution

156 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Architecture

environments, the received context refers only to one particular transaction, not a stack of
transactions.

7.2.3 Context Management

The Transaction Service supports management and propagation of transaction context using
objects provided by the Transaction Service. Using this approach, the transaction originator
issues a request to a TransactionFactory to begin a new top-level transaction. The factory returns
a Control object specific to the new transaction that allows an application to terminate the
transaction or to become a participant in the transaction (by registering a resource). An
application can propagate a transaction context by passing the Control as an explicit request
parameter.

The Control does not directly support management of the transaction. Instead, it supports
operations that return two other objects, a Terminator and a Coordinator . The Terminator is used
to commit or rollback the transaction. The Coordinator is used to enable transactional objects to
participate in the transaction. These two objects can be propagated independently, allowing
finer granularity control over propagation.

An implementation of the Transaction Service may restrict the ability for some or all of these
objects to be transmitted to or used in other execution environments, to enable it to guarantee
transaction integrity.

An application can also use the pseudo-object operations get_control (), suspend () and resume ()
to obtain or change the implicit transaction context associated with its thread.

When nested transactions are used, a Control can include a stack of nested transactions begun in
the same execution environment. When a Control is transferred between execution
environments, the received Control refers only to one particular transaction, not a stack of
transactions.

7.2.4 Data Types

The CosTransactions module defines the following data types:

enum Status {
StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly

};

Common Object Services, Volume 2 157

Service Architecture Transaction Service Specification

7.2.5 Exceptions

7.2.5.1 Standard Exceptions

The CosTransactions module defines the following standard exceptions:

exception TransactionRequired { };
exception TransactionRolledBack { };
exception InvalidTransaction { };

These exceptions are standard exceptions, meaning that any request can raise one of these
exceptions even though the exception is not (and must not be) declared in the operation
signature.

TransactionRequired Standard Exception

Any operation can raise the TransactionRequired exception to indicate that the request carried a
null transaction context, but an active transaction is required.

TransactionRolledBack Standard Exception

Any operation can raise the TransactionRolledBack exception to indicate that the transaction
associated with the request has already been rolled back or marked to rollback; thus, the
requested operation either could not be performed or was not performed because further
computation on behalf of the transaction would be fruitless.

InvalidTransaction Standard Exception

Any operation can raise the InvalidTransaction exception to indicate that the request carried an
invalid transaction context. For example, this exception could be raised if an error occurred
when trying to register a resource.

7.2.5.2 Heuristic Exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to
commit or rollback updates without first obtaining the consensus outcome determined by the
Transaction Service. Heuristic decisions are normally made only in unusual circumstances, such
as communication failures, that prevent normal processing. When a heuristic decision is taken,
there is a risk that the decision will differ from the consensus outcome, resulting in a loss of data
integrity.

The CosTransactions module defines the following exceptions for reporting incorrect heuristic
decisions or the possibility of incorrect heuristic decisions:

exception HeuristicRollback { };
exception HeuristicCommit { };
exception HeuristicMixed { };
exception HeuristicHazard { };

158 X/Open Preliminary Specification (1995)

Transaction Service Specification Service Architecture

HeuristicRollback Exception

The commit () operation on a resource raises the HeuristicRollback exception to report that a
heuristic decision was made and that all relevant updates have been rolled back.

HeuristicCommit Exception

The rollback () operation on a resource raises the HeuristicCommit exception to report that a
heuristic decision was made and that all relevant updates have been committed.

HeuristicMixed Exception

A request raises the HeuristicMixed exception to report that a heuristic decision was made and
that some relevant updates have been committed and others have been rolled back.

HeuristicHazard Exception

A request raises the HeuristicHazard exception to report that a heuristic decision may have been
made, the disposition of all relevant updates is not known, and for those updates whose
disposition is known, either all have been committed or all have been rolled back. (In other
words, the HeuristicMixed exception takes priority over the HeuristicHazard exception.)

WrongTransaction Exception

The CosTransactions module defines an exception that can be raised by the ORB when returning
the response to a deferred synchronous request:

exception WrongTransaction { };

This exception can be raised only if the request is implicitly associated with a transaction (the
current transaction at the time the request was issued).

The get_response () operation (defined on the Request interface) may raise the WrongTransaction
exception if the transaction associated with the request is not the same as the transaction
associated with the thread invoking get_response ().

The get_next_response () operation (defined on the Orb interface) may raise the
WrongTransaction exception if the thread invoking get_next_response () has a non-null current
transaction that is different than the one associated with the request.

7.2.5.3 Other Exceptions

The CosTransactions module defines the following additional exceptions:

exception SubtransactionsUnavailable { };
exception NotSubtransaction { };
exception Inactive { };
exception NotPrepared { };
exception NoTransaction { };
exception InvalidControl { };
exception Unavailable { };

These exceptions are described below along with the operations that raise them.

Common Object Services, Volume 2 159

Transaction Service Interfaces Transaction Service Specification

7.3 Transaction Service Interfaces
The interfaces defined by the Transaction Service reside in the CosTransaction module. (OMG
IDL for the CosTransactions module is shown in Section 7.6 on page 202.) The interfaces for the
Transaction Service are as follows:

• Current

• TransactionFactory

• Terminator

• Coordinator

• RecoveryCoordinator

• Resource

• SubtransactionAwareResource

• TransactionalObject .

No operations are defined in these interfaces for destroying objects. No application actions are
required to destroy objects that support the Transaction Service because the Transaction Service
destroys its own objects when they are no longer needed.

7.3.1 The Current Interface

The Current interface defines operations that allow a client of the Transaction Service to
explicitly manage the association between threads and transactions. The Current interface also
defines operations that simplify the use of the Transaction Service for most applications. These
operations can be used to begin and end transactions and to obtain information about the
current transaction.

The Current interface is designed to be supported by a pseudo-object whose behaviour depends
upon and may alter the transaction context associated with the invoking thread.

interface Current {
void begin()

raises(SubtransactionsUnavailable);
void commit(in boolean report_heuristics)

raises(
NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};

160 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

begin()

A new transaction is created. The transaction context of the client thread is modified so that the
thread is associated with the new transaction. If the client thread is currently associated with a
transaction, the new transaction is a subtransaction of that transaction. Otherwise, the new
transaction is a top-level transaction.

The SubtransactionsUnavailable exception is raised if the client thread already has an associated
transaction and the Transaction Service implementation does not support nested transactions.

commit()

If there is no transaction associated with the client thread, the NoTransaction exception is raised.
If the client thread does not have permission to commit the transaction, the standard exception
NO_PERMISSION is raised. (The commit () operation may be restricted to the transaction
originator in some implementations.)

Otherwise, the transaction associated with the client thread is completed. The effect of this
request is equivalent to performing the commit () operation on the corresponding Terminator
object. See Section 7.3.4 on page 164 and Section 7.3.5 on page 165 for a description of the
exceptions that may be raised.

The client thread transaction context is modified as follows. If the transaction was begun by a
thread (invoking begin ()) in the same execution environment, then the thread’s transaction
context is restored to its state prior to the begin () request. Otherwise, the thread’s transaction
context is set to null.

rollback()

If there is no transaction associated with the client thread, the NoTransaction exception is raised.
If the client thread does not have permission to rollback the transaction, the standard exception
NO_PERMISSION is raised. (The rollback () operation may be restricted to the transaction
originator in some implementations; however, the rollback_only () operation, described below, is
available to all transaction participants.)

Otherwise, the transaction associated with the client thread is rolled back. The effect of this
request is equivalent to performing the rollback () operation on the corresponding terminator
object (see Section 7.3.4 on page 164).

The client thread transaction context is modified as follows. If the transaction was begun by a
thread (invoking begin ()) in the same execution environment, then the thread’s transaction
context is restored to its state prior to the begin () request. Otherwise, the thread’s transaction
context is set to null.

rollback_only()

If there is no transaction associated with the client thread, the NoTransaction exception is raised.
Otherwise, the transaction associated with the client thread is modified so that the only possible
outcome is to rollback the transaction. The effect of this request is equivalent to performing the
rollback_only () operation on the corresponding Coordinator object (see Section 7.3.5 on page
165).

Common Object Services, Volume 2 161

Transaction Service Interfaces Transaction Service Specification

get_status()

If there is no transaction associated with the client thread, the StatusNoTransaction value is
returned. Otherwise, this operation returns the status of the transaction associated with the
client thread. The effect of this request is equivalent to performing the get_status () operation on
the corresponding Coordinator object (see Section 7.3.5 on page 165).

get_transaction_name()

If there is no transaction associated with the client thread, an empty string is returned.
Otherwise, this operation returns a printable string describing the transaction. The returned
string is intended to support debugging. The effect of this request is equivalent to performing
the get_transaction_name () operation on the corresponding Coordinator object (see Section 7.3.5
on page 165).

set_timeout()

This operation modifies a state variable associated with the target object that affects the timeout
period associated with top-level transactions created by subsequent invocations of the begin
operation. If the parameter has a non-zero value n, then top-level transactions created by
subsequent invocations of begin () will be subject to being rolled back if they do not complete
before n seconds after their creation. If the parameter is zero, then no application specified
timeout is established.

get_control()

If the client thread is not associated with a transaction, a null object reference is returned.
Otherwise, a Control object is returned that represents the transaction context currently
associated with the client thread. This object can be given to the resume () operation to re-
establish this context in the same thread or a different thread. The scope within which this object
is valid is implementation-dependent; at a minimum, it must be usable by the client thread. This
operation is not dependent on the state of the transaction; in particular, it does not raise the
TransactionRolledBack exception.

suspend()

If the client thread is not associated with a transaction, a null object reference is returned.
Otherwise, an object is returned that represents the transaction context currently associated with
the client thread. This object can be given to the resume () operation to re-establish this context
in the same thread or a different thread. The scope within which this object is valid is
implementation-dependent; at a minimum, it must be usable by the client thread. In addition,
the client thread becomes associated with no transaction. This operation is not dependent on the
state of the transaction; in particular, it does not raise the TransactionRolledBack exception.

resume()

If the parameter is a null object reference, the client thread becomes associated with no
transaction. Otherwise, if the parameter is valid in the current execution environment, the client
thread becomes associated with that transaction (in place of any previous transaction).
Otherwise, the InvalidControl exception is raised. See Section 7.3.3 on page 163 for a discussion
of restrictions on the scope of a Control . This operation is not dependent on the state of the
transaction; in particular, it does not raise the TransactionRolledBack exception.

162 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

7.3.2 The TransactionFactory Interface

The TransactionFactory interface is provided to allow the transaction originator to begin a
transaction. This interface defines a single operation, create (), which creates a new top-level
transaction.

interface TransactionFactory {
Control create(in unsigned long time_out);

};

create()

A new top-level transaction is created and a Control object is returned. The Control object can be
used to manage or to control participation in the new transaction. An implementation of the
Transaction Service may restrict the ability for the Control object to be transmitted to or used in
other execution environments; at a minimum, it can be used by the client thread.

If the parameter has a non-zero value n, then the new transaction will be subject to being rolled
back if it does not complete before n seconds have elapsed. If the parameter is zero, then no
application specified timeout is established.

7.3.3 The Control Interface

The Control interface allows a program to explicitly manage or propagate a transaction context.
An object supporting the Control interface is implicitly associated with one specific transaction.

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

The Control interface defines two operations: get_terminator () and get_coordinator (). The
get_terminator () operation returns a Terminator object, which supports operations to end the
transaction. The get_coordinator () operation returns a Coordinator object, which supports
operations needed by resources to participate in the transaction. The two objects support
operations that are typically performed by different parties. Providing two objects allows each
set of operations to be made available only to the parties that require those operations.

A Control object for a new transaction is obtained using the create () operation defined by the
TransactionFactory interface or the create_subtransaction () operation defined by the Coordinator
interface. It is possible to obtain a Control object for the current transaction (associated with a
thread) using the get_control () or suspend () operations defined by the Current interface (see
Section 7.3.1 on page 160). (These two operations return a null object reference if there is no
current transaction.)

An implementation of the Transaction Service may restrict the ability for the object to be
transmitted to or used in other execution environments; at a minimum, it can be used within a
single thread.

Common Object Services, Volume 2 163

Transaction Service Interfaces Transaction Service Specification

get_terminator()

An object is returned that supports the Terminator interface. The object can be used to rollback
or commit the transaction associated with the Control . The Unavailable exception may be raised
if the Control cannot provide the requested object. An implementation of the Transaction Service
may restrict the ability for the Terminator object to be transmitted to or used in other execution
environments; at a minimum, it can be used within the client thread.

get_coordinator()

An object is returned that supports the Coordinator interface. The object can be used to register
resources for the transaction associated with the Control . The Unavailable exception may be
raised if the Control cannot provide the requested object. An implementation of the Transaction
Service may restrict the ability for the Coordinator object to be transmitted to or used in other
execution environments; at a minimum, it can be used within the client thread.

7.3.4 The Terminator Interface

The Terminator interface supports operations to commit or rollback a transaction. Typically,
these operations are used by the transaction originator.

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard

);
void rollback();

};

An implementation of the Transaction Service may restrict the scope in which a Terminator can
be used; at a minimum, it can be used within a single thread.

commit()

If the transaction has not been marked rollback only, and all of the participants in the transaction
agree to commit, the transaction is committed and the operation terminates normally.
Otherwise, the transaction is rolled back (as described below) and the TransactionRolledBack
standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service will report inconsistent or
possibly inconsistent outcomes using the HeuristicMixed and HeuristicHazard exceptions
(defined in Section 7.2.5 on page 158). A Transaction Service implementation may optionally use
the Event Service to report heuristic decisions.

The commit () operation may rollback the transaction if there are subtransactions of the
transaction that have not themselves been committed or rolled back, or if there are existing or
potential activities associated with the transaction that have not completed. The nature and
extent of such error checking is implementation-dependent.

When a top-level transaction is committed, all changes to transactional objects made in the scope
of this transaction are made permanent and visible to other transactions or clients. When a
subtransaction is committed, the changes are made visible to other related transactions as
appropriate to the degree of isolation enforced by the resources.

164 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

rollback()

The transaction is rolled back.

When a transaction is rolled back, all changes to transactional objects made in the scope of this
transaction (including changes made by descendant transactions) are rolled back. All resources
locked by the transaction are made available to other transactions as appropriate to the degree of
isolation enforced by the resources.

7.3.5 The Coordinator Interface

The Coordinator interface provides operations that are used by participants in a transaction.
These participants are typically either recoverable objects or agents of recoverable objects, such
as subordinate Coordinators . Each object supporting the Coordinator interface is implicitly
associated with a single transaction.

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()
raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

};

An implementation of the Transaction Service may restrict the scope in which a Coordinator can
be used; at a minimum, it can be used within a single thread.

get_status()

This operation returns the status of the transaction associated with the target object.

Common Object Services, Volume 2 165

Transaction Service Interfaces Transaction Service Specification

get_parent_status()

If the transaction associated with the target object is a top-level transaction, then this operation
is equivalent to the get_status () operation. Otherwise, this operation returns the status of the
parent of the transaction associated with the target object.

get_top_level_status()

This operation returns the status of the top-level ancestor of the transaction associated with the
target object. If the transaction is a top-level transaction, then this operation is equivalent to the
get_status () operation.

is_same_transaction()

This operation returns true if and only if the target object and the parameter object both refer to
the same transaction.

is_ancestor_transaction()

This operation returns true if and only if the transaction associated with the target object is an
ancestor of the transaction associated with the parameter object. A transaction T1 is an ancestor
of a transaction T2 if and only if T1 is the same as T2 or T1 is an ancestor of the parent of T2.

is_descendant_transaction()

This operation returns true if and only if the transaction associated with the target object is a
descendant of the transaction associated with the parameter object. A transaction T1 is a
descendant of a transaction T2 if and only if T2 is an ancestor of T1 (see above).

is_related_transaction()

This operation returns true if and only if the transaction associated with the target object is
related to the transaction associated with the parameter object. A transaction T1 is related to a
transaction T2 if and only if there exists a transaction T3 such that T3 is an ancestor of T1 and T3
is an ancestor of T2.

is_top_level_transaction()

This operation returns true if and only if the transaction associated with the target object is a
top-level transaction. A transaction is a top-level transaction if it has no parent.

hash_transaction()

This operation returns a hash code for the transaction associated with the target object. Each
transaction has a single hash code. Hash codes for transactions should be uniformly distributed.

hash_top_level_tran()

This operation returns the hash code for the top-level ancestor of the transaction associated with
the target object. This operation is equivalent to the hash_transaction () operation when the
transaction associated with the target object is a top-level transaction.

166 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

register_resource()

This operation registers the specified resource as a participant in the transaction associated with
the target object. When the transaction is terminated, the resource will receive requests to
commit or rollback the updates performed as part of the transaction. These requests are
described in the description of the Resource interface. The Inactive exception is raised if the
transaction has already been prepared. The standard exception TransactionRolledBack may be
raised if the transaction has been marked rollback only.

If the resource is a subtransaction-aware resource (it supports the SubtransactionAwareResource
interface) and the transaction associated with the target object is a subtransaction, then this
operation registers the specified resource with the subtransaction and indirectly with the top-
level transaction when the subtransaction’s ancestors have completed. Otherwise, the resource
is registered as a participant in the current transaction. If the current transaction is a
subtransaction, the resource will not receive prepare () or commit () requests until the top-level
ancestor terminates.

This operation returns a RecoveryCoordinator that can be used by this resource during recovery.

register_subtran_aware()

This operation registers the specified subtransaction aware resource such that it will be notified
when the subtransaction has committed or rolled back. These requests are described in the
description of the SubtransactionAwareResource interface.

Note that this operation registers the specified resource only with the subtransaction. This
operation cannot be used to register the resource as a participant in the transaction.

The NotSubtransaction exception is raised if the current transaction is not a subtransaction. The
Inactive exception is raised if the subtransaction (or any ancestor) has already been terminated.
The standard exception TransactionRolledBack may be raised if the subtransaction (or any
ancestor) has been marked rollback only.

rollback_only()

The transaction associated with the target object is modified so that the only possible outcome is
to rollback the transaction. The Inactive exception is raised if the transaction has already been
prepared.

get_transaction_name()

This operation returns a printable string describing the transaction associated with the target
object. The returned string is intended to support debugging.

create_subtransaction()

A new subtransaction is created whose parent is the transaction associated with the target
object. The Inactive exception is raised if the target transaction has already been prepared. An
implementation of the Transaction Service is not required to support nested transactions. If
nested transactions are not supported, the exception SubtransactionsUnavailable is raised.

The create_subtransaction () operation returns an object, which enables the subtransaction to be
terminated and allows recoverable objects to participate in the subtransaction. An
implementation of the Transaction Service may restrict the ability for the object to be transmitted
to or used in other execution environments.

Common Object Services, Volume 2 167

Transaction Service Interfaces Transaction Service Specification

7.3.6 The RecoveryCoordinator Interface

A recoverable object uses a RecoveryCoordinator to drive the recovery process in certain
situations. Each object supporting the RecoveryCoordinator interface is implicitly associated
with a single resource registration request (invoking the register_resource () operation) and may
be used only by that resource.

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

replay_completion()

This operation can be invoked at any time after the associated resource has been prepared. The
resource must be passed as the parameter. Performing this operation provides a hint to the
Coordinator that the commit () or rollback () operations have not been performed on the resource.
This hint may be required in certain failure cases. The NotPrepared exception is raised if the
resource has not been prepared. This operation returns the current status of the transaction.

7.3.7 The Resource Interface

The Transaction Service uses a two-phase commitment protocol to complete a top-level
transaction with each registered resource. The Resource interface defines the operations
invoked by the transaction service on each resource. Each object supporting the Resource
interface is implicitly associated with a single top-level transaction. Note that in the case of
failure, a resource should be prepared receive duplicate requests for the commit () or rollback ()
operation and to respond consistently.

interface Resource {
Vote prepare();
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void forget();

};

168 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

prepare()

This operation is invoked to begin the two-phase commit protocol on the resource. The resource
can respond in several ways, represented by the Vote result.

If no persistent data associated with the resource has been modified by the transaction, the
resource can return VoteReadOnly . After receiving this response, the Transaction Service is not
required to perform any additional operations on this resource. Furthermore, the resource can
forget all knowledge of the transaction.

If the resource is able to write (or has already written) all the data needed to commit the
transaction to stable storage, as well as an indication that it has prepared the transaction, it can
return VoteCommit . After receiving this response, the Transaction Service is required to
eventually perform either the commit () or the rollback () operation on this object. To support
recovery, the resource should store the RecoveryCoordinator object reference in stable storage.

The resource can return VoteRollback under any circumstances, including not having any
knowledge about the transaction (which might happen after a crash). If this response is
returned, the transaction must be rolled back. Furthermore, the Transaction Service is not
required to perform any additional operations on this resource. After returning this response,
the resource can forget all knowledge of the transaction.

rollback()

If necessary, the resource should rollback () all changes made as part of the transaction. If the
resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in Section 7.2.5 on page 158) are used to report
heuristic decisions related to the resource. If a heuristic outcome exception is raised, the
resource must remember this outcome until the forget () operation is performed so that it can
return the same outcome in case rollback () is performed again. Otherwise, the resource can
immediately forget all knowledge of the transaction.

commit()

If necessary, the resource should commit all changes made as part of the transaction. If the
resource has forgotten the transaction, it should do nothing.

The heuristic outcome exceptions (described in Section 7.2.5 on page 158) are used to report
heuristic decisions related to the resource. If a heuristic outcome exception is raised, the
resource must remember this outcome until the forget () operation is performed so that it can
return the same outcome in case commit () is performed again. Otherwise, the resource can
immediately forget all knowledge of the transaction.

The NotPrepared exception is raised if the commit () operation is performed without first
performing the prepare () operation.

commit_one_phase()

If possible, the resource should commit all changes made as part of the transaction. If it cannot,
it should raise the TransactionRolledBack standard exception.

Common Object Services, Volume 2 169

Transaction Service Interfaces Transaction Service Specification

forget()

This operation is performed only if the resource raised a heuristic outcome exception to
rollback () or commit (). The resource can forget all knowledge of the transaction.

7.3.8 The SubtransactionAwareResource Interface

Recoverable objects that implement nested transaction behaviour may support a specialisation
of the Resource interface called the SubtransactionAwareResource interface. A recoverable
object can be notified of the completion of a subtransaction by registering a specialised resource
object that offers the SubtransactionAwareResource interface with the Transaction Service. This
registration is done by using the register () or the register_subtran_aware () operation of the
current Coordinator object. A recoverable object generally uses the register () operation to
register a resource that will participate in the completion of the top-level transaction, and the
register_subtran_aware () operation to be notified of the completion of a subtransaction.

Certain recoverable objects may want a finer control over the registration in the completion of a
subtransaction. These recoverable objects will use the register () operation to ensure
participation in the completion of the top-level transaction, and they will use the
register_subtran_aware () operation to be notified of the completion of a particular
subtransaction. For example, a recoverable object can use the register_subtran_aware ()
operation to establish a ‘‘committed with respect to’’ relationship between transactions; that is,
the recoverable object wants to be informed when a particular subtransaction is committed and
then perform certain operations on the transactions that depend on that transaction’s
completion. This technique could be used to implement lock inheritance, for example.

The Transaction Service uses the SubtransactionAwareResource interface on each resource object
registered with a subtransaction. Each object supporting this interface is implicitly associated
with a single subtransaction.

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

commit_subtransaction()

This operation is invoked only if the resource has been registered with a subtransaction and the
subtransaction has been committed. The resource object is provided with a Coordinator that
represents the parent transaction. This operation may raise a standard exception, such as
TransactionRolledBack .

Note that the results of a committed subtransaction are relative to the completion of its ancestor
transactions; that is, these results can be undone if any ancestor transaction rolls back.

rollback_subtransaction()

This operation is invoked only if the resource has been registered with a subtransaction and
notifies the resource that the subtransaction has rolled back.

170 X/Open Preliminary Specification (1995)

Transaction Service Specification Transaction Service Interfaces

7.3.9 The TransactionalObject Interface

The TransactionalObject interface is used by an object to indicate that it is transactional. By
supporting the TransactionalObject interface, an object indicates that it wants the transaction
context associated with the client thread to be propagated on requests to the object. If an object
does not support the TransactionalObject interface, the ORB is not required to propagate the
transaction context on requests to the object.

interface TransactionalObject {
};

The TransactionalObject interface defines no operations. It is simply a marker.

Common Object Services, Volume 2 171

The User View Transaction Service Specification

7.4 The User View
The audience for this section is object and client implementors; it describes application use of the
Transaction Service functions.

7.4.1 Application Programming Models

A client application program may use direct or indirect context management to manage a
transaction.

With indirect context management, an application uses a pseudo-object called Current , provided
by the Transaction Service, to associate the transaction context with the application thread of
control. In direct context management, an application manipulates the object and the other
objects associated with the transaction.

An object may require transactions to be either explicitly or implicitly propagated on its
operations.

Implicit propagation means that requests are implicitly associated with the client’s transaction;
they share the client’s transaction context. It is transmitted implicitly to the objects, without
direct client intervention. Implicit propagation depends on indirect context management, since
it propagates the transaction context associated with the Current pseudo-object. Explicit
propagation means that an application propagates a transaction context by passing objects
defined by the Transaction Service as explicit parameters.

An object that supports implicit propagation would not typically expect to receive any
Transaction Service object as an explicit parameter.

A client may use one or both forms of context management, and may communicate with objects
that use either method of transaction propagation.

This results in four ways in which client applications may communicate with transactional
objects. They are described below.

7.4.1.1 Direct Context Management

Implicit Propagation

A client that accesses the Transaction Service objects directly can use the resume () pseudo-object
operation to set the implicit transaction context associated with its thread. This allows the client
to invoke operations of an object that require implicit propagation of the transaction context.

Explicit Propagation

The client application directly accesses the object, and the other objects which describe the state
of the transaction. To propagate the transaction to an object, the client must include the
appropriate Transaction Service object as an explicit parameter of an operation.

172 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

7.4.1.2 Indirect Context Management

Implicit Propagation

The client application uses operations on the Current pseudo-object to create and control its
transactions. When it issues requests on transactional objects, the transaction context associated
with the current thread is implicitly propagated to the object.

Explicit Propagation

For an implicit model application to use explicit propagation, it can get access to using the
get_control () operation on the Current pseudo-object. It can then use a Transaction Service
object as an explicit parameter to a transactional object. This is explicit propagation.

Common Object Services, Volume 2 173

The User View Transaction Service Specification

7.4.2 Interfaces

Context Management
Function Used By Direct Indirect*

Create a
transaction

Transaction
originator

Factory::create ()
Control::get_terminator ()
Control::get_coordinator ()

begin (),
set_timeout ()

Terminate a
transaction

Transactor
originator
(implicit)
All (explicit)

Terminator::commit ()
Terminator::rollback ()

commit (), rollback ()

Rollback a
transaction

Terminator::rollback_only () rollback_only ()Server

Control
propagation
of transaction
to a server

Declaration of
method parameter

TransactionalObject
interface

Server

Control by
client of
transaction
propagation
to a server

get_control (),
suspend (), resume ()

All Request parameters

Become a
participant in
a transaction

Recoverable
Server

Coordinator::register_resource () Not applicable

Coordinator::get_status ()
Coordinator::get_transaction_name ()
Coordinator::is_same_transaction ()
Coordinator::hash_transaction ()

get_status ()
get_transaction_name ()
Not applicable
Not applicable

Miscellaneous All

Table 7-1 Use of Transaction Service Functionality

Note: For clarity, subtransaction operations are not shown.

* All indirect context management operations are on the Current pseudo-object interface.

174 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

7.4.3 Checked Transaction Behaviour

Some Transaction Service implementations will enforce checked behaviour for the transactions
they support, to provide an extra level of transaction integrity. The purpose of the checks is to
ensure that all transactional requests made by the application have completed their processing
before the transaction is committed. A checked Transaction Service guarantees that commit ()
will not succeed unless all transactional objects involved in the transaction have completed the
processing of their transactional requests.

There are many possible implementations of checking in a Transaction Service. The X/Open
Transaction Service model of checking is particularly important because it is widely
implemented. It describes the transaction integrity guarantees provided by many existing
transaction systems. These transaction systems will provide the same level of transaction
integrity for object-based applications by providing a Transaction Service interface that
implements the X/Open checks.

7.4.4 X/Open Checked Transactions

Completion of the processing of a request means that the object has completed execution of its
method and replied to the request.

The level of transaction integrity provided by a Transaction Service implementing the X/Open
model of checking provides equivalent function to that provided by the XATMI and TxRPC
interfaces defined by X/Open for transactional applications. X/Open Distributed TP
Transaction Managers are examples of transaction management functions which implement
checked transaction behaviour.

This implementation of checked behaviour depends on implicit transaction propagation. When
implicit propagation is used, the objects involved in a transaction at any given time may be
represented as a tree, the request tree for the transaction. The beginner of the transaction is the
root of the tree. Requests add nodes to the tree, replies remove the replying node from the tree.
Synchronous requests, or the checks described below for deferred synchronous requests, ensure
that the tree collapses to a single node before commit () is issued.

If a transaction uses explicit propagation, the Transaction Service, in general, cannot know which
objects are currently involved in the transaction, or may be in the future; that is, a request tree
cannot be constructed or assured. Therefore, the use of explicit propagation is not permitted by
a Transaction Service implementation which enforces X/Open style checked behaviour.

Applications that use synchronous requests implicitly exhibit checked behaviour. For
applications that use deferred synchronous requests, in a transaction where all clients and
objects are in the domain of a checking Transaction Service, the Transaction Service can enforce
this property by applying a reply check and a commit check.

The Transaction Service must also apply a resume check to ensure that the transaction is only
resumed by application programs in the correct part of the request tree.

Reply Check

Before allowing an object to reply to a transactional request, a check is made to ensure that the
object has received replies to all its deferred synchronous requests that propagated the
transaction in the original request. If this condition is not met, an exception is raised and the
transaction is marked as rollback-only; that is, it cannot be successfully committed.

A Transaction Service may check that a reply is issued within the context of the transaction
associated with the request.

Common Object Services, Volume 2 175

The User View Transaction Service Specification

Commit Check

Before allowing commit () to proceed, a check is made to ensure that:

1. The commit () request for the transaction is being issued from the same execution
environment that created the transaction.

2. The client issuing commit () has received replies to all the deferred synchronous requests it
made that caused the propagation of the transaction.

Resume Check

Before allowing a client or object to associate a transaction context with its thread of control, a
check is made to ensure that this transaction context was previously associated with the
execution environment of the thread. This would be true if the thread either created the
transaction or received it in a transactional operation.

7.4.5 Implementing a Transactional Client: Heuristic Completions

commit () takes the boolean report_heuristics input. If the report_heuristics argument is false , the
commit () operation can complete as soon as the Coordinator has made its decision to commit or
rollback the transaction. The application is not required to wait for the Coordinator to complete
the commit () protocol by informing all the participants of the outcome of the transaction. This
can significantly reduce the elapsed time for the commit () operation, especially where
participant Resource objects are located on remote network nodes. However, no heuristic
conditions can be reported to the application in this case.

Using the report_heuristics option guarantees that the commit () operation will not complete
until the Coordinator has completed the commit () protocol with all Resource objects involved in
the transaction. This guarantees that the application will be informed of any non-atomic
outcomes of the transaction via the HeuristicMixed or HeuristicHazard exceptions, but increases
the application-perceived elapsed time for the commit () operation.

7.4.6 Implementing a Recoverable Server

A recoverable server includes at least one transactional object and one resource object. The
responsibilities of each of these objects are as follows.

Transactional Object

The responsibilities of the transactional object are to implement the transactional object’s
operations, and to register a Resource object with the Coordinator so that commitment of the
recoverable server’s resources, including any necessary recovery, can be completed.

The Resource object identifies the involvement of the recoverable server in a particular
transaction. This means a Resource object may only be registered in one transaction at a time. A
different resource object must be registered for each transaction in which a recoverable server is
concurrently involved.

A transactional object may receive multiple requests within the scope of a single transaction. It
only needs to register its involvement in the transaction once. The is_same_transaction ()
operation allows the transactional object to determine whether the transaction associated with
the request is one in which the transactional object is already registered.

The hash_transaction () operation allow the transactional object to reduce the number of
transaction comparisons it has to make. All Coordinators for the same transaction return the
same hash code. The is_same_transaction () operation need only be done on Coordinators which
have the same hash code as the Coordinator of the current request.

176 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

Resource Object

The responsibilities of a Resource object are to participate in the completion of the transaction, to
update the recoverable server’s resources in accordance with the transaction outcome, and
ensure termination of the transaction, including across failures. The protocols that the Resource
object must follow are described in Section 7.5.1 on page 185.

Reliable Servers

A reliable server is a special case of a recoverable server. A reliable server can use the same
interface as a recoverable server to ensure application integrity for objects that do not have
recoverable state. In the case of a reliable server, the transactional object can register a Resource
object that replies VoteReadOnly to prepare () if its integrity constraints are satisfied (for example,
all debits have a corresponding credit), or replies VoteRollback if there is a problem. This
approach allows the server to apply integrity constraints which apply to the transaction as a
whole, rather than to individual requests to the server.

7.4.7 Application Portability

This section considers application portability across the broadest range of Transaction Service
implementations.

Flat Transactions

There is one optional function of the Transaction Service, support for nested transactions. For an
application to be portable across all implementations of the Transaction Service, it should be
designed to use the flat transaction model. The Transaction Service specification treats flat
transactions as top-level nested transactions.

X/Open Checked Transactions

Transaction Service implementations may implement checked or unchecked behaviour. The
transaction integrity checks implemented by a Transaction Service need not be the same as those
defined by X/Open. However, many existing transaction management systems have
implemented the X/Open model of interprocess communication, and will implement a checked
Transaction Service that provides the same guarantees of transaction integrity.

Applications written to conform to the transaction integrity constraints of X/Open will be
portable across all implementations of an X/Open checked Transaction Service, as well as all
Transaction Service implementations which support unchecked behaviour.

7.4.8 Distributed Transactions

The Transaction Service can be implemented by multiple components located across a network.
The different components can be based on the same or on different implementations of the
Transaction Service.

A single transaction can involve clients and objects supported by more than one instance of the
Transaction Service. The number of Transaction Service instances involved in the transaction is
not visible to the application implementor. There is no change in the function provided.

Common Object Services, Volume 2 177

The User View Transaction Service Specification

7.4.9 Applications Using Both Checked and Unchecked Services

A single transaction can include objects supported by both checked and unchecked Transaction
Service implementations. Checked transaction behaviour cannot be applied to the transaction as
a whole.

It is possible to provide useful, limited forms of checked behaviour for those subsets of the
transaction’s resources in the domain of a checked Transaction Service.

1. A transactional or recoverable object, whose resources are managed by a checked
Transaction Service, may be accessed by unchecked clients. The checked Transaction
Service can ensure, by registering itself in the transaction, that the transaction will not
commit before all the integrity constraints associated with the request have been satisfied.

2. An application, whose resources are managed by a checked Transaction Service, may act as
a client of unchecked objects, and preserve its checked semantics.

7.4.10 Examples

Note: All the examples are written in pseudo code based on C++. In particular, they do not
include implicit parameters such as the Orb::Environment , which should appear in all
requests. Also, they do not handle the exceptions that might be returned with each
request.

Transaction Originator: Indirect and Implicit

In the code fragments below, a transaction originator uses indirect context management and
implicit transaction propagation; txn_crt is a pseudo-object supporting the Current interface; the
client uses the begin() operation to start the transaction which becomes implicitly associated
with the originator’s thread of control:

...
txn_crt.begin();
// should test the exceptions that might be raised
...
// the client issues requests, some of which involve
// transactional objects;
BankAccount1->makeDeposit(deposit);
...

The program commits the transaction associated with the client thread. The report_heuristics
argument is set to false so no report will be made by the Transaction Service about possible
heuristic decisions.

...
txn_crt.commit(false);
...

Transaction Originator: Direct and Explicit

In the following example, a transaction originator uses direct context management and explicit
transaction propagation. The client uses a factory object supporting the
CosTransactions::TransactionFactory interface to create a new transaction, and uses the returned
object to retrieve the Terminator and Coordinator objects.

...
CosTransactions::Control c;
CosTransactions::Terminator t;

178 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

CosTransactions::Coordinator co;

c = TFactory->create(0);
t = c->get_terminator();
...

The client issues requests, some of which involve transactional objects, in this case explicit
propagation of the context is used: the object reference is passed as an explicit parameter of the
request: it is declared in the interface OMG IDL.

...
transactional_object->do_operation(arg, c);

The transaction originator uses the Terminator object to commit the transaction; the
report_heuristics argument is set to false: so no report will be made by the Transaction Service
about possible heuristic decisions.

...
t->commit(false);

Example of a Recoverable Server

BankAccount1 is an object with internal resources. It inherits from both the TransactionalObject
and the Resource interfaces:

interface BankAccount1:

CosTransactions::TransactionalObject,CosTransactions::Resource
{
...
void makeDeposit (in float amt);
...
};
class BankAccount1 {
public:
...
void makeDeposit(float amt);
...
}

Upon entering, the context of the transaction is implicitly associated with the object’s thread.
The pseudo-object supporting the Current interface is used to retrieve the Coordinator object
associated with the transaction.

void makeDeposit (float amt)
{
CosTransactions::Control c;
CosTransactions::Coordinator co;

c = txn_crt.get_control();
co = c->get_coordinator();
...

Before registering the resource the object should check whether it has already been registered for
the same transaction. This is done using the hash_transaction () and is_same_transaction ()
operations. Note that this object registers itself as a resource. This imposes the restriction that
the object may only be involved in one transaction at a time.

If more parallelism is required, separate resource objects should be registered for involvement in
the same transaction.

Common Object Services, Volume 2 179

The User View Transaction Service Specification

RecoveryCoordinator r;
r = co->register_resource (this);

// performs some transactional activity locally
balance = balance + f;
num_transactions++;
...
// end of transactional operation
};

Example of a Transactional Object

A BankAccount2 is an object with external resources that inherits from the TransactionalObject
interface:

interface BankAccount2: CosTransactions::TransactionalObject
{
...
void makeDeposit(in float amt);
...
};

class BankAccount2
{
public:
...
void makeDeposit(float amt);
...
}

Upon entering, the context of the transaction is implicitly associated with the object’s thread.
The makeDeposit () operation performs some transactional requests on external, recoverable
servers. The objects res1 and res2 are recoverable objects. The current transaction context is
implicitly propagated to these objects.

void makeDeposit(float amt)
{

balance = res1->get_balance(amt);
balance = balance + amt;
res1->set_balance(balance);

res2->increment_num_transactions();
}
// end of transactional operation

7.4.11 Model Interoperability

The Transaction Service supports interoperability between Transaction Service applications
using implicit context propagation and procedural applications using the X/Open Distributed
TP Model. A single transaction management component may act as both the Transaction Service
and an X/Open Transaction Manager.

Interoperability is provided in two ways:

• importing transactions from the X/Open domain to the Transaction Service domain

• exporting transactions from the Transaction Service domain to the X/Open domain.

180 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

Importing Transactions

X/Open applications can access transactional objects. This means that an existing application,
written to use X/Open interfaces, can be extended to invoke transactional operations. This
causes the X/Open transaction to be imported into the domain of the Transaction Service. The
X/Open application may be a client or a server.

ORB

transactional operation

TX

Existing Application New Application (Objects)

Transaction
Manager

X/Open
Client

Transactional
Originator

Transaction
Service

Transactional
Object

Figure 7-3 X/Open Client

ORB

transactional operation

TX

Existing Application New Application (Objects)

Transaction
Manager

X/Open
Server

Transactional
Originator

Transaction
Service

Transactional
Object

X/Open
Client

Figure 7-4 X/Open Server

Common Object Services, Volume 2 181

The User View Transaction Service Specification

Exporting Transactions

Transactional objects can use X/Open Communications and Resource Manager interfaces, and
include the resources managed by these components in a transaction managed by the
Transaction Service. This causes the Transaction Service transaction to be exported into the
domain of the X/Open Transaction Manager.

TX

New Application (Objects)

Transaction
Service

Transaction
Manager

Transactional
Object

transactional operation

propagation

X/Open
Resource
Manager

X/Open
Server

ORB

Transactional
Client

RM API

CM API

Figure 7-5 Example Transaction Export

Programming Rules

Model interoperability results in application programs that use both X/Open and Transaction
Service interfaces.

A transaction originator may use the X/Open TX interface or the Transaction Service interfaces
to create and terminate a transaction. Only one style may be used in one originator.

A single application may inherit a transaction with an application request either by using the
X/Open server interfaces, or by being a transactional object.

Within a single transaction, an application program can be a client of both X/Open Resource
Manager interfaces and transactional object interfaces.

An X/Open client or server may invoke operations of transactional objects. How the X/Open
transaction is associated with the Transaction Services transaction context is implementation-
dependent.

A transactional object with a Current pseudo-object that associates a transaction context with a
thread of control can call X/Open Resource Managers. How requests to the X/Open Resource
Managers become associated with the transaction context of the Current pseudo-object is
implementation-dependent.

182 X/Open Preliminary Specification (1995)

Transaction Service Specification The User View

7.4.12 Failure Models

The Transaction Service provides atomic outcomes for transactions in the presence of
application, system or communication failures. This section describes the behaviour of
application entities when failures occur. The protocols used to achieve this behaviour are
described in Section 7.5.1 on page 185.

From the viewpoint of each user object role, two types of failure are relevant: a failure affecting
the object itself (local failure), and a failure external to the object (external failure); for example,
failure of another object or failure in the communication with that object.

7.4.12.1 Transaction Originator

Local Failure

A failure of a transaction originator prior to the originator issuing commit () will cause the
transaction to be rolled back. A failure of the originator after issuing commit () and before the
outcome is reported may result in either commitment or rollback of the transaction depending
on timing; in this case completion of the transaction takes place without regard to the failure of
the originator.

External Failure

Any external failure affecting the transaction prior to the originator issuing commit () will cause
the transaction to be rolled back; the standard exception TransactionRolledBack will be raised in
the originator when it issues commit ().

A failure after commit () and before the outcome has been reported, will mean that the client may
not be informed of the transaction outcome, depending on the nature of the failure, and the use
of the report_heuristics option of commit (). For example, the transaction outcome will not be
reported to the client if communication between the client and the Coordinator fails.

A client may use get_status () on the Coordinator to determine the transaction outcome but this
is not reliable since the status NoTransaction is ambiguous; it can mean that the transaction
committed and has been forgotten, or that the transaction rolled back and has been forgotten.

If an originator needs to know the transaction outcome, including in the case of external failures,
then either the originator’s implementation must include a Resource object so that it will
participate in the two-phase commit procedure (and any recovery), or the originator and
Coordinator must be colocated in the same failure domain (for example, the same execution
environment).

7.4.12.2 Transactional Server

Local Failure

If the Transactional Server fails then optional checks by a Transaction Service implementation
may cause the transaction to be rolled back; without such checks, whether the transaction rolls
back depends on whether the commit decision has already been made (this would be the case
where an unchecked client invokes commit () before receiving all replies from servers).

Common Object Services, Volume 2 183

The User View Transaction Service Specification

External Failure

Any external failure affecting the transaction during the execution of a Transactional Server will
cause the transaction to be rolled back. If this occurs while the transactional object’s method is
executing, the failure has no effect on the execution of this method. The method may terminate
normally, returning the reply to its client. Eventually the TransactionRolledBack exception will
be returned to a client issuing commit ().

7.4.12.3 Recoverable Server

Behaviour of a recoverable server when failures occur is determined by the two-phase commit
protocol between the Coordinator and the recoverable server’s Resource object. This protocol,
including the local and external failure models and the required behaviour of the Resource , is
described in Section 7.5.1 on page 185.

184 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

7.5 The Implementor View
This section contains three major categories of information:

• Section 7.5.1 defines in more detail the protocols of the Transaction Service for ensuring
atomicity of transactions, even in the presence of failure.

This section is not a formal part of the specification but is provided to assist in building valid
implementations of the specification. These protocols affect implementations of recoverable
servers and the Transaction Service.

• Section 7.5.2 on page 194 provides additional information for implementors of ORBs and
Transaction Services in those areas where cooperation between the two is necessary to realise
the Transaction Service function.

The following aspects of ORB and Transaction Service implementation are covered:

— transaction propagation

— interoperation between different transaction service implementations

— ORB changes necessary to support portability of transaction service implementations.

• Section 7.5.3 on page 200 describes how an implementation achieves interoperation between
the Transaction Service and procedural Transaction Managers.

7.5.1 Transaction Service Protocols

The Transaction Service requires that certain protocols are followed to implement the atomicity
property. These protocols affect the implementation of recoverable servers; that is, recoverable
objects that register for participation in the two-phase commit process, and the Coordinators
which are created by a transaction factory. These responsibilities ensure the proper execution of
the two-phase commit protocol and include maintaining state information in stable storage, so
that transactions can be properly completed even in the event of failure.

7.5.1.1 General Principles

The first Coordinator created for a specific transaction is responsible for driving the two-phase
commit protocol. In the literature, this is referred to as the root transaction Coordinator or simply
root Coordinator . Any Coordinator that is subsequently created for an existing transaction (for
example, as the result of interposition) becomes a subordinate in the process. Such a Coordinator
is referred to as a subordinate transaction Coordinator , or simply subordinate Coordinator , and by
registering as a Resource it becomes a transaction participant. Recoverable servers are always
transaction participants. The root Coordinator initiates the two-phase commit protocol;
participants respond to the operations that implement the protocol. The specification is based
on the following rules for commitment and recovery:

1. The protocol defined by this specification is a two-phase commit with presumed abort.

This permits efficient implementations to be realised since the root Coordinator does not
need to log anything before the commit decision, and the participants (that is, Resource
objects) do not need to log anything before they prepare.

2. Resource objects — including subordinate Coordinators — do not start commitment by
themselves, but wait for prepare () to be invoked.

3. prepare () is issued at most once to each Resource .

4. Participants must remember heuristic decisions until the Coordinator or some management
application instructs them to forget () that decision.

Common Object Services, Volume 2 185

The Implementor View Transaction Service Specification

5. A Coordinator knows which Resource objects are registered in a transaction and so is
aware of Resources that have completed commitment.

In general, the Coordinator must remember this information if a transaction commits in
order to ensure proper completion of the transaction. Resources can be forgotten early if
they do not vote to commit the transaction.

6. A participant should be able to request the outcome of a transaction at any time, including
after failures occurring subsequent to its Resource object being prepared.

7. Participants should be able to report the completion of the transaction (including any
heuristic condition).

The recording of information relating to the transaction which is required for recovery is
described as if it were a log file for clarity of description; an implementation may use any
suitable persistent storage mechanism.

7.5.1.2 Normal Transaction Completion

Transaction completion can occur in two ways: as part of the normal execution of the
Current::commit or Terminator::commit operations or independent of these operations if a failure
should occur before normal execution can complete. This section describes the normal (that is,
no failure) case. Section 7.5.1 on page 185 describes the failure cases.

Coordinator Role

The root Coordinator implements the following protocol:

• When the client asks to commit () the transaction, and no prior attempt to rollback the
transaction has been made, the Coordinator issues the prepare () request to all registered
Resources .

• If all registered Resources reply VoteReadOnly , then the root Coordinator replies to the client
that the transaction committed (assuming that the client can still be reached).

• There is no requirement for the Coordinator to log in this case.

• If any registered Resource replies VoteRollback or cannot be reached, then the Coordinator
will decide to rollback () and will so inform those registered Resources which already replied
VoteCommit .

Once a VoteRollback reply is received, a Coordinator need not send prepare () to the remaining
Resources . rollback () will be subsequently sent to Resources that replied VoteCommit . If the
report_heuristics parameter was specified on commit (), the client will be informed of the
rollback () outcome when any heuristic reports have been collected (and logged if required).

• Once at least one registered Resource has replied VoteCommit and all others have replied
VoteCommit or VoteReadOnly , a root Coordinator may decide to commit the transaction.

• Before issuing commit () operations on those registered Resource objects which replied
VoteCommit , the Coordinator must ensure that the commit decision and the list of registered
Resources — those that replied VoteCommit — are stored in stable storage.

• If the Coordinator receives VoteCommit or VoteReadOnly responses from each registered
Resource , it issues the commit () request to each registered Resource that responded
VoteCommit .

• The root Coordinator issues forget () to a Resource after it receives a heuristic exception.

186 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

• This responsibility is not affected by failure of the Coordinator . When receiving commit ()
replies containing heuristic information, a Coordinator constructs a composite for the
transaction.

• After having received all commit () operation replies, a root Coordinator forgets the
transaction after having logged its heuristic status if heuristics reporting was requested by
the originator.

The root Coordinator can now trigger the sending of the reply to the commit () operation if
heuristic reporting is required. If no heuristic outcomes were recorded, the Coordinator can be
destroyed.

One-phase Commit

If a Coordinator has only a single registered Resource , it can perform the commit_one_phase ()
operation on the Resource instead of performing prepare () and then commit or rollback. If a
failure occurs, the Coordinator will not be informed of the transaction outcome.

Subtransactions

When completing a subtransaction, the subtransaction Coordinator must notify any registered
subtransaction-aware resources of the subtransaction’s commit or rollback status using the
commit_subtransaction () or rollback_subtransaction () operations of the
SubtransactionAwareResource interface.

A transaction service implementation determines how it chooses to respond when a resource
responds to commit_subtransaction () with a system exception. The service may choose to
rollback the subtransaction or it may ignore the exceptional condition. The
SubtransactionAwareResource operations are used to notify the resources of a subtransaction
when the subtransaction commits in the case where the resource needs to keep track of the
commit status of its ancestors. They are not used to direct the resources to commit or rollback
any state. The operations of the Resource interface are used to commit or rollback
subtransaction resources registered using the register_resource () operation of the Coordinator
interface.

When the subtransaction is committed and after all of the registered
SubtransactionAwareResources have been notified of the commitment, the subtransaction
registers any resources registered using register_resource () with its parent Coordinator , or it may
register a subordinate Coordinator to relay any future requests to the resources.

From the application programmer point of view, the same rules that apply to the completion of
top-level transactions also apply to subtransactions. The report_heuristics parameter on
commit () is ignored since heuristics are not produced when subtransactions are committed.

Recoverable Server Role

A recoverable server includes at least one recoverable object and one Resource object. The
recoverable object has state that demonstrates at least the atomicity property. The Resource
object implements the two-phase commit protocol as a participant. The responsibility of each of
these objects is described below.

Common Object Services, Volume 2 187

The Implementor View Transaction Service Specification

Top-level Registration

A recoverable object registers a Resource object with the Coordinator so that commitment of the
transaction including any necessary recovery can be completed.

A recoverable object uses the is_same_transaction () operation to determine whether it is already
registered in this transaction. It can also use hash_transaction () to reduce the number of
comparisons — this relies on the definition of the hash_transaction () operation to return the
same value for all Coordinators in the same transaction.

Once registered, a recoverable server assumes the responsibilities of a transaction participant.

Subtransaction Registration

A recoverable server registers for subtransaction completion only if it needs to take specific
actions at the time a subtransaction commits. An example would be to change ownership of
locks acquired by this subtransaction to its parent.

A recoverable object uses the is_same_transaction () operation to determine whether it is already
registered in this subtransaction. It can also use hash_transaction () to reduce the number of
comparisons.

Top-level Completion

Resource objects implement a recoverable object’s involvement in transaction completion. To do
so, they must follow the two-phase commit protocol initiated by their Coordinator and maintain
certain elements of their state in stable storage. The responsibilities of a Resource object with
regard to a particular transaction depend on how it will vote:

1. Returning VoteCommit to prepare ().

2. Before a Resource object replies VoteCommit to a prepare () operation, it must implement
the following:

— Make persistent the recoverable state of its recoverable object.

The method by which this is accomplished is implementation-dependent. If a
recoverable object has only transient state, it need not be made persistent.

— Ensure that its object reference is recorded in stable storage to allow it to participate in
recovery in the event of failure.

How object references are made persistent and then regenerated after a failure is
outside the scope of this specification. The Persistent Object Service or some other
mechanism may be used. How persistent Resource objects get restarted after a failure
is also outside the scope of this specification.

— Record the RecoveryCoordinator object reference so that it can initiate recovery of the
transaction later if necessary.

— The Resource then waits for the Coordinator to invoke commit () or rollback ().

— A Resource with a heuristic outcome must not discard that information until it receives
a forget from its Coordinator or some administrative component.

3. Returning VoteRollback to prepare ().

A Resource which replies VoteRollback has no requirement to log. Once having replied,
the Resource can return recoverable Resources to their prior state and forget the
transaction.

188 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

4. Returning VoteReadOnly to prepare ().

A Resource which replies VoteReadOnly has no requirement to log. Once having replied,
the Resource can release its Resources and forget the transaction.

Subtransaction Completion

The role of the SubtransactionAwareResource at subtransaction completion is defined by the
SubtransactionAwareResource itself. The Coordinator only requires that it respond to
commit_subtransaction () or rollback_subtransaction ().

All Resources need to be notified when a transaction commits or rolls back. But some Resources
need to know when subtransactions commit so that they can update local data structures and to
track the completion status of ancestors. The Resource may have rules that are specific to
ancestry and must perform some work as all or some ancestors complete. The nested semantics
and effort required by the Resource object is defined by the object and not the Transaction
Service.

Once the resource has been told to prepare, the resource’s obligations are exactly the same as a
top-level resource.

Using a concurrency service as an example, such a resource in a nested transaction might want
to know when the subtransaction commits because some other subtransaction may be waiting
for a lock held by that subtransaction. Once that subtransaction commits, others may be granted
the lock. There is no requirement to make lock ownership persistent until a prepare () message is
received.

As for a persistence service, there are issues with keeping separate update information
associated with a subtransaction. When that subtransaction commits, the persistence service
may need to reorganise its information (such as undo information) in case the parent
subtransaction chooses to rollback (). But again, the Persistent Object Service Resource need not
be concerned with making updates permanent until a prepare () message is received. At that
point, it has the same responsibilities as a top-level resource.

Subordinate Coordinator Role

An implementation of the Transaction Service may interpose subordinate Coordinators to
optimise the commit tree for completing the transaction. Such Coordinators behave as
transaction participants to their superiors and as Coordinators to their Resources or inferior
Coordinators .

Registration

A subordinate Coordinator registers a Resource with its superior Coordinator . Once registered, a
subordinate Coordinator assumes the responsibilities of a transaction participant and
implements the behaviour of a recoverable server.

Subtransaction Registration

If any of the Resources registered with the subordinate Coordinator support the
SubtransactionAwareResource interface, the subordinate Coordinator must register a
SubtransactionAwareResource with its parent Coordinator . If any of the Resources registered
with the subordinate using the register_resource () operation, the subordinate must register a
Resource with its superior. If both types of resource were registered with the subordinate, the
subordinate only needs to register a SubtransactionAwareResource with its superior.

Common Object Services, Volume 2 189

The Implementor View Transaction Service Specification

Top-level Completion

A subordinate Coordinator implements the completion behaviour of a recoverable server.

Subtransaction Completion

A subordinate Coordinator implements the subtransaction completion behaviour of a
recoverable server.

Subordinate Coordinator

A subordinate Coordinator does not make the commit decision, but simply relays the decision of
its superior (which may also be a subordinate Coordinator) to Resources registered with it. A
subordinate Coordinator acts as a recoverable server as described previously, in terms of saving
its state in stable storage. A subordinate Coordinator (or indeed any Resource) may log the
commit () decision once it is known (as an optimisation) but this is not essential.

• A subordinate Coordinator issues the prepare () operation to its registered Resources when it
receives a prepare () request from its superior.

The subordinate Coordinator must record the prepared state, the reference of its superior
RecoveryCoordinator and its list of Resources that responded VoteCommit in stable storage
before responding to prepare ().

• If all registered Resources reply VoteReadOnly , then the subordinate Coordinator replies
VoteReadOnly to its superior.

There is no requirement for the subordinate Coordinator to log in this case; the subordinate
Coordinator takes no further part in the transaction and can be destroyed.

• If any registered Resource replies VoteRollback or cannot be reached then the subordinate
Coordinator will decide to rollback and will so inform those registered Resources which
already replied VoteCommit .

Once a VoteRollback reply is received, the subordinate Coordinator need not send prepare ()
to the remaining Resources . The subordinate Coordinator will reply VoteRollback to its
superior.

• Once at least one registered Resource has replied VoteCommit and all others have replied
VoteCommit or VoteReadOnly , a subordinate Coordinator may decide to reply VoteCommit .

• A subordinate Coordinator issues the commit () operation to its registered Resources which
replied VoteCommit when it receives a commit () request from its superior.

If any Resource reports a heuristic outcome, the subordinate Coordinator reports a heuristic
outcome to its superior. The specific outcome reported depends on the other heuristic
outcomes received. The subordinate Coordinator should record the heuristic outcome in
stable storage.

• After having received all commit replies, a subordinate Coordinator logs its heuristic status (if
any).

• The subordinate Coordinator issues a commit () reply to its superior Coordinator .

If no heuristic report was sent, the Coordinator is destroyed.

• A subordinate Coordinator performs the rollback () operation on its registered Resources
when it receives a rollback () request from its superior.

If any Resource reports a heuristic outcome, the subordinate Coordinator records the
appropriate heuristic outcome in stable storage and reports this outcome to its superior.

190 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

• If a subordinate Coordinator receives a commit_one_phase () request, and it has a single
registered Resource , it can simply perform the commit_one_phase () request on its Resource .

If it has multiple registered Resources , it behaves like a superior Coordinator , issuing
prepare () to each Resource to determine the outcome, before issuing commit () or rollback ()
requests.

• A subordinate Coordinator performs the forget () operation on those registered Resources
that reported a heuristic outcome when it receives a forget () request from its superior.

Subtransactions

A subordinate Coordinator for a subtransaction relays commit_subtransaction () and
rollback_subtransaction () requests to any SubtransactionAwareResources registered with it. In
addition, it performs the same roles as a top-level subordinate Coordinator when the top-level
transaction commits. It must relay prepare () and commit () requests to each of the Resources
that registered with it using the register_resource () operation.

7.5.1.3 Failure and Recovery

The previous descriptions dealt with the protocols associated with the Transaction Service when
a transaction completes without failure. To ensure atomicity and durability in the presence of
failure, the transaction service defines additional protocols to ensure that transactions, once
begun, always complete.

Failure Processing

The unit of failure is termed the failure domain. It may consist of the Coordinator and some local
Resource (s) registered with it, or the Coordinator and the Resources may each be in their own
failure domain.

Local Failure

Any failure in the transaction during the execution of a Coordinator prior to the commit ()
decision being made will cause the transaction to be rolled back.

A Coordinator is restarted only if it has logged the commit () decision.

• If the Coordinator only contains heuristic information, nothing is done.

• If the transaction is marked rollback_only , a Coordinator can send rollback () to its Resources
and inferior Coordinators .

• If the transaction outcome is commit , the Coordinator sends commit () to prepared registered
Resources and the regular commitment procedure is started.

• If any registered Resources exist but cannot be reached, then the Coordinator must try again
later.

If any registered objects no longer exist then this means that they completed commitment before
the Coordinator failed and have no heuristic information.

• If a subordinate Coordinator is prepared, then it must contact its superior Coordinator to
determine the transaction outcome.

• If the superior Coordinator exists but cannot be reached, then the subordinate must retry
recovery later.

• If the superior Coordinator no longer exists then the outcome of the transaction can be
presumed to be rollback .

Common Object Services, Volume 2 191

The Implementor View Transaction Service Specification

The subordinate will inform its registered Resources .

External Failure

Any failure in the transaction during the execution of a Coordinator prior to the commit decision
being made will cause the transaction to be rolled back.

7.5.1.4 Transaction Completion after Failure

In general, the approach is to continue the completion protocols at the point where the failure
occurred. That means that the Coordinator will usually have the responsibility for sending the
commit decision to its registered Resources . Certain failure conditions will require that the
Resource initiates the recovery procedure — recall that the Resource might also be a subordinate
Coordinator . These are described in more detail below.

Resources

A Resource represents some collection of recoverable data associated with a transaction. It
supports the Resource interface described in Section 7.3.7 on page 168. When recovering from
failure after its changes have been prepared, a Resource uses the replay_completion () operation
on the RecoveryCoordinator to determine the outcome of the transaction and continue
completion.

Heuristic Reporting

If the Coordinator does not complete the two-phase commit in a timely manner, a subordinate
(that is, a Resource or a subordinate Coordinator) in the transaction may elect to commit or
rollback the Resources registered with it in a prepared transaction (take a heuristic decision).
When the Coordinator eventually sends the outcome, the outcome may differ from that heuristic
decision. The result is referred to as HeuristicMixed or HeuristicHazard . The result is reported by
the root Coordinator to the client only when the report_heuristics option on commit () is selected.
In these circumstances, the participant (subordinate) and the Coordinator must obey a set of
rules that define what they report.

Coordinator Role

A root Coordinator that fails prior to logging the commit decision can unilaterally rollback the
transaction. If its Resources have also rolled back because they were not prepared, the
transaction is returned to its prior state of consistency. If any Resources are prepared, they are
required to initiate the recovery process defined below.

• A root Coordinator that has a committed outcome will continue the completion protocol by
sending commit ().

• A root Coordinator that has a rolled back outcome will continue the completion protocol by
sending rollback ().

Subtransactions

Subtransactions are not durable, so there is no completion after failure. However, once the top-
level Coordinator issues prepare (), a subtransaction subordinate Coordinator has the same
responsibilities of a top-level subordinate Coordinator .

192 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

Recoverable Server Role

The Transaction Service imposes certain requirements on the recoverable objects participating in
a transaction. These requirements include an obligation to retain certain information at certain
times in stable storage (storage not likely to be damaged as the result of failure). When a
recoverable object restarts after a failure, it participates in a recovery protocol based on the
contents (or lack of contents) of its stable storage.

Once having replied VoteCommit , the Resource remains responsible for discovering the outcome
of the transaction; that is, whether to commit or rollback. If the Resource subsequently makes a
heuristic decision, this does not change its responsibilities to discover the outcome.

If No Heuristic Decision is Made

A Resource that is prepared is responsible for initiating recovery. It does so by issuing
replay_completion () to the RecoveryCoordinator . The reply tells the Resource the outcome of the
transaction. The Coordinator can continue the completion protocol allowing the Resource to
either commit or rollback. The Resource can resend replay_completion () if the completion
protocol is not continued.

• If the Resource having replied VoteCommit initiates recovery and receives
StExcep::INV_OBJREF or StExcep::UNKNOWN , it will know that the Coordinator no longer
exists and therefore the outcome was to rollback (presumed abort).

• If the Resource having replied VoteCommit initiates recovery and receives
StExcep::COMM_FAILURE , it will know only that the Coordinator may or may not exist.

• In this case the Resource retains responsibility for initiating recovery again at a later time.

When a Heuristic Decision is Made

• Before acting on a heuristic decision, it must record the decision in stable storage.

• If the heuristic decision turns out to be consistent with the outcome, then all is well and the
transaction can be completed and the heuristic decision can be forgotten.

• If the heuristic decision turns out to be wrong, the heuristic damage is recorded in stable
storage and one of the heuristic outcome exceptions (HeuristicCommit , HeuristicRollback ,
HeuristicMixed or HeuristicHazard) is returned when completion continues.

The heuristic outcome details must be retained persistently until the Resource is instructed to
forget. Thus in this case the Resource remains persistent until the forget () is received.

Subordinate Coordinator Role

The behaviour of a subordinate Coordinator after a failure of its superior Coordinator is
implementation-dependent; however, it does follow the following protocols:

• Since it appears as a Resource to its superior Coordinator , the protocol defined for
recoverable servers applies to subordinate Coordinators .

• Since it is also a subordinate Coordinator for its own registered Resources , it is permitted to
send duplicate commit (), rollback () and forget () requests to its registered Resources .

• It is required to (eventually) perform either commit () or rollback () on any Resource to which
it has received a VoteCommit response to prepare ().

• It is required to (eventually) perform the forget () operation on any Resource that reported a
heuristic outcome.

Common Object Services, Volume 2 193

The Implementor View Transaction Service Specification

Since subtransactions are not durable, it has no responsibility in this area for failure recovery.

7.5.2 ORB/TS Implementation Considerations

The Transaction Service and the ORB must cooperate to realise certain Transaction Service
functions. This is discussed in greater detail in the following sections.

7.5.2.1 Transaction Propagation

The transaction is represented to the application by the object. Within the Transaction Service,
an implicit context is maintained for all threads associated with a transaction. Although there is
some common information, the implicit context is not the same as the object defined in this
specification and is distinct from the ORB Context defined in CORBA 1.2. It is the implicit
context that must be transferred between execution environments to support transaction
propagation. The implicit context does not have an OMG IDL interface.

The objects using a particular Transaction Service implementation in a system form a
Transaction Service domain. Within the domain, the structure and meaning of the implicit
context information can be private to the implementation. When leaving the domain, this
information must be translated to a common form if it is to be understood by the target
Transaction Service domain, even across a single ORB.

No OMG IDL declaration is required to cause propagation of the implicit context with a request.
The minimum amount of information that could serve as a implicit context is the object
reference of the Coordinator . However, an identifier (for example, an X/Open XID) is also
required to allow efficient (local) execution of the is_same_transaction () and hash_transaction ()
operations when interposition is done. Implementations may choose to also include the
Terminator object reference if they support the ability for ending the transaction in execution
environments other than the originator’s. Transferring the implicit context requires interaction
between the Transaction Service and the ORB to add or extract the implicit context from ORB
messages. This interaction is also used to implement the checking functions described in Section
7.4.4 on page 175.

When the object is passed as an operation argument (explicit propagation), no special transfer
mechanism is required.

Interposition

When a transaction is propagated, the implicit context is exported and can be used by the
importing Transaction Service implementation to create a new object which refers to a new
(local) Coordinator . This technique, interposition, allows a surrogate to handle the functions of a
Coordinator in the importing domain. These Coordinators act as subordinate Coordinators . When
interposition is performed, a single transaction involves multiple Coordinators .

Interposition allows cooperating Transaction Services to share the responsibility for completing
a transaction and can be used to minimise the number of network messages sent during the
completion process. Interposition is required for a Transaction Service implementation to
implement the is_same_transaction () and hash_transaction () operations as local method
invocations, thus improving overall systems performance.

An interposed Coordinator registers as a participant in the transaction with the Coordinator
identified in the implicit context of the received request. The relationships between Coordinators
in the transaction form a tree. The root Coordinator is responsible for completing the transaction.

Many implementations of the Transaction Service will want to perform interposition and thus
create Control objects and subsequently Coordinator objects for each execution environment
participating in the transaction. To create a new (local) Control , an importing Transaction

194 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

Service uses the information in the implicit context and some local factory. Interposition must
be complete before the get_control () operation can complete in the target object. An object
adaptor is one possible place to implement interposition.

Subordinate Coordinator Registration

A subordinate Coordinator must register with its superior Coordinator to orchestrate transaction
completion for its local Resources . The register operation of the Coordinator can be used to
perform this function. The subordinate Coordinator can either support the Resource interface
itself or provide another Resource object which will support transaction completion. Some
implementations of the Transaction Service may wish to perform this function as a by-product of
invoking the first operation on an object in a new domain as is done with the X/Open model.
This requires that the information necessary to perform registration is added to the reply
message of that first operation.

7.5.2.2 Transaction Service Interoperation

The Transaction Service can be implemented by multiple components at different locations. The
different components can be based on the same or different implementations of the Transaction
Service. As stated in Section 7.1.5 on page 151, it is a requirement that multiple Transaction
Services interoperate across the same ORB and different ORBs. Transaction Service
interoperation across different ORBs cannot be specified in the absence of ORB interoperability.

Transaction Service interoperation across a single ORB is specified by defining the data
structures exported between different implementations of the Transaction Service. These data
structures are of two types:

• structures which are defined by the operations of the Transaction Service and their associated
OMG IDL — these structures are specified completely in Section 7.3 on page 160

• structures which are specific to the boundary between the ORB and the Transaction Service
— this structure applies only when the implicit context is exported to a different Transaction
Service domain.

When the implicit context is propagated with a request, the destination uses it to locate the
superior Coordinator . That Coordinator may be implemented by a foreign Transaction Service.
By registering a Resource with that Coordinator , the destination arranges to receive two-phase
commit requests from the (possibly foreign) Transaction Service.

The Transaction Service permits many configurations; no particular configuration is mandated.
Typically, each program will be directly associated with a single Transaction Service. However,
when requests are transmitted between programs in different Transaction Service domains, both
Transaction Services must understand the shared data structures to interoperate.

An interface between the ORB and the Transaction Service is defined that arranges for the
implicit context to be carried on messages that represent method invocations on transactional
objects. This interface is described in Section 7.5.2 on page 194.

Common Object Services, Volume 2 195

The Implementor View Transaction Service Specification

Structure of the PropagationContext

The PropagationContext structure is defined by the following OMG IDL:

module CosTSInteroperation { // PIDL
struct otid_t {

long formatID; /*format identifier. 0 is OSI TP */
long bequal_length;
sequence <octet> tid;

};
struct TransIdentity {

CosTransactions::Coordinator coordinator;
CosTransactions::Terminator terminator;
otid_t otid;

};
struct PropagationContext {

unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};
};

For the functions defined within the base section of the propagation context, it is necessary only
to send it with requests. Implementations may used the vendor-specific portion for additional
functions (for example, to register an interposed Coordinator with its superior) which may
require the propagation context to be returned. Whether it is returned or not is
implementation-specific.

otid_t

The otid_t structure is a more efficient OMG IDL version of the X/Open-defined transaction
identifier.

TransIdentity

A structure that defines information for a single transaction. It consists of a Coordinator , an
optional Terminator and an otid .

Coordinator

The Coordinator for this transaction in the exporting Transaction Service domain.

Terminator

The Terminator for this transaction in the exporting Transaction Service domain. Transaction
Services that do not allow termination by other than the originator will set this field to a null
reference (OBJECT_NIL).

otid

An identifier specific to the current transaction or subtransaction. This value is intended to
support efficient (local) execution of the is_same_transaction () and hash_transaction ()
operations when the importing Transaction Service does interposition.

196 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

timeout

The timeout value associated with the transaction in the relevant set_timeout () operation (or the
default timeout).

<TransIdentity> Parents

A sequence of TransIdentity structures representing the parent(s) of the current transaction. The
ordering of the sequence starts at the parent of the current transaction and includes all ancestors
up to the top-level transaction. An implementation that does not support nested transactions
would send an empty sequence. This allows a non-nested transaction implementation to know
when a nested transaction is being imported. It also supports efficient (local) execution of the
Coordinator operations which test parentage when the importing Transaction Service does
interposition.

implementation_specific_data

This information is exported from an implementation and is required to be passed back with the
rest of the context if the transaction is re-imported into that implementation.

Appearance of the Propagation Context in Messages

To specify how the propagation context appears in messages, it is regarded as an extra, implicit
argument which is effectively added to the signatures of transactional operations. The
specification simply describes how the original operation signature is transformed with the new
argument.

A transactional ORB supporting the target object will receive a request with a signature defined
as:

result_type op(arg1,..., argN);

but will actually receive, and must reply, as though the signature were:

result_type op(
arg1,..., argN,
inout CosTSInteroperation::PropagationContext ctx);

7.5.2.3 Transaction Service Portability

This section describes the way in which the ORB and the Transaction Service cooperate to enable
the transaction context to be passed and any X/Open-style checking to be performed on
transactional requests.

Because it is recognised that other object services and future extensions to the CORBA
Specification may require similar mechanisms (for example, the Security Service may need to
pass authentication information with requests), this component is specified separately from the
main body of the Transaction Service to allow it to be revised or replaced by a mechanism
common to several services independently of any future Transaction Service revisions.

To enable a single Transaction Service to work with multiple ORBs, it is necessary to define a
specific interface between the ORB and the Transaction Service, which conforming ORB
implementations will provide, and demanding Transaction Service implementations can rely on.
The remainder of this section describes these interfaces. There are two elements of the required
interfaces:

1. An additional ORB interface that allows the Transaction Service to identify itself to the
ORB when present in order to be involved in the transmission of transactional requests.

Common Object Services, Volume 2 197

The Implementor View Transaction Service Specification

2. A collection of OTS operations (the OTS callbacks) that the ORB invokes when a
transactional request is sent and received.

These interfaces are defined as pseudo-IDL to allow them to be implemented as procedure calls.

Identification of the Transaction Service to the ORB

Prior to the first transactional request, the Transaction Service will identify itself to the ORB
within its domain to establish the transaction callbacks to be used for transactional requests and
replies. This is accomplished using the following interface:

interface TSIdentification { // PIDL
exception NotAvailable { };
exception AlreadyIdentified { };

void identify_sender(in CosTSPortability::Sender sender)
raises (NotAvailable, AlreadyIdentified);

void identify_receiver(in CosTSPortability::Receiver receiver)
raises (NotAvailable, AlreadyIdentified);

};

The callback routines identified in this operation are always in the same addressing domain as
the ORB. On most machine architectures, there are a unique set of callbacks per address space.
Since invocation is via a procedure call, independent failures cannot occur.

NotAvailable

The NotAvailable exception is raised if the ORB implementation does not support the
CosTSPortability module.

AlreadyIdentified

The AlreadyIdentified exception is raised if the identify_sender () or identify_receiver () operation had
previously identified callbacks to the ORB for this addressing domain.

identify_sender()

The identify_sender () operation provides the interface that defines the callbacks to be invoked by
the ORB when a transactional request is sent and its reply received.

identify_receiver()

The identify_receiver () operation provides the interface that defines the callbacks to be invoked by
the ORB when a transactional request is received and its reply sent.

The Transaction Service must identify itself to the ORB at least once per TS domain. Sending
and receiving transactional requests are separately identified. If the callback interfaces are
different for different processes within a TS domain, they are identified to the ORB on a per-
process basis. Only one OTS implementation per addressing domain can identify itself to the
ORB.

A Transaction Service implementation that only sends transactional requests can identify only
the sender callbacks. A Transaction Service that only receives transactional requests can identify
only the receiver callbacks.

198 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

7.5.2.4 The Transaction Service Callbacks

The CosTSPortability module defines two interfaces. Both interfaces are defined as PIDL. The
sender interface defines a pair of operations which are called by the ORB sending the request
before it is sent and after its reply is received. The receiver interface defines a pair of operations
which are called by the ORB receiving the request when the request is received and before its
reply is sent. Both interfaces use the PropagationContext structure defined in Section 7.5.2 on page
194.

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTSInteroperation: :PropagationContext ctx);
void received_reply(in ReqId id,

in CosTSInteroperation: :PropagationContext ctx,
in CORBA::Environment env);

};
interface Receiver {

void received_request(in ReqId id,
in CosTSInteroperation: :PropagationContext ctx);

void sending_reply(in ReqId id,
out CosTSInteroperation: :PropagationContext ctx);

};
};

ReqId

The ReqId is an unique identifier generated by the ORB which lasts for the duration of the
processing of the request and its associated reply to allow the Transaction Service to correlate
callback requests and replies.

Sender::sending_request

A request is about to be sent. The Transaction Service returns a propagation context to be
delivered to the Transaction Service at the server managing the target object. The
TransactionRequired standard exception is raised when invoked outside the scope of a
transaction.

Sender::received_reply

A reply has been received. The propagation context from the server is passed to the Transaction
Service along with the returned environment. The Transaction Service examines the
environment to determine whether the request was successfully performed. If the environment
indicates the request was unsuccessful, the TransactionRolledBack standard exception is raised.

Receiver::received_request

A request has been received. The propagation context defines the transaction making the
request.

Common Object Services, Volume 2 199

The Implementor View Transaction Service Specification

Receiver::sending_reply

A reply is about to be sent. A checking transaction service determines whether there are
outstanding deferred requests or subtransactions and raises a system exception using the normal
mechanisms. The exception data from the callback operation needs to be re-raised by the calling
ORB.

7.5.2.5 Behaviour of the Callback Interfaces

The following sections describe the protocols associated with the callback interfaces.

Requirements on the ORB

The ORB will invoke the sender callbacks only when a transactional operation is issued for an
object in a different process. Objects within the same process implicitly share the same
transaction context. The receiver callbacks are invoked when the ORB receives a transactional
request from a different process.

The ORB must generate a request identifier for each outgoing request and be able to associate
the identifier with the reply when it is returned. For deferred synchronous invocations, this
allows the Transaction Service to correlate the reply with the request to implement checked
behaviour. The request identifier is passed on synchronous invocations to permit the same
interface specification to be used.

The callbacks are invoked in line with the processing of requests and replies. This means that
the callbacks will be executed on the same thread that issued or processed the actual request or
reply. When the dynamic invocation interface (DII) is used, the received_reply () callback must be
invoked on the same thread that will subsequently process the response.

Requirements on the Transaction Service

Within a single process, the transaction context is part of the thread-specific state. Multiple
threads executing on behalf of the same transaction will share the same transaction context since
a thread can only execute on behalf of a single transaction at a time. Since the callbacks are
defined as PIDL (that is, procedure calls), they are invoked on the client’s thread when sending
and the server’s thread when receiving. This enables the Transaction Service to locate the proper
transaction context when sending and associate the received transaction context with the thread
that will process the transactional operation. The callback interfaces may only raise standard
exceptions and may not make additional object invocations using the ORB.

7.5.3 Model Interoperability

The indirect context management programming model of the Transaction Service is designed to
be compatible with the X/Open Distributed TP Model, and implementable by existing
Transaction Managers. In X/Open Distributed TP, a current transaction is associated with a
thread of control. Some X/Open Transaction Managers support a single thread of control in a
process, others allow multiple threads of control per process.

Model interoperability is possible because the Transaction Service design is compatible with the
X/Open Distributed TP Model of a Transaction Manager. The X/Open model associates an
implicit current transaction with each thread of control.

This means that a single transaction management service can provide the Transaction and
Transaction Manager interfaces of the Transaction Service, and also provide the TX and XA
interfaces of X/Open Distributed TP. This is illustrated in Figure 7-6 on page 201.

200 X/Open Preliminary Specification (1995)

Transaction Service Specification The Implementor View

TX

New Application (Objects) SQL Database

Transaction
Service

Transaction
Manager

Transactional
Object

transactional operation

propagation

SQL DB
Resource
Manager

ORB

Transactional
Client

SQL

XA

Figure 7-6 Model Interoperability Example

The transactional object making the SQL call, and the SQL Resource Manager, are both executing
in the same thread of control. The Transaction Manager is able to recognise the relationship
between the transaction context of the object, and the transaction associated with the SQL DB.

The Current and Coordinator interfaces of the Transaction Service implement two-phase commit
for the objects in the transaction. The Resource Manager will participate in the two-phase
commitment process via the X/Open XA interface.

Common Object Services, Volume 2 201

The CosTransactions Module Transaction Service Specification

7.6 The CosTransactions Module
module CosTransactions {
// DATATYPES
enum Status {

StatusActive,
StatusMarkedRollback,
StatusPrepared,
StatusCommitted,
StatusRolledBack,
StatusUnknown,
StatusNoTransaction

};

enum Vote {
VoteCommit,
VoteRollback,
VoteReadOnly };

// Standard exceptions
exception TransactionRequired { };
exception TransactionRolledBack { };
exception InvalidTransaction { };

// Heuristic exceptions
exception HeuristicRollback { };
exception HeuristicCommit { };
exception HeuristicMixed { };
exception HeuristicHazard { };

// Exception from Orb operations
exception WrongTransaction { };

// Other transaction-specific exceptions
exception SubtransactionsUnavailable { };
exception NotSubtransaction { };
exception Inactive { };
exception NotPrepared { };
exception NoTransaction { };
exception InvalidControl { };
exception Unavailable { };

// Forward references for interfaces defined later in module
interface Control;
interface Terminator;
interface Coordinator;
interface Resource;
interface RecoveryCoordinator;
interface SubtransactionAwareResource;
interface TransactionFactory;
interface TransactionalObject;
interface Current;

// Current transaction pseudo object (PIDL)
interface Current {

void begin()
raises(SubtransactionsUnavailable);

void commit(in boolean report_heuristics)
raises(

202 X/Open Preliminary Specification (1995)

Transaction Service Specification The CosTransactions Module

NoTransaction,
HeuristicMixed,
HeuristicHazard

);
void rollback()

raises(NoTransaction);
void rollback_only()

raises(NoTransaction);

Status get_status();
string get_transaction_name();
void set_timeout(in unsigned long seconds);

Control get_control();
Control suspend();
void resume(in Control which)

raises(InvalidControl);
};

interface TransactionFactory {
Control create(in unsigned long time_out);

};

interface Control {
Terminator get_terminator()

raises(Unavailable);
Coordinator get_coordinator()

raises(Unavailable);
};

interface Terminator {
void commit(in boolean report_heuristics)

raises(
HeuristicMixed,
HeuristicHazard);

void rollback();
};

interface Coordinator {

Status get_status();
Status get_parent_status();
Status get_top_level_status();

boolean is_same_transaction(in Coordinator tc);
boolean is_related_transaction(in Coordinator tc);
boolean is_ancestor_transaction(in Coordinator tc);
boolean is_descendant_transaction(in Coordinator tc);
boolean is_top_level_transaction();

unsigned long hash_transaction();
unsigned long hash_top_level_tran();

RecoveryCoordinator register_resource(in Resource r)
raises(Inactive);

void register_subtran_aware(in SubtransactionAwareResource r)
raises(Inactive, NotSubtransaction);

void rollback_only()

Common Object Services, Volume 2 203

The CosTransactions Module Transaction Service Specification

raises(Inactive);

string get_transaction_name();

Control create_subtransaction()
raises(SubtransactionsUnavailable, Inactive);

};

interface RecoveryCoordinator {
Status replay_completion(in Resource r)

raises(NotPrepared);
};

interface Resource {
Vote prepare();
void rollback()

raises(
HeuristicCommit,
HeuristicMixed,
HeuristicHazard

);
void commit()

raises(
NotPrepared,
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void commit_one_phase()

raises(
HeuristicRollback,
HeuristicMixed,
HeuristicHazard

);
void forget();

};

interface SubtransactionAwareResource : Resource {
void commit_subtransaction(in Coordinator parent);
void rollback_subtransaction();

};

interface TransactionalObject {
};
}; // End of CosTransactions Module

7.6.1 The CosTSInteroperation Module

module CosTSInteroperation { // PIDL
struct otid_tid {

long formatID; /*format identifier. 0 is OSI TP */
long bequal_length;
sequence <octet> tid;

};
struct TransIdentity {

CosTransactions::Coordinator coordinator;
CosTransactions::Terminator terminator;
otid_t otid;

};

204 X/Open Preliminary Specification (1995)

Transaction Service Specification The CosTransactions Module

struct PropagationContext {
unsigned long timeout;
TransIdentity current;
sequence <TransIdentity> parents;
any implementation_specific_data;

};
};

7.6.2 The CosTSPortability Module

module CosTSPortability { // PIDL
typedef long ReqId;

interface Sender {
void sending_request(in ReqId id,

out CosTSInteroperation::PropagationContext ctx);
void received_reply(in ReqId id,

in CosTSInteroperation::PropagationContext ctx,
in CORBA::Environment env);

};
interface Receiver {

void received_request(in ReqId id,
in CosTSInteroperation::PropagationContext ctx);

void sending_reply(in ReqId id,
out CosTSInteroperation::PropagationContext ctx);

};
};

Common Object Services, Volume 2 205

Transaction Service Specification

206 X/Open Preliminary Specification (1995)

Appendix A

The Transaction Service and TP Standards

This appendix discusses the relationship and possible interactions with the following related
standards:

• X/Open TX interface

• X/Open XA interface

• OSI TP protocol

• LU 6.2 protocol

• ODMG standard.

A.1 Support of X/Open TX interface

A.1.1 Requirements

The X/Open Distributed TP Model is now widely known and implemented.

Since the Transaction Service and the X/Open Distributed TP Model are interoperable, an
application using transactional objects could use the TX interface, the X/Open-defined interface
to delineate transactions, to interact with a Transaction Manager. (The Transaction Manager is
the access point of the Transaction Service.)

A.1.2 TX Mappings

The correspondence between the TX interface primitives and the Transaction Service operations
(Current interface) are as follows:

Current InterfaceTX Interface

tx_open() no equivalent
tx_close() no equivalent

Current::begin ()tx_begin()
Current::rollback () or
Current::rollback_only ()

tx_rollback()

Current::commit ()tx_commit()
report_heuristics parameter of
Current::commit ()

tx_set_commit_return()

no equivalent (chained
transactions not supported)

tx_set_transaction_control()

Current::set_timeout ()tx_set_transaction_timeout()
Current::get_name ()*tx_info() — XID

tx_info() — COMMIT _RETURN no equivalent
tx_info() — TRANSACTION_TIME_OUT no equivalent

Current::get_status ()tx_info()

Common Object Services, Volume 2 207

Support of X/Open TX interface The Transaction Service and TP Standards

tx_open()

tx_open() provides a way to open, in a given execution environment, the Transaction Manager
and the set of Resource Managers that are linked to it. Such an operation does not exist in the
Transaction Service; such a processing may be implicitly executed when the first operation of the
Transaction Service is executed in the execution environment.

This processing is also related to a future Initialization Service.

tx_close()

tx_close() provides a way to close, in a given execution environment, the Transaction Manager
and the set of Resource Managers that are linked to it. Such an operation does not exist in the
Transaction Service.

tx_begin()

tx_begin() corresponds to Current::begin () or to Factory::create ().

tx_rollback()

tx_rollback() corresponds to Current::rollback (), Current::rollback_only () or to
Terminator::rollback (). In TX, when a server calls tx_rollback(), the transaction may be rolled
back or set as rollback only.

tx_commit() and tx_set_commit_return()

tx_commit() corresponds to Current::commit (). The Transaction Service operations have a
parameter, report_heuristics , corresponding to the commit_return parameter of TX.

tx_set_transaction_control()

tx_set_transaction_control() is used, in TX, to switch between unchained and chained mode; this
function is not needed in the Transaction Service environment because it does not support
chained transactions.

tx_set_transaction_timeout()

tx_set_transaction_timeout() corresponds to Current::set_timeout ().

tx_info()

tx_info() returns information related to the current transaction. In the Transaction Service:

• The XID (in effect) may be retrieved by Current::get_transaction_name ().

• The transaction state may be retrieved by Current::get_status ().

• The commit return attribute is not needed because this attribute is given in the commit ()
operation.

• The timeout attribute cannot be obtained.

* A printable string is output: not guaranteed to be the XID in all implementations

208 X/Open Preliminary Specification (1995)

The Transaction Service and TP Standards Support of X/Open Resource Managers

A.2 Support of X/Open Resource Managers

A.2.1 Requirements

X/Open DTP-compliant Resource Managers, simply called X/Open Resource Managers or RMs,
are Resource Managers that can be involved in a distributed transaction by allowing their two-
phase commit protocol to be controlled via the X/Open XA Interface. Many RDBMS suppliers
currently offer (or intend to offer) X/Open Resource Managers. Many OODBMSs intend also to
support the XA Interface (some have already implemented it).

The Transaction Service must therefore be able to interact with X/Open Resource Managers.
This section will illustrate how an X/Open Resource Manager may be used by a Transaction
Service-compliant system.

The architecture of Transaction Service, based on the same concepts as the X/Open Distributed
TP Model, allows mapping of Transaction Service operations to and from XA interactions.

A.2.2 XA Mappings

This section gives an overall view of a possible mapping between XA primitives offered by an
X/Open Resource Manager (called RM hereafter) and the interfaces of the Transaction Service
and their operations in the different phases of a transaction and during recovery.

The mappings are summarised in the following table:

XA Interface Object Transaction Service
Receiving Requestxa_start()
Current::resumeax_reg()
Sending Replyxa_end()

ax_unreg() no equivalent
Resource::preparexa_prepare()

Resource::commitxa_commit()
Resource::rollbackxa_rollback()

xa_recover() no equivalent
RecoveryCoordinator::replay_completion ()no equivalent

Resource::forgetxa_forget()

In the X/Open Distributed TP Model all the interactions are made in the same thread of control.

A.2.3 XID

An XID is the Transaction Identifier. As defined in the X/Open XA Specification, this XID is the
only information used by Resource Managers to associate logged information to the transaction,
including objects before images, after images, locks and transaction state.

The content of an XID is defined by X/Open as follows:

#define XIDDATASIZE 128 /* size in bytes */
#define MAXGTRIDSIZE 64

/* maximum size in bytes of gtrid */
#define MAXBQUALSIZE 64

/* maximum size in bytes of bqual */

Common Object Services, Volume 2 209

Support of X/Open Resource Managers The Transaction Service and TP Standards

struct xid_t {
long formatID;/* format identifier */
long gtrid_length;

/* value not to exceed 64 */
long bqual_length;

/* value not to exceed 64 */
char data [XIDDATASIZE];

};
typedef struct xid_t XID;

The XID uniquely and unambiguously identifies a distributed transaction (information
contained in the ‘‘gtrid’’ part of the XID) and a transaction-branch, the work performed by a
node in the transaction tree (information contained in the bqual part of the XID).

To facilitate the use of distributed transactions in heterogeneous environments, X/Open has
adopted the structure of the Transaction Identifier used in OSI TP but it is allowed to use other
Transaction Identifier formats, which may be defined by the value of a Format Identifier field
contained in the XID structure. The OSI TP Transaction Identifier contains information about the
initiator of the transaction and the superior in the transaction tree; this information may be used,
during recovery, to contact these entities and obtain the outcome of the transaction.

In the Transaction Service, tightly-coupled concurrency is assumed (a lock held by a transaction
may be accessed by any participant of the same transaction) and the transaction branch part of
the XID must not be given to RMs.

A.2.3.1 Interactions with an XA-compliant RM

Model

To model the relationship between the XA interface and the Transaction Service operation, an
X/Open Transaction Manager has been modelled; this component is used here as a way to
describe the interactions and may be implemented in a different manner.

Propagation of a Transaction to an RM

An RM may support two kinds of involvement interactions:

• Static registration, in which the Transaction Service involves the RM whenever it is itself
involved in a new transaction.

• Dynamic registration, in which the RM notifies the Transaction Service that it has been
requested to perform some work and request the XID of the current transaction.

An RM gets involved in a transaction when it has to perform some new work for this
transaction. This happens in one of the following situations:

• A request carrying a transaction context has just been received and the RM has to perform
work for the target object of this request.

• A method performing a request that is carrying a transaction context is resumed (by a
Current::resume () operation).

An object may receive several requests carrying a transaction context for the same transaction.
An RM may also perform work for several objects in the same transaction. Thus, an RM may be
involved several times in the same transaction; the ‘‘resume’’ and the ‘‘join’’ concepts of XA may
be used to notify the RM of any multiple involvement. When an RM has to get involved in a
transaction, it must obtain the corresponding XID from the Transaction Service through an

210 X/Open Preliminary Specification (1995)

The Transaction Service and TP Standards Support of X/Open Resource Managers

xa_start() primitive or by a return parameter of an ax_reg() primitive. This XID is transmitted to
the RM as a parameter to xa_start() or ax_reg() and is used by the RM to relate any work
performed or any lock obtained to the transaction.

If the Transaction Service is called by an ax_reg() while it is not aware of any transaction, it
returns a null XID to the RM. The RM is then free to start a local transaction of its own, and no
Transaction Service transaction will be accepted until the RM issues an ax_unreg().

Refer to the X/Open XA Specification for more information about propagation of a transaction
to an RM.

First Phase of Commitment

When the first phase of commitment is started, the Transaction Service issues an xa_prepare()
primitive and process its results to determine its decision.

Second Phase of Commitment

When the second phase of commitment is started, the Transaction Service issues an xa_commit()
primitive and process its results to determine the heuristic situation.

One-phase Commitment

When the Transaction Service wants to perform a one-phase commitment, it issues an
xa_commit() primitive and processes its results to determine the heuristic situation.

In the XA interface, there is no specific primitive for one-phase commitment: an RM must
consider an xa_commit() without preceding xa_prepare() as a request to perform a one-phase
commitment.

Rollback

When a rollback has to be performed, the Transaction Service issues an xa_rollback() primitive
and processes its results to determine the heuristic situation.

Recovery

In the XA interface, the recovery of an RM is triggered by the Transaction Manager which issues
an xa_recover(); the RM then gives back a list of all XIDs that are either in the ready state or have
been heuristically completed.

In the Transaction Service recovery is performed by a Resource that issues a replay_completion ()
operation to a transaction Coordinator .

Failure of an Operation

Any failure of an operation typically leads to a rollback of the transaction, especially if it is not
possible to determine whether the operation has been performed or not. However, in the
decided commit state, the commit operation must be retried until the reply has been received
(unless a heuristic hazard condition is detected).

Common Object Services, Volume 2 211

Support of X/Open Resource Managers The Transaction Service and TP Standards

Failure of an RM

If an RM fails, the Transaction Service detecting the failure will issue an xa_recover(). The
Transaction Service will then get a list of XIDs of transactions for which the RM is in the ready
state and transactions that have been heuristically completed.

The Transaction Service will then:

• Call xa_rollback() for all transactions that it knows to be neither in the prepared state nor in
the decided commit state.

• Call xa_commit() for all transactions that it knows to be in the decided commit state.

• Wait for the decisions commit or rollback for the other.

Failure of Transaction Service

Upon warm restart of the Transaction Service and retrieval of the states of transactions needing
recovery from stable storage, the Transaction Service will call xa_recover() to get the list of
transactions for which the RM needs recovery (see Failure of an RM).

212 X/Open Preliminary Specification (1995)

The Transaction Service and TP Standards Interoperation with Transactional Protocols

A.3 Interoperation with Transactional Protocols

Transactional Protocols

A CORBA application may sometimes need to interoperate with one or more applications using
one of the de facto standard transactional protocols: OSI TP and SNA LU 6.2. In this case, the
Transaction Service must be able to import or export transactions using one of these protocols.

Export is the ability to relate a transaction of the Transaction Service to a transaction of a foreign
transactional protocol. Importing means relating a Transaction Service transaction to a
transaction started on a remote application and propagated via the foreign transactional
protocol.

Since the model used by the Transaction Service is similar to the model of OSI TP and the
X/Open Distributed TP Model, the interactions with OSI TP are straightforward. Since OSI TP
is a compatible superset of SNA LU 6.2, a mapping to SNA communications is easily
accomplished.

To interoperate, a mapping should be defined for the two-phase commit, rollback and recovery
mechanisms, and for the transaction identifiers.

Note that neither OSI TP nor SNA LU 6.2 supports nested transactions.

A.3.1 OSI TP Interoperability

OSI TP is the transactional protocol defined by ISO. It has been selected by X/Open to allow the
distribution of transactions by one of the communication interfaces: remote procedure call (see
the X/Open TxRPC Specification), client/server (see the X/Open XATMI Specification) or peer-
to-peer (see the X/Open CPI-C Specification).

The Transaction Service supports only unchained transactions. The use of dialogues using the
Chained Transactions functional unit is possible only if restrictive rules are defined. These rules
are not described in this document.

OSI TP Transaction Identifiers

In OSI TP, loosely-coupled transactions are supported and every node of the transaction tree
possesses a transaction branch identifier which is composed of the transaction identifier (or
atomic action identifier) and a branch identifier (the branch identifier being null for the root node
of the transaction tree). Both the transaction identifier and the branch identifier contain an AE-
Title (Application Entity Title) and a suffix that make it unique within a certain scope.

The format of the standard X/Open XID is compatible with the OSI TP identifiers, the gtrid
corresponding to the atomic action identifier and the bqual corresponding to the branch
identifier.

Incoming OSI TP Communications (Imported Transactions)

The Transaction Service is a subordinate in an OSI TP transaction tree and interacts with its
superior by regular PDUs as defined by the OSI TP protocol. The Transaction Service stores
internally the transaction identifier received on the OSI TP dialogue.

The Transaction Service maps the OSI TP commitment, rollback and recovery procedures to the
Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an OSI TP Prepare message, will enter the first
phase of commitment procedure.

Common Object Services, Volume 2 213

Interoperation with Transactional Protocols The Transaction Service and TP Standards

• When it enters the prepared state for the transaction, the Transaction Service will trigger the
sending of an OSI TP Ready message to its superior. (It may trigger a Recover (Ready) message
when normal communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Commit message, enters the second
phase of commitment procedure. (It may receive a Recover (Commit) when normal
communications are broken with the superior.)

• The Transaction Service, upon reception of an OSI TP Rollback message (it may be a Recover
(Unknown) when normal communications are broken with the superior or any other
rollback-initiating condition) will enter its rollback procedure (unless a rollback is already in
progress).

• The Transaction Service, upon reception of the last rollback reply, will trigger the sending of
a Rollback Response/Confirm message to is superior.

Outgoing OSI TP Communications (Exported Transactions)

The Transaction Service behaves as a superior in an OSI TP transaction tree and interacts with its
subordinates by regular PDUs as defined by the OSI TP protocol.

The Transaction Service will map the OSI TP commitment procedure as follows:

• The Transaction Service, during the first phase of commitment procedure, will invoke an
OSI TP Prepare message to all its subordinates.

• Upon reception of an OSI TP Ready message, the Transaction Service will process this
message as a successful reply to a prepare().

• The Transaction Service, upon entering the second phase of the commitment procedure, will
send an OSI TP Commit message (it may be a Recover (Commit) when normal communications
are broken with the subordinate) to all subordinates.

• The Transaction Service, upon reception of an OSI TP Rollback message (it may be any other
rollback-initiating condition) will enter its rollback procedure (unless a rollback is already in
progress).

• The Transaction Service, upon reception of the last Rollback Response/Confirm message from
its subordinates, will process this message as a reply to a rollback() operation and determine
the heuristic situation.

A.3.2 SNA LU 6.2 Interoperability

SNA LU 6.2 ([SNA88a], [SNA88b]) is a transactional protocol defined by IBM. It is widely used
for transaction distribution. The standard interface to access LU 6.2 communications is CPI-C
(Common Programming Interface for Communications) defined by IBM in the context of SAA
[CPIC93]. This has been evolved by the CPI-C Implementers’ Workshop to become CPI-C level
2, a modern interface usable for LU 6.2 and OSI TP communications (see the X/Open CPI-C
Specification).

LU 6.2 supports only chained transactions but, at a given node, a transaction is started only
when resources have been involved in the transaction. LU 6.2 can be used for a portion of an
unchained transaction tree if the LU 6.2 conversations are ended after each transaction by any
node that has both LU 6.2 conversations and dialogues of an unchained transaction.

214 X/Open Preliminary Specification (1995)

The Transaction Service and TP Standards Interoperation with Transactional Protocols

LU 6.2 Transaction Identifiers

SNA LU 6.2 also supports loosely-coupled transactions and uses a specific format for transaction
identifiers: the Logical Unit of Work (LUWID) corresponds to the OSI Transaction Identifier. The
LUWID is composed of:

• the Fully Qualified Logical Unit Name, which is composed of up to 17 bytes, and is unique in
an SNA network or a set of interconnected SNA networks

• an instance number which is unique at the LU that creates the transaction

• the sequence number that is incremented whenever the transaction is committed.

The Conversation Correlator corresponds to the OSI TP Branch Identifier; it is a string of 1 to 8
bytes which are unique within the context of the LU having established the conversation, and is
meaningful when combined with the Fully Qualified LU Name of this Logical Unit.

Incoming LU 6.2 Communications

The LU 6.2 two-phase commit protocol is different from the OSI TP protocol: the system sending
a Prepare message has to perform logging and is responsible for recovery. LU 6.2 does also
support features like last-agent optimisation, read-only, and allows any node in the transaction
tree to request commitment.

The Transaction Service is a subordinate in an LU 6.2 transaction tree and interacts with its
superior using SNA requests and responses as defined by the LU 6.2 protocol. The Transaction
Service internally stores the LUWID corresponding to the incoming conversation.

The Transaction Service maps the LU 6.2 commitment, rollback and recovery procedures to the
Transaction Service commitment procedure as follows:

• The Transaction Service, upon reception of an LU 6.2 Prepare message, will enter the first
phase of commitment procedure.

• The Transaction Service, upon entering the prepared state for the transaction, the Transaction
Service will trigger the sending of a Request Commit message to its superior.

• The Transaction Service, upon reception of an LU 6.2 Committed message (it may be a
Compare States (Committed) when normal communications are broken with the superior) will
enter the second phase of commitment procedure.

• The Transaction Service, upon leaving the decided commit state, will trigger the sending of a
Forget message to its superior (it may be a Reset when normal communications are broken
with the superior).

Due to the two-phase commit difference, the Transaction Service will never send the equivalent
of the Recover (Ready) unless prompted by the superior.

The last-agent and read-only features may also be supported by the Transaction Service.

Outgoing LU 6.2 Communications

The Transaction Service has to log when the Prepare message is sent and, in case of
communication failure or restart of the Transaction Service, a recovery is needed.

Common Object Services, Volume 2 215

Interoperation with Transactional Protocols The Transaction Service and TP Standards

A.3.3 ODMG Standard

ODMG-93 is a standard defined by ODMG (Object Database Management Group) describing
portable interface to access Object Database Management Systems (ODBMS).

Since it is likely that, in the future, a good percentage of objects involved in transactions will be
handled by an ODBMS, this standard has a strong relationship with the Transaction Service.

216 X/Open Preliminary Specification (1995)

The Transaction Service and TP Standards ODMG Model

A.4 ODMG Model
The ODMG model defines optional transactions and supports the nested transaction concept.
The ODMG model does not cover the integration of ODBMS with an external transaction
service, which allows other resources and communications to be involved in a transaction. No
two-phase commit or recovery protocol is described.

A transaction object has to be created. The transactional operations are:

• Begin (or start) to begin a transaction (or a subtransaction).

• Commit to request commitment of a transaction.

• Abort to rollback a transaction.

• Checkpoint to commit the transaction but keep the locks. This feature is not supported by the
current version of the Transaction Service.

• abort_to_top_level to request rollback of a nested transaction family. The Transaction Service
does not directly support this feature but does provide means to perform this functionality
by resuming the context of the top-level transaction and then requesting rollback.

If the transaction object is destroyed, the transaction is rolled back.

Integration of ODMG ODBMSs with the Transaction Service

Since ODMG-93 does not define any way to integrate an ODBMS into an existing transaction, the
integration is difficult unless the ODBMS does support the XA interface, in which case Section
A.2.3.1 on page 210 is applicable.

In the future, it is anticipated that ODBMS will implement the Transaction Service-defined
interfaces and be considered as a recoverable server.

A possibility is to use, at a root node, an ODBMS as a last resource and, after all subordinates are
prepared, to request a one-phase commitment to the ODBMS. If the outcome for the ODBMS is
commit, the transaction will be committed, if it is rollback, the transaction will be rolled back.
The mechanism may work if it is possible to determine, after a crash, whether the ODBMS
committed or rolled back (this may be done at application level).

Common Object Services, Volume 2 217

The Transaction Service and TP Standards

218 X/Open Preliminary Specification (1995)

Glossary

2PC
See Two-phase Commit on page 224.

Abort
See Rollback on page 223.

Active
The state of a transaction when processing is in progress and completion of the transaction
has not yet commenced.

Atomicity
A transaction property that ensures that if work is interrupted by failure, any partially
completed results will be undone. A transaction whose work completes is said to commit. A
transaction whose work is completely undone is said to rollback (abort).

Begin
An operation on the Transaction Service which establishes the initial boundary of a
transaction.

Bind
To bind a name is to create a name binding in a given context.

Commit
Commit has two definitions as follows:

1. An operation in the Current and Terminator interfaces that a program uses to request
that the current transaction terminates normally and that the effects of that transaction
be made permanent.

2. An operation in the Resource interface which causes the effects of a transaction to be
made permanent.

Commit Coordinator
In a two-phase commit protocol, the program that collects the vote from the participants.

Commit Participant
In a two-phase commit protocol, the program that returns a vote on the completion of a
transaction.

Committed
The property of a transaction or a transactional object, when it has successfully performed
the commit protocol. See also In-doubt on page 221, Active and Completion.

Completion
The processing required (either by commit or abort) to obtain the durable outcome of a
transaction.

Compound Name
A name with multiple components. A sequence of names that defines a path in the naming
graph to navigate the resolution process.

Cooperation
An interface of the Transaction Service which allows it to track transactional operations and
propagate transaction context with other transaction services in the current transaction.
This is an optional interface that allows portability of the Transaction Service.

Common Object Services, Volume 2 219

Glossary

Coordinator
A Coordinator object involves Resource objects in a transaction when they are registered. A
Coordinator is responsible for driving the two-phase commit protocol. See also Commit
Coordinator on page 219 and Commit Participant on page 219.

Consistency
A property of a transaction that ensures that the transaction’s actions, taken as a group, do
not violate any of the integrity constraints associated with the state of its associated objects.
This requires that the application program is implemented correctly. The Transaction
Service provides the functionality to support application data consistency.

CORBA
Common Object Request Broker Architecture.

Decided Commit State
A root transaction Coordinator enters the decided commit state when it has written a log-
commit record; a subordinate transaction Coordinator or Resource object is in the decided
commit state when it has received the commit instruction from its superior; in the latter
case, a log-commit record may be written, but this is not essential.

Decided Rollback State
A transaction Coordinator or Resource object enters the decided rollback state when it
decides to rollback the transaction or has received a signal to do so.

Direct Context Management
An application manipulates the object and the other objects associated with the transaction.
See also Indirect Context Management on page 221.

Durability
A transaction property that ensures the results of a successfully completed transaction will
never be lost, except in the event of catastrophe. It is generally implemented by a
combination of persistent storage and a logging service that provides a backup copy of
permanent changes.

Event
A state change of an object that causes the behaviour of an object.

Event Channel
An intervening object that allows multiple suppliers to communicate with multiple
consumers asynchronously. An event channel is both a consumer and a supplier of events.
Event channels are standard CORBA objects and communication with an event channel is
accomplished using standard CORBA requests.

Execution Environment
An implementation-dependent factor that may determine the outcome of certain operations
on the Transaction Service. Typically, the execution environment is the scope within which
shared state is managed.

Factory Object
An object that creates another object.

Federation
The principle whereby each component retains its autonomy rather than becoming
subordinate to another.

Flat Transaction
A transaction that has no subtransactions, and that cannot have subtransactions.

220 X/Open Preliminary Specification (1995)

Glossary

Forgotten State
This is not really a transaction state at all, because there is no memory of the transaction; it
has either completed or rolled back and all records on permanent storage have been deleted.

Heuristic Commit or Abort
To unilaterally make the commit or abort decision about in-doubt transactions when the
Coordinator fails or contact with the Coordinator fails.

Indirect Context Management
An application uses the Current pseudo-object, provided by the Transaction Service, to
associate the transaction context with the application thread of control. See also Direct
Context Management on page 220.

In-doubt
The state of a transaction if it is controlled by a Transaction Manager that cannot be
contacted, so the commit decision is in doubt. See also Active on page 219 and Committed
on page 219.

Interposition
Adding a sequence of one or more subordinate Coordinators between a root Coordinator and
its participant.

Isolation
A transaction property that allows concurrent execution, but the results will be the same as
if execution was serialised. Isolation ensures that concurrently executing transactions
cannot observe inconsistencies in shared data.

Life Cycle Object
An object whose interfaces are defined by the Life Cycle Services, specifically remove, copy
and move.

Lock Service
Called the Concurrency Control Service, it is an object service used by Resources to control
access to shared objects by concurrently executing methods.

Log-ready Record (and Contents)
For an intermediate transaction Coordinator a log-ready record contains identification of the
(superior) transaction Coordinator and of Resource objects (including subordinate
transaction Coordinators) registered with the TC which replied VoteCommit (that is, it
excludes registered objects which replied VoteReadOnly); for a Resource object a log-ready
record includes identification of the transaction Coordinator with which it is registered.

Log-commit Record (and Contents)
A log-commit record contains identification of all registered Resource objects which replied
VoteCommit .

Log-heuristic Record
This contains a record of a heuristic decision, either HeuristicCommit or HeuristicRollback .

Log-damage Record
This contains a record of heuristic damage; that is, where it is known that a heuristic
decision conflicted with the decided outcome (HeuristicMix) or where there is a risk that a
heuristic decision conflicted with the decided outcome (HeuristicHazard).

Log Service
An object service used by Resource Managers for recording recovery information and by
Transaction Managers recording transaction state durably.

Common Object Services, Volume 2 221

Glossary

Name Binding
A name-to-object association. A name binding is always defined relative to a naming
context.

Naming Context
An object that contains a set of name bindings in which each name is unique.

Naming Graph
A directed graph with nodes and labelled edges where the nodes are contexts. A naming
graph allows more complex names to reference an object. Given a context in a naming
graph, a sequence of names can reference an object.

Nested Transaction
A transaction that either has subtransaction or is a subtransaction on some other
transaction.

Participant
See Commit Participant on page 219.

Persistent Storage
Generally speaking, a synonym for stable storage. In the context of the OMA, the Persistent
Object Service provides an object representation of stable storage.

Prepared
The state that a transaction is in when phase one of a two-phase commit has completed.

Presumed Abort
An optimisation of the two-phase commit protocol that results in more efficient
performance as the root Coordinator does not need to log anything before the commit
decision and the participants (that is, Resource objects) do not need to log anything before
they prepare. So called because, at restart, if no record of the transaction is found, it is safe
to assume the transaction aborted.

Propagation
A function of the transaction service that allows the transaction context of a client to be
associated with a transactional operation on a server object. The Transaction Service
supports both implicit and explicit propagation of transaction context.

Pull Model
An approach to initiating event communication. The pull model allows a consumer of
events to request the event data from a supplier. In the pull model, the consumer is taking
the initiative.

Push Model
An approach to initiating event communication. The push model allows a supplier of
events to initiate the transfer of the event data to consumers. In the push model, the
supplier is taking the initiative.

Recoverable Object
An object whose data is affected by committing or rolling back a transaction.

Recoverable Server
An object that registers a Resource (not necessarily itself) with a transaction Coordinator to
participate in transaction completion.

Recovery Service
An object service used by Resource Managers for restoring the state of objects to a prior
state of consistency.

222 X/Open Preliminary Specification (1995)

Glossary

Relationship
Relationships allow semantics to be added to references between objects. For example,
relationships allow one object to contain another. Life Cycle Services must work in the
presence of graphs of related objects.

Resolve
To resolve a name is to determine the object associated with the name in a given context. A
name is always resolved relative to a context — there are no absolute names.

Resource
An object in the Transaction Service that is registered for involvement in two-phase commit
(2PC). Corresponds to a Resource Manager.

Resource Manager
An X/Open term for a component which manages the integrity of the state of a set of
related resources.

Rollback
Rollback (also known as abort) has two definitions as follows:

1. An operation in the Current and Terminator interfaces used to indicate that the current
transaction has terminated abnormally and its effects should be discarded.

2. An operation in the Resource interface which causes all state changes in the
transaction to be undone.

Root Coordinator
The first Coordinator in a sequence of Coordinators where there is interposition. The
Coordinator associated with the transaction originator.

Security Service
An object service which provides identifications of users (authentication), controls access to
resources (authorisation), and provides auditing of resource access.

Simple Name
A name with a single component.

Stable Storage
Storage not likely to be damaged as the result of node failure.

Sub-coordinator
See Subordinate Coordinator.

Subordinate Coordinator
A Coordinator subordinate to the root Coordinator where interposition exists. A subordinate
Coordinator appears as a Resource object to its superior. Also known as a sub-coordinator.

Thread
The entity that is currently in control of the processor.

Thread Service
An object service, to be specified in the future, which enables methods to be executed
concurrently by the same process. Where two or more methods can execute concurrently,
each method is associated with its own thread of execution.

TP Monitor
A system component that accepts input work requests and associates resources with the
programs that act upon these requests to provide a run-time environment for program
execution.

Common Object Services, Volume 2 223

Glossary

Transaction
A collection of operations on the physical and abstract application state.

Transactional Client
An arbitrary program that can invoke operations of many transactional objects in a single
transaction. Not necessarily the transaction originator.

Transaction Context
The transaction information associated with a specific thread. See Propagation on page 222.

Transactional Operation
An operation on an object that participates in the propagation of the current transaction.

Transaction Originator
An arbitrary program — typically, a transactional client, but not necessarily an object —
that begins a transaction.

Transaction Manager
A system component that implements the protocol engine for the two-phase commit
protocol. See also Transaction Service.

Transactional Object
Strictly speaking, an object that offers at least one transactional operation, and thus requires
the ORB and the Transaction Service to propagate transaction context — but usually used to
refer to an object none of whose operations are affected by being invoked within the scope
of a transaction.

Transactional Server
A collection of one or more objects whose behaviour is affected by the transaction, but
which have no recoverable states of their own.

Transaction Service
An object service that implements the protocols required to guarantee the ACID (Atomicity,
Consistency, Isolation and Durability) properties of transactions. See also Transaction
Manager.

Two-phase Commit
A Transaction Manager protocol for ensuring that all changes to recoverable resources occur
atomically and furthermore, the failure of any resource to complete will cause all other
resource to undo changes. Also called 2PC.

Typed Event
An event for which an interface is defined in terms of OMG IDL.

224 X/Open Preliminary Specification (1995)

Index

2PC...219
Abort ...219
Active ..219
archive service...11
Atomicity..219
backup/restore service..11
base relationship...108
Begin..219
Bind..219
callback interfaces...7
cardinality

maximum...119
minimum..119

change management service12
checked transaction behaviour............................150
Commit ...219
Commit Coordinator ...219
Commit Participant..219
Committed ...219
Completion ..219
Compound Name...219
concurrency control

basic concepts..63
lock modes ...66
locking model..66
nested transactions...69
possession semantics ...67
two-phase transactional locking68

concurrency control service2, 17, 63
Connection interface ..56
ConnectionFactory interface56
Consistency..220
containment ...142
context management

direct ...172
indirect..172

Control interface ...163
Cooperation ...219
Coordinator ...220
Coordinator interface ..165
CORBA ...220

concepts ..5
relationship to ...18

CosCompoundExternalization module...............93
CosConcurrencyControl module..........................70
CosContainment module......................................142

CosExternalization module....................................86
CosExternalizationContainment module............98
CosExternalizationReference module..................99
CosGraphs module ..135
CosObjectIdentity module119
CosPersistenceDDO module..................................51
CosPersistenceDS_CLI module54
CosPersistencePDS module....................................39
CosPersistencePDS_DA module41
CosPersistencePID module29
CosPersistencePO module......................................32
CosPersistencePOM module..................................35
CosReference module..143
CosRelationships module.....................................120
CosStream module...89
CosTransactions module.......................................202
CosTSInteroperation module...............................204
CosTSPortability module......................................205
Current interface...160
Cursor interface ..57
CursorFactory interface...57
DA data objects

defining and using..44
DAObjectFactory interface43
DAObjectFactoryFinder interface43
data interchange service..12
datastores ...54
Datastore_CLI interface ..58
DDO protocol ..49
Decided Commit State ..220
Decided Rollback State..220
degree..115
design decisions ..10
design principles...5

service ...5
direct access protocol...40
Direct Context Management................................220
Durability ...220
dynamic data object protocol.................................49
dynamic state ..21
DynamicAttributeAccess interface.......................46
EdgeIterator interface ..141
Event ...220
Event Channel...220
event service ..15
exceptions...9

Common Object Services, Volume 2 225

Index

Execution Environment ..220
explicit propagation...172
externalization

client model ...76
interface hierarchy..82
interface summary ...84
NIL data ...101
object hierarchy...82
object model ..77
repeated reference data.....................................101
service structure ...76
specific relationships ...97
standard stream data format100
stream model...76

externalization service3, 16, 75
externalize ..75
Factory Object ...220
failure domain...191
Federation ..220
FileStreamFactory interface....................................87
Flat Transaction...220
flat transactions...149
Forgotten State ..221
future object services ...11
generic DAObject interface.....................................42
global identifier spaces ..7
graphs of related objects108
Heuristic Commit or Abort221
HeuristicCommit exception.................................159
HeuristicHazard exception159
HeuristicMixed exception159
HeuristicRollback exception159
IdentifiableObject interface120
implementation repository service.......................12
implicit propagation ..172
In-doubt..221
Indirect Context Management.............................221
intention lock...2
interface

inheritance..9
style consistency ...9

interface repository service12
internalization

object model ..79
internalize...75
internationalization service12
Interposition ..221
InvalidTransaction exception...............................158
Isolation ..221
Life Cycle Object...221
life cycle service ..15, 18

local implementations ...6
lock...2
lock mode

intention read ..66
intention write...66
read..66
upgrade...66
write ..66

Lock Service...221
LockCoordinator interface......................................72
LockSet interface...72
LockSetFactory interface...74
Log Service...221
Log-commit Record (and Contents)221
Log-damage Record...221
Log-heuristic Record..221
Log-ready Record (and Contents).......................221
logging service ..12
multiple possession semantics67
Name Binding ...222
Naming Context ...222
Naming Graph ..222
naming service..10, 15, 18
navigation functionality..118
Nested Transaction ..222
nested transactions...149
Node interface...94, 139
NodeFactory interface ...140
non-transactional client...63
non-transactional object ..148
object

relationship ..2
role ...2
universal identity ...10

Object Model
relationship to ...20

object transaction service ..1
objects conspire...6
ODMG model..217
ODMG standard ...216
ODMG-93 protocol...48
operation mode

explicit ..64
implicit..64

operations
explicit...9
implicit..9

ORB interoperability..18
OSI TP interoperability ...213
other datastores...61
other protocols ..53

226 X/Open Preliminary Specification (1995)

Index

Participant ..222
PDS

overview...38
PDS_ClusteredDA interface...................................46
PDS_DA interface...43
PDS_DA protocol ...40
persistent data service

overview...38
persistent object ..28
persistent object service..........................1, 15, 18, 21
persistent state ..21
Persistent Storage ...222
PID interface ..29
PIDFactory interface

example ..30
PID_CLI interface ...57
PID_DA interface..42
PO interface ...32
POFactory interface..34
POS ..1, 21

basic capabilities...23
goals ..23
object-oriented storage..23
open architecture..24
properties ...23
service structure ...27
views of service...25

Prepared ...222
Presumed Abort..222
Propagation..222
PropagationCriteriaFactory interface...................96
Pull Model..222
Push Model ..222
quality of service...6
query service..13
recoverable object ...148
Recoverable Object...222
recoverable server ..149
Recoverable Server...222
recovery service ..14
Recovery Service...222
RecoveryCoordinator interface168
reference ...142
related object ...114
relationship ..104
Relationship...223
relationship

attributes ..115
base model ...114
binary..115
compound operations133

consistency constraints119
containment...97, 142
CORBA object references..................................105
graph architecture ..130
higher degree...115
implementation strategies................................119
interface summary ...112
key features..104
levels of service...108
operations ..115, 117
reference...97, 142
related object graph...................................130, 132
service structure ...108
specific relationships ...142
technical issues ...106

Relationship interface......................................95, 124
hierarchy ..111

relationship service................................2, 15, 18, 103
relationship type...114
RelationshipFactory interface123
RelationshipIterator interface129
remote implementations ...6
replication service...14
Resolve..223
Resource ...223
Resource interface ..168
Resource Manager..223
return codes ...9
role ...104
Role interface ..95, 125, 140

hierarchy ..111
RoleFactory interface ...128
Rollback ..223
Root Coordinator..223
SD interface..34
security service..14
Security Service...223
service

basic flexible ..5
concurrency control ...2
dependencies...15
externalization...3
generic...5
object transaction..1
persistent object ..1
relationship ..2
transaction..1

services
finding...8
using..8

Simple Name ...223

Common Object Services, Volume 2 227

Index

SNA LU 6.2 interoperability.................................214
specific relationship ...108
Stable Storage ..223
standards

conformance ..20
standards conformance ...61
startup service ...14
Stream interface ..87
Stream service ...76
Streamable interface...91
StreamableFactory interface...................................92
StreamFactory interface ..86
StreamIO interface..90
Sub-coordinator ..223
Subordinate Coordinator......................................223
SubtransactionAwareResource interface170
Terminator interface...164
Thread...223
Thread Service...223
TP Monitor...223
Transaction...224
transaction

application portability.......................................177
application programming models172
applications ...146
checked behaviour ...175
checked services ...178
context ..156
context management ...157
data types...157
definitions ..147
design principles ..151
distributed transactions177
examples ..178
exceptions ..158
failure models ...183
function principles ...151
functionality ..149
heuristic completion ..176
heuristic exceptions ...158
implementor view..185
interfaces..160, 174
interoperation..213
model interoperability180, 200
ORB/TS ..194
other exceptions..159
overview...145
performance principles151
recoverable server ..176
service architecture ..155
service protocols...185

standard exceptions ...158
TP standards..207
typical usage..156
unchecked services ..178
user view..172

Transaction Context ...224
Transaction Manager ...224
transaction originator....................................148, 150
Transaction Originator ..224
transaction service1, 16, 18, 145
Transaction Service ..224
transactional client ...63
Transactional Client ...224
transactional object ..148
Transactional Object ..224
Transactional Operation..224
transactional server..149
Transactional Server...224
TransactionalLockSet interface..............................73
TransactionalObject interface171
TransactionFactory interface................................163
TransactionRequired exception...........................158
TransactionRolledBack exception158
traversal criteria

example ..134
Traversal interface ..138
TraversalCriteria interface138
TraversalFactory interface137
Two-phase Commit..224
TX interface..207
TX mappings ...207
Typed Event...224
unchecked transaction behaviour.......................150
UserEnvironment interface56
WrongTransaction exception159
X/Open Resource Manager209
XA mappings...209
XA-compliant Resource Manager.......................210
XID...209

228 X/Open Preliminary Specification (1995)

