X/Open Preliminary Specification

Common Object Services, Volume 1

X/Open Company Ltd.

O June 1994, X/Open Company Limited and the authors

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/0pen Preliminary Specification
Common Obiject Services, Volume 1

ISBN: 1-85912-048-2
X/0pen Document Number: P432

This work is published by X/Open Company Ltd., U.K. under the terms of its agreement with
the Object Management Group. Ownership of the intellectual property rights remain vested
with the Object Management Group and the authors listed here:

AT&T/NCR Corporation Obiject Design, Inc.

BNR Europe Limited Objectivity, Inc.

Digital EqQuipment Corporation Ontos, Inc.

Groupe Bull Oracle Corporation

Hewlett-Packard Company Persistence Software, Inc.

HyperDesk Corporation Servio Corporation

ICL plc SunSoft, Inc.

IBM Corporation Teknekron Software Systems, Inc.
Itasca Systems, Inc. Tivoli Systems, Inc.

Novell, Inc. Versant Object Technology Corporation

02 Technology, SA

This document is equivalent to OMG Document Number 94-1-1.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/0pen Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/0pen Preliminary Specification (1994)

Chapter 1
1.1
1.2
1.3

Chapter 2
2.1
211
212
213
2.14
215
216
217
218
219
2.2
221
222
223
2.3
231
232
233
2.3.4
2.4
2.5
2.6
2.7
2.8

Chapter 3
3.1
3.11
312
313
3.14
315
3.16
3.2
321
322

Common Object Services, Volume 1

INEFOAUCTION. ...ttt

General Design PrinCiples ...

Accommodation of Future Object Services.........cccvvvivrvvivvsicrnrinnnnns
Service DEPENAENCIEScovvveveiresririeee e

Relationship to OMG Object Modelcccovcevvvvvivcciirce e,
Conformance to Existing Standardsccccoceevvveiineiensceneseceeseens

[N E T VT To =T YT
EVENT SEIVICE. ..ottt
Life CYCIE SEIVICES ...viviveiiiscee et

N R

Service Design PrinCiples ...
CORBA CONCEPLS ..eeereeeeierieiste e steneseseeestesaesestesessessesessessesessesessesseses
Basic Flexible SErviCes........coiiie e
GENEIIC SEIVICES ..ottt bbb
Local and Remote Implementations...........ccccoveerveierneinnnseeesenienns
QUALILY Of SEIVICE ..ot s
(O o101 £ @01] o 11 - TR
Use of Callback INterfaces..........cooovvieiiriinnninceeeieinnnssseeeieens
Global Identifier SPACES........cccoveivrireeierreere s
Finding and USING SEIVICESccccccvvveiriieie e

Interface Style CONSISTENCYc.ccoviviciriccie et
Exceptions and Return Codes.........covvvrvevnscinnesenensee s
Explicit versus Implicit Operationsccccccccvevevveievsiersereseeseseens
Interface INNErItaNCE.ccocceeeeeee e

Key DeSigN DECISIONS......ccvivcvirerieieiriereiesieesesieesesieesassee e sassenessesesesens
NaMING SEIVICE ISSUBS........cveirerieiiiriceiesis e es st
Universal Object IdENLitYcccovveieireirscre e
Life Cycle Dependencies on FUtUre SErviCes.......cocvvvvreiereeeresiennnens
Reliability, Performance, Scalability and Portability........................

Relationship to CORBAL.........ccci e

MO0 I~NNVNANOODODOODOODOODOOOODUUADDWWWWW

Naming Service Specification ..., 9
SErvice DESCHIPLION.....cccciicie ettt 9
OVEINVIEW ...ttt bbb e 9
INBITIES L. 10
NAMES LIBrary ...t 10
EXAmMPIE SCENAMIOScvvcveiecieei et 11
DeSigN PrinCIPIES ...c.covvveeiccce e 12
Resolution of Technical ISSUEScccovvveececeeeeeee e, 12
The CosNaming ModUIE...........c.ccovvieiincce s 14
27T 0o T aTo I @] 0TIt £ 15
RESOIVING NAMES ..o 16
iii

Chapter

3.23
3.24
3.25
3.2.6
3.27
3.3

331
3.32
3.33
3.34

41

411
412
413
414
415
416
4.2

421
422
43

431
432
433
434
44

441
442
443
444
445
45

451
452
453
454
455
45.6
457
4.6

46.1
46.2
4.7

471
472
48

Contents

UNbiNding NAMES......covvvcieircie e 17
Creating Naming CONteXES......cccvvvrreiiriseiireseiessee s ee e 17
(D= 1=] Vo O] g1 (=) q £ 18
Listing @ Naming CoNteXt.......ccvvivrvreiininerenrenneee s 18
The Bindinglterator INterfacecccovvverrecovsseien e 19
NAMES LIDIANY ...t 20
Creating a Library Name Component..........cccocccvveierveieneseienenenns 21
Creating a Library Name..........ccccovvveiiineieninssiensee e 21
The LNameComponent Interface..........ccccovvveevnveivinnscieisesns s, 21
The LName INterface.......ccovvrrnriceeeeeecceee s 21
Event Service Specification...........ccooocovecrcvieciinsciiesiissens 25
SErvice DESCHIPLION.....cciceicie et 25
OVEINVIEW ...ttt bbb e 25
Event CommMUNICALION.......cccoiiiiirrrsr s 25
EXAmMPIE SCENANIO ..o 26
DeSigN PrinCIPIES ..c.cvvvcciccee e 27
Resolution of Technical ISSUEScccovivecceeeeeeeee e, 28
QUALILY Of SEIVICE. ..o s 29
Generic Event CommUNICAtIONcccuvueeiirininnnsseieeeeeesees 30
PUSH IMOAEL.......ciiiii e 30
PUIT MOGEL ... e 30
The CosEventComm MOAUIE...........coviieiiireec s 32
The PushConsumer INterface........ocoovnnnnssssee e 32
The PushSupplier INterface..........ccovevivveiinscienseees e 33
The PullSupplier INterfaceccovevvvciivscrseeseee s 33
The PullConsumer INterface...........cooivrnnnnnnnscee e 33
EVENt ChaNNEIS.......c.coviiiiccceci s 34
Push-style Communication with an Event Channel........................ 34
Pull-style Communication with an Event Channel.............ccc.c.o.... 34
Mixed-style Communication with an Event Channel 34
Multiple Consumers and Multiple SUPPHIErSccocccvvververvrcees 35
Event Channel Administration ..o 36
The CosEventChannelAdmin Module...........con 38
The EventChannel INterface ... 38
The ConsumerAdmin INterface ... 39
The SupplierAdmin INterface.........ccoveieivcinveiseer e 39
The ProxyPushConsumer INterfacecccoveevevveicivnsceenseenn s, 40
The ProxyPullSupplier INterface.........ccoovvoviiiicicnicicsee e 40
The ProxyPullConsumer Interface..........ccocoveivnveivinnsciensccne e, 40
The ProxyPushSupplier INterface.......ccccococvvvvveivrneivnseierrsceeeseeens 41
Typed Event CoOmMMUNICALIONccovvviveiiriccie e 42
Typed PUSHh MOELcvicicce s e 42
Typed PUll MOEL........coocciccecce e 43
The CosTypedEventComm Module ... 44
The TypedPushConsumer INterfaceccooeevveivnncienseinss e 44
The TypedPullSupplier INterface..........ccocvveivreieiscinsece e 45
Typed EVent Channels ... 46

X/0pen Preliminary Specification (1994)

Contents

4.9
49.1
492
493
494
495
4.10
411

Chapter 5
5.1
5.1.1
512
513
5.1.4
515
516
5.2
5.2.1
5.2.2
523
5.2.4
5.3
5.3.1
5.3.2
5.4
5.5

Appendix A
Appendix B

Appendix C
c1
C2
C3
C.4
C4.l

Appendix D
D.1
D.2
D.3

Appendix E
El
E.l1
E.1.2

Common Object Services, Volume 1

The CosTypedEventChannelAdmin Modulecccovveieivrccnnnn, 47
The TypedEventChannel Interface..........ccccoveivevvscivnscecnsscseseseen, 47
The TypedConsumerAdmin INterfaceccccovveivivcceiesscecnesienns 48
The TypedSupplierAdmin Interface.......ccccovveivnici e, 48
The TypedProxyPushConsumer Interface........cccocoovveivrvcivnnninnnns 49
The TypedProxyPullSupplier Interface........cccococvvvvcinveivnscieneneennn, 49

Composing Event Channels and Filteringcccccovveveivisieicennen, 50

Policies for Finding Event Channels...........ccccoceovevvcivcinvcisccnceiens 51

Life Cycle Service Specification...........cccooecvmrriinerinnnrisnennnne, 53

SErvice DESCHIPLION.....ccciicie et rene s 53
OVEINVIEW ...ttt bbb e 53
This Service SPeCifiCation..........ccccvveiincci e 55
Obiject Life Cycle Model ..o 55
=T (0 VA o T T T 58
DeSigN PrinCIPIES ..c.cvvvcciccee e 58
Resolution of Technical ISSUEScccovivecceeeeeeeee e, 59

The CosLifeCycle MOAUIE..........cccvveivvieescersee e 60
The LifeCycleObject INterface.........ccccovvevevvveiviveiec s, 61
The FactoryFinder INterface........coovvvvvscienscieiece e 62
The GenericFactory INtErfacecccovvveceivscien e 63
(O3 4 1T T LSOO PP 66

IMpPlemMenting FACtONIES........cccovvvrceereeeerr e 68
MiINIMal FACTOTIES ..o 68
AdMINIStered FACLONIES.cccoveieieieererennr e 69

Target's Use of Factories and Factory Findersc.ccccovvvceenrincnnnn, 71

Summary of Life Cycle SErVICESccovveiirii e 72

Implementing Typed Event Channels ..., 73
Event Channel Usage Example..........cccooiiiciiiscrcinncrinnnnn, 75
Life Cycle Operations on Distributed Object Graphs... 77

The Traversal SEIVICE ... s 78

Node’s View of Life Cycle SErviCes......cccouvvmirnveinciiseineenseseseenns 79

Traversal AlQOrithimsS ..o 81

Containment and REfEreNCEe ... 82
Life Cycle Propagation Across ASSOCIALESccevrrivrerieereereneneens 83

FHITEIS ..o 85

RESOUICES S PrOPEITIESo.vcveeieieisieese st 86

COoNStraiNt EXPreSSIONS......covvcii et seese s 87

BNF* for Constraint EXPreSSiONS........cocccevvcivrieeresernsesiesesieeseesesesenenens 88

AAMINISTrATION ... 91

FEABIALION ..ot 92
Federation in ObJect SErVICESccovivrrcirireierreer e 92
FEderation ISSUES. ... s 92

\%

Vi

E.2
E.3
E31

Appendix F
F.1
F.2
F.3
F.4
F.5

List of Examples

31
3-2
41
4-2
4-3
4-4
51
5-2
E-1

List of Figures
2-1

2-2
31
41
4-2
4-3
4-4
45
4-6
47
4-8
4-9
4-10
51
5-2
5-3
5-4
55

Contents

POLICIES. ...ttt bbb 94
An Example LifeCycleService Module...........cccoovviveinncinnseinseeennns 95
The LifeCycleServiceAdmin Interface........ccococeevvvcevseivsscinsseinnnns 95
Support for PCTE ODJECES ... 99
OVEIVIBW ...ttt 100
(O]] 1=To1 B O =T L { (o] o FHS TR 101
(@] 1=To1 B D 11 1=1 Ao o T 102
(@] 1=To1 O] o)Y/ 1 o 5SS 103
(@] 1=To1 01 1V, Lo YT o T 104
GHOSSANY ... 105
INABX. ... 107
The CosNaming MOAUIE...........cccovieircirse s 14
The Names Library Interface in PIDLccccovviveivvcinveiescesee e 20
The IDL CosEventComm MOUIE........c.ccoiieeeiininiree e 32
The CosEventChannelAdmin Module...........ccoviiiniininins 38
The IDL CosTypedEventComm Module...........cccccevvveeieivsceennnseieinnns 44
The CosTypedEventChannelAdmin Modulecccoovvivvicicinniseenn, 47
A Document Factory Interface EXample.......ccocooeoveinvicinneinnsceesccenenns 56
The CosLifeCycle ModUle............cccooveiiciieisecce e 60
The LifeCycleService Module ... 95

Event Channel Managing Multiple Simultaneous Consumer

CHIBNES. oo 5
Service Interface DepPendenCiesccovvvvreerereienseese e 7
Naming Graph EXamPleccovveveieieincisee e 9
Push-style Supplier/Consumer Communication............cccccuevvveinrnrnnns 30
Pull-style Supplier/Consumer Communication..........ccocoeeevvvveevreseinnnns 31
Push-style Communication through Event Channel...........c..c.cccvvueuene.. 34
Pull-style Communication through an Event Channelc............ 34
Mixed-style Communication through an Event Channel..................... 35
Event Channel Managing Multiple Consumers and Suppliers........... 35
A Newly Created Event Channel ... 36
State Diagram Of @ PrOXY......cccocoviriiiinciisses s 37
Typed Push-style Supplier/Consumer Communication............ccc...... 42
Typed Pull-style Supplier/Consumer Communication.............cc.cce.... 43
Creating an Object OVEr ThEIec.ccovveiiveesees e 53
Moving or Copying an Object Over There........ccccocoovvivvienvciscceescn 54
Boundaries of a Graph of ObjJECtS........cccovvviveivrcircc e 54
Object Reference to a FaCtOry ... e e 55
Deleting an ODJECTcovceeiece e s 57

X/0pen Preliminary Specification (1994)

Contents

5-6
5-7
5-8
5-9
5-10
5-11
A-1
C-1
C-2
C-3

List of Tables

3-1
3-2
3-3
3-4
5-1
5-2
5-3
C-1
C-2
D-1
E-1

Common Object Services, Volume 1

Moving or Copying an ObJECT.......c.ccccevviieiirecr e 57
FactoryFinder Mixed with Other Interfaces.........cccooeevveinncerveivrsnnnnn, 58
Generic Creation Capabilityccccovveieriveiiireienseerese s 64
ASSEMDBIING RESOUICEScovviiceiesieee et ee st 68
Delegating the Creation Problemcccovviveiiviensceneee e 69
Use of FactoryFinder to Represent Thereccocccvvveivveenevenevscesesicennens 71
Possible Implementation of a Typed Event Channel.............cc.cccoevvueee. 73
Traversal ODJECT.........cccoovireiie e 78
A Node in a Graph of Associated ObJeCtS.........cccvvivrvivrvinrvcinsen s 79
Document REFEIENCING ...ovivevircii e 82
Exceptions Raised by Binding Operationsccccoceevveivveiereieninennnnns 16
Exceptions Raised by the resolve() Operation...........ccoccoevviervivinricnnnnn, 17
Exceptions Raised by the unbind() Operation.........c.ccccoceevveivreinnicennnn, 17
Exceptions Raised by Creating New CONtexts..........covvvevrervrereseeinreenns 18
Suggested Conventions for Factory Finder Keys.........cccocovervveiniininnnns 63
Suggested Conventions for Generic Factory Keysccoooevvveivnninnnns 65
STU Lo o (1) (=T [O] (=T T T 66
CONLAINMENT ..o 83
RETEIENCE ... 83
Examples of Properties Supported by a Generic Factory..........c.c........ 86
EXAMPIE POLICIES ..ottt 94

vii

Contents

viii X/Open Preliminary Specification (1994)

Preface

X/Open

X/0pen is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/0pen’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/0pen defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systemes.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/0pen publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:
- CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future X/Open brand (if not referenced already), and that a variety of compatible, X/Open-
branded systems capable of hosting their products will be available, either immediately or in
the near future.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Common Object Services, Volume 1 iX

Preface

« Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/0pen can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:
+ Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

« Technical Studies

X/0pen Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

« Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

- a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

X/0pen Preliminary Specification (1994)

Preface

- a new lIssue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/0pen maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:
request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.
This Document
This document defines the common object services for naming, event and life cycle. It is
equivalent to OMG Document Number 94-1-1.
Structure
This document is organised as follows:
- Chapter 1 provides a summary of key features of each service.
- Chapter 2 describes the design principles used in this specification. It addresses:
— service dependencies
— relationship to CORBA
— relationship to the OMG Object Model
— standards conformance.
- Chapter 3 describes the naming service specification.
- Chapter 4 describes the event service specification.
- Chapter 5 describes the life cycle service specification.

Each service definition chapter begins with an overview, and includes sections on design
principles and resolution of technical issues (raised in the referenced OMG Object Services
Architecture document).

The appendices are included as background material.
- Appendix A indicates one strategy for implementing typed event channels.
- Appendix B illustrates an example use of the event channel.

- Appendix C discusses how the LifeCycleObject interface can be supported for graphs of
distributed objects using a relationship service.

- Appendix D suggests a filtering language for the filter criteria.

Common Object Services, Volume 1 Xi

Preface

- Appendix E discusses administration of generic factories.
- Appendix F discusses support for PCTE objects.

A glossary and index are included at the end.

Typographical Conventions

The following typographical conventions are used throughout this document:

Helvetica Pseudo-IDL language elements.
Helvetica bold IDL language and syntax elements.
Courier C-language elements.

Code examples written in pseudo-IDL and C are further identified by means of a comment;
unidentified examples are written in IDL.

Xii X/Open Preliminary Specification (1994)

Trade Marks

C0OSS™ is a trade mark of the Object Management Group, Inc.

O

OMGD and Object Management— are registered trade marks of the Object Management Group,

Inc.
X/0pen™ and the “X’* device are trade marks of X/Open Company Limited.

Common Obiject Services, Volume 1 Xiii

Xiv

Referenced Documents

The following documents are referenced in this specification:

Controlling Propogation
Controlling Propogation of Operations using Attributes on Relations, James Rumbaugh,
OOPSLA 1988 Proceedings, pp285-296.

CORBA
X/0pen Preliminary Specification, February 1993, The Common Object Request Broker:
Architecture and Specification (ISBN: 1-872630-90-1, P210), in conjunction with the Object
Management Group (OMG).

ITU-T X.900 Draft
ITU-T Draft Recommendation X.900 series, ISO/IEC 10746-1/2/3/4 Basic Reference Model
of Open Distributed Processing

Object Data Management
Object Data Management, Rick Cattell, Addison Wesley, 1991.

ODP Trader
ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1: ODP Trader.

OMG Object Model
Object Management Architecture Guide, Revision 2.0, Second Edition, Richard M. Soley,
Ph.D., Ed., Object Management Group, Inc., Framingham, MA, 1992,

OMG Obiject Services Architecture
Object Services Architecture, Document Number 92-8-4, Object Management Group,
Framingham, MA, 1992,

X/0pen Preliminary Specification (1994)

Chapter 1

Introduction

This chapter provides a summary of the key features described in this specification.

1.1 Naming Service

The naming service provides the ability to bind a name to an object relative to a naming context.
A naming context is an object that contains a set of name bindings in which each name is unique.
To resolve a name is to determine the object associated with the name in a given context.

Through the use of a very general model and dealing with names in their structural form,
naming service implementations can be application-specific, or be based on a variety of nhaming
systems currently available on system platforms.

Graphs of naming contexts can be supported in a distributed, federated fashion. The scalable
design allows the distributed, heterogeneous implementation and administration of names and
name contexts.

Because name component attribute values are not assigned or interpreted by the naming service,
higher levels of software are not constrained in terms of policies about the use and management
of attribute values.

Through the use of a names library, name manipulation is simplified and names can be made
representation-independent thus allowing their representation to evolve without requiring client
changes.

Application localisation is facilitated by name syntax-independence and the provision of a name
kind attribute.

1.2 Event Service

The event service provides basic capabilities that can be configured together in a very flexible
and powerful manner. Asynchronous events (decoupled event suppliers and consumers), event
fan-in, notification fan-out, and — through appropriate event channel implementations —
reliable event delivery are supported.

The event service design is scalable and is suitable for distributed environments. There is no
requirement for a centralised server or dependency on any global service.

The event service interfaces allow implementations that provide different qualities of service to
satisfy different application requirements. In addition, the event service does not impose
higher-level policies (for example, specific event types) allowing great flexibility on how it is
used in a given application environment.

Both push and pull event delivery models are supported; that is, consumers can either request
events or be notified of events, whichever is needed to satisfy application requirements. There
can be multiple consumers and multiple suppliers of events.

Suppliers can generate events without knowing the identities of the consumers. Conversely,
consumers can receive events without knowing the identities of the suppliers.

The event channel interface can be subtyped to support extended capabilities. The event
consumer-supplier interfaces are symmetric, allowing the chaining of event channels, for

Common Object Services, Volume 1 1

Event Service Introduction

1.3

example, to support various event filtering models. Event channels can be chained by third
parties.

Typed event channels extend basic event channels to support typed interaction.

Because event suppliers, consumers and channels are objects, advantage can be taken of
performance optimisations provided by ORB implementations for local and remote objects. No
extension is required to the Common Object Request Broker Architecture (CORBA).

Life Cycle Services

The life cycle services define services and conventions for creating, deleting, copying and
moving objects. Because CORBA-based environments support distributed objects, life cycle
services define services and conventions that allow clients to perform life cycle operations on
objects in different locations.

The client’s model of creation is defined in terms of factory objects. A factory object is an object
that creates another object. Factory objects are not special objects. As with any object, factory
objects have well-defined IDL interfaces and implementations in some programming languages.

The life cycle services define an interface for a generic factory. This allows for the definition of
standard creation services.

The life cycle services define a LifeCycleObject interface. This interface defines remove, copy
and move operations.

X/0pen Preliminary Specification (1994)

Chapter 2

General Design Principles

This chapter describes the design principles used in this specification.

2.1 Service Design Principles

2.1.1 CORBA Concepts
The service designs use and build on CORBA concepts:
. separation of interface and implementation
- object references are typed by interfaces
- clients depend on interfaces, not implementations
- use of multiple inheritance of interfaces
- use of subtyping to extend, evolve and specialise functionality.
Other related principles that the designs adhere to include:
- Assume good ORB and object services implementations.

Specifically, it is assumed that CORBA-compliant ORB implementations can and are being
built that support efficient local and remote access to fine-grain objects and have performance
characteristics that place no major barriers to the pervasive use of distributed objects for
virtually all service and application elements and entities.

- Do not build non-type properties into interfaces.

2.1.2 Basic Flexible Services

The services are designed to do one thing well and are only as complicated as they need to be.
Individual services are by themselves relatively simple yet they can, by virtue of their
structuring as objects, be combined together in interesting and powerful ways.

For example, the event and life cycle services, plus a relationship service (not yet defined), may
play together to support graphs of objects. Object graphs commonly occur in the real world and
must be supported in many applications. A functionally-rich Folder compound object, for
example, may be constructed using the life cycle, haming, events and relationship services as
building blocks.

2.1.3 Generic Services

Services are designed to be generic in that they do not depend on the type of the client object
nor, in general, on the type of data passed in requests. For example, the event channel interfaces
accept event data of any type. Clients of the service can dynamically determine the actual data
type and handle it appropriately.

Common Object Services, Volume 1 3

Service Design Principles General Design Principles

2.1.4

2.15

2.1.6

Local and Remote Implementations

In general, the services are structured as CORBA objects with IDL interfaces that can be accessed
locally or remotely, and which can have local library or remote server styles of implementation.
This allows considerable flexibility with regard to the location of participating objects. So, for
example, if the performance requirements of a particular application dictate it, objects can be
implemented to work with a Library Object Adapter that enables their execution in the same
process as the client.

Quality of Service

Service interfaces are designed to allow a wide range of implementation approaches depending
on the quality of service required in a particular environment. For example, in the event service,
an event channel can be implemented to provide fast but unreliable delivery of events, or slower
but guaranteed delivery. However, the interfaces to the event channel are the same for all
implementations and all clients. Because rules are not wired into a complex type hierarchy,
developers can select particular implementations as building blocks and easily combine them
with other components.

Objects Conspire

Services are typically decomposed into several distinct interfaces that provide different views for
different kinds of clients of the service. For example, the event service is composed of
PushConsumer , PullSupplier and EventChannel interfaces. This simplifies the way in which a
particular client uses a service. A particular service implementation can support the constituent
interfaces as a single CORBA object or as a collection of distinct objects. This allows
considerable implementation flexibility. A client of a service may use a different object reference
to communicate with each distinct service function. Conceptually, these internal objects conspire
to provide the complete service.

As an example, in the event service an event channel can provide both PushConsumer and
EventChannel interfaces for use by different kinds of client. A particular client sends a request
not to a single event channel object, but to an object that implements either the PushConsumer or
EventChannel interface. Hidden to all the clients, these objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces as the
means to distinguish and coordinate different clients without relying on the existence of an
object equality test or some special way of identifying clients. Using the event service again as
an example, when an event consumer is connected with an event channel, a new object is
created that supports the PullSupplier interface. An object reference to this object is returned to
the event consumer, which can then request events by invoking the appropriate operation on the
new supplier object. Because each client uses a different object reference to interact with the
event channel, the event channel can keep track of and manage multiple simultaneous clients.
This is shown in Figure 2-1 on page 5.

X/0pen Preliminary Specification (1994)

General Design Principles Service Design Principles

2.1.7

2.1.8

\ I PullConsumer
“ I
consumer) | /
I »

PushSupplier |
\ J
supplier
PullSupplier —] PP
PushConsumer

event channel

\ | PullConsumer
¢ |

consumer/ 1 \

"
PullSupplier \

Figure 2-1 Event Channel Managing Multiple Simultaneous Consumer Clients

The graphical notation shown in Figure 2-1 is used throughout this document and in other
service specifications. An arrow with a vertical bar is used to show that the target object
supports the interface named adjacent to it, and that clients holding an object reference to it of
this type can invoke operations. In shorthand, the object reference (held by the client) supports
the interface. The arrow points from the client to the target (server) object. A closed irregular
shape indicates a conspiracy of one or more objects. In other words, it corresponds to a
conceptual object that may be composed of one or more CORBA objects that together provide
some coordinated service to potentially multiple clients making requests using different object
references.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a client object is
required to support to enable a service to call back to it to invoke some operation. The callback
may be, for example, to pass back data asynchronously to a client. Callback interfaces have two
major benefits:

- They clearly define how a client object participates in a service.

- They allow the use of the standard interface definition (IDL) and operation invocation (object
reference) mechanisms.

Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The service
designs do not assume or rely on any global identifier service or global id spaces in order to
function. The scope of identifiers is always limited to some context. For example, in the naming
service, the scope of names is the particular naming context object.

In the case where a service generates ids, clients can assume that an id is unique within its scope,
but should not make any other assumption.

Common Object Services, Volume 1 5

Service Design Principles General Design Principles

2.1.9

2.2

221

2.2.2

2.2.3

2.3

231

2.3.2

Finding and Using Services

Finding a service is at a higher level and orthogonal to using a service. These services do not
dictate a particular approach. They do not, for example, mandate that all services must be found
by means of the naming service. Because services are structured as objects, there does not need
to be a special way of finding objects associated with services — general-purpose finding
services can be used. Solutions are anticipated to be application- and policy-specific.

Interface Style Consistency

Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional conditions
such as error returns. Normal return codes are passed back by means of output parameters. An
example of this is the use of a DONE return code to indicate iteration completion.

Explicit versus Implicit Operations

Operations are always explicit rather than implied, for example, by a flag passed as a parameter
value to some umbrella operation. In other words, there is always a distinct operation
corresponding to each distinct function of a service.

Interface Inheritance

Interface inheritance (subtyping) is used whenever it appears that client code should depend on
less functionality than the full interface. Services are often partitioned into several unrelated
interfaces when it is possible to partition the clients into different roles. For example, an
administrative interface is often unrelated and distinct in the type system from the interface
used by normal clients.

Key Design Decisions

Naming Service Issues

Distinct from property and trading services, naming contexts have some similarity to property
lists; that is, lists of values associated with objects though not necessarily part of the object’s
state, and the naming service in general, have elements in common with a trading service.
However, following the bauhaus principle of keeping services as simple and as orthogonal as
possible, these services have been kept distinct and are being addressed separately.

Universal Object Identity

These services do not require the concept of universal object identity.

X/0pen Preliminary Specification (1994)

General Design Principles Key Design Decisions

2.3.3

2.34

2.4

2.5

Life Cycle Dependencies on Future Services
The life cycle specification describes the client’s model of life cycle.

Life cycle move, copy, internalise, externalise and remove operations need to accommodate
graphs of distributed objects that are connected by relationships. Although not part of the life
cycle specification presented here, Appendix C on page 77 describes a graph model supported
by a relationship service to illustrate life cycle operations for graphs of distributed objects.

Reliability, Performance, Scalability and Portability

The issues of reliability, performance, scalability and portability are addressed in the chapter for
each service, where necessary.

Accommodation of Future Object Services
The current set of interfaces may need to evolve in order to accommodate:
« security (access control)
- transactions
- change management (different versions)
- internationalisation.

In the case of the naming service, partial name resolution has been factored into the design in
anticipation of security failures managed by a security service. The introduction of access
control lists (ACLs) into the model should not effect existing clients of the naming service IDL
interfaces.

The naming service interfaces may also need to be extended (for example, the structure of names
extended, additional name resolution operations added) in order to more adequately support
representing names and name resolution for some languages or cultures.

Service Dependencies

As shown in Figure 2-2, the life cycle services interfaces are dependent on the naming service.
The event service depends on no other service interface.

Naming Events

™

Life Cycle

Figure 2-2 Service Interface Dependencies

The interface designs of all the services are general in nature and do not presume or require the
existence of specific supporting software in order to implement them. An implementation of the
name service may use naming or directory services provided in a general-purpose networking
environment. For example, an implementation may be based on the naming services provided
by ONC or DCE. Such an implementation could provide enterprise-wide naming services to
both object-based and non-object-based clients. Object-based software would see such services

Common Object Services, Volume 1 7

Service Dependencies General Design Principles

2.6

2.7

2.8

through the use of NamingContext objects.

Relationship to CORBA
No CORBA extensions are required by any service.
The object life cycle service assumes CORBA implementations support object relocation.

Entities that are not CORBA objects — that is, not objects accessed by means of an ORB — are
used for names (in the guise of pseudo objects). In both cases, the interfaces to these entities
conform as closely as possible to IDL while satisfying the specific service design requirements, in
order to enable maximum flexibility in the future. Specifically, in the naming service, name
objects are pseudo objects with interfaces defined in pseudo IDL (PIDL). These objects look like
CORBA objects but are specifically designed to be accessed using a programming language
binding. This is done for reasons based on the expected usage of these objects.

Relationship to OMG Object Model

The specifications conform to the referenced OMG Object Model. No additional components or
profiles are required by any service.

Conformance to Existing Standards

In general, existing relevant standards do not have object-oriented interfaces nor are they
structured in a form that is easily mapped to objects. These specifications have been influenced
by existing standards, and services have been designed which minimise the difficulty of
encapsulating supporting software. The naming service specification is believed to be
compatible with X.500, X/Open DCE Directory Services, and ONC NIS and NIS+.

These specifications are broadly conformant to emerging ISO/IEC/CCITT ODP standards:

- ITU-T Draft Recommendation X.900 series, ISO/IEC 10746-1/2/3/4 Basic Reference Model
of Open Distributed Processing

« ISO/IEC JTC1 SC21 WG7 N743 Working Document on Topic 9.1: ODP Trader.

X/0pen Preliminary Specification (1994)

3.1

311

Chapter 3

Naming Service Specification

Service Description

Overview

A name-to-object association is called a name binding. A name binding is always defined relative
to a naming context. A haming context is an object that contains a set of name bindings in which
each name is unique. Only one object can be bound to a particular name in a context. Different
names can be bound to an object in the same or different contexts at the same time. There is no
requirement, however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given context. To bind
a name is to create a name binding in a given context. A name is always resolved relative to a
context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a haming context.
Binding contexts in other contexts creates a naming graph — a directed graph with nodes and
labelled edges where the nodes are contexts. A naming graph allows more complex names to
reference an object. Given a context in a naming graph, a sequence of names can reference an
object. This sequence of names (called a compound name) defines a path in the naming graph to
navigate the resolution process. Figure 3-1 shows an example of a naming graph.

[
user
sys
home Y
o o
o
ul u3 bi lib
u2
@) @) @) bill alden))
O O cl 2 1 12
O 00) O

Figure 3-1 Naming Graph Example

Common Object Services, Volume 1 9

Service Description Naming Service Specification

3.1.2

3.13

10

Names

Many of the operations defined on a naming context take names as parameters. Names have
structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple components is
called a compound name. Each component except the last is used to name a context; the last
component denotes the bound object. The notation:

< componentl ; component2 ; component3 >
indicates the sequences of components.

Note: The semicolon (;) characters are simply the notation used in this document and are not
intended to imply that names are sequences of characters separated by semicolons.

A name component consists of two attributes: the identifier attribute and the kind attribute. Both
the identifier attribute and the kind attribute are represented as IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way. Examples of
the value of the kind attribute include c_source , object_code , executable , postscript or ™. The
naming system does not interpret, assign or manage these values in any way. Higher levels of
software may make policies about the use and management of these values. This feature
addresses the needs of applications that use syntactic naming conventions to distinguish related
objects. For example, UNIX uses suffixes such as .c and .0. Applications (such as the C
compiler) depend on these syntactic conventions to make name transformations (for example, to
transform foo.c to f00.0).

The lack of name syntax is especially important when considering internationalisation issues.
Software that does not depend on the syntactic conventions for names does not have to be
changed when it is localised for a natural language that has different syntactic conventions —
unlike software that does depend on the syntactic conventions (which must be changed to adapt
to new conventions).

To avoid issues of differing name syntax, the naming service always deals with names in their
structural form (that is, there are no canonical syntaxes or distinguished meta-characters). It is
assumed that various programs and system services map names from the representation into the
structural form in a manner that is convenient to them.

Names Library

To allow the representation of names to evolve without affecting existing clients, it is desirable to
hide the representation of names from client code. Ideally, names themselves would be objects;
however, names must be lightweight entities that are efficient to create, manipulate and
transmit. As such, names are presented to programs through the names library.

Note: It is not necessary to use the names library to use the basic operations of the naming
service.

The names library implements names as pseudo-objects. A client makes calls on a pseudo-object
in the same way it makes calls on an ordinary object. Library names are described in pseudo-
IDL. The names library supports two pseudo-IDL interfaces: the LNameComponent interface and
the LName interface. The LNameComponent interface defines the get and set operations
associated with the name component identifier and the kind attributes. The LName interface
includes operations for manipulating library name and library name component pseudo-objects,
and producing and translating a structure that can be passed as a parameter to a normal object
request.

X/0pen Preliminary Specification (1994)

Naming Service Specification Service Description

3.14 Example Scenarios

This section provides two short scenarios that illustrate how the naming service specification
can be used by two fairly different kinds of system — systems that differ in the kind of
implementations used to build the naming service, and that differ in models of how clients
might use the naming service in conjunction with other object services to locate objects.

In one system, the naming service is implemented using an underlying enterprise-wide naming
server such as X/Open DCE Directory Services. The naming service is used to construct large,
enterprise-wide nhaming graphs where NamingContext interfaces model directories or folders, and
other names identify document or file kinds of objects. In other words, the naming service is used
as the backbone of an enterprise-wide filing system. In such a system, non-object-based access
to the naming service may well be as commonplace as object-based access to the naming service.
For example, the name of an object might be presented to the DCE directory service as a null-
terminated ASCII string such as:

/. ../DME/nls/moa-1/ID-1

The naming service provides the principal mechanism through which most clients of an ORB-
based system locate objects that they intend to use (make requests on). Given an initial naming
context, clients navigate naming contexts retrieving lists of the names bound to that context. In
conjunction with properties and security services, clients look for objects with certain externally
visible characteristics; for example, for objects with recognised names or objects with a certain
time-last-modified (all subject to security considerations). All objects used in such a scheme
register their externally visible characteristics with other services (a name service, a property
service, and so on).

Conventions are employed in such a scheme that meaningfully partition the name space. For
example, individuals are assigned naming contexts for personal use, groups of individuals may
be assigned shared naming contexts, while other contexts are organised in a public section of the
naming graph. Similarly, conventions are used to identify contexts that list the names of
services that are available in the system (for example, that locate the translation service or the
printing service).

In an alternative system, the naming service can be used in a more limited role and can have a
less sophisticated implementation. In this model, naming contexts represent the types and
locations of services that are available in the system and a much shallower naming graph is
employed. For example, the naming service is used to register the object references of a mail
service, an information service or a filing service.

Given a handful of references to root objects obtained from the naming service, a client uses
relationship and query services to locate objects contained in or managed by the services
registered with the naming service. In such a system, the naming service is used sparingly, and
instead clients rely on other services such as query services to navigate through large collections
of objects. Also, objects in this scheme rarely register external characteristics with another
service — instead they support the interfaces of query or relationship services.

Of course, nothing precludes the naming service presented here from being used to provide both
models of use at the same time. These two scenarios demonstrate how this specification is
suitable for use in two fairly different kinds of system with potentially quite different kinds of
implementation. The service provides a basic building block on which higher-level services
impose the conventions and semantics which determine how frameworks of application and
facilities objects locate other objects.

Common Object Services, Volume 1 11

Service Description Naming Service Specification

3.15

3.16

12

Design Principles
Several principles have driven the design of the naming service:

- The design imparts no semantics or interpretation of the names themselves; this is up to
higher-level software. The naming service provides only a structural convention for names;
for example, compound names.

- The design supports distributed, heterogeneous implementation and administration of
names and name contexts.

- Names are structures, not just character strings. A structure is necessary to avoid encoding
information syntactically in the name string (for example, separating the meaningful name
and its type with a . and the type and version with a !), which is a bad idea with respect to
the generality, extensibility and internationalisation of the name service. The structure
defined here includes a selected string plus a kind field.

- Naming service clients need not be aware of the physical site of name servers in a distributed
environment, of which server interprets what portion of a compound name, or of the way
that servers are implemented.

- The naming service is a fundamental object service, with no dependencies on other
interfaces.

- Name contexts of arbitrary and unknown implementation may be utilised together as nested
graphs of nodes that cooperate in resolving names for a client. No universal root is needed
for a name hierarchy.

- Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of the above
features contribute to making this possible.

- The design does not address name security since there is currently no security model. The
naming service can be evolved to provide name security when an object security service is
standardised.

« The design does not address name space administration. It is the responsibility of higher-
level software to administer the name space.

Resolution of Technical Issues

This specification addresses the issues identified for name services in the referenced OMG
Obiject Services Architecture document as follows:

Naming Standards
Encapsulation of existing naming standards and protocols is allowed using naming
contexts. Transparent encapsulation is made possible by the design features outlined
above.

Federation of Name Spaces
The specification supports distributed federation of name spaces; no assumptions are made
about centralised or universal functions. Name spaces may be nested in a graph in any
fashion, independent of the implementation of each name space. There need be no
distinguished root context, and existing graphs may be joined at any point.

Scope of Names
Name contexts define name scope. Names must be unique within a context. Objects may
have multiple names, and may exist in multiple name contexts. Name contexts may be
named objects nested within another name context, and cycles are permitted. The name

X/0pen Preliminary Specification (1994)

Naming Service Specification Service Description

itself is not a fully-fledged ORB object, but does support structure, so it may have multiple
components. No requirements are placed on naming conventions, in order to support a
wide variety of conventions and existing standards.

Operations

The specification supports bind, unbind, lookup and sequence operations on a name
context. It does not support a rename operation is not supported because it is not clear how
to implement this correctly in a distributed environment without transactions.

Common Object Services, Volume 1 13

The CosNaming Module Naming Service Specification

3.2

14

The CosNaming Module

Names of all IDL modules which form the Common Object Services specification are prefixed
with the initials "Cos".

The CosNaming module is a collection of interfaces that together define the naming service. This
module contains two interfaces:

- the NamingContext interface
- the Bindinglterator interface.

This section describes these interfaces and their operations in detail. The CosNaming module is
shown in the code example below.

Note: Istring is a placeholder for a future IDL internationalised string data type.

Example 3-1 The CosNaming Module

module CosNaming
{
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
b

typedef sequence <NameComponent> Name;
enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;
b

typedef sequence <Binding> BindingList;
interface Bindinglterator;

interface NamingContext {
enum NotFoundReason { missing_node, not_context, not_object};
exception NotFound {
NotFoundReason why;
Name rest_of _name;
b
exception CannotProceed {
NamingContext cxt;
Name rest_of _name;
b
exception InvalidNamef{};
exception AlreadyBound {};
exception NotEmpty{};
void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

X/0pen Preliminary Specification (1994)

Naming Service Specification The CosNaming Module

3.21

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);
Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
NamingContext new_contex t();
NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
raises(NotEmpty);
void list (in unsigned long how_many,
out BindingList bl, out Bindinglterator bi);
3

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
b
3

The following sections describe the operations of the NamingContext interface:
- binding objects
» name resolution
« unbinding
- creating naming contexts
. deleting contexts

- listing a naming context.

Binding Obijects

The binding operations name an object in a naming context. Once an object is bound, it can be
found with the resolve operation. The name service supports four operations to create bindings:
bind , rebind , bind_context and rebind_context .

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind()
Creates a binding of a name and an object in the naming context. Naming contexts that are
bound using bind () do not participate in name resolution when compound names are
passed to be resolved. A bind () operation that is passed a compound name is defined as

follows:
ctx->bind(< cl;c2;..;cn>0bj) =
(ctx->resolve(< cl; c2; ... ; cn-1 >))->hind(< cn >, obj)

Common Object Services, Volume 1 15

The CosNaming Module Naming Service Specification

3.2.2

16

rebind()
Unbinds the name bound in the naming context, and creates a binding of a hame and an
object in the naming context even if the name is already bound in the context. Naming
contexts that are bound using rebind () do not participate in name resolution when
compound names are passed to be resolved.

bind_context()
Names an object that is a naming context. Naming contexts that are bound using
bind_context () participate in name resolution when compound names are passed to be
resolved. A bind_context () operation that is passed a compound name is defined as

follows:
ctx->bind_context(<cl;c2;..;cn>nc) =
(ctx->resolve(< cl; c2; ... ;cn-1 >))->bind_context(< cn >, nc)

rebind_context()
Creates a binding of a name and a naming context in the naming context even if the name is
already bound in the context. Naming contexts that are bound using rebind_context ()
participate in name resolution when compound names are passed to be resolved.

Table 3-1 describes the exceptions raised by the binding operations.

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for some reason.

The client, however, may be able to continue the operation at the
returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)
AlreadyBound Indicates an object is already bound to the specified name. Only

one object can be bound to a particular name in a context. The
bind () and the bind_context () operations raise the AlreadyBound
exception if the name is bound in the context; the rebind () and
rebind_context () operations unbind the name and rebind the
name to the object passed as an argument.

Table 3-1 Exceptions Raised by Binding Operations

Resolving Names

The resolve () operation is the process of retrieving an object bound to a name in a given context.
The given name must exactly match the bound name. The naming service does not return the
type of the object. Clients are responsible for narrowing the object to the appropriate type; that is,
clients typically cast the returned object from Object to a more specialised interface. The IDL
definition of the resolve () operation is:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. A compound resolve is defined as follows:

ctx->resolve(<cl;c2;..;cn>) =
ctx->resolve(< ¢l ; c2; ... ; cn-1 >)->resolve(< cn >)

X/0pen Preliminary Specification (1994)

Naming Service Specification The CosNaming Module

3.2.3

3.24

Table 3-2 describes the exceptions raised by the resolve () operation.

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for some reason.

The client, however, may be able to continue the operation at the
returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

Table 3-2 Exceptions Raised by the resolve() Operation

Unbinding Names

The unbind () operation removes a name binding from a context. The definition of the unbind ()
operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

An unbind () operation that is passed a compound name is defined as follows:

ctx->unbind(< cl;c2;..;cn>) =
(ctx->resolve(<cl; c2;...;cn-1>))->unbind(< cn >)

Table 3-3 describes the exceptions raised by the unbind () operation.

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for some reason.

The client, however, may be able to continue the operation at the
returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)

Table 3-3 Exceptions Raised by the unbind() Operation

Creating Naming Contexts

The name service supports two operations to create new contexts: new_context () and
bind_new_context ().

NamingContext new_contex t();

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_context()
This operation returns a naming context implemented by the same naming server as the
context on which the operation was invoked. The new context is not bound to any name.

bind_new_context()
This operation creates a new context and binds it to the name supplied as an argument. The
newly-created context is implemented by the same naming server as the context in which it
was bound (that is, the naming server that implements the context denoted by the name

Common Object Services, Volume 1 17

The CosNaming Module Naming Service Specification

argument excluding the last component).
A bind_new_context () operation that is passed a compound name is defined as follows:

ctx->bind_new_context(<cl;c2;..;cn>) =
(ctx->resolve(< cl; c2;...;cn-1 >))->bind_new_context(< cn >)

Table 3-4 describes the exceptions raised when new contexts are being created.

Exception Raised Description
NotFound Indicates the name does not identify a binding.
CannotProceed Indicates that the implementation has given up for some reason.

The client, however, may be able to continue the operation at the
returned naming context.

InvalidName Indicates the name is invalid. (A name of length 0 is invalid;
implementations may place other restrictions on names.)
AlreadyBound Indicates an object is already bound to the specified name. Only

one object can be bound to a particular name in a context.

Table 3-4 Exceptions Raised by Creating New Contexts

3.25 Deleting Contexts
The destroy () operation deletes a naming context..

void destroy()
raises(NotEmpty);

If the naming context contains bindings, the NotEmpty exception is raised.

3.26 Listing a Naming Context
The list () operation allows a client to iterate through a set of bindings in a naming context.

enum BindingType {object, ncontext};
struct Binding {
Name binding_name;

BindingType binding_type;
3

typedef sequence <Binding> BindingList;

void list (in unsigned long how_many,
out BindingList bl, out Bindinglterator bi);

3
The list () operation returns at most the requested number of bindings in BindingList :

- If the naming context contains additional bindings, the list () operation returns a
Bindinglterator with the additional bindings.

- If the naming context does not contain additional bindings, the binding iterator is a nil object
reference.

18 X/0pen Preliminary Specification (1994)

Naming Service Specification The CosNaming Module

3.2.7 The Bindinglterator Interface

The Bindinglterator interface allows a client to iterate through the bindings using the next_one ()
or next_n () operations:

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();

3
next_one()
This operation returns the next binding. If there are no more bindings, false is returned.
next_n()
This operation returns at most the requested number of bindings.
destroy()

This operation destroys the binding iterator.

Common Object Services, Volume 1 19

Names Library Naming Service Specification

3.3

20

Names Library

To allow the representation of names to evolve without affecting existing clients, it is desirable to
hide the representation of names from client code. Ideally, names themselves would be objects;
however, names must be lightweight entities that are efficient to create, manipulate and
transmit. As such, names are presented to programs through the names library.

Note: It is not necessary to use the names library to use the basic operations of the naming
service.

The names library implements hames as pseudo-objects. A client makes calls on a pseudo-object
in the same way that it makes calls on an ordinary object. Library names are described in
pseudo-IDL (to suggest the appropriate language binding). C and C++ clients use the same
client language bindings for pseudo-IDL (PIDL) as they use for IDL.

Pseudo-object references cannot be passed across IDL interfaces. As described in Section 3.2 on
page 14, the naming service supports the NamingContext IDL interface. The names library
supports an operation to convert a library name into a value that can be passed to the name
service through the NamingContext interface.

Note: Itis not a requirement to use the names library in order to use the name service.

The naming library consists of two pseudo-IDL interfaces: the LNameComponent interface and
the LName interface, as shown in the code example below.

Example 3-2 The Names Library Interface in PIDL

interface LNameComponent { /I PIDL
exception NotSet{};
string get_id()
raises(NotSet);
void set_id(in string i);
string get_kind()
raises(NotSet);
void set_kind(in string k);
void destroy();
b

interface LName { /I PIDL
exception NoComponent{};
exception OverFlow{};
exception InvalidName{};
LName insert_component(in unsigned long i,
in LNameComponent n)
raises(NoComponent, OverFlow);
LNameComponent get_component(in unsigned long i)
raises(NoComponent);
LNameComponent delete_component(in unsigned long i)
raises(NoComponent);
unsigned long num_components();
boolean equal(in LName In);
boolean less_than(in LName In);
Name to_idl_form()
raises(InvalidName);
void from_idl_form(in Name n);
void destroy();

X/0pen Preliminary Specification (1994)

Naming Service Specification Names Library

331

3.3.2

3.3.3

3.34

LName create_Iname(); /I CIC++
LNameComponent create_Iname_component(); /I CIC++

Creating a Library Name Component
To create a library name component pseudo-object, use the following C/C++ function:
LNameComponent create_Iname_component(); /I CIC++

The returned pseudo-object can then be operated on using the operations in the PIDL names
library interface.

Creating a Library Name
To create a library name pseudo-object, use the following C/C++ function:
LName create_Iname(); /I CIC++

The returned pseudo-object reference can then be operated on using the operations in the PIDL
names library interface.

The LNameComponent Interface

A name component consists of two attributes: the identifier attribute and the kind attribute. The
LNameComponent interface defines the operations associated with these attributes.

string get_id()
raises(NotSet);

void set_id(in string k);

string get_kind()
raises(NotSet);

void set_kind(in string k);

get_id()
The get_id() operation returns the identifier attribute’s value. If the attribute has not been
set, the NotSet exception is raised.

set_id()
The set_id() operation sets the identifier attribute to the string argument.

get_kind()
The get_kind() operation returns the kind attribute’s value. If the attribute has not been set,
the NotSet exception is raised.

set_kind()
The set_kind () operation sets the kind attribute to the string argument.

The LName Interface
The following operations are described in this section:

« destroying a library name component pseudo-object

. creating a library name

- inserting a name component

. getting the ith name component

- deleting a name component

Common Object Services, Volume 1 21

Names Library Naming Service Specification

» number of name components
. testing for equality

- testing for order

« producing an IDL form

- translating an IDL form

- destroying a library name pseudo-object.

Destroying a Library Name Component Pseudo-object
The destroy () operation destroys library name component pseudo-objects.

void destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to identify names
of subcontexts. (The last component denotes the bound object.) The insert_component()
operation inserts a component after position i.

LName insert_component(in unsigned long i, in LNameComponent Inc)
raises(NoComponent, OverFlow);

If component i-1 is undefined and component i is greater than 1, the insert_component()
operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the OverFlow exception is
raised.

Getting the ith Name Component

The get_component() operation returns the ith component. The first component is numbered 1.

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

Deleting a Name Component
The delete_component() operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component() operation has been performed, the compound name has one fewer
component and components previously identified as i+1...n are now identified asi...n-1.

22 X/Open Preliminary Specification (1994)

Naming Service Specification Names Library

Number of Name Components

The num_components() operation returns the number of components in a library name.

unsigned long num_components();

Testing for Equality
The equal() operation tests for equality with library name In.

boolean equal(in LName In);

Testing for Order

The less_than () operation tests for the order of a library name in relation to library name In.
boolean less_than(in LName In);

This operation returns true if the library name is less than the library name In passed as an
argument. The library implementation defines the ordering on names.

Producing an IDL Form

Pseudo-objects cannot be passed across IDL interfaces. The library name is a pseudo-object;
therefore, it cannot be passed across the IDL interface for the naming service. Several operations
in the NamingContext interface have arguments of an IDL-defined structure, Name. The
following PIDL operation on library names produces a structure that can be passed across the
IDL request.

Name to_idl_form()
raises(InvalidName);

If the name is of length 0, the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across IDL interfaces. The library name is a pseudo-object;
therefore, it cannot be passed across the IDL interface for the naming service. The
NamingContext interface defines operations that return an IDL struct of type Name. The
following PIDL operation on library names sets the components and kind attribute for a library
name from a returned IDL-defined structure, Name.

void from_idl_form(in Name n);

Destroying a Library Name Pseudo-object
The destroy () operation destroys library name pseudo-objects.
void destroy();

Common Object Services, Volume 1 23

24

Naming Service Specification

X/0pen Preliminary Specification (1994)

4.1

411

412

Chapter 4

Event Service Specification

Service Description

Overview

A standard CORBA request results in the synchronous execution of an operation by an object. If
the operation defines parameters or return values, data is communicated between the client and
the server. A request is directed to a particular object. For the request to be successful, both the
client and the server must be available. If a request fails because the server is unavailable, the
client receives an exception and must take some appropriate action.

In some scenarios, a more decoupled communication model between objects is required. For
example:

« A system administration tool is interested in knowing if a disk runs out of space. The
software managing a disk is unaware of the existence of the system administration tool. The
software simply reports that the disk is full. When a disk runs out of space, the system
administration tool opens a window to inform the user which disk has run out of space.

« A property list object is associated with an application object. The property list object is
physically separate from the application object. The application object is interested in the
changes made to its properties by a user. The properties can be changed without involving
the application object. That is, in order to have reasonable response time for the user,
changing a property does not activate the application object. However, when the application
object is activated, it needs to know about the changes to its properties.

« A CASE tool is interested in being notified when a source program has been modified. The
source program simply reports when it is modified. It is unaware of the existence of the
CASE tool. In response to the notification, the CASE tool invokes a compiler.

- Several documents are linked to a spreadsheet. The documents are interested in knowing
when the value of certain cells have changed. When the cell value changes, the documents
update their presentations based on the spreadsheet. Furthermore, if a document is
unavailable because of a failure, it is still interested in any changes to the cells and wants to
be notified of those changes when it recovers.

Event Communication

The event service decouples the communication between objects. The event service defines two
roles for objects: the supplier role and the consumer role. Suppliers produce event data and
consumers process event data. Event data is communicated between suppliers and consumers
by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and consumers,
and two orthogonal approaches to the form that the communication can take.

The two approaches to initiating event communication are called the push model and the pull
model. The push model allows a supplier of events to initiate the transfer of the event data to
consumers. The pull model allows a consumer of events to request the event data from a
supplier. In the push model, the supplier is taking the initiative; in the pull model, the consumer
is taking the initiative.

Common Object Services, Volume 1 25

Service Description Event Service Specification

413

26

The communication itself can be either generic or typed. In the generic case, all communication
is by means of generic push or pull operations that take a single parameter that packages all the
event data. In the typed case, communication is by means of operations defined in IDL. Event
data is passed by means of parameters, which can be defined in any manner. Section 4.2 on page
30 to Section 4.5 on page 38 inclusive discuss generic event communication in detail; Section 4.6
on page 42 to Section 4.9 on page 47 inclusive discuss typed event communication in detail.

An event channel is an intervening object that allows multiple suppliers to communicate with
multiple consumers asynchronously. An event channel is both a consumer and a supplier of
events. Event channels are standard CORBA objects and communication with an event channel
is accomplished using standard CORBA requests.

Example Scenario

This section provides a general scenario that illustrates how the event service can be used. The
event service can be used to provide change notification. When an object is changed (that is, its
state is modified), an event can be generated that is propagated to all interested parties. For
example, when a spreadsheet cell object is modified, all compound documents which contain a
reference (link) to that cell can be notified (so the document can redisplay the referenced cell, or
recalculate values that depend on the cell). Similarly, when an engineering specification object is
modified, all engineers who have registered an interest in the specification can be notified that
the specification has changed.

In this scenario, objects that can be changed act as suppliers, parties interested in receiving
notifications of changes act as consumers, and one or more event channel objects are used as
intermediaries between consumers and suppliers. Either the push or the pull model can be used
at either end.

If the push model is used by suppliers, objects that can be changed support the PushSupplier
interface so that event communication can be discontinued, use the EventChannel,
SupplierAdmin and ProxyPushConsumer interfaces to register as suppliers of events, and use the
ProxyPushConsumer interface to push events to event channels.

When a change occurs to an object, a changeable object invokes a push operation on the channel.
It provides as an argument to the push operation information that describes the event. This
information is of data type any — it can be as simple or as complex as is necessary. For example,
the event information might identify the object reference of the object that has been changed, it
might identify the kind of change that has occurred, it might provide a new displayable image of
the changed object, or it might identify one or more additional objects that describe the change
that has been made.

On the consumer side, if the pull model is used by consumers, all client objects that are
interested in being notified of changes support the PullConsumer interface so communication
can be discontinued, use the EventChannel , ConsumerAdmin and ProxyPullSupplier interfaces to
register as consumers of events, and use the ProxyPullSupplier interface to pull events from
event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving notification of
changes. Using the try_pull () operation, the consumer can periodically poll the channel for
events. Alternatively, the consumer can use the pull () operation which blocks the consumer’s
execution thread until an event is generated by some supplier.

Event channels act as the intermediaries between the objects being changed and objects
interested in knowing about changes. The channels that provide change notification can be
general-purpose, well-known objects (for example, persistent server-based objects that are run
as part of a workgroup-wide framework of objects that provide desktop services) or specific-to-

X/0pen Preliminary Specification (1994)

Event Service Specification Service Description

414

task objects (for example, temporary objects that are created when needed). Objects that use
event channels may locate the channels by looking for them in a persistently available server (for
example, by looking for them in a naming service) or they may be given references to these
objects as part of a specific-to-task object protocol (for example, when an open operation is
invoked on an object, the object may return the reference to an event channel which the caller
should use until the object is closed).

Event channels determine how changes are propagated between suppliers and consumers; that
is, the qualities of service (see Section 4.1.6 on page 29). For example, an event channel
determines the persistence of an event. The channel may keep an event for a specified period of
time, passing it along to any consumer who registers with the channel during that period of time
(for example, it may keep event notifications about changes to engineering specifications for a
week). Alternatively, the channel may only pass on events to consumers who are currently
waiting for notification of changes (for example, notifications of changes to a spreadsheet cell
may only be sent to consumers who are currently displaying that cell).

This scenario exemplifies one way in which the event service described here forms a basic
building block used in providing higher-level services specific to an application or common
facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been used.

Design Principles
The service design satisfies the following principles:

- Events work in a distributed environment. The design does not depend on any global,
critical or centralised service.

- Event services allow multiple consumers of an event and multiple event suppliers.

- Consumers can either request events or be notified of events, whichever is more appropriate
for application design and performance.

- Consumers and suppliers of events support standard IDL interfaces; no extensions to
CORBA are necessary to define these interfaces. A supplier can issue a single standard
request to communicate event data to all consumers at once.

« Suppliers can generate events without knowing the identities of the consumers. Conversely,
consumers can receive events without knowing the identities of the suppliers.

- The event interface allows multiple qualities of service (for example, for different levels of
reliability), and allows for future interface extensions (for example, for additional
functionality).

- The event service interfaces are capable of being implemented and used in different
operating environments; for example, in environments that support threading and
environments that do not support threading.

Common Object Services, Volume 1 27

Service Description Event Service Specification

415

28

Resolution of Technical Issues

This specification addresses the issues identified for event services in the referenced OMG
Obiject Services Architecture document as follows:

Distributed Environment
The interfaces are designed to allow consumers and suppliers of events to be disconnected
from time to time, and do not require centralised event identification, processing, routing or
other services that might be a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model does not
support passing objects by value.

Event Generation
The specification describes how events are generated and delivered with event channels as
intermediate routing points. It does not require (or preclude) polling, nor does it require
that an event supplier directly to notify every interested party.

Events Involving Multiple Objects
Complex events may be handled by constructing a notification tree of event consumers or
suppliers checking for successively more specific event predicates. The specification does
not require a general or global event predicate evaluation service, as this may not be
sufficiently reliable, efficient or secure in a distributed, heterogeneous (potentially
decoupled) environment.

Scoping, Grouping and Filtering Events
The specification takes advantage of CORBA's distributed scoping and grouping
mechanisms for the identifier and type of events. Event filtering is easily achieved through
event channels that selectively deliver events from suppliers to consumers. Event channels
can be composed; that is, one event channel can consume events supplied by another.

Typed event channels can provide filtering based on event type.

Registration and Generation of Events
Consumers and suppliers register with event channels themselves. Event channels are
objects and they are found by any fashion that objects can be found. A global registration
service is not required; any object that conforms to the IDL interface specification may
consume an event.

Event Parameters
The specification supports a parameter of type any that can be delivered with an event, used
for application-specific data.

Forgery and Secure Events
Because event suppliers are objects, the specification leverages any ORB work on security
for object references and communication.

Performance
The design is a minimalist one, and requires only one ORB call per event received. It
supports both push-style and pull-style notification to avoid inefficient event polling. Since
event suppliers, consumers and channels are all ORB objects, the service directly benefits
from a Library Object Adapter or any other ORB optimisations.

Additional issues that have been considered in the design of the event service include:

Formalised Event Information
For specific application environments and frameworks, it may be beneficial to formalise the
data associated with an event (defined in this specification as type any). This can be
accomplished by defining a typed structure for this information. Depending on the needs of

X/0pen Preliminary Specification (1994)

Event Service Specification Service Description

416

the environment, the kinds of information included might be a priority, timestamp, origin
string and confirmation indicator. This information might be solely for the benefit of the
event consumer, or might also be interpreted by particular event channel implementations.

Confirmation of Reception
Some applications may require that consumers of an event provide an explicit confirmation
of reception back to the supplier. This can be supported effectively using a ‘“‘reverse’” event
channel through which consumers send back confirmations as normal events. This obviates
the need for any special confirmation mechanism. However, strict atomic delivery between
all suppliers and all consumers requires additional interfaces.

Quality of Service

Application domains requiring event-style communication have diverse reliability requirements,
from at-most-once semantics (that is, best effort) to guaranteed exactly-once semantics,
availability requirements, throughput requirements, performance requirements (that is, how fast
events are disseminated) and scalability requirements.

Clearly no single implementation of an event service can optimise such a diverse range of
technical requirements. Hence, multiple implementations of event services are to be expected,
with different services aimed at different environments. As such, the event interfaces do not
dictate qualities of service. Different implementations of the event interfaces can support
different qualities of service to meet different application needs.

For example, an implementation that trades at most one delivery to a single consumer in favour
of performance is useful for some applications; an implementation that favours performance but
cannot preclude duplicate delivery is useful for other applications. Both are acceptable
implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations at least support best-effort delivery of events.

Note: The interfaces defined in this chapter are incomplete for implementations that support
strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none of the
consumers receive an event; and that all events are received in the same order by all
consumers.

Common Object Services, Volume 1 29

Generic Event Communication Event Service Specification

4.2

421

422

30

Generic Event Communication

There are two basic models for communicating event data between suppliers and consumers:
the push model and the pull model.

Push Model

In the push model, suppliers push event data to consumers; that is, suppliers communicate
event data by invoking push operations on the PushConsumer interface.

To set up a push-style communication, consumers and suppliers exchange PushConsumer and
PushSupplier object references. Event communication can be broken by invoking a
disconnect_push_consumer () operation on the PushConsumer interface, or by invoking a
disconnect_push_supplier () operation on the PushSupplier interface. If the PushSupplier object
reference is nil, the connection cannot be broken by means of the supplier.

Figure 4-1 illustrates push-style communication between a supplier and a consumer.

PushSupplier I

| "
consumer/I \ supplier
, |
PushConsumer

Figure 4-1 Push-style Supplier/Consumer Communication

Pull Model

In the pull model, consumers pull event data from suppliers; that is, consumers request event
data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange PullConsumer
and PullSupplier object references. Event communication can be broken by invoking a
disconnect_pull_consumer () operation on the PullConsumer interface, or by invoking a
disconnect_pull_supplier () operation on the PullSupplier interface. If the PullConsumer object
reference is nil, the connection cannot be broken by means of the consumer.

Figure 4-2 on page 31 illustrates pull-style communication between a supplier and a consumer.

X/0pen Preliminary Specification (1994)

Event Service Specification Generic Event Communication

I PullConsumer

“ |
consumer / I \ supplier
/ PullSupplier I :

Figure 4-2 Pull-style Supplier/Consumer Communication

Common Object Services, Volume 1 31

The CosEventComm Module Event Service Specification

4.3

43.1

32

The CosEventComm Module

Names of all IDL modules which form the Common Object Services specification are prefixed
with the initials "Cos".

The communication styles shown in Figure 4-1 on page 30 and Figure 4-2 on page 31 are both
supported by four simple interfaces: PushConsumer , PushSupplier , PullSupplier and
PullConsumer . These interfaces are defined in an IDL module named CosEventComm , as shown
in the code example below.

Example 4-1 The IDL CosEventComm Module

module CosEventComm {
exception Disconnected{};
interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();
b
interface PushSupplier {
void disconnect_push_supplier();
b
interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();
3
interface PullConsumer {
void disconnect_pull_consumer();
3
3

The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

h

A supplier communicates event data to the consumer by invoking the push () operation and
passing the event data as a parameter. If the event communication has already been
disconnected, the Disconnected exception is raised.

The disconnect_push_consumer () operation terminates the event communication; it releases
resources used at the consumer to support the event communication. The PushConsumer object
reference is disposed.

X/0pen Preliminary Specification (1994)

Event Service Specification The CosEventComm Module

43.2

43.3

434

The PushSupplier Interface
A push-style supplier supports the PushSupplier interface.

interface PushSupplier {
void disconnect_push_supplier();

h

The disconnect_push_supplier () operation terminates the event communication; it releases
resources used at the supplier to support the event communication. The PushSupplier object
reference is disposed.

The PullSupplier Interface
A pull-style supplier supports the PullSupplier interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

h

A consumer requests event data from the supplier by invoking either the pull () operation or the
try_pull () operation on the supplier:

- The pull () operation blocks until the event data is available or an exception is raised. It
returns the event data to the consumer. If the event communication has already been
disconnected, the Disconnected exception is raised.

- The try_pull () operation does not block; if the event data is available, it returns the event data
and sets the has_event parameter to true; if the event is not available, it sets the has_event
parameter to false and the event data is returned together with an undefined value. If the
event communication has already been disconnected, the Disconnected exception is raised.

The disconnect_pull_supplier () operation terminates the event communication; it releases
resources used at the supplier to support the event communication. The PullSupplier object
reference is disposed.

The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

interface PullConsumer {
void disconnect_pull_consumer();

h

The disconnect_pull_consumer () operation terminates the event communication; it releases
resources used at the consumer to support the event communication. The PullConsumer object
reference is disposed.

Common Object Services, Volume 1 33

Event Channels Event Service Specification

4.4

441

442

443

34

Event Channels

The event channel is a service that decouples the communication between suppliers and
consumers. The event channel is itself both a consumer and a supplier of the event data. An
event channel can provide asynchronous communication of event data between suppliers and
consumers. Although consumers and suppliers communicate with the event channel using
standard CORBA requests, the event channel does not need to supply the event data to its
consumer at the same time as it consumes the data from its supplier.

Push-style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pushes event
data to the consumer. Figure 4-3 illustrates a push-style communication between a supplier and
the event channel, and a consumer and the event channel.

\ PushSupplier | /\ PushSupplier | /
77— 7
> (supplier

- l
PushConsumer PushConsumer
event channel

A~

consumer) I
|

Figure 4-3 Push-style Communication through Event Channel

Pull-style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls event
data from the supplier. Figure 4-4 illustrates a pull-style communication between a supplier and
the event channel, and a consumer and the event channel.

\ PullSupplier I /\ PullSupplier I /
1 — 1 —
(>| (supplier

—

PullConsumer PullConsumer
event channel

consumer)
—}

Figure 4-4 Pull-style Communication through an Event Channel

Mixed-style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication, and
communicate with a consumer using a different style of communication. Figure 4-5 on page 35
illustrates a push-style communication between a supplier and an event channel, and a pull-
style communication between a consumer and the event channel. The consumer pulls the event
data that the supplier has pushed to the event channel.

X/0pen Preliminary Specification (1994)

Event Service Specification Event Channels

\ | PullConsumer /\ PushSupplier /
T 7
consumer) I (> I (supplier
| |

PullSupplier PushConsumer
event channel

Figure 4-5 Mixed-style Communication through an Event Channel

4.4.4 Multiple Consumers and Multiple Suppliers

Figure 4-3 on page 34, Figure 4-4 on page 34 and Figure 4-5 illustrate event channels with a
single supplier and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and supplies events
to one or more consumers. Subject to the quality of service of a particular implementation, an
event channel provides an event to all consumers.

Figure 4-6 illustrates an event channel with multiple push-style consumers and multiple push-
style suppliers.

\ PushSupplier | /\ PushSupplier | /

| . | .

/ \ | (supplier
—

PushConsumer PushConsumer

consumer)
—alf

event channel

\ PushSupplier | PushSupplier | /
| .

=
consumer)I \ /I (supplier
I

—} — 1
PushConsumer \ / PushConsumer

Figure 4-6 Event Channel Managing Multiple Consumers and Suppliers

An event channel can support consumers and suppliers using different communication models.

If an event channel has at least one push-style consumer or at least one pending pull request, the
event channel requires an event. If the event channel has pull suppliers, it will issue a request on
a pull supplier to satisfy its requirement.

Common Object Services, Volume 1 35

Event Channels Event Service Specification

445

36

Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no suppliers or
consumers are connected to the event channel. Upon creation of the channel, the factory returns
an object reference that supports the EventChannel interface, as illustrated in Figure 4-7.

event channel

EventChannel

Figure 4-7 A Newly Created Event Channel

The EventChannel interface defines three administrative operations: an operation returning a
ConsumerAdmin object for adding consumers, an operation returning a SupplierAdmin object for
adding suppliers, and an operation for destroying the channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is similar to a
normal supplier (in fact, it inherits the interface of a supplier), but includes an additional method
for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is similar to a
normal consumer (in fact, it inherits the interface of a consumer), but includes an additional
method for connecting a supplier to the proxy consumer.

Registration of a supplier or consumer is a two-step process. An event-generating application
first obtains a proxy consumer from a channel, then connects to the proxy consumer by
providing it with a supplier. Similarly, an event-receiving application first obtains a proxy
supplier from a channel, then connects to the proxy supplier by providing it with a consumer.

The reason for the two-step registration process is to support composing event channels by an
external agent. Such an agent would compose two channels by obtaining a proxy supplier from
one and a proxy consumer from the other, and passing each of them a reference to the other as
part of their connect operation.

Proxies are in one of three states: disconnected, connected or destroyed. Figure 4-8 on page 37
gives a state diagram for a proxy. The nodes of the diagram are the states and the edges are
labelled with the operations that change the state of the proxy. Note that push or pull
operations are only valid in the connected state.

X/0pen Preliminary Specification (1994)

Event Service Specification Event Channels

event
communication

obtain connect disconnect

disconnected connected

destroyed

Figure 4-8 State Diagram of a Proxy

Common Object Services, Volume 1 37

The CosEventChannelAdmin Module Event Service Specification

4.5

451

38

The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making connections between
suppliers and consumers. The CosEventChannelAdmin module is defined in the code example
below.

Example 4-2 The CosEventChannelAdmin Module

#include "CosEventComm.idl"
module CosEventChannelAdmin {

h

exception AlreadyConnected {};
exception TypeError {};
interface ProxyPushConsumer: EventComm::PushConsumer {
void connect_push_supplier(
in EventComm::PushSupplier push_supplier)
raises(AlreadyConnected);
b
interface ProxyPullSupplier: EventComm::PullSupplier {
void connect_pull_consumer(
in EventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);
3
interface ProxyPullConsumer: EventComm::PullConsumer {
void connect_pull_supplier(
in EventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);
3
interface ProxyPushSupplier: EventComm::PushSupplier {
void connect_push_consumer(
in EventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);
3
interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
3
interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();
3
interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

h

The EventChannel Interface

The EventChannel interface defines three administrative operations: adding consumers, adding
suppliers and destroying the channel.

interface EventChannel {

b

ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

X/0pen Preliminary Specification (1994)

Event Service Specification The CosEventChannelAdmin Module

452

453

Any object that possesses an object reference that supports the EventChannel interface can
perform these operations:

- The ConsumerAdmin interface allows consumers to be connected to the event channel. The
for_consumers () operation returns an object reference that supports the ConsumerAdmin
interface.

« The SupplierAdmin interface allows suppliers to be connected to the event channel. The
for_suppliers () operation returns an object reference that supports the SupplierAdmin
interface.

« The destroy () operation destroys the event channel.

Consumer administration and supplier administration are defined as separate objects so that the
creator of the channel can control the addition of suppliers and consumers. For example, a
creator might wish to be the sole supplier of event data but allow many consumers to be
connected to the channel. In such a case, the creator would simply export the ConsumerAdmin
object.

The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the event
channel; clients use it to obtain proxy suppliers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
3
The obtain_push_supplier () operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier () operation returns a ProxyPullSupplier object. The ProxyPullSupplier
object is then used to connect a pull-style consumer.

The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the event channel;
clients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

h

The obtain_push_consumer () operation returns a ProxyPushConsumer object. The
ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer () operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

Common Object Services, Volume 1 39

The CosEventChannelAdmin Module Event Service Specification

454

455

456

40

The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push suppliers to the
event channel.

interface ProxyPushConsumer: EventComm::PushConsumer {
void connect_push_supplier(
in EventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

h

A nil object reference may be passed to the connect_push_supplier () operation; if so, a channel
cannot invoke the disconnect_push_supplier () operation on the supplier; the supplier may be
disconnected from the channel without being informed.

If the ProxyPushConsumer is already connected to a PushSupplier , then the AlreadyConnected
exception is raised.

The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull consumers to the
event channel.

interface ProxyPullSupplier: EventComm::PullSupplier {
void connect_pull_consumer(
in EventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

h

A nil object reference may be passed to the connect_pull_consumer () operation; if so, a channel
cannot invoke a disconnect_pull_consumer () operation on the consumer; the consumer may be
disconnected from the channel without being informed.

If the ProxyPullSupplier is already connected to a PullConsumer,then AlreadyConnected
exception is raised.

The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull suppliers to the
event channel.

interface ProxyPullConsumer: EventComm::PullConsumer {
void connect_pull_supplier(
in EventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

h

Implementations should raise the CORBA standard BAD_PARAM exception if a nil object
reference is passed to the connect_pull_supplier () operation.

If the ProxyPullConsumer is already connected to a PullSupplier , then the AlreadyConnected
exception is raised.

An implementation of a ProxyPullConsumer may put additional requirements on the interface
supported by the pull supplier. If the pull supplier does not meet those requirements, the
ProxyPullConsumer raises the TypeError exception. (See Section 4.7.2 on page 45 for an example.)

X/0pen Preliminary Specification (1994)

Event Service Specification The CosEventChannelAdmin Module

45.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push consumers to the
event channel.

interface ProxyPushSupplier: EventComm::PushSupplier {
void connect_push_consumer(
in EventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

h

Implementations should raise the CORBA standard BAD_PARAM exception if a nil object
reference is passed to the connect_push_consumer () operation.

If the ProxyPushSupplier is already connected to a PushConsumer , then the AlreadyConnected
exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the interface
supported by the push consumer. If the push consumer does not meet those requirements, the
ProxyPushSupplier raises the TypeError exception. (See Section 4.7.1 on page 44 for an example.)

Common Object Services, Volume 1 41

Typed Event Communication Event Service Specification

4.6

46.1

42

Typed Event Communication

Section 4.2 on page 30 discusses generic event communication using push and pull operations.
The following sections describe how event communication can be defined in IDL, and how
typed event channels can support such typed event communication.

Typed Push Model

In the typed push model, suppliers call operations on consumers using some mutually agreed
interface 1. The interface | is defined in IDL, and may contain any operations subject to the
following restrictions:

« All parameters must be in parameters only.
« No return values are permitted.

These are the same restrictions as CORBA imposes on one-way operations, and for similar
reasons: event communication is unidirectional, and does not directly support responses. The
operations can be declared one-way, but need not be.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references.

Note: The supplier interface is the same as the untyped case.

The supplier then invokes the get typed consumer () operation of the TypedPushConsumer
interface, which returns an object reference supporting the typed interface I, referred to as an I-
reference . The particular interface | that the reference supports is dependent on the particular
TypedPushConsumer , and must be mutually agreed by supplier and consumer. Once the
supplier has obtained the I-reference , it can call operations in interface | on the consumer.

As in the case of the generic push-style, event communication can be broken by invoking a
disconnect_push_consumer () operation on the TypedPushConsumer interface or by invoking a
disconnect_push_supplier () operation on the PushSupplier interface. If the PushSupplier object
reference is nil, the connection cannot be broken by means of the supplier.

Figure 4-9 illustrates typed push-style communication between supplier and consumer.

PushSupplier

H—
consumer) < supplier

TypedPushConsumer\
| \

Figure 4-9 Typed Push-style Supplier/Consumer Communication

X/0pen Preliminary Specification (1994)

Event Service Specification Typed Event Communication

4.6.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event information,
using some mutually agreed interface Pull<i>!. For every interface | having the properties
described in Section 4.6.1 on page 42, an interface Pull<l> is defined as follows.

For every operation o in I, Pull<l> contains two operations:

- the pull_o () operation with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is currently
available, it will block.

- the boolean try o () operation with all in parameters changed to out parameters. When
called, this operation will check whether an o-event is currently available. If so, it returns
true, with the event data in the out parameters. If not, it returns false, with the out
parameters undefined.

The interface Pull<I> is designed to allow pulling of exactly the same events that can be pushed
using interface I.

To set up typed pull-style communication, consumers and suppliers exchange PullConsumer and
TypedPullSupplier object references.

Note: The consumer interface is the same as the untyped case.

The consumer then invokes the get_typed_supplier () operation of the TypedPullSupplier , which
returns an object reference supporting the typed interface Pull<i>, referred to as a Pull<I>-
reference . The particular interface Pull<i> that the reference supports is dependent on the
particular TypedPullSupplier , and must be mutually agreed by supplier and consumer. Once the
consumer has obtained the Pull<i>-reference , it can call operations in interface Pull<l> on the
supplier.

Figure 4-10 illustrates typed pull-style communication between supplier and consumer.

I PullConsumer
<

|
consumer) (supplier
P

/ TypedPullSupplier
/ Pull<I>

Figure 4-10 Typed Pull-style Supplier/Consumer Communication

1. Pulll> is used as notation for a computed interface from interface I. Thus, if | is an interface DocumentEvents, Pull<l> is an
interface PullDocumentEvents .

Common Object Services, Volume 1 43

The CosTypedEventComm Module Event Service Specification

4.7

4.7.1

44

The CosTypedEventComm Module

Names of all IDL modules which form the Common Object Services specification are prefixed
with the initials "Cos".

The typed communication styles shown in Figure 4-9 on page 42 and Figure 4-10 on page 43 are
both supported by two new interfaces, TypedPushConsumer and TypedPullSupplier and two
existing interfaces, PushSupplier and PullConsumer . The first two interfaces are defined in an IDL
module named CosTypedEventComm as shown in the code example below. The last two are the
same as for untyped event communication, and were defined in the CosEventComm module.

Example 4-3 The IDL CosTypedEventComm Module

#include "CosEventComm.idl"
module CosTypedEventComm {
interface TypedPushConsumer : EventComm::PushConsumer {
Object get_typed_consumer();
b
interface TypedPullSupplier : EventComm::PullSupplier {
Object get_typed_supplier();
b
b

The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to receive event
data in the generic manner, and to supply a specific typed interface through which to receive it
in typed form.

interface TypedPushConsumer : EventComm::PushConsumer {
Object get_typed_consumer();
3

The TypedPushConsumer can behave just like an untyped PushConsumer , described in Section
4.3.1 on page 32. In addition, if the supplier wishes to communicate event data to the consumer
in typed rather than generic form, it first invokes the get typed_consumer () operation. This
returns an I-reference supporting an interface I. The particular interface | that the reference
supports is dependent on the particular TypedPushConsumer . The return type of the operation is
Object , because different TypedPushConsumers will return references of different types, so the
actual type cannot be specified in a general definition. Once the supplier has obtained the I-
reference , it can narrow it to I, and then call operations in interface | on the consumer. Mutual
agreement about | is needed between the supplier and consumer. If they do not agree, the
narrow operation fails.

As noted above, a TypedPushConsumer must support the push () operation, inherited from
EventComm::PushConsumer . Implementing push () fully is an unnecessary burden if the
consumer is intended for typed use only. It is therefore permissible to implement a
TypedPushConsumer with a null implementation of push () that merely raises the standard
CORBA exception NO_IMPLEMENT. Clearly, suppliers must know this and confine themselves to
typed communication with such consumers.

X/0pen Preliminary Specification (1994)

Event Service Specification The CosTypedEventComm Module

4.7.2

The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow consumers to
pull event data in the generic manner, and to supply a specific typed interface through which
they can pull it in typed form.

interface TypedPullSupplier : EventComm::PullSupplier {
Object get_typed_supplier();
3

The TypedPullSupplier can behave just like an untyped PullSupplier , described in Section 4.3.3 on
page 33. In addition, if the consumer wishes to pull event data from the supplier in typed rather
than generic form, it first invokes the get_typed_supplier () operation. This returns a Pull<I>-
reference supporting an interface Pull<l>. The particular interface Pull<l> that the reference
supports is dependent on the particular TypedPullSupplier . The return type of the operation is
Object, because different TypedPullSuppliers will return references of different types, so the
actual type cannot be specified in a general definition. Once the consumer has obtained the
Pull<i>-reference , it can narrow it to Pull<l>, and then call operations in interface Pull<i> on the
supplier. Mutual agreement about Pull<I> is needed between the supplier and consumer. If they
do not agree, the narrow operation fails.

A TypedPullSupplier must support the pull () and try pull () operations, inherited from
EventComm::PullSupplier . Implementing these operations fully is an unnecessary burden if the
supplier is intended for typed use only. It is therefore permissible to implement a
TypedPullSupplier with null implementations of pull () and try_pull () that merely raise the
standard CORBA exception NO_IMPLEMENT. Clearly, consumers must know this and confine
themselves to typed communication with such suppliers.

Common Object Services, Volume 1 45

Typed Event Channels Event Service Specification

4.8 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both typed and
generic event communication. These forms can be mixed at will. A single channel can handle
events supplied and consumed in any combination of the forms defined earlier (push or pull,
generic or typed). An event supplied in typed form can be consumed in generic form, or vice
versa.

46 X/0pen Preliminary Specification (1994)

Event Service Specification The CosTypedEventChannelAdmin Module

4.9 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making connections
between suppliers and consumers that use either generic or typed communication. It is defined
in the code example below. Most of its interfaces are specialisations of the corresponding
interfaces in the CosEventChannel module.

Example 4-4 The CosTypedEventChannelAdmin Module

#include "CosEventChanne L.idl"
#include "CosTypedEventComm.idl"
module CosTypedEventChannelAdmin {
exception InterfaceNotSupported {};
exception NoSuchlmplementation {};
typedef string Key;
interface TypedProxyPushConsumer :
EventChannelAdmin::ProxyPushConsumer,
TypedEventComm::TypedPushConsumer {};
interface TypedProxyPullSupplier :
EventChannelAdmin::ProxyPullSupplier,
TypedEventComm::TypedPullSupplier { };
interface TypedSupplierAdmin :
EventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchlmplementation);
3
interface TypedConsumerAdmin :
EventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);
b
interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();
b
h

4.9.1 The TypedEventChannel Interface

This interface is analogous to EventChannelAdmin::EventChannel . However, it returns typed
versions of the consumer and supplier administration interfaces, which are capable of providing
proxies for either generic or typed communication.

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

3

Common Object Services, Volume 1 47

The CosTypedEventChannel Admin Module Event Service Specification

49.2

49.3

48

The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting consumers to typed
event channels; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
EventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

h

The obtain_typed_pull_supplier () operation takes a Key parameter that identifies an interface
Pull<l>. The scope of the key is the typed event channel. It returns a TypedProxyPullSupplier for
interface Pull<i>. The TypedProxyPullSupplier will allow an attached pull consumer to pull events
either in generic form or using operations in interface Pull<I>. It is up to the implementation of
obtain_typed_pull_supplier () to create or find an appropriate TypedProxyPullSupplier . If it
cannot, it raises the exception InterfaceNotSupported .

The obtain_typed_push_supplier () operation takes a Key parameter that identifies an interface I.
The scope of the key is the typed event channel. It returns a ProxyPushSupplier that calls
operations in interface |, rather than push operations. It is up to the implementation of
obtain_typed_push_supplier () to create or find an appropriate ProxyPushSupplier . If it cannot, it
raises the exception NoSuchimplementation .

Such a ProxyPushSupplier is guaranteed only to invoke operations defined in interface I. Any
event on the channel that does not correspond to an operation defined in interface I is not passed
on to the consumer. Such a ProxyPushSupplier is therefore an event filter based on type.

The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to the typed
event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
EventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchlmplementation);

h

The obtain_typed_push_consumer () operation takes a Key parameter that identifies an interface
I. The scope of the key is the typed event channel. It returns a TypedProxyPushConsumer for I.
An attached supplier can provide events by using operations in interface I. It is up to the
implementation of obtain_typed_push_consumer () to create or find an appropriate
TypedProxyPushConsumer . If it cannot, it raises the exception InterfaceNotSupported .

The obtain_typed_pull_consumer () operation takes a Key parameter that identifies an interface
Pull<l>. The scope of the key is the typed event channel. It returns a ProxyPullConsumer that
calls operations in interface Pull<l>, rather than pull operations. It is up to the implementation of
obtain_typed_pull_consumer () to create or find an appropriate ProxyPullConsumer . If it cannot, it
raises the exception NoSuchimplementation .

X/0pen Preliminary Specification (1994)

Event Service Specification The CosTypedEventChannelAdmin Module

494

495

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in interface Pull<I>.
Any event request that does not correspond to an operation defined in interface Pull<l> is not
pulled from the supplier. Such a ProxyPullConsumer is therefore an event filter based on type.

The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting push suppliers to
the typed event channel.

interface TypedProxyPushConsumer :
EventChannelAdmin::ProxyPushConsumer,
TypedEventComm::TypedPushConsumer {};

By inheriting from both EventChannelAdmin::ProxyPushConsumer and
TypedEventComm::TypedPushConsumer |, this interface supports:

- connection and disconnection of push suppliers, exactly as in the generic event channel
- generic push operation

- obtaining the typed view, so that the supplier can use typed push communication — the
reference returned by get typed _consumer () has the interface identified by the Key used
when this TypedProxyPushConsumer was obtained (see Section 4.9.3 on page 48).

The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull consumers to
the typed event channel.

interface TypedProxyPullSupplier :
EventChannelAdmin::ProxyPullSupplier,
TypedEventComm::TypedPullSupplier { };

By inheriting from both EventChannelAdmin::ProxyPullSupplier and
TypedEventComm::TypedPullSupplier , this interface supports:

- connection and disconnection of pull consumers, exactly as in the generic event channel
- generic pull and try_pull operations

- obtaining the typed view, so that the consumer can use typed pull communication — the
reference returned by get_typed_supplier () supports the interface identified by the Key used
when this TypedProxyPullSupplier was obtained (see Section 4.9.2 on page 48).

Common Object Services, Volume 1 49

Composing Event Channels and Filtering Event Service Specification

4.10

50

Composing Event Channels and Filtering

The event channel administration operations defined in Section 4.5 on page 38 support the
composition of event channels; that is, one event channel can consume events supplied by
another. This architecture allows the implementation of an event channel that filters the events
supplied by another.

Since the ProxyPushSupplier for interface | of a typed event channel only pushes events that
correspond to |, it acts as a filter based on type. Similarly, the ProxyPullConsumer for interface
Pull<l> of a typed event channel only pulls events that correspond to Pull<I>, it also acts as a filter
based on type.

X/0pen Preliminary Specification (1994)

Event Service Specification Policies for Finding Event Channels

411 Policies for Finding Event Channels

The event service does not establish a policy for finding event channels. Finding a service is
orthogonal to using the service. Higher levels of software (such as the desktop) can make
policies for using the event channel. That is, higher layers dictate when an event channel is
created and how references to the event channel are obtained. By representing the event channel
as an object, it has all the properties that apply to objects, including support by finding
mechanisms.

For example, when a user performs a drag-and-drop or cut-and-paste operation, an event
channel could be created and identified to suppliers and consumers. Alternatively, the event
channel could be named in a naming context, or it could be exported through an operation on an
object.

Common Object Services, Volume 1 51

52

Event Service Specification

X/0pen Preliminary Specification (1994)

Chapter 5

Life Cycle Service Specification

5.1 Service Description

511 Overview

Life cycle services define services and conventions for creating, deleting, copying and moving
objects. Because CORBA-based environments support distributed objects, life cycle services
define services and conventions that allow clients to perform life cycle operations on objects in
different locations.

Firstly, this chpater describes the life cycle problem for distributed object systems.

Creation

Figure 5-1 illustrates the problem of a client in one location creating an object in another.

HERE THERE

Figure 5-1 Creating an Object Over There
To create an object in a different location, the following questions must be answered:
« Can the client control the location for the new object?
« Can the location be determined according to some administered policy?
- What entity does the client communicate with so that a new object is created?
« How does the client find that entity?

« How much control does the client have over deciding the implementation of the created
object?

« Can the client influence the initial values of the newly created object?

« Can the client create an object in an implementation-specific fashion?

Common Object Services, Volume 1 53

Service Description Life Cycle Service Specification

54

Moving or Copying an Object

Figure 5-2 illustrates the problem of moving or copying an object in a distributed object system.

HERE SOMEWHERE THERE

Figure 5-2 Moving or Copying an Object Over There
To support moving or copying an object, the following questions must be answered:
- Can the client control the location for the copied or migrated object?
« Can the location be determined according to some administered policy?
- What entity does the client communicate with to copy or migrate the object?
« How does the client find that entity?

- What happens to the implementation code of a copied or migrated object?

Operating on a Graph of Distributed Objects

Distributed objects do not float in space; they are connected to one another. The connections are
called relationships. Relationships allow semantics to be added to references between objects.
For example, relationships allow one object to contain another. Life cycle services must work in
the presence of graphs of related objects.

graphic

HERE SOMEWHERE THERE

Figure 5-3 Boundaries of a Graph of Objects

Figure 5-3 illustrates the object life cycle problem for graphs of objects. In the example, the
folder contains a document, the document contains a graphic and a logo, and references a
dictionary. The graphic references the logo that is contained in the document. For graphs of
objects, life cycle services must answer the following questions:

- What are the boundaries of the graph? For example, if a client copies the document, which
objects are affected?

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification Service Description

- If multiple objects are affected, how is the life cycle operation actually applied to those
objects?

« Are cycles in the graph preserved? For example, if copying the document results in copying
the graphic and the logo, is the cycle preserved in the copy?

5.1.2 This Service Specification

The remainder of this service specification defines services and conventions in response to these
life cycle issues.

Section 5.1.3 specifies a client’s model of object life cycle. It describes the model that a client has
of factories and life cycle operations. A wide variety of implementations of this model are
possible.

Section 5.1.4 on page 58 discusses factory finders in detail.

Section 5.2 on page 60 defines the CosLifeCycle module. This module defines the service
interfaces and the interface supported by objects that participate in the service.

Section 5.3 on page 68 discusses factory implementation strategies.

Section 5.4 on page 71 discusses how objects can use factories and factory finders to support the
copy and move operations.

Section 5.5 on page 72 summarises the object life cycle framework.

5.1.3 Obiject Life Cycle Model
A client is any piece of code that initiates a life cycle operation for some object. A client has a
simple view of the life cycle operations.
Creation

The client’s model of creation is defined in terms of factory objects. A factory is an object that
creates another object. Factories are not special objects. As with any object, factories have well-
defined IDL interfaces and implementations in some programming languages.

I

o

DocFactory

|
Client |

HERE THERE

Figure 5-4 Object Reference to a Factory

To create an object over there, a client must posess an object reference to a factory over there.
The client simply issues a request on the factory.

Common Object Services, Volume 1 55

Service Description Life Cycle Service Specification

There is no standard interface for a factory. Factories provide the client with specialised
operations to create and initialise new instances in a natural way for the implementation. A
factory for a document is shown in the code example below.

Example 5-1 A Document Factory Interface Example

interface DocFactory {
Document create();
Document create_with_title(in string title);
Document create_for(in natural_language nl);

h

This interface is defined for clients as a part of application development. Factories are object
implementation-dependent. A different implementation of the document could define a
different factory interface.

While there is no standard interface for a factory, a generic factory interface is defined by the life
cycle service in Section 5.2.3 on page 63. A generic factory is a creation service. It provides a
generic operation for creation. Instead of invoking an object-specific operation on a factory with
statically-defined parameters, the client invokes a standard operation whose parameters can
include information about resource filters, state initialisation, policy preferences, and so on.

To create an object, a client must posess an object reference for a factory, which may be either a
generic factory or an object-specific factory, and issue an appropriate request on the factory. As
a result, a new object is created and typically an object reference is returned.

There is nothing special about this interaction.

A factory assembles the resources necessary for the existence of an object it creates. Therefore,
the factory represents a scope of resource allocation, which is the set of resources available to the
factory. A factory may support an interface that enables its clients to constrain the scope.

Clients find factory objects in the same fashion they find any object. Two common scenarios for
clients to find factories are:

« Clients use a finding mechanism, such as a naming context, drag-and-drop or a trader, to find
factories.

- Clients are passed factory objects as a parameter to an operation the client supports.

Various implementation strategies for factories are discussed in detail in Section 5.3 on page 68.

Deleting an Object

A client that wishes to delete an object issues a remove request on an object supporting the
LifeCycleObject interface. (The LifeCycleObject interface is defined in Section 5.2 on page 60.)
The object receiving the request is called the target.

|
Client |

LifeCycleObject

HERE SOMEWHERE

Figure 5-5 Deleting an Object

56 X/0pen Preliminary Specification (1994)

Life Cycle Service Specification Service Description

To delete an object, a client must posess an object reference supporting the LifeCycleObject
interface and issue a remove request on the object.

Copying or Moving an Object

A client that wishes to move or copy an object issues a move or copy request on an object
supporting the LifeCycleObject interface. The object receiving the request is called the target.

The move and copy operations expect an object reference supporting the FactoryFinder interface.
The factory finder represents the THERE in Figure 5-6. The client is indicating to move or copy
the target using a factory within the scope of the factory finder. Section 5.1.4 on page 58
describes factory finders in more detail.

The implementations of move and copy can use the factory finder to find appropriate factories
over there. Section 5.4 on page 71 describes how objects can implement move and copy using
the factory finder. This is invisible to the client.

Factory
Finder

FactoryFinder

LifeCycleObject

Client

HERE SOMEWHERE THERE

Figure 5-6 Moving or Copying an Object

Life cycle services define how a client can move or copy an object from here to there. In the
example of Figure 5-6, client code would simply issue a copy request on the document and pass
it an object supporting the FactoryFinder interface as an argument.

When a client issues a copy request on a target, it is assumed that the target, the factory finder
and the newly created object can all communicate by means of the ORB. With externalisation
and internalisation there is no such assumption. In the presence of a future externalisation
service, the externalised form of the object can exist outside the ORB for arbitrary amounts of
time, be transported by means outside the ORB, and can be internalised in a different,
disconnected ORB.

Note: In general, a client is unaware of how a target and a factory finder are implemented.
The target may represent a simple object or it may represent a graph of objects.
Similarly, a factory finder may represent a very concrete location, such as a specific
storage device, or it may represent a more abstract location, such as a group of
machines. The client uses the same interface in all of these cases.

Common Object Services, Volume 1 57

Service Description Life Cycle Service Specification

514

515

58

Factory Finders

Factory finders support an operation find_factories () which returns a sequence of factories.
Clients pass factory finders to the move and copy operations, which typically invoke this
operation to find a factory to interact with. (This is described in detail in Section 5.4 on page 71.)
The new copy or the migrated object will then be within the scope of the factory finder. Some
examples of locations that a factory finder might represent are:

. somewhere on a work group’s local area network
- storage device A on machine X

- Susan’s notebook computer.

Multiple Factory Finders

The factory finder interface given in Section 5.2 on page 60 represents the minimal functionality
supported by all factory finders. Target implementations can depend on this operation being
available. More sophisticated factory finding facilities can be provided by extended finding
services.

Currently, the only finding service being considered for standardisation by the OMG is the
naming service. Others are likely to be standardised in the future. It is likely that there will
always be multiple finding services, of different expressive powers, in distributed object
systems.

As demonstrated in Figure 5-7, the FactoryFinder interface can be mixed in with interfaces for
finding services, allowing multiple finding services. Many clients simply pass factory finders on
to target objects. However, objects that need the services of a more powerful finding mechanism
can narrow the factory finder to an appropriate, more specific interface.

FactoryFinder NamingContext FactoryFinder Trading
NamingBasedFactoryFinder TradingBasedFactoryFinder

Figure 5-7 FactoryFinder Mixed with Other Interfaces

The FactoryFinder interface can be mixed in with interfaces of more powerful finding services.
The power of a factory finder is determined by the power of the finding service.

Design Principles
Several principles have driven the design of life cycle services:

- A factory object registered at a factory finder represents an implementation at that location.
Thus, a factory finder allows clients to query a location for an implementation.

« Object implementations can embody knowledge of finding a factory, relative to a location.
Object implementations do not usually embody knowledge of location.

- The desired result for life cycle operations such as copy and move depends on relationships
between the target object and other objects. The design given in Appendix C on page 77 has
built-in support for the two most basic kinds of relationship — containment and reference —

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification Service Description

5.1.6

and supports the definition of new kinds of relationship and propagation semantics.

« The life cycle service is not dependent on any particular model of persistence and is suitable
for distributed, heterogeneous environments.

- The design does not include an object equivalence service nor does it rely on global object

identifiers.

Resolution of Technical Issues

This specification addresses the issues identified for life cycle services in the referenced OMG
Obiject Services Architecture document as follows:

Creation

Deletion

Copying

Equivalence

Many of the parameters supplied to an object create operator will be
implementation-dependent, so that a standardised universal IDL signature for
object creation is not possible. IDL signatures for object creation will be
defined for various kinds of object factories, but the signatures will be specific
to the type, implementation and persistent storage mechanism of the object to
be created.

A remove operator is defined on any object supporting the LifeCycleObject
interface. This model for deletion supports any desired paradigm for
referential integrity. Appendix C on page 77 describes support for the two
most common paradigms, based on reference and containment relationships.
Only one type of deletion is supported; a different operation should be used
for archiving an object. This interface can support many paradigms for
storage management; for example, garbage collection and reference counts.
Since storage management is implementation-dependent, its interface does
not belong in the generalised life cycle interfaces.

Appendix C on page 77 describes support for shallow and deep copy, and
referential integrity. A scheme based on reference and containment
relationships defines scopes for operations such as copy. The concept of a
factory finder is used for object location. This paradigm for copying, deleting
and moving objects works regardless of an object’s ORB, persistent storage
mechanism and implementation. This design is extensible because objects
participate in the traversal algorithm, and the relationship service supports
the definition of new kinds of relationship with different behaviour.

There is no need for an object equivalence service or global object identifiers in
the design of the life cycle services to support real world applications or other
object services.

Common Object Services, Volume 1 59

The CosLifeCycle Module Life Cycle Service Specification

5.2

60

The CosLifeCycle Module

Names of all IDL modules which form the Common Object Services specification are prefixed
with the initials "Cos".

Client code accesses the basic life cycle functionality by means of the CosLifeCycle module. This
module defines the FactoryFinder , LifeCycleObject and GenericFactory interfaces, and describes
the operations of these interfaces in detail.

Example 5-2 The CosLifeCycle Module

#include "Naming.idl"
module CosLifeCycle{
typedef Naming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struct NVP {
Naming::Istring name;
any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;
exception NoFactory {
Key search_key;
3
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception InvalidCriteria{
Criteria invalid_criteria;
3
exception CannotMeetCriteria {
Criteria unmet_criteria;
3
interface FactoryFinder {
Factories find_factories(in Key factory_key)
raises(NoFactory);
b
interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);
void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);
void remove()
raises(NotRemovable);
3
interface GenericFactory {
boolean supports(in Key k);
Object create_object(
in Key K,
in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification The CosLifeCycle Module

521

The LifeCycleObiject Interface

The LifeCycleObject interface defines copy, move and remove operations. Objects participate in
the life cycle service by supporting this interface.

copy()

LifeCycleObject copy(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,
CannotMeetCriteria);

The copy () operation makes a copy of the object. The copy is located in the scope of the factory
finder passed as the first parameter. The copy () operation returns an object reference to the new
object. The new object is initialised from the existing object.

The first parameter there may be a nil object reference. If passed a nil object reference, the target
object can determine the location or fail with the NoFactory exception.

The second parameter the_criteria allows for a number of optional parameters to be passed.
Typically, the target simply passes this parameter to the factory used in creating the new object.
The criteria parameter is explained in detail in Section 5.2.4 on page 66.

If the target cannot find an appropriate factory to create a copy over there, the NoFactory
exception is raised. An implementation that refuses to copy itself should raise the NotCopyable

exception. If the target does not understand the criteria, the InvalidCriteria exception is raised. If
the target understands the criteria but cannot satisfy the criteria, the CannotMeetCriteria

exception is raised.

In addition to these exceptions, implementations may raise standard CORBA exceptions. For
example, if resources cannot be acquired for the copied object, NO_RESOURCES will be raised.
Similarly, if a target does not implement the copy () operation, the NO_IMPLEMENT exception
will be raised.

It is implementation-dependent whether this operation is atomic.

move()

void move(in FactoryFinder there,
in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,
CannotMeetCriteria);

The move () operation on the target moves the object to the scope of the factory finder passed as
the first parameter. The object reference for the target object remains valid after move () has
successfully executed.

The first parameter there may be a nil object reference. If passed a nil object reference, the target
object can determine the location or fail with the NoFactory exception.

The second parameter the_criteria allows for a number of optional parameters to be passed.
Typically, the target simply passes this parameter to the factory used in migrating the new
object. The criteria parameter is explained in detail in Section 5.2.4 on page 66.

If the target cannot find an appropriate factory to support migration of the object over there, the
NoFactory exception is raised. An implementation that refuses to move itself should raise the
NotMovable exception. If the target does not understand the criteria, the InvalidCriteria exception
is raised. If the target understands the criteria but cannot satisfy the criteria, the
CannotMeetCriteria exception is raised.

Common Object Services, Volume 1 61

The CosLifeCycle Module Life Cycle Service Specification

522

62

In addition to these exceptions, implementations may raise standard CORBA exceptions. For
example, if resources cannot be acquired for migrating the object, NO_RESOURCES will be
raised. Similarly, if a target does not implement the move () operation, the NO_IMPLEMENT
exception will be raised.

It is implementation-dependent whether this operation is atomic.

remove()

void remove()
raises(NotRemovable);

remove () instructs the object to cease to exist. The object reference for the target is no longer
valid after remove () successfully completes. The client is not responsible for cleaning up any
resources the object uses. An implementation that refuses to remove itself should raise the
NotRemovable exception. In addition to this exception, implementations may raise standard
CORBA exceptions.

The FactoryFinder Interface

Factory finders support an operation find_factories () which returns a sequence of factories.
Clients pass factory finders to the move and copy operations, which typically invoke this
operation to find a factory to interact with. (This is described in detail in Section 5.4 on page 71.)

The factory finder interface represents the minimal functionality supported by all factory finders.

find_factories()

Factories find_factories(in Key factory_key)
raises(NoFactory);

The find_factories () operation is passed a key used to identify the desired factory. The key is a
name, as defined by the naming service. More than one factory may match the key. As such, the
factory finder returns a sequence of factories. If there are no matches, the NoFactory exception is
raised.

The scope of the key is the factory finder. The factory finder assigns no semantics to the key; it
simply matches keys. It makes no guarantees about the interface or implementation of the
returned factories or objects they create.

It is beyond the scope of this specification to standardise the key space. The space of keys is
established by convention in particular environments. The kind field of the key is useful for
partitioning the key space. Suggested values for the id and kind fields are given in Table 5-1 on
page 63.

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification The CosLifeCycle Module

5.23

id Field kind Field Meaning
name of object interface | "object interface" Find factories that
create objects
supporting the named

interface.
name of equivalent "implementation equivalence class" | Find factories that
implementations create objects with

implementations in a
named equivalence
class of
implementations.

name of object "object implementation” Find factories that
implementation create objects of a
particular
implementation.
name of factory "factory interface" Find factories
interface supporting the named

factory interface.

Table 5-1 Suggested Conventions for Factory Finder Keys

The GenericFactory Interface

In many environments, management of a set of resources that are allocated to objects at creation
time is required. This needs to be done in a coordinated fashion for all types of objects. The life
cycle service provides a framework for this which is intended to be usable in a variety of
administrative environments. However, the differing environments will administer a variety of
resources, and it is beyond the scope of this framework to identify all the possible types of
resource.

While there is no standard interface for a factory, a GenericFactory interface is defined. The
GenericFactory interface defines a generic creation operation, create_object (). By defining a
generic interface for creation, a creation service can be implemented. This is particularly useful
in environments where administering a set of resources is important.

Such a generic factory can implement resource policies and represent multiple locations. In
administered environments, object-specific factories, such as the document factory, may
delegate the creation process to the generic factory. This is described in detail in Section 5.3.2 on
page 69.

The job of the generic factory is to match the creation criteria specified by clients of the
GenericFactory interface with offers made on behalf of implementation-specific factories. Figure
5-8 on page 64 illustrates the structure of a creation service.

Common Object Services, Volume 1 63

The CosLifeCycle Module Life Cycle Service Specification

64

GenericFactory

creation service

GenericFactory GenericFactory

Y Y
Vg U

implementation- implementation-
specific code specific code
resources resources

Figure 5-8 Generic Creation Capability

The life cycle service provides a generic creation capability. Ultimately, implementation-specific
creation code is invoked by the creation service. The implementation-specific code also supports
the GenericFactory interface.

The client of the GenericFactory interface invokes the create_object () operation and can express
criteria for creation.

Ultimately, this request will be passed to an implementation-specific factory which supports the
GenericFactory interface. To get there, the request may travel through a number of generic
factories. However, all of this is transparent to the client.

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification The CosLifeCycle Module

create_object()

Object create_object(
in Key k,
in Criteria the_criteria)
raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

The create_object () operation is passed a key used to identify the desired object to be created.
The key is a name, as defined by the naming service.

The scope of the key is the generic factory. The generic factory assigns no semantics to the key;
it simply matches keys. It makes no guarantees about the interface or implementation of the
created object.

It is beyond the scope of this specification to standardise the key space. The space of keys is
established by convention in particular environments. The kind field of the key is useful for
partitioning the key space. Suggested values for the id and kind fields are given in Table 5-2.

id Field kind Field Meaning

name of object interface | "object interface" Create an object that
supports the named
interface.

name of equivalent "implementation equivalence class" | Create an object whose

implementations implementation isin a
named equivalence
class of
implementations.

name of object "object implementation” Create objects of a

implementation particular
implementation.

Table 5-2 Suggested Conventions for Generic Factory Keys

The second parameter the_criteria allows for a number of optional parameters to be passed.
Criteria are explained in detail in Section 5.2.4 on page 66.

If the generic factory cannot create an object specified by the key, then NoFactory is raised.
If the target does not understand the criteria, the InvalidCriteria exception is raised. If the target
understands the criteria but cannot satisfy the criteria, the CannotMeetCriteria exception is raised.

supports()

boolean supports(in Key k);

The supports () operation returns true if the generic factory can create an object, given the key.
Otherwise false is returned.

Common Object Services, Volume 1 65

The CosLifeCycle Module Life Cycle Service Specification

524

66

Criteria

The create_object () operation of the GenericFactory interface expects a parameter specifying the
creation criteria. The move and copy operations of the LifeCycleObject interface also expect this
parameter; typically they pass it through to a factory. This section documents this parameter.

The criteria parameter is expressed as an IDL sequence of name-value pairs. In particular, it is
described by the following data structure given in the CosLifeCycle module:

typedef struct NVP {
Naming::Istring name;
any value;
} NameValuePair;
typedef sequence <NameValuePair> Criteria;

The parameter is given as a sequence of name-value pairs in order to be extensible and support
pass-through; that is, new name-value pairs can be defined in the future and objects can be
written that do not interpret the name-value pairs, but just pass them on to other objects.

Note: Itis beyond the scope of this specification to standardise particular criteria. Supporting
criteria is optional. Furthermore, supporting different criteria is acceptable. The criteria
given here are suggestions.

Table 5-3 suggests criteria to be supported by the generic factory. Detailed descriptions follow.

Criterion Name Type of Criterion Value Interpretation

"initialization" sequence<NameValuePair> | Initialisation
parameters, given as a
sequence of name-value
pairs.

"filter" string Allows clients of the
generic factory to
express a constraint on
the created object.

"logical location" | sequence<NameValuePair> | Allows clients of the
generic factory to
express a connection for
the object; for example,
a PCTE relationship.

"preferences” string A way for clients to
influence the policies
that a generic factory
may use when creating
an object.

Table 5-3 Suggested Criteria

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification The CosLifeCycle Module

initialization
The initialization criterion is a sequence of name-value pairs which is intended to contain

application-specific initialisation values. Typically, the generic factory will pay no attention to
the initialisation criterion and simply passes it on to application-specific factory code.

filter

The filter criterion is a constraint expression which provides the client with a powerful way of
expressing its requirements on creation. The generic factory will use the constraint expression to
make decisions about the allocation of particular resources. For example, a client could give a
constraint:

"operating system" !="windows nt"

These constraints are expressed in some constraint language. A constraint language is suggested
in Appendix D on page 85.

Filters are potentially complex and InvalidCriteria will be raised if the filter is too complex for the
factory or is syntactically incorrect.

logical location

The logical location criterion allows a client to express where a created or copied or migrated
object is logically created. For example, in PCTE an object is always in a relationship with
another object. In such an environment, the logical location would specify another object and a
relationship.

preferences

The preferences criterion allows the client to influence the policies which the generic factory uses
to make decisions. For example, a generic factory might arbitrarily choose a machine from a set
of machines. Using the preferences criterion, a client could express its preference for a particular
machine. Policies and preferences are described in more detail in Appendix D on page 85.

Common Object Services, Volume 1 67

Implementing Factories Life Cycle Service Specification

5.3

53.1

68

Implementing Factories

As defined in Creation on page 55, any object that creates another object in response to some
request is called a factory. Clients depend only on the definitions in that section.

The client’s model of object life cycle has intentionally been defined in an abstract way. This
allows a wide variety of implementation strategies.

Factories are not special objects. They have well-defined IDL interfaces and implementations in
programming languages. Defining factory interfaces and implementing them are a normal part
of application development.

Ultimately, the creation process requires implementation-dependent code that assembles
resources for the storage and execution of an object. The act of creating an object requires
assembling and initialising all of the resources required to support the execution and storage of
the object. The resources typically include:

- the allocation of one or more BOA object references

- resources related to persistence storage.

Minimal Factories

Figure 5-9 illustrates a minimal implementation of a factory that assembles resources in a single
factory object.

Obiject-specific factory
interface

factory-specific
code

N\

resources

Figure 5-9 Assembling Resources

Factories assemble resources for the execution of an object. A minimal implementation achieves
this with a single factory implementation.

X/0pen Preliminary Specification (1994)

Life Cycle Service Specification Implementing Factories

5.3.2 Administered Factories

Factories can delegate the creation process to a generic factory that administers a set of
resources. The generic factory may apply policies to all creation requests.

Eventually, such a generic creation service needs to communicate with implementation-specific
code that actually assembles the resources for the object. Figure 5-10 illustrates an object-specific
factory, such as the document factory, that delegates the creation problem to the generic creation
service. The object-specific factory effectively adds a statically typed wrapper around the
generic factory.

Factory client

Obiject-specific factory
interface

factory-specific
code

== GenericFactory

Y

life cycle service

GenericFactory GenericFactory

Y Y

implementation- implementation-
specific code specific code

AV AV

resources

resources

Figure 5-10 Delegating the Creation Problem

Common Object Services, Volume 1 69

Implementing Factories Life Cycle Service Specification

In an administered environment, factory implementations can delegate the creation problem to a
generic factory. The generic factory can apply resource allocation policies. Ultimately the
creation service communicates with implementation-specific code that assembles resources for

the object.

70 X/0pen Preliminary Specification (1994)

Life Cycle Service Specification Target's Use of Factories and Factory Finders

5.4 Target's Use of Factories and Factory Finders

FactoryFinder
Document \ —
e | P
1
1
1
1
1
1
1
\
Private ‘ r
Factory
HERE THERE

Figure 5-11 Use of FactoryFinder to Represent There

The copy and move operations are passed a FactoryFinder to represent there. The
implementation of the target uses the FactoryFinder to find a factory object for creation over

there. The protocol between the object and the factory is private. They can communicate and
transfer state according to any implementation-defined protocol.

A client passes a factory finder as a parameter to a copy or move request.

Clients do not generally understand the implementation constraints of the object being copied.
Clients cannot express what the target object needs in order to copy itself to the new location.

Target object implementations, on the other hand, put constraints on factories based on
implementation concerns. It is unlikely that target implementation code is interested in further
constraining location.

To find an appropriate factory, the target object implementation may use the factory finder with
its minimal interface defined in Section 5.2.2 on page 62, or it may attempt to narrow the factory

finder to a more sophisticated finding service with more expressive power. The target object
implementation can always depend on the existence of the minimal interface.

Once the target object implementation finds a factory, it communicates with the factory using a
private, implementation-defined interface.

Common Object Services, Volume 1

71

Summary of Life Cycle Services Life Cycle Service Specification

5.5

72

Summary of Life Cycle Services
The distributed object life cycle addresses:
- the problem of creating an object
- the problem of deleting an object
- the problem of moving and copying an object
- the problem of operating on a graph of distributed objects.

The client’s model of object life cycle is based on factories and target objects supporting the
LifeCycleObject interface. Factories are objects that create other objects. The LifeCycleObject
interface defines operations to delete an object, to move an object, and to copy an object.

A GenericFactory interface is defined. The generic factory interface is sufficient to create objects
of different types. By defining a GenericFactory interface, implementations that administer
resources are enabled.

The life cycle service specification includes:
- the LifeCycleObject interface
- the FactoryFinder interface

- the GenericFactory interface.

X/0pen Preliminary Specification (1994)

Appendix A

Implementing Typed Event Channels

Note: It is not obvious that typed channels can be implemented without extensions to
CORBA. This appendix indicates one strategy for implementing typed event channels.
It is included to show that typed event channels can be implemented; it is not intended
in any way to constrain implementations. Optimised implementations are certainly
possible.

Figure A-1 demonstrates a possible implementation of a typed event channel. This appendix
concentrates on push-style communication. The implementation of pull-style communication is
analogous.

The implementation interposes an encoder between typed-style suppliers and the channel, and a
decoder between the channel and typed-style consumers.

event
channel

PC | encoder

typed |/ decoder PC
consumer

typed
supplier

PC = PushConsumer
| = interface |

Figure A-1 Possible Implementation of a Typed Event Channel
At the supplier end, an encoder converts operation calls to push calls.
At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is that the original operation is eventually called on the
consumer, but the communication is routed by means of the channel. Of course, there can be
multiple suppliers and multiple consumers on the same channel. Whenever one of the suppliers
calls an operation, it is delivered by the channel to all consumers.

The encoder must package the operation identification and the parameters in a manner that the
decoder can unpack them correctly.

Given the IDL definition of an interface 1, an encoder generator could generate an
implementation that supports the interface | and converts all calls on this interface to push calls
on an event channel. Such an encoder is called an I-encoder .

Similarly, it is possible to generate an I-decoder from the IDL definition of I.

The typed event channel is responsible for finding, creating or implementing the appropriate
encoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer () request on the typed event channel. The encoder is returned in
response to the get_typed_consumer () request.

Similarly, the typed event channel is responsible for finding, creating or implementing the
appropriate decoders. An appropriate decoder is found or created in response to the
connect_push_consumer () request on the typed event channel.

Common Object Services, Volume 1 73

74

Implementing Typed Event Channels

X/0pen Preliminary Specification (1994)

Appendix B

Event Channel Usage Example

This appendix illustrates an example use of the event channel, including the following:
. creating an event channel
- consumers or suppliers finding the channel
- suppliers using the event channel

in the context of the event service specification as described in Chapter 4 on page 25.

In this example, the document object creates event channels and defines operations in its
interface to allow consumers to be added.

The Document interface defines two operations to return event channels:

interface Document {
ConsumerAdmin title_changed();
ConsumerAdmin new_section();

h

The title_changed () operation causes the document to generate an event when its title is
changed; the new_section () operation causes the document to generate an event when a new
section is added. Both operations return ConsumerAdmin object references. This allows
consumers to be added to the event channel.

The title_changed () implementation contains instance variables for using and administering the
event channels.

[* Factory for creating event channels. */
EventChannelFactoryRef ecf;

[* For title changed event channel */

EventChannelRef event_channel,
ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;
ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

At some point, the document implementation creates the event channel, gets supplier and
consumer administrative references, and adds itself as a supplier.

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);

consumer_admin = event_channel->for_consumers(env);

proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

The title_changed () operation returns the ConsumerAdmin object reference:
return consumer_admin;
Clients of this operation can add consumers.

When the title changes, the document implementation pushes the event to the channel.

Common Object Services, Volume 1 75

76

Event Channel Usage Example

proxy_push_consumer->push(env,data);

The document implementation similarly initialises, exports and uses the event channel for
reporting new sections.

X/0pen Preliminary Specification (1994)

Appendix C

Life Cycle Operations on Distributed Object Graphs

This appendix is intended to show how the life cycle services, a hypothesised future relationship
service, and a hypothesised future externalisation service might combine to support graphs of
distributed objects in the context of the life cycle service specification described in Chapter 5.
This description is included here for several reasons:

- Distributed objects do not float in space; they are connected to other objects. Performing life
cycle operations on an object affects other objects. This appendix describes how life cycle
operations can be supported for graphs of distributed objects.

- This approach to graphs of distributed objects demonstrates that so-called shallow and deep
operations are not well-defined notions.

- Externalisation is yet to be defined.

The connections between objects in a graph are called relationships. Relationships allow
semantics to be added to references between objects. For example, relationships allow one
object to contain another. Life cycle services must work in the presence of graphs of related
objects.

As described in Section 5.1.3 on page 55, a client issues a life cycle request on a target object. A
target implements the target operations as appropriate. If the target represents a simple object,
that is an object that is not part of a graph of associated objects, the target should provide an
implementation for each of the operations in the LifeCycleObject interface described in Section
5.2.1 on page 61.

Common Object Services, Volume 1 77

The Traversal Service Life Cycle Operations on Distributed Object Graphs

Cl1

78

The Traversal Service

If the target represents an object that is a node in a graph of distributed objects, life cycle services
defines a traversal object to support the orderly operation on the graph. This section defines the
traversal object and focuses on its use by a target implementation.

In response to one of the requests defined in the LifeCycleObject interface, a target object simply
creates a traversal object and issues a life cycle request on it. The traversal object supports
analogous move, copy, remove, externalise and internalise operations on the graph.

The operations on the traversal object expect a Node object reference as a starting node. The
Node interface defines what a node in the graph of associated objects must support in order to
participate in the graph of associated objects. The target passes its Node object reference to the
traversal service.

Figure C-1 illustrates the target’s view of the traversal object.

The traversal object operates on the nodes of the graph. The traversal object and the associates
cooperate to maintain the integrity of the graph.

LifeCycleObject

Traversal
Object

Traversal
target

Figure C-1 Traversal Object

A target that is part of a graph of associated objects can implement a life cycle operation by
creating a traversal object and issuing a request on the traversal object. The target passes to the
traversal object an object reference that supports the Node interface.

X/0pen Preliminary Specification (1994)

Life Cycle Operations on Distributed Object Graphs Node

C2

Node’s View of Life Cycle Services

Recall that a client issues a life cycle request on a target object. A target object that is part of a
graph of associated objects creates a traversal object to operate on the graph. The traversal
object operates on the nodes of the graph.

A node cooperates with the traversal object. Figure C-2 illustrates the node’s view of the life
cycle services. A node in the graph supports the Node interface. The Node interface defines
operations to copy, move, remove and externalise the node.

Traversal

ACS Tour

o
>
°

@ LCA = LifeCycleAssociate @

Figure C-2 A Node in a Graph of Associated Objects

The traversal object passes a Tour object to a node. Through the tour object, nodes and traversals
exchange identifiers. This allows nodes and traversals to identify each other during the life of
the traversal. This exchange of identifiers allows:

- anode to distinguish multiple concurrent life cycle operations
- atraversal object to recognise a node it has already visited.

The node has a set of associates that represent its participation in relationships with other
objects. For example, one associate may represent the objects it contains. Another associate may
represent the objects it references. When the traversal object performs a life cycle operation on
the node, the node performs the operation on itself and on its associates. The associates support
the LifeCycleAssociate interface. The LifeCycleAssociate interface defines operations to copy,
move, remove and externalise the associate.

Through the operations of the Node interface, the node reveals its associates to the traversal
object. The traversal object asks the associates for their connections to other associates. Based
on these connections, the traversal object operates on other nodes.

Common Object Services, Volume 1 79

Node

80

s View of Life Cycle Services

To summarise a node’s view of the life cycle protocols:
« A node supports the Node interface.
- A node uses the Tour interface to exchange identifiers with the traversal object.

« A node uses the LifeCycleAssociate interface to operate on its associates.

X/0pen Preliminary Specification (1994)

Life Cycle Operations on Distributed Object Graphs Traversal Algorithms

C.3 Traversal Algorithms
The implementations of the traversal operations typically have the following structure:

- While there are more nodes to visit, apply the operation to a node. If the node has already
been visited, the node is skipped.

— If the node has not yet been visited, the result is a set of associates supporting the
LifeCycleAssociate interface.

— Ask the associates what to do for the particular operation. The associate replies with the
propagation attribute for the operation. For example, if the associate represents the
contains role of containment, the associate would reply that copy propagates to the
contained objects. Propagation is defined in detail in Section C.4 on page 82.

— If the operation propagates to another node, add it to a list of nodes to visit.

- Do some operation-specific action to the nodes and edges that have been visited. For
example, the copy operation links new associates together.

The key to this interaction is the interface used by the traversal object to communicate with the
associates.

Common Object Services, Volume 1 81

Containment and Reference Life Cycle Operations on Distributed Object Graphs

C4

82

Containment and Reference

The edges in the graph represent the relationships between the objects. Two common
relationships are containment and reference. Containment is a one-to-many relationship. A
container can contain many containees; a containee is contained by one container. Reference, on
the other hand, is a many-to-many relationship. An object can reference many objects; an object
can be referenced by many objects.

Containment and reference are examples of relationships. The relationship service allows
application developers to define new kinds of relationships. Since containment and reference
are very common relationships, this appendix will explore them further and define propogation
semantics for containment and reference. In so doing, it will define the behaviour of copy, move,
remove and externalise in the presence of containment and reference.

ContainsAssociate , ContainedInAssociate , ReferencesAssociate and ReferencedByAssociate are
defined as subtypes of LifeCycleAssociate . Figure C-3 illustrates a document that references a
phone book and a dictionary and contains a graphic and a logo. The traversal object depends
only on the LifeCycleAssociate interface and not on these particular relationships.

Document

Node Node

FA = ReferencesAssociate
RBA = ReferencedByAssociate
CA = ContainsAssociate

CIA = ContainedInAssociate

PhoneBook

Dictionary

Figure C-3 Document Referencing

X/0pen Preliminary Specification (1994)

Life Cycle Operations on Distributed Object Graphs Containment and Reference

c41l

Life Cycle Propagation Across Associates

This section defines how the life cycle operations affect the containment and reference
relationships. The traversal object applies a life cycle operation to a node in the graph and then
queries the associates for their propagation behaviour. Table C-1 and Table C-2 indicate the
behaviour of the life cycle operation from an associate to the corresponding associate. The
behaviour is given by one of three attributes:

« deep
« shallow
* none.

deep means that the operation is applied to the associates and to the associated objects. For
example, when copying a document that contains a graphic, the copy propagates to the graphic.
The traversal object copies the document and the graphic, and establishes a new containment
relationship between the copies.

shallow means that the operation is applied to the relationship but not to the related objects. For
example, removing a graphic contained in a document removes the graphic, removes the
containment relationship between the graphic and the document, but does not remove the
document.

none means that the operation has no effect on the relationship and no effect on the related
objects. For example, copying an object that is referenced by another copies the object but has no
effect on the object that refers to it or on the reference relationship.

operation | ContainsAssociate ContainedInAssociate
copy deep shallow

move deep shallow

remove deep shallow

externalize | deep none

Table C-1 Containment

operation ReferencesAssociate ReferencedByAssociate
copy shallow none

move shallow shallow

remove shallow shallow

externalize | none none

Table C-2 Reference

The propagation attributes are available from the associates using an operation in the
LifeCycleAssociate interface. A ContainsAssociate returns the values of the first column of Table
C-1. A ContainedinAssociate returns the values of the second column of Table C-1. A
ReferencesAssociate returns the values of the first column of Table C-2. A
ReferencedByAssociate returns the values of the second column of Table C-2.

A designer of a new relationship needs to define the propagation behaviour for the associates.
An implementation of a traversal object needs to operate according to the propagation values
defined by the associate.

Common Object Services, Volume 1 83

Containment and Reference

84

Notes:

Life Cycle Operations on Distributed Object Graphs

The model of operation propagation across associates is derived from the
referenced document by James Rumbaugh.

When propagating a copy to an object that participates in relationships with
different propagation semantics, it is possible that copy propagates to the object
by one relationship and that copy is shallow by another relationship. In such a
case, shallow is promoted to propagate by the traversal object.

Shallow is meaningless for externalise. Externalise should produce a self-
contained graph. Implementations of externalise can externalise names for
objects outside the graph. Internalise can then resolve those names in the new
environment.

X/0pen Preliminary Specification (1994)

Appendix D

Filters

This appendix is included to provided an example of how a filter might be provided in the
context of the life cycle service specification described in Chapter 5 on page 53.

A factory represents a scope of resource allocation, which is the set of resources available to the
factory. Whenever it receives a creation request, a factory will allocate resources according to
any policies which are in operation.

Clearly, by choosing a particular factory upon which to issue a create request, a client is exerting
some control over the allocation of resources. Therefore, a client can limit the scope of resource
allocation by issuing the request on a different factory which represents a smaller set of
resources.

However, there are two problems with this. Firstly, the granularity of resources may be much
smaller than the granularity represented by the factories in a system. For example, there are
unlikely to be factories which represent individual disk segments.

Secondly, the client may wish to rule out the use of particular resources within a scope, but
avoid having a general reduction in scope. For example, the client might not be concerned with
which machine within a LAN an object is created on, providing it is not on machine X.

Both of these needs can be addressed by providing a filter. In the first case, the filter is relatively
simple; it will simply limit the scope of resource allocation. In the second case, the filter will
need to be more sophisticated.

This appendix describes one way of providing filters using properties and constraint
expressions. These concepts appear in the development of Trading in the ISO/IEC/CCITT
Open Distributed Processing standards. Service providers register their service with the Trader
and use properties to describe the service offer. Potential clients may then use a constraint
expression to describe the requirements which service offers must satisfy.

Similarly, the life cycle service may define a number of properties to represent the different kinds
of resources available in a system and clients may use constraint expressions to place restrictions
upon the use of those resources.

Note: Note that the referenced OMG Object Services Architecture document identifies an
Object Properties Service which enables an object to have a set of arbitrary named
values associated with it. These are very similar to the concept of properties as used in
Trading and in this appendix.

Common Object Services, Volume 1 85

Resources as Properties

D.1

86

Resources as Properties

Filters

Resource properties are application and generic factory implementation-dependent, and it is
beyond the scope of this specification to identify standard properties which all generic factory
implementations will recognise. The properties described in this appendix are given as
examples only. Table D-1 gives some examples of properties that might be supported by a

generic factory.

Property Name

Meaning

Host
Architecture
OSArchitecture

Host name of the machine
Machine architecture, e.g., intel, sparc
Operating system architecture, e.g., solaris, hpux

Table D-1 Examples of Properties Supported by a Generic Factory

X/0pen Preliminary Specification (1994)

Filters Constraint Expressions

D.2 Constraint Expressions

Constraints are expressed in a constraint language which provides a set of operators which
allow arbitrarily complex expressions involving properties and potential values to be specified.
A property list satisfies a constraint if the constraint expression is true when evaluated with
respect to the property list. Constraint expressions are very flexible. For example, if a client has
an object executing on a machine called Hostl and wishes to create another object which is not
on the same machine, the client can specify the constraint:

Host!="Host1"

The constraint expression described here works with properties for which the value can be a
string, a number or a set of values.

The constraint language consists of:
» comparative functions: ==, I=, >, >= <, <=,in
- constructors: and, or, not
- property names
« numeric and string constants
- mathematical operators: +, -, *, /
« grouping operators: (,), [,]

The following precedence relations hold in the absence of parentheses, in the order of lowest to
highest:

+ +and-
« *and /
. or

. and

-+ not

The comparative operator in checks for the inclusion of a particular string constant in the list
which is the value of a property.

Common Object Services, Volume 1 87

BNF* for Constraint Expressions

D.3

BNF* for Constraint Expressions

<ConstraintExpr> = [<Expr>]
<Expr> := <Expr>"or" <Expr>
| <Expr>"and" <Expr>
| "not" <Expr>
| (" <Expr>")"
| <SetExpr> <SetOp> <SetExpr>
| <StrExpr> <StrOp> <StrExpr>
| <NumExpr> <NumOp> <NumExpr>
| <NumExpr> "in" <SetExpr>
| <StrExpr>"in" <SetExpr>
<NumOp> := "==" | "= | "<" =" ">t
<StrOp> = "==" | "I="
<SetOp> = == | ="
<NumExpr> := <NumTerm>
| <NumExpr>"+" <NumTerm>
| <NumExpr>"-" <NumTerm>
<NumTerm> := <NumFactor>
| <NumTerm> "*" <NumFactor>
| <NumTerm> "/" <NumFactor>

<NumFactor> := <ldentifier>
| <Number>

| "(" <NumExpr>")"

| "-" <NumFactor>
<StrExpr> := <StrTerm>

| <StrExpr>"+" <StrTerm>
<StrTerm> := <ldentifier>

| <String>

| "(" <StrExpr>")"
<SetExpr> := <SetTerm>

| <SetExpr>"+" <SetTerm>
<SetTerm> := <ldentifier>
| <Set>

| "(" <SetExpr>")"
<Identifier> := <Word>
<Number> := <Integer>

| <Float>

<Integer> := {<Digit>}+
<Float> := <Mantissa> [<Sign>][<Exponent>]
<Mantissa> := <Integer>[""[<Integer>]]
| ""<Integer>

<Sign> = "

|

<Exponent> := 'e"<Integer>
| "E"<Integer>

<Word> := <Letter> { <AlphaNum> }*
<AlphaNum> := <Letter>

| <Digit>

| v

<String> := ""{<Char>}p""
<Char> := <lLetter>

* Backus-Naur Format.

88

[N

Filters

X/0pen Preliminary Specification (1994)

Filters BNF* for Constraint Expressions

| <Digit>
| <Other>
<Set> := "{"<Elements>"}"
<Elements> := [<Element>{<Sp>+ <Element> }*]
<Element> := <Number>
| <Word>
| <String>
<Letter> := a|b|c|d|e |flg|h]i]j|k

| IIminjolplql|r|s|tju]v

| wix|y|z|A|B|C|D|E|F|G
| HITIJIK[LIMIN|O|P|Q]R
| SITIUIVIW|X]|Y]Z

<Digit> = 0]1]|2|3]4|5|6|7]8]9
<Other> := <Sp> |"|!|@ [#[$]%|"|&][*|(
)= =1+ 10T

"L <t 1> 17172

<Sp> = ""

Common Object Services, Volume 1 89

90

Filters

X/0pen Preliminary Specification (1994)

Appendix E

Administration

This appendix is included as a suggested way of administering generic factories in the context of
the life cycle service specification.

The specification for the life cycle service includes the GenericFactory interface. There will be at
least two styles of object which support that interface:

- implementation-specific factories that actually assemble the resources for a new object

- generic factories which pass requests on to either implementation-specific factories or other
generic factories.

By configuring generic factories and implementation-specific factories into a graph, a creation
service can be built which administers the allocation of a large number of resources and can use
them to create a wide variety of objects.

To ensure that the creation service is scalable, it is essential that the principle of federation is
adopted — each component retains its autonomy rather than becoming subordinate to another.

Whenever the creation service receives a creation request, the request will need to traverse the
graph until it reaches an implementation-specific factory which can satisfy the request. As the
request traverses the graph, each non-terminal node in the graph (that is, the generic factories)
will decide which link the request will traverse next. Decisions will be based upon information
about each available link, any policies in force at that node and, of course, the actual request.

Clearly, the configuration and policies of such a creation service will need to be administered.
However, the specification does not include the specification of an administration interface.
This is because the principle of federation is not only important to the life cycle service, but it
will be essential to a number of other services, notably trading.

The remainder of this appendix describes the principle of federation in more detail, outlines the
use of policies and preferences to support federation, and then concludes with a suggestion for
how an administration interface might look.

Common Object Services, Volume 1 91

Federation Administration

E.l

E.l1

E.1.2

92

Federation

Federation is essential in largescale distributed systems where the existence of centralised
ownership and universal control cannot be assumed. In these systems, the only way to achieve
cooperation between autonomous systems without creating a hierarchical structure is to use
federation. Federation is also beneficial to smaller systems which can exploit the high degree of
flexibility which federation provides.

Federation differs from the more conventional approach of adopting a strictly hierarchical
organisation in a number of ways. Firstly, components can provide their service to any number
of others, not just the single component which is its parent in the hierarchy. Secondly,
components can establish peer-to-peer relationships, eliminating the need for a single
component at the top of the hierarchy. Finally, this approach avoids the necessity of
maintaining a global name space. Instead, all names are relative to the context in which they are
used.

Federation enables previously distinct systems to be unified without requiring global changes to
their naming structures and system management hierarchies. The administration functions
must ensure the systems are configured appropriately; for example, avoiding circular references
in those graphs which must be kept acyclic.

Federation in Object Services

In addition to the use of federation in configuring generic factories, federation is also applicable
to a number of other services.

Trading is a notable example. A global offer space is neither practical nor desirable.
Consequently, there will be multiple traders, each representing a different portion of the offer
space. Offers held by one trader can be made available to the clients of another trader through
federation.

The naming service specification also demonstrates attributes of federation. Naming contexts
can be bound to other naming contexts and requests for name resolution can be passed across
the links. However, it is entirely the concern of the naming context how it resolves the name
within its domain; that is, it is autonomous.

Federation Issues

There are a number of issues which need to be addressed for federation to be used in a cohesive
fashion across all object services.

Visibility of the Federation Graph

The naming service makes the configuration of naming contexts into a graph very visible to the
clients. This is essential, because the naming service must provide clients with a structured
name space.

On the other hand, it is not clear that a client should ever be able to see the internal structure of a
life cycle creation service built with generic and implementation-specific factories.

The trading service falls in between the two extremes. It may be useful for a client to be able to
navigate the structure of a trading service graph in order to have more control over the visibility
of offers. However, this may make clients too dependent upon the organisation of the trading
service and limit the flexibility of the system administrator in reorganising the trading service to
provide the most effective service.

X/0pen Preliminary Specification (1994)

Administration Federation

Service versus Administration Interface

In general, it is desirable to federate using the service interface for the links and reserve the
administration interface for the administrators. This approach ensures that autonomy is
retained. However, this precludes the use of compound names in the administration functions
because the administration functions cannot traverse the graph; only simple names can be used
in administration-only functions.

However, this is inappropriate for services where graph manipulation is an essential part of the
service. For example, the naming service specification does not distinguish between
administration functions for manipulating the graph and service functions. This is clearly
correct; the clients need to be able to manipulate the graph by creating, binding and destroying
contexts.

Multiple Service Interfaces

A node in a federation graph may be a conspiracy and offer multiple service interfaces, perhaps
one for each point it is bound into the graph. However, for services where the administration is
kept distinct from the service, it is likely that the conspiracy will support only one
administration interface.

In these situations, it becomes necessary for an administrator to be able to match service
interfaces to conspiracies; that is, to match one or more service interfaces to an administrative
interface. The example in Section E.3 on page 95 provides a solution to this which, in theory,
will scale, but there may be better ways of doing this.

Cycles and Peer-to-Peer Relationships

The introduction of cycles into a federation graph is a contentious issue. Since peer-to-peer
relationships are a degenerate form of cycle, any service which supports peer-to-peer
relationships must be capable of handling cycles. The major impact of this is to provide loop
detection on operations which would otherwise go out of control. Both trading and naming
services are examples of this kind of service.

However, some services may not be able to handle cycles effectively and will wish to prescribe
them. This probably covers peer-to-peer relationships, although that might be an acceptable
special case. An example of this might be the life cycle creation service, where information
about the current usage of the available resources must percolate up the graph in order to make
informed decisions, but the introduction of cycles would make this information unclear or even
meaningless.

Common Object Services, Volume 1 93

Policies

E.2

94

Administration

Policies

It is frequently necessary to configure the way in which operations are performed in order to
tune the performance; for example, how long a search operation may take, how many matches
can be returned, or how much memory to use for a cache.

The same problems exist in distributed systems except that such configuration parameters must
be explicitly passed around. Where different administrative domains are connected, such
configuration parameters cannot be enforced by one domain on the other. Similarly, users may
want to control the configuration but must be prevented from hogging resources (for example,
memory, disk space, and so on). Some configuration elements must be enforced (for example,
disk quotas), some elements may specify defaults which can be changed, and some elements
may be requests which may or may not clash with hard limits (for example, max memory per
process).

Policies are used as a generic solution to this problem — wherever some kind of choice needs to
be made, policies may be used to guide the decision-making process.

Table E-1 provides some examples of policies which a federated service might support.

Policy Name Meaning
search_algorithm Determines whether the federation graph should
be traversed in a depth first or breadth first
fashion.
cross_ boundaries Determines whether administrative boundaries

should be crossed.

maximum_distance How far to traverse a graph before failing a
request.

Table E-1 Example Policies

When invoking operations, clients can specify preferences for particular policies. Providing the
service has no value set for that policy, the preference will be simply added to the policy list for
the duration of the request. However, if a service policy is already specified then the preference
will either be ignored or, for policies such as maximum_distance , the more constraining value
will be adopted.

As a request traverses a graph, each node will pass its current policy set as preferences. In this
way, the autonomy of individual administrative domains is preserved.

When an object does not implement all choices of a policy, it should not allow its policy to be
modified to an unsupported value. This means that implementation limitations are handled as
administrative hard limits which provides the correct semantics.

Where no policy is specified by either administrator or client, the implementation determines its
own behaviour. However, this decision would not be propagated through the graph (as a
preference), leaving it to each node in the graph to make its own decision.

X/0pen Preliminary Specification (1994)

Administration An Example LifeCycleService Module

E.3 AnExample LifeCycleService Module

Administrators access the administration functions by means of the LifeCycleService module,
which defines the LifeCycleServiceAdmin interface. This example is intended to work with the
GenericFactory interface in the specification. As a result, the administration functions cannot
make use of compound names.

Example E-1 The LifeCycleService Module

#include "LifeCycle.idl"
module LifeCycleService {
typedef sequence <Lifecycle::NameValuePair> PolicyList;
typedef sequence <Lifecycle::Key> Keys;
typedef sequence <Lifecycle::NameValuePair> PropertyList;
typedef sequence <Naming::NameComponent> NameComponents;
interface LifeCycleServiceAdmin {
attribute PolicyList policies;
void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);
void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);
Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);
NameComponents list_generic_factories();
boolean match_service (in Lifecycle::GenericFactory f);
string get_hin t();
void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

E.3.1 The LifeCycleServiceAdmin Interface

The LifeCycleServiceAdmin interface provides the basic administration operations required to
enable the life cycle service to be administered by a set of tools or an administration service. The
operations enable configuration of factories supporting the GenericFactory interface into a graph
and setting of policies for those factories.

bind_generic_factory()

void bind_generic_factory(
in Lifecycle::GenericFactory df,
in Naming::NameComponent name,
in Keys key_set,
in PropertyList other_properties)
raises (Naming::AlreadBound, Naming::InvalidName);

This operation binds a factory supporting the GenericFactory interface into a graph. The name
must be unique within the context of the target of the operation. From then on, that factory can

Common Object Services, Volume 1 95

An Example LifeCycleService Module Administration

96

be identified by that name.

In order to make a good decision about which link to choose for a request, the node needs to be
provided with additional information about those factories. This information may be fairly
dynamic (for example, the current usage of the resources available through the link), or more
static (for example, the Keys for which the link can provide support).

The key_set parameter is a list of the keys for which the factory can provide support. In the case
of an implementation-specific factory, this list will often only have one member.

The other_properties parameter can be used to provide other static properties associated with
the factory. For example, an Architectures property would indicate the type(s) of machine on
which the factory could create objects.

Changes to the static information as well as more dynamic information can be monitored
through the Events service. Each factory would generate events whenever the information
changed significantly (for example, a new GenericFactory interface with new keys is bound to
the factory, or there is a change in the usage of resources available to the factory) and these can
then be passed to those factories which need to know.

unbind_generic_factory()

void unbind_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation unbinds the generic factory identified by the name.

resolve_generic_factory()

Lifecycle::GenericFactory resolve_generic_factory(
in Naming::NameComponent name)
raises (Naming::NotFound, Naming::InvalidName);

This operation takes the name supplied and returns the reference to the GenericFactory object.

list_generic_factories()
NameComponents list_generic_factories();

This operation returns a list of the names of all the bound factories.

match_service()

boolean match_service (in Lifecycle::GenericFactory f);

This operation returns true if the generic factory interface is supported by the target.

get_hint()
string get_hin t();

This operation returns a hint associated with the target, see Building a Map of a Graph on page
97.

X/0pen Preliminary Specification (1994)

Administration An Example LifeCycleService Module

get_link_properties()

void get_link_properties(
in Naming::NameComponent name,
out Keys key_set,
out PropertyList other_properties)
raises (Naming::NotFound, Naming::InvalidName);

This operation returns the key _set and other_properties associated with the name.

Building a Map of a Graph

Administration tools may wish to build a map of a federation graph from scratch and some of
the operations above are provided for that purpose.

First of all, the tool must obtain the set of administration interfaces for all the factories to be
administered. These might be obtained from a number of sources; for example, a well-known
trading context.

For each interface, the list_generic_factories () operation obtains a list of all the links for each
node. Using resolve_generic_factory (), a service interface can be obtained for each link. These
can then be matched to an administration interface using match_service ().

Clearly, this does not scale well if there are many nodes involved because of the average number
of invocations of match_service () required. This problem can be solved if one of the
other_properties associated with each service interface is a hint and a hint is available for each
administration interface. If the hints are the same, there may be a match and match_service () is
called to check. If the hints could be guaranteed to be unambiguous, the invocation could be
avoided altogether, but this requires a global name space for the hints. The best that can
reasonably be achieved is to reduce the chance of a clash to a minimum.

The get_hint and get_link_properties can be used for this purpose.

Common Object Services, Volume 1 97

98

Administration

X/0pen Preliminary Specification (1994)

Appendix F

Support for PCTE Objects

This appendix defines a set of criteria suitable for supporting PCTE objects in the context of the
life cycle service specification.

It is intended that objects in a PCTE repository are among those objects that can be managed
though this life cycle interface. It is reasonable to expect that applications written for PCTE wiill
use the PCTE APIs to manage the life cycle of PCTE objects. It is also reasonable to expect that
clients not specifically written for relationship-oriented objects will not be able to manipulate the
life cycles of PCTE objects. However, between these two, it is possible to see clients which
desire to be flexible, working on objects which may or may not be stored in the PCTE repository.
It is also possible to see object factories constructed to make use of PCTE which provide services
to clients that are not PCTE applications because they do not have the appropriate working
schemas, and so on.

Support for these clients employs a series of conventional interpretations of the life cycle
operations. This appendix provides one such set of conventions to demonstrate the feasibility of
the use of these interfaces in a context supporting PCTE.

Object references appear in constraint expressions in the form of character strings. Any
implementation of PCTE as a CORBA Object Adapter has to establish a relationship between
these and the corresponding CORBA types, and be able to convert between them.

Common Object Services, Volume 1 99

Overview Support for PCTE Objects

F.1

100

Overview

A PCTE repository can be viewed as a generic factory. Using whatever naming or trading
services are appropriate, a client wishing to use the PCTE factory obtains an object reference to
it. To support the simple applications intending to operate within the context of a single PCTE
repository, the PCTE factory supports the operations defined by both the GenericFactory and
FactoryFinder interfaces. The client can then invoke the PCTE factory’s create_object ()
operation, or pass the factory as the factory finder when invoking the move or copy operations
to move or copy within the same PCTE repository. These clients include the servers
implementing the move and copy operations for various PCTE objects as well.

Life cycle creation, copy and move operations are influenced by a sequence of criteria. Criteria
are specified as a sequence of name/value pairs. Certain criteria are of interest to the PCTE
factories.

Logical Location

The logical location is used to express the logical connection information that must be specified
when creating or copying a PCTE object. Logical location is a sequence of name/value pairs
expressing a connection for the object. The PCTE factory supports and requires two:

ORIGIN A string representation of the reference to the object to which the newly
created object is to be connected.

ORIGINLINK The name of the origin object’s link which is to hold the link from the origin
object to the newly created object.
Filter

The filter is used to express the fact that an object being created, copied or moved should reside
on the same volume as some other nearby object. A filter is an expression as described in Section
D.3 on page 88. For PCTE, the term NEAR= followed by an object reference to the designated
nearby object indicates that the new object is to be located at least as near as the same volume to
the specified object.

Authorisation

The authorisation criterion of life cycle is required to create PCTE objects, but is not yet defined.

X/0pen Preliminary Specification (1994)

Support for PCTE Objects Object Creation

F.2 Object Creation

The LifeCycle::GenericFactory::create_object () operation in this specification is borne by factory
objects. It has two parameters:

- akey used to identify the desired object to be created
- aset of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT _CREATE. The parameters to
OBJECT_CREATE are obtained from the LifeCycle::GenericFactory::create_object ~ parameters.

The PCTE operation OBJECT_CREATE has six parameters:
1. The type of object to be created. This is the key from life cycle create_object ().

2. The origin object of the relation anchoring the new object. This is the object identified as
the named ORIGIN of the logical location criterion.

3. The name of the link from that origin object to the new object. This is the string identified
as the named ORIGINLINK of the logical location criterion.

4. An optional key for that link. This is the string identified as the named LINKKEY of the
initialisation criteria.

5. An object near whose location the object is to be created. This is the string value of a
required filter expression value by the qualifier NEAR.

6. An access mask. This is the string identified as the named ACCESS of the authorisation
criteria. This string is a simple mapping of the granted and denied access rights.
Exceptions raised by PCTE are mapped to suitable life cycle exceptions.

Common Object Services, Volume 1 101

Object Deletion Support for PCTE Objects

F.3

102

Object Deletion

The LifeCycle::LifeCycleObject::remove () operation in this specification is borne by all life cycle
objects. It has no parameters.

The corresponding PCTE operation is called OBJECT _DELETE. The parameters to
OBJECT_DELETE are obtained from the object to be deleted using information about that object
defined in PCTE’s schema information about the object.

The PCTE operation OBJECT_DELETE has two parameters:
- the origin object of a relation anchoring the object to be deleted
- the name of the link from that origin object to the object to be deleted.

To both ensure that the controlling object is actually deleted and maintain the PCTE referential
integrity constraints, the following steps are performed for each reversible link emanating from
the controlling object:

1. Determine the object "0" that the link refers to.
2. Determine the name "r&prime." of the reverse link back from "o".
3. Perform PCTE OBJECT_DELETE(o, r&prime.).

The objective is accomplished when all outgoing, reversible links have been dealt with thus, or
before that if one of the OBJECT_DELETE calls fails because the object has already been deleted.

Exceptions raised by PCTE are mapped to suitable life cycle exceptions.

X/0pen Preliminary Specification (1994)

Support for PCTE Objects Object Copying

F.4 Object Copying

The LifeCycle::LifeCycleObject::copy () operation in this specification is borne by all life cycle
objects. It has two parameters:

- a factory finder to assist in locating a factory that provides resources for the copied object
- aset of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT_COPY. Some of the parameters to
OBJECT_COPY can be obtained directly from the life cycle copy parameters. Other required
information is obtained from the constraint expression parameter of the life cycle copy.

The PCTE operation OBJECT_COPY has six parameters:
1. The object to be copied. This is the bearer object of the life cycle copy operation.

2. The origin object of the relation anchoring the new object. This is the object identified as
the named ORIGIN of the logical location criterion.

3. The name of the link from that origin object to the new object. This is the string identified
as the named ORIGINLINK of the logical location criterion.

4. An optional key for that link. This is the string identified as the named LINKKEY of the
initialisation criteria.

5. An object near whose location the object is to be created. This is the string value of a
required filter expression value by the qualifier NEAR.

6. An access mask. This is the string identified as the named ACCESS of the authorisation
criteria. This string is a simple mapping of the granted and denied access rights.

The semantics of the copy operation correspond to the PCTE OBJECT_COPY semantics. They
are based upon details of the object types involved, including which attributes, links and
destination objects are duplicable.

Exceptions raised by PCTE are mapped to suitable CORBA standard exceptions.

Common Object Services, Volume 1 103

Object Moving Support for PCTE Objects

F.5

104

Object Moving

The LifeCycle::LifeCycleObject::move () operation in this specification is borne by all life cycle
objects. It has two parameters:

- a factory-finder to assist in locating a factory that provides resources for the moved object
- aset of criteria expressed in an NVP-list.

The corresponding PCTE operation is called OBJECT _MOVE. The parameters to
OBJECT_MOVE can be obtained directly from the life cycle copy parameters or from defaults.

The PCTE operation OBJECT_MOVE has three parameters:
1. The object to be copied. This is the bearer object of life cycle move operation.

2. An object near whose location the object is to be created. This is the string value of a
required filter expression value by the qualifier NEAR.

3. Scope — whether to move the object itself or the object and all its components. This will
be defaulted to ATOMIC.

X/0pen Preliminary Specification (1994)

Glossary

bind
To bind a name is to create a name binding in a given context.

compound name
A name with multiple components. A sequence of names that defines a path in the naming
graph to navigate the resolution process.

CORBA
Common Object Request Broker Architecture.

event
A state change of an object that causes the behaviour of an object.

event channel
An intervening object that allows multiple suppliers to communicate with multiple
consumers asynchronously. An event channel is both a consumer and a supplier of events.
Event channels are standard CORBA objects and communication with an event channel is
accomplished using standard CORBA requests.

factory object
An object that creates another object.

federation
The principle whereby each component retains its autonomy rather than becoming
subordinate to another.

life cycle object
An object whose interfaces are defined by the life cycle services, specifically remove, copy
and move.

name binding
A name-to-object association. A name binding is always defined relative to a naming
context.

naming context
An object that contains a set of name bindings in which each name is unique.

naming graph
A directed graph with nodes and labelled edges where the nodes are contexts. A naming
graph allows more complex names to reference an object. Given a context in a haming
graph, a sequence of names can reference an object.

pull model
An approach to initiating event communication. The pull model allows a consumer of
events to request the event data from a supplier. In the pull model, the consumer is taking
the initiative.

push model
An approach to initiating event communication. The push model allows a supplier of
events to initiate the transfer of the event data to consumers. In the push model, the
supplier is taking the initiative.

relationship
Relationships allow semantics to be added to references between objects. For example,

Common Object Services, Volume 1 105

106

Glossary

relationships allow one object to contain another. Life cycle services must work in the
presence of graphs of related objects.

resolve
To resolve a name is to determine the object associated with the name in a given context. A
name is always resolved relative to a context — there are no absolute names.

simple name
A name with a single component.

typed event
An event for which an interface is defined in terms of IDL.

X/0pen Preliminary Specification (1994)

administration interface.........ccocooveeivveicieirinnenn, 93
basic flexible SErVICeS.......ccovvirviieirce e 3
DIN....ooiiii 105
bINAING OLJECES ...ovvcecvcec e 15
Bindinglterator.........ccccovvvcieivscicie e 19
bind_generic_factory()ccocovevrreeinnncieinrinnenns 95
BNF s 88
callback interfaces........ccocvveivrvccinvs e 5
COMPOUNT NAME ... 105
CONStraint EXPresSioNSccvcvvreereveereseeereseeeens 87

BNF e 88
[ol0] 011U 0 -] RS RRS 25
ConsUMErAdMIN ... 39
CONLAINMENT ... 82
(o107 o)Y/) IF ST 61
CORBA ..o s 105

(o0 0 101=T o £ 3

relationship to ..o 8
CosEventChannelAdmin..........ccoovvceivnnscinnnnennns 38
COSEVENTCOMM....ocviicececees e 32
COSLIfECYCIE....ciicce e 60
COSNAMING ..o 14
CosTypedEventChannelAdmin..........cccoccceevrvrnnne 47
CosTypedEVeNtCOMMccovveereverieiieseseieeneens 44
create_ObJeCt() .o 65
creating Nnaming CoNteXtS.......ccovveevverervveererenernneens 17
CrEAtION ...cvce e 53,55
(o]) (= T U 66
deleting CoNteXES. ... 18
design decCiSioNS.......ccoceevvveiievseie e 6
design principlescccccccevvecevvcevrcenenes 3,12, 27,58

SEIVICE ouvevieeiiietcc ettt 3
distributed objects graphcccccovvverveinrccirnneenn, 54
L= o | S S 105
event Channel.........ccovvvciirece e 105
eVENt ChaNNEIS......ccccevvcce s 34

administration.........ccococeeevvncicniscceee e 36

(o101 010] 010 XS] 1 g o T 50

L L o [T 0o T 51

usage eXample......occocvvicierireeiesneee s 75
event commuNiCationccovvveernreeenvse e 25

Lo =] 1T oS 30
EVENT SEIVICE .vvvviiiiiece e 1,25
EventChannel ... 38
LoD (oT=] o A 0] o 1 6

Common Object Services, Volume 1

eXPlICit OPEratioNSccvevveeireree e 6
factories
administered.........covvvvvrriinns 69
IMPIeMENLING ..o 68
MINIMal.....ooi 68
TArgETUS USE .o 71
factory fiNders ... 58
MUILIPIE o 58
TArgETUS USE .o 71
factory ObJECt ..o 105
FaCtOryFINAErcovvececce e 62
federation ... 92,105
raPh e 92
ODJECE SEIVICEScviveee e 92
L1 L] T 67
L1 L =] T S 50
FIEEIS oo 85
fINAING SEIVICES ...vovvceicce e 6
find_factories() ..covveeervrveeinr e 62
future object SENVICEScccvvveivrvcrc e 7
JENETIC SEIVICES .vvvvrveveeireietee st 3
(T 1=1 g o = Tod (o] oY/ 63
gt _NiINE() cvveeeei e 96
get_link_properties().....ccocoveevrmrrieeierennereresinienens 97
global identifier SPaces.......ccccvvvvivrcvievscereseeens 5
IDL form
0] oo U o1 1o o T 23
Lranslating ..o 23
implicit Operationsc.ccovvervvceirscre s 6
iNitialization ... 67
interface
INNEFITANCE. ... 6
Style CONSISTENCYvcvvvveceicce e 6
library name
(o] (=T] o S 21
AeStroYiNg ...cccovvvvveciirccce e 23
library name component
(o] (=T] o S 21
AeStroYiNg ...cccovvvvveciirccce e 22
life cycle
MOTEL ... 55
NOE VIBW ... s 79
(o] 0 1= =11 [0 [77
Propogationccccceeevvnccierseee e 83
life cycle ObJeCt ... 105
life cycle SErvicesccoovvviinnivnrciesceseseenn 2,53,72
107

life cycles

FULUFE SEIVICES ..o 7
LifeCycleObject........coovvvvviiiircereee e 61
LifeCycleService

EXAMPIE oo 95
LifeCycleService Adminccccoecevvvvciennrnciennnnns 95
list_generic_factories()......ccccvvvrvevierrseiernsinieeennn, 96
LINGME .ot 21
LNameComponentccocevvvcvveenenneernneereseseeeenes 21
local implementationscccccvevvveivvncienessceeneens 4
logical 10Ccationcccocevvvciinivce e, 67
map of a graph ... 97
MatCh_SErViCe()coovvvrreiiirirecerrsee e 96
mixed-style communication.........c.cocccevveevnrennns 34
[0 0 [0) V=T IR 61
mMultiple CONSUMENS.........covovveeereee e 35
multiple service interfaces.........cccooevvvvcinciennnnns 93
multiple SUPPHIErS ... 35
name binding........cccoveivinccienncce e 105
name component

deleting ...c.ccceevcce 22

getting the ith ... 22

(1 EST=1 o 1 o ST 22

NUMDBEE OF ... 23
NAMIES ..o 10
names library........cccocoveieivccci e 10, 20
NaMING CONTEXLcvvvreeiieee e 105

1] AT o PR 18
Naming graphccccveivirceie e 105
NAMING SEIVICE ...cvvvvrveeireceerireeere e 1,6,9
object

(o10]) V71 s o [T 54,57

deleting ...cccccecce e 56

[0 01017 o To TR 54,57
(o] o] =10t s o0] 01 o 11 - 4
OMG Object Model

relationship to ... 8
PCTE objects

AULNOFISALION ... 100

(o107) V/1 o P 103

CrEALION ...vviicc 101

deletion.......ccceiiieeee 102

FIEET oo 100

OCALION ... e 100

[0 01017 T oo TSR 104

OVEIVIBW....oiiiiiieiieie bbb 100

YU 0] o 1o o R 99
PErfOrMANCE........ceiece e 7
POLICIES ..t 94
POrtabilityc.cvvvccecce e 7
PrefEreNCEScvevvevcce e 67
108

ProxyPullCoNSUMErcccovvvieiiirece e 40
ProxXyPUlISUPPHIETcocvveeiiicceis e 40
ProxyPushCONSUMErcccccovrvvieeinrnnieeernseseneenns 40
ProxyPushSUPPIHIEr.......ccccoveiivrrecenreeee e, 41
pull model.......coooveiveeecc e 30, 105
pull-style communication..........ccccoccovveivrneinnenns 34
PUIICONSUMET ...t 33
U] |10 o] o] [1-] 33
push model ... 30, 105
push-style communication..........ccoccceveivrrcinrennns 34
PUSNCONSUMET ...ttt 32
PUShSUPPHIET ... 33
quality Of SEIVICE ... 4
FEFEIENCE oo 82
relationship ... 105
relationships

CYCIES .t 93

[0 1=TT o (o I 1= SRR 93
FEHADIILY ..o 7
remote implementations..........cccovevvvecerersereseens 4
=70 0 [0V =T) 62
FESOIVE ..ot 106
resolve_generic_factory()......ccooevvevrrecivinrininennnn, 96
FESOIVING NAMEScvcvereerireee e 16
resources

0] (0] 0 1=] o 1= 86
FELUIN COUBS ..ottt 6
SCAlABIIITY ...cveveecce e 7
service dependenciesccocccvveerireiennseieneseienenens 7
Service iNterface ... 93
SErVice qUAlItYcevvvceir e 29
SIMPIE NAME....cooieccecce e 106
standards conformance ..., 8
T U] 0] o] 1 T-] o 25
SUPPHErAMIN.....cco s 39
101 o] o10] g £) ST 65
technical ISSUESccceeeeiinininreecinns 12, 28, 59
testing

EAUALILY ..o 23

OFAET .t 23
traversal

algorithms ..o 81

SEIVICE oo 78
tYPEA BVENT ... 106
typed event channelsccccoooceeveenevecenescecsesennn, 46

implementation............ccccoevveiinneci e 73
typed event communicationcccevveernreennnn 42
typed pull model ... 43
typed push model.......cccccovvvvcinicinincc e 42
TypedConsumerAdminccccevvveererrnerenesennns 48
TypedEventChannelccccovveivivvisieiensceeenns 47

X/0pen Preliminary Specification (1994)

Index

TypedProxyPullSupplier..........ccccovveivvccinnscinnnns 49
TypedProxyPushConsumerccccccovvecennnnnn. 49
TypedPUullSUPPHET.....ccccierceee e 45
TypedPUShCONSUMENcccovvvveernrireirieiereeeeneens 44
TypedSupplierAdmMin.......ccocoeveevveereisnee s 48
uNbiNdiNg NAMESc.covvviceieee e 17
unbind_generic_factory().......ccocoveeivrrneicinninienns 96
universal object identity.........cccovieevvcinrninreenes 6
USING SEIVICES ...vvevievcecieeietee s ee s ieree s ees 6

Common Object Services, Volume 1

109

Index

110 X/Open Preliminary Specification (1994)

