
Preliminary Specification

Systems Management:

Event Management Service

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Preliminary Specification

Systems Management: Event Management Service

ISBN: 1-85912-132-2
Document Number: P437

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Preliminary Specification

Contents

Part 1 Event Management Service (XEMS) API......................... 1

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Background.. 1
 1.3 Scope.. 2
 1.3.1 Requirements.. 2
 1.3.2 Performance .. 7
 1.3.3 Reliability... 8
 1.3.4 Standardization and Portability.. 8
 1.3.5 Extensibility .. 8
 1.3.6 Security .. 8
 1.3.7 Internationalization... 8
 1.3.8 Interoperability... 8

Chapter 2 Overview of the Event Management Service 9
 2.1 General Model ... 9
 2.1.1 Model.. 10
 2.1.2 Conceptual Flow.. 12
 2.2 Architecture ... 15
 2.2.1 Event Services API Overview ... 15
 2.2.2 Events... 16
 2.2.3 Schemas ... 16
 2.2.4 Filters.. 17
 2.2.5 Event Channel .. 17
 2.2.6 Consumers .. 18
 2.2.7 Suppliers.. 19
 2.2.8 Management ... 19
 2.3 Performance ... 21
 2.4 Reliability.. 22
 2.4.1 No Loss of Events .. 22
 2.4.2 Self-monitoring... 22
 2.4.3 Stable Processes.. 22
 2.5 Security ... 23
 2.5.1 Global Namespace... 25
 2.5.2 Security Objects.. 25
 2.5.3 Network Communications .. 27
 2.6 Internationalization.. 28
 2.7 Interoperability.. 29
 2.7.1 Different Event Management Applications 29
 2.7.2 Different Event Protocols ... 30
 2.7.3 Interoperability of EMS Implementations.. 31

Systems Management: Event Management Service iii

Contents

 2.8 Examples... 33

Chapter 3 Data Formats ... 37
 3.1 Generic Data Types... 38
 3.1.1 Scalar Types... 38
 3.1.2 Strings... 38
 3.1.3 Unique Identifier.. 39
 3.1.4 Time Stamp ... 39
 3.1.5 Error Status.. 39
 3.1.6 Event Type... 39
 3.1.7 Delivery Type.. 39
 3.1.8 Security Object.. 40
 3.1.9 Permissions Attributes.. 40
 3.1.10 Subject .. 40
 3.1.11 Principal ... 40
 3.2 Event Attributes .. 41
 3.2.1 Event Attribute Types... 41
 3.2.2 Event Attribute Values.. 43
 3.2.3 Event Attribute... 44
 3.3 Event Structure.. 45
 3.3.1 Event Identifier... 45
 3.3.2 Event Type... 45
 3.3.3 Network Name... 45
 3.3.4 Event Origin.. 46
 3.3.5 Event Severity... 46
 3.3.6 Event Priority.. 46
 3.3.7 Event Header .. 47
 3.3.8 Event... 47
 3.4 Event Types.. 48
 3.4.1 Event Type Schema ... 48
 3.4.2 Event Type List... 48
 3.5 Event Filters ... 49
 3.5.1 Attribute Operators ... 49
 3.5.2 Event Filter Grammar ... 49
 3.5.3 Default Event Filter Grammar .. 50
 3.5.4 Event Filter Expression... 50
 3.5.5 Event Filter Expression List ... 50
 3.5.6 Event Filter .. 50
 3.5.7 Event Filter Name List .. 51
 3.5.8 Event Filter List .. 51
 3.6 Consumer Data Structures.. 52
 3.6.1 Consumer .. 52
 3.6.2 Consumer List .. 52
 3.6.3 Event Handler... 52
 3.7 Supplier Data Structures ... 53
 3.7.1 Supplier Event Handler.. 53
 3.7.2 Supplier.. 53
 3.7.3 Supplier List .. 53

iv Preliminary Specification

Contents

 3.8 Attribute and Event list ... 54
 3.8.1 Attribute List... 54
 3.8.2 Event List ... 54
 3.9 Event Service Handle... 55
 3.9.1 Event Service Handle.. 55
 3.10 Status Codes... 56

Chapter 4 Registration Interface.. 59
 ems_register()... 60
 ems_unregister() .. 61

Chapter 5 Event Type Interface... 63
 ems_event_type_add()... 64
 ems_event_type_delete() ... 65
 ems_event_type_get().. 66
 ems_event_type_get_list() .. 67
 ems_event_type_free_list() ... 68

Chapter 6 Event Filter Interface.. 69
 ems_filter_add() ... 70
 ems_filter_append() ... 71
 ems_filter_get() .. 72
 ems_filter_delete().. 73
 ems_filter_free() ... 74
 ems_filter_get_namelist().. 75
 ems_filter_free_namelist()... 76
 ems_filter_get_list ()... 77
 ems_filter_free_list().. 78

Chapter 7 Consumer Interface... 79
 ems_consumer_start() ... 80
 ems_consumer_stop() .. 82
 ems_push_consumer_register() .. 83
 ems_pull_consumer_register() ... 84
 ems_consumer_unregister().. 85
 ems_add_filter_to_group ().. 86
 ems_delete_filter_from_group ().. 87
 ems_get_filter_group() .. 88
 ems_consumer_get_registration() .. 89
 ems_consumer_pull() .. 90
 ems_consumer_try_pull() ... 91

Chapter 8 Supplier Interface .. 93
 ems_push_supplier_register()... 94
 ems_supplier_register_handler().. 95
 ems_pull_supplier_register().. 96
 ems_supplier_unregister() .. 97
 ems_supplier_send().. 98

Systems Management: Event Management Service v

Contents

Chapter 9 Administration Interface... 99
 ems_mgmt_list_ems() ... 100
 ems_mgmt_free_ems()... 101
 ems_mgmt_list_attributes() ... 102
 ems_mgmt_free_attributes()... 103
 ems_mgmt_list_consumers() .. 104
 ems_mgmt_free_consumers() ... 105
 ems_mgmt_secedit() .. 106
 ems_mgmt_secread() ... 107
 ems_mgmt_secsubjadd() ... 108
 ems_mgmt_secsubjdelete().. 109
 ems_mgmt_secsubjget() .. 110
 ems_mgmt_delete_consumer() ... 111
 ems_mgmt_delete_filter_from_group ().. 112
 ems_mgmt_add_filter_to_group ().. 113
 ems_mgmt_get_filter_group() .. 114
 ems_mgmt_list_suppliers() .. 115
 ems_mgmt_free_suppliers().. 116
 ems_mgmt_delete_supplier() .. 117
 ems_mgmt_get_undelivered_events().. 118
 ems_mgmt_free_undelivered_events()... 119
 ems_mgmt_delete_undelivered_event()... 120
 ems_mgmt_forward() .. 121

Chapter 10 Command Line Interface... 123
 10.1 Event Supplier Interface .. 123
 Supplier Send.. 124
 10.2 EMS Command Line Interface ... 126
 Event Service Object .. 127
 Consumer Object .. 128
 Supplier Object ... 129
 Filter Object .. 130
 Event Type Object .. 131
 Event Log Object .. 132

Appendix A xems.h.. 133

Part 2 Implementations in Different Environments 151

Chapter 11 Reference Implementations... 153
 11.1 Introduction to Reference Implementations ... 153

Chapter 12 DCE Implementation... 155
 12.1 DCE XEMS Data Structure IDL File.. 156
 12.2 DCE XEMS API: <ems.h> ... 162
 12.3 DCE dcecp commands for XEMS.. 169
 12.3.1 Event Service Object.. 169
 12.3.2 Consumer Object ... 169

vi Preliminary Specification

Contents

 12.3.3 Filter Object ... 169

Chapter 13 CORBA Implementation... 171

Appendix B CORBA Implementation... 173
 B.1 Interface Descriptions .. 173
 B.2 Primitive Data Types.. 174
 B.3 Composite Data Types... 175
 B.4 Exceptions .. 180
 B.5 Registration Interface... 181
 B.6 Event Type Interface... 182
 B.6.1 Add... 182
 B.6.2 Delete.. 182
 B.6.3 Get... 183
 B.6.4 GetList.. 183
 B.7 Event Filter Interface .. 184
 B.7.1 Add... 184
 B.7.2 Append .. 184
 B.7.3 Delete.. 185
 B.7.4 Get... 185
 B.7.5 GetList.. 186
 B.7.6 GetNameList... 186
 B.8 Consumer Interface .. 187
 B.8.1 PushConsumerRegister .. 187
 B.8.2 PullConsumerRegister.. 188
 B.8.3 Unregister.. 189
 B.8.4 AddFilterToGroup ... 189
 B.8.5 DeleteFilterFromGroup .. 190
 B.8.6 GetFilterGroup... 190
 B.8.7 GetRegistration .. 191
 B.8.8 Receive ... 191
 B.9 ConsumerAdmin Interface ... 192
 B.9.1 ListConsumers.. 192
 B.9.2 DeleteConsumer .. 192
 B.9.3 AdminDeleteFilterFromGroup ... 193
 B.9.4 AdminAddFilterToGroup .. 193
 B.9.5 AdminGetFilterGroup.. 194
 B.10 Supplier Interface.. 195
 B.10.1 PushSupplierRegister.. 195
 B.10.2 PullSupplierRegister ... 195
 B.10.3 Unregister.. 196
 B.10.4 Send .. 196
 B.10.5 GetRegistration .. 197
 B.11 SupplierAdmin.. 198
 B.11.1 ListSuppliers... 198
 B.11.2 DeleteSupplier.. 198
 B.12 EventIterator .. 199
 B.12.1 NextOne... 199

Systems Management: Event Management Service vii

Contents

 B.12.2 NextN... 199
 B.12.3 Destroy... 199
 B.13 Registry ... 200
 B.13.1 ForSupplier.. 200
 B.13.2 ForConsumer .. 200
 B.14 RegistryAdmin.. 201
 B.14.1 ListAttributes.. 201
 B.14.2 GetUndeliveredEvents ... 201
 B.14.3 DeleteUndeliveredEventsByFilter.. 202
 B.14.4 DeleteUndeliveredEvent.. 202
 B.14.5 Forward.. 202
 B.15 Security ... 204
 B.15.1 Edit.. 204
 B.15.2 Read.. 204
 B.15.3 SubjAdd... 205
 B.15.4 SubjDelete.. 205
 B.15.5 SubjGet... 205
 B.16 Management Interface ... 207
 B.16.1 Systems Attribute .. 207
 B.16.2 ObtainRegistry ... 207
 B.16.3 ObtainSecurity.. 207
 B.16.4 ObtainTypeRepository.. 207
 B.16.5 ObtainFilterRepository... 208
 B.17 IDL ... 209

Part 3 Event Structures for the Basic Event Set 221

Chapter 14 Event Objects.. 223
 14.1 CMIP Event Objects ... 223
 14.2 DCE SVC Event Objects .. 225
 14.3 EMS Event Objects.. 226
 14.3.1 Event Service Action Notification Event .. 226
 14.3.2 Event Service Queue Full Event ... 228
 14.3.3 Event Service Error Event .. 228
 14.3.4 Event Service Undelivered Event Notification Event...................... 229
 14.3.5 Event Service Consumer Filter Group Changes 229
 14.3.6 Event Service Consumer Interest ... 230
 14.4 SNMP Event Objects .. 230

 Glossary ... 233

 Index... 235

List of Figures

2-1 Event Management Service: Conceptual Model 10
2-2 Security Service .. 24
2-3 Managed Node... 30

viii Preliminary Specification

Contents

2-4 Interoperability: Protocol Independent Channel 31
2-5 Interoperability: Dual Environment Channels .. 32

List of Tables

3-1 Event Attribute Type Specifiers .. 41
3-2 Default Event Types .. 45
3-3 Event Header Attributes .. 47
3-4 Attribute Operators ... 49
14-1 Mapping for CMIS Event Structure Data Types 225
14-2 Mapping for a DCE SVC Message ... 226
14-3 Event Service Action Notification Event .. 227
14-4 Event Service Queue Full Event ... 228
14-5 Event Service Error Event .. 228
14-6 Event Service Undelivered Event Notification Event............................ 229
14-7 Event Service Report Event from SNMP Proxy Manager..................... 230
14-8 Mapping for SNMP Event Structure Data Types.................................... 231

Systems Management: Event Management Service ix

Contents

x Preliminary Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Systems Management: Event Management Service xi

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

xii Preliminary Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Event Management Service xiii

Preface

This Document

In a world of increasingly complex and distributed computer systems an effective Event
Management Service (EMS) is a key part of the necessary systems management and
administration infrastructure. The EMS must provide timely warning of impending problems,
notify failing processes, identify problem areas in a system and possibly automatically fix them
before service availability falls below acceptable levels. To achieve what is required,
interoperability between systems in a distributed working environment is only part of the
solution; inter-comprehension of the key event data is also necessary.

This Event Management Service (XEMS) specification defines a programming interface which
receives notifications in the form of events, and transports them reliably to applications.

The specification is in 3 parts. The first part describes the generic XEMS API, including the
model, architecture, positioning of XEMS in the systems management domain, the data formats
used by XEMS, and the definitions for the XEMS interfaces (Registration, Event Type, Event
Filter, Consumer, Supplier, Administration, Command Line). The second part describes
reference implementations for DCE and CORBA environments. The third part describes event
structures for the basic event set.

Structure

The structure of this specification is as follows:

• Part 1: XEMS generic API specification

• Chapter 1, Introduction, defines the objectives of this specification and defines
terminology used throughout the document.

• Chapter 2, Overview of the Event Management Service, begins with a description of the
event management service general model. This is followed by an architectural view of
XEMS, then a description of the role of XEMS in the systems management domain. The
chapter continues with a survey of usage scenarios and deployment strategies, and an
introduction to the data formats for XEMS data formats follows this survey. The chapter
concludes with an overview of the consumer, producer, and administration interfaces.

• Chapter 3, Data Formats, describes the data formats used by XEMS.

• Chapter 4, Registration Interface, defines the registration interface.

• Chapter 5, Event Type Interface, defines the event type interface.

• Chapter 6, Event Filter Interface, defines the event filter interface.

• Chapter 7, Consumer Interface, describes the API and commands available to register
with and receive events from an XEMS.

• Chapter 8, Supplier Interface, describes the API and commands available to register with
and supply events to an XEMS.

• Chapter 9, Administration Interface, describes the API and the administration
commands used to configure and control an XEMS implementation.

• Chapter 10, Command Line Interface, defines a CLI to assist wrapping legacy
applications and shell scripts as event suppliers.

• Appendix A, <xems.h>, is the header for XEMS.

xiv Preliminary Specification

Preface

• Part 2: XEMS Implementations in Different Environments

• Chapter 11, Reference Implementations, explains the intentions behind providing the
XEMS reference implementations.

• Chapter 12, DCE Implementation, presents the DCE reference implementation.

• Chapter 13, CORBA Implementation, is a placeholder for the normative CARBA
reference implementation.

• Appendix B, CORBA Implementation, presents the existing non-normative CORBA
reference implementation.

• Part 3: XEMS Structures for the Basic Event Set

• Chapter 14, Event Objects, describes event structures for the basic event set.

Systems Management: Event Management Service xv

Trade Marks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

xvi Preliminary Specification

Referenced Documents

The following documents are referenced in this specification:

Base GSS-API
CAE Specification, December 1995, Generic Security Service API (GSS-API) Base
(ISBN: 1-85912-131-4, C441).

CORBA 1.2
CAE Specification, July 1994, The Common Object Request Broker: Architecture and
Specification (ISBN: 1-85912-044-X, C432), in conjunction with the Object Management
Group (OMG).

COS, Volume 1
Preliminary Specification, July 1994, Common Object Services, Volume 1
(ISBN: 1-85912-482-2, P432), in conjunction with the Object Management Group (OMG).

DCE Directory
CAE Specification, December 1994, X/Open DCE: Directory Services (ISBN: 1-85912-078-4,
C312).

DCE EMS
DCE Event Management Service, OSF RFC 67.0, January 1996, R.Cohen (IBM), G Wilson
(IBM), Open Software Foundation (The Open Group) Request for Comments, available from
URL http://www.opengroup.org/otcgi/llscgi60.

DCE RPC
CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

This specification is now also ISO International Standard ISO/IEC 11578:1996, Information
technology — Open Systems Interconnection — Remote Procedure Call (RPC)

GSS-API Extensions
Snapshot, January 1994, Generic Security Service API (GSS-API) Security Attribute and
Delegation Extensions (ISBN: 1-85912-261-1, S307).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

ISO/IEC 10165-2
ISO/IEC 10165-2: 1992(E), Information Technology — Open Systems Interconnnect —
Structure of Management Information: Definition of Management Information.

ISO/IEC 10165-4
ISO/IEC 10165-4: 1992(E), Information Technology — Open Systems Interconnnect —
Structure of Management Information — Part 4: Guidelines for the Definition of Managed
Objects.

ISO/IEC 10165-5
ISO/IEC 10165-5: 1994(E), Information Technology — Open Systems Interconnnect —
Structure of Management Information: Generic Management Information.

ISO/IEC 10165-6
ISO/IEC 10165-6: 1994(E), Information Technology — Open Systems Interconnnect —
Structure of Management Information: Requirements and Guidelines for Implementation
Conformance Statement Proformas Associated with OSI Management.

Systems Management: Event Management Service xvii

Referenced Documents

ISO/IEC 10165-7
ISO/IEC 10165-7: 1992(E), Information Technology — Open Systems Interconnnect —
Structure of Management Information — Part 7: General Relationship Model.

ISO/IEC 10646-1
ISO/IEC 10646-1: 1993(E), Information Technology — Universal Multiple-Octet Coded
Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane.

OMG Security White Paper
OMG White Paper on Security. OMG Security Working Group. Issue: 1.0 April 1994.

XCMF-V1
Preliminary Specification, June 1995, Systems Management: Common Management
Facilities, Volume 1 (ISBN: 1-85912-047-4, P421).

XDS, Issue 3
CAE Specification, May 1996, API to Directory Services (XDS), Issue 3 (ISBN: 1-85912-180-2,
C608).

XDSF
Guide, December 1994, Distributed Security Framework (ISBN: 1-85912-071-7, G410).

XGDMO
Preliminary Specification, March 1994, Systems Management: GDMO to XOM Translation
Algorithm (ISBN: 1-85912-023-7, P319).

XMP
CAE Specification, March 1994, Systems Management: Management Protocol API (ISBN 1-
85912-027-X, C306).

XOM, Issue 3
CAE Specification, May 1996, OSI-Abstract-Data Manipulation API (XOM), Issue 3
(ISBN: 1-85912-175-6, C607).

xviii Preliminary Specification

Preliminary Specification

Part 1:

Event Management Service (XEMS) API

The Open Group

Part 1: Event Management Service (XEMS) API 1

2 Preliminary Specification

Chapter 1

Introduction

1.1 Purpose
Ever increasing critical and complex systems will only be cost controllable if many of today’s
systems management and administration activities can be automated. This is true for the user’s
service provision organizations, system vendors and ISVs.

A well designed Event Management Service (EMS) will be of increasing importance to
organizations as they become increasingly dependent on information technology (IT) services; it
is a fundamental component needed to maintain service availability by:

• giving timely warning of impending problems (for example, file capacity thresholds)

• notifying system administrators of failing processes and system components

• speedily identifying root causes of problems in ever more complex systems

• automatically fixing problems before service levels are degraded

• integrating application-specific events mechanisms so cross-application correlation can be
done at a higher level (for example, network outages are the root cause of many application
errors, and the administrator needs his attention drawn to the root cause)

• providing a specification which facilitates interoperability of multi-vendor event
management systems.

Organizations are (increasingly) prepared to pay vast sums to duplicate system components
(processors, disks, network connections) to maintain systems reliability. As system complexity
increases, a largely automated EMS is a necessity for maintaining service availability at a
reasonable cost, given systems created by integrating diverse components from an increasing
number of suppliers (systems vendors, ISVs, in-house IT developers).

A set of event standards with which these components can inter-communicate events of interest
is a fundamental need (that is, inter-connection is not enough; inter-comprehension is required).

1.2 Background
Automated detection and response to events is required in order to effectively manage and
monitor distributed systems. Today’s trouble ticketing systems are not sufficient, primarily
because they are reactive systems, where a proactive system is required.

Examples of events include such things as program termination, node available, node down,
administrator-defined traps, and so on. Provided independent vendors use the same EMS
infrastructure, those same vendors can send and correlate events among each other’s system
management products.

The value of an EMS can only partially be measured by technical merit, and that value is
leveraged many times over by the number of independent vendors that can and will utilize the
same standard mechanism; therefore the value of this type of standard increases exponentially
with the number of vendors in compliance with the standard.

Part 1: Event Management Service (XEMS) API 1

Scope Introduction

1.3 Scope
This specification addresses event management services for systems administration purposes.
However, like SNMP, this technology may well be applicable outside its original charter (for
example, management of customer applications).

It is not the function of the EMS to generate events. The underlying managed objects (or some
proxy) must raise events as appropriate. The EMS, however, must process all these events in a
real-time fashion, administer their definition, enabling, and so on.

Likewise, it is not the function of EMS to provide high-resolution interval data. For example,
EMS is not designed to be the feed for a performance meter for CPU utilization on 5 second
intervals. The design space for a performance meter would preclude the use of a persistent cache
(required for EMS reliability), for example, one would not expect a performance meter to
provide real-time and historical data.

1.3.1 Requirements

Event Notification API

An API is needed to specify how events are delivered to applications. This API must include the
attributes described in Event Construction below.

Event Subscription API

An event subscription API is needed for applications to tell the system which events are of
interest, which should be forwarded, and where. For example, a database expert might subscribe
to all database-specific events, as well as some network-specific events.

When subscribing to events it must be possible to designate all instances of an event (for
example, all table drop actions), all events of a sub-category (for example, all DDL actions) or all
events of a category (for example, all user actions). It must be possible to qualify the events of
interest (at any level) by Boolean expression of attribute (for example, events in a particular
management domain and time stamps between 9am and 5pm, or all events in a geographic
region of a certain priority).

Event Construction

There are a set of attributes that are common to events. These include:

• event identification, category and subcategory

• date/time/timezone of origin

• originating process (physical ID)

• component, subcomponent, module, subroutine, source code line, and so on, identifiers

• priority and severity code

• text message

• end-user device identifier.

In addition, the above classifications must be extensible to support specific applications and
logical extensions of this technology without breaking compatibility in the way the event service
and applications handle the default attributes.

2 Preliminary Specification

Introduction Scope

Global Name Service

It is expected that EMS will be most useful in a large networked environment where multiple-
sourced applications may subscribe to events from each other in order to coordinate their
activity. The event service must participate in a global naming standard such that separately
developed applications do not have name conflicts when these applications meet in the
marketplace at the user’s desktop.

The demand here is for a standard naming or numbering system which can:

• cope with the categories we know about today

• be expansive enough to last for a very considerable time to cope with new technologies (that
is, regularly updated)

• allow users to define their own events without fear of creating chaos

• be capable of being both process and human interpretable

• be well structured and sustainable.

Centralized Event Management

Key to successful event management is the ability to control and view event services from a
single centralized point. The concept of a centralized event management service is purely
logical. It may make sense from the performance point of view to implement overlapping
distributed event handling processes that minimize network traffic and maximize availability.
However, to the user, the EMS must be able to look like a centralized service.

At the same time, there is a need for an event routing system that allows particular
categories/classes of event to be ultimately routed to a particular (configurable) process, user or
desk. For example, database events to database administrators, network events to a network
specialist, process failures to watchdog task, and so on.

It will probably be appropriate for there to be multiple routes to access event management
information from a user interface perspective; the issue of centralization is that once you are in
position to access some event management information, you will actually be able to access all
such information (to which you have authorized access).

Defining and Designating Events

There is a need to allow for arbitrary user-defined events — the event services mechanism must
be user-extensible.

Some events will be pre-defined in the management applications, and some events are arbitrary
in nature, and defined according to specific needs of a customer. An example of a pre-defined
event is notification of a server shutdown or a communications failure. Management
applications will have default behaviors for responding to pre-defined events. Statistics-based
events (as described in Managed Server Performance Events below) are examples of customer-
defined events.

Part 1: Event Management Service (XEMS) API 3

Scope Introduction

Categories of Events

All categories (types) of events should be handled symmetrically (that is, services available to
handle any particular type of event should be equally applicable to all types of event).

Events can be grouped into categories and sub-categories. For example, one category of event
may be User Action Events. Within that there may be a sub-category, Data Definition Language
(DDL) Action Events (user changes a schema object).

One particular DDL Action Event might ‘‘Column Added to Table". All such instances of this
event have exactly the same attributes: server, database, table name, column name, and so on.

The following is an example of the category hierarchy that the event services must be able to
handle:

1. Managed Server Status Events
Notification of change in status of managed database server (for example, starts, becomes
suspect, dies normally, dies abnormally).

2. Managed Server Performance Events

• Notification of threshold breach by point statistic (for example, number of locks taken
exceeds threshold, cache hit ratio falls below threshold, age of oldest lock wait exceeds
threshold).

• Notification of threshold breach by rolling statistic (for example, number of users
exceeds certain threshold for particular proportion of recent prescribed time period,
logical to physical read ratio below particular threshold for recent prescribed time
period, rolling average breaches threshold).

Note that these statistics may be at any level of aggregation (for example, by server, by
object, by user, by group of servers).

3. User Action Events
This refers to user actions that take place on managed servers:

• Notification of connection/disconnection of user.

• Notification of DDL execution.

• Notification of change of user password.

• Start-up or shut-down of a server.

• Creation of a new database device.

• Notification of elapsed time or resource usage threshold breach for execution of user
action.

An attribute of all these events should indicate success or failure of the operation. For long
running actions (or perhaps all actions) it should be possible to raise events both at
commencement and completion of the action.

4. Management Action Events

• Notification of action started by a user in a management application.

• Notification of completion of action taken in a management application.

• Notification of elapsed time or resource usage threshold breach for execution of
management action.

4 Preliminary Specification

Introduction Scope

An attribute of all these events should indicate success or failure of the operation. For long
running actions (or perhaps all actions) it should be possible to raise events both at
commencement and completion of the action.

5. External Signals

• An E-mail handler should accept formatted text that can raise a user-defined event (see
below).

• UNIX signal(2) received.

6. Self-management Events

• Management process failure (that is, management software process dies, event raised
by these processes watching each other).

• Subscription action failure due (see Subscription Service below).

• Event notification messaging threshold breach.

• Service failure (for example, log consolidation failure due to insufficient disk storage).

7. User-defined Events
It should be possible to raise user-defined events that can have arbitrary data structures
associated with them, so that a customer can use the event mechanism for asynchronous
notifications of any sort. This would be particularly useful, for example, for standardized
handling of error conditions discovered in the middle of command scripts without having
to code the same error handling into multiple scripts.

8. Composite Events
A mechanism is required for creating a composite event that is raised when a series of
other events (be they simple or composite) occur within a given period of time. This is
described more fully below.

A single event notification is often only one small part of a larger picture. Only when
certain events occur in relative proximity can some sense be made of a situation and some
appropriate response be made. Therefore, composite events are key to proper event
management. Without a composite event mechanism, systems administrators would end
up writing complex scripts to manage event combinations that mirror real situations. For
example, a series of performance threshold breaches may indicate a serious problem where
each individual breach is merely an interesting event to be watched for future use.

Additional background to the requirements is given in the remainder of this subsection.

Architectural Niceties

Implementation of requirements in this section must not cause delay in providing the basic
event management service; it is more important to get the basic EMS APIs (for
subscription/notification) resolved so ISV and customer software can be rewritten to those APIs
as soon as possible.

However, these features are required for the widespread deployment and use of EMS, so the
general requirement for this section is that these features must be able to be layered on top of the
basic EMS.

Part 1: Event Management Service (XEMS) API 5

Scope Introduction

Binding Events to Actions

An event subscription invokes some action sequence when an event notification is received. For
example, when a managed server shuts down unexpectedly you may want an on-screen
notification and a beeper to be called. In this case, one would subscribe to the event by
associating the action sequence to post the notification and call the beeper with the occurrence of
this event.

It must be possible to associate any action to an event; indeed a generic execute script option is
theoretically sufficient to meet all needs. However, there are certain actions for which our
applications can provide more friendly support, and these include arbitrary combinations of:

• email message notification

• beeper called

• log file entry posted

• row inserted into some table in some database

• managed server stored-procedure execution

• SNMP alert raised

• asynchronous desktop visual alert (for example, GUI pop-up)

• visual cue in iconic representations (for example, color change)

• arbitrary program execution

• invoke management services at API level (avoids heavyweight process spawn).

In some cases, subscriptions involve actions on objects that are not active (for example, insert a
row in a table where server is down, run a shell script on a node that is not on the network). A
mechanism for storing such actions and executing them when possible is required. An event
subscription failure event is needed so that such delays can be noticed.

Navigating the EMS Superhighway

There needs to be two basic ways of navigating through the user interface to define events. One
is starting from a general event management selection that drills down to the particular event
you wish to manage, and the second is from the dialog set for managing a particular object by
allowing you to select a ‘‘manage events" option.

Convenience Features/Toggling Event Subscriptions

As well as creating a subscription, you may want to deactivate it temporarily, and then
reactivate it at a later time without having to recall all the details of what action sequence was
associated with what designated event(s).

By placing subscriptions in collections one could activate and deactivate sets of subscriptions
together. For example, if one had the need to watch a particular group of resources for threshold
events from time to time (say, during heavy business cycles), one could activate the
subscriptions for the period of interest and deactivate them for the rest of the time.

6 Preliminary Specification

Introduction Scope

Programmable Event Filters

The event service should allow for the provision of programmable event filters at suitable nodes
in a network to minimize the degree of ‘‘event storms", and to ensure adequate (end-user)
service levels. That is, the programmable event filters will identify the most important of a
number of events arising at that point in a given (configurable) timezone and will identify the
relationship and forward only the single consolidated event.

In this way, ‘‘policies’’ can be established for both event filters and for action systems built on
top of an event system. It is understood that programmable filters satisfy a higher level need
which may best be layered above the event service; so the requirement here is to ensure
programmable event filters can be layered on top of the event service.

Event Definition Language

A common event definition language (EDL) should be specified. This language would allow the
specification of all events which an application or managed object generates. This would allow
ISVs to ship a list of events that their product could cause, resulting in minimum user effort in
integration of new applicants into the EMS.

1.3.2 Performance

In pursuit of efficiency, events must only be posted when active subscriptions are associated
with the event. Whenever an event is activated or deactivated, the EMS must ensure that the
posting process (probably a managed server or its proxy) is informed whether or not to send the
particular event notification.

A key requirement is that the event services have good performance characteristics, and that
they do not degrade performance of other processes on the network. This general events
mechanism must be efficient enough for real-time performance monitoring of operating system-
level activity.

The infrastructure should provide the ability to monitor event notification traffic, and to create
performance threshold events on such data. Unfortunately, it will be relatively easy to configure
the event services to create event cascades and event storms. This would be through specifying
an action to occur when an event is raised, that itself will cause other event notifications which
cause more actions with more events, and so on.

In general, it is required that there be minimal propagation of events, to avoid performance
degradation. If a store and forward mechanism for event notifications is used, then event aging
must be monitored as a key performance indicator. Minimal performance degradation could be
achieved through replicating subscription action scripts to the event handling agents near the
corresponding managed nodes being watched. (Such replication also enhances fault tolerance.)
This could be enhanced by self-load-balanci ng where event handling agents start-up and die
according to need on arbitrary managed nodes.

It is important, for performance reasons, that the only events posted for distribution are those
events with active subscriptions (that is, someone is interested in listening to them); otherwise
event notifications may well clog the network.

From a performance standpoint, the transport protocol used by the event notification messages
may be important. If the event notifications are not sent on a connectionless protocol (most
likely to be performant) then appropriate performance characteristics must be validated.

Part 1: Event Management Service (XEMS) API 7

Scope Introduction

1.3.3 Reliability

Since event management applications are responsible for sending notification of any system and
network problems to responsible operators, the management application itself as well as the
underlying EMS must be absolutely reliable.

1.3.4 Standardization and Portability

The EMS provides a generic (that is, implementation independent) API. This API permits source
code compatibility across implementations. The API provides functions for consumers,
producers, and administrators.

1.3.5 Extensibility

As the technology moves, new managed objects and associated events will be required. In
addition, customers and vendors may supply events for their applications. All of this must occur
in a seamless manner.

1.3.6 Security

Since the event subscription service API is the window for applications to see generic system-
wide activity, applications must be prevented from unauthorized snooping of system behavior
at this access point. Access to event subscription and composite event construction must be
secured by the access permissions of the managed objects.

1.3.7 Internationalization

The EMS must be compliant with internationalization (I18n) requirements.

1.3.8 Interoperability

The event management services from different vendors must interoperate.

8 Preliminary Specification

Chapter 2

Overview of the Event Management Service

2.1 General Model
Among the common goals of most systems management applications are to ensure the
availability and reliability of the managed computing environment, while imposing a minimal
amount of overhead onto the environment. To do this effectively, systems management
applications have a requirement to be able to produce and consume large volumes of data that
corresponds to important, time critical information about the managed environment.

An individual data entity corresponding to some information communicated from the managed
environment to the management applications is known as an "event". The EMS described in this
document defines the mechanisms necessary to generate and process events, thus enabling
systems management applications to respond appropriately to changes in the availability
and/or reliability of computing resources in the managed environment.

Today’s commercial computing environments are characterized by both their distributed and
heterogeneous natures. Typical environments are comprised of networks of a wide variety
computer hardware and software produced by many different vendors, cooperating in some
fashion to perform mission critical functions on behalf of end-users. As a result, systems
management applications are required to manage a wide range of computing resources, and
thus need to consume events produced by applications developed by several different vendors.

In order to enable the development of management applications that communicate and process
the event information within a heterogeneous, distributed computing environment, the EMS API
must be standardized. Developers of system resource monitoring services require a standard
API for reporting the occurrence of events that must be processed by management applications,
and management applications require a standard API for the consumption of events that may be
generated by a wide variety of resource monitoring services.

This document describes both a general model for an EMS architecture, and a set of APIs
tailored to mapping the general model to an X/Open compliant environment. While it would be
ideal to have a single implementation that is appropriate for all computing environments, in
reality different computing environments employ vastly different distribution mechanisms, and
a single implementation is simply not feasible.

Part 2 of this specification describes the mapping of the EMS API to several implementations.
This is meant to be a sampling of implementations. By agreeing upon the implementations for
various spaces, for example, CORBA event service, implementors of event services and
gateways will be able to create interoperable products.

The EMS provides reliable, in sequence, asynchronous notification of events. It is implemented
as an intermediary layer between management applications and managed objects.

An event is a partially opaque object emanating from a managed object. The information (object)
is partially opaque in so far as there is a standard header and an encoded data stream. The
standard header provides the minimal amount of information that an EMS must be capable of
filtering for any management application. The standard header also provides the minimum
amount of information that an EMS must be capable of filtering for a managed object.

Part 1: Event Management Service (XEMS) API 9

General Model Overview of the Event Management Service

The EMS specification does not prescribe the mechanism used to locate Event Service instances
either from a management application or managed object perspective. These relate to the given
environment, for example, DCE.

The EMS specification does not address mechanisms for activating (or otherwise controlling)
managed objects. These mechanisms may be incorporated into management applications.

EMS implementations operate within the security policy of the given environment. They do not
implement a distinct security framework.

2.1.1 Model

An X/Open EMS conforms to the conceptual model shown in Figure 2-1.

Event Consumers
(e.g. Management

Applications)

EMS
Forwarded Events

EMS
Forwarded Events

Event Channel

Event Service

Supplier

Consumer

Event Suppliers
(e.g. Managed Objects

or Agents)

Auth. Filter

Filter

Events Events

Events Events

Consumer
API

Supplier
API

Filter
Repository

Event
Repository

Consumer/
Supplier
Registry

Event
Services

Management API

Schema
Repository

Figure 2-1 Event Management Service: Conceptual Model

10 Preliminary Specification

Overview of the Event Management Service General Model

At first glance, the core of the Event Service looks very similar to a COSSES Event Channel.
There are, however, some notable differences:

• The EMS involves two or more channels, centralizing the functionality associated with
reliable delivery.

• The Event Channel includes filtering mechanisms. The interface to suppliers ensures that a
supplier can only insert events for which they are authorized. The [consumer-side] filter
performs two major functions. First, it delineates the events in which the consumer is
interested, both in terms of the event type, per se, and in terms of the criteria receiving a
given event. Second, it provides a security mechanism, where the consumer can only receive
events for which they are authorized.

• The event repository is designed to hold events awaiting delivery to consumers. This is used
in conjunction with the filter repository and the consumer/supplier repository. The event
repository must be a persistent store for reliable event delivery. It is not a permanent log. A
consumer may act as a local logging facility; or, a consumer may act as a proxy for a
centralized logging facility. In any case, utilizing a consumer for logging simplifies the
implementation, configuration, and administration of the Event Service.

• The filter repository must be a persistent store. It contains filters registered by consumers.
These are analogous to the where clause in the select statement for SQL and ODMG queries.
In subsequent bindings, consumers specify a set of filters to be used as criteria for event
selection. The elements of the set are anded. Hence, an event will be sent to the consumer
only when it passes all of the criteria in the set.

• The consumer/supplier registry contains state information about active consumers and
suppliers.

• Once events are collected for a consumer, they will persist across consumer connections,
within the space restrictions set for the given XEMS instance. Should the value be exceeded,
then events may be lost. The consumer may disconnect without losing events. In fact, events
will continue to be gathered for the consumer. When the consumer reconnects, the events
will be sent to the consumer.

• The schema repository contains information for typed events.

• The event services manager is responsible for orchestrating the activities of the Event Service.

The security context is derived from the normal means, for example, set during logon or altered
via system calls (setuid, setgid, etc.). Consumers, like the EMS, are both clients and servers. As a
result authentication and authorization are performed for both the registration and the event
flow. The difference between the Consumer and the EMS is that the Consumer does not perform
the multi-level check on the contents of the event container.

The remaining sections of this chapter describe how the event services described in this
specification would typically be configured, and how developers of software components that
produce and/or consume events would integrate with this service.

The ‘‘Example’’ section (see Section 2.8 on page 33) illustrates aspects of the EMS through the
deployment and use of an intelligent agent.

Part 1: Event Management Service (XEMS) API 11

General Model Overview of the Event Management Service

2.1.2 Conceptual Flow

This section describes the flow through the EMS. There are several timeframes:

• configuration

• authorization

• registration

• connection

• delivery

• maintenance.

Configuration of an EMS

The configuration of EMS involves loading the package, allocating the repositories, and
implementation setup. Subsequently, this EMS must be registered with other EMS instances.
This will control the forwarding of events, etc. A security context must be created for this EMS.
The implementation will provide the default set of event schemas. These are stored in the
consumer/supplier registry. The configuration process will also instantiate the namespace
(registry) for the basic event types.

Configuration of a Supplier

The configuration of a supplier involves loading the package, adding the supplier to the
consumer/supplier registry, updating the namespace for the events provided by the supplier,
and establishing the security context for the supplier.

Authorization of a Consumer

A consumer must be registered with the consumer/supplier repository before the consumer
may use the EMS. The registration defines the events that the consumer may receive. This
provides the security context for the consumer. Registration may also involve the definition of
space constraints for the user. The constraints may encompass the filter repository and the event
repository. The consumer may be limited to a fixed number of filter groups or event delivery
space.

Establishing Filters

The consumer registers filters with the EMS. A filter consists of a filter group. A filter group is a
set of filter lists. A filter list is a set of filter expressions. Each filter expression represents a logical
expression. An expression consists of the name of an event attribute, a logical operator, and a
value. A set of filter expressions represents a logical anding of the members. So, the logical result
of a filter list is true if all of the filter expressions are true. Filter lists are combined to form filter
groups. The filter lists are ored within the filter group. Hence, the logical result of a filter group is
true if any of the associated filter lists are true. When applying filters, the event channel assumes
that all attributes in the event schema have values.

Interfaces are provided manipulating, querying, and administering filters. Consumers are not
required to use filters. The effect of not using a filter group is the reception of all events
consumer is authorized to receive.

12 Preliminary Specification

Overview of the Event Management Service General Model

Supplier Connections

A supplier connects to the EMS at supplier start-up. The bind operation includes arguments for
the reflecting hints to the supplier. To receive hints a supplier would operate as both a client and
a server. The server side would respond to the hints, while the client operations are used to
connect and disconnect from the EMS as well as to send events to the EMS. A supplier is not
required to accept hints. Even if the supplier provides the server interface, it is not required to
act on a hint. The current h ints that may be received by a supplier are the number of consumers
for an event type. This may be used by a supplier to (de)activate sending events to the EMS.
Each change in the number of consumers of an event type causes a hint to be sent to the
supplier. The hints are reference counts.

The EMS applies an authorization filter to the supplier. A supplier may only insert event types
for which it is registered. A supplier may be permitted to insert any event type registered in the
EMS. This permits generic suppliers, for example, gateways among EMS instances.

Consumer Connections

A consumer connects to an EMS to receive events. When the consumer connects, it indicates the
recipient of the events. It also indicates the type and quality of service. The type of service is
either the push or pull model. The quality of service controls the EMS delivery semantics. This is
a hint to the EMS. It may not support quality of service levels. At a minimum, an EMS
implementation must support reliable, in sequence delivery.

The normal sequence of operations by a consumer are:

• Use ems_consumer_start() to establish the consumer session with the EMS. This will establish
the principal to receive events, the mechanism for event delivery, and the quality of the
delivery.

• Query the EMS to determine what event types are available to the consumer. Based upon the
selections made from the query, form filter expressions. Each filter expression provides
threshold criteria for an event. Combine the filter expressions into a list.

• Use ems_filter_add() to add the list to the filter repository.

• Use ems_add_filter_to_group () to create a consumer filter group. A consumer has a single
active filter group at any moment. A filter group may be queried, manipulated, and deleted.

• Use ems_push_consumer_register() to associate a filter group with an EMS instance, indicating
that the latter is to send events meeting the filter criteria. This method is invoked once for
every EMS instance and filter group of interest.

• Registration and/or filter group manipulation may be inter-twined to establish unique event
filtering criteria at each EMS instance.

• An ems_consumer_unregister() invocation should be made for each ems_consumer_register()
call. This quiesces event notification for a given EMS instance and filter group.

• Use ems_consumer_stop() to destroy the consumer session with the EMS.

Part 1: Event Management Service (XEMS) API 13

General Model Overview of the Event Management Service

Administration

From time to time administrators may want to audit the repositories and registries. EMS is
designed to be maintenance free, but occasional cleanup is inevitable. Administrative activities
include:

• Updating the consumer/supplier registry to add or remove consumers or suppliers.

• The consumer/supplier registry may be updated to reflect new event types and schemas.

• The filter repository may become cluttered with forgotten filter lists. Or the filter lists for a
consumer are to be deleted as a precursor to deleting the consumer from the registry.

• The event repository may have forgotten events. Where a consumer had registered for a set
of events on behalf of a principal, but the events could not be delivered to the principal. This
should be an anomaly. If events are requested, there is normally a more than casual interest
in their reception.

14 Preliminary Specification

Overview of the Event Management Service Architecture

2.2 Architecture
The EMS performs fan-in and fan-out operations. It receives events from suppliers. It supplies
events to consumers. The EMS must perform these operations in an efficient, reliable and secure
manner. The combination of basic operations and the constraints under which they must be
performed lead to the general model given at the opening of this chapter.

A number of components may be gleaned from the general model. They are:

• the event persistent cache

• the consumer/supplier registry

• the filter repository

• the event channel.

2.2.1 Event Services API Overview

The EMS API can be divided into several interfaces grouped by function. The different interfaces
are:

• the Registration interface

• the Event Type interface

• the Supplier Interface

• the Filter Interface

• the Consumer Interface

• the Management Interface.

The Registration interface allows registration with EMS for applications that are not suppliers or
consumers. The Event Type interface provides support for manipulating the Event Type
Database. Event filters can be created using the Event Filter Interface. The Supplier interface
allows suppliers to both register and send events to the EMS. The Consumer interface provides
consumer setup routines and consumer registration routines. The EMS Management Interface
allows management applications to administer the EMS databases, as well as the event service
itself.

EMS Registration

The EMS registration routines allow clients, or users of the event service to both obtain a ‘handle’
to access the event service, as well as register with the event service how they intend to use it.

An event service handle is required to perform any operation with the event service. These
operations can be event type operations, event filter operations or event management service
operations. The following routines allow EMS clients to register with EMS:

ems_register
Register with the Event Service.

ems_unregister
Unregister with the Event Service.

Another type of registration requires consumers and suppliers to register with the event service
to tell the event service that they are consumers or suppliers as well as what type of consumer or
supplier they are. These routines are described in the supplier and consumer sections.

Part 1: Event Management Service (XEMS) API 15

Architecture Overview of the Event Management Service

2.2.2 Events

Conceptually, events consist of two objects. There is a base object (header) for all events.
Optionally, there may be a derived object for the event.

Event Header

The event header contains the following information:

• the event identifier

• the origin of the event

• the severity of the event

• the time when the event was generated

• the time when the event was delivered

• the priority of the event.

Event Data

The event data object contains the details of the event. This object is mapped by an Event
Schema introduced in the next section. Event data can be self-describing; that is, it may consist of
a sequence of anys .Itmaybea

2.2.3 Schemas

Schemas are required for all typed events. The amount of information given in the schema may
vary. Schemas are used to support filtering. Schemas are retained in a Schema Database. This
database may not be required for all implementations. For example, it may be that a CORBA
implementation uses the implementation repository for schema information.

The EMS Event Type Interface

All events processed by EMS have an event type. Event types can be either generic, or defined by
an event type schema.

EMS keeps a database of event types which consists of event type schemas. Routines are
provided to manipulate the event types in the event type database.

The following routines summarize the EMS Event Type Interface:

ems_event_type_add
Add a new event type schema to the Event Type Database.

ems_event_type_delete
Delete an event type schema from the Event Type Database.

ems_event_type_get
Get an event type schema from the Event Type Database.

ems_event_type_get_list
Get a list of event type schemas from the Event Type Database

ems_event_type_free_list
Free the list of event type schemas.

16 Preliminary Specification

Overview of the Event Management Service Architecture

2.2.4 Filters

Filters are used by suppliers and consumers to control which events get sent through the event
channel. EMS supports the concept of two stage filtering. First stage filtering is applied to the
supplier before receiving an event in the EMS. Second stage filtering is applied by EMS before
forwarding events on to consumers.

The EMS API supports the second stage filtering, and provides routines to manipulate the EMS
Event Filter database.

The following routines summarize the EMS Event Filter Interface:

ems_filter_add()
Add a filter to the Event Filter Data base.

ems_filter_append()
Append filter expressions to the Event Filter Database.

ems_filter_get()
Get the contents of an event filter.

ems_filter_free()
Free the storage used by an event filter after a get.

ems_filter_delete()
Delete a filter from the Event Filter Database.

ems_filter_get_namelist()
Get a list of the names of all filters in the Event Filter Database.

ems_filter_free_namelist()
Free a list of filter names.

ems_filter_get_list()
Get a list of all the filters in the Event Filter Database.

ems_filter_free_list()
Free the list of filters.

2.2.5 Event Channel

Conceptually, an EMS consists of a pair of event channels for supplier to consumer flow. One of
the event channels connects the supplier with the EMS. The other event channel connects the
consumer with the EMS. Logically, the EMS indicates to the supplier that the event has been
received after it has been made persistent (assuming that there are consumers for the event or
the EMS does not perform this optimization), insuring that the event is not lost during the
transfer. Likewise, once the consumer indica tes to the EMS that it has received the event, the
EMS removes the event from the persistent store.

A channel pair provides a means of decoupling consumers and suppliers. In addition, it
provides a mechanism for fan-in and fan-out of events.

Part 1: Event Management Service (XEMS) API 17

Architecture Overview of the Event Management Service

2.2.6 Consumers

EMS consumers are both clients and servers. The EMS consumer interface provides support for
the steps required to implement an event consumer. A routine is provided to perform consumer
setup, ems_consumer_start, and consumer cleanup, ems_consumer_stop. These routines should
be called when a consumer starts, and before consumer shutdown. After setup is complete, then
a consumer must register with the EMS, and set up any filters that it wants to use to control
which events get forwarded to this consumer.

The EMS maintains a consumer database to keep track of all registered consumers. Registering
and unregistering with the EMS adds and deletes consumers to and from the database.

Two types of consumers, to correspond with the OMG Event Service Model, are supported, a
push consumer and a pull consumer. A consumer would use the appropriate registration API to
designate which type of consumer is desired

The following routines summarize the EMS Consumer Interface:

ems_consumer_start()
Called to start an event consumer.

ems_consumer_stop()
Called to stop an event consumer.

ems_push_consumer_register()
Register a push consumer.

ems_pull_consumer_register
Register a pull consumer with the Event Service.

ems_consumer_unregister()
Unregister a consumer with EMS.

ems_add_filter_to_group()
Add a filter name to a consumers event filter group.

ems_delete_filter_from_group()
Delete a filter name from a consumers event filter group.

ems_get_filter_group()
Get the list of filter names that comprise a consumers event filter group.

ems_consumer_get_registration()
Retrieve consumer registration information associated with a consumer handle.

ems_consumer_pull()
Used by pull consumers to get an event from the event management service.

ems_consumer_try_pull()
Used by pull consumers to get an event from the event management service, but not block
waiting.

18 Preliminary Specification

Overview of the Event Management Service Architecture

2.2.7 Suppliers

The EMS Supplier interface allows suppliers to send events to the Event Service. First stage
filtering would be applied before making any EMS interface calls sending any events from the
supplier to the event service. Note, the EMS will not accept event types from a supplier that the
supplier has not registered.

The following routines allows suppliers to send events to the EMS:

ems_supplier_send()
Send an event to EMS.

ems_supplier_register_handler()
Register a hint callback for the supplier. This requires the supplier to be both a client and a
server.

ems_push_supplier_register()
Register a push supplier with the EMS.

ems_pull_supplier_register()
Register a pull supplier with the EMS.

ems_supplier_unregister()
Unregister a supplier with the EMS.

2.2.8 Management

The event service also provides a management API to allow administration of the event service
as well. The management routines allow manipulation of event service attributes, and the
consumer database. The EMS Filter Interface and Event Type Interface could also be used to
administer the Event service, but those interfaces can also be used by suppliers and consumers.

The following routines summarize the EMS Management Interface:

ems_mgmt_list_ems()
List all hosts running the event service.

ems_mgmt_free_ems()
Free the host list.

ems_mgmt_list_attributes()
Lists attributes for a specific EMS.

ems_mgmt_free_attributes()
Free a list of ems attributes.

ems_mgmt_list_consumers()
List consumers registered with EMS.

ems_mgmt_free_consumers()
Free a consumer list.

ems_mgmt_secedit
Alter the permissions of a subject with regard to a security object.

ems_mgmt_secsubjadd
Add a subject to the EMS. The subject may act as a consumer or a supplier or both, based on
the read/write permissions given on the call.

ems_mgmt_secsubjdelete
Remove a subject from the EMS.

Part 1: Event Management Service (XEMS) API 19

Architecture Overview of the Event Management Service

ems_mgmt_secsubjget
Given a principal, return the EMS defined subject.

ems_mgmt_delete_filter_from_group()
Delete a filter name from a consumers filter group.

ems_mgmt_add_filter_to_group()
Add a filter name to a consumers filter group.

ems_mgmt_get_filter_group()
Get the list of names in a consumers filter group.

ems_mgmt_list_suppliers()
List suppliers registered with EMS.

ems_mgmt_free_suppliers()
Free a supplier list.

ems_mgmt_delete_supplier()
Delete a supplier from the Supplier Database.

ems_mgmt_get_undelivered_events()
Retrieve a list of events that have not been delivered to interested consumers.

ems_mgmt_free_undelivered_events()
Free the undelivered events in the list for interested consumers.

ems_mgmt_delete_undelivered_event()
Delete an undelivered event from the EMS Event Log.

ems_mgmt_forward()
Establish the forwarding of events described in a filter group from a given EMS to another
EMS.

20 Preliminary Specification

Overview of the Event Management Service Performance

2.3 Performance
An event management system is a fundamental component. It is used in conjunction with
management applications leveraging its services. Together these provide the basis for
maintaining service availability by:

1. Giving timely warning of impending problems (for example, file capacity thresholds).

2. Notifying system administrators of failing processes and system components.

3. Quickly identifying root causes to problems in increasingly complex systems.

4. Automatically fixing problems before service levels are degraded.

5. Integrating application-specific event mechanisms so system correlation can be done at a
higher level (for example, network outages are the root cause of many application errors;
and the administrator needs his attention drawn to the root cause).

Key attributes of the EMS are:

• Lightweight — minimal network/system load
A key requirement is that the event service have good performance characteristics, and that it
not degrade performance of the network. This service must be efficient enough for real-time
performance monitoring of system level activity.

• Extensible API
The ability to define and extend events and event contents.

• Interoperable across the network
This attribute addresses the ability event management system products from different
vendors to interoperate without a priori knowledge of the specific vendor’s offering.

• Robust
Defined as the reliable delivery of events.

Part 1: Event Management Service (XEMS) API 21

Reliability Overview of the Event Management Service

2.4 Reliability
Since event management applications are responsible to notify any system and network
problems to responsible operators, the management application itself as well as the underlying
event services must be absolutely reliable. The following issues outline the areas that must be
addressed by an EMS implementation:

• no loss of events

• self-monitoring

• stable processes.

2.4.1 No Loss of Events

EMS implementations are responsible for all events from the point in time the events are sent by
a supplier until they are received by all consumers registered for notification of the respective
event. Implementations must guarantee reliable delivery of all events from suppliers to
consumers; in case the network connection to consumers is down, local buffering must be
applied to enable later retransmission of events.

2.4.2 Self-monitoring

Since an EMS is responsible for the delivery of problem notifications to a management
application, it is essential that an appropriate mechanism is provided for the monitoring of EMS
and the underlying components it depends on. In case of any failure, consumers must be notified
of the failure in order to enable them to react appropriately.

2.4.3 Stable Processes

The stability of processes is an issue that applies to all pieces. However, due to its importance to
applications that depend on event services, an implementation must be extremely robust even in
moments of high network or CPU load on the local machine. Since event services is required in
such exceptional states, this must be reflected in the robustness of its implementation.

22 Preliminary Specification

Overview of the Event Management Service Security

2.5 Security
The EMS, optionally, uses security facilities in two distinct means. The EMS can use the security
framework of the underlying system to obtain the principal name. The principal name may in
turn be used to determine access permissions to EMS constructs, for example, the filter
repository or event types. The access permissions to EMS constructs represents a multi-level
access security model.

The EMS may use an external security mechanism to control the consumer’s or supplier’s ability
to register (bind) with an EMS. Given a security principal, the EMS may recognize permissions
for specific objects. For example, a supplier may only be permitted to insert a specific event type,
or a consumer may only be permitted to view certain event types. If multi-level access is not
available, then an EMS implementation may be configured such that all users of the specific EMS
have the same permission sets for all objects. Expanding upon this, a set of EMS instances may
be configured for a given node, where each instance supports a specific set of users.

The EMS will operate within the security framework of the host environment. It is paramount
that an implementation work within the host security mechanism. Security policies can be quite
complex. The use role-based security schemes compounds the situation. For EMS
implementations to have wide acceptance, they cannot insist upon using private security
mechanisms.

The manifestation of a security policy is transparent to consumers and suppliers. The use of the
security contexts of the consumers and suppliers, assists interoperability and usability. The sole
adapter to be used for an EMS may be the authorization implementation for the vendor’s
abstract authorization class.

Part 1: Event Management Service (XEMS) API 23

Security Overview of the Event Management Service

The use and understanding of a security architecture does not depend on a full-understanding of
the underlying object implementations and interactions of the Event Service, consumers, and
suppliers. The conceptual model for the use of security with the EMS is depicted in Figure 2-2.

Consumers1

Authentication

registration registration

Authorization

Security Service

RPC Service

Suppliers1

Event
Service2

eventsevents2

1. The security context is derived from the normal means, for example, set during
logon or altered via system calls (setuid, setgid, etc.).

2. Consumers, like the EMS, are both clients and servers. As a result authentication
and authorization are performed for both the registration and the event flow. The
difference between the Consumer and the EMS is that the Consumer does not
perform the multi-level check on the contents of the event container.

Figure 2-2 Security Service

The conceptual role of security for the DCE-based EMS is summarized as follows:

1. Neither consumers nor suppliers are aware of, that is, need code to support, a security
mechanism. They simply inherent the security context of their logon group.

2. The EMS requires object level security granularity, that is, multi-level security. As a result,
it must perform authorization checks for consumers and suppliers.

3. The administration functions are not depicted in this view. They are deemed to be outside
the scope of the EMS specification.

4. The EMS specification is written in accordance with the proposal put forth in GSSAPIEXT
to the extent that the latter provides specifications for multi-level access. For example,
from the perspective of a DCE-based EMS, the calls to the ACL manager to determine
whether a consumer (or supplier) has permission for a given operation on a specific event
type (that is, a specific object) are:

— "rpc_binding_inq_auth_client()"
to obtain the authentication and authorization information from the binding handle for
an authenticated client. In particular, to obtain the client’s privilege attribute certificate
(PAC) which is used in the test call.

— "sec_acl_bind()"
to obtain the handle of the object in question.

24 Preliminary Specification

Overview of the Event Management Service Security

— "sec_acl_test_access_on_behalf()"
to test access to an object on behalf of another process, mapping the type of access
implied in the original RPC call to a permission mask (for example, read, write, insert,
delete, etc.).

It is not clear whether GSSAPIEXT provides this support or has left it as an
implementation specific aspect of security.

Changes in a principal’s security profile may affect their ability to participate as a consumer (or
supplier) either during or across conversations.

2.5.1 Global Namespace

The global namespace from a security perspective is concerned with the transfer and/or
conversion of a principal’s security context within/across security domains.

The namespace affects consumers and the EMS.

The namespace is transparent to suppliers and the EMS.

Security context transfers must be capable of mapping the principal and the principal’s
attributes, for example, PACs for DCE-based security.

The mapping transformations must be two-way, since the information flow is both from the
consumer to the EMS and vice versa.

The event flow (from the EMS to a consumer) does not require multi-level security at the
consumer side.

2.5.2 Security Objects

There are two types of security objects in EMS. Both types are controlled by permission sets. The
first type of security object concerns manipulation of EMS attributes, and EMS Databases. Here
is a list of the EMS security objects of this type.

ems-server controls access to the event service.

event-types controls access to the Event Type Database.

filters controls access to the Filter Database.

consumers controls access to the Consumer Database.

suppliers controls access to the suppliers Database.

The second type of security object concerns manipulation and access to objects inside of the
databases. These objects are classified by category.

event-type controls access to a given event type in the Event Type Database

filter controls access to a given filter in the Filter Database

The remainder of this section describes what operations can be controlled on each security
object.

Part 1: Event Management Service (XEMS) API 25

Security Overview of the Event Management Service

Event Service Attributes Security Object

The ems-server security object controls access to the event service and its attributes. The two
permissions on this security object are:

control modify this security object.

read read or get the attributes for an Event Service.

write write or modify the attributes for an Event Service.

Event Type Database Security Object

The event-types security object controls access to the Event Type Database. The permissions
associated with this security object are:

control modify this security object.

delete delete an event type from the Event Type Database.

insert insert or add an event type to the Event Type Database.

read read or get an event type schema from the Event Type Database.

Filter Database Security Object

The filters security object controls access to the Filter Database. The permissions associated with
this security object are:

control modify this security object.

delete delete a filter from the Filter Database.

insert insert or add a filter to the Filter Database.

read read or get a filter or the list of filters from the Filter Database.

Consumer Database Security Object

The consumers security object controls access to the Consumer Database. The permissions
associated with this security object are:

control modify this security object.

delete delete a consumer from the Consumer Database.

insert insert (by registering) a consumer in the Consumer Database.

read read or get a list of consumers, or a specified consumer’s filter group from the
Consumer database.

write modify a consumers filter group.

26 Preliminary Specification

Overview of the Event Management Service Security

Supplier Database Security Object

The suppliers security object controls access to the supplier Database. The permissions
associated with this security object are:

control modify this security object.

delete delete a supplier from the Consumer Database.

insert insert (by registering) a supplier in the supplier Database.

read read or get a list of suppliers from the supplier database.

Event Type Security Objects

The event type object security object controls access to a given event type in the Event Type
Database. An security object of this type is created for every Event type in the Event Type
Database. The permissions associated with this security object are:

control modify this security object.

delete delete this event type from the Event Type Database.

read read or get the event type schema for this event type from the Event Type
Database.

Filter Security Objects

The filter object security object controls access to a given filter in the Filter Database. A security
object of this type is created for every filtering the Filter Database. The permissions associated
with this security object are:

control modify this security object.

delete delete this filter from the Filter Database.

read read or get the filter expressions for this filter from the Filter Database.

write write or append a filter expression to this filter in the Filter Database.

2.5.3 Network Communications

Authentication is provided by the environment.

Security context support is provided by the environment.

Data encryption support is provided by the library. In a OMG CORBA environment, for
example, this would be provided by the object system.

Encryption is at the conversation level and not at the object level. This eases the administrative
burden in the sense that encryption semantics can be defined at the communications layer. The
EMS need not be aware of the encryption mechanism.

Part 1: Event Management Service (XEMS) API 27

Internationalization Overview of the Event Management Service

2.6 Internationalization
Many of the initial suppliers for the EMS are likely to be legacy applications with EMS wrappers.
These suppliers are expected to emit text based data. The exchange of textual data as the content
of events introduces a number of problems:

• The language of the supplier may not be that of the consumer.

• The character set of the supplier may not be available to the consumer.

• Cultural data, for example, time and date format, may be embedded within the text-based
events.

Solutions to these problems (from the perspective of wrapped legacy systems) are limited.
Internationalization of textual data usually leads to rewriting sections of the original application.
Here is a partial list of changes:

• Many of the language issues may be solved through the use of message catalogs.
Unfortunately, the catalogs must be accessible to the consumers. For message based
solutions, the message number for the message skeleton is provided as a parameter. The
number of insertions is another parameter. Each of the inserts, converted to an internal form
(for example, a timestamp may be shipped as a time_t), is provided as a typed (any)
parameter. A complimentary adapter is required at the consumer that recognizes the event
type and provides the message presentation services.

• There is little that can be done for missing character sets even with the use of a message
catalog. Failures may occur when the insert is a character string, for example, a file name, and
the codeset for the language is not available at the consumer.

• Most cultural problems are skirted by transmitting the internal form of the data and not the
presentation form. This may be used in conjunction with a message catalog or in isolation.

For suppliers built for the EMS, there are data types for all transmitted information, including
constructed types for multi-byte and UCS character sets. While this does not eliminate the
problems associated with unsupported character sets, it does provide reasonable semantics for
failures due to this condition. Hence, sending textual data (for example, message inserts for file
names) in its specific character set mapping may permit the consumer to see a message in part,
even though specific inserts might not be viewable.

28 Preliminary Specification

Overview of the Event Management Service Interoperability

2.7 Interoperability
Any two implementations of the EMS API described in this specification will be interoperable.
Consumers and suppliers would be capable of connecting to and operating with any conforming
EMS. For implementations utilizing the same transport, for example, CORBA V2, the
implementations are directly interoperable. For implementations utilizing different transports,
they interoperate through a bi-directional gateway.

An Event Service maintains one or more repositories. The composition of these repositories is
beyond the scope of this specification. The interfaces to these repositories is in the administrative
domain.

2.7.1 Different Event Management Applications

Since event management applications are consumers receiving events via the registration APIs,
standardizing these APIs, as well as the common event format, address this particular
requirement.

In particular this means, that regardless of the implementation of the EMS, the event
management application of choice can be used for further processing and presentation.

Part 1: Event Management Service (XEMS) API 29

Interoperability Overview of the Event Management Service

2.7.2 Different Event Protocols

This is probably the most important interoperability aspect. Basically it addresses the need to
integrate:

• Event suppliers based on different protocols (for example, SNMP traps).

• Event consumers based on different protocols (for example, OMG based event service
implementation).

As stated at the beginning of this section, gateways are used to provide interoperability across
event service implementations. The EMS APIs are compatible at the source level. Suppliers and
consumers built for different EMS implementations may be connected to a given EMS via
adapters. The idea is to implement a protocol independent interoperability layer connecting the
different worlds. See Figure 2-3.

Distributed
Event Service

SMNP
Translator

SMNP port CMIP portXMP

Create Event APIRegistration APIs

SMNP
Translator

CMIP
Skeleton

Protocol Independent Interoperability Layer

Figure 2-3 Managed Node

The translator modules establish access to the different event worlds by translating the
particular event format (for example, SNMP trap) into the common standardized format, and
vice versa.

The protocol independent layer establishes the access to the event service, utilizing the
standardized event creation and registration APIs. With that layer it’s possible to centrally
manage events from different protocols, and to communicate between different event service
implementations (DCE vs. OMG).

30 Preliminary Specification

Overview of the Event Management Service Interoperability

2.7.3 Interoperability of EMS Implementations

The previous section alluded to a general model for interoperability EMS implementations.
Specifically, there is a general requirement for bi-directional interoperability between
implementations. Figure 2-4 depicts the desired situation with respect to interoperability, using
a CORBA-based and a DCE-based implementation as a prototypical example. The solid lines
depict components that are easily conceivable using existing technologies. The dashed lines
depict the components that must be established using a solution to the interoperability problem
described in this section.

OMG based
Event Consumer

OMG based
Event Supplier

CORBA
Requests DCE RPC

OMG based Event Service DCE based Event ServiceProtocol Independent
Event Channel

DCE RPC

DCE RPC DCE RPC

CORBA
Requests

CORBA
Requests

CORBA
Requests

DCE based
Event Supplier

DCE based
Event Consumer

Figure 2-4 Interoperability: Protocol Independent Channel

Figure 2-4 is undoubtedly a simplification of a complex problem that plagues the industry. But it
provides a logical view of what is needed to solve interoperability. In general, some component
is needed to translate events produced by a supplier using one transport to events that can be
consumed by another transport event consumer, and vice versa. Such a component is purely
logical, and may in fact be implemented using one to several processes.

Part 1: Event Management Service (XEMS) API 31

Interoperability Overview of the Event Management Service

As mentioned in the previous paragraph, the protocol independent event channel depicted in
Figure 2-4 is purely logical, and several vastly different implementations are imaginable.
Probably the simplest, although not necessarily the most efficient, implementation would be to
start with an environment that supports both implementations. Then, a component could be
implemented that is both a consumer and a supplier. This scenario is depicted in Figure 2-5.

OMG based
Event Consumer

OMG based
Event Supplier

CORBA
Requests

DCE RPC

OMG based Event Service DCE based Event Service

DCE RPC

DCE RPC
DCE RPC

CORBA
Requests

CORBA
Requests

CORBA
Requests

DCE based
Event Supplier

DCE based
Event Consumer

DCE-based
Consumer/
OMG-based

Supplier

OMG-based
Consumer/
DCE-based

Supplier

Figure 2-5 Interoperability: Dual Environment Channels

32 Preliminary Specification

Overview of the Event Management Service Examples

2.8 Examples
An example using the intelligent agent serves to demonstrate use of many of the EMS methods.
The idea is that a client (a consumer) sends an agent to a node to manage a resource. The client
must be authorized to perform this function and an agent manager must be presumed to exist on
the target node.

The process flow is then:

1. connect with the agent factory

2. set up the transfer of initialization information

3. transfer the agent and applettes

4. set up the supplier with the EMS

5. set up the consumer with the EMS

6. start the supplier

7. send completion status to the consumer with a reference to the EMS conversation.

Initial Connection Flows

1. Connect to the agent manager factory on the destination node. The factory needs to know
the event recipient, quality of service, and the agent. The factory returns an object reference
for the agent.

2. The agent may consist of several applettes. The agent and each applette is shipped to the
factory. The factory sets up the agent environment, insuring that it can be restarted in the
event of a failure.

Setup the Supplier with the EMS

This work is performed by the factory.

1. Use ems_register() to bind to the EMS.

2. Use ems_event_type_add() to add the event type, the identity of the agent in this case.

3. Use ems_mgmt_add_supplier() to add the agent.

4. Use ems_mgmt_add_supplier_of_event () to connect the agent to the event type as a supplier.

5. Use ems_unregister() to disconnect from the EMS.

Setup the Consumer with the EMS

This work is performed by the factory.

1. Use ems_register() to bind to the EMS.

2. Use ems_mgmt_add_consumer_of_event() to permit the consumer to receive events of the
given type. This method should not fail, because the factory used the EMS to ensure that
the consumer could utilize this facility.

3. Use ems_filter_add() to indicate that the consumer is to receive all events from the agent.

4. Use ems_unregister() to disconnect from the EMS.

Part 1: Event Management Service (XEMS) API 33

Examples Overview of the Event Management Service

Start the Supplier

1. The factory for the intelligent agent has placed the agent and the applettes in a directory. In
addition to the executables, the factory has placed state and context information in the
directory.

2. The factory activates the agent in the context of the directory it previously built. The agent
executes with the security credentials and permissions of the consumer.

The Supplier

1. The agent executes with the directory created by the factory as its current working
directory.

2. The agent does not know the difference between the initial invocation and an invocation
after a failure, for example, power outage.

3. Use ems_push_supplier_register() to bind to the EMS.

4. For each event to be sent, use ems_supplier_send().

5. Before terminating the agent, use ems_supplier_unregister() to remove the conversation
with the EMS.

6. Set the conversation state to completed. The conversation manager will remove the files
and directory information.

7. Conversation manager remove supplier.

Conversation Manager Remove Supplier

The conversation manager cleans up after the agent, removing it from the EMS.

1. Use ems_register() to connect to the EMS.

2. Use ems_mgmt_delete_supplier_of_event() to disassociate the agent from the event type.

3. Use ems_mgmt_delete_supplier() to remove the agent from the EMS.

4. Use ems_unregister() to disconnect from the EMS.

Conversation Manager Remove Conversation

The consumer normally asks the conversation manager to clean up the agent and perform
associated housekeeping tasks when it no longer wishes the agent to exist at the given node. The
steps it follows are:

1. locate the directory for the agent

2. conversation manager remove supplier

3. conversation manager remove consumer

4. conversation manager remove event type

5. remove the agent directory and its contents.

34 Preliminary Specification

Overview of the Event Management Service Examples

Conversation Manager Remove Consumer

Here, the conversation manager is removing the association between the consumer and the
event type.

Use ems_mgmt_delete_consumer_of_event() to remove the association between the consumer and
the event type. This has the side-affect of removing all undelivered events of this type for this
consumer.

Conversation Manager Remove Event Type

Here, the conversation manager is attempting to remove the event type. This method will fail
when either there are undelivered events of this type, or the event type does not exist.

Use ems_event_type_delete() to remove the event type. ,HU "The Consumer" This section
chronicles the flow of the consumer, when the event recipient is the consumer.

1. Initial connection setup.

2. Use ems_consumer_start() to connect or reconnect to the EMS. The library determines
whether it is an initial connection or a reconnect based on the input argument. The library
returns the object reference representing the conversation.

3. Use ems_consumer_handler_register() to present a method to receive event notifications to
the EMS library.

4. Use ems_push_consumer_register() to set the EMS library notification mode.

5. Use ems_consumer_stop() to disconnect the conversation. The conversation is effectively
terminated by interrupting delivery of events to the consumer.

Part 1: Event Management Service (XEMS) API 35

Overview of the Event Management Service

36 Preliminary Specification

Chapter 3

Data Formats

The XEMS data structure section is divided into several sub-sections according to the usage of
the data structures. Following is a brief description of each of the data structure sub-sections.

The data structure section first defines some generic types that will be used throughout the
definition of XEMS. Some of these types define standard C data types and some machine
dependant types so that implementations of XEMS can define them to be machine dependent.
There are also some other non-scalar types that are use to standardize use of items such as
timestamp, and character strings.

Event attributes are used in several other data structures in XEMS, such as the event data
structure as well as the event type schema data structure, and the attribute list data structure.
Event attributes contain an attribute name as well as a self defining value which has a format
and a value.

The XEMS Event structure contains a fixed header, and a variable size array of event attributes.
The header contains fields that identify the event and its type, the event origin, what severity the
event is, as well as a place for the Event Service to put the received time as well as the time the
event was delivered to an interested consumer. An additional field has been added to mark the
priority of an event.

The event type data structures allow the construction of event type schemas.

Event filters are constitute in XEMS using the event filter data structures. These structures allow
building filters by first constructing event expressions that contain attribute names, operators,
and attribute values. Expressions are then collected into expression lists which then become
event filters. There is also a structure for event filter name lists which are used to define
consumer filter groups and to return lists of filters from the event filter database.

The consumer and supplier data structures are used to return information about consumers and
suppliers from XEMS.

There is also an attribute list data structure which allows getting and setting attributes in XEMS.
The actual values of the attributes are not defined in the specification.

The event list data structure allows management of undelivered events. A list of undelivered
events can be returned in an event list.

The ems_handle is an opaque data type which is used in calls to XEMS routines. An
ems_handle represents a connection to an Event Service on a particular host. When calling
XEMS routines, one of the XEMS registration routines is called to unitize the handle, and it is
used in all subsequent calls to XEMS routines that want to affect the Event Service on that host.

Part 1: Event Management Service (XEMS) API 37

Generic Data Types Data Formats

3.1 Generic Data Types
This data structure section first defines some generic types that are used throughout the
definition of XEMS.

3.1.1 Scalar Types

XEMS defines generic C data types which can be defined per implementation. These types
correspond to standard data types1.

typedef unsigned_char ems_boolean; // 1 byte
#define ems_false false
#define ems_true true
typedef unsigned char ems_byte; // 1 byte
typedef unsigned char ems_char; // 1 byte
typedef signed char ems_small_int; // 1 byte
typedef unsigned char ems_usmall_int; // 1 byte
typedef short int ems_short_int; // 2 bytes
typedef unsigned short int ems_ushort_int; // 2 bytes
typedef long int ems_long_int; // 4 bytes
typedef unsigned long int ems_ulong_int; // 4 bytes

struct ems_hyper_int_rep_s_t {
ems_long_int high;
ems_ulong_int low;

} ems_hyper_int;

struct ems_uhyper_int_rep_s_t {
ems_ulong_int high;
ems_ulong_int low;

} ems_uhyper_int;

typedef float ems_short_float; // 4 bytes
typedef double ems_long_float; // 8 bytes

3.1.2 Strings

Strings are used throughout the XEMS data structures, and as parameters in the API.

typedef char * ems_string_t;

1. The underlying transport is responsible for the data representation changes between clients and servers.

38 Preliminary Specification

Data Formats Generic Data Types

3.1.3 Unique Identifier

ems_uuid_t is a data structure which contains a unique identifier which is used to uniquely
identify different objects in XEMS.

typedef struct uuid_t {
ems_ulong_int time_low;
ems_ushort_int time_mid;
ems_ushort_int time_hi_and_version;
ems_usmall_int clock_seq_hi_and_reserved;
ems_usmall_int clock_seq_low;
ems_byte node[6];

} ems_uuid_t;

3.1.4 Time Stamp

The XEMS time structure contains a timestamp represented in Coordinated Universal Time
(UTC). This is a 128-bit binary number. It is often referred to as a binary timestamp.

typedef struct utc {
ems_byte char_array[16];

} ems_utc_t;

3.1.5 Error Status

The XEMS error status is used to return status to callers of XEMS routines to indicate whether
the call succeeded or not. The meanings of the error status values can be found in a later section
(See Section 3.10 on page 56).

typedef ems_ulong_int ems_error_t;

3.1.6 Event Type

XEMS event types are used to classify events.

typedef ems_uuid_t ems_event_type_t;

3.1.7 Delivery Type

XEMS delivery model.

typedef enum {
ems_delivery_push = 0,
ems_delivery_pull

} ems_delivery_t;

Part 1: Event Management Service (XEMS) API 39

Generic Data Types Data Formats

3.1.8 Security Object

EMS security objects. These security objects are defined in Chapter 2.

typedef enum {
ems_secobj_server = 0,
ems_secobj_eventtypes,
ems_secobj_filters,
ems_secobj_consumers,
ems_secobj_suppliers,
ems_secobj_eventtype,
ems_secobj_filter

} ems_secobjtype_t;

typedef struct {
ems_secobjtype_t secobjtype;
ems_string_t name;
ems_uuid_t uuid;

} ems_secobj_t;

3.1.9 Permissions Attributes

EMS permission attributes.

typedef struct {
ems_usmall_int control;
ems_usmall_int delete;
ems_usmall_int insert;
ems_usmall_int read;
ems_usmall_int write;
ems_usmall_int execute;

} ems_secperm_t;

3.1.10 Subject

EMS subject.

typedef struct {
ems_string_t name;
ems_uuid_t uuid;

} ems_secsubj_t;

3.1.11 Principal

EMS principal.

typedef struct {
ems_ushort_int len;
ems_byte * principal;

} ems_secprin_t;

40 Preliminary Specification

Data Formats Event Attributes

3.2 Event Attributes

3.2.1 Event Attribute Types

The event attribute type is used to specify the data type of an event attribute. The attribute type
specifies what format the data is in the event attribute value union (ems_attr_value_t()). All
event attribute types are defined as:

typedef ems_ushort_int ems_attr_type_t;

An event attribute type can be one of the following:

Attribute Type Data Type
ems_c_attr_small_int ems_small_int
ems_c_attr_short_int ems_short_int
ems_c_attr_long_int ems_long_int
ems_c_attr_hyper_int ems_hyper_int
ems_c_attr_usmall_int ems_usmall_int
ems_c_attr_ushort_int ems_ushort_int
ems_c_attr_ulong_int ems_ulong_int
ems_c_attr_uhyper_int ems_uhyper_int
ems_c_attr_short_float ems_short_float
ems_c_attr_long_float ems_long_float
ems_c_attr_boolean ems_boolean
ems_c_attr_uuid ems_uuid_t
ems_c_attr_utc ems_utc_t
ems_c_attr_severity ems_severity_t
ems_c_attr_byte_string ems_byte *
ems_c_attr_char_string ems_char *
ems_c_attr_bytes see structure

Table 3-1 Event Attribute Type Specifiers

Byte strings and character strings are terminated with a 0 (zero) byte.

Part 1: Event Management Service (XEMS) API 41

Event Attributes Data Formats

The actual attribute format type values are:

#define ems_c_attr_small_int (0)
#define ems_c_attr_short_int (1)
#define ems_c_attr_long_int (2)
#define ems_c_attr_hyper_int (3)
#define ems_c_attr_usmall_int (4)
#define ems_c_attr_ushort_int (5)
#define ems_c_attr_ulong_int (6)
#define ems_c_attr_uhyper_int (7)
#define ems_c_attr_short_float (8)
#define ems_c_attr_long_float (9)
#define ems_c_attr_boolean (10)
#define ems_c_attr_uuid (11)
#define ems_c_attr_utc (12)
#define ems_c_attr_severity (13)
#define ems_c_attr_byte_string (15)
#define ems_c_attr_char_string (16)
#define ems_c_attr_bytes (17)

42 Preliminary Specification

Data Formats Event Attributes

3.2.2 Event Attribute Values

The event attribute value union is a self defining data structure which has an attribute type
specifier (format) which tells what type of data is in the union, and then appropriate union
members (tagged_union.<format_specific_field_name>) to hold the value of the data specified.

typedef struct ems_bytes_s_t {
ems_ulong_int size;
ems_byte *data;

} ems_bytes_t;

typedef struct {
ems_attr_type_t format;
union {

/* case(s): ems_c_attr_small_int */
ems_small_int small_int;
/* case(s): ems_c_attr_short_int */
ems_short_int short_int;
/* case(s): ems_c_attr_long_int */
ems_long_int long_int;
/* case(s): ems_c_attr_hyper_int */
ems_hyper_int hyper_int;
/* case(s): ems_c_attr_usmall_int */
ems_usmall_int usmall_int;
/* case(s): ems_c_attr_ushort_int */
ems_ushort_int ushort_int;
/* case(s): ems_c_attr_ulong_int */
ems_ulong_int ulong_int;
/* case(s): ems_c_attr_uhyper_int */
ems_uhyper_int uhyper_int;
/* case(s): ems_c_attr_short_float */
ems_short_float short_float;
/* case(s): ems_c_attr_long_float */
ems_long_float long_float;
/* case(s): ems_c_attr_boolean */
ems_boolean bool;
/* case(s): ems_c_attr_uuid */
ems_uuid_t uuid;
/* case(s): ems_c_attr_utc */
ems_utc_t *utc;
/* case(s): ems_c_attr_severity */
ems_severity_t severity;
/* case(s): ems_c_attr_byte_string */
ems_byte *byte_string;
/* case(s): ems_c_attr_char_string */
char *char_string;
/* case(s): ems_c_attr_bytes */
ems_bytes_t bytes;

} tagged_union;
} ems_attr_value_t;

Part 1: Event Management Service (XEMS) API 43

Event Attributes Data Formats

3.2.3 Event Attribute

Event attributes contain an event attribute name/value pair which define an event attribute.
Event attributes are used in events to provide self defining data as part of an event. Event
attributes are also used in event type schema’s to define the contents of an event of specific event
type. The name field specifies the attribute name, and the value field contains the value and
format of an event attribute.

typedef struct ems_attribute_s_t {
ems_string_t name;
ems_attr_value_t value;

} ems_attribute_t;

44 Preliminary Specification

Data Formats Event Structure

3.3 Event Structure

3.3.1 Event Identifier

An event identifier uniquely identifies a given event. Each event has both an event type which is
unique to all events of this type, and an event id which is unique to a specific event.

typedef struct ems_eventid_s_t {
ems_event_type_t type;
ems_uuid_t id;

} ems_eventid_t;

3.3.2 Event Type

An event type specifies the unique id for a given event type.

Event Type Event Type Name
ems_c_generic_type Generic

Table 3-2 Default Event Types

Events of type Generic, do not have event type schemas associated with them, and can only be
filtered by expressions with header attributes in them (see Table 3-3 on page 47).

3.3.3 Network Name

A network name identifies the network name of a given host machine. The name service
specifies which name service recognizes the given network name.

typedef enum {
ems_ns_other,
ems_ns_dns,
ems_ns_dce,
ems_ns_x500,
ems_ns_nis,
ems_ns_sna

} ems_nameservice_t;

The ems_netaddr_t structure specifies the actual network name. It can be interpreted according
to the name service specified. Structure ems_octet_t defines an 8-bit field. len specifies how
many 8-bit quantities there are in name.

typedef char ems_octet_t;
typedef struct ems_netaddr_s_t {

ems_ulong_int len;
ems_octet_t name[1];

} ems_netaddr_t;

Part 1: Event Management Service (XEMS) API 45

Event Structure Data Formats

The ems_netname_t consists of service which specifies which name service recognizes the name
specified by netaddr.

typedef struct ems_netname_s_t {
ems_nameservice_t service;
ems_netaddr_t *netaddr;

} ems_netname_t;

For a DCE hostname, the following example will set the ems_netname_t structure:

static char * dce_hostname = "/.:/hosts/eagle.austin.ibm.com";
ems_netname_t netname;
netname.service = ems_ns_dce;
netname.netaddr->len = strlen(dce_hostname)+1;
netname.netaddr->name = (char *)malloc(netname.netaddr->len);
strcpy(netname.netaddr->name, dce_hostname);

3.3.4 Event Origin

The event origin specifies where the event originated (that is, the supplier). The origin specifies
the netname of the host where the supplier is running, the name of the supplier, descname, and
supplier process identification (pid , uid , gid). These values may not be meaningful for all hosts.

typedef struct ems_origin_s_t {
ems_netname_t netname;
ems_string_t descname;
ems_ulong_int pid;
ems_ulong_int uid;
ems_ulong_int gid;

} ems_origin_t;

3.3.5 Event Severity

The event severity specifies the severity of the event.

typedef enum {
ems_sev_info,
ems_sev_fatal,
ems_sev_error,
ems_sev_warning,
ems_sev_notice,
ems_sev_notice_verbose,
ems_sev_debug

} ems_severity_t;

3.3.6 Event Priority

The event priority specifies the priority of the event.

typedef ems_ulong_int ems_priority_t;

46 Preliminary Specification

Data Formats Event Structure

3.3.7 Event Header

The event header describes the fixed part of the event data structure. The header contains the
eventid, the origin of the event, the severity along with the time the event was both received at
XEMS, and delivered to the consumer.

typedef struct ems_hdr_s_t {
ems_eventid_t eventid;
ems_origin_t origin;
ems_severity_t severity;
ems_utc_t received;
ems_utc_t delivered;
ems_priority_t priority;

} ems_hdr_t;

A set of filter attributes are provided for event header filtering. The following names can be used
for the filter attribute in an event filter expressions.

Attribute Name Attribute Type
eventid.id ems_c_attr_uuid
eventid.type ems_c_attr_uuid
origin.netname.service ems_c_attr_ulong
origin.netname.netaddr ems_c_attr_bytes
origin.descname ems_c_attr_char_string
origin.pid ems_c_attr_ulong
origin.uid ems_c_attr_ulong
origin.gid ems_c_attr_ulong
severity ems_c_attr_severity
received ems_c_attr_utc
received.tod ems_c_attr_char_string
received.mday ems_c_attr_ushort_int
received.year ems_c_attr_ushort_int
received.wday ems_c_attr_ushort_int
received.yday ems_c_attr_ushort_int

Table 3-3 Event Header Attributes

3.3.8 Event

The ems_event_t structure contains a fixed part, the event header, and a variable part, the event
data items. Each data item is a self-defining value which contains an attribute type, and attribute
data. Count specifies how many data items are in the event.

typedef struct ems_event_s_t {
ems_hdr_t header;
ems_ulong_int count;
ems_attribute_t item[1];

} ems_event_t;

Part 1: Event Management Service (XEMS) API 47

Event Types Data Formats

3.4 Event Types
The XEMS Event Type structures are used to define the XEMS Event types.

3.4.1 Event Type Schema

The event type schema is used to define an event type. It consists of an event type id, type, a
name field which specifies the name of the event type, and a list of event type attributes
describing the format of this event type. Size specifies the number of attributes in an event type.
The event type schemas only specifies the fixed part of an event. An event can have as many
unnamed attributes following the list of attributes specified here.

typedef struct ems_event_schema_s_t {
ems_event_type_t type;
ems_string_t name;
ems_long_int size;
ems_attribute_t attribute[1];

} ems_event_schema_t;

3.4.2 Event Type List

The event type list contains a list of size event type schemas.

typedef ems_event_schema_t *ems_schema_ptr_t;

typedef struct ems_event_type_list_s_t {
ems_long_int size;
ems_schema_ptr_t schema[1];

} ems_event_type_list_t;

48 Preliminary Specification

Data Formats Event Filters

3.5 Event Filters
The event filter data structures allow the definition of both event filters, and event filter lists.

3.5.1 Attribute Operators

Attribute operators define the boolean operation to perform on the attribute name, and the
attribute value in the event filter expression. The attribute operator type is defined as:

typedef ems_ushort_int ems_attr_op_t;

Attribute Operator Description of Attribute Operator
ems_c_attr_op_eq TRUE if attr_name equal (==) to attr_value
ems_c_attr_op_gt TRUE if attr_name greater than (>) attr_value
ems_c_attr_op_lt TRUE if attr_name less than (<) attr_value
ems_c_attr_op_ge TRUE if attr_name greater than or equal (>=) to attr_value
ems_c_attr_op_le TRUE if attr_name greater than or equal (<=) to attr_value
ems_c_attr_op_ne TRUE if attr_name not equal (<>) to attr_value
ems_c_attr_op_bitand TRUE if attr_name bitwise anded with attr_value is greater than 0
ems_c_attr_op_substr TRUE if attr_name contains the string value specified by attr_value

Table 3-4 Attribute Operators

The actual values of the operators are:

#define ems_c_attr_op_eq (0)
#define ems_c_attr_op_gt (1)
#define ems_c_attr_op_lt (2)
#define ems_c_attr_op_ge (3)
#define ems_c_attr_op_le (4)
#define ems_c_attr_op_ne (5)
#define ems_c_attr_op_bitand (6)
#define ems_c_attr_op_substr (7)

3.5.2 Event Filter Grammar

The event filter grammar specifies which grammar the event filter is using to specify a filter
expression. Support for the default grammar is required.

typedef unsigned16 ems_filter_grammar_t;
const ems_filter_grammar_t ems_c_fg_default = 0;
const ems_filter_grammar_t ems_c_fg_OQL = 1;
const ems_filter_grammar_t ems_c_fg_other = 2;

OQL stands for Object Query Language.

Part 1: Event Management Service (XEMS) API 49

Event Filters Data Formats

3.5.3 Default Event Filter Grammar

The default event filter grammar expression structure contains the elements of an event filter
expression using the default filter grammar. These elements are used to build an event filter.
Event filter expressions using the default grammar contain an attribute name, operator, value
triplet (attr_name , attr_operator , attr_value) which defines a boolean filter expression.

typedef struct ems_default_fg_s_t {
ems_string_t attr_name;
ems_attr_op_t attr_operator;
ems_attr_value_t attr_value;

} ems_default_fg_t;

3.5.4 Event Filter Expression

The event filter expression structure contains an event filter expression. This structure is a
tagged union whose type (or tag) defines which grammar the filter expression is using, and that
value is the filter expression itself.

typedef struct ems_filter_exp_s_t {
ems_filter_grammar_t grammar;
union {

/* case: ems_c_fg_default */
ems_default_fg_t def_filter;
/* case: ems_c_fg_OQL */
ems_string_t oql_filter;
/* case: ems_c_fg_other */
ems_string_t other_filter;

} tagged_union;
} ems_filter_exp_t;

3.5.5 Event Filter Expression List

An event filter expression list groups a list of filter expressions together in a list to form an anded
filter expression used in defining an event filter.

typedef struct ems_filter_exp_list_s_t {
ems_long_int size;
ems_filter_exp_t filter_exps[1];

} ems_filter_exp_list_t;

3.5.6 Event Filter

An event filter specifies a series of event filter expressions that will be anded together to perform
a filter operation. The event filter contains a name (filter_name) and a list of filter expressions (
event_exp_list).

Filters with event type of generic, can only have filter expressions with header attribute names in
them (see Table 3-3 on page 47).

typedef struct ems_filter_s_t {
ems_string_t filter_name;
ems_event_type_t type;
ems_filter_exp_list_t filter_exp_list;

} ems_filter_t;

50 Preliminary Specification

Data Formats Event Filters

3.5.7 Event Filter Name List

An event filter list contains a list of size event_filter_names;

typedef struct ems_filtername_list_s_t {
ems_long_int size;
ems_string_t filter_names[1];

} ems_filtername_list_t;

3.5.8 Event Filter List

The event filter list structure contains a list of size filters.

typedef ems_filter_t *ems_filter_ptr_t;
typedef struct ems_filter_list_s_t {

ems_long_int size;
ems_filter_ptr_t filter[1];

} ems_filter_list_t;

Part 1: Event Management Service (XEMS) API 51

Consumer Data Structures Data Formats

3.6 Consumer Data Structures

3.6.1 Consumer

The consumer data structure defines an ems consumer. Each consumer has a name, a hostname
where the consumer is running, and a uuid unique to that consumer.

typedef struct ems_consumer_s_t {
ems_string_t name;
ems_netname_t *hostname;
ems_uuid_t uuid;
ems_delivery_t type;

} ems_consumer_t;

3.6.2 Consumer List

The consumer list structure contains a list of size consumer entries.

typedef struct ems_consumer_list_s_t {
ems_long_list size;
ems_consumer_t consumer[1];

} ems_consumer_list_t;

3.6.3 Event Handler

The consumer provides a set of event handler functions in the ems_consumer_start method.
These routines are callbacks. They are associated with hosts and event filter groups through the
ems_push_consumer_register method.

typedef void (*ems_handler)(void * arg, ems_event_t * event,
ems_error_t * error);

52 Preliminary Specification

Data Formats Supplier Data Structures

3.7 Supplier Data Structures

3.7.1 Supplier Event Handler

The supplier may provide a handler function (the ems_push_supplier_register_handler() method.
This routine is a callback. It is called each time the number of consumers of the event type
changes. This allows the supplier to gauge the need to create and send events to the XEMS.

typedef void (*ems_supplier_count_handler_t)(ems_event_type_t type,
ems_long_int count, ems_error_t * error);

3.7.2 Supplier

The supplier data structure defines an ems supplier. Each supplier has a name, a hostname
where the supplier is running, and a uuid unique to that supplier.

typedef struct ems_supplier_s_t {
ems_string_t name;
ems_netname_t *hostname;
ems_uuid_t uuid;
ems_delivery_t type;

} ems_supplier_t;

3.7.3 Supplier List

The supplier list structure contains a list of size supplier entries.

typedef struct ems_supplier_list_s_t {
ems_long_int size;
ems_supplier_t supplier[1];

} ems_supplier_list_t;

Part 1: Event Management Service (XEMS) API 53

Attribute and Event list Data Formats

3.8 Attribute and Event list

3.8.1 Attribute List

The attribute list data structure defines a list of attributes associated with an event service. An
attribute list consists of a size attr entries that each represent an event service attribute. Event
attributes are implementation dependent.

typedef struct ems_attrlist_s_t {
ems_long_int size;
ems_attribute_t attr[1];

} ems_attrlist_t;

3.8.2 Event List

The event list data structure contains a list of events. It is used to return the list of undelivered
events. An event list consists of size event entries where each event entry is a pointer to an event.

typedef ems_event_t *ems_event_ptr_t;

typedef struct ems_event_list_s_t {
ems_long_int size;
ems_event_ptr_t event[1];

} ems_event_list_t;

54 Preliminary Specification

Data Formats Event Service Handle

3.9 Event Service Handle
An ems_handle represents a connection to an Event Service on a particular host. When calling
XEMS routines, one of the XEMS registration routines is called to initialize the handle, and it is
used in all subsequent calls to a routines that want to affect the Event Service on that host.

3.9.1 Event Service Handle

ems_handle_t is a pointer to an opaque data structure which contains information used to allow
users of XEMS to connect to the Event Service. The actual contents of the data structure are
implementation dependant.

typedef void *ems_handle_t;

Part 1: Event Management Service (XEMS) API 55

Status Codes Data Formats

3.10 Status Codes
All XEMS routines return status codes which contain values which indicate whether the call to
that routine was successful or not.

Rather than list the specific status codes for each routine, the following summary lists all the
status codes and their meanings.

ems_s_already_registered
Consumer with this name is already registered.

ems_s_consumer_already_started
Consumer already started.

ems_s_consumer_not_started
Consumer not started.

ems_s_empty_filter_db
The listed filters could not be returned because the filter database is empty.

ems_s_event_type_exists
The event type to be added already exists.

ems_s_event_type_not_found
The specified event type was not found.

ems_s_filter_exists
The given filter name already exists.

ems_s_filter_in_use
The filter cannot be deleted because it is currently in use.

ems_s_filter_not_found
The requested filter does not exist.

ems_s_forwarding_event_service_not_there
The event service to forward to is not available.

ems_s_forwarding_event_loop
The hostname introduces a loop condition, where XEMS would be forwarding events to
itself.

ems_s_insufficient_permission
Caller does not have sufficient permission to perform operation.

ems_s_invalid_event_type
The schema for the event type is not valid.

ems_s_invalid_filter
The input parameters specifies an invalid filter.

ems_s_invalid_handle
The handle parameter is not valid.

ems_s_invalid_name
The name parameter contains invalid characters.

ems_s_no_consumers
No consumers are registered.

ems_s_no_event
Tried to pull an event of a specified type, but there are no events to pull.

56 Preliminary Specification

Data Formats Status Codes

ems_s_no_events
There are no undelivered events.

ems_s_no_memory
An XEMS handle cannot be allocated.

ems_s_no_suppliers
No suppliers are registered.

ems_s_no_type_list
There was no type list in the function invocation.

ems_s_status_ok
Success.

ems_s_unknown_consumer
Tried to unregister a consumer that was not registered.

ems_s_unknown_supplier
Tried to unregister a supplier that was not registered.

ems_s_unsupported_nameservice
Unsupported nameservice on host name.

Part 1: Event Management Service (XEMS) API 57

Data Formats

58 Preliminary Specification

Chapter 4

Registration Interface

The registration interface allows registration with XEMS for applications that are not suppliers
or consumers.

Part 1: Event Management Service (XEMS) API 59

ems_register() Registration Interface

NAME
ems_register — register with XEMS

SYNOPSIS
#include <xems.h>

void ems_register(
ems_netname_t * hostname,
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine registers with EMS by obtaining an EMS handle. The EMS handle is then used to on
future calls to the Event Service.

PARAMETERS

Input

hostname
the name of the host machine where an Event Service is running. If the hostname is
NULL, then the local host is assumed

Output

handle
returns an EMS handle to use for future calls to EMS routines.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_unsupported_nameservice

60 Preliminary Specification

Registration Interface ems_unregister()

NAME
ems_unregister — unregister with XEMS.

SYNOPSIS
#include <xems.h>

void ems_unregister(
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine unregisters an EMS handle with EMS. The resources held by the XEMS handle are
freed, and handle is assigned NULL. The handle can be one obtained by ems_register() or
ems_consumer_register().

PARAMETERS

Input

handle
the EMS handle to unregister.

Output

handle
assigns NULL to handle.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_handle

Part 1: Event Management Service (XEMS) API 61

Registration Interface

62 Preliminary Specification

Chapter 5

Event Type Interface

The event type interface provides support for manipulating the event type database.

Part 1: Event Management Service (XEMS) API 63

ems_event_type_add() Event Type Interface

NAME
ems_event_type_add — Add an Event Type.

SYNOPSIS
#include <xems.h>

void ems_event_type_add(
ems_handle_t handle,
ems_event_schema_t * schema,
ems_error_t * status);

DESCRIPTION
This routine is used by an event supplier to add new event types to the EMS event type
Database. A supplier can add a new event type, then start producing that event type by
transmitting events to EMS.

PARAMETERS

Input

handle
a handle returned from a call to any ems_register call.

schema
is an EMS event type schema which describes the format of an event type.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_handle
ems_s_event_type_exists
ems_s_insufficient_permission
ems_s_invalid_event_type

64 Preliminary Specification

Event Type Interface ems_event_type_delete()

NAME
ems_event_type_delete — Delete an Event Type

SYNOPSIS
#include <xems.h>

void ems_event_type_delete(
ems_handle_t handle,
ems_string_t type_name,
ems_event_type_t * type,
ems_error_t * status);

DESCRIPTION
This routine is used by an event supplier to delete an event types in the EMS event type
Database.

PARAMETERS

Input

handle
a handle returned from a call to ems_register().

type_name
is the name of an EMS event type.

type
event type id of the EMS event type to delete.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_event_type_not_found
ems_s_invalid_handle
ems_s_invalid_name
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 65

ems_event_type_get() Event Type Interface

NAME
ems_event_type_get — Get an Event Type

SYNOPSIS
#include <xems.h>

void ems_event_type_get(
ems_handle_t handle,
char * type_name,
ems_event_type_t * type,
ems_event_schema_t ** schema,
ems_error_t * status);

DESCRIPTION
This routine is used by an event supplier to get an event types from the EMS event type
Database.

PARAMETERS

Input

handle
a handle returned from a call to ems_register().

type_name
is the name of an EMS event type to get.

type
event type id of the EMS event type to get.

Output

schema
event type id of the EMS event type to get.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_event_type_not_found
ems_s_invalid_handle
ems_s_invalid_name
ems_s_insufficient_permission

66 Preliminary Specification

Event Type Interface ems_event_type_get_list()

NAME
ems_event_type_get_list — Get Event Types List

SYNOPSIS
#include <xems.h>

void ems_event_type_get_list(
ems_handle_t handle,
ems_event_type_list_t ** type_list,
ems_error_t * status);

DESCRIPTION
This routine is used by EMS event consumers to find out what event types are available to
register for. The consumer can then set up filters for attributes in one of the available event
types.

PARAMETERS

Input

handle
should be the handle returned from a ems_consumer_register() call.

Output

type_list
returns the list of available event types.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_handle .
ems_s_no_type_list
ems_s_invalid_name
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 67

ems_event_type_free_list() Event Type Interface

NAME
ems_event_type_free_list — Free Event Types List

SYNOPSIS
#include <xems.h>

void ems_event_type_free_list(
ems_event_type_list_t ** type_list,
ems_error_t * status);

DESCRIPTION
This routine is used by callers of ems_get_event_types to free the storage used by an event type
list.

PARAMETERS

Input

type_list
an event type list as returned by ems_event_type_get_list(). type_list will be set to
NULL by this routine.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

68 Preliminary Specification

Chapter 6

Event Filter Interface

Event filters can be created using the Event Filter Interface.

XEMS provides several routines to construct event filters. These are routines to add, delete and
update an event filter.

Part 1: Event Management Service (XEMS) API 69

ems_filter_add() Event Filter Interface

NAME
ems_filter_add — Add an Event Filter

SYNOPSIS
#include <xems.h>

void ems_filter_add(
ems_handle_t handle,
ems_string_t filter_name,
ems_event_type_t type,
ems_filter_exp_list_t * exp_list,
ems_error_t * status);

DESCRIPTION:
This routine is used to add a new event filter to the XEMS Event Filter Database. There is
currently no mechanism for indicating all events.

PARAMETERS:

Input

handle
a handle returned from a call to ems_consumer_register call.

filter_name
specifies the event filter name for this event filter. This name can be used to add the
event filter to a consumers event filter group.

type
specifies the event type that this filter will be applies against.

exp_list
a list of filter expressions which are part of the event filter filter_name.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_handle
ems_s_insufficient_permission
ems_s_filter_exits
ems_s_invalid_filter
ems_s_invalid_name

70 Preliminary Specification

Event Filter Interface ems_filter_append()

NAME
ems_filter_append — Append to an Event Filter

SYNOPSIS
#include <xems.h>

void ems_filter_append(
ems_handle_t handle,
ems_string_t filter_name,
ems_filter_exp_list_t * exp_list,
ems_error_t * status);

DESCRIPTION:
This routine is used to add filter expressions to an event filter. The filter expressions are added to
the end of the current list of filter expressions in the event filter.

PARAMETERS:

Input

handle
should be the handle returned from a call to ems_consumer_register call.

filter_name
specifies the name of the event filter to add the filter expressions to.

exp_list
a list of filter expressions which will be added to the end of event filter filter_name.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_invalid_handle
ems_s_invalid_name
ems_s_filter_not_found
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 71

ems_filter_get() Event Filter Interface

NAME
ems_filter_get — Get an Event Filter

SYNOPSIS
#include <xems.h>

void ems_filter_get(
ems_handle_t handle,
ems_string_t filter_name,
ems_event_type_t * type,
ems_filter_exp_list_t ** filter_exprs,
ems_error_t * status);

DESCRIPTION:
This routine is used to get the filter expressions in an event filter.

PARAMETERS:

Input

handle
should be the handle returned from a call to ems_consumer_register call.

filter_name
specifies the name of the event filter to get.

Output

type
the event type of the filter.

exp_list
the list of filter expressions which are part of event filter filter_name.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_invalid_handle
ems_s_filter_not_found
ems_s_insufficient_permission

72 Preliminary Specification

Event Filter Interface ems_filter_delete()

NAME
ems_filter_delete — Delete an Event Filter

SYNOPSIS
#include <xems.h>

void ems_filter_delete(
ems_handle_t handle,
ems_string_t filter_name,
ems_error_t * status);

DESCRIPTION:
This routine is used to delete an event filter from the Event Filter Database. The name
filter_name cannot appear in any consumers event filter group when this routine is called.

PARAMETERS:

Input

handle
should be the handle returned from a call to ems_consumer_register call.

filter_name
specifies the name of the event filter to delete.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_filter_not_found
ems_s_filter_in_use
ems_s_insufficient_permission
ems_s_invalid_name
ems_s_invalid_handle

Part 1: Event Management Service (XEMS) API 73

ems_filter_free() Event Filter Interface

NAME
ems_filter_free — Free an Event Filter

SYNOPSIS
#include <xems.h>

void ems_filter_free(
ems_filter_exp_list_t ** filter_exprs,
ems_error_t * status);

DESCRIPTION:
This routine is used to get the filter expressions in an event filter.

PARAMETERS:

Input

exp_list
the list of filter expressions which are part of event filter filter_name.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

74 Preliminary Specification

Event Filter Interface ems_filter_get_namelist()

NAME
ems_filter_get_namelist — List Event Filter Names

SYNOPSIS
#include <xems.h>

void ems_filter_get_namelist(
ems_handle_t handle,
ems_filtername_list_t ** name_list,
ems_error_t * status);

DESCRIPTION:
This routine is used to get a list of the names of the event filters in the Event Filter Database.

PARAMETERS:

Input

handle
should be the handle returned from a call to ems_consumer_register call.

Output

name_list
will contain a list of all the event filter names in the Event Filter Database. The routine
ems_event_filter_get can be used to find out the contents of each event filter.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_insufficient_permission
ems_s_invalid_handle
ems_s_empty_filter_db

Part 1: Event Management Service (XEMS) API 75

ems_filter_free_namelist() Event Filter Interface

NAME
ems_filter_free_namelist — Free Event Filter Names

SYNOPSIS
#include <xems.h>

void ems_filter_free_namelist(
ems_filtername_list_t ** name_list,
ems_error_t * status);

DESCRIPTION:
This routine is used to free a list of the names of returned by the ems_filter_get_namelist routine

PARAMETERS:

Input

name_list
list of filter names to free.

Output

name_list
sets to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

76 Preliminary Specification

Event Filter Interface ems_filter_get_list()

NAME
ems_filter_get_list — Get Event Filter List

SYNOPSIS
#include <xems.h>

void ems_filter_get_list(
ems_handle_t handle,
ems_filter_list_t ** filter_list,
ems_error_t * status);

DESCRIPTION:
This routine is used to get a list of the event filters in the Event Filter Database.

PARAMETERS:

Input

handle
a handle returned from a call to ems_consumer_register call.

Output

filter_list
will contain a list of all the event filters in the Event Filter Database. This list should be
freed using ems_filter_free_list.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_insufficient_permission
ems_s_invalid_handle
ems_s_empty_filter_db

Part 1: Event Management Service (XEMS) API 77

ems_filter_free_list() Event Filter Interface

NAME
ems_filter_free_list — Free Event Filter List

SYNOPSIS
#include <xems.h>

void ems_filter_free_list(
ems_filter_list_t ** filter_list,
ems_error_t * status);

DESCRIPTION
This routine is used by callers of ems_get_event_filter_database to free the storage used by an
Event Filter Database (ems_filter_list_t) structure.

PARAMETERS

Input

filter_list
a list of event filters that make up the Event Filter Database as returned by the routine
ems_filter_get_list ().

Output

filter_list
will be set to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

78 Preliminary Specification

Chapter 7

Consumer Interface

The XEMS event consumer interface consists of two parts. One part is used by the consumer to
set itself up as a consumer, and the other is used to register with XEMS.

All event consumers have to make calls to the XEMS event consumer setup routines before
receiving XEMS events. These routines perform required setup, and are XEMS implementation
dependent. The setup routines are designed to work with the register routines to save the state
of a consumer environment so that the consumer can be restarted with a call to the
ems_consumer_start() routine by passing the consumer uuid obtained from the initial call to
ems_consumer_start().

The event consumer interface allows event consumers to register and unregister with XEMS.
Once registered, consumers can add and delete event filters define what events they are
interested in. When XEMS receives events from event suppliers, the event will be filtered using
the event filter, and only the matching events will be forwarded on to the interested consumers.

Part 1: Event Management Service (XEMS) API 79

ems_consumer_start() Consumer Interface

NAME
ems_consumer_start — Consumer Start

SYNOPSIS
#include <xems.h>

void ems_consumer_start(
ems_string_t consumer,
ems_ulong_int flags,
ems_handler_t hfunc[],
ems_uuid_t ** uuid,
ems_handle_t * handle[],
ems_error_t * status);

DESCRIPTION
This routine should be called at the beginning of each event consumer before making any
register calls. It will create a ems_uuid_t to uniquely identify this event consumer and perform
any local consumer initialization required. The routine can be called the first time a consumer
starts, or when a consumer is restarting and wishes to reestablish the environment already
established. If a new environment is being established, then the uuid parameter should contain
NULL. When reestablishing an environment, then the uuid from the initial call should be passed
in.

PARAMETERS

Input

consumer
specifies the consumer name. This parameter can be null if the uuid is specified.

flags
reserved for future use.

hfunc
null terminated array of event handler routines. All event handler routines that will be
used in an ems_consumer_register() call must be in this array.

uuid
the unique consumer id returned from a previous call to ems_consumer_start().

Output

uuid
the unique consumer id for this consumer environment.

handle
returns an XEMS handle which can be used on subsequent calls to XEMS routines. This
handle also represents a consumer filter_group/event handler association.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

80 Preliminary Specification

Consumer Interface ems_consumer_start()

RETURN VALUE
The possible ems status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_consumer_already_started

Part 1: Event Management Service (XEMS) API 81

ems_consumer_stop() Consumer Interface

NAME
ems_consumer_stop — Consumer Stop

SYNOPSIS
#include <xems.h>

void ems_consumer_stop(
ems_error_t * status);

DESCRIPTION
This routine should be called at the end of each event consumer. It will perform any consumer
cleanup required.

PARAMETERS

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible XEMS status codes are:

ems_s_status_ok
ems_s_consumer_not_started

82 Preliminary Specification

Consumer Interface ems_push_consumer_register()

NAME
ems_push_consumer_register — Push Consumer Register

SYNOPSIS
#include <xems.h>

void ems_push_consumer_register(
ems_netname_t * hostname,
ems_filtername_list_t * filter_group,
int hfunc_index,
ems_handle_t * handle,
void * arg,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event consumers to register as a push consumer with XEMS. This
routine contacts an event service, and registers this filter group/handler association with that
event service. This routine may be called multiple times per consumer with different hostnames,
filter_groups, and handler functions. The handler function specified is started up the in the
consumer process. ems_consumer_start() has to have been called before this routine (to establish
the consumer name and uuid).

PARAMETERS

Input

hostname
is the name of the host machine where the Event Service is running. If the hostname is
NULL, then the local host is assumed.

filter_group
is a list of event filter names which will define this consumers initial event filter group.
If filter_group is empty, no filter group is specified, and XEMS will not forward any
events to this consumers until the consumer makes a call to ems_add_event_to_group ().

hfunc_index
the index into the event handler array of the event handler function to call if an event
passes the filter group and is sent to the consumer. The event handler array is the
hfunc[] parameter to the ems_consumer_start() routine.

Output

handle
returns an XEMS handle which can be used on subsequent calls to XEMS routines. This
handle also represents a consumer filter_group/event handler association.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_already_registered

Part 1: Event Management Service (XEMS) API 83

ems_pull_consumer_register() Consumer Interface

NAME
ems_pull_consumer_register — Pull Consumer Register

SYNOPSIS
#include <xems.h>

void ems_pull_consumer_register(
ems_netname_t * hostname,
ems_filtername_list_t * filter_group,
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event consumers to register as a pull consumer with XEMS. This
routine should be called once for each host that this consumer wants to receive events from.

PARAMETERS

Input

hostname
is the name of the host machine where the Event Service is running. If the hostname is
NULL, then the local host is assumed.

filter_group
is a list of event filter names which will define this consumers initial event filter group.
If filter_group is empty, no filter group is specified, and XEMS will not forward any
events to this consumers until the consumer makes a call to ems_add_event_to_group ().

Output

handle
returns an XEMS handle which can be used on subsequent calls to XEMS routines.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_already_registered

84 Preliminary Specification

Consumer Interface ems_consumer_unregister()

NAME
ems_consumer_unregister — Consumer Unregister

SYNOPSIS
#include <xems.h>

void ems_consumer_unregister(
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event consumers to unregister with XEMS. This routine should be
called once for each call to ems_push_consumer_register() or ems_pull_consumer_register(). The
event consumer should call this routine before calling the ems_consumer_stop() routine.

PARAMETERS

Input

handle
a handle returned from a call to one of the consumer register routines.

Output

handle
this routine will free up memory used by handle, and set handle to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_unknown_consumer

Part 1: Event Management Service (XEMS) API 85

ems_add_filter_to_group() Consumer Interface

NAME
ems_add_filter_to_group — Add Event Filter to Group

SYNOPSIS
#include <xems.h>

void ems_add_filter_to_group(
ems_handle_t handle,
ems_filtername_list_t * event_filters,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event consumers to add event filter names to a consumers event
filter group. This routine can be called multiple times for each consumer.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_push_consumer_register() or
ems_pull_consumer_register().

event_filters
contains a list of one or more event filter names to add to this consumers event filter
group. consumers can use the names of new event filters after building them with the
ems_filter_add() routine, or existing filters which can be obtained by using the
ems_filter_get_namelist() routine.

Output

status
Returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

86 Preliminary Specification

Consumer Interface ems_delete_filter_from_group()

NAME
ems_delete_filter_from_group — Delete Event Filter From Group

SYNOPSIS
#include <xems.h>

void ems_delete_filter_from_group(
ems_handle_t handle,
ems_filtername_list_t * filter_name,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event consumers to delete event filter names from consumer event
filter groups.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_push_consumer_register() or
ems_pull_consumer_register().

filter_name
specifies the event filter name(s) to delete from the consumers event filter group.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 87

ems_get_filter_group() Consumer Interface

NAME
ems_get_filter_group — Get Filter Group

SYNOPSIS
#include <xems.h>

void ems_get_filter_group(
ems_handle_t handle,
ems_filtername_list_t ** filter_group,
ems_error_t * status);

DESCRIPTION
This routine returns a list of event filter names that comprise the consumers event filter group.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_push_consumer_register() or
ems_pull_consumer_register().

Output

filter_group
will contain the list of event filter names which are in the consumers event filter group.
It is up to the requesting consumer to free the storage allocated for filter_group .

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

88 Preliminary Specification

Consumer Interface ems_consumer_get_registration()

NAME
ems_consumer_get_registration — Get Consumer Registration

SYNOPSIS
#include <xems.h>

void ems_consumer_get_registration(
ems_handle_t handle,
ems_netname_t ** hostname,
ems_filtername_list_t ** filter_group,
int* hfunc_index,
ems_error_t * status);

DESCRIPTION
This routine returns the consumer registration information associated with a consumer handle.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_push_consumer_register() or
ems_pull_consumer_register().

Output

filter_group
will contain the list of event filter names which are in the event filter group which is
associated with this consumer registration handle. It is up to the caller to free the
storage allocated for filter_group .

hostname
will contain the hostname of the event service associated with this consumer
registration handle. It is up to the caller to free the storage allocated for hostname.

hfunc_index
will contain the handler function index associated with this consumer registration
handle. If the consumer is a pull consumer, then this value will be -1.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 89

ems_consumer_pull() Consumer Interface

NAME
ems_consumer_pull — Consumer Pull

SYNOPSIS
#include <xems.h>

void ems_consumer_pull(
ems_handle_t handle,
ems_event_t * event,
ems_error_t * status);

DESCRIPTION
This routine is called by pull consumers to get an event from the event service. The event has to
pass through the filter group set up by the pull consumer in order to receive the event. This
routine does not return until an event is available.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_pull_consumer_register().

Output

event
will contain the event received from the pull operation from the event service.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

90 Preliminary Specification

Consumer Interface ems_consumer_try_pull()

NAME
ems_consumer_try_pull — Consumer Try Pull

SYNOPSIS
#include <xems.h>

void ems_consumer_try_pull(
ems_handle_t handle,
ems_event_t * event,
ems_error_t * status);

DESCRIPTION
This routine is called by pull consumers to get an event from the event service. The event has to
pass through the filter group set up by the pull consumer in order to receive the event. This
routine returns with a status of ems_s_no_event() when no event is available.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_pull_consumer_register().

Output

event
will contain the event received from the pull operation from the event service.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_event

Part 1: Event Management Service (XEMS) API 91

Consumer Interface

92 Preliminary Specification

Chapter 8

Supplier Interface

The supplier interface provides a mechanism for managed objects to convey events to the XEMS.

Part 1: Event Management Service (XEMS) API 93

ems_push_supplier_register() Supplier Interface

NAME
ems_push_supplier_register ()
Push Supplier Register

SYNOPSIS
#include <xems.h>

void ems_push_supplier_register(
ems_netname_t * hostname,
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event suppliers to register with XEMS. This routine should be
called once for each host that this supplier wants to push events to.

PARAMETERS

Input

hostname
is the name of the host machine where the Event Service is running. If the hostname is
NULL, then the local host is assumed.

Output

handle
returns an XEMS handle which can be used on subsequent calls to XEMS routines.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_already_registered
ems_s_insufficient_permission
ems_s_unsupported_nameservice

94 Preliminary Specification

Supplier Interface ems_supplier_register_handler()

NAME
ems_supplier_register_handler — Supplier Register Handler

SYNOPSIS
#include <xems.h>

void ems_supplier_register_handler(
ems_event_type_t type,
ems_supplier_count_handler_t handler,
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event suppliers to register per event type handlers with XEMS.
This routine should be called once for each event type that this supplier wants to provide hints
for.

PARAMETERS

Input

type
is the type of event to associate with the handler.

handler
is the callback method to be invoked with XEMS consumer count information.

handle
an XEMS handle.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_already_registered
ems_s_insufficient_permission
ems_s_unsupported_nameservice

Part 1: Event Management Service (XEMS) API 95

ems_pull_supplier_register() Supplier Interface

NAME
ems_pull_supplier_register — Pull Supplier Register

SYNOPSIS
#include <xems.h>

void ems_pull_supplier_register(
ems_netname_t * hostname,
ems_ushort_int interval,
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event suppliers to register with XEMS. This routine should be
called once for each host that this supplier wants to be a pull supplier for.

PARAMETERS

Input

hostname
is the name of the host machine where the Event Service is running. If the hostname is
NULL, then the local host is assumed.

interval
is the suggested polling interval in seconds. This represents the interval that XEMS
should use to get events from the supplier. An interval of 0 is a hint to the XEMS to use
pull rather than try-pull semantics.

Output

handle
returns an XEMS handle which can be used on subsequent calls to XEMS routines.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_already_registered
ems_s_unsupported_nameservice

96 Preliminary Specification

Supplier Interface ems_supplier_unregister()

NAME
ems_supplier_unregister — Supplier Unregister

SYNOPSIS
#include <xems.h>

void ems_supplier_unregister(
ems_handle_t * handle,
ems_error_t * status);

DESCRIPTION
This routine is used by XEMS event suppliers to unregister with XEMS. This routine should be
called once for each call to ems_push_supplier_register() or ems_pull_supplier_register().

PARAMETERS

Input

handle
a valid supplier handle returned from a call to a supplier register routine. This routine
will free up memory used by handle, and set handle to NULL.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_unknown_supplier
ems_s_invalid_handle

Part 1: Event Management Service (XEMS) API 97

ems_supplier_send() Supplier Interface

NAME
ems_supplier_send — Supplier Send

SYNOPSIS
#include <xems.h>

void ems_supplier_send(
ems_handle_t handle,
ems_event_t * event,
ems_error_t * status);

DESCRIPTION
This routine is called by event suppliers to send events to the Event Service.

PARAMETERS

Input

handle
should be the handle returned from a call to the ems_register call.

event
contains the actual event data. For the content of the event messages, see the "Data
Structures" section.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_handle
ems_s_no_memory
ems_s_insufficient_permission

98 Preliminary Specification

Chapter 9

Administration Interface

The XEMS Management interface provides a means to manage various aspects of the XEMS.
Using this interface applications can manage event servers, event consumers, event filters, and
undelivered events in the XEMS event log.

Part 1: Event Management Service (XEMS) API 99

ems_mgmt_list_ems() Administration Interface

NAME
ems_mgmt_list_ems — List Event Service Hosts

SYNOPSIS
#include <xems.h>

void ems_mgmt_list_ems(
ems_string_t ** host_list,
ems_error_t * status);

DESCRIPTION:
List hosts running the Event Service. These hosts can be used with calls to the .Fn ems_register,
ems_push_supplier_register(), ems_pull_supplier_register(), ems_push_consumer_register() and
ems_pull_consumer_register() routines.

PARAMETERS:

Output

host_list
contains the list of hosts running the Event Service. Use ems_mgmt_free_ems() to free
this list.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

100 Preliminary Specification

Administration Interface ems_mgmt_free_ems()

NAME
ems_mgmt_free_ems — Free Event Service Host List

SYNOPSIS
#include <xems.h>

void void ems_mgmt_free_ems(
ems_string_t ** host_list,
ems_error_t * status);

DESCRIPTION
Free host_list structure obtained from a call to ems_mgmt_list_ems().

PARAMETERS

Input

host_list
list of hosts obtained from ems_mgmt_list_ems() to free.

Output

host_list
set to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 101

ems_mgmt_list_attributes() Administration Interface

NAME
ems_mgmt_list_attributes — List Event Service Attributes

SYNOPSIS
#include <xems.h>

void ems_mgmt_list_attributes(
ems_handle_t h,
ems_attrlist_t ** list,
ems_error_t * status);

DESCRIPTION
List Event Service attributes. These attributes are implementation defined

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_register() routine.

Output

list
contains the list of Event Service attributes

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

102 Preliminary Specification

Administration Interface ems_mgmt_free_attributes()

NAME
ems_mgmt_free_attributes — Free Event Service Attributes

SYNOPSIS
#include <xems.h>

void ems_mgmt_free_attributes(
ems_attrlist_t ** list,
ems_error_t * status);

DESCRIPTION
Set an Event Service attribute. These attributes are implementation defined.

PARAMETERS

Input

list
contains the list of attributes to free.

Output

list
set to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 103

ems_mgmt_list_consumers() Administration Interface

NAME
ems_mgmt_list_consumers — Management List Consumers

SYNOPSIS
#include <xems.h>

void ems_mgmt_list_consumers(
ems_handle_t handle,
ems_consumer_list_t ** list,
ems_error_t * status);

DESCRIPTION
List consumers registered with XEMS.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_register() routine.

Output

list
contains the list of consumers.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_no_consumers

104 Preliminary Specification

Administration Interface ems_mgmt_free_consumers()

NAME
ems_mgmt_free_consumers — Management Free Consumers List

SYNOPSIS
#include <xems.h>

void ems_mgmt_free_consumers(
ems_consumer_list_t ** list,
ems_error_t * status);

DESCRIPTION
Free the storage used by an ems_consumer_list_t structure obtained by a call to
ems_mgmt_list_consumers().

PARAMETERS

Input

list
consumer list to free.

Output

list
set to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 105

ems_mgmt_secedit() Administration Interface

NAME
ems_mgmt_secedit — Management Security Edit

SYNOPSIS
#include <xems.h>

void ems_mgmt_secedit(
ems_handle_t handle,
ems_secobj_t secobj,
ems_secsubj_t subject,
ems_secperm_t newperm,
ems_secperm_t * oldperm,
ems_error_t * status);

DESCRIPTION
Alters the permission attributes for a subject, that is, a principal or client with regard to an XEMS
object. The effect of an edit operation may be to permit a subject to use an EMS object. The effect
of an edit operation may be to revoke permission to use an EMS object. If the subject is not
associated with the security object, then the addition of permissions will instantiate the subject
for the security object. The removal of all permissions will remove the subject from the security
object.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_registerroutine().

secobj
specifies the targeted security object.

subject
specifies the subject involved in the edit operation.

newperm
specifies the permissions to be applied to the subject.

Output

oldperm
returns the permissions associated with the subject before the edit operation.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_insufficient_permission

106 Preliminary Specification

Administration Interface ems_mgmt_secread()

NAME
ems_mgmt_secread — Management Security Read

SYNOPSIS
#include <xems.h>

void ems_mgmt_secread(
ems_handle_t handle,
ems_secobj_t secobj,
ems_secsubj_t subject,
ems_secperm_t * oldperm,
ems_error_t * status);

DESCRIPTION
Retrieves the permission attributes for a subject, that is, a principal or client with regard to an
XEMS.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_registerroutine().

secobj
specifies the targeted security object.

subject
specifies the subject involved in the edit operation.

Output

oldperm
returns the permissions associated with the subject.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 107

ems_mgmt_secsubjadd() Administration Interface

NAME ems_mgmt_secsubjadd — Management Security Add Subject

SYNOPSIS
#include <xems.h>

void ems_mgmt_secsubjadd(
ems_handle_t handle,
ems_secsubj_t subject,
ems_secprin_t principal,
ems_error_t * status);

DESCRIPTION:
Identifies a principal as an XEMS subject.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_register routine.

subject
specifies the subject involved in the edit operation.

principal
specifies an opaque identifier that represents the principal from the system perspective.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_insufficient_permission

108 Preliminary Specification

Administration Interface ems_mgmt_secsubjdelete()

NAME
ems_mgmt_secsubjdelete — Management Security Delete Subject

SYNOPSIS
#include <xems.h>

void ems_mgmt_secsubjdelete(
ems_handle_t handle,
ems_secsubj_t subject,
ems_error_t * status);

DESCRIPTION
Identifies a principal as an XEMS subject.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_registerroutine().

subject
specifies the subject involved in the edit operation.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
not valid
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 109

ems_mgmt_secsubjget() Administration Interface

NAME
ems_mgmt_secsubjget — Management Security Get Subject

SYNOPSIS
#include <xems.h>

void ems_mgmt_secsubjget(
ems_handle_t handle,
ems_secprin_t principal,
ems_secsubj_t * subject,
ems_error_t * status);

DESCRIPTION
Identifies a principal as an XEMS subject.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_registerroutine().

principal
specifies an opaque identifier that represents the principal from the system perspective.

subject
returns the corresponding subject.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_insufficient_permission

110 Preliminary Specification

Administration Interface ems_mgmt_delete_consumer()

NAME
ems_mgmt_delete_consumer — Management Delete Consumer

SYNOPSIS
#include <xems.h>

void ems_mgmt_delete_consumer(
ems_handle_t handle,
ems_string_t consumer,
ems_uuid_t * uuid,
ems_error_t * status);

DESCRIPTION
Deletes a consumer, that is, principal, from the XEMS consumer database. After this call, the
specified consumer will not receive any events unless it reregisters with the Event Service. The
principal may not be the same as a consumer, for example, the principal may be a group
(dbadmin) and the consumer is a member of the group.

Implementations may provide an alternate mechanism, for example, command line or a global
security mechanism, for removing principals. The alternate mechanism may be part of a global
security scheme.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from routine.

consumer
specifies the consumer, that is, principal, name to clear. This name is the name returned
in the ems_consumer_list_t data structure after calling ems_mgmt_list_consumers() or
the name used on the ems_consumer_start() routine.

uuid
specifies the consumer uuid which uniquely identifies the consumer to clear. If this
parameter is NULL, then only one consumer can exist with the name consumer.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_invalid_name
ems_s_insufficient_permission

Part 1: Event Management Service (XEMS) API 111

ems_mgmt_delete_ filter_from_group() Administration Interface

NAME
ems_mgmt_delete_filter_from_group — Management Delete Event Filter From Group

SYNOPSIS
#include <xems.h>

void ems_mgmt_delete_filter_from_group(
ems_handle_t handle,
ems_string_t consumer,
ems_uuid_t * uuid,
int hfunc_index,
ems_filtername_list_t * filter_names,
ems_error_t * status);

DESCRIPTION
This routine deletes a specified event filter name(s) from a consumers event filter group.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_register() routine.

consumer
specifies the consumer whose event filter group is getting updated.

uuid
specifies the consumer uuid which uniquely identifies the consumer to clear. If NULL is
specified, then only one consumer can exist with the name consumer.

filter_name
name(s) of the filters to delete from the consumer’s filter group.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

112 Preliminary Specification

Administration Interface ems_mgmt_add_filter_to_group()

NAME
ems_mgmt_add_filter_to_group — Management Add Event Filter to Group

SYNOPSIS
#include <xems.h>

void ems_mgmt_add_filter_to_group(
ems_handle_t handle,
ems_string_t consumer,
ems_uuid_t * uuid,
int hfunc_index,
ems_filtername_list_t * filter_names,
ems_error_t * status);

DESCRIPTION
This routine adds event filter names to a consumers event filter group.

PARAMETERS

Input

handle
must contain a valid handle obtained from ems_register() routine.

consumer
specifies the consumer whose event filter group is getting updated.

uuid
specifies the consumer uuid which uniquely identifies the consumer to clear. If NULL is
specified, then only one consumer can exist with the name consumer.

filter_name
specifies the list of event filter names to add.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 113

ems_mgmt_get_filter_group() Administration Interface

NAME
ems_mgmt_get_filter_group — Management Get Filter Group

SYNOPSIS
#include <xems.h>

void ems_mgmt_get_filter_group(
ems_handle_t handle,
ems_string_t consumer,
ems_uuid_t * uuid,
int hfunc_index,
ems_filtername_list_t ** filter_names,
ems_error_t * status);

DESCRIPTION
This routine returns a list of event filter names in a consumers event filter group.

PARAMETERS

Input

handle
must contain a valid consumer handle obtained from ems_register() routine.

consumer
specifies which consumers event filter group to return. The consumer name is the name
given to the ems_start_consumer() routine, or the name returned in the
ems_consumer_list_t data structure from the routine ems_mgmt_list_consumers().

uuid
specifies the consumer uuid which uniquely identifies the consumer to clear. If this
parameter is NULL, then only one consumer can exist with the name consumer.

Output

filter_group
contains the list of event filter names in the specified consumers event filter group.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

114 Preliminary Specification

Administration Interface ems_mgmt_list_suppliers()

NAME
ems_mgmt_list_suppliers — Management List Suppliers

SYNOPSIS
#include <xems.h>

void ems_mgmt_list_suppliers(
ems_handle_t handle,
ems_supplier_list_t ** list,
ems_error_t * status);

DESCRIPTION
List suppliers registered with XEMS.

PARAMETERS

Input

handle
must contain a valid handle obtained from ems_register() routine.

Output

list
contains the list of suppliers.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_no_suppliers

Part 1: Event Management Service (XEMS) API 115

ems_mgmt_free_suppliers() Administration Interface

NAME
ems_mgmt_free_suppliers — Management Free Suppliers List

SYNOPSIS
#include <xems.h>

void ems_mgmt_free_suppliers(
ems_supplier_list_t ** list,
ems_error_t * status);

DESCRIPTION
Free the storage used by an ems_supplier_list_t structure obtained by a call to
ems_mgmt_list_suppliers().

PARAMETERS

Input

list
supplier list to free.

Output

list
set to NULL.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

116 Preliminary Specification

Administration Interface ems_mgmt_delete_supplier()

NAME
ems_mgmt_delete_supplier — Management Delete Supplier

SYNOPSIS
#include <xems.h>

void ems_mgmt_delete_supplier(
ems_handle_t handle,
ems_string_t supplier,
ems_uuid_t * uuid,
ems_error_t * status);

DESCRIPTION
Clear all information stored in XEMS about the specified supplier. The principal may not be the
same as a supplier, for example, the principal may be a group (dbadmin) and the supplier is a
member of the group.

Implementations may provide an alternate mechanism, for example, command line or a global
security mechanism, for adding principals. The alternate mechanism may be part of a global
security scheme.

PARAMETERS

Input

handle
must contain a valid supplier handle obtained from ems_register() routine.

supplier
specifies the supplier name to clear. This name is the name returned in the
ems_supplier_list_t data structure after calling ems_mgmt_list_suppliers().

uuid
specifies the supplier uuid which uniquely identifies the supplier to clear. If this
parameter is NULL, then only one supplier can exist with the name supplier.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 117

ems_mgmt_get_undelivered_events() Administration Interface

NAME
ems_mgmt_get_undelivered_events — Management Get Undelivered Events

SYNOPSIS
#include <xems.h>

void ems_mgmt_get_undelivered_events(
ems_handle_t handle,
ems_event_type_t type,
ems_event_list_t ** list,
ems_error_t * status);

DESCRIPTION
Get a list of events that have not been delivered to interested consumers.

PARAMETERS

Input

handle
must contain a valid handle obtained from ems_register() routine.

type
the event type to control the number of returned events.

Output

list
contains the list of undelivered events.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_no_events

118 Preliminary Specification

Administration Interface ems_mgmt_free_undelivered_events()

NAME
ems_mgmt_free_undelivered_events — Management Free Undelivered Events

SYNOPSIS
#include <xems.h>

void ems_mgmt_free_undelivered_events(
ems_event_list_t ** event, /* undelivered events */
ems_error_t * status); /* event get status */

DESCRIPTION
Free the undelivered events for the interested consumer.

PARAMETERS

Input

list
contains the list of undelivered events to free.

Output

list
set to free.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok

Part 1: Event Management Service (XEMS) API 119

ems_mgmt_delete_undelivered_event() Administration Interface

NAME
ems_mgmt_delete_undelivered_event — Management Delete Undelivered Event

SYNOPSIS
#include <xems.h>

void ems_mgmt_delete_undelivered_event(
ems_handle_t handle,
ems_eventid_t * event_id,
ems_error_t * status);

DESCRIPTION
Delete an undelivered event from the XEMS Event log.

PARAMETERS

Input

handle
must contain a valid handle obtained from ems_register() routine.

event_id
the event id of the event to delete.

Output

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_no_memory
ems_s_no_events

120 Preliminary Specification

Administration Interface ems_mgmt_forward()

NAME
ems_mgmt_forward — Management Forward Events

SYNOPSIS
#include <xems.h>

void ems_mgmt_forward(
ems_handle_t handle,
ems_filtername_list_t * filter_group,
ems_netname_t * hostname,
ems_string_t * name,
ems_uuid_t * uuid,
ems_error_t * status);

DESCRIPTION
This call tells the XEMS identified by ems_handle to forward all events that pass through the
filter_group specified to the XEMS specified by hostname .

Once this call is made, then the event service identified as hostname will be treated like any
other consumer, and the filter group can be manipulated by the XEMS management filter group
routines.

Forwarding can be stopped by using the ems_mgmt_consumer_delete().

PARAMETERS

Input

handle
ems handle of the event service that is being asked to forward events. Handle must
contain a valid consumer handle obtained from the ems_register() routine.

filter_group
is a list of event filter names which will define the event filter group that controls which
events will be forwarded. If filter_group is empty, no filter group is specified, and
XEMS will not forward any events to the specified event service until a call is make to
ems_mgmt_add_filter_to_group ().

hostname
is the name of the host machine where the Event Service is running that will receive the
forwarded events. If the hostname is NULL, then the local host is assumed. This
hostname cannot be the same as the host referred to in the handle.

Output

name
returns the consumer name associated with the event service that the events will be
forwarded to. This name can be used in calls to the ems_mgmt_XXX_filter_group()
routines so that the event service can be treated as any other consumer.

uuid
returns the consumer uuid which uniquely identifies the event service to forward to so
that it can be treated like as any other event consumer.

status
returns the status code from this routine which indicates whether the routine
completed successfully or, if not, why not.

Part 1: Event Management Service (XEMS) API 121

ems_mgmt_forward() Administration Interface

RETURN VALUE
The possible status codes are:

ems_s_status_ok
ems_s_forwarding_event_service_not_there
ems_s_forwarding_event_loop

122 Preliminary Specification

Chapter 10

Command Line Interface

Besides the set of APIs, the Event Service provides a command line interface to assist wrapping
legacy applications and shell scripts as event suppliers. The importance of the CLI will certainly
decrease with the increasing acceptance of the ES and the usage of its APIs by integrating
applications. Due to the nature of UNIX commands, the performance of CLI calls will suffer
compared to API calls.

The supplier command line interface allows immediate integration of event generating
applications into the Event Service.

The Event Management Service Command Line interface provides a command line interface
that can be used by a system administrator to manage EMS.

10.1 Event Supplier Interface
The Event Supplier Interface provides commands to send (or push) an event to the Event
Channel.

Part 1: Event Management Service (XEMS) API 123

Supplier Send Command Line Interface

NAME
Supplier Send

SYNOPSIS
ems_supplier_send <type> [origin_netname=<service:addr>
[origin_desc=<descname>]] [pid=<pid>] [uid=<uid>] [gid=<gid>]
[severity=<sev>] [<attr_name>=<attr_value> [...]]

DESCRIPTION
This command is called by event suppliers to create and send an event to the Event Service. An
event of the specified type is created and the attributes are set according to the name=value
pairs. Unspecified attributes are set to default values.

PARAMETERS

type
specifies the name of the event type in the Event Type Schema database.

origin_netname
specifies the originating node in the format <service>:<addr> , where service is one of2:

— other
— dns
— dce
— x500
— nis
— sna.

Default value for this parameter is the local node3.

origin_desc
a string provided as a description of the originator; defaults to an empty string.

pid
the process ID or the originating application; defaults to -1.

uid, gid
user and group ID of the originating application; defaults to the uid and gid of the calling
process.

severity
severity of the event; one of4:

— info
— emergency
— alert
— critical
— warning
— notice
— debug.

2. The keywords that are allowed for service match the value of XES_NameService.
3. It is necessary that both service and address can be determined on a node.
4. The keywords that are allowed for severity match the values of XES_Severity.

124 Preliminary Specification

Command Line Interface Supplier Send

attr_name
specifies the name of the attribute that is set

attr_value
value that is assigned to the attribute attr_name . The value is converted to the respective
data type that is defined for attr_name in the Event Type Schema of event type type.

Part 1: Event Management Service (XEMS) API 125

EMS Command Line Interface Command Line Interface

10.2 EMS Command Line Interface
The Event Management Service command line interface allows for management of all EMS
Objects. The interface has been defined as a set of objects, with operations on those objects. The
objects defined are:

• ems

• emsconsumer

• emssupplier

• emsfilter

• emsevent-type

• emslog.

The management objects and command line syntax are defined in the remainder of this Chapter.

126 Preliminary Specification

Command Line Interface Event Service Object

NAME
Event Service Object

SYNOPSIS
ems catalog
ems show [-host hostname]
ems modify [-host hostname]

[-add attr_name:attr_value -change attr_name:attr_value |
-delete attr_name]

DESCRIPTION
This command is used to manage hosts running the EMS Event Service. The ems object
represents an Event Service on a host.

OPERATIONS

catalog
returns all hosts in the current domain providing Event Services (for example, all DCE hosts
running the event service daemon)

show
returns all the Event Service attributes for the Event Service on the given host.

modify
allow for the modification of the attributes of an Event Service on a given host. Attributes
can be added, deleted, or their values can be changed.

PARAMETERS

-host hostname
specifies the name of the host running the Event service. If this parameter is not present,
then the local host is assumed.

-add attr_name:attr_value
add the specified attribute to the Event Service attribute list. attr_name specifies the name of
the attribute that is set. attr_value specifies the value that is assigned to the attribute
attr_name .

-change attr_name:attr_value
change the specified attribute in the Event Service attribute list. attr_name specifies the name
of the attribute to change. attr_value specifies the new value that is assigned to the attribute
attr_name .

-delete attr_name
delete the specified attribute in the Event Service attribute list. attr_name specifies the name
of the attribute to delete.

Part 1: Event Management Service (XEMS) API 127

Consumer Object Command Line Interface

NAME
Consumer Object

SYNOPSIS
emsconsumer catalog [-host hostname]
emsconsumer show <consumer_name> [-uuid consumer_uuid][-host hostname]
emsconsumer delete <consumer_name> [-uuid consumer_uuid][-host hostname]
emsconsumer modify <consumer_name> [-uuid consumer_uuid][-host hostname]

-add filter_name | -delete filter_name

DESCRIPTION
This command is used to manage registered consumers in the EMS Consumer Database. The
emsconsumer object represents an EMS consumer.

OPERATIONS

catalog
returns a list registered consumers in the Consumer Database.

show
shows the filter group for consumer consumer_name.

delete
delete consumer consumer_name from the Consumer Database.

modify
modify consumer consumer_name’s filter group.

PARAMETERS

-host hostname
specifies the name of the host running the Event Service. If this parameter is not present,
then the local host is assumed.

consumer_name
specifies the name of the consumer to perform the operation on.

-uuid consumer_uuid
specifies the consumers unique identifier to uniquely identify consumer_name.

-add filter_name
add filter_name to the specified consumers filter group.

--delete filter_name
delete filter_name from consumer_name’s filter group.

128 Preliminary Specification

Command Line Interface Supplier Object

NAME
Supplier Object

SYNOPSIS
emssupplier catalog [-host hostname]
emssupplier show <supplier_name> [-uuid supplier_uuid][-host hostname]
emssupplier delete <supplier_name> [-uuid supplier_uuid][-host hostname]

DESCRIPTION
This command is used to manage registered suppliers in the EMS Supplier Database. The
emssupplier object represents an EMS supplier.

OPERATIONS

catalog
returns a list registered suppliers in the supplier Database.

show
shows the filter group for supplier supplier_name .

delete
delete supplier supplier_name from the supplier Database.

modify
modify supplier supplier_name’s filter group.

PARAMETERS

-host hostname
specifies the name of the host running the Event Service. If this parameter is not present,
then the local host is assumed.

supplier_name
specifies the name of the supplier to perform the operation on.

-uuid supplier_uuid
specifies the suppliers unique identifier to uniquely identify supplier_name .

Part 1: Event Management Service (XEMS) API 129

Filter Object Command Line Interface

NAME
Filter Object

SYNOPSIS
emsfilter catalog [-host hostname]
emsfilter show <filter_name> [-host hostname]
emsfilter delete <filter_name>[-host hostname]
emsfilter modify <filter_name> [-host hostname] [-append filter_exp]

DESCRIPTION
This command is used to manage filters in the EMS Filter Database. The emsfilter object
represents an EMS filter.

OPERATIONS

catalog
returns a list of filters in the Filter Database.

show
shows the contents of the event filter filter_name.

delete
delete the event filter filter_name from the Event Filter Database.

modify
modify the event filter filter_name.

PARAMETERS

-host hostname
specifies the name of the host running the Event Service. If this parameter is not present,
then the local host is assumed.

filter_name
specifies the name of the filter to perform the operation on.

-append filter_exp
append filter_exp to filter_name’s filter expression list. This parameter is required for the
modify operation.

130 Preliminary Specification

Command Line Interface Event Type Object

NAME
Event Type Object

SYNOPSIS
emsevent-type catalog [-host hostname]
emsevent-type show <event_type_name> [-uuid event_type_uuid]

[-host hostname]
emsevent-type add <event_type_name> [-uuid event_type_uuid]

[-host hostname] [[-attr attr_name:attr_fmt]..].
emsevent-type delete <event_type_name>[-uuid event_type_uuid]

[-host hostname]

DESCRIPTION
This command is used to manage event types in the EMS Event Type Database. The emsevent-
type object represents an EMS event type.

OPERATIONS

catalog
returns a list of event types in the Event Type Database.

show
shows the contents of the event type event_type_name .

add
add the event type event_type_name to the Event Type Database.

delete
delete the event type event_type_name from the Event Type Database.

PARAMETERS

event_type_name
specifies the name of the event type to perform the operation on.

-uuid event_type_uuid
specifies the event type that uniquely identifies event_type_name. This parameter required
for the add operation.

-host hostname
specifies the name of the host running the Event Service. If this parameter is not present,
then the local host is assumed.

-attr attr_name:attr_fmt
specifies the an attribute in the event type schema. attr_name specifies the attribute name,
and attr_fmt specifies the attribute format name as specified in the Data Structures section.
Attributes defined in schema correspond one for one with the attributes specified by the -
attr parameters, in the order specified on this command. At least one -attr parameter is
required for the add operation.

Part 1: Event Management Service (XEMS) API 131

Event Log Object Command Line Interface

NAME
Event Log Object

SYNOPSIS
emslog catalog [-host hostname]
emslog delete <event_uuid> [-host hostname]

DESCRIPTION
This command is used to manage undelivered events in the EMS Event log. The emslog object
represents an EMS event log.

OPERATIONS

catalog
returns a list of undelivered events in the EMS Event log.

delete
delete the event specified by event_uuid from the Event log.

PARAMETERS

-host hostname
specifies the name of the host running the Event Service. If this parameter is not present,
then the local host is assumed.

event_uuid
specifies the unique identifier for the undelivered event to delete.

132 Preliminary Specification

Appendix A

xems.h

#ifndef _XEMS_H

/*--*/
/* XEMS Data Structures */
/*--*/

/**/
/* XEMS generic data types */
/**/
typedef unsigned char ems_boolean ;
#define ems_false false
#define ems_true true
typedef unsigned char ems_byte ;
typedef unsigned char ems_char ;
typedef signed char ems_small_int ;
typedef unsigned char ems_usmall_int ;
typedef short int ems_short_int ;
typedef unsigned short int ems_ushort_int ;
typedef long int ems_long_int ;
typedef unsigned long int ems_ulong_int ;
struct ems_hyper_int_rep_s {

ems_long_int high;
ems_ulong_int low;

} ems_hyper_int;
struct ems_uhyper_int_rep_s_t {

ems_ulong_int high;
ems_ulong_int low;

} ems_uhyper_int;
typedef float ems_short_float ;
typedef double ems_long_float ;

typedef char *ems_string_t;
typedef struct uuid_t {

ems_ulong_int time_low;
ems_ushort_int time_mid;
ems_ushort_int time_hi_and_version;
ems_usmall_int clock_seq_hi_and_reserved;
ems_usmall_int clock_seq_low;
ems_byte node[6];

} ems_uuid_t;

typedef struct utc {
ems_byte char_array[16];

} ems_utc_t;

typedef ems_ulong_int ems_error_t;

typedef ems_uuid_t ems_event_type_t;

/**/
/* XEMS delivery types */
/**/
typedef enum {

Part 1: Event Management Service (XEMS) API 133

xems.h

ems_delivery_push=0,
ems_delivery_pull

} ems_delivery_t;

/**/
/* XEMS severity */
/**/
typedef enum {

ems_sev_info,
ems_sev_fatal,
ems_sev_error,
ems_sev_warning,
ems_sev_notice,
ems_sev_notice_verbose,
ems_sev_debug

} ems_severity_t;
/**/
/* XEMS priority */
/**/
typedef ems_ulong_int ems_priority_t;

/**/
/* XEMS Attributes */
/**/
typedef ems_ushort_int ems_attr_type_t;

#define ems_c_attr_small_int (0)
#define ems_c_attr_short_int (1)
#define ems_c_attr_long_int (2)
#define ems_c_attr_hyper_int (3)
#define ems_c_attr_usmall_int (4)
#define ems_c_attr_ushort_int (5)
#define ems_c_attr_ulong_int (6)
#define ems_c_attr_uhyper_int (7)
#define ems_c_attr_short_float (8)
#define ems_c_attr_long_float (9)
#define ems_c_attr_boolean (10)
#define ems_c_attr_uuid (11)
#define ems_c_attr_utc (12)
#define ems_c_attr_severity (13)
#define ems_c_attr_byte_string (15)
#define ems_c_attr_char_string (16)
#define ems_c_attr_bytes (17)

typedef struct ems_bytes_s_t {
ems_ulong_int size;
ems_byte *data;

} ems_bytes_t;

typedef struct {
ems_attr_type_t format;
union {

/* case(s): ems_c_attr_small_int */
ems_small_int small_int;
/* case(s): ems_c_attr_short_int */
ems_short_int short_int;
/* case(s): ems_c_attr_long_int */
ems_long_int long_int;
/* case(s): ems_c_attr_hyper_int */

134 Preliminary Specification

xems.h

ems_hyper_int hyper_int;
/* case(s): ems_c_attr_usmall_int */
ems_usmall_int usmall_int;
/* case(s): ems_c_attr_ushort_int */
ems_ushort_int ushort_int;
/* case(s): ems_c_attr_ulong_int */
ems_ulong_int ulong_int;
/* case(s): ems_c_attr_uhyper_int */
ems_uhyper_int uhyper_int;
/* case(s): ems_c_attr_short_float */
ems_short_float short_float;
/* case(s): ems_c_attr_long_float */
ems_long_float long_float;
/* case(s): ems_c_attr_boolean */
ems_boolean bool;
/* case(s): ems_c_attr_uuid */
ems_uuid_t uuid;
/* case(s): ems_c_attr_utc */
ems_utc_t *utc;
/* case(s): ems_c_attr_severity */
ems_severity_t severity;
/* case(s): ems_c_attr_byte_string */
ems_byte *byte_string;
/* case(s): ems_c_attr_char_string */
char *char_string;
/* case(s): ems_c_attr_bytes */
ems_bytes_t bytes;
} tagged_union;

} ems_attr_value_t;

typedef struct ems_attribute_s_t {
ems_string_t name;
ems_attr_value_t value;

} ems_attribute_t;

/**/
/* XEMS event id */
/**/
typedef struct ems_eventid_s_t {

ems_event_type_t type;
ems_uuid_t id;

} ems_eventid_t;

/**/
/* XEMS network name structure */
/**/
typedef enum {

ems_ns_other,
ems_ns_dns,
ems_ns_dce,
ems_ns_x500,
ems_ns_nis,
ems_ns_sna

} ems_nameservice_t;

typedef char ems_octet_t;
typedef struct ems_netaddr_s_t {

ems_ulong_int len;
ems_octet_t name[1];

Part 1: Event Management Service (XEMS) API 135

xems.h

} ems_netaddr_t;

typedef struct ems_netname_s_t {
ems_nameservice_t service;
ems_netaddr_t *netaddr;

} ems_netname_t;

/**/
/* XEMS event origin */
/**/
typedef struct ems_origin_s_t {

ems_netname_t netname;
ems_string_t descname;
ems_ulong_int pid;
ems_ulong_int uid;
ems_ulong_int gid;

} ems_origin_t;

/**/
/* XEMS event header */
/**/
typedef struct ems_hdr_s_t {

ems_eventid_t eventid;
ems_origin_t origin;
ems_severity_t severity;
ems_utc_t received;
ems_utc_t delivered;
ems_priority_t priority;

s_hdr_t;

/**/
/* XEMS event structure */
/**/
typedef struct ems_event_s_t {

ems_hdr_t header;
ems_ulong_int count;
ems_attribute_t item[1];

} ems_event_t;

/**/
/* XEMS event schema */
/**/
typedef struct ems_event_schema_s_t {

ems_event_type_t type;
ems_string_t name;
ems_long_int size;
ems_attribute_t attribute[1];

} ems_event_schema_t;

typedef ems_event_schema_t *ems_schema_ptr_t;
typedef struct ems_event_type_list_s_t {

ems_long_int size;
ems_schema_ptr_t schema[1];

} ems_event_type_list_t;

/**/
/* XEMS filter expression operators */
/**/
typedef ems_ushort_int ems_attr_op_t;

136 Preliminary Specification

xems.h

#define ems_c_attr_op_eq (0)
#define ems_c_attr_op_gt (1)
#define ems_c_attr_op_lt (2)
#define ems_c_attr_op_ge (3)
#define ems_c_attr_op_le (4)
#define ems_c_attr_op_ne (5)
#define ems_c_attr_op_bitand (6)
#define ems_c_attr_op_substr (7)

/**/
/* XEMS filter expression grammars */
/**/
typedef unsigned16 ems_filter_grammar_t;
const ems_filter_grammar_t ems_c_fg_default = 0;
const ems_filter_grammar_t ems_c_fg_OQL = 1;
const ems_filter_grammar_t ems_c_fg_other = 2;

typedef struct ems_default_fg_s_t {
ems_string_t attr_name;
ems_attr_op_t attr_operator;
ems_attr_value_t attr_value;

} ems_default_fg_t;

/**/
/* XEMS filter expression */
/**/
typedef struct ems_filter_exp_s_t {

ems_filter_grammar_t grammar;
union {

/* case: ems_c_fg_default */
ems_default_fg_t def_filter;
/* case: ems_c_fg_OQL */
ems_string_t oql_filter;
/* case: ems_c_fg_other */
ems_string_t other_filter;

} tagged_union;
} ems_filter_exp_t;

/**/
/* XEMS filter expression list */
/**/
typedef struct ems_filter_exp_list_s_t {

ems_long_int size;
ems_filter_exp_t filter_exps[1];

} ems_filter_exp_list_t;

/**/
/* XEMS event filter structures */
/**/
typedef struct ems_filter_s_t {

ems_string_t filter_name;
ems_event_type_t type;
ems_filter_exp_list_t filter_exp_list;

} ems_filter_t;

typedef struct ems_filtername_list_s_t {
ems_long_int size;
ems_string_t filter_names[1];

Part 1: Event Management Service (XEMS) API 137

xems.h

} ems_filtername_list_t;

typedef ems_filter_t *ems_filter_ptr_t;
typedef struct ems_filter_list_s_t {

ems_long_int size;
ems_filter_ptr_t filter[1];

} ems_filter_list_t;

/**/
/* XEMS consumer structures */
/**/
typedef struct ems_consumer_s_t {

ems_string_t name;
ems_netname_t *hostname;
ems_uuid_t uuid;
ems_delivery_t type;

} ems_consumer_t;

typedef struct ems_consumer_list_s_t {
ems_long_int size;
ems_consumer_t consumer[1];

} ems_consumer_list_t;

/**/
/* Event Handler */
/**/
typedef void (*ems_handler_t)(

ems_event_t * event,
ems_error_t * error);

/**/
/* XEMS supplier structures */
/**/
typedef void (*ems_supplier_count_handler_t)(

ems_event_type_t type,
ems_long_int count,
ems_error_t * error);

typedef struct ems_supplier_s_t {
ems_string_t name;
ems_netname_t *hostname;
ems_uuid_t uuid;

} ems_supplier_t;

typedef struct ems_supplier_list_s_t {
ems_long_int size;
ems_supplier_t supplier[1];

} ems_supplier_list_t;

/**/
/* XEMS attribute list */
/**/
typedef struct ems_attrlist_s_t {

ems_long_int size;
ems_attribute_t attr[1];

} ems_attrlist_t;

/**/
/* XEMS event list */
/**/

138 Preliminary Specification

xems.h

typedef ems_event_t *ems_event_ptr_t;
typedef struct ems_event_list_s_t {

ems_long_int size;
ems_event_ptr_t event[1];

} ems_event_list_t;

/**/
/* Event Service Handle */
/**/
typedef struct ems_handle_priv_s_t *ems_handle_t;

/*--*/
/* XEMS Registration API */
/*--*/
/**/
/* Register with XEMS */
/**/
extern
void ems_register(

ems_netname_t * hostname, /* Event Service hostname */
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* operation status */

/**/
/* UnRegister with XEMS */
/**/
extern
void ems_unregister(

ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* operation status */

#define EMS_C_GENERIC_TYPE_UUID \
(ems_string_t)"632c65ee-911a-11ce-84ad-000001758810"

/*--*/
/* XEMS Event Type API */
/*--*/
/**/
/* Add an Event Type */
/**/
extern
void ems_event_type_add(

ems_handle_t handle, /* XEMS handle */
ems_event_schema_t * schema, /* event type schema to add */
ems_error_t * status); /* request status */

/**/
/* Delete an Event Type */
/**/
extern
void ems_event_type_delete(

ems_handle_t handle, /* XEMS handle */
ems_string_t type_name, /* event type name to delete */
ems_event_type_t * type, /* event type id to delete */
ems_error_t * status); /* request status */

/**/
/* Get an Event Type */
/**/

Part 1: Event Management Service (XEMS) API 139

xems.h

extern
void ems_event_type_get(

ems_handle_t handle, /* XEMS handle */
ems_string_t type_name, /* event type name to get */
ems_event_type_t * type, /* event type id to get */
ems_event_schema_t ** schema, /* event type schema */
ems_error_t * status); /* request status */

/**/
/* Get List of Available Event Types */
/**/
extern
void ems_event_type_get_list(

ems_handle_t handle, /* XEMS handle */
ems_event_type_list_t ** type_list, /* list of event types */
ems_error_t * status); /* request status */

/**/
/* Free Event Types List */
/**/
extern
void ems_event_type_free_list(

ems_event_type_list_t ** type_list, /* list of event types */
ems_error_t * status); /* request status */

/*--*/
/* XEMS Supplier Interface */
/*--*/
/**/
/* Pull Supplier Register */
/**/
extern
void ems_pull_supplier_register(

ems_netname_t * hostname, /* Event Service hostname */
ems_ushort_int interval; /* Recommended poll interval*/
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* Register status */

/**/
/* Push Supplier Register */
/**/
extern
void ems_push_supplier_register(

ems_netname_t * hostname, /* Event Service hostname */
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* Register status */

/**/
/* Push Supplier Register Handler */
/**/
extern
void ems_supplier_register_handler(

ems_event_type_t type, /* event type for handler */
ems_supplier_count_handler_t handler, /* handler function */
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* Register status */

/**/
/* Supplier Unregister */

140 Preliminary Specification

xems.h

/**/
extern
void ems_supplier_unregister(

ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* unregister status */

/**/
/* Supplier Send */
/**/
extern
void ems_supplier_send(

ems_handle_t handle, /* XEMS handle */
ems_event_t * event, /* Event data */
ems_error_t * status); /* send status */

/*--*/
/* XEMS Filter Interface */
/*--*/
/**/
/* Add an Event Filter */
/**/
extern
void ems_filter_add(

ems_handle_t handle, /* XEMS handle */
ems_string_t filter_name, /* event filter name */
ems_event_type_t type, /* event type */
ems_filter_exp_list_t * exp_list, /* filter exprs to add */
ems_error_t * status); /* filter routine status */

/**/
/* Update an Event Filter */
/**/
extern
void ems_filter_append(

ems_handle_t handle, /* XEMS handle */
ems_string_t filter_name, /* Event Filter Name */
ems_filter_exp_list_t * exp_list, /* exp list to append */
ems_error_t * status); /* Filter routine status */

/**/
/* Get an Event Filter */
/**/
extern
void ems_filter_get(

ems_handle_t handle, /* XEMS handle */
ems_string_t filter_name, /* event filter name */
ems_event_type_t * type, /* event type */
ems_filter_exp_list_t ** filter_exprs,/* returned filter exprs */
ems_error_t * status); /* filter routine status */

/**/
/* Free an Event Filter - */
/* free the filter expression list */
/**/
extern
void ems_filter_free(

ems_filter_exp_list_t ** list, /* filter exps to free */
ems_error_t * status); /* return status */

Part 1: Event Management Service (XEMS) API 141

xems.h

/**/
/* Delete an Event Filter */
/**/
extern
void ems_filter_delete(

ems_handle_t handle, /* XEMS handle */
ems_string_t filter_name, /* filter name to delete */
ems_error_t * status); /* filter routine status */

/**/
/* List Event Filter Names */
/**/
extern
void ems_filter_get_namelist(

ems_handle_t handle, /* XEMS handle */
ems_filtername_list_t ** name_list, /* event filter name list */
ems_error_t * status); /* filter routine status */

/**/
/* Free a filter namelist */
/**/
extern
void ems_filter_free_namelist(

ems_filtername_list_t ** name_list, /* namelist to free */
ems_error_t * status); /* status */

/**/
/* Get an Event Filter Database */
/**/
extern
void ems_filter_get_list(

ems_handle_t handle, /* XEMS handle */
ems_filter_list_t ** filter_list, /* returned filter list */
ems_error_t * status); /* filter routine status */

/**/
/* Free Event Filter List */
/**/
extern
void ems_filter_free_list(

ems_filter_list_t ** filter_list, /* list to free */
ems_error_t * status); /* routine status */

/*--*/
/* XEMS Consumer Interface */
/*--*/
/**/
/* Consumer Start */
/**/
extern
void ems_consumer_start(

ems_string_t consumer , /* consumer name */
ems_ulong_int flags, /* consumer start flags */
ems_handler_t hfunc[], /* handler functions */
ems_uuid_t ** uuid, /* unique consumer id */
ems_handle_t * handle[], /* array of consumer handles */
ems_error_t * status); /* start status */

/**/

142 Preliminary Specification

xems.h

/* Consumer Stop */
/**/
extern
void ems_consumer_stop(

ems_error_t * status); /* stop status */

/**/
/* Push Consumer Register */
/**/
extern
void ems_push_consumer_register(

ems_netname_t * hostname, /* Event Service hostname */
ems_filtername_list_t * filter_group, /* event filter group */
int hfunc_index, /* index of handler function */
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* Register status */

/**/
/* Pull Consumer Register */
/**/
extern
void ems_pull_consumer_register(

ems_netname_t * hostname, /* Event Service hostname */
ems_filtername_list_t * filter_group, /* event filter group */
ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* Register status */

/**/
/* Consumer Unregister */
/**/
extern
void ems_consumer_unregister(

ems_handle_t * handle, /* XEMS handle */
ems_error_t * status); /* unregister status */

/**/
/* Add Event Filter To Group */
/**/
extern
void ems_add_filter_to_group(

ems_handle_t handle, /* XEMS handle */
ems_filtername_list_t * event_filters, /* filter name list to add */
ems_error_t * status); /* filter request status */

/**/
/* Delete an Event Filter From a Group */
/**/
extern
void ems_delete_filter_from_group(

ems_handle_t handle, /* XEMS handle */
ems_filtername_list_t * filter_name, /* event filter name(s) */
ems_error_t * status); /* filter request status */

/**/
/* Get a Consumers Event Filter Group */
/**/
extern
void ems_get_filter_group(

ems_handle_t handle, /* XEMS handle */

Part 1: Event Management Service (XEMS) API 143

xems.h

ems_filtername_list_t ** filter_group, /* Event Filter Group */
ems_error_t * status); /* filter request status */

/**/
/* Get Consumer Registration */
/**/
extern
void ems_consumer_get_registration(

ems_handle_t handle, /* XEMS handle */
ems_netname_t ** hostname, /* hostname of the assoc EMS */
ems_filtername_list_t ** filter_group, /* Event Filter Group */
int * hfunc_index, /* associated handler index */
ems_error_t * status); /* filter request status */

/**/
/* Get Consumer Pull */
/**/
extern
void ems_consumer_pull(

ems_handle_t handle, /* XEMS handle */
ems_event_t * event, /* received event */
ems_error_t * status); /* filter request status */

/**/
/* Get Consumer tRY Pull */
/**/
extern
void ems_consumer_try_pull(

ems_handle_t handle, /* XEMS handle */
ems_event_t * event, /* received event */
ems_error_t * status); /* filter request status */

/*--*/
/* XEMS Management Interface */
/*--*/
/**/
/* List XEMS Hosts */
/**/
extern
void ems_mgmt_list_ems(

ems_string_t ** host_list, /* Event Service hosts list */
ems_error_t * status); /* mgmt request status */

/**/
/* Free XEMS Hosts list */
/**/
extern
void ems_mgmt_free_ems(

ems_strint_t ** host_list, /* Event Service hosts list */
ems_error_t * status); /* mgmt request status */

/**/
/* Management List Server Attributes */
/**/
extern
void ems_mgmt_list_attributes(

ems_handle_t h, /* XEMS handle */
ems_attrlist_t ** list, /* returned attributes */
ems_error_t * status); /* mgmt request status */

/**/

144 Preliminary Specification

xems.h

/* Management Free Server Attributes list */
/**/
extern
void ems_mgmt_free_attributes(

ems_attrlist_t ** list, /* attribute list */
ems_error_t * status); /* mgmt request status */

/**/
/* List Registered consumers */
/**/
extern
void ems_mgmt_list_consumers(

ems_handle_t handle, /* XEMS handle */
ems_consumer_list_t ** list, /* returned consumer list */
ems_error_t * status); /* mgmt request status */

/**/
/* Free Consumer list */
/**/
extern
void ems_mgmt_free_consumers(

ems_consumer_list_t ** list, /* consumer list to free */
ems_error_t * status); /* mgmt request status */

/**/
/* Managaement Security Edit */
/**/
extern
void ems_mgmt_secedit(

ems_handle_t handle,
ems_secobj_t secobj,
ems_secsubj_t subject,
ems_secperm_t newperm,
ems_secperm_t * oldperm,
ems_error_t * status);

/**/
/* Managaement Security Read */
/**/
extern
void ems_mgmt_secread(

ems_handle_t handle,
ems_secobj_t secobj,
ems_secsubj_t subject,
ems_secperm_t * oldperm,
ems_error_t * status);

/**/
/* Managaement Security Add Subject */
/**/
extern
void ems_mgmt_secsubjadd(

ems_handle_t handle,
ems_secsubj_t subject,
ems_secprin_t principal,
ems_error_t * status);

/**/
/* Managaement Security Delete Subject */

Part 1: Event Management Service (XEMS) API 145

xems.h

/**/
extern
void ems_mgmt_secsubjdelete(

ems_handle_t handle,
ems_secsubj_t subject,
ems_error_t * status);

/**/
/* Managaement Security Get Subject */
/**/
extern
void ems_mgmt_secsubjget(

ems_handle_t handle,
ems_secprin_t principal,
ems_secsubj_t * subject,
ems_error_t * status);

/**/
/* Add consumer to XEMS */
/**/
extern
void ems_mgmt_add_consumer(

ems_handle_t handle, /* XEMS handle */
ems_string_t consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_error_t * status); /* mgmt request status */

/**/
/* Add consumer of event to XEMS */
/**/
extern
void ems_mgmt_add_consumer_of_event(

ems_handle_t handle, /* XEMS handle */
ems_string_t consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_event_type_t type, /* associated event type */
ems_error_t * status); /* mgmt request status */

/**/
/* Delete consumer of event for XEMS */
/**/
extern
void ems_mgmt_delete_consumer_of_event(

ems_handle_t handle, /* XEMS handle */
ems_string_t consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_event_type_t type, /* associated event type */
ems_error_t * status); /* mgmt request status */

/**/
/* Delete Registered consumer from XEMS */
/**/
extern
void ems_mgmt_delete_consumer(

ems_handle_t handle, /* XEMS handle */
ems_string_t consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_error_t * status); /* mgmt request status */

146 Preliminary Specification

xems.h

/***/
/* Delete an Event Filter from a Consumer’s Filter Group */
/***/
extern
void ems_mgmt_delete_filter_from_group(

ems_handle_t handle, /* XEMS handle */
char * consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_filtername_list_t * filter_name, /* names to delete */
ems_error_t * status); /* mgmt req status */

/**/
/* Add an Event Filter to a Consumer’s Event Filter Group */
/**/
extern
void ems_mgmt_add_filter_to_group(

ems_handle_t handle, /* XEMS handle */
char * consumer, /* Consumer’s name */
ems_uuid_t * uuid, /* Consumer UUID */
ems_filtername_list_t * filter_name, /* name of filter to add */
ems_error_t * status); /* mgmt request status */

/**/
/* XEMS Management - Get a filter group */
/**/
extern
void ems_mgmt_get_filter_group(

ems_handle_t handle, /* XEMS handle */
char * consumer, /* name of consumer */
ems_uuid_t * uuid, /* Consumer UUID */
ems_filtername_list_t ** filter_group, /* event filter group */
ems_error_t * status); /* mgmt request status */

/**/
/* Add supplier */
/**/
extern
void ems_mgmt_add_supplier(

ems_handle_t handle, /* XEMS handle */
ems_string_t supplier, /* supplier name */
ems_uuid_t * uuid, /* supplier UUID */
ems_error_t * status); /* mgmt request status */

/**/
/* Add supplier of event */
/**/
extern
void ems_mgmt_add_supplier_of_event(

ems_handle_t handle, /* XEMS handle */
ems_string_t supplier, /* supplier name */
ems_uuid_t * uuid, /* supplier UUID */
ems_event_type_t type, /* associated event type */
ems_error_t * status); /* mgmt request status */

/**/
/* List Registered suppliers */
/**/
extern
void ems_mgmt_list_suppliers(

Part 1: Event Management Service (XEMS) API 147

xems.h

ems_handle_t handle, /* XEMS handle */
ems_supplier_list_t ** list, /* returned supplier list */
ems_error_t * status); /* mgmt request status */

/**/
/* Free Consumer list */
/**/
extern
void ems_mgmt_free_suppliers(

ems_supplier_list_t ** list, /* supplier list to free */
ems_error_t * status); /* mgmt request status */

/**/
/* Delete Registered supplier from XEMS */
/**/
extern
void ems_mgmt_delete_supplier(

ems_handle_t handle, /* XEMS handle */
ems_string_t supplier, /* Supplier’s name */
ems_uuid_t * uuid, /* Supplier’s UUID */
ems_error_t * status); /* mgmt request status */

/**/
/* Delete supplier of event */
/**/
extern
void ems_mgmt_delete_supplier_of_event(

ems_handle_t handle, /* XEMS handle */
ems_string_t supplier, /* supplier name */
ems_uuid_t * uuid, /* supplier UUID */
ems_event_type_t type, /* associated event type */
ems_error_t * status); /* mgmt request status */

/**/
/* Get Undelivered Events */
/**/
extern
void ems_mgmt_get_undelivered_events(

ems_handle_t handle, /* XEMS handle */
ems_event_list_t ** event, /* undelivered events */
ems_error_t * status); /* event get status */

/**/
/* Free Undelivered Events */
/**/
extern
void ems_mgmt_free_undelivered_events(

ems_event_list_t ** event, /* undelivered events */
ems_error_t * status); /* event get status */

/**/
/* Delete Undelivered Events */
/**/
extern
void ems_mgmt_delete_undelivered_event(

ems_handle_t handle, /* XEMS handle */
ems_eventid_t * event_id, /* event id to delete */
ems_error_t * status); /* event delete status */

148 Preliminary Specification

xems.h

/**/
/* Management Forward Events */
/**/
extern
void ems_mgmt_forward(

ems_handle_t handle, /* XEMS handle */
ems_filtername_list_t * filter_group, /*list of event filter names */
ems_netname_t * hostname, /* receiver of events */
ems_string_t * name, /* assoc consumer name */
ems_uuid_t * uuid, /* consumer uuid */
ems_error_t * status); /* event delete status */

/**/
/* Status Codes */
/**/

#define ems_status_modid (0x10*16777216)
#define ems_status_compid (0x10*65536)
#define ems_status_subid (0x10*256)
#define ems_status_base (sms_status_modid+ems_status_compid

+ems_status_subid)

#define ems_s_already_registered ems_status_base+1
#define ems_s_consumer_already_started ems_status_base+2
#define ems_s_consumer_not_started ems_status_base+3
#define ems_s_empty_filter_db ems_status_base+4
#define ems_s_event_type_exists ems_status_base+5
#define ems_s_event_type_not_found ems_status_base+6
#define ems_s_filter_exits ems_status_base+7
#define ems_s_filter_in_use ems_status_base+8
#define ems_s_filter_not_found ems_status_base+9
#define ems_s_forwarding_event_service_not_there ems_status_base+10
#define ems_s_forwarding_event_loop ems_status_base+11
#define ems_s_insufficient_permission ems_status_base+12
#define ems_s_invalid_event_type ems_status_base+13
#define ems_s_invalid_filter ems_status_base+14
#define ems_s_invalid_handle ems_status_base+15
#define ems_s_invalid_name ems_status_base+16
#define ems_s_no_consumers ems_status_base+17
#define ems_s_no_event ems_status_base+18
#define ems_s_no_events ems_status_base+19
#define ems_s_no_memory ems_status_base+20
#define ems_s_no_suppliers ems_status_base+21
#define ems_s_no_type_list ems_status_base+22
#define ems_s_status_ok 0
#define ems_s_unknown_consumer ems_status_base+23
#define ems_s_unknown_supplier ems_status_base+24
#define ems_s_unsupported_nameservice ems_status_base+25

#endif /* _XEMS_H */

Part 1: Event Management Service (XEMS) API 149

xems.h

150 Preliminary Specification

Preliminary Specification

Part 2:

Implementations in Different Environments

The Open Group

Part 2: Implementations in Different Environments 151

152 Preliminary Specification

Chapter 11

Reference Implementations

11.1 Introduction to Reference Implementations
This XEMS Part 2 contains reference implementations of the XEMS, initially for DCE and for
CORBA environments.

These are intended to provide a grounding for implementors of the XEMS, in these
environments. Each implementation supports the generic XEMS data structures, APIs, and
command level interfaces at the source level. Each may have unique libraries, macros, etc.,
permitting them to provide transport and environment specific operability.

The other parts of this XEMS specification are:

• Part 1, which describes the XEMS generic specification

• Part 3, which describes event object structures for the basic event set.

Part 2: Implementations in Different Environments 153

Reference Implementations

154 Preliminary Specification

Chapter 12

DCE Implementation

This chapter describes the data structures, APIs, and command line interfaces required for a
DCE implementation of the XEMS.

The XEMS generic APIs are described in XEMS Part 1.

The information provided here describes additional features and facilities provided by a DCE
implementation to operate with DCE consumers and producers.

Part 2: Implementations in Different Environments 155

DCE XEMS Data Structure IDL File DCE Implementation

12.1 DCE XEMS Data Structure IDL File
/* DCE IDL File - XEMS Data structures */
[
uuid(000b0e1e-c016-1ce3-b57e-10005ab14004),
pointer_default(ptr),
version(2.0)
]
interface event_management
{
import "dce/utctypes.idl";
import "dce/aclbase.idl";

typedef [string] char * ms_string_t;

/* XEMS delivery types */
typedef enum {

ems_delivery_push=0,
ems_delivery_pull

} ems_delivery_t;

/* Event Severity */
typedef enum {

ems_sev_info, /* information event */
ems_sev_fatal, /* fatal event */
ems_sev_error, /* alert event */
ems_sev_warning, /* warning event */
ems_sev_notice, /* notice event */
ems_sev_notice_verbose, /* notice verbose event */
ems_sev_debug /* debug event */

} ems_severity_t;

/* XEMS priority */
typedef unsigned long int ems_priority_t;

/* Event Attribute Types */
typedef unsigned16 ems_attr_type_t;
const ems_attr_type_t ems_c_attr_small_int = 0;
const ems_attr_type_t ems_c_attr_short_int = 1;
const ems_attr_type_t ems_c_attr_long_int = 2;
const ems_attr_type_t ems_c_attr_hyper_int = 3;
const ems_attr_type_t ems_c_attr_usmall_int = 4;
const ems_attr_type_t ems_c_attr_ushort_int = 5;
const ems_attr_type_t ems_c_attr_ulong_int = 6;
const ems_attr_type_t ems_c_attr_uhyper_int = 7;
const ems_attr_type_t ems_c_attr_short_float = 8;
const ems_attr_type_t ems_c_attr_long_float = 9;
const ems_attr_type_t ems_c_attr_boolean = 10;
const ems_attr_type_t ems_c_attr_uuid = 11;
const ems_attr_type_t ems_c_attr_utc = 12;
const ems_attr_type_t ems_c_attr_severity = 13;
const ems_attr_type_t ems_c_attr_acl = 14;
const ems_attr_type_t ems_c_attr_byte_string = 15;
const ems_attr_type_t ems_c_attr_char_string = 16;
const ems_attr_type_t ems_c_attr_bytes = 17;

/* Event Attribute Values */
typedef struct ems_bytes_s_t {

unsigned32 size; /* size of byte data */

156 Preliminary Specification

DCE Implementation DCE XEMS Data Structure IDL File

[ptr, size_is(size)] byte * data; /* byte data */
} ems_bytes_t;

typedef union switch (ems_attr_type_t format) {
case ems_c_attr_small_int:

small int small_int;
case ems_c_attr_short_int:

short int short_int;
case ems_c_attr_long_int:

long int long_int;
case ems_c_attr_hyper_int:

hyper int hyper_int;
case ems_c_attr_usmall_int:

unsigned small int usmall_int;
case ems_c_attr_ushort_int:

unsigned short int ushort_int;
case ems_c_attr_ulong_int:

unsigned long int ulong_int;
case ems_c_attr_uhyper_int:

unsigned hyper int uhyper_int;
case ems_c_attr_short_float:

float short_float;
case ems_c_attr_long_float:

double long_float;
case ems_c_attr_boolean:

boolean bool;
case ems_c_attr_uuid:

uuid_t uuid;
case ems_c_attr_utc:

utc_t * utc;
case ems_c_attr_severity:

ems_severity_t severity;
case ems_c_attr_acl:

sec_acl_t * acl;
case ems_c_attr_byte_string:

[string] byte * byte_string;
case ems_c_attr_char_string:

[string] char * char_string;
case ems_c_attr_bytes:

ems_bytes_t bytes;
default:

;
} ems_attr_value_t;

/* Event Attribute */
typedef struct ems_attribute_s_t {

ems_string_t name; /* event attribute name */
ems_attr_value_t value; /* event attribute type */

} ems_attribute_t;

/* Event Types */
typedef uuid_t ems_event_type_t;

/* Event Id */
typedef struct ems_eventid_s_t {

ems_event_type_t type; /* event type */
uuid_t id; /* unique event identifier */

} ems_eventid_t;

Part 2: Implementations in Different Environments 157

DCE XEMS Data Structure IDL File DCE Implementation

/* Network Name */
typedef enum {

ems_ns_other, /* name service other than listed */
ems_ns_dns, /* DNS name service*/
ems_ns_dce, /* DCE CDS name service */
ems_ns_x500, /* X500 */
ems_ns_nis, /* NIS */
ems_ns_sna /* SNA networkn */

} ems_nameservice_t;

typedef char ems_octet_t;
typedef struct ems_netaddr_s_t {

unsigned long len; /* length of netaddr name */
[size_is(len)] char name[]; /* netaddr name */

} ems_netaddr_t;

typedef struct ems_netname_s_t {
ems_nameservice_t service; /* netname name service */
[ptr] ems_netaddr_t * netaddr; /* network name/address */

} ems_netname_t;

/* Event Origin */
typedef struct ems_origin_s_t {

ems_netname_t netname; /* originator host network name */
[string] char * descname; /* supplier descriptive name */
unsigned32 pid; /* originator process id */
unsigned32 uid; /* originator user id */
unsigned32 gid; /* originator group id */

} ems_origin_t;

/* Event Header */
typedef struct ems_hdr_s_t {

ems_eventid_t eventid; /* event identifier */
ems_origin_t origin; /* event origin */
ems_severity_t severity /* event severity */
utc_t received; /* event received timestamp */
utc_t delivered; /* event received timestamp */
ems_priority_t priority; /* event priority */

} ems_hdr_t;

/* Event */
typedef struct ems_event_s_t {

ems_hdr_t header; /* fixed event header */
unsigned32 count; /* number of data items */
[size_is(count)]
ems_attribute_t item[]; /* data items */

} ems_event_t;

/* Event Schema */
typedef struct ems_event_schema_s_t {

ems_event_type_t type; /* EMS event type */
[string] char * name; /* event type name */
long size; /* number of attributes */
[size_is(size)]
ems_attribute_t attribute[]; /* event type attributes */

} ems_event_schema_t;

/* Event Type List */
typedef [ptr] ems_event_schema_t * ems_schema_ptr_t;

158 Preliminary Specification

DCE Implementation DCE XEMS Data Structure IDL File

typedef struct ems_event_type_list_s_t {
long size; /* number of event types */
[size_is(size)]
ems_schema_ptr_t schema[]; /* event type schemas */

} ems_event_type_list_t;

/* Event Filters */

/* Attribute Operators */
typedef unsigned16 ems_attr_op_t;
const ems_attr_op_t ems_c_attr_op_eq = 0;
const ems_attr_op_t ems_c_attr_op_gt = 1;
const ems_attr_op_t ems_c_attr_op_lt = 2;
const ems_attr_op_t ems_c_attr_op_ge = 3;
const ems_attr_op_t ems_c_attr_op_le = 4;
const ems_attr_op_t ems_c_attr_op_ne = 5;
const ems_attr_op_t ems_c_attr_op_bitand = 6;
const ems_attr_op_t ems_c_attr_op_substr = 7;

/* XEMS filter expression grammars */
typedef unsigned16 ems_filter_grammar_t;
const ems_filter_grammar_t ems_c_fg_default = 0;
const ems_filter_grammar_t ems_c_fg_OQL = 1;
const ems_filter_grammar_t ems_c_fg_other = 2;

typedef struct ems_default_fg_s_t {
ems_string_t attr_name;
ems_attr_op_t attr_operator;
ems_attr_value_t attr_value;

} ems_default_fg_t;

/* Event Filter Expressions */
typedef struct ems_filter_exp_s_t {

ems_filter_grammar_t grammar;
union {

/* case: ems_c_fg_default */
ems_default_fg_t def_filter;
/* case: ems_c_fg_OQL */
ems_string_t oql_filter;
/* case: ems_c_fg_other */
ems_string_t other_filter;

} tagged_union;
} ems_filter_exp_t;

/* Event Filter Expression List */
typedef struct ems_filter_exp_list_s_t {

long size; /* number of filter */
[size_is(size)] /* expressions */
ems_filter_exp_t filter_exps[]; /* filter expressions */

} ems_filter_exp_list_t;

/* Event Filter */
typedef struct ems_filter_s_t {

ems_string_t filter_name; /* event filter name */
ems_event_type_t type; /* event type */
ems_filter_exp_list_t filter_exp_list; /* filter exp list */

} ems_filter_t;

/* Event Filter Name List */

Part 2: Implementations in Different Environments 159

DCE XEMS Data Structure IDL File DCE Implementation

typedef struct ems_filtername_list_s_t {
long size; /* number of event filter */
[size_is(size)] /* names in list */
ems_string_t filter_names[]; /* filter names */

} ems_filtername_list_t;

/* Event Filter List */
typedef [ptr] ems_filter_t * ems_filter_ptr_t;
typedef struct ems_filter_list_s_t {

long size; /* number of filters */
[size_is(size)]
ems_filter_ptr_t filter[]; /* ptrs to the event filters */

} ems_filter_list_t;

/* Consumer Context Handle */
typedef [context_handle] void * cons_context_t;

/* Consumer */
typedef struct ems_consumer_s_t {

[string] char * name; /* DCE name of consumer */
[ptr] ems_netname_t * hostname; /* DCE hostname of consumer */
uuid_t uuid; /* consumers uuid */
ems_delivery_t type; /* consumer delivery type */

} ems_consumer_t;

/* Consumer List */
typedef struct ems_consumer_list_s_t {

long size; /* # of consumers */
[size_is(size)]
ems_consumer_t consumer[]; /* consumer info */

} ems_consumer_list_t;

/* Supplier */
typedef struct ems_supplier_s_t {

ems_string_t name; /* DCE name of supplier */
ems_netname_t *hostname; /* DCE hostname of supplier */
uuid_t uuid; /* supplier UUID */
ems_delivery_t type; /* supplier delivery type */

} ems_supplier_t;

/* Supplier List */
typedef struct ems_supplier_list_s_t {

ems_long_int size; /* number of suppliers */
[size-is(size)]
ems_supplier_t supplier[]; /* supplier info */

} ems_supplier_list_t;

/* Attribute List */
typedef struct ems_attrlist_s_t {

long size; /* number of server */
[size_is(size)] /* attributes */
ems_attribute_t attr[]; /* server attributes */

} ems_attrlist_t;

/* XEMS event list */
typedef ems_event_t *ems_event_ptr_t;
typedef struct ems_event_list_s_t {

ems_long_int size;
ems_event_ptr_t event[1];

160 Preliminary Specification

DCE Implementation DCE XEMS Data Structure IDL File

ems_event_list_t
}

Part 2: Implementations in Different Environments 161

DCE XEMS API: <ems.h> DCE Implementation

12.2 DCE XEMS API: <ems.h>
/* <ems.h> - DCE XEMS Interface */
#ifndef _DCE_EMS_H
#define _DCE_EMS_H
#include <stdarg.h>
#include <dce/dce.h>
#include <pthread.h>
#include <dce/dce_svc.h>
#include <dce/utctypes.h>
#include <dce/emsif.h>
#include <dce/dceemsmsg.h>
#include <dce/dbif.h>

/* Compilation controls */
#define DCE_SVC_WANT__FILE__

#define EMS_COMPONENT_NAME "ems"

/* SVC severities */
#define SVC_C_SEV_FATAL

((svc_c_sev_fatal&svc__c_mask)>>svc__c_shift)
edefine SVC_C_SEV_ERROR

((svc_c_sev_error&svc__c_mask)>>svc__c_shift)
#define SVC_C_SEV_WARNING

((svc_c_sev_warning&svc__c_mask)>>svc__c_shift)
#define SVC_C_SEV_NOTICE

((svc_c_sev_notice&svc__c_mask)>>svc__c_shift)
#define SVC_C_SEV_NOTICE_VERBOSE

((svc_c_sev_notice_verbose&svc__c_mask)>>svc__c_shift)

/* Event Handler */
typedef void (*ems_handler_t) (ems_event_t *event,

error_status_t *status);

typedef void (*ems_supplier_count_handler_t)(
ems_event_type_t type
long int count,
error_status_t * error);

/* Event Service Handle */
typedef struct ems_handle_priv_s_t * ems_handle_t;

/* External interfaces */
#define EMS_C_EMSD_OBJECT_UUID (unsigned char *)"84ff9d30-08a2-11cf-ba2a-10005a4f3556"

/* Register with XEMS (non consumer) */
extern void ems_register(

ems_netname_t * hostname, /* DCE host name */
ems_handle_t * handle, /* ems handle */
error_status_t * status); /* mgmt request status */

/* UnRegister with XEMS (non consumer) */
extern void ems_unregister(

ems_handle_t * handle, /* ems handle */
error_status_t * status); /* unregister status */

/* Event Type Interface */
#define EMS_C_SVC_TYPE_UUID

162 Preliminary Specification

DCE Implementation DCE XEMS API: <ems.h>

(unsigned_char_t *)"7d18dd10-7807-11ce-bef6-000001758810"

#define EMS_C_GENERIC_TYPE_UUID
(unsigned_char_t *)"632c65ee-911a-11ce-84ad-000001758810"

#define EMS_C_SVC_TYPE_NAME "SVC"
#define EMS_C_GENERIC_TYPE_NAME "Generic"

extern const ems_event_type_t ems_c_svc_type;
extern const ems_event_type_t ems_c_generic_type;

/* Add an Event Type */
extern void ems_event_type_add(

ems_handle_t handle, /* ems handle */
ems_event_schema_t * schema, /* event type schema to add */
error_status_t * status); /* request status */

/* Delete an Event Type */
extern void ems_event_type_delete(

ems_handle_t handle, /* ems handle */
char * type_name, /* event type name to delete */
error_status_t * status); /* request status */

/* Get an Event Type */
extern
void ems_event_type_get(

ems_handle_t handle, /* XEMS handle */
ems_string_t type_name, /* event type name to get */
ems_event_type_t * type, /* event type id to get */
ems_event_schema_t ** schema, /* event type schema */
error_status_t * status); /* request status */

/* Get List of Available Event Types */
extern void ems_event_type_get_list(

ems_handle_t handle, /* ems handle */
ems_event_type_list_t ** type_list, /* list of event types */
error_status_t * status); /* request status */

/* Free Event Types List */
extern void ems_event_type_free_list(

ems_event_type_list_t ** type_list, /* list of event types */
error_status_t * status); /* request status */

/* Supplier Interface */

/* Pull Supplier Register */
extern void ems_pull_supplier_register(

ems_netname_t * hostname, /* event service hostname */
ems_ushort_int interval; /* recommended poll interval */
ems_handle_t * handle, /* XEMS handle */
error_status_t * status); /* register status */

/* Push Supplier Register */
extern void ems_push_supplier_register(

ems_netname_t * hostname, /* event Service hostname */
ems_handle_t * handle, /* XEMS handle */
error_status_t * status); /* Register status */

/* Push Supplier Register Handler */
extern void ems_supplier_register_handler(

Part 2: Implementations in Different Environments 163

DCE XEMS API: <ems.h> DCE Implementation

ems_event_type_t type, /* event type for handler */
ems_supplier_count_handler_t handler, /* handler function */
ems_handle_t * handle, /* XEMS handle*/
error_status_t * status); /* register status */

/* Supplier Unregister */
extern void ems_supplier_unregister(

ems_handle_t * handle, /* XEMS handle */
error_status_t *status); /* unregister status */

/* Supplier Send */
extern void ems_supplier_send(

ems_handle_t handle, /* handle to emsd */
ems_event_t * event, /* event data */
error_status_t * status); /* send status */

/* Filter Interface */

/* Add an Event Filter */
extern void ems_filter_add(

ems_handle_t handle, /* ems handle */
ems_string_t filter_name, /* event filter name */
ems_event_type_t type, /* event type */
ems_filter_exp_list_t * exp_list, /* filter exprs to add*/
error_status_t * status); /* filter routine status */

/* Update an Event Filter */
extern void ems_filter_append(

ems_handle_t handle, /* ems handle */
ems_string_t filter_name, /* event filter name */
ems_filter_exp_list_t * exp_list, /* exp list to append */
error_status_t * status); /* filter routine status */

/* Get an Event Filter */
extern void ems_filter_get(

ems_handle_t handle, /* ems handle */
ems_string_t filter_name, /* event filter name */
ems_event_type_t* type, /* event type */
ems_filter_exp_list_t ** filter_exprs, /* returned filter exprs */
error_status_t * status); /* filter routine status */

/* Free an Event Filter - free the filter expression list */
extern void ems_filter_free(

ems_filter_exp_list_t ** list, /* filter exps to free */
error_status_t * status); /* return status */

/* Delete an Event Filter */
extern void ems_filter_delete(

ems_handle_t handle, /* ems handle */
ems_string_t filter_name, /* filter name to delete */
error_status_t * status); /* filter routine status */

/* List Event Filter Names */
extern void ems_filter_get_namelist(

ems_handle_t handle, /* ems handle */
ems_filtername_list_t ** name_list, /* event filter name list */
error_status_t * status); /* filter routine status */

/* Free a filter namelist */

164 Preliminary Specification

DCE Implementation DCE XEMS API: <ems.h>

extern void ems_filter_free_namelist(
ems_filtername_list_t ** name_list, /* namelist to free */
error_status_t * status); /* status */

/* Get an Event Filter Database */
extern void ems_filter_get_list(

ems_handle_t handle, /* ems handle */
ems_filter_list_t ** filter_list, /* returned filter list */
error_status_t * status); /* filter routine status */

/* Free Event Filter List */
extern void ems_filter_free_list(

ems_filter_list_t ** filter_list, /* list to free */
error_status_t * status); /* routine status */

/* Consumer Interface */

/* Consumer Start */
extern void ems_consumer_start(

char * consumer, /* consumer name */
unsigned32 flags, /* consumer start flags */
ems_handler_t hfunc[], /* handler functions */
uuid_t ** uuid, /* unique consumer id */
ems_handle_t * handle[], /* array of consumer handles */
error_status_t * status); /* start status */

/* Consumer Stop */
extern void ems_consumer_stop(

error_status_t *status); /* stop status */

/* Push Consumer Register */
extern void ems_push_consumer_register(

ems_netname_t * hostname, /* emsd hostname */
ems_filtername_list_t * filter_group, /* event filter group */
int hfunc_index, /* index of handler function */
ems_handle_t * handle, /* ems handle */
error_status_t * status); /* register status */

/* Pull Consumer Register */
extern void ems_pull_consumer_register(

ems_netname_t * hostname, /* event service hostname */
ems_filtername_list_t * filter_group, /* event filter group */
ems_handle_t * handle, /* XEMS handle */
error_status_t * status); /* register status */

/* Consumer Unregister */
extern void ems_consumer_unregister(

ems_handle_t * handle, /* XEMS binding handle */
error_status_t * status); /* unregister status */

/* Add Event Filter To Group */
extern void ems_add_filter_to_group(

ems_handle_t handle, /* ems handle */
ems_filtername_list_t * event_filters, /* filter name list to add */
error_status_t * status); /* filter request status */

/* Delete an Event Filter From a Group */
extern void ems_delete_filter_from_group(

ems_handle_t handle, /* ems handle */

Part 2: Implementations in Different Environments 165

DCE XEMS API: <ems.h> DCE Implementation

ems_filtername_list_t * filter_name, /* event filter name(s) */
error_status_t * status); /* filter request status */

/* Get a Consumers Event Filter Group */
extern void ems_get_filter_group(

ems_handle_t handle, /* ems handle */
ems_filtername_list_t ** filter_group, /* event filter group */
error_status_t * status); /* filter request status */

/* Get Consumer Registration */
extern void ems_consumer_get_registration(

ems_handle_t handle, /* XEMS handle */
ems_netname_t ** hostname, /* hostname of the assoc XEMS */
ems_filtername_list_t ** filter_group, /* event filter group */
int * hfunc_index, /*associated handler index */
error_status_t * status); /* filter request status */

/* Consumer Pull */
extern void ems_consumer_pull(

ems_handle_t handle, /* XEMS handle */
ems_event_t * event, /* received event */
error_status_t * status); /* filter request status */

/* Consumer Try Pull */
extern void ems_consumer_try_pull(

ems_handle_t handle, /* XEMS handle */
ems_event_t * event, /* received event */
error_status_t * status); /* filter request status */

/* Management Interface */

/* List XEMS Hosts */
extern void ems_mgmt_list_ems(

char *** host_list, /* list of hosts running ems */
error_status_t * status); /* mgmt request status */

/* Free XEMS Hosts List */
extern void ems_mgmt_free_ems(

char *** host_list, /* list of hosts running ems */
error_status_t * status); /* mgmt request status */

/* Management List Server Attributes */
extern void ems_mgmt_list_attributes(

ems_handle_t h, /* ems handle */
ems_attrlist_t ** list, /* returned attributes */
error_status_t * status); /* mgmt request status */

/* Management Free Server Attributes List */
extern void ems_mgmt_free_attributes(

ems_attrlist_t ** list, /* attribute list */
error_status_t * status); /* mgmt request status */

/* List Registered Consumers */
extern void ems_mgmt_list_consumers(

ems_handle_t handle, /* ems handle */
ems_consumer_list_t ** list, /* returned consumer list */
error_status_t * status); /* mgmt request status */

/* Free Consumer List */

166 Preliminary Specification

DCE Implementation DCE XEMS API: <ems.h>

extern void ems_mgmt_free_consumers(
ems_consumer_list_t ** list, /* consumer list to free */
error_status_t * status); /* mgmt request status */

/* The following APIs are not required for the DCE implementation, and */
/* handled by the DCE Registry and ACL Management */
/* ems_mgmt_add_consumer */
/* ems_mgmt_add_consumer_of_event */
/* ems_mgmt_delete_consumer_of_event */

/* Delete Registered Consumer from XEMS */
extern void ems_mgmt_delete_consumer(

ems_handle_t handle, /* ems handle */
char * consumer, /* consumer’s name */
uuid_t * uuid, /* consumer UUID */
error_status_t * status); /* mgmt request status */

/* Delete an Event Filter from a Consumer’s Filter Group */
extern void ems_mgmt_delete_filter_from_group(

ems_handle_t handle, /* ems handle */
char * consumer, /* consumer’s name */
uuid_t * uuid, /* consumer UUID */
ems_filtername_list_t * filter_name, /* names to delete */
error_status_t * status); /* mgmt req status */

/* Add an Event Filter to a Consumer’s Event Filter Group */
extern void ems_mgmt_add_filter_to_group(

ems_handle_t handle, /* ems handle */
char * consumer, /* consumer’s name */
uuid_t * uuid, /* consumer UUID */
ems_filtername_list_t * filter_name, /* name of filter to add */
error_status_t * status); /* mgmt request status */

/* XEMS Management - Get a Filter Group */
extern void ems_mgmt_get_filter_group(

ems_handle_t handle, /* ems handle */
char * consumer, /* name of consumer */
uuid_t * uuid, /* consumer UUID */
ems_filtername_list_t ** filter_group, /* event filter group */
error_status_t * status); /* mgmt request status */

/* The following APIs are not required for the DCE implementation, and */
/* handled by the DCE Registry and ACL Management */
/* ems_mgmt_add_supplier */
/* ems_mgmt_add_supplier_of_event */
/* ems_mgmt_delete_supplier_of_event */

/* List Registered Suppliers */
extern
void ems_mgmt_list_suppliers(

ems_handle_t handle, /* XEMS handle */
ems_supplier_list_t ** list, /* returned supplier list */
error_status_t * status); /* mgmt request status */

/* Free Consumer List */
extern
void ems_mgmt_free_suppliers(

ems_supplier_list_t ** list, /* supplier list to free */
error_status_t * status); /* mgmt request status */

Part 2: Implementations in Different Environments 167

DCE XEMS API: <ems.h> DCE Implementation

/* Delete Registered Supplier from XEMS */
extern void ems_mgmt_delete_supplier(

ems_handle_t handle, /* XEMS handle */
ems_string_t supplier, /* supplier’s name */
ems_uuid_t * uuid, /* supplier’s UUID */
error_status_t * status); /* mgmt request status */

/* Get Undelivered Events */
extern void ems_mgmt_get_undelivered_events(

ems_handle_t handle, /* XEMS handle */
ems_event_list_t ** event, /* undelivered events */
error_status_t * status); /* event get status */

/* Free Undelivered Events */
extern void ems_mgmt_free_undelivered_events(

ems_event_list_t ** event, /* undelivered events */
error_status_t * status); /* event get status */

/* Delete Undelivered Events */
extern void ems_mgmt_delete_undelivered_event(

ems_handle_t handle, /* XEMS handle */
ems_eventid_t * event_id, /* event id to delete */
error_status_t * status); /* event delete status */

/* Management Forward Events */
extern void ems_mgmt_forward(

ems_handle_t handle, /* XEMS handle */
ems_filtername_list_t * filter_group, /* list of event filter names */
ems_netname_t * hostname, /* receiver of events */
ems_string_t * name, /* assoc consumer name */
uuid_t * uuid, /* consumer uuid */
error_status_t * status); /* event delete status */

#endif /* _EMS_H */

168 Preliminary Specification

DCE Implementation DCE dcecp commands for XEMS

12.3 DCE dcecp commands for XEMS

12.3.1 Event Service Object

ems catalog
ems show [-host hostname]
ems modify [-host hostname] [-add attr_name:attr_value

-change attr_name:attr_value |
-delete attr_name]

12.3.2 Consumer Object

emsconsumer catalog [-host hostname]
emsconsumer show <consumer_name> [-uuid consumer_uuid][-host hostname]
emsconsumer delete <consumer_name> [-uuid consumer_uuid][-host hostname]
emsconsumer modify <consumer_name> [-uuid consumer_uuid][-host hostname]

-add filter_name | -delete filter_name

12.3.3 Filter Object

emsfilter catalog [-host hostname]
emsfilter show <filter_name> [-host hostname]
emsfilter delete <filter_name>[-host hostname]
emsfilter modify <filter_name> [-host hostname] [-append filter_exp]

Part 2: Implementations in Different Environments 169

DCE Implementation

170 Preliminary Specification

Chapter 13

CORBA Implementation

The CORBA implementation for the Event Management Service is not yet sufficiently proven to
be presented in this specification as normative information.

However, the intent remains to present the XEMS CORBA implementation information as a key
part of the normative content of this XEMS specification.

Accordingly, to show this intent and to make visible the existing XEMS CORBA implementation
information:

• this Chapter is presented as a placeholder for the CORBA implementation

• the existing CORBA implementation is included in this document, as ‘‘appended’’ (that is,
non-normative) information, in Appendix B.

Part 2: Implementations in Different Environments 171

CORBA Implementation

172 Preliminary Specification

Appendix B

CORBA Implementation

B.1 Interface Descriptions
This appendix describes the interfaces along with rationale for the implementation, then gives
the IDL for the CORBA implementation.

The CORBA implementation adheres stylistically to the specification given in Part 1. The type
definitions for EMS data primitives are incorporated in the IDL. The IDL is specified using the
C++ mapping. EMS is couched in a module to distinguish it from other constructs. A notification
manager and iterator interfaces have been added for the CORBA implementation.

This implementation uses the OMG Common Objects Services (COS) Event Service interface
(see reference COS V1) to provide de-coupled communications.

Part 2: Implementations in Different Environments 173

Primitive Data Types CORBA Implementation

B.2 Primitive Data Types
These data types use a prefix to avoid keyword and namespace collisions. The remaining EMS
IDL is given in terms of these primitives.

typedef boolean ems_boolean; // 1 byte
typedef octet ems_byte; // 1 byte
typedef char ems_char; // 1 byte
typedef char ems_small_int; // 1 byte
typedef char ems_usmall_int; // 1 byte
typedef short ems_short_int; // 2 bytes
typedef unsigned short ems_ushort_int; // 2 bytes
typedef long ems_long_int; // 4 bytes
typedef unsigned long ems_ulong_int; // 4 bytes

typedef struct ems_hyper_int_rep_s_t {
ems_long_int high;
ems_ulong_int low;

} ems_hyper_int;

typedef struct ems_uhyper_int_rep_s_t {
ems_ulong_int high;
ems_ulong_int low;

} ems_uhyper_int;

typedef float ems_short_float; // 4 bytes
typedef double ems_long_float; // 8 bytes

174 Preliminary Specification

CORBA Implementation Composite Data Types

B.3 Composite Data Types
This implementation is based on the COS facilities described in the referenced COS publication.
These COS facilities are commercially available from a number of vendors. A given CORBA
implementation may use the additional facilities, assuming they will interoperate with the less
robust implementations. For example, there is a COS specification for Universal Coordinated
Time (utc). This implementation does not use the utc specification, because it had not been
widely available in commercial COS implementations at the time of this writing.

A universal unique identifier (uuid) is a tag that can be associated with an entity. The tag is
unique. Specifically, the time and sequencing elements provide a unique specification on a given
node. The node specification provides uniqueness in a network.

typedef struct uuid {
ems_ulong_int time_low;
ems_ushort_int time_mid;
ems_ushort_int time_hi_and_version;
ems_usmall_int clock_seq_hi_and_reserved;
ems_usmall_int clock_seq_low;
ems_byte node[6];

} uuid_t;

The CORBA string is used for EMS strings.

typedef string string_t;

typedef struct string_list_s_t {
sequence<string_t> strings;

} string_list_t;

The timestamp is from the X/Open DCE Time Service as articulated in COS V15.

typedef Time::UtcT utc_t;

The EMS specification de-couples the security mechanism for the CORBA transport from the
EMS security characteristics. This maximizes implementation flexibility, providing avenues for
security adapters within an implementation. Such an adapter may bridge the CORBA security
model with that of a given operating system.

typedef enum secobjtype_e_t {
secobj_server,
secobj_eventtypes,
secobj_filters,
secobj_consumers,
secobj_suppliers,
secobj_eventtype,
secobj_filter

} secobjtype_t;

typedef struct secobj {
secobjtype_t secobjtype;
string_t name;
uuid_t uuid;

} secobj_t;

5. The MAScOTTE project (see Glossary entry for MAScOTTE on page 233) has proposed that this should be the definition for
CORBA Universal Time. This definition is found in #include <CosTime.idl> .

Part 2: Implementations in Different Environments 175

Composite Data Types CORBA Implementation

typedef struct secperm {
ems_usmall_int control;
ems_usmall_int delete;
ems_usmall_int insert;
ems_usmall_int read;
ems_usmall_int write;
ems_usmall_int execute;

} secperm_t;

typedef struct secsubj {
string_t name;
uuid_t uuid;

} secsubj_t;

typedef struct secprin {
Principal principal;

} secprin_t;

Events are composed of attributes (data elements). This implementation uses an untyped event
model. The any contains the type code for the attribute, eliminating the need for a separate struct
attribute_s_t and attr_value_t:

typedef any attribute_t;

An event identifier is a composite consisting of the event type and an instance identifier, that is,
a uuid :

typedef struct eventid_s_t {
event_type_t type;
uuid_t id;

} eventid_t;

Suppliers may be adapters, extracting events from one domain and couching them in terms of
EMS events. As such, a variety of network naming schemes may be used to describe the event
origin:

typedef enum nameservice_e_t {
ns_other,
ns_dns,
ns_dce,
ns_x500,
ns_nis,
ns_sna

} nameservice_t;

typedef struct netaddr_s_t {
sequence<octet> name;

} netaddr_t;

typedef struct netname_s_t {
nameservice_t service;
netaddr_t netaddr;

} netname_t;

The specification of the consumer is unique to the CORBA implementation. This is due to the
use of the COS Event Service. This implementation provides support for both push and pull
consumers:

enum ConsumerType {
PULLCONSUMER,
PUSHCONSUMER

176 Preliminary Specification

CORBA Implementation Composite Data Types

} ;

typedef union EventConsumer switch(ConsumerType) {
case PULLCONSUMER:

CosEventComm::PullConsumer pullc;
case PUSHCONSUMER:

CosEventComm::PushConsumer pushc;
} consumer_t;

typedef struct consumer_list_s_t {
sequence<consumer_t> consumer;

} consumer_list_t;

The specification of the supplier is unique to the CORBA implementation. This is due to the use
of the COS Event Service. This implementation provides support for both push and pull
suppliers:

enum SupplierType {
PULLSUPPLIER,
PUSHSUPPLIER

} ;

typedef union EventSupplier switch(SupplierType) {
case PULLSUPPLIER:

CosEventComm::PullSupplier pulls;
case PUSHSUPPLIER:

CosEventComm::PushSupplier pushs;
} supplier_t;

typedef struct supplier_list_s_t {
sequence<supplier_t> supplier;

} supplier_list_t;

The event origin retains the structure given in Part 16. The notions of and data type primitives
for process, user, and group identifiers vary by operating system. For this implementation, these
are assumed to be supplementary fields:

typedef struct ems_origin_s_t {
supplier_t supplier;
string_t descname;
ems_ulong_int pid; // supplementary field
ems_ulong_int uid; // supplementary field
ems_ulong_int gid; // supplementary field

} origin_t;

There are competing notions of event severity and priority classification. Some notions are
problem domain specific. This implementation uses the specification in Part 1 for lack of a clear
alternative:

typedef enum severity_e_t {
sev_info,
sev_fatal,
sev_error,

6. The MAScoTTE project (see Glossary entry for MAScOTTE on page 233) has proposed that the process identifier, the user
identifier and the group identifier should be replaced by the SysAdminLifeCycle::Location for the CORBA location description,
as defined in the referenced XCMF-V1 specification. This would provide a fixed origin format, enabling interoperability.

Part 2: Implementations in Different Environments 177

Composite Data Types CORBA Implementation

sev_warning,
sev_notice,
sev_notice_verbose,
sev_debug

} severity_t;

typedef ems_ulong_int priority_t;

These type definitions describe the layout of events. They are in accordance with Part 1 of this
specification:

typedef struct hdr_s_t {
eventid_t eventid;
origin_t origin;
severity_t severity;
utc_t received;
utc_t delivered;
priority_t priority;

} hdr_t;

typedef struct event_s_t {
hdr_t header;
sequence<attribute_t> item;

} event_t;

typedef struct event_list_s_t {
sequence<event_t> event;

} event_list_t;

typedef struct event_schema_s_t {
event_type_t type;
string_t name;
sequence<attribute_t> attr;

} event_schema_t;

typedef struct event_type_list_s_t {
sequence<event_schema_t> schema;

} event_type_list_t;

typedef enum attr_op_e_t {
c_attr_op_eq,
c_attr_op_gt,
c_attr_op_lt,
c_attr_op_ge,
c_attr_op_le,
c_attr_op_ne,
c_attr_op_bitand,
c_attr_op_substr

} attr_op_t;

typedef struct attrlist_s_t {
sequence<attribute_t> attr;

} attrlist_t;

typedef enum filter_grammar_e_t {
c_fg_default,
c_fg_OQL,
c_fg_other

} filter_grammar_t;

178 Preliminary Specification

CORBA Implementation Composite Data Types

typedef struct default_fg_s_t {
string_t attr_name;
attr_op_t attr_operator;
attribute_t attr_value;

} default_fg_t;

typedef struct filter_exp_s_t {
union tagged switch(filter_grammar_t) {

case c_fg_default:
default_fg_t def_filter;

case c_fg_OQL:
string_t oql_filter;

case c_fg_other:
string_t other;

} filter;
} filter_exp_t;

typedef struct filter_exp_list_s_t {
sequence<filter_exp_t> filter_exp;

} filter_exp_list_t;

typedef struct filter_s_t {
string_t filter_name;
event_type_t type;
filter_exp_list_t filter_exp_list;

} filter_t;

typedef struct filter_list_s_t {
sequence<filter_t> filter;

} filter_list_t;

typedef struct filtername_list_s_t {
sequence<string_t> filter_names;

} filtername_list_t;

Part 2: Implementations in Different Environments 179

Exceptions CORBA Implementation

B.4 Exceptions
The CORBA implementation uses CORBA user exceptions rather than returning status through
and output argument. This retains the spirit of Part 1 of this specification, while conforming to
CORBA C++ common practice of using exceptions for status delivery. These are mapped to the
status codes specified in Part 1.

ExAlreadyRegistered a consumer with this name is already registered.

ExConsumerAlreadyStarted the consumer is already started.

ExConsumerNotStarted the consumer has not started.

ExEmptyFilterDB the listed filters could not be returned because the filter database
is empty.

ExEventTypeExists the event type to be added already exists.

ExEventTypeNotFound the specified event type was not found.

ExFilterExists the given filter name already exists.

ExFilterInUse the filter cannot be deleted because it is currently in use.

ExFilterNotFound the requested filter does not exist.

ExForwardingEventServiceNotThere
the event service to forward to is not available.

ExForwardingEventLoop the host name introduces a loop condition, where EMS would be
forwarding events to itself.

ExInsufficientPermission the caller does not have sufficient permission to perform the
operation.

ExInvalidEventType the schema for the event type is not valid.

ExInvalidFilter the input parameters specify an invalid filter.

ExInvalidHandle the handle parameter is not valid.

ExInvalidName the name parameter contains invalid characters.

ExNoConsumers no consumers are registered.

ExNoEvent tried to pull an event of a specified type, but there are no events
to pull.

ExNoEvents there are no undelivered events.

ExNoMemory an EMS object could not be allocated.

ExNoSuppliers no suppliers are registered.

ExNoTypeList there was no type list in the function invocation.

ExUnknownConsumer tried to unregister a consumer that was not registered.

ExUnsupportedNameService unsupported name service on host name.

ExNotRegistered the user, for example, the consumer, of the service is not
registered.

ExNoFilters no filters exist.

180 Preliminary Specification

CORBA Implementation Registration Interface

B.5 Registration Interface
The registration interface is not required for the CORBA implementation. The CORBA
IDL-generated stubs have a bind method used for connecting to a specific host. In addition, each
bind is interface-specific, using the CORBA COS Event Service for the connection registration.

Part 2: Implementations in Different Environments 181

Event Type Interface CORBA Implementation

B.6 Event Type Interface
The event type interface provides support for manipulating the event type repository.

B.6.1 Add

The Add operation adds a new type to the repository. This makes the new event type known to
the EMS.

The input parameter contains the schema describing a new event type. This structure includes a
string uniquely identifying the event type within the repository and a sequence containing the
attributes supported by the new event type. Each attribute in the sequence consists of a name for
the attribute, accompanied by an any value, indicating the attribute’s type. Note that each event
type automatically supports the attributes defined for an event header, so the list of attibutes
supplied for the new event type should include any additional attributes.

Syntax

void Add(in event_schema_t schema)
raises(ExEventTypeExists, ExInsufficientPermission);

Exceptions

If the event type (based on the unique identifier) already exists in the repository, the
ExEventTypeExists exception is raised.

If the caller is not permitted to add event types, the ExInsufficientPermission exception is raised.

B.6.2 Delete

The Delete operation removes an event type from the repository.

The input parameters should be the common name or the unique identifier for an existing event
type. The first parameter should be the null string or the human readable name for the event
type. The second parameter should be the null unique identifier or the unique identifier for the
event type. At least one of the parameters must contain a non-null value. The common name
should only be used when the common names are unique within the repository. The action
taken for non-unique common names, when a non-unique common name is specified, is not
specified. When both the common name and the unique identifier are specified, they must refer
to the same event type.

Syntax

void Delete(in string_t type_name,
in event_type_t type)

raises(ExEventTypeNotFound, ExInvalidName, ExInsufficientPermission);

Exceptions

If the given event type does not exist, then the ExEventTypeNotFound exception is raised.

If both input parameters are specified and they do not refer to an event type, then the
ExInvalidName exception is raised.

If the caller is not permitted to remove event types, the ExInsufficientPermission exception is
raised.

182 Preliminary Specification

CORBA Implementation Event Type Interface

B.6.3 Get

The Get operation retrieves the schema for the given event type from the repository.

The input parameters should be the common name or the unique identifier for an existing event
type. The first parameter should be the null string or the human readable name for the event
type. The second parameter should be the null unique identifier or the unique identifier for the
event type. At least one of the parameters must contain a non-null value. The common name
should only be used when the common names are unique within the repository. The action
taken for non-unique common names, when a non-unique common name is specified, is not
specified. When both the common name and the unique identifier are specified, they must refer
to the same event type.

Syntax

void Get(in string_t type_name,
in event_type_t type,
out event_schema_t schema)

raises(ExEventTypeNotFound, ExInvalidName, ExInsufficientPermission);

Exceptions

If the given event type does not exist, then the ExEventTypeNotFound exception is raised.

If both input parameters are specified and they do not refer to an event type, then the
ExInvalidName exception is raised.

If the caller is not permitted to remove event types, the ExInsufficientPermission exception is
raised.

B.6.4 GetList

The GetList operation returns the list of all event type schemas currently maintained within the
repository. Each element within the returned list is a structure of the same type described above
for the Add operation.

Syntax

void GetList(out event_type_list_t type_list)
raises(ExNoTypeList, ExInsufficientPermission);

Exceptions

If no event type schema exist in the repository, the ExNoTypeList exception is raised.

If the caller is not permitted to retrieve schema from the repository, the ExInsufficientPermission
exception is raised.

Part 2: Implementations in Different Environments 183

Event Filter Interface CORBA Implementation

B.7 Event Filter Interface
As described in the general model, the filter repository contains registered filters. Consumers can
specify a list of names of registered filters, when registering with the EMS. The filter list is used
to determine which events should be forwarded to a given consumer. The event filter interface
defines methods supporting the management of filters by an EMS. The FreeFilter, FreeFilterList
and FreeNameList operations described in Part 1 are not required for the CORBA implementation.

B.7.1 Add

The Add operation adds a new filter to the repository.

The first parameter should be the name for the event filter. This name must be unique among all
filters in the repository. The second parameter should be the identifier for an existing event type.
It associates the filter with the event type. The content of this parameter can either be the unique
identifier of an event type or the common name of the event type. The third parameter contains
the list of filter expressions comprising the new filter.

Syntax

void Add(in string_t filter_name,
in event_type_t type,
in filter_exp_list_t exp_list)

raises(ExInsufficientPermission, ExFilterExists,
ExInvalidFilter, ExEventTypeNotFound, ExInvalidName);

Exceptions

If the caller is not permitted to add the filter, the ExInsufficientPermission exception is raised.

If the filter already exists, the ExFilterExists exception is raised.

If the filter list is not properly composed, the ExInvalidFilter exception is raised.

If the given event type does not exist, the ExEventTypeNotFound exception is raised.

If the filter name contains invalid characters, the ExInvalidName exception is raised.

B.7.2 Append

The Append operation adds a list of filters to an existing filter expression in the filter repository.

The first parameter should specify the name of a filter that already exists within the filter
repository. The second input parameter contains a list of filter expressions of the type described
above. The filter repository is updated to append the list of supplied filter expressions to the end
of the current list of filter expressions associated with the given filter.

Syntax

void Append(in string_t filter_name,
in filter_exp_list_t exp_list)

raises(ExInsufficientPermission, ExInvalidFilter, ExFilterNotFound,
ExInvalidName);

184 Preliminary Specification

CORBA Implementation Event Filter Interface

Exceptions

If the caller is not permitted to add the filter, the ExInsufficientPermission exception is raised.

If the filter list is not properly composed, the ExInvalidFilter exception is raised.

If the filter does not exist in the repository, the ExFilterNotFound exception is raised.

If the filter name contains invalid characters, the ExInvalidName exception is raised.

B.7.3 Delete

The Delete operation removes an existing filter from the filter repository.

The parameter gives the name of the filter to be removed. This operation will only succeed if
there are no users of the filter.

Syntax

void Delete(in string_t filter_name)
raises(ExInsufficientPermission, ExFilterNotFound, ExFilterInUse, ExInvalidName);

Exceptions

If the caller is not permitted to delete the filter, the ExInsufficientPermission exception is raised.

If the filter does not exist in the repository, the ExFilterNotFound exception is raised.

If the filter name contains invalid characters, the ExInvalidName exception is raised.

B.7.4 Get

The Get operation returns the filter expressions associated with a given filter in the filter
repository.

The first parameter specifies the name of the filter whose filter expressions should be returned.
The second parameter is an output parameter that, upon successful completion of the operation,
identifies the type of event to which the filter applies. The third parameter is an output
parameter that, upon successful, completion of the operation, will contain the list of filter
expressions associated with the given filter.

Syntax

void Get(in string_t filter_name,
in event_type_t type,
out filter_exp_list_t filter_exprs)

raises(ExInsufficientPermission, ExFilterNotFound, ExInvalidName);

Exceptions

If the caller is not permitted to get (read) the filter, the ExInsufficientPermission exception is
raised.

If the filter does not exist in the repository, the ExFilterNotFound exception is raised.

If the filter name contains invalid characters, the ExInvalidName exception is raised.

Part 2: Implementations in Different Environments 185

Event Filter Interface CORBA Implementation

B.7.5 GetList

The GetList operation returns a list of all filters that currently exist in the filter repository.

Each element in the returned list contains the name of a filter, the related event type, and the list
of filter expressions associated with the filter.

Syntax

void GetList(out filter_list_t filter_list)
raises(ExInsufficientPermission, ExEmptyFilterDB);

Exceptions

If the caller is not permitted to read the list of filter names, the ExInsufficientPermission
exception is raised.

If there are no filters in the filter repository, the ExEmptyFilterDB exception is raised.

B.7.6 GetNameList

The GetNameList operation returns the names of the filters in the filter repository.

Syntax

void GetNameList(out filtername_list_t name_list)
raises(ExInsufficientPermission, ExEmptyFilterDB);

Exceptions

If the caller is not permitted to read the list of filter names, the filter, the ExInsufficientPermission
exception is raised.

If there are no filters in the filter repository, the ExEmptyFilterDB exception is raised.

186 Preliminary Specification

CORBA Implementation Consumer Interface

B.8 Consumer Interface
The consumer interface allows event consumers to register and unregister with EMS. Once
registered, consumers can add and delete filters, define the interesting events, etc. When EMS
receives events from event suppliers, the event is filtered, using the event filter, and only
matching events are forwarded to interested consumers.

B.8.1 PushConsumerRegister

The PushConsumerRegister operation registers a new push consumer with the EMS.

The first parameter specifies the object reference of an object which supports the
CosEventComm::PushConsumer interface. As described in COS V1 (see reference COS V1), an
object supporting this interface will support a push operation which is invoked by an event
supplier in order to send the consumer an event. The second input parameter specifies a list of
the names of filters that describe which events the new consumer is interesting in receiving. Each
filter name in the list should correspond to a filter that exists in the filter repository associated
with the EMS. The information about the new consumer and the names of filters that should be
applied to events to determine which the new consumer is interested in receiving is maintained
in the EMS repository.

Note that from the client’s perspective, this operation is invoked on the Consumer interface
supported by a particular EMS. Effectively, this operation forms a connection between the target
EMS and a consumer. It should be recalled that internally, each EMS manages one or more event
channels of the type described COS V1 (see reference COS V1). It is anticipated that during the
course of performing this operation the EMS will invoke the appropriate operations to create the
push consumer relationship between the appropriate event channel and the input consumer. Any
event received by the EMS for which one of the filters in the consumer’s filter group evaluates to
TRUE will be forwarded by the event channel to the consumer by invoking the push operation
supported by the consumer’s CosEventComm::PushConsumer interface. The precise
relationship between event channels, event suppliers, and event consumers is left as an
implementation detail since these aspects will be largely dependent on the specific
implementation of the underlying event channels.

Syntax

void PushConsumerRegister(in CosEventComm::PushConsumer consumer,
in filtername_list_t filter_group)

raises(ExAlreadyRegistered, ExFilterNotFound, ExInsufficientPermissions,
ExNoMemory);

Exceptions

If the input consumer is already registered with the target EMS, the ExAlreadyRegistered
exception is raised.

If one of the event filters named in the list contained by the second input parameter does not
exist in the filter repository associated with the target EMS, the ExFilterNotFound exception is
raised. The filter name field of the exception is set to the name of the missing filter from the input
list.

If the consumer being registered is not authorized to register with the EMS, the
ExInsufficientPermission exception is raised. This exception is also raised when the consumer is
not permitted to receive one or more event types contained in the input list.

If there is insufficient memory to allocate to register the connection, the ExNoMemory exception
is raised.

Part 2: Implementations in Different Environments 187

Consumer Interface CORBA Implementation

B.8.2 PullConsumerRegister

The PullConsumerRegister operation registers a new pull consumer with the EMS.

The first input parameter specifies the object reference of an object which supports the
CosEventComm::PullConsumer interface. As described in COS V1 (see reference COS V1), an
object supporting this interface will form a connection with an object supporting the
CosEventComm::PullSupplier interface. Such an object supports pull and try_pull operations
that enable the consumer to receive events available from the supplier through the event
channel.

The second input parameter specifies a list of the names of filters that describe which events the
new consumer is interested in receiving. Each filter name in the list should correspond to a filter
in the repository. The information about the new consumer and the names of filters that should
be applied to events to determine which the new consumer is interested in receiving is
maintained in the EMS filter repository.

Note that from the client’s perspective, this operation is invoked on the Consumer interface of the
specific EMS. Effectively, this operation forms a connection between the EMS and the consumer.
It should be recalled that internally, each EMS manages one or more event channels of the type
described in COS V1 (see reference COS V1). It is anticipated that during the course of
performing this operation the EMS will invoke the appropriate event channel and the input
consumer. Any event received by the EMS for which one of the filters in the consumer’s filter
group evaluates to TRUE will be made available for the pulling consumer. This can be done by
having the client invoke the Receive operation in the Consumer interface. This operation is likely
to be implemented in terms of the pull or try_pull operations supported by an event channel
managed by the EMS. The precise relationship between the EMS and the event channels, and
how the connections are established between event channels, event suppliers, and event
consumers is left as an implementation detail since these aspects will be largely dependent on
the specific implementation of the underlying event channels.

Syntax

void PullConsumerRegister(in CosEventComm::PullConsumer consumer,
in filtername_list_t filter_group)

raises(ExAlreadyRegistered, ExFilterNotFound, ExInsufficientPermission,
ExNoMemory);

Exceptions

If the input consumer is already registered with the target EMS, the ExAlreadyRegistered
exception is raised.

If one of the event filters named in the list contained by the second input parameter does not
exist in the filter repository associated with the target EMS, the ExFilterNotFound exception is
raised. The filter name field of the exception is set to the name of the missing filter from the input
list.

If the consumer being registered is not authorized to register with the EMS, the
ExInsufficientPermission exception is raised. This exception is also raised when the consumer is
not permitted to receive one or more event types contained in the input list.

If there is insufficient memory to allocate to register the connection, the ExNoMemory exception
is raised.

188 Preliminary Specification

CORBA Implementation Consumer Interface

B.8.3 Unregister

The Unregister operation removes knowledge of the consumer from the repository of the
targeted EMS.

The input parameter specifies the object reference of the consumer to be unregistered.

Syntax

void Unregister(in consumer_t consumer)
raises(ExNotRegistered);

Exceptions

If the input object reference does not indicate a consumer that is registered with the target EMS,
the ExNotRegistered exception is raised.

B.8.4 AddFilterToGroup

The AddFilterToGroup operation adds new event filters to a consumer’s event filter group. A
consumer’s event filter group contains all filters that the consumer has registered for, and thus
collectively describes all criteria that determine which events will be forwarded to the consumer.

The first input parameter is the object reference of the consumer whose event filter group is
being updated. This consumer should be currently registered as a consumer of the target EMS.

The second input parameter contains a sequence of the names of event filters that should be
added to the consumer’s event filter group. Each element in the sequence should be the name of
an event filter that currently exists in the filter repository maintained by the target EMS.

Syntax

void AddFilterToGroup(in consumer_t consumer,
in filtername_list_t event_filters)

raises(ExInsufficientPermission, ExNotRegistered, ExFilterNotFound);

Exceptions

If the first parameter is not the object reference of a currently registered consumer, the
ExNotRegistered exception is raised.

If any of the elements in the second parameter is not the name of a filter, that currently exists in
the filter repository, the ExFilterNotFound exceptions is raised with the filter name field of the
exception structure set to the first such name encountered in the sequence.

If the input consumer is not authorized to receive events on one or more types indicated by the
filters being registered for, the ExInsufficientPermission exception is raised.

Part 2: Implementations in Different Environments 189

Consumer Interface CORBA Implementation

B.8.5 DeleteFilterFromGroup

The DeleteFilterFromGroup operation removes a filter from the group of filters of the currently
registered consumer.

The first input parameter is the object reference of the consumer whose event filter grop is being
updated. This consumer should be currently registered in the target EMS repository.

The second input parameter contains a sequence of the names of event filters that should be
removed from the consumer’s event filter group. Each element in the sequence should be the
name that currently exists in the target EMS filter repository, and is currently one of the event
filters in the input consumers filter group.

Syntax

void DeleteFilterFromGroup(in consumer_t consumer,
in filtername_list_t filter_name)

raises(ExInsufficientPermission, ExNotRegistered, ExFilterNotFound);

Exceptions

If the input consumer is not authorized to receive events on one or more types indicated by the
filters being registered for, the ExInsufficientPermission exception is raised.

If the first parameter is not the object reference of a currently registered consumer, the
ExNotRegistered exception is raised.

If any of the elements in the second parameter is not the name of a filter, that currently exists in
the filter repository, the ExFilterNotFound exceptions is raised with the filter name field of the
exception structure set to the first such name encountered in the sequence.

B.8.6 GetFilterGroup

The GetFilterGroup operationreturns the list of filters for which the consumer is currently
registered.

The first parameter is the object reference of an event consumer that should be currently
registered with the target EMS.

Upon return from this operation, the second parameter will contain a list of the names of all
event filters for which the consumer is currently registered.

Syntax

void GetFilterGroup(in consumer_t consumer,
out filtername_list_t filter_group)

raises(ExNotRegistered, ExNoFilters);

Exceptions

If the first parameter is not the object reference of a currently registered consumer, the
ExNotRegistered exception is raised.

If the consumer is not curently registered for any event filters, the ExNoFilters exception is
raised.

190 Preliminary Specification

CORBA Implementation Consumer Interface

B.8.7 GetRegistration

The GetRegistration operation returns object references for current consumers.

Syntax

void GetRegistration(out consumer_list_t push_consumers,
out consumer_list_t pull_consumers)

raises(ExNoConsumers);

Exceptions

If there are no registered consumers, the ExNoConsumers exception is raised.

B.8.8 Receive

The Receive operation returns an event for a currently registered pull consumer.

The first input parameter is an area to receive the event for a pull consumer.

Syntax

void Receive(inout event_t event)
raises(ExNotRegistered);

Exceptions

If the current consumer is not currently registered as a pull consumer, the ExNotRegistered
exception is raised.

Part 2: Implementations in Different Environments 191

ConsumerAdmin Interface CORBA Implementation

B.9 ConsumerAdmin Interface
The ConsumerAdmin interface is the part of the Administration interface pertaining to the
management of consumers. This interface inherits the Consumer interface, permitting the
administrator to perform consumer operations with a ConsumerAdmin object reference.

B.9.1 ListConsumers

The ListConsumers operation lists the consumers registered with the target EMS.

Upon successful return, the output parameter contains a sequence of consumers in the consumer
repository for the target EMS.

Syntax

void ListConsumers(out consumer_list_t consumers)
raises(ExNoConsumers);

Exceptions

If there are no consumers in the consumer repository, the ExNoConsumers exception is raised.

B.9.2 DeleteConsumer

The DeleteConsumer operation removes a consumer from the consumer repository of the target
EMS.

At least one of the input parameters must be specified. If both parameters are specified, they
must reference the same consumer. The first input parameter specifies the name of the
consumer. This parameter is not specified by referencing the null string as the input parameter.
The second parameter specifies the identifier of the consumer. This parameter is not specified by
referencing the null identifier as the input parameter.

Syntax

void DeleteConsumer(in string_t consumer,
in uuid_t uuid)

raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input specification does not reference a consumer in the consumer repository, or the input
parameters are both specified and reference different consumers, the ExInvalidName exception is
raised.

If the user is not authorized to remove consumers from the consumer repository, the
ExInsufficientPermission exception is raised.

192 Preliminary Specification

CORBA Implementation ConsumerAdmin Interface

B.9.3 AdminDeleteFilterFromGroup

The AdminDeleteFilterFromGroup operation removes a sequence of filters from a registered
consumer’s filter group. The registered consumer may be retrieved through the
Consumer::GetRegistration operation. The sequence of filter names for the registered consumer
may be obtained through the Consumer::GetFilterGroup operation.

At least one of the input parameters for the consumer name must be specified. If both
parameters are specified, they must reference the same consumer. The first input parameter
specifies the name of the consumer. This parameter is not specified by referencing the null string
as the input parameter. The second parameter specifies the identifier of the consumer. This
parameter is not specified by referencing the null identifier as the input parameter. The third
input parameter is the sequence of filter names to be removed from the consumer’s filter group.
The filter names in the sequence must be members of the consumer’s filter group.

Syntax

void AdminDeleteFilterFromGroup(in string_t consumer,
in uuid_t uuid,
in filtername_list_t filter_name)

raises(ExInvalidName, ExInvalidFilter, ExInsufficientPermission);

Exceptions

If the input specification does not reference a registered consumer for the target EMS, or the
input parameters are both specified and reference different consumers, the ExInvalidName
exception is raised.

If a filter name is not a member of the registered consumers filter group, the ExInvalidFilter
exception is raised.

If the user is not authorized to remove filters from the registered consumers filter group, the
ExInsufficientPermission exception is raised.

B.9.4 AdminAddFilterToGroup

The AdminAddFilterToGroup operation inserts the set of filters into the registered consumer’s
filter group. The registered consumer may be retrieved through the Consumer::GetRegistration
operation. The sequence of filter names for the registered consumer may be obtained through the
Consumer::GetFilterGroup operation.

At least one of the input parameters for the consumer name must be specified. If both
parameters are specified, they must reference the same consumer. The first input parameter
specifies the name of the consumer. This parameter is not specified by referencing the null string
as the input parameter. The second parameter specifies the identifier of the consumer. This
parameter is not specified by referencing the null identifier as the input parameter. The third
input parameter is the sequence of filter names to be added to the consumer’s filter group. The
filter names in the sequence must not be members of the consumer’s filter group.

Part 2: Implementations in Different Environments 193

ConsumerAdmin Interface CORBA Implementation

Syntax

void AdminAddFilterToGroup(in string_t consumer,
in uuid_t uuid,
in filtername_list_t filter_name)

raises(ExInvalidName, ExInvalidFilter, ExInsufficientPermission);

Exceptions

If the input specification does not reference a registered consumer for the target EMS, or the
input parameters are both specified and reference different consumers, the ExInvalidName
exception is raised.

If a filter name is a member of the registered consumers filter group, the ExInvalidFilter exception
is raised.

If the user is not authorized to add filters to the registered consumers filter group, the
ExInsufficientPermission exception is raised.

B.9.5 AdminGetFilterGroup

The AdminGetFilterGroup operation retrieves a sequence of filter names representing the filter
group for the given consumer. The registered consumer may be retrieved through the
Consumer::GetRegistration operation.

At least one of the input parameters for the consumer name must be specified. If both
parameters are specified, they must reference the same consumer. The first input parameter
specifies the name of the consumer. This parameter is not specified by referencing the null string
as the input parameter. The second parameter specifies the identifier of the consumer. This
parameter is not specified by referencing the null identifier as the input parameter. The third
parameter is the sequence of filter names representing the consumer’s filter group.

Syntax

void AdminGetFilterGroup(in string_t consumer,
in uuid_t uuid,
out filtername_list_t filter_name)

raises(ExInvalidName, ExInsufficientPermission, ExNoFilters);

Exceptions

If the input specification does not reference a registered consumer for the target EMS, or the
input parameters are both specified and reference different consumers, the ExInvalidName
exception is raised.

If there are no members in the registered consumers filter group, the ExNoFilters exception is
raised.

If the user is not authorized to view the filter group of the registered consumer, the
ExInsufficientPermission exception is raised.

194 Preliminary Specification

CORBA Implementation Supplier Interface

B.10 Supplier Interface
The Supplier interface provides a means for managed objects to convey events to the EMS.

B.10.1 PushSupplierRegister

The PushSupplierRegister operation registers a new push supplier with the target EMS.

The input parameter specifies the object reference of an object which supports the
CosEventComm::PushSupplier interface. As described in COS V1 (see reference COS V1), an
object supporting this interface will form a connection with an object supporting the
CosEventComm::PushConsumer interface. Such an object which is often an event channel,
supports a push operation that enables the supplier to send events to it.

Note that from the client’s perspective, this operation is invoked on the Supplier interface for the
target EMS. Effectively, this operation forms a connection between the target EMS and a
supplier. It should be recalled that internally, each EMS manages one or more event channels of
the type described in COS V1 (see reference COS V1). It is anticipated that during the course of
performing this operation the target EMS will invoke the appropriate operations to create the
push supplier relationship between the appropriate event channel and the input supplier. This
will effectively enable the supplier to transmit events through an event channel managed by the
target EMS. This is performed transparently whenever the supplier invokes the i.I send
operation. The precise relationship between the target EMS and event channels is left as an
implementation detail since these aspects will be largely dependent on the specific
implementation of the underlying event channels.

Syntax

void PushSupplierRegister(in CosEventComm::PushSupplier supplier)
raises(ExAlreadyRegistered, ExInsufficientPermission);

Exceptions

If the input supplier is already registered with the target EMS, the ExAlreadyRegistered
exception is raised.

If the input supplier in not authorized to register with the target EMS, the
ExInsufficientPermission exception is raised.

B.10.2 PullSupplierRegister

The PullSupplierRegister operation registers a new pull supplier with the target EMS.

The input parameter specifies a reference to an object, supporting the
CosEventComm::PullSupplier interface. As described in COS V1 (see reference COS V1), an
object supporting this interface will support pull and try_pull operations which are invoked by
an event consumer in order to transmit events to the consumer of an event.

Precisely how an EMS will pull events from suppliers registered using this operation is a detail
left up to the implementers of this specification. It is envisioned that not all implementations will
support this feature.

Part 2: Implementations in Different Environments 195

Supplier Interface CORBA Implementation

Syntax

void PullSupplierRegister(in CosEventComm::PullSupplier supplier)
raises(ExAlreadyRegistered, ExInsufficientPermission);

Exceptions

If the input supplier is already registered with the target EMS, the ExAlreadyRegistered
exception is raised.

If the input supplier is not authorized to register with the target EMS, the
ExInsufficientPermission exception is raised.

B.10.3 Unregister

The Unregister operation removes registration knowledge of the supplier from the target EMS.

The input parameter specifies the object reference of the supplier to be unregistered.

Syntax

void UnRegister(in supplier_t supplier)
raises(ExNotRegistered, ExInsufficientPermission);

Exceptions

If the input object reference does not indicate a supplier that is already registered with the target
EMS, the ExNotRegistered exception is raised.

If the user is not authorized to unregister the supplier, the ExInsufficientPermission exception is
raised.

B.10.4 Send

The Send operation transmits a message from a push supplier to an EMS, so that it can be
forwarded to all clients registered with a filter that evaluates to TRUE when applied to the event.
The supplier sending the message should have previously registered with the target EMS as a
push supplier. Prior to invoking this operation, the supplier should set the supplier field of the
origin structure in the event header to the object reference it issued when registering with the
target EMS as a push supplier.

The input parameter specifies the event to be forwarded to the EMS.

Syntax

void Send(in event_t event)
raises(ExNotRegistered, ExInsufficientPermission);

Exceptions

If the supplier invoking this operation is not currently registered as a push supplier with the
target EMS, the ExNotRegistered exception is raised.

If the supplier sending the event is not authorized to send events of the type being generated, the
ExInsufficientPermission exception is raised.

196 Preliminary Specification

CORBA Implementation Supplier Interface

B.10.5 GetRegistration

The GetRegistration operation returns object references for current suppliers.

Syntax

void GetRegistration(out supplier_list_t push_suppliers,
out supplier_list_t pull_supplier)

raises(ExNoSuppliers);

Exceptions

If there are no registered suppliers, the ExNoSuppliers exception is raised.

Part 2: Implementations in Different Environments 197

SupplierAdmin CORBA Implementation

B.11 SupplierAdmin
The SupplierAdmin interface is the part of the Administrationinterfacepertainingtothe
management of suppliers. This interface inherits the Supplier interface, permitting the
administrator to perform supplier operations with a SupplierAdmin object reference.

B.11.1 ListSuppliers

The ListSuppliers operation lists the suppliers registered with the target EMS.

Upon successful return, the output parameter contains a sequence of suppliers in the supplier
repository for the target EMS.

Syntax

void ListSuppliers(out supplier_list_t suppliers)
raises(ExInsufficientPermission, ExNoSuppliers);

Exceptions

If the user is not authorized to retrieve the sequence of suppliers, the ExInsuficientPermission
exception is raised.

If there are no suppliers in the suppliers repository, the ExNoSuppliers exception is raised.

B.11.2 DeleteSupplier

The DeleteSupplier operation removes a supplier from the supplier repository of the target EMS.

At least one of the input parameters must be specified. If both parameters are specified, they
must reference the same supplier. The first input parameter specifies the name of the supplier.
This parameter is not specified by referencing the null string as the input parameter. The second
parameter specifies the identifier of the supplier. This parameter is not specified by referencing
the null identifier as the input parameter.

Syntax

void DeleteSupplier(in string_t supplier,
in uuid_t uuid)

raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input specification does not reference a supplier in the supplier repository, or the input
parameters are both specified and reference different suppliers, the ExInvalidName exception is
raised.

If the user is not authorized to remove suppliers from the supplier repository, the
ExInsufficientPermission exception is raised.

198 Preliminary Specification

CORBA Implementation EventIterator

B.12 EventIterator
As larger and more complex systems are built, there quickly becomes the possibility that a large
number of events could be stored in the event repository at any given point. The EventIterator
interface allows a client to iterate through a list of events — a subset of the events that are stored
in the event repository — using the operations described in this interface.

The result of using this interface is increased scalability, usability, and performance.

B.12.1 NextOne

The NextOne operation returns the next event as well as TRUE, showing that there was an event
available for the request. If there are no more events, FALSE is returned.

Syntax

ems_boolean NextOne(out event_t event);

Exceptions

Standard CORBA exceptions.

B.12.2 NextN

The NextN operation returns how_many events (the number of requested events) from the queue.
Should there be fewer than how_many events available, the maximum number of events
available will be sent back. In this method, the interpretation is that at most, how_many events
will be returned. Should there be no more events, FALSE is returned.

Syntax

ems_boolean NextN(in ems_ulong_int how_many,
out event_list_t events);

Exceptions

Standard CORBA exceptions.

B.12.3 Destroy

The Destroy operation destroys the iterator.

Syntax

void Destroy();

Exceptions

Standard CORBA exceptions.

Part 2: Implementations in Different Environments 199

Registry CORBA Implementation

B.13 Registry
The Registry interface is a factory for the Supplier and Consumer interfaces.

B.13.1 ForSupplier

The ForSupplier operation returns a Supplier object reference.

Syntax

Supplier ForSupplier();

Exceptions

Standard CORBA exceptions.

B.13.2 ForConsumer

The ForConsumer operation returns a Consumer object reference.

Syntax

Consumer ForConsumer();

Exceptions

Standard CORBA exceptions.

200 Preliminary Specification

CORBA Implementation RegistryAdmin

B.14 RegistryAdmin
The RegistryAdmin interface allows the administration of the target EMS and associated
repositories. This interface inherits the Registry interface, permitting consumer and supplier
operations from an object reference for this interface.

B.14.1 ListAttributes

The ListAttributes operation allows the users to retrieve EMS implementation defined registry
attributes.

Syntax

void ListAttributes(out attrlist_t attributes);

Exceptions

Standard CORBA exceptions.

B.14.2 GetUndeliveredEvents

The GetUndeliveredEvents operation permits the retrieval of undelivered events under control of
an event filter from the event repository.

The first input parameter specifies the name of an event filter. The null string may be used to
indicate no filtering.

The second input parameter indicates the number of events to fetch. This is used in conjunction
with the EventIterator object reference returned as the last parameter.

The third parameter is the sequence of events.

The fourth parameter is the object reference for an event iterator object.

Syntax

void GetUndeliveredEvents(in string filter_name,
in unsigned long how_many,
out event_list_t events,
out EventIterator ei)

raises(ExNoEvents, ExFilterNotFound, ExInsufficientPermission);

Exceptions

If there are no undelivered events meeting the filter criteria, the ExNoEvents exception is raised.

If the filter name does not specify the name of a filter for the target EMS, the ExFilterNotFound
exception is raised.

If the user is not authorized to retrieve undelivered events, the ExInsufficientPermission
exception is raised.

Part 2: Implementations in Different Environments 201

RegistryAdmin CORBA Implementation

B.14.3 DeleteUndeliveredEventsByFilter

The DeleteUndeliveredEventsByFilter operation provides a mechanism for the removal of the set
undelivered events meeting the evaluation criteria given by the filter.

Syntax

void DeleteUndeliveredEventsByFilter(in string filter_name)
raises(ExNoEvent, ExFilterNotFound, ExInsufficientPermission);

Exceptions

If there are no events meeting the filter criteria (or no undelivered events), the ExNoEvent
exception is raised.

If the filter does not exist in the target EMS, the ExFilterNotFound exception is raised.

If the user is not authorized to remove undelivered events, the ExInsufficientPermission
exception is raised.

B.14.4 DeleteUndeliveredEvent

The DeleteUndeliveredEvent operation removes the specified event from the target EMS.

Syntax

void DeleteUndeliveredEvent(in eventid_t event)
raises(ExNoEvent, ExInsufficientPermission);

Exceptions

If the specified event does not exist in the target EMS, the ExNoEvent exception is raised.

If the user is not authorized to retrieve undelivered events, the ExInsufficientPermission
exception is raised.

B.14.5 Forward

The Forward operation indicates that all events satisfying the specified filter at the current EMS
are to be forwarded to the EMS at the specified object reference. In effect, this operation creates a
supplierinthecurrentEMS.The current EMS in its forwarding supplier .

The first input parameter specifies the sequence of filters to be applied against the forwarding
request. The second input parameter specifies the object reference of an object which supports
the CosEventComm::PushConsumer interface. As described in COS V1 (see reference COSV1),
an object supporting this interface will support a push operation which is invoked by the current
EMS (using an event supplier interface) in order to send the target EMS (using a consumer
interface) an event.

202 Preliminary Specification

CORBA Implementation RegistryAdmin

Syntax

void Forward(in filtername_list_t filter_group,
in consumer_t xems_forward_consumer,
out string_t name,
out uuid_t uuid)

raises(ExForwardingEventServiceNotThere,
ExForwardingEventLoop, ExInsufficientPermission);

Exceptions

If the input host specification does not refer to an EMS or the EMS is not accessible from the
current EMS, the ExForwardEventServiceNotThere exception is raised.

If the adding the specified host in conjunction with the given filter specification would cause an
event forwarding loop, the ExForwardingEventLoop is raised.

If the user is not authorized to retrieve undelivered events, the ExInsufficientPermission
exception is raised.

Part 2: Implementations in Different Environments 203

Security CORBA Implementation

B.15 Security
The Security interface encapsulates the security administrative operations. This interface is
security implementation neutral. It may be used with an implementation of the CORBA security
service. It may used with other security implementations.

B.15.1 Edit

The Edit operation alters the permission attributes for a subject with regard to an EMS object.

The first input parameter specifies the EMS security object. The second input parameter specifies
the security subject, for example, a consumer or a supplier . The third input parameter describes
the new permissions. The output parameter contains the old permissions.

Syntax

void Edit(in secobj_t secobj,
in secsubj_t subject,
in secperm_t newperm,
out secperm_t oldperm)

raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input security object, security subject, or security permissions do not exist, the
ExInvalidName exception is raised.

If the user is not authorized to edit the security permissions, the ExInsufficientPermission
exception is raised.

B.15.2 Read

The Read operation retrieves the security permissions for the specified object and subject.

The first input parameter specifies the EMS security object. The second input parameter specifies
the security subject, for example, a consumer or a supplier . The output parameter contains the
current permissions.

Syntax

void Read(in secobj_t secobj,
in secsubj_t subject,
out secperm_t oldperm)

raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input security object or security subject do not exist, the ExInvalidName exception is raised.

If the user is not authorized to retrieve security permissions, the ExInsufficientPermission
exception is raised.

204 Preliminary Specification

CORBA Implementation Security

B.15.3 SubjAdd

The SubjAdd operation identifies a principal as an EMS subject. The first input parameter
specifies the EMS subject. The second input parameter specifies the principal.

Syntax

void SubjAdd(in secsubj_t subject,
in secprin_t principal)

raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input security subject already exists, the ExInvalidName exception is raised.

If the user is not authorized to add security subject/principal associations, the
ExInsufficientPermission exception is raised.

B.15.4 SubjDelete

The SubjDelete operation removes the association of a principal with an EMS subject.

The input parameter specifies the name of an existing subject.

Syntax

void SubjDelete(in secsubj_t subject)
raises(ExInvalidName, ExInsufficientPermission);

Exceptions

If the input security subject does not exist, the ExInvalidName exception is raised.

If the user is not authorized to remove security subject/principal associations, the
ExInsufficientPermission exception is raised.

B.15.5 SubjGet

The SubjGet operation retrieves the subject associated with the specified principal.

The input parameter specifies the principal. The principal may have been obtained through the
CORBA get_principal operation. The output parameter contains the EMS subject associated
with the principal.

Syntax

void SubjGet(in secprin_t principal,
out secsubj_t subject)

raises(ExInvalidName, ExInsufficientPermission);

Part 2: Implementations in Different Environments 205

Security CORBA Implementation

Exceptions

If the principal is not associated with a security subject, the ExInvalidName exception is raised.

If the user is not authorized to retrieve security subject/principal associations, the
ExInsufficientPermission exception is raised.

206 Preliminary Specification

CORBA Implementation Management Interface

B.16 Management Interface
The Management interface provides a means to administer various operational aspects of an
EMS.

B.16.1 Systems Attribute

The Systems attribute provides a means of identifying a federation of EMS.

Syntax

typedef sequence<Management> EventManagementSystems;

readonly attribute EventManagementSystems Systems;

B.16.2 ObtainRegistry

The ObtainRegistry operation returns an object reference to the Registry interface.

Syntax

Registry ObtainRegistry()
raises(ExInsufficientPermission);

Exceptions

If the user is not authorized to retrieve the registry object reference, the ExInsufficientPermission
exception is raised.

B.16.3 ObtainSecurity

The ObtainSecurity operation returns an object reference to the Security interface.

Syntax

Security ObtainSecurity()
raises(ExInsufficientPermission);

Exceptions

If the user is not authorized to retrieve the security object reference, the ExInsufficientPermission
exception is raised.

B.16.4 ObtainTypeRepository

The ObtainTypeRepository operation returns the EventType interface object reference.

Syntax

EventType ObtainTypeRepository()
raises(ExInsufficientPermission);

Part 2: Implementations in Different Environments 207

Management Interface CORBA Implementation

Exceptions

If the user is not authorized to retrieve the EventType interface object reference, the
ExInsufficientPermission exception is raised.

B.16.5 ObtainFilterRepository

The ObtainFilterRepository operation returns the EventFilter interface object reference.

Syntax

EventFilter ObtainFilterRepository()
raises(ExInsufficientPermission);

Exceptions

If the user is not authorized to retrieve the EventFilter interface object reference, the
ExInsufficientPermission exception is raised.

208 Preliminary Specification

CORBA Implementation IDL

B.17 IDL
//
// Event Management Service (EMS)
//

#include <CosEventComm.idl> // COS Event Communications
#include <CosTime.idl> // COS Time Specification
// #include <SysAdminLifeCycle.idl> EMS Location Specification

//
// eMS data primitives
//
// Note: These are outside the module definition to permit names like ems_char.
//

typedef boolean ems_boolean; // 1 byte
typedef octet ems_byte; // 1 byte
typedef char ems_char; // 1 byte
typedef char ems_small_int; // 1 byte
typedef char ems_usmall_int; // 1 byte
typedef short ems_short_int; // 2 bytes
typedef unsigned short ems_ushort_int; // 2 bytes
typedef long ems_long_int; // 4 bytes
typedef unsigned long ems_ulong_int; // 4 bytes

typedef struct ems_hyper_int_rep_s_t {
ems_long_int high;
ems_ulong_int low;

} ems_hyper_int;

typedef struct ems_uhyper_int_rep_s_t {
ems_ulong_int high;
ems_ulong_int low;

} ems_uhyper_int;

typedef float ems_short_float;// 4 bytes
typedef double ems_long_float; // 8 bytes

module ems {

//
// Universal unique identifier
//

typedef struct uuid {
ems_ulong_int time_low;
ems_ushort_int time_mid;
ems_ushort_int time_hi_and_version;
ems_usmall_int clock_seq_hi_and_reserved;
ems_usmall_int clock_seq_low;
ems_byte node[6];

} uuid_t;

//
// String representation
//

typedef string string_t;

Part 2: Implementations in Different Environments 209

IDL CORBA Implementation

typedef struct string_list_s_t {
sequence<string_t> strings;

} string_list_t;

//
// Timestamp representation
//

typedef Time::UtcT utc_t;

//
// Error Status representation
//

typedef ems_ulong_int error_t;

//
// Event Type
//

typedef uuid_t event_type_t;

//
// Delivery Type
//

typedef enum delivery_s_t {
delivery_push,
delivery_pull

} delivery_t;

//
// Security Types
//

typedef enum secobjtype_e_t {
secobj_server,
secobj_eventtypes,
secobj_filters,
secobj_consumers,
secobj_suppliers,
secobj_eventtype,
secobj_filter

} secobjtype_t;

typedef struct secobj {
secobjtype_t secobjtype;
string_t name;
uuid_t uuid;

} secobj_t;

//
// Permissions Attributes
//

typedef struct secperm {
ems_usmall_int control;
ems_usmall_int delete;
ems_usmall_int insert;

210 Preliminary Specification

CORBA Implementation IDL

ems_usmall_int read;
ems_usmall_int write;
ems_usmall_int execute;

} secperm_t;

//
// Subject Type
//

typedef struct secsubj {
string_t name;
uuid_t uuid;

} secsubj_t;

//
// Principal Type
//

typedef struct secprin {
Principal principal;

} secprin_t;

//
// Attribute Representation
//

typedef any attribute_t;

//
// Event Identifier
//

typedef struct eventid_s_t {
event_type_t type;
uuid_t id;

} eventid_t;

//
// Network Name Types
//

typedef enum nameservice_e_t {
ns_other,
ns_dns,
ns_dce,
ns_x500,
ns_nis,
ns_sna

} nameservice_t;

typedef struct netaddr_s_t {
sequence<octet> name;

} netaddr_t;

typedef struct netname_s_t {
nameservice_t service;
netaddr_t netaddr;

} netname_t;

Part 2: Implementations in Different Environments 211

IDL CORBA Implementation

//
// Consumer Type
//

enum ConsumerType {
PULLCONSUMER,
PUSHCONSUMER

} ;

typedef union EventConsumer switch(ConsumerType) {
case PULLCONSUMER:

CosEventComm::PullConsumer pullc;
case PUSHCONSUMER:

CosEventComm::PushConsumer pushc;
} consumer_t;

typedef struct consumer_list_s_t {
sequence<consumer_t> consumer;

} consumer_list_t;

//
// Supplier Type
//

enum SupplierType {
PULLSUPPLIER,
PUSHSUPPLIER

} ;

typedef union EventSupplier switch(SupplierType) {
case PULLSUPPLIER:

CosEventComm::PullSupplier pulls;
case PUSHSUPPLIER:

CosEventComm::PushSupplier pushs;
} supplier_t;

typedef struct supplier_list_s_t {
sequence<supplier_t> supplier;

} supplier_list_t;

//
// Event Origin Type
//

typedef struct ems_origin_s_t {
supplier_t supplier;
string_t descname;

// SysAdminLifeCycle::Location id;
ems_ulong_int pid; // supplementary field
ems_ulong_int uid; // supplementary field
ems_ulong_int gid; // supplementary field

} origin_t;

//
// Event Severity Type
//

typedef enum severity_e_t {
sev_info,

212 Preliminary Specification

CORBA Implementation IDL

sev_fatal,
sev_error,
sev_warning,
sev_notice,
sev_notice_verbose,
sev_debug

} severity_t;

//
// Event Priority Type
//

typedef ems_ulong_int priority_t;

//
// Event Header
//

typedef struct hdr_s_t {
eventid_t eventid;
origin_t origin;
severity_t severity;
utc_t received;
utc_t delivered;
priority_t priority;

} hdr_t;

//
// Event Type
//

typedef struct event_s_t {
hdr_t header;
sequence<attribute_t> item;

} event_t;

typedef struct event_list_s_t {
sequence<event_t> event;

} event_list_t;

//
// Event Schema
//

typedef struct event_schema_s_t {
event_type_t type;
string_t name;
sequence<attribute_t> attr;

} event_schema_t;

//
// Event Type List
//

typedef struct event_type_list_s_t {
sequence<event_schema_t> schema;

} event_type_list_t;

//

Part 2: Implementations in Different Environments 213

IDL CORBA Implementation

// Attribute Operators
//

typedef enum attr_op_e_t {
c_attr_op_eq,
c_attr_op_gt,
c_attr_op_lt,
c_attr_op_ge,
c_attr_op_le,
c_attr_op_ne,
c_attr_op_bitand,
c_attr_op_substr

} attr_op_t;

typedef struct attrlist_s_t {
sequence<attribute_t> attr;

} attrlist_t;

//
// Event Filter Grammar
//

typedef enum filter_grammar_e_t {
c_fg_default,
c_fg_OQL,
c_fg_other

} filter_grammar_t;

//
// Default Event Filter Grammar
//

typedef struct default_fg_s_t {
string_t attr_name;
attr_op_t attr_operator;
attribute_t attr_value;

} default_fg_t;

//
// Event Filter Expression
//

typedef struct filter_exp_s_t {
union tagged switch(filter_grammar_t) {

case c_fg_default:
default_fg_t def_filter;

case c_fg_OQL:
string_t oql_filter;

case c_fg_other:
string_t other;

} filter;
} filter_exp_t;

//
// Event Filter Expression List
//

typedef struct filter_exp_list_s_t {
sequence<filter_exp_t> filter_exp;

214 Preliminary Specification

CORBA Implementation IDL

} filter_exp_list_t;

//
// Event Filter Type
//

typedef struct filter_s_t {
string_t filter_name;
event_type_t type;
filter_exp_list_t filter_exp_list;

} filter_t;

typedef struct filter_list_s_t {
sequence<filter_t> filter;

} filter_list_t;

typedef struct filtername_list_s_t {
sequence<string_t> filter_names;

} filtername_list_t;

//
// Exceptions
//

exception ExAlreadyRegistered { };
exception ExConsumerAlreadyStarted { };
exception ExConsumerNotStarted { };
exception ExEmptyFilterDB { };
exception ExEventTypeExists { };
exception ExEventTypeNotFound { };
exception ExFilterExists { };
exception ExFilterInUse { };
exception ExFilterNotFound { };
exception ExForwardingEventServiceNotThere { };
exception ExForwardingEventLoop { };
exception ExInsufficientPermission { };
exception ExInvalidEventType { };
exception ExInvalidFilter { };
exception ExInvalidHandle { };
exception ExInvalidName { };
exception ExNoConsumers { };
exception ExNoEvent { };
exception ExNoEvents { };
exception ExNoMemory { };
exception ExNoSuppliers { };
exception ExNoTypeList { };
exception ExUnknownConsumer { };
exception ExUnsupportedNameService { };
exception ExNotRegistered { };
exception ExNoFilters { };

//
// Registration Interface
//
// Note: This interface is not required. The stubs have a bind
// method used for connecting to a specific host. In addition,
// each bind is interface specific.
//

Part 2: Implementations in Different Environments 215

IDL CORBA Implementation

//
// Event Type Interface
//
//

interface EventType {
void Add(in event_schema_t schema)

raises(ExEventTypeExists, ExInsufficientPermission);

void Delete(in string_t type_name,
in event_type_t type)

raises(ExEventTypeNotFound, ExInvalidName,
ExInsufficientPermission);

void Get(in string_t type_name,
in event_type_t type,
out event_schema_t schema)

raises(ExEventTypeNotFound, ExInvalidName,
ExInsufficientPermission);

void GetList(out event_type_list_t type_list)
raises(ExNoTypeList, ExInsufficientPermission);

} ;

//
// Event Filter Interface
//

interface EventFilter {
void Add(in string_t filter_name,

in event_type_t type,
in filter_exp_list_t exp_list)

raises(ExInsufficientPermission, ExFilterExists,
ExInvalidFilter, ExEventTypeNotFound, ExInvalidName);

void Append(in string_t filter_name,
in filter_exp_list_t exp_list)

raises(ExInsufficientPermission, ExInvalidFilter, ExFilterNotFound,
ExInvalidName);

void Get(in string_t filter_name,
in event_type_t type,
out filter_exp_list_t filter_exprs)

raises(ExInsufficientPermission, ExFilterNotFound, ExInvalidName);

void Delete(in string_t filter_name)
raises(ExInsufficientPermission, ExFilterNotFound, ExFilterInUse,

ExInvalidName);

void GetNameList(out filtername_list_t name_list)
raises(ExInsufficientPermission, ExEmptyFilterDB);

void GetList(out filter_list_t filter_list)
raises(ExInsufficientPermission, ExEmptyFilterDB);

} ;

//

216 Preliminary Specification

CORBA Implementation IDL

// Consumer Interface
//

interface Consumer {
void PushConsumerRegister(in CosEventComm::PushConsumer consumer,

in filtername_list_t filter_group)
raises(ExAlreadyRegistered, ExFilterNotFound,

ExInsufficientPermissions, ExNoMemory);

void PullConsumerRegister(in CosEventComm::PullConsumer consumer,
in filtername_list_t filter_group)

raises(ExAlreadyRegistered, ExFilterNotFound,
ExInsufficientPermissions, ExNoMemory);

void Unregister(in consumer_t consumer)
raises(ExNotRegistered);

void AddFilterToGroup(in consumer_t consumer,
in filtername_list_t event_filters)

raises(ExInsufficientPermission, ExNotRegistered, ExFilterNotFound);

void DeleteFilterFromGroup(in consumer_t consumer,
in filtername_list_t filter_name)

raises(ExInsufficientPermission, ExNotRegistered, ExFilterNotFound);

void GetFilterGroup(in consumer_t consumer,
out filtername_list_t filter_group)

raises(ExNotRegistered, ExNoFilters);

void GetRegistration(out consumer_list_t push_consumers,
out consumer_list_t pull_consumers)

raises(ExNoConsumers);

void Receive(inout event_t event)
raises(ExNotRegistered);

} ;

interface ConsumerAdmin: Consumer {
void ListConsumers(out consumer_list_t consumers)

raises(ExNoConsumers);

void DeleteConsumer(in string_t consumer,
in uuid_t uuid)

raises(ExInvalidName, ExInsufficientPermission);

void AdminDeleteFilterFromGroup(in string_t consumer,
in uuid_t uuid,
in filtername_list_t filter_name)

raises(ExInvalidName, ExInvalidFilter, ExInsufficientPermission);

void AdminAddFilterToGroup(in string_t consumer,
in uuid_t uuid,
in filtername_list_t filter_name)

raises(ExInvalidName, ExInvalidFilter, ExInsufficientPermission);

void AdminGetFilterGroup(in string_t consumer,
in uuid_t uuid,
out filtername_list_t filter_name)

Part 2: Implementations in Different Environments 217

IDL CORBA Implementation

raises(ExInvalidName, ExInsufficientPermission, ExNoFilters);

} ;

//
// Supplier Interface
//

interface Supplier {
void PushSupplierRegister(in CosEventComm::PushSupplier supplier)

raises(ExAlreadyRegistered, ExInsufficientPermission);

void PullSupplierRegister(in CosEventComm::PullSupplier supplier)
raises(ExAlreadyRegistered, ExInsufficientPermission);

void UnRegister(in supplier_t supplier)
raises(ExNotRegistered, ExInsufficientPermission);

void Send(in event_t event)
raises(ExNotRegistered, ExInsufficientPermission);

void GetRegistration(out supplier_list_t push_suppliers,
out supplier_list_t pull_supplier)

raises(ExNoSuppliers);

} ;

interface SupplierAdmin: Supplier {
void ListSuppliers(out supplier_list_t suppliers)

raises(ExInsufficientPermission, ExNoSuppliers);

void DeleteSupplier(in string_t supplier,
in uuid_t uuid)

raises(ExInvalidName, ExInsufficientPermission);

} ;

//
// Event Iterator Interface
//

interface EventIterator {
ems_boolean NextOne(out event_t event);

ems_boolean NextN(in ems_ulong_int how_many,
out event_list_t events);

void Destroy();

} ;

//
// Registry Interface
//

interface Registry {
Supplier ForSupplier();

Consumer ForConsumer();

218 Preliminary Specification

CORBA Implementation IDL

} ;

interface RegistryAdmin: Registry {
void ListAttributes(out attrlist_t attributes);

void GetUndeliveredEvents(in string filter_name,
in unsigned long how_many,
out event_list_t events,
out EventIterator ei)

raises(ExNoEvents, ExFilterNotFound, ExInsufficientPermission);

void DeleteUndeliveredEventsByFilter(in string filter_name)
raises(ExNoEvent, ExFilterNotFound, ExInsufficientPermission);

void DeleteUndeliveredEvent(in eventid_t event)
raises(ExNoEvent, ExInsufficientPermission);

void Forward(in filtername_list_t filter_group,
in string_t host,
out string_t name,
out uuid_t uuid)

raises(ExForwardingEventServiceNotThere, ExForwardingEventLoop,
ExInsufficientPermission);

} ;

//
// Security Interface
//

interface Security {
void Edit(in secobj_t secobj,

in secsubj_t subject,
in secperm_t newperm,
out secperm_t oldperm)

raises(ExInvalidName, ExInsufficientPermission);

void Read(in secobj_t secobj,
in secsubj_t subject,
out secperm_t oldperm)

raises(ExInvalidName, ExInsufficientPermission);

void SubjAdd(in secsubj_t subject,
in secprin_t principal)

raises(ExInvalidName, ExInsufficientPermission);

void SubjDelete(in secsubj_t subject)
raises(ExInvalidName, ExInsufficientPermission);

void SubjGet(in secprin_t principal,
out secsubj_t subject)

raises(ExInvalidName, ExInsufficientPermission);

} ;

//
// Administration Interface
//

Part 2: Implementations in Different Environments 219

IDL CORBA Implementation

interface Management;

typedef sequence<Management> EventManagementSystems;

interface Management {
readonly attribute EventManagementSystems Systems;

Registry ObtainRegistry()
raises(ExInsufficientPermission);

Security ObtainSecurityManagement()
raises(ExInsufficientPermission);

EventType ObtainTypeRepository()
raises(ExInsufficientPermission);

EventFilter ObtainFilterRepository()
raises(ExInsufficientPermission);

} ;
} ;

220 Preliminary Specification

Preliminary Specification

Part 3:

Event Structures for the Basic Event Set

The Open Group

Part 3: Event Structures for the Basic Event Set 221

222 Preliminary Specification

Chapter 14

Event Objects

14.1 CMIP Event Objects
CMIP defines an event report which is used to report an event to a peer CMISE-service-user. Its
arguments are given in the structures on the following page.

Part 3: Event Structures for the Basic Event Set 223

CMIP Event Objects Event Objects

EventReply ::= SEQUENCE {
eventType EventTypeId,
eventReplyInfo [8] ANY DEFINED by eventType OPTIONAL }

EventReportArgument ::= SEQUENCE {
managedObjectClass ObjectClass,
managedObjectInstance ObjectInstance,
eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventType EventTypeId,
eventInfo [8] ANY DEFINED BY eventType OPTIONAL }

EventReportResult ::= SEQUENCE {
managedObjectClass mapping ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventReply EventReply OPTIONAL }

EventTypeId ::= CHOICE {
globalFor [6] IMPLICIT OBJECT IDENTIFIER,
localFor [7] IMPLICIT INTEGER }

ObjectClass ::= CHOICE {
globalFor [6] IMPLICIT OBJECT IDENTIFIER,
localFor [7] IMPLICIT INTEGER }

ObjectInstance ::= CHOICE {
distinguishedName [2] IMPLICIT DistinguishedName,
nonSpecificFor [3] IMPLICIT OCTET STRING,
localDistinguishedName [4] IMPLICIT RDNSequence }

AttributeValueAssertion ::= SEQUENCE {
attributeType AttributeType ,
attributeValue AttributeValue }

Attribute ::= SEQUENCE {
type AttributeType ,
values SET OF AttributeValue }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

RelativeDistinguishedName ::= SET OF AttributeValueAssertion

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

Name ::= CHOICE {
rDNSequence RDNSequence }

224 Preliminary Specification

Event Objects CMIP Event Objects

These arguments map down to the set of basic attribute types listed in Table 14-1.

Attribute Name Attribute Format Description
Supports the capability to pass
arbitrary ASN.1 syntax

ANY es_c_attr_bytes

GeneralizedTime ems_c_attr_utc Time event occurred
Sequence of integers to uniquely
identify anything

OBJECT IDENTIFIER es_c_attr_ulong_int*

INTEGER es_c_attr_ulong_int Integer value
OCTET STRING es_c_attr_char_string Sequence of bytes

Table 14-1 Mapping for CMIS Event Structure Data Types

14.2 DCE SVC Event Objects
DCE SVC is used to route error messages from DCE Applications. Messages can be routed by
severity to any of the following locations:

• a Text File

• a Binary File

• STDOUT

• STDERR.

An additional routing was added to also send messages to XEMS. This section shows the
apping from an SVC message to an XEMS Event.

The data declaration of the SVC data structure is as follows:

typedef struct dce_svc_prolog_s_t {
dce_svc_handle_t handle;
int version;
utc_t t;
const char *argtypes;
unsigned32 table_index;
unsigned32 attributes;
unsigned32 message_index;
char *format;
const char *file;
char progname[dce_svc_c_progname_buffsize];
int line;
pthread_t thread_id;

} *dce_svc_prolog_t;

Part 3: Event Structures for the Basic Event Set 225

DCE SVC Event Objects Event Objects

Index Attribute Name Attribute Format Description
Version number of interface that
generated message

0 version es_c_attr_ulong_int

1 t es_c_attr_utc Time message was written
The format-specifier string for the
message

2 argtypes es_c_attr_char_string

3 table_index es_c_attr_ulong_int Subcomponent table index
4 attributes es_c_attr_ulong_int Message attributes, OR’d together

Index number of message in message
table

5 essage_index ems_c_attr_ulong_int

Format argument values for the
message

6 format ems_c_attr_char_string

Name of the source file where
message came from

7 file es_c_attr_char_string

Program name where message came
from

8 progname ems_c_attr_char_string

Line number where message came
from

9 line es_c_attr_ulong_int

Thread ID of the thread that output
the message

10 threadid es_c_attr_ulong_int

SVC Component name of program
that output message

11 component_name ems_c_attr_char_string

Name SVC SubComponent that
output message

12 sc_name ems_c_attr_char_string

13 attribute.debug es_c_attr_ushort_int Debug attribute of message
14 attribute.severity es_c_attr_ushort_int SVC Severity of message

Action/Routing attribute of message15 attribute.actroute es_c_attr_ulong_int

16 SVC Argument 1

. . .

15+N SVC Argument N

Table 14-2 Mapping for a DCE SVC Message

14.3 EMS Event Objects
The following set of events are supplied by the Event Service itself. These events are supplied to
notify when defined event service events occur.

14.3.1 Event Service Action Notification Event

This event type is supplied when the event service performs an action such as register a
consumer or supplier, or add or delete an event type or filter.

Type: e433700c-b3cd-11cf-9550-10005a4f3556

Name: EventServiceActionNotification

Size: 33

226 Preliminary Specification

Event Objects EMS Event Objects

Index Attribute Name Attribute Format Description
0 EStype es_c_attr_ushort_int Event Service event type
1 name ems_c_attr_char_string Name depending on EStype
2 uuid es_c_attr_uuid UUID depending on EStype

Table 14-3 Event Service Action Notification Event

Possible values for EStype are:

ESconsumerRegister
notifies when a consumer has registered.

name Consumer name

uuid Consumer uuid

ESsupplierRegister
notifies when a supplier has registered.

name Supplier name

uuid Supplier uuid

ESconsumerConnect
notifies when a consumer has connected.

name Consumer name

uuid Consumer uuid

ESconsumerUnregister
notifies when a consumer has unregistered.

name Consumer name

uuid Consumer uuid

ESeventTypeAdd
notifies when an even type has been added.

name Event Type name

uuid Event Type uuid

ESeventTypeDelete
notifies when an event type has been deleted.

name Event Type name

uuid Event Type uuid

ESfilterAdd
notifies when a filter was added.

name Filter name

uuid Filter uuid

ESfilterDelete
notifies when a filter has been deleted.

name Filter name

Part 3: Event Structures for the Basic Event Set 227

EMS Event Objects Event Objects

uuid Filter uuid

ESfilterModify
notifies when a filter has been modified.

name Filter name

uuid Filter uuid

14.3.2 Event Service Queue Full Event

This event type is supplied when the event service event queue is full. If the consumer name is
specified, then that consumer’s event queue is full, otherwise, the event service event queue is
full.

Type: e67902ca-bfce-11cf-a767-10005a4f3556

Name: EventServiceQueueFull

Size: 33.

Index Attribute Name Attribute Format Description
Event queue size (that is, number of
events in Queue)

0 QueueSize es_c_attr_ulong_int

Consumer name if this is a consumer
event queue

1 name ems_c_attr_char_string

2 uuid es_c_attr_uuid Consumer UUID

Table 14-4 Event Service Queue Full Event

14.3.3 Event Service Error Event

This event type is supplied when an event service error occurs. The error message is a printf style
of error message with the arguments being in attributes 1 thru N.

Type: ff3c46fe-bfcf-11cf-b01c-10005a4f3556

Name: EventServiceError

Size: 1.

Index Attribute Name Attribute Format Description
0 ErrorMsg es_c_attr_char_string Event Service error message
1 Event Service error message Argument 1

. . .

1+N Event Service error message Argument N

Table 14-5 Event Service Error Event

228 Preliminary Specification

Event Objects EMS Event Objects

14.3.4 Event Service Undelivered Event Notification Event

This event type is supplied when the event service fails to deliver an event to a consumer.

Type: ff3c46ff-bfcf-11cf-b01c-10005a4f3556

Name: UndeliveredEvent Notification

Size:

Index Attribute Name Attribute Format Description
The consumer structure,
ems_consumer_t, associated with the
targeted consumer

0 Consumer ems_c_attr_bytes

The supplier structure,
es_supplier_t , associated with
the supplier of the undeliverable
event

1 Supplier es_c_attr_bytes

The event header structure, es_hdr_t,
associated with the undeliverable
event

2 EventHeader es_c_attr_bytes

Table 14-6 Event Service Undelivered Event Notification Event

14.3.5 Event Service Consumer Filter Group Changes

This event type is supplied when the event service changes the number of filters associated with
an active consumer filter group.

Type: ff3c4701-bfcf-11cf-b01c-10005a4f3556

Name: ConsumerFilterGroup

Size:

Index Attribute Name Attribute Format Description
0 type es_c_attr_ushort_int Action type
1 name ems_c_attr_char_string Consumer name
2 uuid es_c_attr_uuid Consumer uuid

Event handler function index for a
given consumer environment

3 index es_c_attr_ulong_int

Possible values for action types are:

ESaddFilterToGroup
notifies when an event filter has been added to a group.

ESdeleteFilterFromGroup
notifies when an event filter has been deleted from a group.

Part 3: Event Structures for the Basic Event Set 229

EMS Event Objects Event Objects

14.3.6 Event Service Consumer Interest

This event type is supplied when the event service changes the number of consumers interested
in an event type.

Type: ff3c4700-bfcf-11cf-b01c-10005a4f3556

Name: ConsumerEventInterest

Size:

Index Attribute Name Attribute Format Description
0 name ems_c_attr_char_string Event type name
1 uuid es_c_attr_uuid Event type uuid
2 count es_c_attr_ulong_int Number of interested consumers

14.4 SNMP Event Objects
SNMP defines an event report which is used to report an event from a SNMP proxy manager.

Index Attribute Name Attribute Format Description
SNMP Version number that
generated this message

0 version es_c_attr_ulong_int

1 community ems_c_attr_byte_string Community name
Indicates this message carries a Trap
PDU

2 Trap-PDU es_c_attr_ulong_int

MIB II sysObjectID of object
generating trap

3 enterprise es_c_attr_char_string

NetworkAddress of object generating
this trap

4 agent-addr es_c_attr_byte_string

5 generic-trap es_c_attr_long_int A generic SNMP trap type
Specific code is present even if
generic trap is not enterpriseSpecific

6 specific-trap es_c_attr_long_int

Time elapsed since the last
(re)initialization of entity and the
generation of this trap

7 tie-stamp ems_c_attr_ulong_int

Message specific VarBindList begins78+N variable-bindings

Table 14-7 Event Service Report Event from SNMP Proxy Manager

7. An SNMP OBJECT IDENTIFIER type which needs to be applied to ARRAY of Integer. Currently this EMS does not support this
construct.

230 Preliminary Specification

Event Objects SNMP Event Objects

Table 14-8 Mapping for SNMP Event Structure Data Types

SNMP XEMS Description
Primitive Types9 Attribute Format

Any
es_c_attr_xxxx_int

Variable. The ASN.1 encoding for
each variable provides its size
information.

INTEGER

OCTET STRING es_c_attr_byte_string May contain value X’00’.
An ASN.1 OBJECT IDENTIFIER
is a sequence of integer literals in
dot notation which are used to
traverse the ISO global object tree.

OBJECT IDENTIFIER es_c_attr_char_string

ANSI NULL. Currently this EMS
does not include this type.

NULL es_c_attr_? ???

Constructor
Types

An SNMP list; Implicit in XEMS
schema

SEQUENCE Any ems attribute

SEQUENCE OF
<entry>

Where <entry> resolves to an
SNMP list. An SNMP table;
Implicit in XEMS schema.

Any ems attribute

Defined Types

Currently, only the Internet
protocol faily is defined for
NetworkAddress CHOICE.

IpADDRESS es_c_attr_byte_string

Non-negative integer which
monotonically increases and
wraps to 0 after reaching
maximum value (2ˆ32-1).

Counter es_c_attr_ulong_int

Non-negative integer which may
increase or decrease, but which
latches at a maximum value
(2ˆ32-1).

Gauge es_c_attr_ulong_int

Non-negative integer which
counts the tie in hundredths of a
second since some epoch.

TimeTicks ems_c_attr_ulong_int

Supports the capability to pass
arbitrary ASN.1 syntax.

Opaque es_c_attr_bytes

Common
Constructs

Used by SNMP application
entities to correlate incoming
responses with outstanding
requests.

RequestId es_c_attr_long_int

Part 3: Event Structures for the Basic Event Set 231

SNMP Event Objects Event Objects

SNMP XEMS Description
Primitive Types9 Attribute Format

A non-zero instance is used to
indicate an exception.

ErrorStatus es_c_attr_long_int

May provide additional
information by indicating which
variable in a list caused the
exception.

ErrorIndex es_c_attr_ulong_int

Name Value pair. An SNMP
name implies the data type.
XEMS ems_attr_value_t
component of
ems_c_attribute_t stores
value and data type.

VarBind es attribute

Simple list of Name Value pairs.VarBindList XEMS Event Schema

PDUs

GetRequest-PDU es_c_attr_ulong_int 0
GetNextRequest-PDU es_c_attr_ulong_int 1
GetResponse-PDU es_c_attr_ulong_int 2
SetRequest-PDU es_c_attr_ulong_int 3
Trap-PDU es_c_attr_ulong_int 4

MIB II

Printable display string restricted
to the NVT ASCII character set
defined in RFC 854.

DisplayString es_c_attr_char_string

Used to represent edia- or
physical-level addresses.

PhysAddress es_c_attr_byte_string

9. Types derived from IETF RFC 1155 (SMI Primitive , Constructor and Defined Types), RFC 1157 (SNMP Common Constructs),
and RFC 1213 (MIB II).*Types derived from IETF RFC 1155 (SMI Primitive, Constructor and Defined Types), RFC 1157 (SNMP
Common Constructs), and RFC 1213 (MIB II).

232 Preliminary Specification

Glossary

consumer
A Consumer processes event data, for example, a server application which registers for, receives,
and processes event data.

EMS
Event Management Service.

event
An individual data entity corresponding to some information that needs to be communicated
from the managed environment to the management applications is known as an "event".

event channel
An event channel is a service that decouples the communications between suppliers and
consumers. An event channel is both a consumer and a supplier of events.

In CORBA, an Event Channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers and suppliers communicate with the Event
Channel using standard CORBA requests, the event channel does not need to supply the event
data to its consumer at the same time it consumes the data from its supplier [COSSES-41].

event communication
Event communication may be generic or typed. In the generic case all communication is by
means of generic push or pull operations that take a single parameter that packages all the event
data. Event data is passed by means of the parameters, which can be defined in any manner
desired [COSSES-32].

event data
Event data are the objects communicated between suppliers and consumers [COSSES-32].

event service
An event service decouples the communication between objects. It defines two roles for objects:
the supplier role and the consumer role [COSSES-32]. An event service is a system service,
which supports the generation, registration, filtering, and forwarding of events to management
applications and other management objects.

filter
An Event filter is a mechanism to select specific types of events, that is, selection by time or type.

ISV
Independent Software Vendor.

manager
A manager is the initiator of an event management interaction.

MAScOTTE
MAnagement Services for Object-oriented disTributed sysTEms. This is a European-based
project of partner companies with some funding support from the European Commission. The
project goal is to enable management solutions for CORBA-based environments by use not only
of CORBA applications, but also through a gateway to external (non-CORBA) applications so
that existing management solutions can be extended to management of the CORBA
environment. The MAScOTTE project is due to be completed by October 1997. It bases part of its
work on The Open Group specifications for CORBA services, and provides feedback on these
specifications. Further information on the MAScOTTE project may be obtained from the

Part 3: Event Structures for the Basic Event Set 233

Glossary

MAScOTTE Web server (http://www.esrin.esa.it/htdocs/MAScOTTE).

notification
Event notification is an asynchronous mechanism through which an event is received by a
management application, that is, a consumer.

OQL
Object Query Language.

pull model
An approach to initiating event communication, allowing a consumer of events to request the
event data from a supplier. Consumers request event data by invoking pull operations on the
pull supplier interface[COSSES-32].

push model
An approach to initiating event communication, allowing a supplier to initiate the transfer of the
event data to consumers. Suppliers communicate event data by invoking push operations on the
push consumer interface [COSSES-32].

registration
Registration is a mechanism by which a management application can indicate an interest in
receiving notification on specific events.

supplier
A Supplier produces event data.

utc
Universal Coordinated Time.

uuid
universal unique identifier.

234 Preliminary Specification

Index

action notification event..226
administration interface ..99
attribute list..54
authentication..11
authorization ...11
availability..9
C++ ..173
categories of events ..4
CLI ...123

event management service...............................126
event supplier ...123

CMIP event objects ..223
command line interface...123
command line syntax...126
conceptual model ...10
consumer..17, 52, 233
consumer filter group change event...................229
consumer interest change event..........................230
consumer interface...18, 79
Consumer Object ..128
CORBA implementation...............................171, 173
CORBA interface descriptions.............................173
COS V1..173
data structure

attribute list ...37, 54
consumer..37, 52
event attributes ...37, 41
event filters ..37, 49
event list ...37, 54
event structure ..37
event types...37, 48
generic types ..37-38
supplier...37, 53

data structure
event structure ..45

DCE implementation ...155
DCE SVC event objects ...225
definition of event...9
EMS..233
EMS event objects...226
EMS objects ..126
ems_add_filter_to_group()86
ems_consumer_get_registration()........................89
ems_consumer_pull() ...90
ems_consumer_start()...80
ems_consumer_stop()...82

ems_consumer_try_pull()91
ems_consumer_unregister()85
ems_delete_filter_from_group()...........................87
ems_event_type_add() ...64
ems_event_type_delete()65
ems_event_type_free_list()....................................68
ems_event_type_get()...66
ems_event_type_get_list()67
ems_filter_add() ...70
ems_filter_append() ..71
ems_filter_delete() ...73
ems_filter_free() ...74
ems_filter_free_list()..78
ems_filter_free_namelist()76
ems_filter_get()...72
ems_filter_get_list() ...77
ems_filter_get_namelist().......................................75
ems_get_filter_group() ...88
ems_mgmt_add_filter_to_group().....................113
ems_mgmt_delete_consumer()111
ems_mgmt_delete_filter_from_group()............112
ems_mgmt_delete_supplier()117
ems_mgmt_delete_undelivered_event()120
ems_mgmt_forward()...121
ems_mgmt_free_attributes()103
ems_mgmt_free_consumers().............................105
ems_mgmt_free_ems() ...101
ems_mgmt_free_suppliers()................................116
ems_mgmt_free_undelivered_events()119
ems_mgmt_get_filter_group()114
ems_mgmt_get_undelivered_events()..............118
ems_mgmt_list_attributes()102
ems_mgmt_list_consumers()104
ems_mgmt_list_ems()...100
ems_mgmt_list_suppliers()115
ems_mgmt_secedit() ...106
ems_mgmt_secread() ..107
ems_mgmt_secsubjadd()108
ems_mgmt_secsubjdelete()109
ems_mgmt_secsubjget().......................................110
ems_pull_consumer_register()84
ems_pull_supplier_register()96
ems_push_consumer_register()............................83
ems_push_supplier_register()...............................94
ems_register() ...60
ems_supplier_register_handler()..........................95

Systems Management: Event Management Service 235

Index

ems_supplier_send() ...98
ems_supplier_unregister()97
ems_unregister() ..61
error event..228
event..9, 233
event attributes ...41
event channel ..17, 233
event collection ...11
event communication ..233
event data...16, 233
event filter interface ...17, 69
event filters...49
event flow...11
event header ..16
event list ...54
Event Log Object ..132
event management service1
event objects

CMIP ...223
DCE SVC ..225
EMS ...226
SNMP..230

event repository ..11
event schema ...16
event service ..233
event service handle ..37, 55
Event Service Object ..127
event services manager ...11
event structure ..45
event supplier..123
event type interface..16, 63
Event Type Object ..131
event types ...48
extensibility..3, 8
filter ...233
Filter Object..130
filter repository..11
filtering..11
flow

administration...14
authorization of consumer12
configuration of EMS...12
configuration of supplier12
consumer connections...13
establishing filters ..12
supplier connections..13

generic types..38
global namespace ...25
handle ...37, 55
IDL

composite data type...175

consumer..176
consumer interface...187
event..176
event attribute...176
event filter interface ...184
event identifier..176
event layout ...178
event origin..176
event severity ..177
event type interface..182
EventIterator ...199
exceptions ..180
management interface.......................................207
network naming ...176
primitive data type ..174
priority classification ...177
pull consumer ...176
pull supplier ..177
push consumer..176
push supplier ..177
registration interface..181
registry..200
RegistryAdmin..201
security ...175
security interface ..204
string ...175
supplier...177
supplier interface..195
SupplierAdmin ...198
timestamp ..175
type definition...173

IDL code ...209
IDL implementation...173
intelligent agent ..11, 33
interface

administration...99
command line..123
consumer..79
event filter ..69
event type...63
registration...59
supplier...93

internationalization..8, 28
interoperability ...8, 29
inter-comprehension..1
inter-connection ..1
ISV..233
legacy applications...123
leverage of XEMS..1
managed object ...9
management application ..9

236 Preliminary Specification

Index

management interface ...19
management of EMS objects126
manager..233
MAScOTTE..233
namespace..25
networking...27
notification ...234
Object Query Language ..49
OQL...49, 234
overhead...9
performance...7, 21
persistent store ..11
portability...8
pull model ..234
push model ..234
queue full event ..228
reference implementation

CORBA...153, 171
DCE...153, 155

registration...11, 234
registration interface..15, 59
reliability...8-9, 11, 22
requirements

architectural niceties ..5
binding events to actions6
categories of events..4
centralized event management3
convenience features ...6
defining and designating events3
event construction..2
event definition language7
event notification API..2
global name service..3
navigating the EMS superhighway6
performance...21
programmable event filters7
reliability ..22
security ...23
toggling event subscriptions................................6

return codes ...56
schema ..16
schema repository ..11
security ...8, 11, 23
security model...24
security objects ..25
service availability..1
shell scripts ..123
SNMP event objects ...230
standardization ...8
status codes..56
subscriptions..6

supplier ..17, 53, 234
supplier interface..19, 93
Supplier Object..129
Supplier Send ..124
trouble ticket ..1
type definition ...173
undelivered event notification event229
utc ..175, 234
uuid ...175, 234
value of XEMS...1

Systems Management: Event Management Service 237

Index

238 Preliminary Specification

