
X/Open Preliminary Specification

DCE 1.1: Distributed File Service Specification

X/Open Company Ltd.

 September 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Preliminary Specification

DCE 1.1: Distributed File Service Specification

X/Open Document Number: P409

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@tog.org

ii X/Open Preliminary Specification (1996)

Contents

Part 1 Distributed File System Introduction 1

Chapter 1 Introduction to the DFS Specification ... 3
 1.1 Portability.. 3
 1.1.1 Overview.. 3
 1.1.2 IDLs, Data Types, Constants and Flags ... 3
 1.2 Document Organization .. 4
 1.2.1 RPC Interfaces for DCE DFS ... 4
 1.2.2 Access Control Lists (ACLs) in DFS... 4
 1.2.3 The DCE DFS VFS+ Interface Specification.. 5
 1.3 Terminology ... 6
 1.4 Conformance Requirements ... 9

Part 2 DFS Interface Definition Language and Data................ 11

Chapter 2 File Exporter IDL Declarations .. 13
 2.1 The File Exporter Interface .. 13
 2.2 Mask Values for afsStoreStatus Structure .. 14
 2.3 AFS_GetTime Sync Constants.. 14
 2.4 Flag Parameters for ACL Type Parameter ... 14
 2.5 Definitions for Flag Used in Getting a Token.. 14
 2.6 Definitions for Flag in Token Recovery (TSR)... 15
 2.7 Definitions for Flag in Fileset Operations .. 15
 2.8 Definitions for Flags in AFS_SetParams() ... 16
 2.9 Definitions for Flags in AFS_SetContext() .. 16
 2.10 Definitions for Client-only Attribute Flags ... 16
 2.11 Data Types .. 16
 2.11.1 Define Generic Network Address Information 16
 2.11.2 Define afsVolSync Structure for Tracking Replicas............................. 16
 2.11.3 Define the afsFetchStatus Structure ... 17
 2.11.4 Define the afsStoreStatus Structure.. 17
 2.11.5 Structure for Physical File System Type.. 18
 2.11.6 Structure for Statistics ... 18
 2.12 Various Bulk Data Type Definitions for RPC Operations..................... 20
 2.12.1 The afsFidExp Structure ... 20
 2.12.2 The afsBulkFEX Structure... 20
 2.12.3 The afsACL Structure.. 20
 2.12.4 The afsQuota Structure ... 20
 2.12.5 The afsBulkVVs Structure... 20
 2.12.6 The afsBulkVolIDs Structure.. 21
 2.12.7 The afsBulkStats Structure ... 21

DCE 1.1: Distributed File Service Specification iii

Contents

 2.13 Definitions of File Server Exported Operations...................................... 22
 2.13.1 AFS_SetContext.. 22
 2.13.2 AFS_LookupRoot... 23
 2.13.3 AFS_FetchData.. 24
 2.13.4 AFS_FetchACL.. 25
 2.13.5 AFS_FetchStatus ... 26
 2.13.6 AFS_StoreData.. 27
 2.13.7 AFS_StoreACL.. 28
 2.13.8 AFS_StoreStatus ... 29
 2.13.9 AFS_RemoveFile .. 30
 2.13.10 AFS_CreateFile ... 31
 2.13.11 AFS_Rename... 32
 2.13.12 AFS_Symlink... 33
 2.13.13 AFS_HardLink.. 34
 2.13.14 AFS_MakeDir.. 35
 2.13.15 AFS_RemoveDir... 36
 2.13.16 AFS_Readdir.. 37
 2.13.17 AFS_Lookup.. 38
 2.13.18 AFS_GetToken .. 39
 2.13.19 AFS_ReleaseTokens ... 40
 2.13.20 AFS_GetTime.. 41
 2.13.21 AFS_MakeMountPoint.. 42
 2.13.22 AFS_GetStatistics ... 43
 2.13.23 AFS_BulkFetchVV .. 44
 2.13.24 AFS_BulkKeepAlive.. 45
 2.13.25 AFS_ProcessQuota ... 46
 2.13.26 AFS_GetServerInterfaces.. 47
 2.13.27 AFS_SetParams... 48
 2.14 The File Exporter Interface End.. 49

Chapter 3 Cache Manager IDL Declarations .. 51
 3.1 The Token Manager Interface ... 51
 3.2 Definitions for Flags Field ... 52
 3.3 Definitions of Token Manager Exported Operations............................. 52
 3.3.1 TKN_Probe .. 52
 3.3.2 TKN_InitTokenState .. 52
 3.3.3 TKN_TokenRevoke.. 53
 3.3.4 TKN_GetCellName.. 53
 3.3.5 TKN_GetLock ... 53
 3.3.6 TKN_GetCE... 54
 3.3.7 TKN_GetServerInterfaces .. 54
 3.3.8 TKN_SetParams.. 54
 3.3.9 TKN_AsyncGrant... 55
 3.4 The Token Manager Interface End... 55

iv X/Open Preliminary Specification (1996)

Contents

Chapter 4 Common IDL Data... 57
 4.1 Interface Common Data... 57
 4.2 General AFS Constants .. 57
 4.3 Constants for Cell and Hosts .. 57
 4.4 AFS Object Types Used by AFS_Mount ... 58
 4.5 Quota Types for Quota Setting Commands .. 58
 4.6 Quota Opcodes for Quota Setting Commands....................................... 58
 4.7 Physical File System Types (for afsFStype).. 58
 4.8 Volume Types Used for afsVolumeType... 58
 4.9 Values for the afsRevokeDesc Flags.. 59
 4.10 Values Used in afsRevokeDesc’s outFlags ... 59
 4.11 Data Types .. 59
 4.11.1 General Definitions for AFS Data Structures 59
 4.11.2 General Tagged-name for a Pathname Component............................ 59
 4.11.3 Define the afsTaggedName Structure .. 59
 4.11.4 Define the afsTaggedPath Structure ... 60
 4.11.5 Define the afsNetAddr Structure .. 60
 4.11.6 Define the afsTimeval Structure.. 60
 4.11.7 Define the afsHyper Structure... 60
 4.11.8 Define the afsFid Structure... 60
 4.11.9 Define the afsFidTaggedName Structure.. 60
 4.11.10 Define the afsToken Structure.. 61
 4.11.11 Define the afsRecordLock Structure... 61
 4.11.12 Define the afsRevokeDesc Structure .. 61
 4.11.13 Define the afsReturnDesc Structure ... 62
 4.11.14 Define the afsConnParams Structure... 62
 4.11.15 Define the afsDBLockDesc Structure ... 62
 4.11.16 Define the afsDBCacheEntry Structure ... 62
 4.11.17 Define the afsDBLock Structure .. 63
 4.12 Various Bulk Typedefs From Primitive Structures................................. 63
 4.12.1 Define the afsRevokes Structure ... 63
 4.12.2 Define the afsReturns Structure .. 63
 4.12.3 Define the afsFids Structure... 63
 4.12.4 Define the afsTokens Structure.. 63
 4.12.5 Define the afsStrings Structure.. 64
 4.13 Data Types for DFS RPC Versioning Scheme.. 64
 4.13.1 Constants for RPC Versioning Scheme.. 64
 4.13.2 dfs_interfaceDescription Structure... 64
 4.13.3 dfs_interfaceList Structure ... 64
 4.14 Interface Common Data End .. 65

DCE 1.1: Distributed File Service Specification v

Contents

Part 3 DFS Versioning Scheme.. 67

Chapter 5 DFS RPC Versioning Scheme .. 69
 5.1 Data Structures .. 69
 5.2 DFS Versioning API .. 70
 5.2.1 Register an Interface with Versioning Mechanism 71
 5.2.2 Printing a Returned List of Interfaces .. 71
 5.2.3 Function Called at Startup to Identify the Server Interface 71
 5.2.4 Function to Compare Interfaces.. 72
 5.3 Example IDL File ... 73
 5.3.1 The UPDATE Server Interface ... 73
 5.3.2 Constants for the UPDATE Interface ... 73
 5.3.3 Define the updateFileStatS Structure ... 74
 5.3.4 UPDATE_GetServerInterfaces... 74
 5.3.5 UPDATE_FetchInfo.. 74
 5.3.6 UPDATE_FetchFile... 75
 5.3.7 UPDATE_FetchObjectInfo .. 75
 5.3.8 The UPDATE Server Interface End... 75
 5.4 Example Client Application.. 76
 5.4.1 Typical Client Headers.. 76
 5.4.2 Headers for Serviceability .. 76
 5.4.3 Constants for the Client Application ... 76
 5.4.4 RPC prewrap and postwrap functions .. 77
 5.4.5 Typical Serviceability initialization .. 77
 5.4.6 ANSI C Declaration ... 78
 5.4.7 Client’s import list.. 78
 5.4.8 Client Globals.. 78
 5.4.9 Using dfs_selectInterface to Select One... 78
 5.4.10 Example RPC Wrappers ... 80
 5.5 Example Server Application ... 83
 5.5.1 Typical Server Headers ... 83
 5.5.2 Headers for Serviceability .. 83
 5.5.3 Constants for the Server Application... 84
 5.5.4 Define IS_COMM_ERR Function.. 84
 5.5.5 Typical Serviceability Initialization.. 84
 5.5.6 Skeleton Server Main... 84
 5.6 Example Manager Application... 87
 5.6.1 Typical MANAGER Headers... 87
 5.6.2 Headers for Serviceability .. 87
 5.6.3 Typical Initialization.. 88
 5.6.4 ANSI C Declaration ... 88
 5.6.5 Example Mutex Lock... 88
 5.6.6 Example Mutex Unlock... 88
 5.6.7 Example Error Exit ... 88
 5.6.8 UPDATE_GetServerInterfaces... 89
 5.6.9 UPDATE_FetchFile... 90
 5.6.10 UPDATE_FetchInfo.. 91
 5.6.11 UPDATE_FetchObjectInfo .. 93

vi X/Open Preliminary Specification (1996)

Contents

 5.6.12 UPDATE_v4_0_manager_epv ... 94
 5.7 Extending the DFS Interface ... 95
 5.7.1 Case 1 — An Owner Extends a DFS Interface...................................... 95
 5.7.2 Case 2 — A Non-owner Extends a DFS Interface 96

Part 4 DFS Client/Server and Token Manager Interfaces..... 97

Chapter 6 DCE DFS File Exporter Interface .. 99
 AFS_SetContext().. 103
 AFS_LookupRoot () .. 104
 AFS_FetchData() ... 105
 AFS_FetchACL() ... 107
 AFS_FetchStatus()... 108
 AFS_StoreData() ... 109
 AFS_StoreACL().. 111
 AFS_StoreStatus()... 113
 AFS_RemoveFile() ... 114
 AFS_Lookup() .. 116
 AFS_CreateFile() ... 118
 AFS_Rename() ... 120
 AFS_Symlink() .. 122
 AFS_MakeMountPoint() .. 124
 AFS_HardLink() .. 126
 AFS_MakeDir() ... 128
 AFS_RemoveDir() ... 130
 AFS_Readdir() ... 132
 AFS_GetToken()... 134
 AFS_GetStatistics()... 136
 AFS_ReleaseTokens() ... 137
 AFS_GetTime() .. 138
 AFS_BulkFetchVV().. 139
 AFS_ProcessQuota() ... 140
 AFS_BulkKeepAlive() ... 141
 AFS_SetParams()... 142
 AFS_GetServerInterfaces() ... 143

Chapter 7 Cache Manager Service Interface ... 145
 TKN_InitTokenState()... 146
 TKN_Probe() .. 147
 TKN_TokenRevoke ().. 148
 TKN_GetCellName() ... 149
 TKN_SetParams().. 150
 TKN_GetServerInterfaces()... 151
 TKN_AsyncGrant()... 152

DCE 1.1: Distributed File Service Specification vii

Contents

Part 5 Access Control Lists (ACLs) in DFS 153

Chapter 8 Access Control List Overview .. 155
 8.1 ACL Types .. 155
 8.2 ACL Entry Types ... 156
 8.2.1 Rules Governing Entries for Filesystem ACLs..................................... 156
 8.2.2 Optional ACL Entry Mask Types for Authenticated Users............... 157
 8.2.3 ACL Entry Types for Unauthenticated Users....................................... 157
 8.2.4 Simple and Complex Entry Types .. 158
 8.3 Delegates and DCE LFS Objects .. 158
 8.4 ACL Entry Types for Delegation.. 159
 8.4.1 ACL Access Types for Delegation .. 159
 8.5 Access Types... 159
 8.6 Interaction of Filesystem ACLs with UNIX Permission Bits 160
 8.7 Access Check Algorithm.. 161
 8.8 Access Check Algorithm for Delegation .. 162
 8.8.1 Delegation and non-DCE LFS Objects .. 163

Chapter 9 ACL Storage Format.. 165
 9.1 Principal ID Formats... 165
 9.2 Principal Identifier Format .. 165
 9.3 Foreign Cell Principal Identifier Format... 166
 9.4 Access Type Format .. 166
 9.4.1 Access Type Definitions.. 166
 9.5 ACL Entry Type Format... 167
 9.6 Simple ACL Entry Format ... 168
 9.7 Complex ACL Entry Format ... 168
 9.7.1 Extended Complex Entry Format ... 169
 9.8 ACL Structure .. 169
 9.9 The Structures for Reading Lists of sec_id_t ... 170
 9.9.1 Define the epi_sec_id Structure... 170
 9.9.2 Define the epi_sec_id_foreign Structure ... 170

Chapter 10 ACL Interface Functions... 171
 dacl_CheckAccessId () .. 172
 dacl_DetermineAccessAllowed() .. 174
 dacl_CheckAccessPac() .. 176
 dacl_epi_CheckAccessPac() ... 177
 dacl_CheckAccessAllowedPac() .. 178
 dacl_epi_CheckAccessAllowedPac() ... 179
 dacl_PacFromUcred() .. 180
 dacl_FlattenAclWithModeBits () .. 181
 dacl_FlattenAcl () ... 182
 dacl_epi_FlattenAcl () .. 183
 dacl_ParseAclDiskOption() .. 184
 dacl_ParseSyscallAcl () .. 185
 dacl_ParseAcl() .. 186
 dacl_ExtractPermBits() ... 187

viii X/Open Preliminary Specification (1996)

Contents

 dacl_ChmodAcl () ... 188
 dacl_FreeAclEntries() .. 189
 dacl_PrintAclEntry()... 190
 dacl_PrintAcl() .. 191
 dacl_WriteToDisk() .. 192
 dacl_CreateAclOnDisk () ... 193
 dacl_ReadFromDisk() .. 194
 dacl_AddEntryToAcl() .. 195
 dacl_ModifyAclEntry () ... 196
 dacl_DeleteAclEntry()... 197
 dacl_DeleteAllEntries() ... 198
 sec_acl_FlattenAcl () .. 199
 sec_acl_ParseAcl() ... 200
 dacl_InitAclEntryFromStrings().. 201
 dacl_NameAndTypeStringsFromEntry()... 202
 dacl_EntryType_ToString() .. 203
 dacl_EntryType_FromString().. 204
 dacl_Permset_ToString()... 205
 dacl_Permset_FromString() .. 206
 dacl_ValidateBuffer() ... 207
 dacl_InitEpiAcl () ... 208
 dacl_AreObjectEntriesRequired()... 209
 dacl_AreObjectUuidsRequiredOnAccessCheck().. 210
 dacl_ArePermBitsRequiredOnAccessCheck().. 211
 dacl_AclMgrName().. 212
 Epi_PrinId_ToUuid() .. 213
 Epi_PrinId_FromUuid().. 214
 Epi_PrinId_Cmp() ... 215
 hton_epi_uuid ().. 216
 ntoh_epi_uuid ().. 217
 hton_epi_principal_id ()... 218
 ntoh_epi_principal_id ()... 219

Appendix A Mapping DFS ACLs to UNIX Mode Bits 221
 A.1 Relationship Between ACLs and UNIX Mode Bits 221
 A.1.1 ACLs and UNIX Mode Bits .. 221
 A.1.2 Changing other Mode Bits.. 222
 A.1.3 Changing group Mode Bits on a File with ACL with No mask_obj.........222
 A.1.4 Changing the user_obj Entry ... 222
 A.1.5 Changing the group_obj Entry.. 223
 A.1.6 Changing the group_obj Entry in an ACL with a mask_obj Entry.. 223
 A.1.7 The Results of chmod of the group Bits .. 224
 A.1.8 The Results of acl_edit of the mask_obj Bits .. 224
 A.1.9 Changing the group_obj Entry for an ACL with a mask_obj 225
 A.2 File Creation Mask and ACLs... 226
 A.2.1 File Creation with no Initial Object ACL... 226
 A.2.2 File Creation with an Initial Object ACL... 226
 A.2.3 File ACL Creation with an initial object ACL 227

DCE 1.1: Distributed File Service Specification ix

Contents

Appendix B Access Control List Package Error List.. 229
 B.1 Access Control List Return Values .. 229
 B.2 Filesystem Access Control List Return Values.. 230

Part 6 The DCE DFS VFS+ Interface Specification 231

Chapter 11 DCE DFS VFS+ Interface Introduction....................................... 233
 11.1 Definition of Terms ... 233
 11.2 VFS+ Interface Goals and Constraints .. 234
 11.3 Overview of Interfaces to the LFS ... 235
 11.3.1 Locking... 236
 11.3.2 Credentials... 237
 11.3.3 Operations on Filesets and Aggregates ... 237
 11.4 Organization of the VFS+ Switch... 238
 11.4.1 The O-ops.. 238
 11.4.2 The N-ops.. 238
 11.4.3 The X-ops .. 238
 11.5 Basic Operation.. 239
 11.6 The Fileset Registry... 239
 11.7 The Fileset/Vnode Interfaces.. 239
 11.8 References from the LFS back into DFS.. 240
 11.8.1 LFS Introducing Itself to DFS... 240
 11.8.2 Operating on DFS Lock Structures ... 240
 11.8.3 Allocating and Freeing Memory ... 241
 11.8.4 Fileset Creation Assistance... 241
 11.8.5 Obtaining a Fileset Structure ... 242
 11.8.6 Releasing a Fileset .. 242
 11.8.7 Conversion of Operations Vectors.. 242
 11.8.8 Getting the Local Cell ID .. 243
 11.8.9 Getting the Administrative Group ID.. 243
 11.8.10 Obtaining the Identity of the Principal .. 243

Appendix C Components of a Typical VFS+ Package.................................... 245
 C.1 The VFS Vector... 245
 C.2 Naming Conventions ... 245
 C.3 Glue Functions ... 246
 C.3.1 xglue_rename() Function ... 246
 C.3.2 xglue_lookup() Function.. 247
 C.4 Extended Functions .. 248
 C.4.1 xufs_lookup() Function .. 248
 C.5 Extended Vnode Attributes... 249

Chapter 12 The DCE DFS ACL Model for an LFS.. 251
 12.1 Overview... 251
 12.2 Definition of Terms ... 251
 12.3 Primitive Data Types .. 252
 12.4 Local Realm .. 252
 12.5 DFS Administrator.. 252

x X/Open Preliminary Specification (1996)

Contents

 12.6 DFS vs non-DFS requests... 252
 12.7 ACL Contents... 252
 12.8 Define the External ACL Representation ... 254
 12.8.1 Formats of ACL Types... 255
 12.9 Relationship — ACLs and UNIX Protections ... 256
 12.9.1 Episode Visibility above VFS+ .. 257
 12.10 ACL Creation From Mode Bits Algorithm... 257
 12.11 Initial ACL and File Creation Algorithm ... 258
 12.12 User and Group Identities ... 259
 12.13 Algorithm for Obtaining a Principal Identity.. 259
 12.14 Algorithm for Generating PAC from Ucred Structure.......................... 261
 12.15 perm_control Access Right ... 261
 12.16 Access Rights Algorithm ... 262
 12.16.1 No Object ACL Exists Rights Algorithm... 263
 12.16.2 Object ACL Exists Rights Algorithm ... 263
 12.17 mask_obj ACL Entry Algorithm Impact .. 265
 12.18 Miscellaneous Topics and Suggestions... 266

Chapter 13 VFS+ Data Types... 267
 13.1 Primitive Data Types .. 267
 13.2 Aggregates and Aggregate Registry Data Types.................................... 269
 13.2.1 Aggregate Static Status ... 269
 13.2.2 Aggregate Dynamic Status... 269
 13.2.3 Aggregate Status .. 270
 13.2.4 Valid Aggregate Types .. 270
 13.2.5 Adding of New Filesystem Types... 270
 13.2.6 Aggregate Structure... 270
 13.2.7 Aggregate Field Definitions as a_* Items .. 271
 13.2.8 Aggregate States ... 271
 13.2.9 Fileset Creation Flags .. 271
 13.2.10 Aggregate Attach Flags... 271
 13.2.11 Aggregate Sync Flags .. 271
 13.2.12 Aggregate Operations Vector .. 272
 13.2.13 Exported Aggregate Registry Items ... 272
 13.2.14 Vnode Ops Classification.. 273
 13.2.15 Concurrency for vol_stat_st ... 273
 13.2.16 Aggregate Table Entry Format .. 273
 13.2.17 UFS Entry Extra Data... 274
 13.2.18 Values for Filesystem Type... 274
 13.2.19 Adding New Filesystem Types ... 274
 13.3 Fileset Data Types ... 274
 13.3.1 Define the Fileset Function Array... 274
 13.3.2 Volume Operations Definitions... 276
 13.3.3 The Fileset NextHole Structure... 277
 13.3.4 Define the vol_stat_st Structure .. 277
 13.3.5 Define the vol_stat_dy Structure .. 279
 13.3.6 Define the vol_status Structure ... 282
 13.3.7 Define the vol_statusDesc Structure .. 282

DCE 1.1: Distributed File Service Specification xi

Contents

 13.3.8 Define Transient Error ... 282
 13.3.9 Volume States (for vol_stat_st) .. 282
 13.3.10 On-disk States ... 283
 13.3.11 Kernel Maintained State Bits.. 284
 13.3.12 Useful Macros in Volume Pointers ... 284
 13.3.13 Mask Bits for VOL_SETSTATUS MASK Argument............................ 284
 13.3.14 Define the Fileset (volume) Structure .. 285
 13.3.15 Define Volume Fields as v_*... 286
 13.3.16 Define the vol_Dirent Structure .. 286
 13.3.17 Define the Fileset Error Codes ... 286
 13.3.18 Define the Fileset Open Operation Types ... 286
 13.3.19 Define the Fileset Operations VOL_SYS_XXX 287
 13.3.20 Sync Type Values for vol_sync()... 288
 13.3.21 Define the Fileset Handle Structure ... 288
 13.3.22 Define the Root Anode Index .. 289
 13.3.23 Define the Maximum Quota Size.. 289
 13.4 Extended Credential Data Types ... 289
 13.4.1 Define the xcred_PListEntry_t Structure... 289
 13.4.2 Define the xcred_t Structure .. 290
 13.4.3 Reserved Attributes ... 290
 13.5 The VFS+ Switch ... 290
 13.5.1 DCE LFS VNOPS Vector Organization.. 290
 13.5.2 LFS Generating Extended Vnode Operations 291
 13.5.3 Converting Old Vnode Operations... 292
 13.6 Vnode Data Types ... 293
 13.6.1 Preliminary Items ... 293
 13.6.2 Converted Vnode Indication.. 293
 13.6.3 Define the xvfs_attr Structure.. 294
 13.6.4 Define the Vnode Operations Function Aray 296
 13.6.5 Define the Enhanced Vnode Operations ... 298
 13.6.6 Define VOPX_XXX for Extended Vnodeops... 298
 13.6.7 Define VOPX_UPDATE Flags.. 299
 13.6.8 Define the Enhanced Operations Vector ... 299
 13.6.9 Define the VFS Operations ... 300
 13.6.10 Define the Vnode Operation Classifications... 300
 13.6.11 Directory Entry Formats ... 301

Chapter 14 Aggregate Operations Interface... 303
 14.1 Initialization ... 303
 14.1.1 Identifying a New LFS to DCE DFS .. 303
 14.1.2 Registering Aggregate Operations ... 304
 14.2 Exporting volumes to DFS .. 304
 14.3 Aggregate Mounts... 305
 14.4 Aggregate Array Functions ... 305
 ag_hold ()... 306
 ag_rele() .. 307
 ag_lock () ... 308
 ag_unlock ()... 309

xii X/Open Preliminary Specification (1996)

Contents

 ag_stat ().. 310
 ag_volCreate () .. 311
 ag_volInfo () .. 312
 ag_detach () ... 313
 ag_attach ().. 314
 ag_sync() .. 315

Appendix D Information Pertinent to ag_volCreate() 317
 D.1 Static Status .. 317
 D.2 Dynamic Status.. 317
 D.3 Other Items ... 318
 D.4 Attaching the New Fileset ... 318

Appendix E Information Pertinent to ag_volInfo() ... 321
 E.1 Volume Structure Fields... 321
 E.2 Static Status .. 321

Appendix F Information Pertinent to ag_[de,at]tach().................................. 323
 F.1 Making an Aggregate Available .. 323
 F.2 Private Storage ... 323
 F.3 Aggregate Structure.. 323

Chapter 15 Fileset (Volume) Operations Interface .. 325
 15.1 Overview... 325
 15.1.1 Classes of Fileset Operations ... 327
 15.1.2 Fileset Registry Functions... 327
 15.2 Fileset Types Overview.. 327
 15.3 Fileset Clone Algorithms ... 328
 15.3.1 Requirements on Cloning... 329
 15.3.2 Uses for Clones ... 330
 15.3.3 Some Fileset and Clone Requirements .. 331
 15.4 Fileset Indices... 331
 15.5 LFS Modification of Fileset Status ... 332
 15.6 Zero Link Count Files... 332
 15.7 Fileset Quotas... 333
 15.8 Anode Generation Numbers... 334
 15.9 File Identifiers (afsFids).. 334
 15.10 Looping Operation Considerations... 335
 15.11 Vnode to LFS Association.. 336
 15.11.1 Determining whether a Fileset is Local ... 336
 15.11.2 Handling Dis-sociations and Re-associations 337
 15.11.3 Complications in Dis-sociations and Re-associations 338
 15.11.4 Fileset Moves... 338
 15.12 Private LFS Fileset Data ... 339
 15.13 Fileset Operations.. 339
 15.14 Fileset Array Functions .. 340
 vol_hold ().. 341
 vol_rele() ... 342

DCE 1.1: Distributed File Service Specification xiii

Contents

 vol_lock () .. 343
 vol_unlock ().. 344
 vol_open () ... 345
 vol_seek() .. 347
 vol_tell ().. 348
 vol_scan () ... 349
 vol_close () ... 350
 vol_destroy ()... 351
 vol_deplete () ... 352
 vol_attach ()... 353
 vol_detach () .. 354
 vol_getstatus ().. 355
 vol_setstatus() .. 356
 vol_create () ... 357
 vol_read ().. 358
 vol_write () .. 359
 vol_truncate ()... 360
 vol_delete () ... 361
 vol_getattr ().. 362
 vol_setattr () .. 363
 vol_getacl () ... 365
 vol_setacl ().. 367
 vol_clone () .. 369
 vol_reclone () ... 371
 vol_unclone ().. 373
 vol_vget ().. 375
 vol_root () .. 376
 vol_isroot () ... 377
 vol_getvv ().. 378
 vol_setdystat ().. 379
 vol_freedystat () .. 380
 vol_setnewvid () .. 381
 vol_copyacl () .. 382
 vol_concurr().. 384
 vol_swapids () ... 385
 vol_sync() ... 386
 vol_pushstatus ()... 387
 vol_readdir ()... 388
 vol_appenddir () .. 390
 vol_bulksetstatus ()... 392
 vol_getzlc () ... 394
 vol_getnextholes () .. 395
 15.15 Fileset Registry Array Functions.. 396
 volreg_Enter() .. 397
 volreg_Delete() ... 398
 volreg_Lookup () ... 399

xiv X/Open Preliminary Specification (1996)

Contents

Appendix G Exporting the Filesets in an Aggregate 401
 G.1 Fileset Export Steps... 401

Appendix H Filled Values for vol_dirent Fields .. 403
 H.1 Returned Values... 403

Appendix I Values for vol_open... 405
 I.1 The Type Argument.. 405
 I.1.1 Concurrency.. 406
 I.1.2 Handling Inconsistent State ... 406
 I.2 The Fileset Handle .. 407
 I.2.1 Preparing for Fileset Operations ... 407

Appendix J Status Returned for vol_getstatus .. 409
 J.1 Fileset Status Set .. 409

Appendix K Status Set for vol_setstatus... 411
 K.1 Status Set ... 411

Appendix L Processing for vol_create ... 413
 L.1 Processing Accomplished.. 413

Chapter 16 VFS (Vnode) Interface and Operations 415
 16.1 Overview... 415
 16.1.1 Enhanced Vnode Operations Vector .. 415
 16.1.2 Converted Vnodes.. 418
 16.1.3 Enhanced Vfs Vector.. 419
 16.2 Administrative Rights .. 420
 16.3 Copy-on-Write Impacts ... 421
 16.4 Swap Files ... 421
 16.5 Synchronization Between Vnode and Fileset Operations..................... 422
 16.5.1 Directory Offsets... 423
 16.6 Vfs Operations ... 423
 16.6.1 vfs_getvolume() .. 424
 16.7 Base Vnode Interface... 424
 vn_open().. 427
 vn_close().. 428
 vn_rdwr() ... 429
 vn_ioctl () .. 430
 vn_select()... 431
 vn_getattr() .. 432
 vn_setattr()... 434
 vn_access().. 436
 vn_lookup () .. 437
 vn_create() .. 438
 vn_remove().. 440
 vn_link () ... 441
 vn_rename().. 442

DCE 1.1: Distributed File Service Specification xv

Contents

 vn_mkdir().. 444
 vn_rmdir() .. 446
 vn_readdir().. 447
 vn_symlink() .. 450
 vn_readlink () .. 451
 vn_fsync()... 452
 vn_inactive () .. 453
 vn_bmap()... 454
 vn_strategy() .. 455
 vn_bread()... 456
 vn_brelse() .. 457
 vn_lockctl ()... 458
 vn_fid() ... 459
 16.8 Extended Vnode Interface ... 460
 16.8.1 Generalized Differences .. 460
 vn_getvolume() .. 461
 vn_afsfid()... 462
 vn_getacl ().. 463
 vn_setacl() .. 465

Chapter 17 DCE DFS VFS+ Extended Credential Package....................... 469
 17.1 The xcred Package... 469
 17.2 Package Overview... 469
 17.2.1 Interface Overview .. 469
 17.3 xcred Functions.. 470
 xcred_Init()... 471
 xcred_Create() .. 472
 xcred_Hold()... 473
 xcred_Delete() .. 474
 xcred_Release()... 475
 xcred_AssociateCreds() ... 476
 xcred_UCredToXCred()... 477
 xcred_FindByPag() .. 478
 xcred_PutProp() ... 479
 xcred_GetProp() ... 480
 xcred_GetUFlags()... 481
 xcred_SetUFlags() ... 482
 xcred_EnumerateProp()... 483
 xcred_DeleteEntry()... 484

 Index... 485

List of Examples

5-1 Interface Description for an Interface.. 69
5-2 List of Interface Descriptions for an Interface ... 70
5-3 Usage of IMPORT definition with _TAKES notation............................. 70
5-4 Construction of the getenv utility.. 70

xvi X/Open Preliminary Specification (1996)

Contents

A-1 ACLs and UNIX Mode Bits.. 221
A-2 Changing other Mode Bits .. 222
A-3 Changing group Mode Bits on a File with ACL and No mask_obj........ 222
A-4 Changing the user_obj Entry .. 222
A-5 Changing the group_obj Entry ... 223
A-6 Changing the group_obj Entry in an ACL with a mask_obj Entry......... 223
A-7 The Results of chmod of the group Bits ... 224
A-8 The Results of acl_edit of the mask_obj Bits ... 224
A-9 Changing the group_obj Entry for an ACL with a mask_obj................... 225
A-10 File Creation with no IO ACL... 226
A-11 File Creation with an IO ACL ... 226
A-12 File ACL Creation with an initial object ACL .. 227
C-1 xglue_rename() Function... 246
C-2 xglue_lookup() Function ... 247
C-3 xufs_lookup() Function.. 248
13-1 Initializing the Extended VNOPS Vector.. 290
13-2 Generating New Style Vnode Operations From Original 291
13-3 GetNewVnodeOpsFromOld Routine .. 292
16-1 Protocol Exporter Access to a Fully Functional LFS............................... 417
16-2 Protocol Exporter Access to a non-LFS Filesystem 417
16-3 Local OS to a Fully Functional LFS .. 417
16-4 Local OS Access to a Non-LFS Filesystem Such as UFS........................ 418

List of Tables

12-1 ACL Entry Types.. 254

DCE 1.1: Distributed File Service Specification xvii

Contents

xviii X/Open Preliminary Specification (1996)

Preface

The Open Group

In February 1996, X/Open and the Open Software Foundation (OSF) joined forces to become The
Open Group, which represents one of the leading authorities in open systems. It is supported by
most of the world’s largest information systems suppliers, user organisations and software
companies. By combining their complementary strengths — X/Open in providing specifications
and its trade mark branding scheme, and OSF in facilitating collaboration among customers and
system/software vendors toward the development of new open systems technologies — The
Open Group is well positioned to assist vendors and users to develop and implement products
which support adoption and proliferation of open systems.

Established in 1984, X/Open is an organisation dedicated to the identification, agreement and
widescale adoption of Information Technology standards which provide compatibility
(portability and interoperability) between software products, and so help users realise the
business benefits of open information systems — lower costs, increased choice and greater
flexibility. It achieves this by combining existing and emerging standards into an evolving set of
integrated, high-value and usable open system specifications, which form a Common
Applications Environment (CAE). It licenses a trade mark — called the X/Open Brand — for
use on products which vendors have demonstrated are conformant to this CAE. The X/Open
brand is recognised by users worldwide as the guarantee of compliance to open systems
standards. X/Open is also responsible for the management of the UNIX trade mark on behalf of
the industry.

Founded in 1988, the Open Software Foundation (OSF) delivers technology innovations in all
areas of open systems, including interoperability, scalability, portability and usability. OSF is a
worldwide coalition of vendors and customers in industry, government and academia, who
work together to provide advanced open-systems technology solutions for use in a distributed
computing environment. It runs programmes in collaborative research and development, to
deliver vendor-neutral technology (software source code and supporting documentation) in key
IT areas. These include OSF/1, Distributed Computing Environment (DCE), OSF/Motif and
Common Desktop Environment (CDE).

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focused on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported industry standard. In addition, they can demonstrate
product compliance through the X/Open brand trade mark. CAE specifications are
published as soon as they are developed, so enabling vendors to proceed with development
of conformant products without delay.

DCE 1.1: Distributed File Service Specification xix

Preface

• Preliminary Specifications

These specifications usually address an emerging area of technology and consequently are
not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
specification is not a draft specification; rather, it is as stable as can be achieved, through
applying X/Open’s rigorous development and review procedures.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE specification.
While the intent is to progress Preliminary specifications to corresponding CAE
specifications, the ability to do so depends on consensus among X/Open members.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed on subjects of interest in
areas relevant to X/Open’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of a technical activity. Although at the time of its
publication, there may be an intention to progress the activity towards development of a
Specification, Guide or Technical Study, the ability to do so depends on consensus among
X/Open members.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

xx X/Open Preliminary Specification (1996)

Preface

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.xopen.org under Sales and Ordering.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.xopen.org under Sales and Ordering.

This Document

This document is a Preliminary Specification (see above). It specifies Distributed File System
(DFS) services, interface, protocols, encoding rules and the Interface Definition Language (IDL).

The purpose of this document is to provide a portability guide for DFS application programs
and a conformance specification for DFS implementations, particularly those with extensions to
the layer known as the Virtual File System (VFS). These extensions will be known as the Virtual
File System additions (VFS+).

Structure

This document is organised into six parts.

Part 1, Distributed File System Introduction, describes this volume in detail, covering the DFS
Interface Definition Language and data, DFS Versioning Scheme, DFS Client/Server and Token
Manager Interfaces, the Access Control List Model used, the operations on aggregates
(collections of filesets), the operations on volumes (filesets), and the vnode (VFS) interface and
its operations. It contains material relevant to both application programmers and implementors.

Part 2, DFS Interface Definition Language and Data, describes the File Exporter IDL Declarations,
Cache Manager IDL Declarations, and Common IDL Data used by DFS.

Part 3, DFS Versioning Scheme, describes the DFS RPC Versioning Scheme that permits providers
to supply enhancements to the RPC functions of DFS. It includes data structures; the DFS
versioning API; a set of examples including IDL files, Client, Server, and Manager applications;
and a set of rules to follow for extending the DFS interface.

Part 4, DFS Client/Server and Token Manager Interfaces, provides a set of manpages for both the
DCE DFS File Exporter and the Token Manager.

Part 5, Access Control Lists (ACLs) in DFS, provides an overview of Access Control Lists in DFS,
their formats and the interface provided to manipulate them.

Part 6, DCE DFS VFS+ Interface Specification, specifies a portable Application Programmer’s
Interface (API). It contains material on the DFS aggregate operations, volume operations, and
vnode (VFS) operations that are relevant to both application programmers and implementors.

Intended Audience

This document is written for DFS application programmers and developers of DFS
implementations.

DCE 1.1: Distributed File Service Specification xxi

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used for text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names; for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name().

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font .

• Variables within syntax statements are shown in italic fixed width font .

xxii X/Open Preliminary Specification (1996)

Trade Marks

OSFTM is a trade mark of The Open Software Foundation, Inc.

Transarc, Encina and AFS are registered trade marks of Transarc Corporation.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

This list represents, as far as possible, those products that are trade marked. X/Open
acknowledges that there may be other products that might be covered by trade mark protection
and advises the reader to verify them independently.

DCE 1.1: Distributed File Service Specification xxiii

Acknowledgements

Part 6, The DCE DFS VFS+ Interface Specification of the DCE1.1:DistributedFileServiceSpecification
is based upon the specification of the extensions to the Virtual File System (VFS) from
Hewlett-Packard known as the VFS+ Specification, which was originally written by Daryl
Kinney and given to the Open Software Foundation in July, 1993, with subsequent updates by
Hewlett-Packard.

xxiv X/Open Preliminary Specification (1996)

Referenced Documents

The following documents are referenced in this specification:

DCE RPC
X/Open CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

OSF DCE DFS Administration Guide and Reference
for OSF DCE 1.1.

OSF DCE Administration Guide — Core Components
for OSF DCE 1.1.

DCE 1.1: Distributed File Service Specification xxv

Referenced Documents

xxvi X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 1:

Distributed File System Introduction

Part 1: Distributed File System Introduction 1

2 X/Open Preliminary Specification (1996)

Chapter 1

Introduction to the DFS Specification

This document specifies both portability and interoperability for the Distributed File System
(DFS). The specification contains material directed at two audiences:

• It provides a portability guide for certain application programmers.

• It provides both portability and interoperability specifications for those who are
implementing their own Virtual File System Extended (VFS+) or porting the DFS VFS+.

This document may be thought of as an implementation specification, covering both portability
and interoperability, that contains within it a portability guide for those that are porting the DFS
VFS+ LFS, as well as an implementation specification for those who choose not to port the DFS
VFS+ portion.

The implementation specification for the DFS VFS+ LFS is contained in a manner that is
intended to be self sufficient. It is mostly self describing, although it does reference other parts of
the portability specification; for instance, the information on ACLs and data types.

Note: As a result of the intent to be self sufficient, there is some repetition of information,
particularly ACL fields, and access algorithms. Thus, chapter 12 describes ACL
information that was presented in chapters 8 and 9 from the point of view of an LFS
(Local File System).

1.1 Portability

1.1.1 Overview

This part of the specification consists of chapters 2 through 7. These chapters describe all RPC
interfaces used within the kernel resident components of the DCE DFS distributed file system,
namely, the file exporter, the cache manager, and the rules for adding new or modified RPC
functions to the file exporter. Chapter 6 on page 99 describes the RPC interface to the file
exporter, which is used by cache managers to access and manipulate files. Chapter 7 on page 145
describes the RPC interface the cache manager exports in order to handle token management
and other administrative inquiries from the file exporter. Chapter 5 on page 69 describes the
mechanism for adding new or modified RPC functions to the file exporter.

1.1.2 IDLs, Data Types, Constants and Flags

In addition, a set of chapters provides related information such as data types, definitions of
constants and flags. Chapter 2 on page 13 describes the IDL definitions and related constants
and flags associated with the DCE DFS File Exporter Interface. In addition, Chapter 3 on page 51
describes the same kinds of information associated with the Cache Manager Service Interface .
There is additional data type, flag, and constant information relating to both interfaces in
Chapter 4 on page 57, titled Common IDL Data.

Part 1: Distributed File System Introduction 3

Document Organization Introduction to the DFS Specification

1.2 Document Organization
The DCE 1.1: Distributed File Service specification is organised as described in the following.
This organisation follows the pattern that the first part is at the lowest level (RPC) and proceeds
to higher levels, such as Access Control Lists, and finally, the extensions to the VFS known as the
VFS+ Interface.

1.2.1 RPC Interfaces for DCE DFS

Parts 2 through 4 of the DCE 1.1: Distributed File Service specification describe the exported
interface used within the kernel resident portion of the DCE DFS distributed file system. This
interface description includes all RPC interfaces used within the kernel and the rules for adding
new or modified RPC functions to the file exporter (sometimes called the protocol exporter) and
consists of:

• Part 2, DFS Interface Definition Language and Data, consisting of Chapter 2 on page 13, the File
Exporter IDL Declarations for both clients and servers, Chapter 3 on page 51, Cache Manager
IDL Declarations, and Chapter 4 on page 57, Common IDL Data shared by both the File
Exporter and the Cache Manager

• Part 3, DFS Versioning Scheme, consisting of Chapter 5 on page 69, DFS RPC Versioning Scheme,
which provides a mechanism and rules for extending the DFS interface at the RPC level

• Part 4, DFS Client/Server and Token Manager Interfaces, consisting of Chapter 6 on page 99, DCE
DFS File Exporter Interface and Chapter 7 on page 145, Cache Manager Service Interface
describing the manpages for these interfaces.

1.2.2 Access Control Lists (ACLs) in DFS

Part 5 of the DCE 1.1: Distributed File Service specification describes the Acccess Control Lists
used in DCE DFS. It consists of:

• Chapter 8 on page 155, Access Control List Overview, describing the ACL types, and rules
governing entries in them for filesystem ACLs, including delegation, as well as access
checking algorithms for principals and delegation

• Chapter 9 on page 165, ACL Storage Format, describing the structured formats used for ACLs
in memory (which differs from the unstructured byte-stream format used on disk)

• Chapter 10 on page 171, Acess Control List Interface Functions, describing the functions
available in the ACL interface by which the ACLs can be manipulated. The functions are
used for both in-kernel filesystem ACLs and Administrative Lists ACLs, which are used in
user space.

In addition, there are two appendixes in Part 5:

• Appendix A on page 221, Mapping DFS ACLs to UNIX mode bits, which discusses the
relationship between ACLs and UNIX mode bits

• Appendix B on page 229, Access Control List Package Error List, which lists the return values
that can occur in this interface.

4 X/Open Preliminary Specification (1996)

Introduction to the DFS Specification Document Organization

1.2.3 The DCE DFS VFS+ Interface Specification

Part 6 of the DCE 1.1: Distributed File Service specification describes the DCE DFS VFS+
interface specification for a DCE LFS . It consists of chapters 11 through 17, and 10 appendixes,
organized as follows:

• Chapter 11 on page 233, DCE DFS VFS+ Interface Introduction, consists of an overview of the
interfaces for an LFS, the organization of the VFS+ switch for extending the VFS interface, the
fileset registry, fileset and vnode interfaces, and LFS references back into DFS.

It has an appendix, Appendix C, Components of a Typical VFS+ Package, which provides
information on items such as naming conventions in this interface extension, example
wrapper routines called "glue" functions, that can be used to transparently extend the VFS
vector so that the extensions can be invoked, and extensions to the vnode attributes.

• Chapter 12 on page 251, The DCE DFS ACL Model for an LFS, discusses ACLs, security and
protection checking as they relate to a DFS physical file system (known as a local file system,
or LFS).

• Chapter 13 on page 267, VFS+ Data Types, describes the data types used in a DCE LFS,
including primitive data types, as well as data types for aggregates, filesets and vnodes.

• Chapter 14 on page 303, Aggregate Operations Interface, describes the portion of the VFS+
interface which allows operations on aggregates, the DCE DFS data containers which house
filesets, as introduced in Section 11.3 on page 235. The aggregate array functions found in the
struct aggrops structure, are also described in this chapter.

Additional information for the aggregate interface is found in Appendix D through
Appendix F.

• Chapter 15 on page 325, Fileset (Volume) Operations Interface, describes the facilities provided
for the VFS+ Fileset Operations, including fileset types, clones, fileset and clone
requirements, fileset indices, LFS modification of fileset status, zero link count files, quotas,
anode generation numbers, file identifiers, vnode to LFS association, and lastly, fileset and
fileset registry operations.

Appendix G through Appendix L provide additional information about filesets, such as
values for opening a fileset, getting status, and creating a fileset.

• Chapter 16 on page 415, VFS (Vnode) Interface and Operations, describes the enhanced vnode
operations vector, converted vnodes, synchronization between vnode and fileset operations,
as well as the functions provided for operating on vnodes. It also includes the interface
description for the extended vnode interface.

• Chapter 17 on page 469, DCE DFS VFS+ Extended Credential Package, describes the interface
used for authentication within the VFS+ layer. It presents an extensible and
upwards-compatible interpretation of the VFS UNIX credential structure.

It describes what is essentially a subroutine library allowing VFS functions to interpret the
VFS credentials structure in a more general manner.

Part 1: Distributed File System Introduction 5

Terminology Introduction to the DFS Specification

1.3 Terminology
This is a list of commonly used terms in DFS.

ACL
Short for access control list; a description of which users (principals) and groups (groups of
principals) can use a file or directory and what types of uses are permitted (rights). Every
file can have an ACL. Directories have three ACL types; one governs operations on the
directory itself, a second provides an initial ACD for files created in the directory, and a
third provides the ACL for sub-directories created within the directory. These ACL types
are known as the initial object, object, and initial container ACLs, respectively.

Aggregate
An expanse of physical disk which is managed by a DFS LFS. It is similar in context to a
UNIX partition and is identified by both a device number and a device file. In many cases,
the storage provided to an aggregate will be by a Logical Volume Manager (LVM).

Anode
A 252-byte area of disk which is contiguous. It is the primitive data structure in the DCE
LFS file system. All objects in LFS reside in a container; a logical variable-sized object,
sometimes called a "bucket", that can hold data. An anode stores status and disk addressing
information -- called meta-data as well as information describing user files.

Anode Index
An index which can be used to refer to the anode. This index is used in many situations by
an LFS to name and locate anodes. A fileset is implemented as an array of anodes.

Backing Anode
This is an anode whose storage is shared with other COW anodes and whose contents are
fixed. Backing anodes are read-only. Multiple COW anodes can refer to the same backing
anodes.

Block
The larger unit in a system, for allocating disk space to containers and doing I/O and
buffering. Block size must be a power of two in DCE DFS.

Cell
A collection of DCE machines administered as a single entity. In this context, the key point
is that a cell is serviced by a single registry with a single, consistent set of user and group
identifiers.

Clone
A loosely-used term to describe a fileset which is related to another fileset. Sometimes it
refers to a read-write (R/W) fileset and sometimes to a replica. The term clone is also applied
to the operation on individual anodes during the fileset clone process. A R/W fileset is
comprised of COW anodes each of which was "cloned" from the backing anode in the
corresponding anode index in a read-only snapshot of a fileset. A snapshot is a consistent,
read-only version of a fileset.

COW Anode
Also known as a Copy-on-Write anode. This is an anode whose storage is shared with a
backing anode and whose contents can be changed. Modifications to a COW anode are made
by allocating new storage, initializing the storage from the backing anode, then making the
desired modifications. Both containers (anodes) must reside in the same aggregate.

Container
An open-ended, ordered collection of disk space; the basic storage unit for data on a disk in
a DCE LFS. It is variable-sized and is represented by an anode. A container can contain

6 X/Open Preliminary Specification (1996)

Introduction to the DFS Specification Terminology

other containers. For instance, an aggregate is a container that holds other containers, such as
filesets and also representations of free space, or a log. A fileset, in turn, is a container
holding files.

DFS
The DCE Distributed File System.

EFS
The optional portion of DFS which deals with extended fileset operations (cloning, backup,
replicas, and so on).

Xcred
Also known as an extended credential. A credential structure, like that used in the UNIX
kernel, but augmented in various ways - including a realm identifier; it distinguishes a local
group from a foreign group. The xcred credential identifies a principal.

File
A container used to implement UNIX files, directories and symbolic links. It has a status area
in which the standard information returned by stat(2) is stored. The status area also
contains pointers to information for access control.

Fileset
A set of related files, connected via a sub-tree with a single root point, that is administered
as an entity by DFS. Although filesets cannot span aggregates, a single aggregate can hold
many filesets. Filesets which have an associated maximum size or quota, grow
independently of each other and compete for space within their aggregate. Individual
filesets can be mounted locally, backed up and restored, cloned or transparently moved to
another aggregate.

The terms fileset and volume are used interchangeably, although the term volume is
becoming archaic.

Fragment
The smaller unit in a system, for allocating disk space to containers. The number of
fragments in a block must be a power of two.

Group
A membership list, identified by a uuid_t, which contains a list of principals (by uuid_t)
which are members of that group. Again, in a non-DCE environment, they are identified by
a 32-bit (at best) gid.

LFS
Local File System: a physical file system, which in the context of this document, provides
DFS semantics.

Episode is the name of the LFS that Transarc Corporation provides as part of the DFS EFS
package.

Magic Cookie
A piece of data, passed back and forth between two functions which is opaque to the
higher-level function. It is often used as a token of progress in an iteration.

PAC
Privilege Attribute Certificate. A data structure, generated by the DCE Privilege Server, that
contains the identity of a DCE authenticated principal. To a first approximation, it contains
the principal’s uuid_t along with the uuid_t of each group of which it is a member.

Part 1: Distributed File System Introduction 7

Terminology Introduction to the DFS Specification

Principal
An entity that is interacting with DFS. Although it usually refers to a person, it could as
easily correspond to a DCE server or a computer within a DCE cell. In the DCE
environment, principals are identified by a uuid_t. In a non-DCE, standard UNIX,
environment, they are identified by a 32- bit (at best) uid.

Quota
Maximum space allowed to be allocated to a fileset, independent of how much space
remains in the aggregate.

Realm
Equivalent to a Cell. In security DCE security discussions, the term realm is typically used
instead of cell.

Replica
A read-only fileset whose contents match that of a consistent read-only version of a fileset on
a different aggregate. A replica differs from a snapshot in that the snapshot is really linked to
the primary fileset by a copy on write relationship and shares storage with it, while a
replica is an independent copy of a snapshot in another aggregate.

Rights
The classes of operations whose access can be separately controlled. For traditional UNIX
file systems, these are designated rwx. A DCE LFS has more rights for directories which
allow separate control of insert (i) and delete (d) operations. In addition, the operations
traditionally reserved to a file’s owner are under the control of right (c).

Token
A data structure passed between a DFS file server and client (user of the file server) that
guarantees to the client that it has permission to perform the operation described in the
token. The DFS file servers issue and revoke tokens granted to clients, and clients follow this
convention. Tokens are used to provide a coherent view of data across all DFS clients as if
they were in a single system.

UFS
The UNIX File System. The name of the file system originally provided by vendors of
UNIX systems. In this file system the inode is a container for user file data and directory
data. It does not contain metadata such as found in an anode.

Uniquifier
Synonym used interchangeably with unique. It distinguishes between different uses (over
time) of an entity. It is a number incremented each time an entity is created, and can be
thought of as a generation number. Its primary use is in the construction of file identifiers.
In a fileset, it is a number incremented each time a file is created, which is used to distinguish
between instantiations of a file using the same anode index. In a vnode, for each new use, a
new uniquifier is used in the afsFid, the DFS file identifier.

VFS+ Interface
A VFS interface, including vnode operations and VFS operations, extended by adding
vnode operations for portability, for Episode, and for other DCE LFS file systems. An
extension to this interface usually includes fileset operations and aggregate operations.

In addition, for portability, this interface requires portability "glue" or wrapper functions to
adapt the vnode operations to a particular kernel. This interface also requires token "glue" in
order to enable a file system to be exported.

8 X/Open Preliminary Specification (1996)

Introduction to the DFS Specification Conformance Requirements

1.4 Conformance Requirements
To conform to this document, implementations must meet the following requirements:

• Implementations of file servers must support the interfaces defined in Chapter 6 on page 99.

• Implementations of file servers must support the AFS4Int interface defined in Chapter 2 on
page 13.

• Implementations of file servers must support the common data structures defined in Chapter
4 on page 57.

• Implementations of cache managers must support the interfaces defined in Chapter 7 on
page 145.

• Implementations of cache managers must support the TKN4Int interface defined in Chapter
3 on page 51.

• Implementations of cache managers must support the common data structures defined in
Chapter 4 on page 57.

• Implementations of Local File Systems must support the interfaces and data structures
defined in Part 6 on page 237.

• Implementations that extend either the file exporter interface defined in Chapter 2 on page 13
or the token manager interface defined in Chapter 3 on page 51 (or both) must conform to the
mechanism defined in Chapter 5 on page 69.

Part 1: Distributed File System Introduction 9

Introduction to the DFS Specification

10 X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 2:

DFS Interface Definition Language and Data

Part 2: DFS Interface Definition Language and Data 11

12 X/Open Preliminary Specification (1996)

Chapter 2

File Exporter IDL Declarations

This chapter specifies the RPC interfaces used by the AFS (4.0) Client and Cache Manager to the
AFS (4.0) Server and File Exporter Interface.

The File Exporter interface consists of a set of structures, mask values and flags contained in an
IDL file with a provider version number of 1 to indicate that it is an original interface. In
addition, each RPC defined in this structure also has a provider version number of 1, indicating
that it also is an original RPC. See Chapter 5 on page 69 for information on versioning which will
explain in more detail about provider version numbers.

2.1 The File Exporter Interface
The File Exporter Interface is contained within the interface, AFS4Int, which starts out as shown
below and contains all the items shown in this chapter exclusive of the definitions of the
parameters in the RPC calls which are included from Chapter 6 on page 99 and the common data
definitions in the configuration file common_data.idl which are contained in Chapter 4 on page
57 for clarity. There are twenty seven remote procedure calls defined that the client and cache
manager can use in this interface which is defined as provider version 1. Chapter 5 on page 69
provides information for adding new interfaces, or new remote procedure calls to this interface.

[
uuid(4d37f2dd-ed93-0000-02c0-37cf1e000000),
version(4.0)
/* provider_version(1) */
]

interface AFS4Int
{

import "dcedfs/common_data.idl";

.

.

.
/* } at end of this chapter concludes this interface. */

Part 2: DFS Interface Definition Language and Data 13

Mask Values for afsStoreStatus Structure File Exporter IDL Declarations

2.2 Mask Values for afsStoreStatus Structure
const unsigned32 AFS_SETMODTIME = 1;
const unsigned32 AFS_SETOWNER = 2;
const unsigned32 AFS_SETGROUP = 4;
const unsigned32 AFS_SETMODE = 8;
const unsigned32 AFS_SETACCESSTIME = 0x10;
const unsigned32 AFS_SETCHANGETIME = 0x20;

/* don’t allow this for now */
const unsigned32 AFS_SETLENGTH = 0x40;
const unsigned32 AFS_SETTYPEUUID = 0x80;
const unsigned32 AFS_SETDEVNUM = 0x100;
const unsigned32 AFS_SETMODEXACT = 0x200;

/* allow setting back */
const unsigned32 AFS_SETTRUNCLENGTH = 0x400;

/* truncate to this size first */
const unsigned32 AFS_SETCLIENTSPARE = 0x800;

/* set clientSpare1 */

2.3 AFS_GetTime Sync Constants
These are distance and dispersion constants.

const unsigned32 AFS_SYNCUNSYNC = 0x7ffffff0;
const unsigned32 AFS_SYNCINITIAL = 0x7ffffff1;

2.4 Flag Parameters for ACL Type Parameter
These are flag parameters for the high order 16 bits of the getacl and setacl ACL type parameter.

const unsigned32 AFS_ACLFLAG_COPY = 1;
/* copy the ACL from the specified fid */

2.5 Definitions for Flag Used in Getting a Token
These are the definitions for the flage used in getting a token for each afs4int call.

const unsigned32 AFS_FLAG_RETURNTOKEN = 1;
/* Return tokens to caller not to the token manager */

const unsigned32 AFS_FLAG_TOKENJUMPQUEUE = 2;
/* in AFS_GetToken, call tkset_AddTokenSet with

TKSET_ATS_WANTJUMPQUEUE flag */

const unsigned32 AFS_FLAG_SKIPTOKEN = 4;
/* don’t obtain tokens, client already has them */

const unsigned32 AFS_FLAG_NOOPTIMISM = 0x8;
/* return only the exact asking token, no "optimism" tokens */

const unsigned32 AFS_FLAG_TOKENID = 0x10;

14 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions for Flag Used in Getting a Token

/* to say get-the-token-with-this-ID */

const unsigned32 AFS_FLAG_RETURNBLOCKER = 0x20;
/* To return blocker’s info for Sys V record lock */

const unsigned32 AFS_FLAG_ASYNCGRANT = 0x40;
/* permit async grant in AFS_GetToken if can’t get now */

const unsigned32 AFS_FLAG_NOREVOKE = 0x80;
/* Ask server not to revoke other’s token, if there is a

conflict. Just return a failure */

2.6 Definitions for Flag in Token Recovery (TSR)
These are the definitions for the flag used in performing token recovery (TSR) operations.

const unsigned32 AFS_FLAG_MOVE_REESTABLISH = 0x100;
/* to say you’re reestablishing tokens after a move */

const unsigned32 AFS_FLAG_SERVER_REESTABLISH = 0x200;
/* to say you’re reestablishing tokens after a server crash */

const unsigned32 AFS_FLAG_NO_NEW_EPOCH = 0x400;
/* to prevent advancing the indicated token into a new epoch */

const unsigned32 AFS_FLAG_MOVE_SOURCE_OK = 0x800;

2.7 Definitions for Flag in Fileset Operations
These are the definitions for the flag used in performing fileset operations.

const unsigned32 AFS_FLAG_SYNC = 0x1000;
/* fsync all modified files after operation */

const unsigned32 AFS_FLAG_ZERO = 0x2000;
/* Data is all zero instead of in pipe */

const unsigned32 AFS_FLAG_SKIPSTATUS = 0x4000;
/* Dont bother filling Out file status */

const unsigned32 AFS_FLAG_FORCEREVOCATIONS = 0x8000;
/* In AFS_GetToken, insist on getting this token, and make conflicting

tokens be revoked with the AFS_REVOKE_FORCED_REVOCATION flag. */

const unsigned32 AFS_FLAG_FORCEVOLQUIESCE = 0x10000;
/* Ensure that this whole-fileset token blocks all per-file tokens. */

Part 2: DFS Interface Definition Language and Data 15

Definitions for Flags in AFS_SetParams() File Exporter IDL Declarations

2.8 Definitions for Flags in AFS_SetParams()
These are the definitions for the flags used only in calling AFS_SetParams().

const unsigned32 AFS_PARAM_RESET_CONN = 0x1;
const unsigned32 AFS_PARAM_TSR_COMPLETE = 0x2;

2.9 Definitions for Flags in AFS_SetContext()
const unsigned32 AFS_FLAG_SEC_SERVICE = 0x1;

/* client needs a secondary service */

const unsigned32 AFS_FLAG_CONTEXT_NEW_IF = 0x2;
/* this is a new-interface call, with different DOWN semantics */

const unsigned32 AFS_FLAG_CONTEXT_DO_RESET = 0x4;
/* client will reset all token state itself, to a

new-interface server */
const unsigned32 AFS_FLAG_CONTEXT_NEW_ACL_IF = 0x8;

/* client understands new delegation acl entry types */

2.10 Definitions for Client-only Attribute Flags
const unsigned32 AFS_CLIENTATTR_HIDDEN = 0x1;
const unsigned32 AFS_CLIENTATTR_SYSTEM = 0x2;
const unsigned32 AFS_CLIENTATTR_ARCHIVE = 0x4;
const unsigned32 AFS_CLIENTATTR_READONLY = 0x8;

2.11 Data Types
The following data types are used to define structures used by the remote procedure calls in
provider version 1 of the File Exporter Interface.

2.11.1 Define Generic Network Address Information

typedef struct afsNetData {
afsNetAddr sockAddr;
NameString_t principalName;

} afsNetData;

2.11.2 Define afsVolSync Structure for Tracking Replicas

This is the structure by which replicas are tracked.

typedef struct afsVolSync {
afsHyper VolID;
afsHyper VV; /* volume’s version */
unsigned32 VVAge; /* age, in seconds, of the knowledge that the

given VolVers is current */
unsigned32 VVPingAge; /* age, in seconds, of the last probe from

the callee (the secondary) to the primary */
unsigned32 vv_spare1;

16 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Data Types

unsigned32 vv_spare2;
} afsVolSync;

2.11.3 Define the afsFetchStatus Structure

typedef struct afsFetchStatus {
unsigned32 interfaceVersion;
unsigned32 fileType;
unsigned32 linkCount;
afsHyper length;
afsHyper dataVersion;
unsigned32 author;
unsigned32 owner;
unsigned32 group;
unsigned32 callerAccess;
unsigned32 anonymousAccess;
unsigned32 aclExpirationTime;
unsigned32 mode;
unsigned32 parentVnode;
unsigned32 parentUnique;
afsTimeval modTime;
afsTimeval changeTime;
afsTimeval accessTime;
afsTimeval serverModTime;
afsUUID typeUUID;
afsUUID objectUUID;
unsigned32 deviceNumber;
unsigned32 blocksUsed;
unsigned32 clientSpare1; /* client-only attrs */
unsigned32 deviceNumberHighBits;
unsigned32 spare0;
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
unsigned32 spare4;
unsigned32 spare5;
unsigned32 spare6;

} afsFetchStatus;

2.11.4 Define the afsStoreStatus Structure

typedef struct afsStoreStatus {
unsigned32 mask;
afsTimeval modTime;
afsTimeval accessTime;
afsTimeval changeTime;
unsigned32 owner;
unsigned32 group;
unsigned32 mode;
afsHyper truncLength; /* applied first */
afsHyper length;
afsUUID typeUUID;
unsigned32 deviceType; /* character or block */

Part 2: DFS Interface Definition Language and Data 17

Data Types File Exporter IDL Declarations

unsigned32 deviceNumber;
unsigned32 cmask;
unsigned32 clientSpare1; /* client-only attrs */
unsigned32 deviceNumberHighBits;
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
unsigned32 spare4;
unsigned32 spare5;
unsigned32 spare6;

} afsStoreStatus;

2.11.5 Structure for Physical File System Type

typedef struct afsDisk {/* used by Statistics */
unsigned32 BlocksAvailable;
unsigned32 TotalBlocks;
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
afsDiskName Name;

} afsDisk;

2.11.6 Structure for Statistics

typedef struct afsStatistics {
unsigned32 CurrentMsgNumber;
unsigned32 OldestMsgNumber;
unsigned32 CurrentTime;
unsigned32 BootTime;
unsigned32 StartTime;
unsigned32 CurrentConnections;
unsigned32 TotalAfsCalls;
unsigned32 TotalFetchs;
unsigned32 FetchDatas;
unsigned32 FetchedBytes;
unsigned32 HighFetchedBytes;
unsigned32 FetchDataRate;
unsigned32 TotalStores;
unsigned32 StoreDatas;
unsigned32 StoredBytes;
unsigned32 HighStoredBytes;
unsigned32 StoreDataRate;
unsigned32 TotalRPCBytesSent;
unsigned32 HighTotalRPCBytesSent;
unsigned32 TotalRPCBytesReceived;
unsigned32 HighTotalRPCBytesReceived;
unsigned32 TotalRPCPacketsSent;
unsigned32 TotalRPCPacketsReceived;
unsigned32 TotalRPCPacketsLost;
unsigned32 TotalRPCBogusPackets;
unsigned32 SystemCPU;
unsigned32 UserCPU;

18 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Data Types

unsigned32 NiceCPU;
unsigned32 IdleCPU;
unsigned32 TotalIO;
unsigned32 ActiveVM;
unsigned32 TotalVM;
unsigned32 EtherNetTotalErrors;
unsigned32 EtherNetTotalWrites;
unsigned32 EtherNetTotalInterupts;
unsigned32 EtherNetGoodReads;
unsigned32 EtherNetTotalBytesWritten;
unsigned32 EtherNetTotalBytesRead;
unsigned32 ProcessSize;
unsigned32 WorkStations;
unsigned32 ActiveWorkStations;
unsigned32 Spare1;
unsigned32 Spare2;
unsigned32 Spare3;
unsigned32 Spare4;
unsigned32 Spare5;
unsigned32 Spare6;
unsigned32 Spare7;
unsigned32 Spare8;
afsDisk Disk1;
afsDisk Disk2;
afsDisk Disk3;
afsDisk Disk4;
afsDisk Disk5;
afsDisk Disk6;
afsDisk Disk7;
afsDisk Disk8;
afsDisk Disk9;
afsDisk Disk10;
afsDisk Disk11;
afsDisk Disk12;
afsDisk Disk13;
afsDisk Disk14;
afsDisk Disk15;
afsDisk Disk16;

} afsStatistics;

Part 2: DFS Interface Definition Language and Data 19

Various Bulk Data Type Definitions for RPC Operations File Exporter IDL Declarations

2.12 Various Bulk Data Type Definitions for RPC Operations

2.12.1 The afsFidExp Structure

This structure is a parameter for BulkKeepAlive, so that the PX doesn’t have to look up the
lifetimes.

typedef struct afsFidExp {
afsFid fid;
unsigned32 keepAliveTime;

} afsFidExp;

A special value for keepAliveTime to force a re-check of the reclaimDally value.

const unsigned32 AFS_KA_TIME_RECHECK = 1;

2.12.2 The afsBulkFEX Structure

typedef struct afsBulkFEX {
unsigned32 afsBulkFEX_len;
[length_is(afsBulkFEX_len)] afsFidExp afsBulkFEX_val[AFS_BULKMAX];

} afsBulkFEX;

2.12.3 The afsACL Structure

typedef struct afsACL {
unsigned32 afsACL_len;
[length_is(afsACL_len)] byte afsACL_val[AFS_ACLMAX];

} afsACL;

2.12.4 The afsQuota Structure

typedef struct afsQuota {
unsigned32 afsQuotaType; /* BSD, Episode, etc */
unsigned32 afsQuotaOp; /* set or get */
unsigned32 afsQuota_len;
[length_is(afsQuota_len)] unsigned32 afsQuota_val[AFS_BULKMAX];

} afsQuota;

2.12.5 The afsBulkVVs Structure

typedef struct afsBulkVVs {
unsigned32 afsBulkVVs_len;
[length_is(afsBulkVVs_len)] afsVolSync afsBulkVVs_val[AFS_BULKMAX];

} afsBulkVVs;

20 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Various Bulk Data Type Definitions for RPC Operations

2.12.6 The afsBulkVolIDs Structure

typedef struct afsBulkVolIDs {
unsigned32 afsBulkVolIDs_len;
[length_is(afsBulkVolIDs_len)] afsHyper afsBulkVolIDs_val[AFS_BULKMAX];

} afsBulkVolIDs;

2.12.7 The afsBulkStats Structure

typedef struct afsBulkStats {
unsigned32 afsBulkStats_len;
[length_is(afsBulkStats_len)] afsFetchStatus afsBulkStats_val[AFS_BULKMAX];

} afsBulkStats;

Part 2: DFS Interface Definition Language and Data 21

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13 Definitions of File Server Exported Operations
Note: The Opcode of each operation is implicitly assigned based on the order of where the

operation is placed. The recommendation is to always place the new operation at the
end of this list.

2.13.1 AFS_SetContext

error_status_t AFS_SetContext
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 epochTime,
[in] afsNetData *callbackAddr,
[in] unsigned32 Flags,
[in] afsUUID *secObjectID,
[in] unsigned32 clientSizesAttrs,
[in] unsigned32 parm7

);

AFS_SetContext parameters are:

h The RPC binding handle.

epochTime The restart time of the DFS client.

callbackAddr The RPC endpoint of the client, for token revocation purposes.

Flags If 0 then the call only defines a primary interface UUID. If the flag,
AFS_FLAG_SEC_SERVICE, is set then a a secondary interface is defined and
is stored in the parameter, secObjectID.

secObjectID When the AFS_FLAG_SEC_SERVICE flag is set, this parameter holds the
secondary interface UUID.

clientSizeAttrs For 64/32-bit compatibility. Through DCE1.1, this is a spare parameter,
parm6.

parm7 A spare parameter.

22 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.2 AFS_LookupRoot

error_status_t AFS_LookupRoot
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *InFidp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp

);

AFS_LookupRoot parameters are:

h The RPC binding handle.

InFidp The file identifier specifying the fileset whose root directory will be retrieved
from the file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier describing the root directory of the selected fileset.

OutFidStatusp Returns the status of that directory after the current operation.

OutTokenp The promise the file server returns to the cache manager about the provided
data; this is only returned if the file resides in a read/write fileset.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 23

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.3 AFS_FetchData

error_status_t AFS_FetchData
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsHyper *minVVp,
[in] afsHyper *Position,
[in] signed32 Length,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp,
[out] pipe_t *fetchStream

);

AFS_FetchData parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file whose contents will be retrieved from the
file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Position Specifies the first byte to be fetched by this call with zero (0) being the first
byte in the file.

Length Specifies the number of bytes desired with the value 0xFFFFFFFF indicating
the entire file contents.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the status of the file after the current operation.

OutTokenp The promise the file server returns to the cache manager about the provided
data; this is only returned if the file resides in a read/write fileset.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

fetchStream The character pipe parameter returning the data from the file. (See X/Open
DCE: Remote Procedure Call specification for implementation details.)

24 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.4 AFS_FetchACL

error_status_t AFS_FetchACL
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] unsigned32 aclType,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsACL *AccessListp,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_FetchACL parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control list
(ACL) will be retrieved from the file server.

aclType The type of the access list being modified. One of
VNX_ACL_REGULAR_ACL, VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL.

minVVp The minimum-acceptable version number on the fileset containing this ACL.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

AccessListp The access control list returned by the file server for the specified file or
directory.

OutStatusp Returns the current status of the file or directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 25

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.5 AFS_FetchStatus

error_status_t AFS_FetchStatus
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutStatusp,
[out] afsToken OutTokenp,
[out] afsVolSync *Syncp

);

AFS_FetchStatus parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose status information will
be retrieved from the file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the current status of the file or directory.

OutTokenp Returns a token from the file server reflecting guarantees granted by the file
server.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

26 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.6 AFS_StoreData

error_status_t AFS_StoreData
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *Position,
[in] signed32 Length,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[in] pipe_t *storeStream,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_StoreData parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file whose status information will be updated
from the file server.

InStatusp The new status information that should be recorded for this file.

Position Represents the position of the first byte of the data block.

Length Represents the total length of the transferred data block.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

storeStream The data stream containing the file updates. (See the X/Open DCE: Remote
Procedure Call specification for implementation details.)

OutStatusp Returns the status of the file.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 27

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.7 AFS_StoreACL

error_status_t AFS_StoreACL
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsACL *AccessListp,
[in] unsigned32 aclType,
[in] afsFid *aclFidp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_StoreACL parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control
information will be updated from the file server.

AccessListp The access control list sent to the file server for the specified file or directory.

aclType The type of access control list being modified (VNX_ACL_REGULAR_ACL,
VNX_ACL_DEFAULT_ACL or VNX_ACL_INITIAL_ACL, in the low-order 8
bits. In the next-higher-order 8 bits, the type of access control list being copied
from the file described by aclFidp.

aclFidp The file identifier specifying the file or directory whose access control
information will be copied.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the updated file or directory status.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

28 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.8 AFS_StoreStatus

error_status_t AFS_StoreStatus
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_StoreStatus parameters are:

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control
information will be updated from the file server.

InStatusp Contains the new status information for the specified file or directory.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Contains the updated status information for the file or directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 29

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.9 AFS_RemoveFile

error_status_t AFS_RemoveFile
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsFidTaggedName *Namep,
[in] afsHyper *returnTokenIDp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutDirStatusp,
[out] afsFetchStatus *OutFileStatusp,
[out] afsFid *OutFileFidp,
[out] afsVolSync *Syncp

);

AFS_RemoveFile parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory from which to remove the file.

Namep The complex name of the file to delete.

returnTokenIDp A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutDirStatusp Contains the updated directory status information.

OutFileStatusp Contains the updated file status information.

OutFileFidp The file id of the file which was actually deleted.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

30 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.10 AFS_CreateFile

error_status_t AFS_CreateFile
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp

);

AFS_CreateFile parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which to create the requested file.

Namep The character string name of the file to create.

InStatusp Specifies the initial status fields for the new file.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier of the newly created file.

OutFidStatusp The status fields for the newly created file.

OutDirStatusp The status information of the specified directory.

OutTokenp A new token granted against the new file.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 31

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.11 AFS_Rename

error_status_t AFS_Rename
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *OldDirFidp,
[in] afsFidTaggedName *OldNamep,
[in] afsFid *NewDirFidp,
[in] afsFidTaggedName *NewNamep,
[in] afsHyper *returnTokenIDp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutOldDirStatusp,
[out] afsFetchStatus *OutNewDirStatusp,
[out] afsFid *OutOldFileFidp,
[out] afsFetchStatus *OutOldFileStatusp,
[out] afsFid *OutNewFileFidp,
[out] afsFetchStatus *OutNewFileStatusp,
[out] afsVolSync *Syncp

);

AFS_Rename parameters are:

h The RPC binding handle.

OldDirFidp The file identifier specifying the directory in which the file is currently located.

OldNamep The complex name of the file or directory to rename.

NewDirFidp The file identifier specifying the directory into which the file is to be moved.

NewNamep The complex name of the file or directory after it is moved.

returnTokenIDP A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutOldDirStatusp
The status information of the old directory (the one from which the file is
being moved) upon termination of the call.

OutNewDirStatusp
The status information of the new directory (the one to which the file is being
moved) upon termination of the call.

OutOldFileFidp The file identifier for the file which was moved.

OutOldFileStatusp
The status information of the file which was moved.

OutNewFileFidp The file identifier for the file to which the file identified in OutOldFileFidp was,
in fact, moved.

OutNewFileStatusp
The status information of the file identified by OutNewFileFidp.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

32 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.12 AFS_Symlink

error_status_t AFS_Symlink
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsTaggedPath *LinkContentsp,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp

);

AFS_Symlink parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the symbolic link is to be
created.

Namep The name of the link to create.

LinkContentsp The target of the new symbolic link.

InStatusp This specifies the clientModTime field and unixModeBits of the new link.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created symbolic link.

OutFidStatusp The status information of the newly created symbolic link upon termination of
the call.

OutDirStatusp The status information of the directory (the one in which the symbolic link
was created) upon termination of the call.

OutTokenp The token returned against the specified directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 33

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.13 AFS_HardLink

error_status_t AFS_HardLink
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsFid *ExistingFidp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsVolSync *Syncp

);

AFS_HardLink parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the file is currently located.

Namep The name to use for the new hard link.

ExistingFidp The file identifier specifying the file identifier of the file to which the hard link
should be made.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidStatusp The status information of the newly created hard link upon termination of the
call.

OutDirStatusp The status information of the directory (the one in which the hard link was
created) upon termination of the call.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

34 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.14 AFS_MakeDir

error_status_t AFS_MakeDir
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp

);

AFS_MakeDir parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the new directory is to be
created.

Namep The name of the directory to create.

InStatusp This specifies the new status information, including clientModTime field and
unixModeBits, of the new directory point.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created directory.

OutFidStatusp The status information of the newly created directory upon termination of the
call.

OutDirStatusp The status information of the directory (the one in which the directory was
created) upon termination of the call.

OutTokenp A new token granted against the newly created directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 35

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.15 AFS_RemoveDir

error_status_t AFS_RemoveDir
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsFidTaggedName *Namep,
[in] afsHyper *returnTokenIDp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFetchStatus *OutDirStatusp,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutDelStatusp,
[out] afsVolSync *Syncp

);

AFS_RemoveDir parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the directory to be deleted
is located.

Namep The complex name of the directory to delete.

returnTokenIDp A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutDirStatusp The status information of the directory (the one in which the directory was
deleted) upon termination of the call.

OutFidp

OutDelStatusp

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

36 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.16 AFS_Readdir

error_status_t AFS_Readdir
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsHyper *Offsetp,
[in] unsigned32 Size,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsHyper *NextOffsetp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp,
[out] pipe_t *dirStream

);

AFS_Readdir parameters are:

h The RPC binding handle.

DirFidp The file descriptor for the specified directory.

Offsetp The offset into the directory for this entry.

Size Number of bytes to read.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

NextOffsetp The offset into the directory for the following entry.

OutDirStatusp Status information for the directory pointed to by DirFidp.

OutTokenp Token granted against DirFidp.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

dirStream The array of bytes making up the external representation of this part of the
directory.

Part 2: DFS Interface Definition Language and Data 37

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.17 AFS_Lookup

error_status_t AFS_Lookup
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsToken *OutTokenp,
[out] afsVolSync *Syncp

);

AFS_Lookup parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory from which to obtain the directory
information.

Namep The character string name of the file for which information is being requested.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier of the requested file.

OutFidStatusp Status information for the specified file.

OutDirStatusp Status information of the specified directory.

OutTokenp The token against the directory (allowing the directory entry to be cached).

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

38 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.18 AFS_GetToken

error_status_t AFS_GetToken
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsToken *MinTokenp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsToken *OutTokenp,
[out] afsRecordLock *OutBlockerp,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_GetToken parameters are:

h The RPC binding handle.

Fidp File identifier of the file to obtain a token against.

MinTokenp Specification of the minimum requested token.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutTokenp Actual token granted.

OutBlockerp Information about the possessor of the token that prevents the granting of the
requested token (valid only for lock-family tokens).

OutStatusp Status information on the file specified by Fidp.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

Part 2: DFS Interface Definition Language and Data 39

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.19 AFS_ReleaseTokens

error_status_t AFS_ReleaseTokens
(/* provider_version(1) */

[in] handle_t h,
[in] afsReturns *Tokens_Arrayp,
[in] unsigned32 Flags

);

AFS_ReleaseTokens parameters are:

h The RPC binding handle.

Tokens_Arrayp Tokens granted to this file server which are to be relinquished.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

40 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.20 AFS_GetTime

error_status_t AFS_GetTime
(/* provider_version(1) */

[in] handle_t h,
[out] unsigned32 *Secondsp,
[out] unsigned32 *USecondsp,
[out] unsigned32 *SyncDistance,
[out] unsigned32 *SyncDispersion

);

AFS_GetTime parameters are:

h The RPC binding handle.

Secondsp Number of seconds since January 1, 1970 UTC.

USecondsp Number of microseconds into the current segment.

SyncDistance Estimated path length to source of reliable time.

SyncDispersion Measure of SyncDistance’s variance.

Part 2: DFS Interface Definition Language and Data 41

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.21 AFS_MakeMountPoint

error_status_t AFS_MakeMountPoint
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *DirFidp,
[in] afsTaggedName *Namep,
[in] afsTaggedName *cellNamep,
[in] afsFStype Type,
[in] afsTaggedName *volumeNamep,
[in] afsStoreStatus *InStatusp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[out] afsFid *OutFidp,
[out] afsFetchStatus *OutFidStatusp,
[out] afsFetchStatus *OutDirStatusp,
[out] afsVolSync *Syncp

);

AFS_MakeMountPoint parameters are:

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the new mount point is to
be created.

Namep The name of the mount point.

cellNamep The string name of the cell in which the mount point is being created.

Type The type of the file system mount point.

volumeNamep The name of the fileset to be mounted on the newly created mount point.

InStatusp This specifies the clientModTime field and unixModeBits of the new mount
point.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created mount point.

OutFidStatusp The status information of the newly created mount point upon termination of
the call.

OutDirStatusp The status information of the directory (the one in which the mount point was
created) upon termination of the call.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

42 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.22 AFS_GetStatistics

error_status_t AFS_GetStatistics
(/* provider_version(1) */

[in] handle_t h,
[out] afsStatistics *Statisticsp

);

AFS_GetStatistics parameters are:

h The RPC binding handle.

Statisticsp File server statistics.

Part 2: DFS Interface Definition Language and Data 43

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.23 AFS_BulkFetchVV

error_status_t AFS_BulkFetchVV
(/* provider_version(1) */

[in] handle_t h,
[in] afsHyper *cellIdp,
[in] afsBulkVolIDs *VolIDsp,
[in] unsigned32 NumVols,
[in] unsigned32 Flags,
[in] unsigned32 spare1,
[in] unsigned32 spare2,
[out] afsBulkVVs *VolVVsp,
[out] unsigned32 *spare4

);

AFS_BulkFetchVV parameters are:

h The RPC binding handle.

cellIdp The cell identifier for the filesets whose Volume Version numbers are desired.

VolIDsp The fileset identifiers (within cellIdp) whose Volume Version numbers are
desired.

NumVols (Redundant) number of identifiers in VolIDsp.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

spare1, spare2 Spare IN parameters.

VolVVsp The Volume Version numbers for the filesets whose identifiers were passed in.

spare4 Spare OUT parameter.

44 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.24 AFS_BulkKeepAlive

error_status_t AFS_BulkKeepAlive
(/* provider_version(1) */

[in] handle_t h,
[in] afsBulkFEX *KAFEXp,
[in] unsigned32 numExecFids,
[in] unsigned32 Flags,
[in] unsigned32 spare1,
[in] unsigned32 spare2,
[out] unsigned32 *spare4

);

AFS_BulkKeepAlive parameters are:

h The RPC binding handle.

KAFEXp Collection of afsFid structures.

numExecFids (Redundant) the number of afsFid structures in KAFEXp.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

spare1, spare2 Spare IN parameters.

spare4 Spare OUT parameter.

Part 2: DFS Interface Definition Language and Data 45

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.25 AFS_ProcessQuota

error_status_t AFS_ProcessQuota
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *Fidp,
[in] afsHyper *minVVp,
[in] unsigned32 Flags,
[in,out]afsQuota *quotaListp,
[out] afsFetchStatus *OutStatusp,
[out] afsVolSync *Syncp

);

AFS_ProcessQuota parameters are:

h The RPC binding handle.

Fidp File ID of file or directory whose quota is being changed.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

quotaLisp The quota information being provided or obtained.

OutStatusp The updated file status after the operation.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

46 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations Definitions of File Server Exported Operations

2.13.26 AFS_GetServerInterfaces

error_status_t AFS_GetServerInterfaces
(/* provider_version(1) */

[in] handle_t h,
[in,out]dfs_interfaceList *serverInterfacesP

);

AFS_GetServerInterfaces parameters are:

h The RPC binding handle.

serverInterfacesP Will contain the interface information when the call returns. Currently there is
only one interface defined.

Part 2: DFS Interface Definition Language and Data 47

Definitions of File Server Exported Operations File Exporter IDL Declarations

2.13.27 AFS_SetParams

error_status_t AFS_SetParams
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 Flags,
[in,out]afsConnParams *paramsP

);

AFS_SetParams parameters are:

h The RPC binding handle.

Flags Either AFS_PARAM_TSR_COMPLETE or AFS_PARAM_RESET_CONN.

paramsP A block of connection-oriented parameters.

48 X/Open Preliminary Specification (1996)

File Exporter IDL Declarations The File Exporter Interface End

2.14 The File Exporter Interface End
}

Part 2: DFS Interface Definition Language and Data 49

File Exporter IDL Declarations

50 X/Open Preliminary Specification (1996)

Chapter 3

Cache Manager IDL Declarations

This chapter specifies the RPC interfaces used by the AFS (4.0) Token Manager Interface. It
contains the declaration of all structures and remote procedure calls (rpc) calls required for the
AFS (4.0) Token Manager Interface.

The Token Manager Interface consists of a set of structures, mask values and flags contained in
an IDL file with a provider version number of 1 to indicate that it is an original interface. In
addition, each RPC defined in this structure also has a provider version number of 1, indicating
that it also is an original RPC. See the topic, DFS RPC Versioning Scheme, Chapter 5 on page 69,
for information on versioning which will explain in more detail about provider version numbers.

3.1 The Token Manager Interface
The Token Manager Interface is contained within the interface, TKN4Int, which starts out as
shown below and contains all the items shown in this chapter exclusive of the definitions of the
parameters in the RPC calls which are included from Chapter 7 on page 145 and the common
data definitions in the configuration file common_data.idl which are contained in Chapter 4 on
page 57 for clarity. There are nine remote procedure calls defined that the client and cache
manager can use in this interface which is defined as provider version 1. Chapter 5 on page 69
provides information for adding new interfaces, or new remote procedure calls to this interface.

[
uuid(4d37f2dd-ed96-0000-02c0-37cf1e000000),
version(4.0)
/* provider_version(1) */
]

interface TKN4Int
{

import "dcedfs/common_data.idl";

.

.

.
/* } at end of this chapter concludes this interface. */

Part 2: DFS Interface Definition Language and Data 51

Definitions for Flags Field Cache Manager IDL Declarations

3.2 Definitions for Flags Field
These are the definitions for the flags field used in this interface.

const unsigned32 TKN_FLAG_BACK_UP = 0x001;
/* this is an unannounced TKN_InitTokenState call from a

recovering server */

const unsigned32 TKN_FLAG_CRASHED = 0x002;
/* the file exporter is currently in a post-crash

token-recovery phase */

const unsigned32 TKN_FLAG_DISALLOW_SAME = 0x004;
/* this recovery cannot accept AFS_FLAG_TOKENID AFS_GetToken calls */

const unsigned32 TKN_FLAG_NEW_IF = 0x008;
/* this call is made to set the timer values; the tokens are OK */

3.3 Definitions of Token Manager Exported Operations
Note: The Opcode of each operation is implicitly assigned based on the order of where the

operation is placed. The recommendation is to always place the new operation at the
end of this list.

3.3.1 TKN_Probe

error_status_t TKN_Probe /* May be defined as "idempotent" */
(/* provider_version(1) */

[in] handle_t h
);

TKN_Probe parameters are:

h The RPC binding handle.

3.3.2 TKN_InitTokenState

error_status_t TKN_InitTokenState
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 Flags,
[in] unsigned32 hostLifeGuarantee,
[in] unsigned32 hostRPCGuarantee,
[in] unsigned32 deadServerTimeout,
[in] unsigned32 serverRestartEpoch,
[in] unsigned32 spare1,
[in] unsigned32 spare2,
[in] unsigned32 spare3,
[out] unsigned32 *spare4,
[out] unsigned32 *spare5,
[out] unsigned32 *spare6

);

TKN_InitTokenState parameters are:

h The RPC binding handle.

52 X/Open Preliminary Specification (1996)

Cache Manager IDL Declarations Definitions of Token Manager Exported Operations

Flags Flags (TKN_FLAG*) indicating the server’s likely token state.

hostLifeGuarantee
Duration of the host lifetime on the server.

hostRPCGuarantee
Duration of the promise of RPC attempts from the server.

deadServerTimeout
Suggested maximum interval between probes from Cache Managers to
unresponsive servers.

serverRestartEpoch
Numeric tag for this run of the File Server, to allow Cache Managers to
distinguish network partitions from server crashes.

spare1 .. spare6 Spares.

3.3.3 TKN_TokenRevoke

error_status_t TKN_TokenRevoke
(/* provider_version(1) */

[in] handle_t h,
[in,out]afsRevokes *revokeDescp

);

TKN_TokenRevoke parameters are:

h The RPC binding handle.

revokeDescp The tokens which are being revoked.

3.3.4 TKN_GetCellName

error_status_t TKN_GetCellName
(/* provider_version(1) */

[in] handle_t h,
[in] afsHyper *Cellp,
[out] NameString_t CellNamep

);

TKN_GetCellName parameters are:

h The RPC binding handle.

Cellp The ID for a cell.

CellNamep The string name corresponding to cellP.

3.3.5 TKN_GetLock

error_status_t TKN_GetLock
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 index,
[out] afsDBLock *lock

);

TKN_GetLock parameters are:

h The RPC binding handle.

Part 2: DFS Interface Definition Language and Data 53

Definitions of Token Manager Exported Operations Cache Manager IDL Declarations

index Entry to return.

lock Lock information returned, including name, wait states, exclusive locks,
readers reading and number waiting on it.

3.3.6 TKN_GetCE

error_status_t TKN_GetCE
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 index,
[out] afsDBCacheEntry *ce

);

TKN_GetCE parameters are:

h The RPC binding handle.

index Entry to return.

[out] afsDBCacheEntry *ce

ce The cache entry with token information, number of opens, readers, writers,
shared, exclusives; locks, , expiration, mask, reference count, network part of
the fid, and so on.

3.3.7 TKN_GetServerInterfaces

error_status_t TKN_GetServerInterfaces
(/* provider_version(1) */

[in] handle_t h,
[in,out]dfs_interfaceList *serverInterfacesP

);

TKN_GetServerInterfaces parameters are:

h The RPC binding handle.

serverInterfacesP List of supported interfaces.

3.3.8 TKN_SetParams

error_status_t TKN_SetParams
(/* provider_version(1) */

[in] handle_t h,
[in] unsigned32 Flags,
[in,out]afsConnParams *paramsP

);

TKN_SetParams parameters are:

h The RPC binding handle.

Flags For future expansion.

paramsP A block of connection-oriented parameters.

54 X/Open Preliminary Specification (1996)

Cache Manager IDL Declarations Definitions of Token Manager Exported Operations

3.3.9 TKN_AsyncGrant

error_status_t TKN_AsyncGrant
(/* provider_version(1) */

[in] handle_t h,
[in] afsFid *grantedFileIDp,
[in] afsToken *grantedTokenP,
[in] long grantedRequestID

);

TKN_AsyncGrant parameters are:

h The RPC binding handle.

grantedFileIDp File identifier of the file or directory to which the granted token applies.

grantedTokenP The token that was granted.

grantedRequestID Identifier of the original async grant request.

3.4 The Token Manager Interface End
}

Part 2: DFS Interface Definition Language and Data 55

Cache Manager IDL Declarations

56 X/Open Preliminary Specification (1996)

Chapter 4

Common IDL Data

This chapter specifies the common data structures required for the AFS (4.0) Client and Server.
The definitions here are necessary for both the File Exporter Interface and the Token Manager
Interface and are imported into those interfaces.

4.1 Interface Common Data
interface common_data

{
. /* All the information in this chapter is part of the
. * common_data interface, from here to the ending brace
. * following the heading, "Interface Common Data end" */

/* } at the end of this chapter concludes the interface common data. */

4.2 General AFS Constants
const unsigned32 AFS_UNDEFAFSID = -1;

/* Generic undefined AFS id */
const unsigned32 AFS_NAMEMAX = 256;
const unsigned32 AFS_PATHMAX = 1024;
const unsigned32 AFS_MAXHOSTS = 8;
const unsigned32 AFS_TOKENDEAD = 1235;
const unsigned32 AFS_ACLMAX = 8188;

/* 8k - sizeof(long), so afsACL in 8k; was 1024 */
const unsigned32 AFS_BULKMAX = 32;
const unsigned32 AFS_DISKNAMESIZE = 32;
const unsigned32 AFS_NAMEMAXLEN = 112;

/* Max len for fileset names */

4.3 Constants for Cell and Hosts
const unsigned32 MAXCELLCHARS = 128;
const unsigned32 MAXHOSTCHARS = 128;
const unsigned32 MAXHOSTSPERCELL = 64;

Part 2: DFS Interface Definition Language and Data 57

AFS Object Types Used by AFS_Mount Common IDL Data

4.4 AFS Object Types Used by AFS_Mount
const unsigned32 Invalid = 0;
const unsigned32 File = 1;
const unsigned32 Directory = 2;
const unsigned32 SymbolicLink = 3;
const unsigned32 MountPoint = 4;
const unsigned32 FIFO = 5;
const unsigned32 Socket = 6;
const unsigned32 BlockDev = 7;
const unsigned32 CharDev = 8;
const unsigned32 FETCHSTATUS_VERSION = 2;

4.5 Quota Types for Quota Setting Commands
const unsigned32 AFS_FILESYS_BSD = 1;
const unsigned32 AFS_FILESYS_EPISODE = 2;

4.6 Quota Opcodes for Quota Setting Commands
const unsigned32 AFS_QUOTA_GET = 1;
const unsigned32 AFS_QUOTA_SET = 2;

4.7 Physical File System Types (for afsFStype)
const unsigned32 AFS_FS = 0;
const unsigned32 DEC_FS = 1;
const unsigned32 UFS_FS = 2;
const unsigned32 AIX_FS = 4;

4.8 Volume Types Used for afsVolumeType
const unsigned32 ReadOnly = 0;
const unsigned32 ReadWrite = 1;

58 X/Open Preliminary Specification (1996)

Common IDL Data Values for the afsRevokeDesc Flags

4.9 Values for the afsRevokeDesc Flags
const unsigned32 AFS_REVOKE_COL_A_VALID = 0x1;
const unsigned32 AFS_REVOKE_COL_B_VALID = 0x2;
const unsigned32 AFS_REVOKE_FORCED_REVOCATION = 0x4;
const unsigned32 AFS_REVOKE_DUE_TO_GC = 0x8;

4.10 Values Used in afsRevokeDesc’s outFlags
const unsigned32 AFS_REVOKE_LOCKDATA_VALID = 0x1;

4.11 Data Types
typedef uuid_t afsUUID;
typedef long afsFStype;
typedef long afsVolumeType;

typedef pipe byte pipe_t;

typedef unsigned32 codesetTag;
const unsigned32 AFS_TAG_ORIGASCII = 0;

4.11.1 General Definitions for AFS Data Structures

typedef [string] byte NameString_t[AFS_NAMEMAX];
typedef [string] byte PathString_t[AFS_PATHMAX];
typedef byte afsDiskName[AFS_DISKNAMESIZE];

4.11.2 General Tagged-name for a Pathname Component

Use of the tn_tag value AFS_TAG_ORIGASCII defined above in Section 4.11 means that the
tn_length field doesn’t need to be filled in.

Note: tn_chars is assumed to be null-terminated.

4.11.3 Define the afsTaggedName Structure

typedef struct afsTaggedName {
codesetTag tn_tag;
unsigned16 tn_length;
byte tn_chars[AFS_NAMEMAX+1];

} afsTaggedName;

Part 2: DFS Interface Definition Language and Data 59

Data Types Common IDL Data

4.11.4 Define the afsTaggedPath Structure

typedef struct afsTaggedPath {
codesetTag tp_tag;
unsigned16 tp_length;
byte tp_chars[AFS_PATHMAX+1];

} afsTaggedPath;

4.11.5 Define the afsNetAddr Structure

typedef struct afsNetAddr {
unsigned16 type;
unsigned8 data[14];

} afsNetAddr;

4.11.6 Define the afsTimeval Structure

typedef struct afsTimeval {
unsigned32 sec;
unsigned32 usec;

} afsTimeval;

4.11.7 Define the afsHyper Structure

Note: This is a 64-bit structure used by objects such as cells, volumes, and so on.

typedef struct afsHyper {
unsigned32 high;
unsigned32 low;

} afsHyper;

/*
* Generic operations on afsHypers are defined in dcedfs/stds.h.
*/

4.11.8 Define the afsFid Structure

typedef struct afsFid {
afsHyper Cell;
afsHyper Volume;
unsigned32 Vnode;
unsigned32 Unique;

} afsFid;

4.11.9 Define the afsFidTaggedName Structure

typedef struct afsFidTaggedName {
afsFid fid;
afsTaggedName name;

} afsFidTaggedName;

60 X/Open Preliminary Specification (1996)

Common IDL Data Data Types

4.11.10 Define the afsToken Structure

typedef struct afsToken {
afsHyper tokenID;
unsigned32 expirationTime;
afsHyper type;
unsigned32 beginRange;
unsigned32 endRange;
unsigned32 beginRangeExt;
unsigned32 endRangeExt;

} afsToken;

4.11.11 Define the afsRecordLock Structure

Note: This is a Sys V Record Lock to return blocker’s info.

typedef struct afsRecordLock {
signed16 l_type;
signed16 l_whence;
unsigned32 l_start_pos;
unsigned32 l_end_pos;
unsigned32 l_pid;
unsigned32 l_sysid;
unsigned32 l_fstype;
unsigned32 l_start_pos_ext;
unsigned32 l_end_pos_ext;

} afsRecordLock;

4.11.12 Define the afsRevokeDesc Structure

Note: This structure contains information about the token the Cache Manager (cm) already
holds.

typedef struct afsRevokeDesc {

afsFid fid; /* useful hint */
afsHyper tokenID;
afsHyper type; /* mask */
unsigned32 flags; /* input flags to RPC*/
unsigned32 outFlags; /* output flags from RPC */
afsHyper errorIDs; /* (mask[dude] == 1) <==> dude not revoked */
/*

* Info about the tokens to be offered for swapping
* The first one
*/

afsToken columnA; /* the offer */
afsHyper colAChoice; /* the accepted token types */
/*

* the other token to be offered
*/

afsToken columnB; /* the offer */
afsHyper colBChoice; /* the accepted token types */
afsRecordLock recordLock; /* the blocker’s info */

} afsRevokeDesc;

Part 2: DFS Interface Definition Language and Data 61

Data Types Common IDL Data

4.11.13 Define the afsReturnDesc Structure

Note: This structure contains information for the return of tokens.

typedef struct afsReturnDesc {

afsFid fid; /* useful hint */
afsHyper tokenID;
afsHyper type; /* mask */
unsigned32 flags; /* just in case */

} afsReturnDesc;

4.11.14 Define the afsConnParams Structure

Note: This is the method of adjusting connection parameters:

1. Low-order bit of Mask (0x1) declares that Values[0] contains information.

2. Next bit in Mask (0x2) declares that Values[1] contains information.

typedef struct afsConnParams {
unsigned32 Mask;
unsigned32 Values[20];

} afsConnParams;
const unsigned32 AFS_CONN_PARAM_HOSTLIFE = 0;
const unsigned32 AFS_CONN_PARAM_HOSTRPC = 1;
const unsigned32 AFS_CONN_PARAM_DEADSERVER = 2;
const unsigned32 AFS_CONN_PARAM_EPOCH = 3;

4.11.15 Define the afsDBLockDesc Structure

Note: This is a temporary structure for debugging purposes.

typedef struct afsDBLockDesc {
unsigned8 waitStates;
unsigned8 exclLocked;
unsigned8 readersReading;
unsigned8 numWaiting;

} afsDBLockDesc;

4.11.16 Define the afsDBCacheEntry Structure

Note: This is a temporary structure for debugging purposes.

typedef struct afsDBCacheEntry {
unsigned32 addr;
afsFid fid; /* network part of the fid */
afsHyper length;
afsHyper dataVersion;
afsDBLockDesc lock;
unsigned32 tokenBaseID;
unsigned32 tokenMask;
unsigned32 tokenExpiration;
signed16 refCount;
signed16 opens;
signed16 writers;
signed16 readers;

62 X/Open Preliminary Specification (1996)

Common IDL Data Data Types

signed16 shareds;
signed16 exclusives;
unsigned8 mvstat;
unsigned8 states;

} afsDBCacheEntry;

4.11.17 Define the afsDBLock Structure

Note: This is a temporary structure for debugging purposes.

typedef struct afsDBLock {
byte name[16];
afsDBLockDesc lock;

} afsDBLock;

4.12 Various Bulk Typedefs From Primitive Structures
These are from the primitive structures above.

4.12.1 Define the afsRevokes Structure

typedef struct afsRevokes { /* needed also by tkn4int.idl */
long afsRevokes_len;
[length_is(afsRevokes_len)] afsRevokeDesc afsRevokes_val[AFS_BULKMAX];

} afsRevokes;

4.12.2 Define the afsReturns Structure

typedef struct afsReturns { /* needed also by tkn4int.idl */
long afsReturns_len;
[length_is(afsReturns_len)] afsReturnDesc afsReturns_val[AFS_BULKMAX];

} afsReturns;

4.12.3 Define the afsFids Structure

typedef struct afsFids {
unsigned32 afsFids_len;
[length_is(afsFids_len)] afsFid afsFids_val[AFS_BULKMAX];

} afsFids;

4.12.4 Define the afsTokens Structure

typedef struct afsTokens {
unsigned32 afsTokens_len;
[length_is(afsTokens_len)] afsToken afsTokens[AFS_BULKMAX];

} afsTokens;

Part 2: DFS Interface Definition Language and Data 63

Various Bulk Typedefs From Primitive Structures Common IDL Data

4.12.5 Define the afsStrings Structure

Note: afsStrings, used in AFS_BulkLookup, used to be identical to NameString_t itself.

typedef struct afsStrings {
unsigned32 afsStrings_len;
[length_is(afsStrings_len)] afsTaggedName afsStrings_val[AFS_BULKMAX];

} afsStrings;

4.13 Data Types for DFS RPC Versioning Scheme

4.13.1 Constants for RPC Versioning Scheme

const unsigned32 MAXSPARETEXT = 50;
const unsigned32 MAXINTERFACESPERVERSION = 10;

4.13.2 dfs_interfaceDescription Structure

typedef struct dfs_interfaceDescription {

uuid_t interface_uuid; /* i/f UUID of the supported i/f */
unsigned16 vers_major; /* i/f major version number */
unsigned16 vers_minor; /* i/f minor version number */
unsigned32 vers_provider; /* provider version number */

unsigned32 spare0; /* some long spares */
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
unsigned32 spare4;
unsigned32 spare5;
unsigned32 spare6;
unsigned32 spare7;
unsigned32 spare8;
unsigned32 spare9;

byte spareText[MAXSPARETEXT]; /* spare text */

} dfs_interfaceDescription;

4.13.3 dfs_interfaceList Structure

typedef struct dfs_interfaceList {

unsigned32 dfs_interfaceList_len;
[length_is(dfs_interfaceList_len)] dfs_interfaceDescription

dfs_interfaceList_val[MAXINTERFACESPERVERSION];

} dfs_interfaceList;

64 X/Open Preliminary Specification (1996)

Common IDL Data Interface Common Data End

4.14 Interface Common Data End
}

Part 2: DFS Interface Definition Language and Data 65

Common IDL Data

66 X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 3:

DFS Versioning Scheme

Part 3: DFS Versioning Scheme 67

68 X/Open Preliminary Specification (1996)

Chapter 5

DFS RPC Versioning Scheme

This is the formal specification document for the DFS client/server versioning scheme. This
mechanism should be supported by all DFS clients and servers. This specification is organized
into six sections.

Data Structures Defined in Chapter 4 on page 57 with specific definitions for
versioning found in Section 4.13 on page 64, and
demonstrated in Section 5.1.

Versioning API Defined in Section 5.2 on page 70.

Example IDL file Defined in Section 5.3 on page 73.

Example Client Application Defined in Section 5.4 on page 76.

Example Server Application Defined in Section 5.5 on page 83.

Example Manager Application Defined in Section 5.6 on page 87.

Extending DFS interfaces Defined in Section 5.7 on page 95.

5.1 Data Structures
This example structure defines the interface Description for each interface that is supported by
the server. The server maintains an array of such structures for each interface that it exports.
Also, upon startup the server fills these arrays with the interfaces that it registers with the
runtime.

The actual structure is defined in Section 4.13.2 on page 64 and is repeated here so that this
chapter is self-explanatory.

Example 5-1 Interface Description for an Interface

const long MAXSPARETEXT = 50;
const long MAXINTERFACESPERVERSION = 10;

typedef struct dfs_interfaceDescription {

uuid_t interface_uuid; /* i/f UUID of the supported i/f */
unsigned16 vers_major; /* i/f major version number */
unsigned16 vers_minor; /* i/f minor version number */
unsigned32 vers_provider; /* provider version number */

unsigned32 spare0; /* some long spares */
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
unsigned32 spare4;
unsigned32 spare5;
unsigned32 spare6;
unsigned32 spare7;
unsigned32 spare8;

Part 3: DFS Versioning Scheme 69

Data Structures DFS RPC Versioning Scheme

unsigned32 spare9;

byte spareText[MAXSPARETEXT];/* spare text */
} dfs_interfaceDescription;

The following example structure shows a list of interface descriptions for a particular interface.
A Client requests a list of different interface versions for a particular RPC interface using the
RPC_GetServerInterfaces() remote procedure call.

The actual structure is defined in Section 4.13.3 on page 64 and is repeated here so that this
chapter is self-explanatory.

Example 5-2 List of Interface Descriptions for an Interface

typedef struct dfs_interfaceList {

unsigned32 dfs_interfaceList_len;
[length_is(dfs_interfaceList_len)] dfs_interfaceDescription \

dfs_interfaceList_val[MAXINTERFACESPERVERSION];
} dfs_interfaceList;

This example list (defined in Section 4.13.3 on page 64) shows the structure that servers fill with
the interface(s) they support. They return a set of such (interface description) structures (defined
in Section 4.13.2 on page 64) back to the client which is requesting it. This list is used by the
versioning code described in Section 5.2 to find the best match between the facilities supported
by a server and the facilities desired by a client.

5.2 DFS Versioning API
The versioning API for DFS makes use of some definitions whose syntax is unique to DFS. They
are IMPORT and _TAKES. The syntax for IMPORT is:

#define IMPORT extern

The syntax for _TAKES is shown in its usage via the following example:

Example 5-3 Usage of IMPORT definition with _TAKES notation

IMPORT char * getenv _TAKES((
char * varName
));

As can be seen, IMPORT is defined as extern. The getenv function is a utility function defined in
the header <stdlib.h>, that is used to declare functions for number conversion, storage allocation
and similar items. _TAKES is used simply as notation showing what the shown IMPORT
definition takes as a construct.

Example 5-4 Construction of the getenv utility

getenv is an implementation-dependent function. It has the following format:

char * getenv(const char *name)

70 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme DFS Versioning API

getenv returns the environment string associated with name, or NULL if no string exists.

5.2.1 Register an Interface with Versioning Mechanism

This function is used to register an interface with the versioning mechanism for DFS. It is called
by server applications only.

IMPORT void dfs_installInterfaceDescription _TAKES((
rpc_if_handle_t if_spec,
rpc_if_handle_t orig_spec,
unsigned32 vers_provider,
unsigned_char_t *text,
error_status_t *code
));

dfs_installInterfaceDescription parameters are:

if_spec Interface specification that is to be registered.

orig_spec Interface specification that is extended (that is, Transarc’s interface).

vers_provider Provider version number of this interface.

text Text describing the new interface (maximum of 50 characters).

code Status that is returned from this call.

5.2.2 Printing a Returned List of Interfaces

This function is useful only for debugging purposes. It prints in human-readable form, the list of
interfaces returned by the server. It is called by client/server applications.

IMPORT void dfs_printInterfaceDescription _TAKES ((
dfs_interfaceList *interfaces,
error_status_t *code
));

dfs_printInterfaceDescription parameters are:

interfaces A list of interfaces returned by the server. See Section 4.13.2 on page 64 and
Section 4.13.3 on page 64 for more details.

code Status that is returned from this call.

5.2.3 Function Called at Startup to Identify the Server Interface

This function is called by the client at startup to identify the server interface that the client is to
use for RPCs. It is called by Client applications only.

IMPORT void dfs_GetServerInterfaces _TAKES((
rpc_if_handle_t if_spec,
dfs_interfaceList *interfaces,
error_status_t *code
));

dfs_GetServerInterfaces parameters are:

if_spec Interface specification that is to be examined.

interfaces A list of server supported interfaces returned by the server. See Section 4.13.2
on page 64 and Section 4.13.3 on page 64 for more details.

Part 3: DFS Versioning Scheme 71

DFS Versioning API DFS RPC Versioning Scheme

code Status that is returned from this call.

5.2.4 Function to Compare Interfaces

This function is called by the client to compare the interface spec that it desires to get access to
and the interfaces in the list of interface descriptions returned by the RPC_GetServerInterfaces
call. It returns:

MATCH_GOOD UUID and major version numbers of the client and server interfaces are
identical. (Refer to Example 5-1 on page 69 for more information on version
numbers, minor and major, and UUIDs, if desired.)

This means that either:

1. Client and server interfaces are identical - the minor version numbers
and the provider version numbers are equal.

2. Server minor version is greater than client’s.

3. Server provider version is greater than client’s.

MATCH_MEDIUM
UUID and major version numbers of client and server are identical, and the
minor version of client is less than or equal to server’s. In addition the
provider version number of client is greater than server’s.

MATCH_BAD The UUID or the major version number of the client is different from the
server’s. Client-Server binding in this case is impossible and hence this case is
least desirable.

IMPORT long dfs_sameInterface _TAKES ((
rpc_if_handle_t if1,
unsigned int if1_provider,
dfs_interfaceList *serverInterfaces
));

dfs_sameInterface parameters are:

if1 Interface specification that is to be used for a comparison.

if1_provider Provider version number.

serverInterfaces A list of server supported interfaces returned by the server. See Section 4.13.2
on page 64 and Section 4.13.3 on page 64 for more details.

72 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example IDL File

5.3 Example IDL File
Provider numbers for the interface and for each RPC are added as a comment. The provider
version number for the interface (in the IDL header) signifies a new version of the interface. The
provider version number associated with each RPC signifies the provider version number of the
interface at which time this RPC was added to the interface. In this example, the IDL file is the
orignal interface and so, the provider number for the interface and for the RPC are both 1.

This example is taken from the UPDATE Server (AFS 4.0) Interface Definition which is owned by
Transarc Corporation. The portion necessary in order to show how versioning works is the
exported procedure for fetching the interfaces supported by the upserver, namely,
UPDATE_GetServerInterfaces(). However, for completeness, other procedures are also shown
since they are included in the example manager application in Section 5.6 on page 87.

5.3.1 The UPDATE Server Interface

[
uuid(4d37f2dd-ed43-0000-02c0-37cf1e001000),
version(4.0)
/* provider_version(1) */
]

interface UPDATE
{
/*

* Include the AFS basic Header files
*/

/**
** import "cellconfig.idl" ;
**/

import "dcedfs/common_data.idl";
...
...

/* } at end of this section ends this interface. */

5.3.2 Constants for the UPDATE Interface

const long TIMEOUT = 300;
const long MAX_PROTSEQ_LEN = 32;
const long BINDING_LEN = 256;
const long MAX_BINDING_LEN = 1024;
const long MAX_NAME_SIZE = 256; /* include null byte at end */

Part 3: DFS Versioning Scheme 73

Example IDL File DFS RPC Versioning Scheme

5.3.3 Define the updateFileStatS Structure

typedef struct updateFileStatS
{

afsHyper fileLength;
unsigned32 mode;
unsigned32 uid;
unsigned32 gid;
unsigned32 mtime; /* modify time */
unsigned32 atime; /* access time */
unsigned32 spare1;
unsigned32 spare2;
unsigned32 spare3;
unsigned32 spare4;

} updateFileStatT;

5.3.4 UPDATE_GetServerInterfaces

This exported procedure is called by the upclient to fetch the interfaces supported by the
upserver. A bulk parameter of upto MAXINTERFACES number of interfaces is returned.

error_status_t UPDATE_GetServerInterfaces
(/* provider_version(1) */

[in] handle_t h,
[in,out]dfs_interfaceList *serverInterfaces

);

UPDATE_GetServerInterfaces parameters are:

h The RPC binding handle.

serverInterfaces A list of server supported interfaces returned by the server. See Section 4.13.2
on page 64 and Section 4.13.3 on page 64 for more details.

5.3.5 UPDATE_FetchInfo

This exported procedure is called by a client to fetch the information (that is, the status) of a
specified directory in the remote host.

An AFS client calls this remote procedure periodically to bring object files at its site update-to-
date.

error_status_t UPDATE_FetchInfo
(/* provider_version(1) */

[in] handle_t h, /* Necessary for explicit_handle */
[in] NameString_t DirName,
[out] pipe_t *Stream

);

UPDATE_FetchInfo parameters are:

h The RPC binding handle.

DirName The string name corresponding to the specified directory.

Stream The character pipe parameter returning the data from the directory. (See
X/Open DCE: Remote Procedure Call specification for implementation
details.)

74 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example IDL File

5.3.6 UPDATE_FetchFile

This exported procedure is called by a client to fetch the whole data from a specified file in the
remote host.

An AFS client calls this remote procedure periodically to bring object files at the client site
update-to-date.

error_status_t UPDATE_FetchFile
(/* provider_version(1) */

[in] handle_t h, /* Necessary for explicit_handle */
[in] NameString_t FileName,
[out] pipe_t *Stream

);

UPDATE_FetchFile parameters are:

h The RPC binding handle.

FileName The string name corresponding to the specified file.

Stream The character pipe parameter returning the data from the file. (See X/Open
DCE: Remote Procedure Call specification for implementation details.)

5.3.7 UPDATE_FetchObjectInfo

This exported procedure is called by a client to fetch the information (that is, the status) of a
specified file in the remote host.

An AFS client calls this remote procedure periodically to bring object files at its site update-to-
date.

error_status_t UPDATE_FetchObjectInfo
(/* provider_version(1) */

[in] handle_t h, /* Necessary for explicit_handle */
[in] NameString_t objectName,
[out] updateFileStatT *fileStatP

);

UPDATE_FetchObjectInfo parameters are:

h The RPC binding handle.

objectName The string name corresponding to the specified file object.

fileStatP Returns the data from the specified object. See Section 5.3.3 on page 74 for
details.

5.3.8 The UPDATE Server Interface End

}

Part 3: DFS Versioning Scheme 75

Example Client Application DFS RPC Versioning Scheme

5.4 Example Client Application
The client application, upon startup retrieves server supported interfaces and sets a global to
identify the interface (stub) that the client would use to make RPCs. The dfs_selectInterface()
function sets the global and each RPC wrapper first checks the global and calls the appropriate
stub.

5.4.1 Typical Client Headers

#include <dcedfs/param.h>
#include <dcedfs/stds.h>
#include <dcedfs/osi.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <dirent.h>
#include <pthread.h>
#include <dce/rpc.h>
#include <dcedfs/compat.h>
#include <dcedfs/cmd.h>
#include <update.h>
#include <upcommon.h>

5.4.2 Headers for Serviceability

The following headers get included for serviceability. The last three are specific to this
subcomponent. They would need to be defined for each subcomponent that has implemented
serviceability, and the names would be chosen to be specific to the function. The first three are
included as is regardless of what subcomponent they are in, as they are needed for general
serviceability and are not specific to the subcomponent.

The explanation of serviceability is beyond the scope of this document and this example.

/* For serviceability */
#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include <dfsudtmac.h>
#include <dfsudtsvc.h>
#include <dfsudtmsg.h>

5.4.3 Constants for the Client Application

/* flag to check if UPDATE interface accessible */
unsigned int UPDATE_INTERFACE = 0;
unsigned int UPDATE_CHECK_PROVIDER_OR_RANGE = 0;

/* List of interfaces supported */
#define DFS_UPDATE 1
#define UPDATE_PROVIDER 1

/* should be NIDL_PIPE_BUFF_SIZE defined in stubbase.h */
#define PREFER_BUFFSIZE 2048
#define UPDATE_MAXBINDINGS 32
#define MAX_RPC_FAILURES 10

76 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Client Application

#define UPDATE_RETRY_TIME 60
#define UPDATE_MAX_CANCEL_ITER 20

5.4.4 RPC prewrap and postwrap functions

/* macros to refresh ubik connections upon ticket expiration */
unsigned int DFS_RPC_WRAP_ERROR;
#define DFS_RPC_PREWRAP { int rpc_attempts, retry_rpc, dfsauthRtn; \

rpc_attempts = dfsauthRtn = 0; \
retry_rpc = 1; \
while (retry_rpc) { \

retry_rpc = 0; \
rpc_attempts++;

#define DFS_RPC_POSTWRAP(error_status) \
if (error_status == rpc_s_auth_tkt_expired) { \
if (rpc_attempts == 1) { \
dfsauthRtn =dfsauth_client_RefreshLocalAuthContext();\
if (!dfsauthRtn) retry_rpc = 1; \
else {\
retry_rpc = 0; \
DFS_RPC_WRAP_ERROR = 1; \
}}}}}

5.4.5 Typical Serviceability initialization

char *whoami = "upclient";

dce_svc_handle_t udt_svc_handle;

void initialize_svc()
{

error_status_t st;

udt_svc_handle = dce_svc_register(udt_svc_table, (idl_char *)"udt", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot register svc 0x%lx0, st);
dce_svc_routing((unsigned char *) "NOTICE:STDOUT:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route NOTICE messages 0x%lx0, st);
dce_svc_routing((unsigned char *) "WARNING:STDOUT:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route WARNING messages 0x%lx0, st);
dce_svc_routing((unsigned char *) "ERROR:STDERR:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route ERROR messages 0x%lx0, st);

dfs_define_udt_message_tables();
}

Part 3: DFS Versioning Scheme 77

Example Client Application DFS RPC Versioning Scheme

5.4.6 ANSI C Declaration

/* Forward declaration for ANSI C */
long isCompatibleObject();

5.4.7 Client’s import list

/* filestr - client’s list of items to import */

struct filestr {
struct filestr *next;
int type;
char *name;

};

5.4.8 Client Globals

/* client globals */
upLogP logP = 0; /* upclient’s handle on it’s log file */

void pipeAlloc();
void ReceiveFile();
int AddToList();
int ZapList();
int IsCompatible();
int NotOnHost();

5.4.9 Using dfs_selectInterface to Select One

This finction checks to see if client has access to the desired interface. It can associate priorities
with interfaces in the case of servers exporting multiple interfaces.

static error_status_t
dfs_selectInterface (h)

rpc_binding_handle_t h;

{
rpc_if_id_t if_id;
static dfs_interfaceList serverInterfaces;
unsigned int i, j, result;
error_status_t code;

serverInterfaces.dfs_interfaceList_len = 0;
bzero((char *)serverInterfaces.dfs_interfaceList_val,

MAXINTERFACESPERVERSION * sizeof(dfs_interfaceDescription));

DFS_RPC_PREWRAP
code = UPDATE_GetServerInterfaces (h, &serverInterfaces);
DFS_RPC_POSTWRAP(code)

if (IS_COMM_ERR(code))
return code;

#ifdef DEBUG

78 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Client Application

dfs_printInterfaceDescription (&serverInterfaces, &code);
#endif

/* Check to see if you have access to desired interface. The
following are the different classes from most desired to
least.

Good: UUID and major version numbers of the client and server
interfaces are identical.

1. client and server interfaces are identical -- the minor
version numbers and the provider version numbers are equal.

2. Server minor version is greater than client’s.
3. Server provider version is greater than client’s.

Medium: UUID and major version numbers of client and server are
identical, and the minor version of client is less than
or equal to server’s. In addition the provider version
number of client is greater than server’s.

Bad: The UUID or the major version number of the client is
different from the server’s. Client-Server binding in this
case is impossible and hence this case is least desirable. */

if ((result = dfs_sameInterface (UPDATE_v4_0_c_ifspec,
UPDATE_PROVIDER,
&serverInterfaces)) == MATCH_GOOD ||

result == MATCH_MEDIUM) {

/* check for new interfaces derived from the original interface
should be in here, if multiple versions of a DFS interface is
supported. Here we only have one version of the interface.

*/
UPDATE_INTERFACE = DFS_UPDATE; /* original interface */

if (result == MATCH_MEDIUM)
UPDATE_CHECK_PROVIDER_OR_RANGE = 1;

}
if (!UPDATE_INTERFACE)

return UP_BAD_INTERFACE;
else return 0;

}

Part 3: DFS Versioning Scheme 79

Example Client Application DFS RPC Versioning Scheme

5.4.10 Example RPC Wrappers

The following are example RPC wrappers that a client can use.

The update_Fetchfile Wrapper

error_status_t
update_FetchFile (h, filename, pipeP)

rpc_binding_handle_t h;
NameString_t filename;
pipe_t *pipeP;

{
error_status_t code;
static unsigned long FUNCTION_PROVIDER = 1;

/* provider version # this RPC is supported */
static unsigned long FUNCTION_NOOP = 0;

/* Is this function supported by server or not? */

if (FUNCTION_NOOP) /* this RPC not supported */
return (rpc_s_op_rng_error);

/* Check to see if the desired interface provider is supported. If not
we may try alternate interfaces. Also check if this RPC is supported
by the server interface. This is done by comparing provider versions

*/

if (UPDATE_INTERFACE == DFS_UPDATE &&
UPDATE_PROVIDER >= FUNCTION_PROVIDER) {

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_call_upd_fetchfile);

#endif /* UPDATE_CANCEL_TEST */
DFS_RPC_PREWRAP
code = UPDATE_FetchFile (h, filename, pipeP);
DFS_RPC_POSTWRAP(code)

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_cmpltd_upd_fetchfile);

#endif /* UPDATE_CANCEL_TEST */

if (IS_COMM_ERR(code)) {
if (UPDATE_CHECK_PROVIDER_OR_RANGE && code == rpc_s_op_rng_error){

code = UP_BAD_INTERFACE;
FUNCTION_NOOP = 1;
}

}
return code;
}
else

return(UP_BAD_INTERFACE);
}

80 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Client Application

The update_FetchInfo Wrapper

error_status_t
update_FetchInfo (h, name, pipeP)

rpc_binding_handle_t h;
NameString_t name;
pipe_t *pipeP;

{
error_status_t code;
static unsigned long FUNCTION_PROVIDER = 1;

/* provider version # this RPC is supported */
static unsigned long FUNCTION_NOOP = 0;

/* Is this function supported by server or not? */

if (FUNCTION_NOOP) /* this RPC not supported */
return (rpc_s_op_rng_error);

if (UPDATE_INTERFACE == DFS_UPDATE &&
UPDATE_PROVIDER >= FUNCTION_PROVIDER) {

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_call_upd_fetchinfo);

#endif /* UPDATE_CANCEL_TEST */
DFS_RPC_PREWRAP
code = UPDATE_FetchInfo (h, name, pipeP);
DFS_RPC_POSTWRAP(code)

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_cmpltd_upd_fetchinfo);

#endif /* UPDATE_CANCEL_TEST */

if (IS_COMM_ERR(code)) {
if (UPDATE_CHECK_PROVIDER_OR_RANGE && code == rpc_s_op_rng_error){

code = UP_BAD_INTERFACE;
FUNCTION_NOOP = 1;
}

}
return code;
}
else

return(UP_BAD_INTERFACE);
}

The update_FetchObjectInfo Wrapper

error_status_t
update_FetchObjectInfo (h, name, buf)

rpc_binding_handle_t h;
char *name;
updateFileStatT *buf;

{
error_status_t code;
static unsigned long FUNCTION_PROVIDER = 1;

Part 3: DFS Versioning Scheme 81

Example Client Application DFS RPC Versioning Scheme

/* provider version # this RPC is supported */
static unsigned long FUNCTION_NOOP = 0;

/* Is this function supported by server or not? */
NameString_t object;

/* For use in UPDATE_FetchObjectInfo call */

if (FUNCTION_NOOP) /* this RPC not supported */
return (rpc_s_op_rng_error);

if (UPDATE_INTERFACE == DFS_UPDATE &&
UPDATE_PROVIDER >= FUNCTION_PROVIDER) {

strcpy((char *)object, name);

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_call_upd_fobjinfo);

#endif /* UPDATE_CANCEL_TEST */

DFS_RPC_PREWRAP
code = UPDATE_FetchObjectInfo (h, object, buf);
DFS_RPC_POSTWRAP(code)

#ifdef UPDATE_CANCEL_TEST
Log(udt_s_cmpltd_upd_fobjinfo);

#endif /* UPDATE_CANCEL_TEST */

if (IS_COMM_ERR(code)) {
if (UPDATE_CHECK_PROVIDER_OR_RANGE && code == rpc_s_op_rng_error){
code = UP_BAD_INTERFACE;
FUNCTION_NOOP = 1;
}

}
return code;
}
else

return(UP_BAD_INTERFACE);
}

Skeleton Client Main

int main(argc,argv)
int argc;
char **argv;

{
...

/* Initialize the serviceability function */

initialize_svc();
...

}

82 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Client Application

5.5 Example Server Application
The server registers the interfaces with the runtime and with the versioning mechanism.

5.5.1 Typical Server Headers

#include <dcedfs/param.h>
#include <dcedfs/stds.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#include <dce/rpc.h>
#include <pthread.h>
#include <dcedfs/osi.h>
#include <dcedfs/compat.h>
#include <dcedfs/dfsauth.h>
#include <dcedfs/cmd.h>
#include <dirent.h>

#include <update.h>
#include <upcommon.h>

5.5.2 Headers for Serviceability

The following headers get included for serviceability. The last three are specific to this
subcomponent. They would need to be defined for each file that has implemented serviceability,
and the names would be chosen to be specific to the function. The first three are included as is
regardless of what subcomponent they are in, as they are needed for general serviceability and
are not specific to the subcomponent.

The explanation of serviceability is beyond the scope of this document and this example.

/* For serviceability */

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include <dfsudtmac.h>
#include <dfsudtsvc.h>
#include <dfsudtmsg.h>

Part 3: DFS Versioning Scheme 83

Example Server Application DFS RPC Versioning Scheme

5.5.3 Constants for the Server Application

#define UPDATE_MAXCALLS 5
#define DEFAULT_ADMIN_FILENAME "admin.up"

5.5.4 Define IS_COMM_ERR Function

#define IS_COMM_ERR(s) (s == rpc_s_o k ? 0 : 1$

5.5.5 Typical Serviceability Initialization

char *whoami = "upserver";

dce_svc_handle_t udt_svc_handle;

void initialize_svc()
{

error_status_t st;

udt_svc_handle = dce_svc_register(udt_svc_table, (idl_char *)"udt", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot register svc 0x%lx0, st);
dce_svc_routing((unsigned char *) "NOTICE:STDOUT:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route NOTICE messages 0x%lx0, st);
dce_svc_routing((unsigned char *) "WARNING:STDOUT:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route WARNING messages 0x%lx0, st);
dce_svc_routing((unsigned char *) "ERROR:STDERR:--", &st);
if (st != svc_s_ok)

fprintf(stderr, "Cannot route ERROR messages 0x%lx0, st);

dfs_define_udt_message_tables();
}

5.5.6 Skeleton Server Main

int
main(argc, argv)

int argc;
char *argv[];

{

extern char *dfs_dceErrTxt();
extern UPDATE_v4_0_epv_t UPDATE_v4_0_manager_epv;

osi_setlocale(LC_ALL, "");

...

initialize_svc();

initialize_upd_error_table();

84 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Server Application

...

us_argSetup();
code = cmd_Dispatch(argc, argv);
if (code)

exit(1);

}

initUpserverLog();
updatePthreadInit();

Shutting Down the Duplicate Server

code = compat_ShutdownDuplicateServer (
(rpc_if_handle_t)UPDATE_v4_0_s_ifspec,
(uuid_t *)NULL,
0);

if (code) {
LogError(udt_s_dup_server_shutdown_failed, code);
goto exit;

}

Recording the Shutdown Registered Interface

The following example shows how to register an interface with the versioning mechanism.

/* recording the above registered interface */
dfs_installInterfaceDescription ((rpc_if_handle_t)UPDATE_v4_0_s_ifspec,

(rpc_if_handle_t)UPDATE_v4_0_s_ifspec,
1, /* provider version number */

(unsigned_char_t *)"Transarc Update Server Interface",
&st);

if (IS_COMM_ERR(st))
{

LogError(udt_s_install_reg_intfc_failed, st);
code = st;
goto exit;

}

uuid_create_nil(&nil_uuid, &st);
if (st != uuid_s_ok) {

LogError(udt_s_nil_UUID_create_failed, st);
goto exit;

}

Part 3: DFS Versioning Scheme 85

Example Server Application DFS RPC Versioning Scheme

Registering the Interface with the Runtime

The following is an example of registering an interface with the RPC Runtime.

rpc_register_dfs_server ((rpc_if_handle_t)UPDATE_v4_0_s_ifspec,
(rpc_mgr_epv_t)&UPDATE_v4_0_manager_epv,
(uuid_t *)&nil_uuid, (uuid_t *)&nil_uuid,
UPDATE_MAXCALLS, adminFilename,
"DFS upserver", &st);

if (IS_COMM_ERR(st))
{

LogError(udt_s_servr_regist_failed, st);
code = st;
goto exit;

}

Log(udt_s_upsrvr_started);

rpc_mgmt_set_server_com_timeout(rpc_c_binding_default_timeout+2, &st);
rpc_server_listen (UPDATE_MAXCALLS, &st);
if (IS_COMM_ERR(st))
{

LogError(udt_s_srvr_listen_failed, st);
code = st;
goto exit;

}

code = compat_UnregisterServer ((rpc_if_handle_t)UPDATE_v4_0_s_ifspec,
(uuid_t *)NULL);

if (code) {
LogError(udt_s_unregister_intfc_failed, code);
goto exit;

}
else exit(0);

Sample Error Exit for Preceeding Functions

exit:
exit(2);

}

86 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Manager Application

5.6 Example Manager Application
The manager implements all RPCs. An additional RPC that it should support is the
RPC_GetServerInterfaces call which is called by the client to retrieve the server interfaces.

5.6.1 Typical MANAGER Headers

#include <dcedfs/param.h>
#include <dcedfs/stds.h>
#include <dcedfs/osi.h>

#include <netdb.h>
#include <netinet/in.h>

#include <dirent.h>

#ifdef AFS_AIX_ENV
/*

* in AIX valuable fields such as st_blksize are not in
* the stat structure
*/

#include <sys/statfs.h>
#endif /* AFS_AIX_ENV */

#include <dce/rpc.h>
#include <pthread.h>

#include <dcedfs/compat.h>
#include <dcedfs/dfsauth.h>

#include <update.h>
#include <upcommon.h>

5.6.2 Headers for Serviceability

The following headers get included for serviceability. The last three are specific to this
subcomponent. They would need to be defined for each subcomponent that has implemented
serviceability, and the names would be chosen to be specific to the function. The first three are
included as is regardless of what subcomponent they are in, as they are needed for general
serviceability and are not specific to the subcomponent.

The explanation of serviceability is beyond the scope of this document and this example.

/* For serviceability */

#include <dce/dce.h>
#include <dce/dce_msg.h>
#include <dce/dcesvcmsg.h>
#include <dfsudtmac.h>
#include <dfsudtsvc.h>
#include <dfsudtmsg.h>

Part 3: DFS Versioning Scheme 87

Example Manager Application DFS RPC Versioning Scheme

5.6.3 Typical Initialization

extern char *whoami;
extern pthread_mutex_t updateMutex;

5.6.4 ANSI C Declaration

/* Forward declarations for ANSI C */
long update_SendFile();
long update_SendDirInfo();

5.6.5 Example Mutex Lock

The following macro is used as an example to demonstrate locking that could be used.

Note: Locking is done in this example per exported procedure, rather than per subroutine
call. While it serializes operations more than per subroutine locking, it is used here to
demonstrate a consistent manner of locking.

#define LOCK_UPDATE_MUTEX \
if (pthread_mutex_lock (&updateMutex) != 0) \
{ \

Log(udt_s_global_lock_locking_error, \
whoami, errno); \

exit(1); \
}

5.6.6 Example Mutex Unlock

#define UNLOCK_UPDATE_MUTEX \
if (pthread_mutex_unlock (&updateMutex) != 0) \
{ \
Log(udt_s_global_lock_unlock_error, \

whoami, errno); \
exit(1); \
}

5.6.7 Example Error Exit

The following example defines the common error exit that is used in the Manager’s example
exported procedures.

/* used for premature routine exit */
#define ERROR(n) \
{ \

code = n; \
goto error_exit; \

}

88 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Manager Application

5.6.8 UPDATE_GetServerInterfaces

This example exported procedure sends a list of registered upserver interfaces to the caller.

error_status_t UPDATE_GetServerInterfaces (h, serverInterfaces)
/* [in] */ rpc_binding_handle_t h;
/* [out] */ dfs_interfaceList *serverInterfaces;

{
long code = 0, code2 = 0;
static char routineName[] = "UPDATE_FetchFile";
int savedCancelState;

DFS_DISABLE_CANCEL(&savedCancelState, code);
if (code) {

LogError(udt_s_disable_cancel_failed, code, whoami, routineName);
serverInterfaces->dfs_interfaceList_len = 0;
return(code);
}

code = dfsauth_server_CheckAuthorization(&h,
(dacl_permset_t *)NULL,
(char *)NULL,
(uuid_t *)NULL);

if (code)
{
if (code != DAUT_ERROR_ACCESS_DENIED) {

LogError(udt_s_auth_check_failed, code, whoami, routineName);
}
serverInterfaces->dfs_interfaceList_len = 0;
ERROR(code);
}
dfs_GetServerInterfaces (UPDATE_v4_0_s_ifspec, serverInterfaces,

(unsigned32 *)&code);
if (code) {

LogError(udt_s_getserver_intfcs_failed, code, whoami, routineName);
ERROR(code);

}

error_exit:
DFS_ENABLE_CANCEL(savedCancelState, code2);
if (code2) {

LogError(udt_s_enable_cancel_failed, code2, whoami, routineName);
serverInterfaces->dfs_interfaceList_len = 0;
}
if (code)

return code;
else return code2;

}

Part 3: DFS Versioning Scheme 89

Example Manager Application DFS RPC Versioning Scheme

5.6.9 UPDATE_FetchFile

This example exported procedure sends the contents of a file to the caller.

error_status_t UPDATE_FetchFile(h, FileName, pipeStream)
/* [in] */ rpc_binding_handle_t h;
/* [in] */ NameString_t FileName;
/* [out] */ pipe_t *pipeStream;

{
int fd = -1;
int lockHeld = 0;
struct stat status;
char *pipeBuffP = (char *)0;
long code = 0, code2= 0;
static char routineName[] = "UPDATE_FetchFile";
int savedCancelState;

/* place a TRY/FINALLY around critical region */
TRY
{
DFS_DISABLE_CANCEL(&savedCancelState, code);
if (code) {

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

LogError(udt_s_pipe_disable_cancel_failed, code, whoami,
routineName);

ERROR(code);
}

LOCK_UPDATE_MUTEX;
lockHeld = 1;
code = dfsauth_server_CheckAuthorization(&h,

(dacl_permset_t *)NULL,
(char *)NULL,
(uuid_t *)NULL);

if (code)
{

if (code != DAUT_ERROR_ACCESS_DENIED) {
LogError(udt_s_daut_error_auth_failed, code, whoami, routineName);
}

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);
ERROR(code);

}
if (canExportObject(FileName) == 0)
{

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

Log(udt_s_req_not_in_list, FileName);
ERROR(UP_NOT_EXPORTABLE);

90 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Manager Application

}

fd = open(FileName, O_RDONLY, 0); /* Open the target file */
if (fd < 0 || fstat(fd, &status) < 0) {

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

Log(udt_s_open_file_failed, FileName);
ERROR(UP_SOFT_ERROR);

}
code = update_SendFile(fd, pipeStream, &status);
if (fd >=0)

close(fd);

error_exit:;
}
FINALLY
{
if (lockHeld)

UNLOCK_UPDATE_MUTEX;
DFS_ENABLE_CANCEL(savedCancelState, code2);
}
ENDTRY

if (code2)
LogError(udt_s_enable_cancel_failed2, code2, whoami, routineName);

if (code)
return code;

else
return code2;

}

5.6.10 UPDATE_FetchInfo

This example exported procedure fetches directory information about directory name and sends
it to remote client.

error_status_t UPDATE_FetchInfo(h, DirName, pipeStream)
/* [in] */ rpc_binding_handle_t h;
/* [in] */ NameString_t DirName;
/* [out] */ pipe_t *pipeStream;

{
int fd = -1;
int lockHeld = 0;
struct stat status;
char *pipeBuffP = (char *)0;
long code = 0, code2 = 0;
static char routineName[] = "UPDATE_FetchInfo";
int savedCancelState;

TRY
{
DFS_DISABLE_CANCEL(&savedCancelState, code);

Part 3: DFS Versioning Scheme 91

Example Manager Application DFS RPC Versioning Scheme

if (code) {
/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

LogError(udt_s_disable_cancel_failed2, code, whoami, routineName);
ERROR(code);

}

LOCK_UPDATE_MUTEX;
lockHeld = 1;
code = dfsauth_server_CheckAuthorization(&h,

(dacl_permset_t *)NULL,
(char *)NULL,
(uuid_t *)NULL);

if (code)
{

if (code != DAUT_ERROR_ACCESS_DENIED) {
LogError(udt_s_daut_error_auth_failed2, code, whoami, routineName);
}

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);
ERROR(code);

}
if (canExportObject(DirName) == 0)
{

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

Log(udt_s_req_not_in_list2, DirName);
ERROR(UP_NOT_EXPORTABLE);

}

fd = open(DirName, O_RDONLY, 0);
if (fd < 0 || fstat(fd, &status) < 0) {

/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

Log(udt_s_open_dir_failed, DirName);
ERROR(UP_SOFT_ERROR);

}

if((status.st_mode & S_IFMT) != S_IFDIR){
/* terminate the pipe */
pipeStream->push(pipeStream->state, (unsigned char *)pipeBuffP, 0);

Log(udt_s_obj_not_dir,DirName);
ERROR(ENOENT);

}
code = update_SendDirInfo(DirName, pipeStream, &status);

error_exit:;

92 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Example Manager Application

}
FINALLY
{
if (fd >= 0)

close(fd);
if (lockHeld)

UNLOCK_UPDATE_MUTEX;

DFS_ENABLE_CANCEL(savedCancelState, code2);
}
ENDTRY

if (code2)
LogError(udt_s_enable_cancel_failed3, code2, whoami, routineName);

if (code)
return code;

else
return code2;

}

5.6.11 UPDATE_FetchObjectInfo

This example exported procedure returns a stat of the named object. Selected items from the stat
are returned to the caller.

error_status_t
UPDATE_FetchObjectInfo(h, objectName, fileStatP)

/* [in] */ rpc_binding_handle_t h;
/* [in] */ NameString_t objectName;
/* [out]*/ updateFileStatP fileStatP;

{
struct stat statBuf;
long code = 0, code2 = 0;
int savedCancelState;
static char routineName[] = "UPDATE_FetchObjectInfo";

DFS_DISABLE_CANCEL(&savedCancelState, code);
if (code) {

LogError(udt_s_disable_cancel_failed4, code, whoami, routineName);
return(code);
}

LOCK_UPDATE_MUTEX;
#ifdef notdef

code = dfsauth_server_CheckAuthorization(&h,
(dacl_permset_t *)NULL,
(char *)NULL,
(uuid_t *)NULL);

if (code)
{

if (code != DAUT_ERROR_ACCESS_DENIED) {
LogError(udt_s_daut_error_auth_failed4, code, whoami,

Part 3: DFS Versioning Scheme 93

Example Manager Application DFS RPC Versioning Scheme

routineName);
}

ERROR(code);
}

#endif
if (canExportObject(objectName) == 0)
{

Log(udt_s_obj_export_failed, objectName);
ERROR(UP_NOT_EXPORTABLE);
}
code = stat((char *)objectName, &statBuf);
if (code)
{
Log(udt_s_stat_obj_failed, objectName, errno);
ERROR(UP_SOFT_ERROR);
}

/* copy the information back to the caller’s structure */
hset32(fileStatP->fileLength, statBuf.st_size);
fileStatP->mode = statBuf.st_mode;
fileStatP->uid = statBuf.st_uid;
fileStatP->gid = statBuf.st_gid;
fileStatP->mtime = statBuf.st_mtime;
fileStatP->atime = statBuf.st_atime;

error_exit:
UNLOCK_UPDATE_MUTEX;

DFS_ENABLE_CANCEL(savedCancelState, code2);
if (code2)

LogError(udt_s_enable_cancel_failed4, code2, whoami, routineName);
if (code)

return code;
else

return code2;
}

5.6.12 UPDATE_v4_0_manager_epv

This example declares and initializes the example manager’s entry point vector.

UPDATE_v4_0_epv_t UPDATE_v4_0_manager_epv = {
UPDATE_GetServerInterfaces,
UPDATE_FetchInfo,
UPDATE_FetchFile,
UPDATE_FetchObjectInfo};

94 X/Open Preliminary Specification (1996)

DFS RPC Versioning Scheme Extending the DFS Interface

5.7 Extending the DFS Interface
The owner of an interface implies it is the entity that created the interface with a UUID, major
and minor version numbers. Other entities can extend the interface. When an entity extends an
interface not owned by it, it needs to create a new interface (UUID, major and minor version
numbers) and add new operations in addition to the operations from the interface that is being
extended. The DFS interfaces are owned by Transarc Corporation and others would need to
create a new interface in order to extend any of the original DFS interfaces.

There are two cases involved in extending an interface. One case is when an owner of an
interface extends it; the other is when an entity that is not the owner of an interface extends it.
These two cases involve the following changes:

5.7.1 Case 1 — An Owner Extends a DFS Interface

When an owner extends a DFS interface, the changes needed are the following:

1. Deciding either to bump the minor version number or the provider version number. This
decision is made based upon whether the changes are extensive enough to warrant it’s
being a new version or not. If extensive, then the provider version number would be
increased by one which connotes the meaning of being bumped. Otherwise, increasing or
bumping the minor version number by one would be sufficient.

2. If the minor version number is bumped, the change is recorded in the IDL file header. Also
a change is to be made in the dfs_selectInterface() function in the client, to select the
appropriate interface(stub) to call.

3. If the provider version number is bumped, then the IDL file header should have the new
provider version number, and each added RPC should have a comment indicating its
provider version level. The server should indicate its provider level when calling
dfs_installInterfaceDescription (). Servers must maintain compatability with clients running
at lower provider version levels. Clients must not rely on the availability of any RPCs
other than those in provider version 1. When a client makes an RPC to a server running at
a lower provider version level, the request is handled by the RPC runtime environment,
and the client gets an [rpc_s_op_rng_error]. Clients should be written so that they can
recover from this error by retrying the operation using the functionality available in
provider version 1.

Clients should keep an estimate of the provider version level of each server. Initially, this
estimate should be the provider version level desired by the client. If an
[rpc_s_op_rng_error] is received for an RPC at provider version N, the server’s provider
version estimate should be set to N−1. The client should not make any more RPC calls to
that server at a provider version higher than N−1. The server’s provider version estimate
should be reset whenever the server’s binding handle is reset.

As an example, the Ubik client interface includes support for server provider versioning,
and maintains an estimate of each server’s provider version level. Ubik clients making
RPCs for provider versions other than provider version 1 should use ubik_PVCall () instead
of ubik_Call (). ubik_PVCall () has a parameter for the provider version level of the RPC.
The ubik client library keeps an estaimte of the provider version level of each server, and
returns [UDOWNLVL] when an RPC fails because the server is not at the desired version
level. Clients should be written to recover from [UDOWNLVL] errors by retrying the
operation using the functionality in provider version 1.

Part 3: DFS Versioning Scheme 95

Extending the DFS Interface DFS RPC Versioning Scheme

5.7.2 Case 2 — A Non-owner Extends a DFS Interface

An entity not owning an interface will herein be called an agent. When an entity extends a DFS
interface not owned by it, the changes needed are the following:

1. If the agent modifies an interface not owned (created) by it, then a new Interface UUID
(and a new IDL file) should be created. The RPCs in the original interface are supported in
the new interface (with a distinguishing prefix) and new RPCs are appended to the older
ones.

2. The original DFS interface (Transarc’s) and the newly created interface are registered with
the RPC runtime and the versioning mechanism. The agent has the option of supporting
any intermediate interfaces.

3. A new manager end point vector is created for the new interface with the old entries and
the newly added RPCs appended to this. The old entries could refer to functions in any of
the managers associated with the interfaces other than the newly added one. This way, the
new manager need not duplicate functions already implemented in the previous interfaces.

4. The dfs_selectInterface() function in the client has to be modified to select the new interface.
If not avaliable, then the client could use one of the older interfaces supported by the client,
and the wrapper for the newly added RPCs could check the interface global to determine if
the RPC could be made successfully or not.

5. The wrappers for the new RPCs should check for the new interface. If not supported, then
the new RPCs should fail.

96 X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 4:

DFS Client/Server and Token Manager Interfaces

Part 4: DFS Client/Server and Token Manager Interfaces 97

98 X/Open Preliminary Specification (1996)

Chapter 6

DCE DFS File Exporter Interface

This chapter describes the RPCs that can be issued against the file exporter via a client cache
manger. These RPCs allow the cache manager to manipulate files on a file server machine.

The error codes passed back from the DFS server to the DFS client do not come through
[ERRNO], and are not the values from the server’s version of <errno.h>, but are an architected
set that the client will then map into local error codes.

The return codes returned by these calls are the union of the set of errors returned by the RPC,
the token manager, and an abstraction of the DFS server’s vnode layer itself (for example,
DFS_ENOENT for file not found). The full set of these abstractions of the DFS server’s error
codes is as follows:

#define DFS_ESUCCESS 0 /* Successful */
#define DFS_EPERM 1 /* Operation not permitted */
#define DFS_ENOENT 2 /* No such file or directory */
#define DFS_ESRCH 3 /* No such process */
#define DFS_EINTR 4 /* Interrupted system call */
#define DFS_EIO 5 /* I/O error */
#define DFS_ENXIO 6 /* No such device or address */
#define DFS_E2BIG 7 /* Arg list too long */
#define DFS_ENOEXEC 8 /* Exec format error */
#define DFS_EBADF 9 /* Bad file number */
#define DFS_ECHILD 10 /* No children */
#define DFS_EDEADLK 11 /* Operation would cause deadlock */
#define DFS_ENOMEM 12 /* Not enough core */
#define DFS_EACCES 13 /* Permission denied */
#define DFS_EFAULT 14 /* Bad address */
#define DFS_ENOTBLK 15 /* Block device required */
#define DFS_EBUSY 16 /* Mount device busy */
#define DFS_EEXIST 17 /* File exists */
#define DFS_EXDEV 18 /* Cross-device link */
#define DFS_ENODEV 19 /* No such device */
#define DFS_ENOTDIR 20 /* Not a directory */
#define DFS_EISDIR 21 /* Is a directory */
#define DFS_EINVAL 22 /* Invalid argument */
#define DFS_ENFILE 23 /* File table overflow */
#define DFS_EMFILE 24 /* Too many open files */
#define DFS_ENOTTY 25 /* Not a typewriter */
#define DFS_ETXTBSY 26 /* Text file busy */
#define DFS_EFBIG 27 /* File too large */
#define DFS_ENOSPC 28 /* No space left on device */
#define DFS_ESPIPE 29 /* Illegal seek */
#define DFS_EROFS 30 /* Read-only file system */
#define DFS_EMLINK 31 /* Too many links */
#define DFS_EPIPE 32 /* Broken pipe */
#define DFS_EDOM 33 /* Argument too large */
#define DFS_ERANGE 34 /* Result too large */
#define DFS_EWOULDBLOCK 35 /* Operation would block */
#define DFS_EINPROGRESS 36 /* Operation now in progress */
#define DFS_EALREADY 37 /* Operation already in progress */

Part 4: DFS Client/Server and Token Manager Interfaces 99

DCE DFS File Exporter Interface

/*
* ipc/network software
*/

#define DFS_ENOTSOCK 38 /* Socket operation on non-socket */
#define DFS_EDESTADDRREQ 39 /* Destination address required */
#define DFS_EMSGSIZE 40 /* Message too long */
#define DFS_EPROTOTYPE 41 /* Protocol wrong type for socket */
#define DFS_ENOPROTOOPT 42 /* Protocol not available */
#define DFS_EPROTONOSUPPORT 43 /* Protocol not supported */
#define DFS_ESOCKTNOSUPPORT 44 /* Socket type not supported */
#define DFS_EOPNOTSUPP 45 /* Operation not supported on socket */
#define DFS_EPFNOSUPPORT 46 /* Protocol family not supported */
#define DFS_EAFNOSUPPORT 47 /* Address family not supported */
#define DFS_EADDRINUSE 48 /* Address already in use */
#define DFS_EADDRNOTAVAIL 49 /* Can’t assign requested address */
#define DFS_ENETDOWN 50 /* Network is down */
#define DFS_ENETUNREACH 51 /* Network is unreachable */
#define DFS_ENETRESET 52 /* Network dropped conn on reset */
#define DFS_ECONNABORTED 53 /* Software caused connection abort */
#define DFS_ECONNRESET 54 /* Connection reset by peer */
#define DFS_ENOBUFS 55 /* No buffer space available */
#define DFS_EISCONN 56 /* Socket is already connected */
#define DFS_ENOTCONN 57 /* Socket is not connected */
#define DFS_ESHUTDOWN 58 /* Can’t send after socket shutdown */
#define DFS_ETOOMANYREFS 59 /* Too many references: can’t splice */
#define DFS_ETIMEDOUT 60 /* Connection timed out */
#define DFS_ECONNREFUSED 61 /* Connection refused */
#define DFS_ELOOP 62 /* Too many levels of symbolic links */
#define DFS_ENAMETOOLONG 63 /* File name too long */
#define DFS_EHOSTDOWN 64 /* Host is down */
#define DFS_EHOSTUNREACH 65 /* No route to host */
#define DFS_ENOTEMPTY 66 /* Directory not empty */
#define DFS_EPROCLIM 67 /* Too many processes */
#define DFS_EUSERS 68 /* Too many users */
#define DFS_EDQUOT 69 /* Disc quota exceeded */
/*

* NFS errors.
*/

#define DFS_ESTALE 70 /* Stale NFS file handle */
#define DFS_EREMOTE 71 /* Too many levels of remote in path */
#define DFS_EBADRPC 72 /* RPC struct is bad */
#define DFS_ERPCMISMATCH 73 /* RPC version wrong */
#define DFS_EPROGUNAVAIL 74 /* RPC prog. not avail */
#define DFS_EPROGMISMATCH 75 /* Program version wrong */
#define DFS_EPROCUNAVAIL 76 /* Bad procedure for program */
/*

* misc ..
*/

#define DFS_ENOLCK 77 /* No locks available */
#define DFS_ENOSYS 78 /* Function not implemented */
#define DFS_EAGAIN 79 /* Resource temporarily unavailable */
/*

100 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface

* SYS V IPC errors
*/

#define DFS_ENOMSG 80 /* No msg matches receive request */
#define DFS_EIDRM 81 /* Msg queue id has been removed */
/*

* STREAMS
*/

#define DFS_ENOSR 82 /* Out of STREAMS resources */
#define DFS_ETIME 83 /* System call timed out */
#define DFS_EBADMSG 84 /* Next message has wrong type */
#define DFS_EPROTO 85 /* STREAMS protocol error */
#define DFS_ENODATA 86 /* No message on stream head read q */
#define DFS_ENOSTR 87 /* fd not associated with a stream */
/*

* Not visible outside kernel
*/

#define DFS_ECLONEME 88 /* Tells open to clone the device */
/*

* Filesystem
*/

#define DFS_EDIRTY 89 /* Mounting a dirty fs w/o force */
/*

* Loader errors
*/

#define DFS_EDUPPKG 90 /* duplicate package name on install */
#define DFS_EVERSION 91 /* version number mismatch */
#define DFS_ENOPKG 92 /* unresolved package name */
#define DFS_ENOSYM 93 /* unresolved symbol name */
/*

* To be filled
*/

#define DFS_SPARE94 94
#define DFS_SPARE95 95
#define DFS_SPARE96 96
#define DFS_SPARE97 97
#define DFS_SPARE98 98
#define DFS_SPARE99 99
#define DFS_SPARE100 100
#define DFS_SPARE101 101
#define DFS_SPARE102 102
#define DFS_SPARE103 103
#define DFS_SPARE104 104
#define DFS_SPARE105 105
#define DFS_SPARE106 106
#define DFS_SPARE107 107
#define DFS_SPARE108 108
#define DFS_SPARE109 109
#define DFS_SPARE110 110
#define DFS_SPARE111 111
/*

* security
*/

Part 4: DFS Client/Server and Token Manager Interfaces 101

DCE DFS File Exporter Interface

#define DFS_ENOATTR 112 /* no attribute found */
#define DFS_ESAD 113 /* security authentication denied */
#define DFS_ENOTRUST 114 /* not a trusted program */
/*

* To be filled
*/

#define DFS_SPARE115 115
#define DFS_SPARE116 116
#define DFS_SPARE117 117
#define DFS_SPARE118 118
#define DFS_SPARE119 119
#define DFS_SPARE120 120
#define DFS_SPARE121 121
#define DFS_SPARE122 122
/*

* Internal Disk/Block Device error codes
*/

#define DFS_ESOFT 123 /* I/O completed but needs relocation*/
#define DFS_EMEDIA 124 /* media surface error */
#define DFS_ERELOCATED 125 /* a relocation request performed ok */
#define DFS_SPARE126 126
#define DFS_SPARE127 127
/*

* Errors not defined by local kernel.
*/

#define DFS_ENOTDEFINED 128

102 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_SetContext()

NAME
AFS_SetContext — Establish client context

SYNOPSIS
error_status_t AFS_SetContext(

/* IN */ handle_t h,
/* IN */ unsigned32 epochTime,
/* IN */ afsNetData *callbackAddr,
/* IN */ unsigned32 Flags,
/* IN */ afsUUID *secObjectID,
/* IN */ unsigned32 clientSizeAttrs,
/* IN */ unsigned32 parm7
);

ARGUMENTS

h The RPC binding handle.

epochTime The restart time of the DFS client.

callbackAddr The RPC endpoint of the client, for token revocation purposes.

Flags If 0 then the call only defines a primary interface UUID. If the flag,
AFS_FLAG_SEC_SERVICE, is set then a a secondary interface is defined and
is stored in the parameter, secObjectID.

secObjectID When the AFS_FLAG_SEC_SERVICE flag is set, this parameter holds the
secondary interface UUID.

clientSizeAttrs For 64/32-bit compatibility. Through DCE1.1, this is a spare parameter,
parm6.

parm7 A spare parameter.

DESCRIPTION
This function establishes some context information at the file exporter that is required before this
client can execute calls at the server. If a server crashes, the client must make a new
AFS_SetContext call before it makes other calls to this server. The UUID’s passed via this
function must have been obtained via the dfsuuid_Create() function.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

Part 4: DFS Client/Server and Token Manager Interfaces 103

AFS_LookupRoot() DCE DFS File Exporter Interface

NAME
AFS_LookupRoot — Look up fileset root on file server

SYNOPSIS
error_status_t AFS_LookupRoot(

/* IN */ handle_t h,
/* IN */ afsFid *InFidp,
/* IN */ afsHyper *minVVp,
/* IN */ signed32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

InFidp The file identifier specifying the fileset whose root directory will be retrieved
from the file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier describing the root directory of the selected fileset.

OutFidStatusp Returns the status of that directory after the current operation.

OutTokenp The promise the file server returns to the cache manager about the provided
data; this is only returned if the file resides in a read/write fileset.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call is used to obtain the description of the root directory of a fileset from the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file specified by inFidp does not exist.

[DFS_EACCES] The caller lacks read permission on inFidp.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

104 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_FetchData()

NAME
AFS_FetchData — Retrieve data from file server

SYNOPSIS
error_status_t AFS_FetchData(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsHyper *minVVp,
/* IN */ afsHyper *Position,
/* IN */ signed32 Length,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp,
/* OUT */ pipe_t *fetchStream
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file whose contents will be retrieved from the
file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Position Specifies the first byte to be fetched by this call with zero (0) being the first
byte in the file.

Length Specifies the number of bytes desired with the value 0xFFFFFFFF indicating
the entire file contents.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the status of the file after the current operation.

OutTokenp The promise the file server returns to the cache manager about the provided
data; this is only returned if the file resides in a read/write fileset.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

fetchStream The character pipe parameter returning the data from the file. (See X/Open
DCE: Remote Procedure Call specification for implementation details.)

DESCRIPTION
This call is used to obtain the contents of the specified file from the file server.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file specified by Fidp does not exist.

Part 4: DFS Client/Server and Token Manager Interfaces 105

AFS_FetchData() DCE DFS File Exporter Interface

[DFS_EACCES] The caller lacks read permission on Fidp.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

106 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_FetchACL()

NAME
AFS_FetchACL — Retrieve Access Control List

SYNOPSIS
error_status_t AFS_FetchACL(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ unsigned32 aclType,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsACL *AccessListp,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control list
(ACL) will be retrieved from the file server.

aclType The type of the access list being modified. One of
VNX_ACL_REGULAR_ACL, VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL.

minVVp The minimum-acceptable version number on the fileset containing this ACL.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

AccessListp The access control list returned by the file server for the specified file or
directory.

OutStatusp Returns the current status of the file or directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
Note that a new token is not returned by this call; however, any existing tokens remain in effect.

See Access Control List Overview for a description of access list encoding.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file, dir or symlink specified by Fidp does not exist.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 107

AFS_FetchStatus() DCE DFS File Exporter Interface

NAME
AFS_FetchStatus — Obtain file status information

SYNOPSIS
error_status_t AFS_FetchStatus(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose status information will
be retrieved from the file server.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the current status of the file or directory.

OutTokenp Returns a token from the file server reflecting guarantees granted by the file
server.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call retrieves the status information associated with the specified file or directory. The file
server returns a token pertaining to this file if the fileset upon which it resides is read/write.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file named by Fidp does not exist.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

108 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_StoreData()

NAME
AFS_StoreData — Write data to file

SYNOPSIS
error_status_t AFS_StoreData(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsFetchStatus *InStatusp,
/* IN */ afsHyper *Position,
/* IN */ signed32 Length,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* IN */ pipe_t *storeStream,
/* OUT */ afsStoreStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file whose status information will be updated
from the file server.

InStatusp The new status information that should be recorded for this file.

Position Represents the position of the first byte of the data block.

Length Represents the total length of the transferred data block.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

storeStream The data stream containing the file updates. (See the X/Open DCE: Remote
Procedure Call specification for implementation details.)

OutStatusp Returns the status of the file.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call writes the specified data back to the file server for the specified file.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file specified by Fidp does not exist.

[DFS_EACCES] The caller lacks write permission to perform this operation.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

Part 4: DFS Client/Server and Token Manager Interfaces 109

AFS_StoreData() DCE DFS File Exporter Interface

[TKM_ERROR*] A token managment failure occurred.

110 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_StoreACL()

NAME
AFS_StoreACL — Update access control information for a file

SYNOPSIS
error_status_t AFS_StoreACL(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsACL *AccessListp,
/* IN */ unsigned32 aclType,
/* IN */ afsFid *aclFidp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control
information will be updated from the file server.

AccessListp The access control list sent to the file server for the specified file or directory.

aclType The type of access control list being modified (VNX_ACL_REGULAR_ACL,
VNX_ACL_DEFAULT_ACL or VNX_ACL_INITIAL_ACL, in the low-order 8
bits. In the next-higher-order 8 bits, the type of access control list being copied
from the file described by aclFidp.

aclFidp The file identifier specifying the file or directory whose access control
information will be copied.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Returns the updated file or directory status.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call updates the access control information associated with a file or directory. It can either
set an ACL to a specific value via AccessListp or copy an ACL from that possessed by another file
via aclFidp.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The file specified by Fidp does not exist.

Part 4: DFS Client/Server and Token Manager Interfaces 111

AFS_StoreACL() DCE DFS File Exporter Interface

[DFS_EACCES] The caller lacks the required access to this file.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

112 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_StoreStatus()

NAME
AFS_StoreStatus — Update status information

SYNOPSIS
error_status_t AFS_StoreStatus(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsStoreStatus *InStatusp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp The file identifier specifying the file or directory whose access control
information will be updated from the file server.

InStatusp Contains the new status information for the specified file or directory.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutStatusp Contains the updated status information for the file or directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call updates the status information associated with the file or directory.

It returns the new status information because this operation may change some status fields.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The entry named by Fidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 113

AFS_RemoveFile() DCE DFS File Exporter Interface

NAME
AFS_RemoveFile — Remove a file or symbolic link

SYNOPSIS
error_status_t AFS_RemoveFile(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsFidTaggedName *Namep,
/* IN */ afsHyper *returnTokenIDp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsFetchStatus *OutFileStatusp,
/* OUT */ afsFid *OutFileFidp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory from which to remove the file.

Namep The complex name of the file to delete.

returnTokenIDp A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutDirStatusp Contains the updated directory status information.

OutFileStatusp Contains the updated file status information.

OutFileFidp The file id of the file which was actually deleted.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call removes a file or symbolic link, but not a directory, from the file system. The complex
name afsFidTaggedName must include the string name component - it should be filled in with
both a fid and an afsTaggedName. The afsTaggedName should have a codesetTag (tn_tag)
value of 0 as nothing else is presently defined, and a valid tn_length field (if something other
than zero was specified for tn_tag).

The cache manager is responsible for decrementing the link count in the file’s associated cached
status by 1.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

114 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_RemoveFile()

[DFS_ENOENT] The entry named by DirFidp does not exist, or the entry named by Namep does
not exist.

[DFS_EACCES] The caller lacks the required access rights.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 115

AFS_Lookup() DCE DFS File Exporter Interface

NAME
AFS_Lookup — Obtain directory entry for a file

SYNOPSIS
error_status_t AFS_Lookup(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory from which to obtain the directory
information.

Namep The character string name of the file for which information is being requested.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier of the requested file.

OutFidStatusp Status information for the specified file.

OutDirStatusp Status information of the specified directory.

OutTokenp The token against the directory (allowing the directory entry to be cached).

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call takes a directory identifier and a file name, and returns the file ID of the named file. It
returns the status of the directory at the time the operation was performed, as well as a callback
on that directory, so that this mapping can be cached.

A non-existent entry is denoted not by a special error code, but instead by a special file ID
(represented as all zeroes), so that a callback can be returned for entries that don’t exist. Caching
the non-existence of entries may turn out to be important in some cases.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

116 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_Lookup()

[DFS_ENOENT] The entry named by DirFidp does not exist (note that entries that don’t exist
are handled by success returns).

[DFS_EACCES] The caller lacks the required access rights to the directory.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 117

AFS_CreateFile() DCE DFS File Exporter Interface

NAME
AFS_CreateFile — Create a file

SYNOPSIS
error_status_t AFS_CreateFile(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsStoreStatus *InStatusp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which to create the requested file.

Namep The character string name of the file to create.

InStatusp Specifies the initial status fields for the new file.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier of the newly created file.

OutFidStatusp The status fields for the newly created file.

OutDirStatusp The status information of the specified directory.

OutTokenp A new token granted against the new file.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call is used to create a file, but not a symbolic link or a directory.

If the call succeeds, it is the cache manager’s responsibility to either create an entry locally in the
directory specified by DirFid, or to invalidate this directory’s cache entry.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by DirFidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

118 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_CreateFile()

[DFS_EEXIST] An entry named Namep already exists in this dir.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 119

AFS_Rename() DCE DFS File Exporter Interface

NAME
AFS_Rename — Rename a file, directory or symbolic link

SYNOPSIS
error_status_t AFS_Rename(

/* IN */ handle_t h,
/* IN */ afsFid *OldDirFidp,
/* IN */ afsFidTaggedName *OldNamep,
/* IN */ afsFid *NewDirFidp,
/* IN */ afsFidTaggedName *NewNamep,
/* IN */ afsHyper *returnTokenIDp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutOldDirStatusp,
/* OUT */ afsFetchStatus *OutNewDirStatusp,
/* OUT */ afsFid *OutOldFileFidp,
/* OUT */ afsFetchStatus *OutOldFileStatusp,
/* OUT */ afsFid *OutNewFileFidp,
/* OUT */ afsFetchStatus *OutNewFileStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

OldDirFidp The file identifier specifying the directory in which the file is currently located.

OldNamep The complex name of the file or directory to rename.

NewDirFidp The file identifier specifying the directory into which the file is to be moved.

NewNamep The complex name of the file or directory after it is moved.

returnTokenIDP A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutOldDirStatusp
The status information of the old directory (the one from which the file is
being moved) upon termination of the call.

OutNewDirStatusp
The status information of the new directory (the one to which the file is being
moved) upon termination of the call.

OutOldFileFidp The file identifier for the file which was moved.

OutOldFileStatusp
The status information of the file which was moved.

OutNewFileFidp The file identifier for the file to which the file identified in OutOldFileFidp was,
in fact, moved.

OutNewFileStatusp
The status information of the file identified by OutNewFileFidp.

120 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_Rename()

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call renames the specified file or directory, located in the specified directory, to be the new
file or directory located in the newly specified directory. The updated directory status for both
directories is returned. If the two directories are the same, identical status information is
returned in each status output parameter.

The rename must not result in hard links existing to the same object from two different filesets,
or the error code EXDEV will be returned.

If a directory is moved from one directory to another, the cache manager must either update the
cached copy of the moved directory in order to update its ‘..’ entry, or the cache manager must
invalidate the cache entry for the moved directory. The directory link counts will be updated by
the server in the returned directory status blocks.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by Fidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[DFS_ENOTEMPTY]
The target specifies a non-empty directory.

[DFS_ENOTDIR] The source specifies a directory but the target is not a directory.

[DFS_EISDIR] The source specifies a file but the target specifies a directory.

[DFS_EXDEV] Attempting to rename across filesets.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 121

AFS_Symlink() DCE DFS File Exporter Interface

NAME
AFS_Symlink — Create a symbolic link

SYNOPSIS
error_status_t AFS_Symlink(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsTaggedPath *LinkContentsp,
/* IN */ afsStoreStatus *InStatusp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the symbolic link is to be
created.

Namep The name of the link to create.

LinkContentsp The target of the new symbolic link.

InStatusp This specifies the clientModTime field and unixModeBits of the new link.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created symbolic link.

OutFidStatusp The status information of the newly created symbolic link upon termination of
the call.

OutDirStatusp The status information of the directory (the one in which the symbolic link
was created) upon termination of the call.

OutTokenp The token returned against the specified directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call is used to create a symbolic link.

No token is granted on the new symbolic link because symbolic links cannot change, they can
only be deleted. It is recommended that the cache manager make use of this fact.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

122 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_Symlink()

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by DirFidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[DFS_EEXIST] The directory already contains an element named Namep.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 123

AFS_MakeMountPoint() DCE DFS File Exporter Interface

NAME
AFS_MakeMountPoint — Make an AFS mount point

SYNOPSIS
error_status_t AFS_MakeMountPoint(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsTaggedName *cellNamep,
/* IN */ afsFStype Type,
/* IN */ afsTaggedName *volumeNamep,
/* IN */ afsStoreStatus *InStatusp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the new mount point is to
be created.

Namep The name of the mount point.

cellNamep The string name of the cell in which the mount point is being created.

Type The type of the file system mount point.

volumeNamep The name of the fileset to be mounted on the newly created mount point.

InStatusp This specifies the clientModTime field and unixModeBits of the new mount
point.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created mount point.

OutFidStatusp The status information of the newly created mount point upon termination of
the call.

OutDirStatusp The status information of the directory (the one in which the mount point was
created) upon termination of the call.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This function call is obsolete. This call was used to create a new mount point for the specified
fileset.

Note that this call does not require that the underlying file system support a separate file type for
this type of object; for instance, in previous versions of AFS, these semantics were supported by

124 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_MakeMountPoint()

using a symbolic link with certain special attributes. This interface simply isolates the client
Cache Manager from the server’s implementation of DCE DFS Ename mount points.

RETURN VALUE
This function always returns the error [DFS_ESRCH].

ERRORS
This function fails if:

[DFS_ESRCH] Operation not supported in this DFS version.

Part 4: DFS Client/Server and Token Manager Interfaces 125

AFS_HardLink() DCE DFS File Exporter Interface

NAME
AFS_HardLink — Create a hard link

SYNOPSIS
error_status_t AFS_HardLink(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsFid *ExistingFidp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the file is currently located.

Namep The name to use for the new hard link.

ExistingFidp The file identifier specifying the file identifier of the file to which the hard link
should be made.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidStatusp The status information of the newly created hard link upon termination of the
call.

OutDirStatusp The status information of the directory (the one in which the hard link was
created) upon termination of the call.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call creates a hard link to the file specified by existingFid to the new name nameP in the
specified directory. The file specified by existingFid must not be a directory and must be on the
same DCE DFS file system fileset.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by DirFidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[DFS_EXDEV] The target is in a different fileset than the source directory.

126 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_HardLink()

[DFS_EEXIST] The target name nameP already exists.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 127

AFS_MakeDir() DCE DFS File Exporter Interface

NAME
AFS_MakeDir — Create a directory

SYNOPSIS
error_status_t AFS_MakeDir(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsTaggedName *Namep,
/* IN */ afsStoreStatus *InStatusp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutFidStatusp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the new directory is to be
created.

Namep The name of the directory to create.

InStatusp This specifies the new status information, including clientModTime field and
unixModeBits, of the new directory point.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutFidp The file identifier for the newly created directory.

OutFidStatusp The status information of the newly created directory upon termination of the
call.

OutDirStatusp The status information of the directory (the one in which the directory was
created) upon termination of the call.

OutTokenp A new token granted against the newly created directory.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call creates a new directory; a token is granted against the newly created directory.

It is the cache manager’s responsibility to either create an entry locally in the directory specified
by DirFidp, or to invalidate this directory’s cache entry.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

128 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_MakeDir()

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by DirFidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[DFS_EEXIST] The target name nameP already exists.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 129

AFS_RemoveDir() DCE DFS File Exporter Interface

NAME
AFS_RemoveDir — Remove a directory

SYNOPSIS
error_status_t AFS_RemoveDir(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsFidTaggedName *Namep,
/* IN */ afsHyper *returnTokenIDp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsFid *OutFidp,
/* OUT */ afsFetchStatus *OutDelStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file identifier specifying the directory in which the directory to be deleted
is located.

Namep The complex name of the directory to delete.

returnTokenIDp A token ID being returned, if any.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutDirStatusp The status information of the directory (the one in which the directory was
deleted) upon termination of the call.

OutFidp

OutDelStatusp

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This call removes a directory from the file system.

The directory must be empty (containing only entries for ‘.’ and ‘..’), otherwise this call will fail.
It is the cache manager’s responsibility to either create an entry locally in the directory specified
by DirFid, or to invalidate this directory’s cache entry.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by DirFidp does not exist, or an entry named nameP does not
exist in this directory.

130 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_RemoveDir()

[DFS_EACCES] The caller lacks the required access rights.

[DFS_EINVAL] The entry is named ‘‘.’’ or ‘‘..’’, or the caller passed in some invalid argument.

[DFS_ENOTEMPTY]
The directory is not empty.

[DFS_EBUSY] On some server systems, a process has this directory as its working directory.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 131

AFS_Readdir() DCE DFS File Exporter Interface

NAME
AFS_Readdir — Read an entry from a directory

SYNOPSIS
error_status_t AFS_Readdir(

/* IN */ handle_t h,
/* IN */ afsFid *DirFidp,
/* IN */ afsHyper *Offsetp,
/* IN */ unsigned32 Size,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsHyper *NextOffsetp,
/* OUT */ afsFetchStatus *OutDirStatusp,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsVolSync *Syncp,
/* OUT */ pipe_t *dirStream
);

ARGUMENTS

h The RPC binding handle.

DirFidp The file descriptor for the specified directory.

Offsetp The offset into the directory for this entry.

Size Number of bytes to read.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

NextOffsetp The offset into the directory for the following entry.

OutDirStatusp Status information for the directory pointed to by DirFidp.

OutTokenp Token granted against DirFidp.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

dirStream The array of bytes making up the external representation of this part of the
directory.

DESCRIPTION
This call reads the specified directory entry, returning the requested entry and information to
obtain the following entry.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] The caller passed in some invalid argument.

[DFS_ENOENT] The entry named by Fidp does not exist.

132 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_Readdir()

[DFS_EACCES] The caller lacks the required access rights.

[DFS_ENOTDIR] The entry is not a directory.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 133

AFS_GetToken() DCE DFS File Exporter Interface

NAME
AFS_GetToken — Obtain a token

SYNOPSIS
error_status_t AFS_GetToken(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsToken *MinTokenp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/* OUT */ afsToken *OutTokenp,
/* OUT */ afsRecordLock *OutBlockerp,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp File identifier of the file to obtain a token against.

MinTokenp Specification of the minimum requested token.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

OutTokenp Actual token granted.

OutBlockerp Information about the possessor of the token that prevents the granting of the
requested token (valid only for lock-family tokens).

OutStatusp Status information on the file specified by Fidp.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This routine is called to obtain a token from the file exporter’s token management layer.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The entry named by Fidp does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[TKM_*] The token manager failed to grant the token.

[DFS_EINVAL] The file specified by Fidp does not exist, or the caller passed in some invalid
argument.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

134 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_GetToken()

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 135

AFS_GetStatistics() DCE DFS File Exporter Interface

NAME
AFS_GetStatistics — Obtain file server statistics

SYNOPSIS
error_status_t AFS_GetStatistics(

/* IN */ handle_t h,
/* OUT */ afsStatistics *Statisticsp
);

ARGUMENTS

h The RPC binding handle.

Statisticsp File server statistics.

DESCRIPTION
This call returns statistics concerning file server throughput, resource usage and disk storage at
the file server to which the call is directed. It is used for status monitoring purposes only. It
always returns the value 0 indicating that the call was successful.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

136 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_ReleaseTokens()

NAME
AFS_ReleaseTokens — Release tokens granted by file server

SYNOPSIS
error_status_t AFS_ReleaseTokens(

/* IN */ handle_t h,
/* IN */ afsReturns *Tokens_Arrayp,
/* IN */ unsigned32 Flags
);

ARGUMENTS

h The RPC binding handle.

Tokens_Arrayp Tokens granted to this file server which are to be relinquished.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

DESCRIPTION
This call releases an array of tokens to a given file server. The tokens must have been granted
originally by the file server to which this call is directed. The cache manager should not attempt
to give up more than {MAX_TOKEN_RELEASE} tokens in any one call to a file server.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_EINVAL] Caller has not registered a token revocation service.

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

[TKM_ERROR*] A token managment failure occurred.

Part 4: DFS Client/Server and Token Manager Interfaces 137

AFS_GetTime() DCE DFS File Exporter Interface

NAME
AFS_GetTime — Returns the time of day

SYNOPSIS
error_status_t AFS_GetTime(

/* IN */ handle_t h,
/* OUT */ unsigned32 *Secondsp,
/* OUT */ unsigned32 *USecondsp,
/* OUT */ unsigned32 *SyncDistance,
/* OUT */ unsigned32 *SyncDispersion
);

ARGUMENTS

h The RPC binding handle.

Secondsp Number of seconds since January 1, 1970 UTC.

USecondsp Number of microseconds into the current segment.

SyncDistance Estimated path length to source of reliable time.

SyncDispersion Measure of SyncDistance’s variance.

DESCRIPTION
This call returns the time of day in seconds and microseconds in the same format as returned by
the gettimeofdaysystem()call

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

138 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_BulkFetchVV()

NAME
AFS_BulkFetchVV — Obtain many volume version numbers

SYNOPSIS
error_status_t AFS_BulkFetchVV(

/* IN */ handle_t h,
/* IN */ afsHyper *cellIdp,
/* IN */ afsBulkVolIDs *VolIDsp,
/* IN */ unsigned32 NumVols,
/* IN */ unsigned32 Flags,
/* IN */ unsigned32 spare1,
/* IN */ unsigned32 spare2,
/* OUT */ afsBulkVVs *VolVVsp,
/* OUT */ unsigned32 *spare4
);

ARGUMENTS

h The RPC binding handle.

cellIdp The cell identifier for the filesets whose Volume Version numbers are desired.

VolIDsp The fileset identifiers (within cellIdp) whose Volume Version numbers are
desired.

NumVols (Redundant) number of identifiers in VolIDsp.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

spare1, spare2 Spare IN parameters.

VolVVsp The Volume Version numbers for the filesets whose identifiers were passed in.

spare4 Spare OUT parameter.

DESCRIPTION
This call is used to retrieve en masse the Volume Version number of a collection of filesets on the
same cell. This allows for optimization for maintaining groups of filesets, replicated or
otherwise, as might be done by a cache manager or a replication server.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] The fileset specified does not exist.

[DFS_EACCES] The caller lacks the required access rights.

[DFS_EINVAL] The value for NumVols is too small .

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

Part 4: DFS Client/Server and Token Manager Interfaces 139

AFS_ProcessQuota() DCE DFS File Exporter Interface

NAME
AFS_ProcessQuota — Get or set quota information

SYNOPSIS
error_status_t AFS_ProcessQuota(

/* IN */ handle_t h,
/* IN */ afsFid *Fidp,
/* IN */ afsHyper *minVVp,
/* IN */ unsigned32 Flags,
/*INOUT*/ afsQuota *quotaListp,
/* OUT */ afsFetchStatus *OutStatusp,
/* OUT */ afsVolSync *Syncp
);

ARGUMENTS

h The RPC binding handle.

Fidp File ID of file or directory whose quota is being changed.

minVVp The minimum-acceptable version number on the fileset containing this file or
directory.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

quotaLisp The quota information being provided or obtained.

OutStatusp The updated file status after the operation.

Syncp The current synchronization information about the fileset containing this file;
this allows for detection of changes in the fileset containing the specified file
or directory.

DESCRIPTION
This function is obsolete. It does not perform any useful function. It was used to get or set quota
information; the same call was used for both operations. The quota information is interpreted in
a file system-specific manner. For example, the quota set with a UFS file system is a Berkeley
quota, having per user components, while with a DCE LFS file system, the relevant quota is a
DCE LFS per-fileset quota field.

RETURN VALUE
This function always fails and returns the error [DFS_EINVAL]. A value of −1 is returned and
errno is set to indicate the error.

ERRORS
This function fails if:

[DFS_EINVAL] The quota structure is illegal. This function always returns this error.

140 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_BulkKeepAlive()

NAME
AFS_BulkKeepAlive — Keep multiple tokens active

SYNOPSIS
error_status_t AFS_BulkKeepAlive(

/* IN */ handle_t h,
/* IN */ afsBulkFEX *KAFEXp,
/* IN */ unsigned32 numExecFids,
/* IN */ unsigned32 Flags,
/* IN */ unsigned32 spare1,
/* IN */ unsigned32 spare2,
/* OUT */ unsigned32 *spare4
);

ARGUMENTS

h The RPC binding handle.

KAFEXp Collection of afsFid structures.

numExecFids (Redundant) the number of afsFid structures in KAFEXp.

Flags Any of the AFS_FLAG_* flags defined in the <afs4int.h> file.

spare1, spare2 Spare IN parameters.

spare4 Spare OUT parameter.

DESCRIPTION
This call is used to cause the file exporter to maintain open-for-preserve tokens on the indicated
files until some characteristic interval passes. This call is expected to be useful in preventing
storage for the lazy replicas of those files from being deleted before all cache managers are
finished with it. The characteristic interval is a property of each read-only fileset.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[DFS_ENOENT] An entry in the KAFEXp structure represents a non-existent file.

Part 4: DFS Client/Server and Token Manager Interfaces 141

AFS_SetParams() DCE DFS File Exporter Interface

NAME
AFS_SetParams — Set cache manager parameters

SYNOPSIS
error_status_t AFS_SetParams(

/* IN */ handle_t h,
/* IN */ unsigned32 Flags,
/*INOUT*/ struct afsConnParams *paramsP
);

ARGUMENTS

h The RPC binding handle.

Flags Either AFS_PARAM_TSR_COMPLETE or AFS_PARAM_RESET_CONN.

paramsP A block of connection-oriented parameters.

DESCRIPTION
This call allows the Cache Manager to request that the File Server alter its connection
parameters, in particular the lifetimes and timeouts associated with token state maintenance.
Parameter suggestions are supplied by the Cache Manager as the input values in *paramsP, and
the values selected by the File Server in response are returned to the Cache Manager as the
output values returned via *paramsP.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a non-zero value will indicate the
error.

ERRORS
This function fails if:

[FSHS_ERR*] File server does not recognize client, or is in some form of recovery.

142 X/Open Preliminary Specification (1996)

DCE DFS File Exporter Interface AFS_GetServerInterfaces()

NAME
AFS_GetServerInterfaces — Obtain file server’s supported interfaces

SYNOPSIS
error_status_t AFS_GetServerInterfaces(

/* IN */ handle_t h,
/*INOUT*/ dfs_interfaceList *serverInterfacesP
);

ARGUMENTS

h The RPC binding handle.

serverInterfacesP Will contain the interface information when the call returns. Currently there
is only one interface defined.

DESCRIPTION
This call returns information about the RPC interfaces that the file server is exporting.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

Part 4: DFS Client/Server and Token Manager Interfaces 143

DCE DFS File Exporter Interface

144 X/Open Preliminary Specification (1996)

Chapter 7

Cache Manager Service Interface

The cache manager interface describes the interface between the client’s cache manager and the
server’s file exporter (where the server initiates the operation). This section details the services
provided by the cache manager; those provided by the file exporter (file server) are described in
the topic, DCE DFS File Exporter Interface, found in Chapter 6 on page 99.

All of these calls are expected to return success ([error_status_ok]) unless noted otherwise.

Part 4: DFS Client/Server and Token Manager Interfaces 145

TKN_InitTokenState() Cache Manager Service Interface

NAME
TKN_InitTokenState — Initialize token state

SYNOPSIS
error_status_t TKN_InitTokenState(

/* IN */ handle_t h,
/* IN */ unsigned32 Flags,
/* IN */ unsigned32 hostLifeGuarantee,
/* IN */ unsigned32 hostRPCGuarantee,
/* IN */ unsigned32 deadServerTimeout,
/* IN */ unsigned32 serverRestartEpoch,
/* IN */ unsigned32 spare1,
/* IN */ unsigned32 spare2,
/* IN */ unsigned32 spare3,
/* OUT */ unsigned32 *spare4,
/* OUT */ unsigned32 *spare5,
/* OUT */ unsigned32 *spare6
);

ARGUMENTS

h The RPC binding handle.

Flags Flags (TKN_FLAG*) indicating the server’s likely token state.

hostLifeGuarantee
Duration of the host lifetime on the server.

hostRPCGuarantee
Duration of the promise of RPC attempts from the server.

deadServerTimeout
Suggested maximum interval between probes from Cache Managers to
unresponsive servers.

serverRestartEpoch
Numeric tag for this run of the File Server, to allow Cache Managers to
distinguish network partitions from server crashes.

spare1 .. spare6 Spares.

DESCRIPTION
Initialize token state at the workstation, with respect to the calling server. All tokens from the
calling server should be discarded or renegotiated.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

146 X/Open Preliminary Specification (1996)

Cache Manager Service Interface TKN_Probe()

NAME
TKN_Probe — Probe state of cache manager

SYNOPSIS
error_status_t TKN_Probe(

/* IN */ handle_t h
);

ARGUMENTS

h The RPC binding handle.

DESCRIPTION
This call is a noop used by the server to check that a cache manager is still running. By
periodically polling apparently inactive cache managers, a file server can timeout down
workstations before actually trying to revoke a token at that workstation, allowing the operation
eventually triggering a token revocation operation to complete faster.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

Part 4: DFS Client/Server and Token Manager Interfaces 147

TKN_TokenRevoke() Cache Manager Service Interface

NAME
TKN_TokenRevoke — Request revocation of a previously granted token

SYNOPSIS
error_status_t TKN_TokenRevoke(

/* IN */ handle_t h,
/*INOUT*/ afsRevokes *revokeDescp
);

ARGUMENTS

h The RPC binding handle.

revokeDescp The tokens which are being revoked.

DESCRIPTION
This call is used by the file exporter requesting that a set of previously granted tokens be
relinquished. If possible, the client’s cache manager is to release these tokens.

RETURN VALUE
If this function succeeds, it returns a value of zero. Otherwise, a value of zero is returned and the
revoke descriptor is set to indicate exactly which tokens were not revoked. This function always
returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success. Even when a token is not returned, this
call returns success but indicates in the revoke descriptor exactly which
tokens were not revoked.

148 X/Open Preliminary Specification (1996)

Cache Manager Service Interface TKN_GetCellName()

NAME
TKN_GetCellName — Request client cell name

SYNOPSIS
error_status_t TKN_GetCellName(

/* IN */ handle_t h,
/* IN */ afsHyper *Cellp,
/* OUT */ NameString_t CellNamep
);

ARGUMENTS

h The RPC binding handle.

Cellp The ID for a cell.

CellNamep The string name corresponding to cellP.

DESCRIPTION
This routine is used to perform cell id to cell name translation.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

Part 4: DFS Client/Server and Token Manager Interfaces 149

TKN_SetParams() Cache Manager Service Interface

NAME
TKN_SetParams — Request client change parameters

SYNOPSIS
error_status_t TKN_SetParams(

/* IN */ handle_t h,
/* IN */ unsigned32 Flags,
/*INOUT*/ afsConnParams *paramsP
);

ARGUMENTS

h The RPC binding handle.

Flags For future expansion.

paramsP A block of connection-oriented parameters.

DESCRIPTION
This call allows the File Server to request that a cache manager alter its connection parameters,
in particular the lifetimes and timeouts associated with token state maintenance. Parameter
suggestions are supplied by the file server as the input values in *paramsP,and manager in
response are returned to the file server as the output values returned via *paramsP.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

150 X/Open Preliminary Specification (1996)

Cache Manager Service Interface TKN_GetServerInterfaces()

NAME
TKN_GetServerInterfaces — Determine interfaces supported by client

SYNOPSIS
error_status_t TKN_GetServerInterfaces(

/* IN */ handle_t h,
/*INOUT*/ dfs_interfaceList *serverInterfacesP
);

ARGUMENTS

h The RPC binding handle.

serverInterfacesP List of supported interfaces.

DESCRIPTION
This call could be used by the file server to determine what interfaces a cache manager client
supports. This would permit compatibility between older/newer versions of file exporters and
cache managers.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

Part 4: DFS Client/Server and Token Manager Interfaces 151

TKN_AsyncGrant() Cache Manager Service Interface

NAME
TKN_AsyncGrant — Notify client of token availability

SYNOPSIS
error_status_t TKN_AsyncGrant(

/* IN */ handle_t h,
/* IN */ afsFid *grantedFileIDp,
/* IN */ afsToken *grantedTokenP,
/* IN */ long grantedRequestID
);

ARGUMENTS

h The RPC binding handle.

grantedFileIDp File identifier of the file or directory to which the granted token applies.

grantedTokenP The token that was granted.

grantedRequestID Identifier of the original async grant request.

DESCRIPTION
This call allows the file server to notify a cache manager client than an async grant request for a
token has succeeded.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success.

ERRORS
None.

This function succeeds if:

[error_status_ok] This function always returns success.

152 X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 5:

Access Control Lists (ACLs) in DFS

This part of the DCE DFS provides an overview of Access Control Lists (ACLs) in DFS, their
formats and the interface provided to manipulate them.

Part 5: Access Control Lists (ACLs) in DFS 153

154 X/Open Preliminary Specification (1996)

Chapter 8

Access Control List Overview

This chapter describes the use of DCE Access Control Lists (ACLs) with DFS. An ACL lists the
authorized users of an object and their allowed accesses. In DFS, ACLs control access to
filesystem objects (files and directories) and server processes. These filesystem objects are stored
in the DCE Local File System (LFS) as filesets. A fileset as used in this document is a hierarchical
grouping of files that is mangaed as a single unit or entity. These filesets can vary in size but are
usually smaller than a standard UNIX disk partition. In DFS, multiple DCE LFS filesets can be
stored on a single UNIX disk partition. A non-LFS partition (for example, a UNIX Partition) in
DFS can support (contain) only one fileset.

The ACLs used in DCE LFS filesets and discussed in this document in Part 5, Access Control Lists
(ACLs) in DFS, differ from those used in other DCE Components. Refer to the Security Service
portion of the OSF DCE Administration Guide — Core Components for details concerning
DCE ACLs if further information is desired. This chapter also discusses groups. Further
information about them can also be found in the Security Service portion of the OSF DCE
Administration Guide — Core Components as well. Information on DFS usage of groups can
also be found in the OSF DCE Administration Guide — Core Components for OSF DCE 1.1.

Associated with most DFS server processes is an administrative list that defines the users and
server machines (called principals) and also the groups that can perform operations that affect
the (server) process. Furthermore, server processes on different machines can have different lists
(or each process may use a copy of the same list). Additionally, processes can share the same
administrative list even though they may be of different types. Refer to Chapter 4 of the OSF
DCE DFS Administration Guide and Reference for OSF DCE 1.1 for information on using
administrative lists in DFS.

8.1 ACL Types
There are three types of ACLs. They are:

Object ACL
Controls access to the object itself. Both filesystem objects and administrative lists have this
ACL.

Initial Object Creation ACL
Possessed only by a directory. It is the default ACL inherited by a file created in the
directory.

Initial Container Creation ACL
Possessed only by a directory. It is the default ACL inherited by a sub-directory created in
the directory.

The existence of any of these three types of ACLs is mutually exclusive of any other. They can
exist independently of one another or may not exist at all. Or, a given directory can have all,
some, or none of these ACLs. The OSF DCE DFS Administration Guide and Reference (for
OSF DCE 1.1) discusses ACLs and their inheritance in detail and explains the correspondence
between their existence or absence and their contents.

Part 5: Access Control Lists (ACLs) in DFS 155

ACL Entry Types Access Control List Overview

8.2 ACL Entry Types
An ACL consists of a number of entries, each of which typically specify the access allowed to a
user, group or organization. Typically, an ACL defines the operations that a user or group (or
organization) can perform on an object (file or directory) in the form of permissions granted to
various users or groups. However, these permissions can also apply to an entity called a
principal, such as a server, that might be invoked on behalf of a user in order to complete a
function requested by the user.

There is the concept of a default cell that is discussed in this section. A default cell of an ACL is
the cell with respect to which the entries for the ACL are defined. A user or group named as an
entry type in an ACL is defined to be from the default cell unless the entry type explicitly names
a different cell.

In this document, a local user is one whose local cell is the same as the default cell of an ACL.
Similarly, a foreign user is one whose default cell is different from the default cell of an ACL.
Also, a foreign cell is different from the default cell of the ACL. A user’s local cell is the cell in
whose registry database the user’s principal and account are defined.

The various types of entries are as follows:

user_obj Specifies access rights for the owner principal of the object.

group_obj Specifies access rights for the member principals of the group that owns the object.

user Specifies access rights for a specific principal in the default cell of the ACL.

group Specifies access rights for the member principals of a specific group in the default
cell of the ACL.

other_obj Specifies access rights for all other principals in the default cell of the ACL.

foreign_user Specifies access rights for a specific principal in a specific foreign cell.

foreign_group Specifies access rights for the member principals of a specific group in a specific
foreign cell.

foreign_other Specifies access rights for all principals in a specific foreign cell who are not
covered by the foreign_user and foreign_group entries.

any_other Specifies access rights for all other principals in all other foreign cells and
unauthenticated users.

extended A provision for future types.

8.2.1 Rules Governing Entries for Filesystem ACLs

• A filesystem ACL must have the user_obj, group_obj and other_obj entries. All others are
optional.

• An ACL can only have 1 entry each of types user_obj, group_obj, other_obj and any_other.

• If an entry other than user_obj, group_obj or other_obj exists on an ACL, then the optional
entry, mask_obj, defined in Section 8.2.2 on page 157 must also exist.

• An ACL that has an authenticated entry, discussed in Section 8.2.3 on page 157, cannot be
modified (until and unless this entry is removed).

• The user_obj entry must always explicitly retain the c permission in order that the owner not
be denied access to an owned object.

156 X/Open Preliminary Specification (1996)

Access Control List Overview ACL Entry Types

8.2.2 Optional ACL Entry Mask Types for Authenticated Users

The following optional entries are masks that serve to limit the maximum access allowed. They
apply to authenticated users. An authenticated uses is one whose DCE identity has been
verified by the DCE Security Service and whose credentials have not expired.

mask_obj Specifies maximum access allowed to all principals except principals covered by
user_obj and other_obj. Only the access found in both the entry and the mask_obj are
granted. In absence of this mask, the default action is to place no limitations at all on
types of access allowed.

This optional entry applies only to DCE LFS objects. It does not apply to ACLs on
objects associated with other DCE components.

Authenticated Access Determination

In order to determine access permitted for an object for a user that is authenticated, the ACL is
evaluated according to the steps in Section 8.7 on page 161.

8.2.3 ACL Entry Types for Unauthenticated Users

An unauthenticated user is one that has logged in to a machine but has not logged into DCE.
Thus, the user’s DCE identity has not been verified by the DCE Security Service. Once
authenticated,a user is provided a set of credentials by the DCE Security Service. If the DCE
credentials of such a user have expired, the user is also considered to be an unauthenticated
user.

DCE ACLs used with objects for other DCE components include an additional unauthenticated
entry type that masks the access that is permitted for unauthenticated users. There are no entry
types on an ACL for unauthenticated users for DCE LFS objects.

Unauthenticated Access Determination

For users that are unauthenticated, access permissions are determined thusly rather than by
Section 8.7 on page 161:

A. For access to an object in a DCE LFS fileset:

• The user is assigned the identity nobody which is treated as an authenticated user from
an unknown foreign cell1. The primary group of the identity nobody is the group
nogroup.

• The user permissions are associated with the any_other entry2.

Note: Prior to DCE 1.1, it was possible for unauthenticated entries to exist on ACLs of
DCE LFS objects; however, they were ignored when determining the access
persissions allowed for the user on the objects. If an existing object contains such
an entry, it should be removed3. For DCE 1.1 and newer versions, unauthenticated
entries for an ACL continue to be ignored when determining the access
permissions.

1. Since the cell is unknown, its default cell is also unknown. Thus, no entries pertaining to the unknown (foreign) cell can be
created on any ACL.

2. If an any_other entry is not present on the ACL, the user has no permissions. If unauthenticated users are to be prevented from
acquiring permissions for an object, this can be accomplished by not having an any_other entry on the object’s ACL.

Part 5: Access Control Lists (ACLs) in DFS 157

ACL Entry Types Access Control List Overview

B. For access to an object in a non-LFS fileset:

• The user is assigned the identity nobody which is treated as an authenticated user
regardless of their cell4.

• The user permissions are associated with the other UNIX mode bits5.

8.2.4 Simple and Complex Entry Types

Simple ACL entries refer to entries that do not need to store a principal id in them. These are the
user_obj, group_obj, other_obj, any_other and mask_obj entries. Complex entries refer to all other
entry types and store a principal id in the entry.

8.3 Delegates and DCE LFS Objects
A user initially requesting some operation on an DCE LFS object is referred to as the initiator of
the operation. Typically the request is made for direct access to such an object. There are
instances when a server may perform the work involved in a request on behalf of the initiator,
such as a request to print a file. In such instances, the server principal that has been delegated the
operation on the initiator’s behalf is referred to as the delegate. The delegate performs operations
on an object on behalf of the initiator. The operation performed in this manner is referred to as a
delegation operation.

For an operation that does not involve delegation, only the initiator needs to have the necessary
access permissions to perform a requested operation. However, for a delegation operation, both
the initiator and the delegate must have the access permissions necessary to perform the
operation.

DCE ACLS permit the granting of access permissions to a principal that apply only when the
principal is a delegate on behalf of the operation. The next section describes the ACL entry types
that are provided for delegation operations.

3. Moving or restoring a DCE LFS fileset to a fileserver that is running DCE 1.1 or a newer version will automatically result in
having any unauthenticated ACL entries removed from all objects in the fileset.

4. This includes all foreign users (authenticated and unauthenticated alike).
5. For clarity, as previously stated, authenticated users from foreign cells are granted the permissions associated with their

authenticated foreign identities when they access objects in DCE LFS filesets.

158 X/Open Preliminary Specification (1996)

Access Control List Overview ACL Entry Types for Delegation

8.4 ACL Entry Types for Delegation
There are entries for delegation corresponding to most of the entries specified in that can be used
for delegation with DCE LFS objects. Since DCE LFS does not examine the entry types
associated with the following:

• user_obj

• group_obj

• other_obj.

for delegation, entries for these types shown in Section 8.2 on page 156 are omitted from this list
of entry types for delegation. The valid entry types for delegation are the following:

user_delegate Specifies access rights for a specific principal from the default cell of the
ACL acting as a delegate.

group_delegate Specifies access rights for the members of a specific group from the
default cell of the ACL acting as a delegate.

foreign_user_delegate Specifies access rights for a specific principal from a specific foreign cell
acting as a delegate.

foreign_group_delegate Specifies access rights for the member principals of a specific group in a
specific foreign cell.

foreign_other_delegate Specifies access rights for all principals in a specific foreign cell who do
not match any of the preceeding delegation entries acting as deletgates.

any_other_delegate Specifies access rights for all other principals in all other foreign cells who
do not match any of the preceeding delegation entries acting as
deletgates.

8.4.1 ACL Access Types for Delegation

Each of the delegation ACL entry types in the previous section can grant any of the access
permissions available for DCE LFS objects. Further, each permission has the same meaning for a
delegation entry that it has for a non-delegation entry. Refer to Section 8.5 for the list of the
permissions and their meaning.

8.5 Access Types
A principal may access an object in a number of ways which define the operations the principal
may perform on that object. These types of access are frequently termed permissions. If the
object is a directory, certain permissions which apply only to it further define the types of access
permitted on the directory object. These are the insert and delete permissions shown below.

The types of access that a principal can be granted to an object are defined to be the following:

read Rights grant the user the ability to read and/or stat the contents of the object in
question. It gives the possessor the ability to read the names and file IDs stored
within a directory, as well as the ability to stat the directory. The read right for a
file gives the possessor the ability to stat the file as well as read the data stored
within the file.

write Rights allow the principal to update the contents of a file. This right, for
directories, is split into two other rights, insert and delete rights.

Part 5: Access Control Lists (ACLs) in DFS 159

Access Types Access Control List Overview

insert Rights allow the principal to add entries to a directory. This includes the right to
perform renames where the target is located within the directory. Note that if
the target already exists, one will also require delete rights to remove the target of
the rename system call.

delete Rights allow the principal to remove entries from a directory. This includes the
right to rename an object from one directory, as well as the right to obliterate an
entry by renaming another entry ‘‘on top of it’’.

execute/search Rights allow the principal to execute a program (for files), or examine individual
directory entries (for directories). Examining individual entries differs from
enumerating the contents of a directory in that the former allows the retrieval of
a piece of information only if the entire correct string name of the relevant file is
presented to the file system.

control Rights allow the principal to perform those operations normally reserved to a
file or directory’s owner. This includes executing the chmod and utimes system
calls, as well as modifying the ACL on the object.

8.6 Interaction of Filesystem ACLs with UNIX Permission Bits
In the UNIX operating system, file system protection for files and directories (henceforth called
file and directory objects in this document) is provided by a set of bits called mode bits. The bits
govern the operations a user can perform, and are called read, write, and execute mode bits. These
bits determine access permissions on file and directory objects for three classifications of users:

• the user who owns the object

• members of the group that owns the object

• all other users.

File and directory objects in DCE filesystems, frequently referred to as DCE LFS filesets, also
have mode bits. In addition, the protection of such files and directories can be augmented with
DCE ACLs.

Note: DCE ACLs are used only with objects in DCE LFS filesets. For most non-LFS filesets,
UNIX mode bits are the only form of protection.

The interaction of filesystem ACLs with UNIX permission mode bits depends in part upon the
characteristics of the parent directory, for both directories and files within the filesystem. It also
depends upon whether the file or directory is created by a foreign user. The governance is as
follows:

• If an object’s (file or directory) parent directory has an appropriate Initial Creation ACL (object
or container), the object has inherited an Object ACL as its form of protection. The object has
UNIX mode bits but these are also augmented by the inherited Object ACL.

• If an object’s parent directory does not have an appropriate Initial Creation ACL, the object
relies entirely upon mode bits as its only form of protection.

There is an exception to this rule in that if a file or directory is created by a foreign user, an
Object ACL is always created for protection even if the parent directory does not have the
appropriate Initial Creation ACL.

In DFS, an object’s UNIX mode bits and its ACL permissions are synchronized. The UNIX owner
permission bits always correspond to user_obj ACL entry permissions. The UNIX other
permission bits always correspond to other_obj ACL entry permissions. The correspondence for

160 X/Open Preliminary Specification (1996)

Access Control List Overview Interaction of Filesystem ACLs with UNIX Permission Bits

UNIX group permission bits depends upon the presence or absence of the mask_obj ACL entry. If
the ACL contains a mask_obj entry, the UNIX group permission bits correspond to the mask_obj
entry permissions, else the UNIX group permission bits correspond to group_obj ACL entry
permissions.

Modifications to the simple ACL entries user_obj, group_obj and other_obj result in modification of
the corresponding UNIX permission bits and vice versa. Appendix A on page 221, Mapping DFS
ACLs to UNIX mode bits, discusses in more detail the relationship between ACLs and UNIX mode
bits and provides a number of examples demonstrating the synchronization provided by DFS as
changes are made.

8.7 Access Check Algorithm
To determine the access allowed to a principal on an object, the entry in the object’s ACL
matching the principal is located. This determination is made by examining the object’s ACL
entries using the following sequence of steps. Each step is only executed if the previous step did
not result in a match.

1. The principal id is compared with the id specified in the user_obj, user and foreign_user ACL
entries in sequence. The first matching entry is used. If the matching entry is not user_obj,
the mask_obj permissions mask is applied to the permissions allowed by the matching
entry. Otherwise (the principal owns the object), the access is not filtered through the
mask_obj entry.

2. The principal id is matched against the group_obj entry. If a match is found the mask_obj
entry is used, as specified earlier, to filter the access allowed.

3. The principal id is matched against all the group and foreign_group entries. The sequence in
which these entries are matched is not relevant. The set-union of permissions allowed by
all matched entries, is filtered by both the mask_obj entry (if it exists) to determine the
access permitted.

4. If the principal is a member of the default cell, the permissions specified in the other_obj
entry determine the access allowed.

Note: The premissions are not filtered through the mask_obj entry.

5. If the principal is from a foreign cell, the principal is matched with the foreign_other entries.
If a match is found, the permissions allowed in the matching entry are filtered by the
mask_obj entry to determine the access allowed.

6. If the principal is from a foreign cell and if that cell does not have a foreign_other entry, the
permissions allowed by the any_other entry are filtered through the mask_obj to determine
the access allowed.

7. If a match is not found in any of the previous steps, the principal matches no entry and is
denied access to the object.

Part 5: Access Control Lists (ACLs) in DFS 161

Access Check Algorithm for Delegation Access Control List Overview

8.8 Access Check Algorithm for Delegation
A principal that is initiating an operation is granted access permission from the ACL entry types
described in Section 8.2 on page 156. A principal acquires permissions from a delegation entry
only when acting as a delegate. Additionally, for delegation, DCE LFS filters all access
permissions to be granted via delegation entries through the mask_obj entry of the ACL. The
delegation entry types are described in Section 8.4 on page 159.

Note: All delegation entry types in an ACL are optional. No delegation is permitted for an
ACL with no delegation entry types.

In the DCE LFS, an operation requested by a delegate is performed only if the initiator and the
delegate have the access permissions necessary to perform the operation. An DCE LFS object
may have more than one delegate that has been specified. In this instance, if the initiator or one
of the delegates does not have the required access, DCE LFS will refuse to perform the request.

The following sequence is used in determining the access allowed to a principal that is acting as
a delegate. The sequence involves both delegation and non-delegation ACL entry types. Each
step is only executed if the previous step did not result in a match.

1. The delegate owns the object. The delegate is granted the access permissionf from the
user_obj entry.

2. If one of the following entries exists, listed in checking priority order, the delegate is
granted access permissions from the first of these entries that the delegate matches:

• user

• user_delegate

• foreign_user

• foreign_user_delegate.

3. One or the other of the following is true for the delegate:

A. The delegate is a member of the group that owns the object. In this instance, the
permissions are granted via the group_obj entry.

B. The delegate is a member of a group for which one of the following entries listed in
checking priority order, exist. In this instance, the permissions from all the entries
that the delegate matches are granted to the delegate. The entries are:

• group

• group_delegate

• foreign_group

• foreign_group_delegate.

4. The delegate is from the default cell. In this instance, the delegate is granted the access
permissions from the other_obj entry.

5. The delegate is from a foreign cell for which either of the following entries listed in
checking priority order, exist. In this instance, the delegate is granted the access
permissions associated with the first of these entries that the delegate matches. They are:

• foreign_other

• foreign_other_delegate.

162 X/Open Preliminary Specification (1996)

Access Control List Overview Access Check Algorithm for Delegation

6. The delegate is from a foreign cell and either of the following entries listed in checking
priority order, exist. In this instance, the delegate is granted the access permissions
associated with the first of these entries that the delegate matches. They are:

• any_other

• any_other_delegate.

7. The delegate matches no entry. In this instance, the delegate is denied access to the DCE
LFS object.

8.8.1 Delegation and non-DCE LFS Objects

Since non-LSF objects do not have DCE ACLs, the access permissions required for delegation
involving a non-LFS object are based solely upon the identity and access permissions of the last
delegate in the chain. This is to say, the last delegate in the chain acquires the access permissions
on a non-LFS object via the user, group or other (UNIX) mode bits.

Similarly, for administrative lists, delegation is not considered when determining administrative
priviledges. Thus, the last delegate in the chain must be included in the appropriate
administrative list in order to be able to perform a priviledged operation.

Also, since delegation is first available with DCE 1.1, the following restrictions apply. It is not
possible to do the following for a fileset having ACLs containing one or more objects having
delegation entries.

• Move the fileset to:

• Restore the fileset to:

• Add a replication site for the fileset on:

a File Server that uses a version of DCE earlier than DCE1.1.

Refer to the OSF DCE DFS Administration Guide and Reference for OSF DCE 1.1, for
information relative to restrictions for delegation. Chapter 3 of that document provides
information of this nature. Chapter 4 of that document provides information about
administration considerations.

Part 5: Access Control Lists (ACLs) in DFS 163

Access Control List Overview

164 X/Open Preliminary Specification (1996)

Chapter 9

ACL Storage Format

This chapter describes the structured formats used for ACLs in memory. ACLs are stored in
different formats in memory (or, in core) than on disk. In-core ACLs use the structured format
described in this chapter, but disk ACLs are stored in an unstructured byte-stream format.
In-core ACLs are packed into a byte-stream before being stored on disk and similarly when
ACLs are read from disk, they are unpacked into the in-core format.

This in-core format can seemingly differ depending upon whether the ACL is being manipulated
in the kernel or in user space. The next section, Section 9.1, shows how the differences are
accounted for. The in-user-space ACLs are referred to as administrative list ACLs. Chapter 8 on
page 155, Access Control List Overview, provides additional information about administrative lists
and their usage in DCE DFS.

ACLs specify access permissions for the users and groups that can perform the specified types of
operations (read, or write, for instance) on files and directories. Administrative lists specify the
users and groups that can perform specified actions affecting specified server processes. For a
DFS server process, groups can be specified on the administrative list associated with it. Then if
certain users need access to the process, they are included in the group. Similarly, if a group of
users needs access to more than one server process, they can be specified in the Registry
Database as a group. Thus, they can be added or removed from the appropriate administrative
list(s) as a group. A system administration team is a good example of such a group.

9.1 Principal ID Formats
Administrative lists always store principal ids in 128 bits format on disk and in memory. In
filesystem ACLs, principal ids represent users or groups, which have only 32 significant bits.
Hence, a school of thought proposed storing filesystem ACLs on disk using only 32 bits instead
of 128 bits to prevent wasting disk space. Though this idea has been refuted, the DFS ACL
interface does provide such flexibility and this point is important to understand the interface.
In-core filesystem ACLs use the full 128 bits always.

The next section, Section 9.2, shows the two formats defined as either the full 128 bits or the 32
bits format. The two formats are manipulated by the functions in Chapter 10 on page 171, Access
Control List Interface Functions.

9.2 Principal Identifier Format
In-core ACLs store principal ids in the full 128 bit UUID6 format.

typedef struct epi_uuid {
u_int32 longField1;
u_int16 shortField1;
u_int16 shortField2;
unsigned char miscChars[8];

6. UUID is a universally unique identifier for an object.

Part 5: Access Control Lists (ACLs) in DFS 165

Principal Identifier Format ACL Storage Format

} epi_uuid_t;

#if defined(EPI_USE_FULL_ID)
typedef epi_uuid_t epi_principal_id_t;
#else /* defined(EPI_USE_FULL_ID) */
typedef u_int32 epi_principal_id_t;
#endif /* defined(EPI_USE_FULL_ID) */

9.3 Foreign Cell Principal Identifier Format
A principal from a foreign cell is represented by type epi_uuid_foreign_t.

typedef struct epi_uuid_foreign {
epi_uuid_t id;
epi_uuid_t realm;

} epi_uuid_foreign_t;

9.4 Access Type Format
The access permissions are represented with a bitset type dacl_permset_t. The set also includes
provision for future additional types.

/* the permission sets stored in an acl */

typedef u_int32 dacl_permset_t;

9.4.1 Access Type Definitions

/* the various permissions that may be stored in such a set */
/* first the POSIX ones */
#define dacl_perm_read 0x01
#define dacl_perm_write 0x02
#define dacl_perm_execute 0x04
#define dacl_perm_control 0x08
#define dacl_perm_insert 0x10
#define dacl_perm_delete 0x20
#define DACL_USERLIST_PERMS (dacl_perm_read | dacl_perm_write | \

dacl_perm_control)
#define DACL_USERLIST_PERMSTRING "rwc"

#define ntoh_dacl_entry_permset_t(permsetP) *entryTypeP = ntohl(*permsetP)
#define hton_dacl_entry_permset_t(permsetP) *entryTypeP = htonl(*permsetP)

166 X/Open Preliminary Specification (1996)

ACL Storage Format ACL Entry Type Format

9.5 ACL Entry Type Format
The ACL entry types are specified by the type dacl_entry_type_t.

typedef u_int32 dacl_entry_type_t;
#define dacl_entry_type_user_obj 0
#define dacl_entry_type_group_obj 1
#define dacl_entry_type_other_obj 2
#define dacl_entry_type_user 3
#define dacl_entry_type_group 4
#define dacl_entry_type_mask_obj 5
/*
#define dacl_entry_type_class_group 5
#define dacl_entry_type_class_owner 6
#define dacl_entry_type_class_other 7
*/
#define dacl_entry_type_foreign_user 8
#define dacl_entry_type_foreign_group 9
#define dacl_entry_type_foreign_other 10
#define dacl_entry_type_unauth 11
#define dacl_entry_type_extended 12
#define dacl_entry_type_anyother 13

#define dacl_entry_type_user_obj_delegate 14
#define dacl_entry_type_group_obj_delegate 15
#define dacl_entry_type_other_obj_delegate 16
#define dacl_entry_type_user_delegate 17
#define dacl_entry_type_group_delegate 18
#define dacl_entry_type_foreign_other_delegate 19
#define dacl_entry_type_foreign_user_delegate 20
#define dacl_entry_type_foreign_group_delegate 21
#define dacl_entry_type_any_other_delegate 22

#define ntoh_dacl_entry_type_t(entryTypeP) *entryTypeP = ntohl(*entryTypeP)
#define hton_dacl_entry_type_t(entryTypeP) *entryTypeP = htonl(*entryTypeP)

Note: The entry type unauth is no longer valid, for DCE 1.1 and newer versions of DFS. See
the note in Section 8.2.3 on page 157 of the chapter, Access Control List Overview.

Part 5: Access Control Lists (ACLs) in DFS 167

Simple ACL Entry Format ACL Storage Format

9.6 Simple ACL Entry Format
Each of the simple ACL entries is represented by type dacl_simple_entry_t defined as:

typedef struct dacl_simple_entry {
u_int32 is_entry_good;
dacl_permset_t perms; /* permissions allowed */

} dacl_simple_entry_t;

The simple entries are stored in the ACL as an array indexed by the entry type
dacl_simple_entry_type_t.

/* the following enumerated type is used only in memory */
typedef enum dacl_simple_entry_type {

dacl_simple_entry_type_userobj,
dacl_simple_entry_type_groupobj,
dacl_simple_entry_type_otherobj,
dacl_simple_entry_type_maskobj,
dacl_simple_entry_type_anyother,
dacl_simple_entry_type_userobj_delegate,
dacl_simple_entry_type_groupobj_delegate,
dacl_simple_entry_type_otherobj_delegate,
dacl_simple_entry_type_anyother_delegate,
dacl_simple_entry_type_unauthmask /* this must remain as the last

of the enums */
} dacl_simple_entry_type_t;

Note: The entry, unauthmask, must remain as the last of the enums. See Section 9.8 on page
169 for usage information.

9.7 Complex ACL Entry Format
Each of the complex ACL entries is represented by type dacl_complex_entry_t defined as
follows. This structure holds entries that have data associated with them.

typedef struct dacl_complex_entry {
u_int32 num_entries;
u_int32 entries_allocated;
dacl_entry_t* complex_entries;

} dacl_complex_entry_t;

typedef struct dacl_entry {
dacl_permset_t perms;
dacl_entry_type_t entry_type;
union {

epi_uuid_t id; /* for locally keyed entries */
epi_uuid_foreign_t foreign_id; /* for foreign keyed entries */
dacl_extended_info_t extended_info; /* for uninterpreted data */

} entry_info;
} dacl_entry_t;

The complex entries are stored in the ACL as an array indexed by the entry type
dacl_complex_entry_type_t. The user andgroup entries include both foreign and local entries. The
other entry includes both foreign other and extended entries.

168 X/Open Preliminary Specification (1996)

ACL Storage Format Complex ACL Entry Format

typedef enum dacl_complex_entry_type {
dacl_complex_entry_type_user, /* includes both user and foreign_user */
dacl_complex_entry_type_group, /* includes both group and foreign_group */
dacl_complex_entry_type_user_delegate,
dacl_complex_entry_type_group_delegate,
dacl_complex_entry_type_for_other_delegate,
dacl_complex_entry_type_other /* includes both foreign_other

& extended */
} dacl_complex_entry_type_t;

Note: The entry, other, must remain as the last of the enums. See Section 9.8 for usage
information.

9.7.1 Extended Complex Entry Format

The extended complex ACL entry type dacl_extended_info_t is described as:

typedef struct dacl_format_label {
u_int16 miscShorts[3];
char charField;

} dacl_format_label_t;

typedef struct dacl_extended_info {
epi_uuid_t extensionType;
dacl_format_label_t formatLabel;
u_int32 numberBytes;
char * infoP;

} dacl_extended_info_t;

9.8 ACL Structure
The in-core ACL is described by the type dacl_t.

typedef struct dacl {
epi_uuid_t mgr_type_tag; /* ACL Manager type */
epi_uuid_t default_realm; /* Default cell UUID */
u_int32 num_entries; /* the total number of entries

stored on disk */
dacl_simple_entry_t simple_entries[MAX_SIMPLE_ENTRIES];
dacl_complex_entry_t complex_entries[MAX_COMPLEX_ENTRIES];

} dacl_t;

Note: MAX_SIMPLE_ENTRIES = ((int)dacl_simple_entry_type_unauthmask) + 1
MAX_COMPLEX_ENTRIES = ((int)dacl_complex_entry_type_other) + 1

Part 5: Access Control Lists (ACLs) in DFS 169

The Structures for Reading Lists of sec_id_t ACL Storage Format

9.9 The Structures for Reading Lists of sec_id_t
These are used to avoid copying uuids out of lists in the pacs. Their usage can be seen in
Chapter 10 on page 171, Access Control List Interface Functions. A pac contains certified data that
describes a principal’s privilege attributes including principal name, groups of which the
principal is a member and the native cell of the principal.

9.9.1 Define the epi_sec_id Structure

typedef struct epi_sec_id {
epi_uuid_t uuid;
char * name;

} epi_sec_id_t;

9.9.2 Define the epi_sec_id_foreign Structure

typedef struct epi_sec_id_foreign {
epi_sec_id_t id;
epi_sec_id_t realm;

} epi_sec_id_foreign_t;

170 X/Open Preliminary Specification (1996)

Chapter 10

ACL Interface Functions

This chapter describes the functions available in the ACL interface by which the ACLs can be
manipulated. The functions are used for both in-kernel filesystem ACLs and in-user-space
administrative list ACLs.

Some functions have another interface specialized for filesystem ACLs. These specialized
functions have a dacl_epi prefix typically and are indicated in the interface description.

Appendix B on page 229 contains a list of the return values, along with their explanations, that
can returned by the functions in this chapter. Refer to it for those instances where the function
lists a return value without a reason for it being returned.

Part 5: Access Control Lists (ACLs) in DFS 171

dacl_CheckAccessId() ACL Interface Functions

NAME
dacl_CheckAccessId — perform authorization check

SYNOPSIS
long dacl_CheckAccessId(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
epi_uuid_t * realmIdP,
epi_uuid_t * userIdP,
epi_uuid_t * groupIdP,
epi_sec_id_t * groupIdListP,
unsigned int numGroups,
epi_sec_id_foreign_t * foreignGroupIdListP,
unsigned int numForeignGroups,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP,
int isAuthn
);

ARGUMENTS

aclP Acl for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

realmIdP Cell to which the specified principal belongs. A NULL value or all zero
UUID specifies the default cell (the cell to which the object belongs) .

userIdP Principal desiring access to the object.

groupIdP Primary group of principal .

groupIdListP Supplementary local groups of which the principal is a member.

numGroups Number of local groups.

foreignGroupIdListP Supplementary groups in foreign cells of which the principal is a member.

numForeignGroups Num of supplementary foreign groups.

userObjP Principal who owns the object.

groupObjP Group that owns the object.

isAuthn Non-zero if the principal desiring access is authenticated.

DESCRIPTION
This function performs the authorization check to determine if the access desired by the
specified principal to the object, corresponding to the specified ACL, is allowed. If permBitsP is
non-NULL, the UNIX permission bits are taken into account while performing the authorization
check.

This function has a filesystem specific version called dacl_epi_CheckAccessId () with the same
interface.

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

172 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_CheckAccessId()

[DACL_ERROR_ACCESS_EXPLICITLY_DENIED] if there was a user match but the access
requested is not permitted.

[DACL_ERROR_MGR_PARAMETER_ERROR] if the manager type check found a null principal
id or permission bits.

[DACL_ERROR_PARAMETER_ERROR] if accessRequestedP was null.

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_DetermineAccessAllowed() which is invoked by this routine as part of its determination.

Part 5: Access Control Lists (ACLs) in DFS 173

dacl_DetermineAccessAllowed() ACL Interface Functions

NAME
dacl_DetermineAccessAllowed — determine access allowed

SYNOPSIS
long dacl_DetermineAccessAllowed(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
epi_uuid_t * realmIdP,
epi_uuid_t * userIdP,
epi_uuid_t * groupIdP,
epi_sec_id_t * groupIdListP,
unsigned int numGroups,
epi_sec_id_foreign_t * foreignGroupIdListP,
unsigned int numForeignGroups,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP,
int isAuthn,
dacl_permset_t * accessAllowedP
);

ARGUMENTS

aclP Acl for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

realmIdP Cell to which the specified principal belongs. A NULL value or all zero
UUID specifies the default cell (the cell to which the object belongs).

userIdP Principal desiring access to the object.

groupIdP Primary group of principal.

groupIdListP Supplementary local groups of which the principal is a member.

numGroups Number of local groups.

foreignGroupIdListP Supplementary groups in foreign cells of which the principal is a member.

numForeignGroups Num of supplementary foreign groups.

userObjP Principal who owns the object.

groupObjP Group that owns the object.

isAuthn Non-zero if the principal desiring access is authenticated.

accessAllowedP If non-NULL, set to access allowed.

DESCRIPTION
This function determines the set of access allowed to the specified principal to the object
corresponding to the specified ACL. If permBitsP is non-NULL, the UNIX permission bits are
taken into account while determining the access allowed.

This function has a filesystem specific version called dacl_epi_DetermineAccessAllowed() with the
same interface.

174 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_DetermineAccessAllowed()

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

[DACL_ERROR_ACCESS_EXPLICITLY_DENIED] if there was a user match but the access
requested is not permitted.

[DACL_ERROR_MGR_PARAMETER_ERROR] if the manager type check found a null principal
id or permission bits.

[DACL_ERROR_PARAMETER_ERROR] if accessRequestedP was null.

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_CheckAccessId () which invokes this routine as part of its determination.

Part 5: Access Control Lists (ACLs) in DFS 175

dacl_CheckAccessPac() ACL Interface Functions

NAME
dacl_CheckAccessPac — perform authorization check

SYNOPSIS
long dacl_CheckAccessPac(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
sec_id_pac_t * pacP,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP
);

ARGUMENTS

aclP ACL for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

pacP The PAC7 for the principal desiring access to the object .

userObjP Principal who owns the object.

groupObjP Group that owns the object.

DESCRIPTION
This function performs the authorization check to determine if the access desired by the
principal, corresponding to the specified PAC, to the object, corresponding to the specified ACL,
is allowed. If permBitsP is non-NULL, the UNIX permission bits are taken into account while
performing the authorization check.

This function has a file system specific version called dacl_epi_CheckAccessPac() with the same
interface through DCE 1.1. For versions of DCE newer than 1.1, the two interfaces are no longer
the same.

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_CheckAccessAllowedPac() which is invoked by this routine as part of its determination.

7. A PAC is an acronym of Privilege Attribute Certificate. It contains certified data that describes a principal’s privilege attributes
including principal name, groups of which the principal is a member and the native cell of the principal.

176 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_epi_CheckAccessP ac()

NAME
dacl_epi_CheckAccessPac — perform authorization check

SYNOPSIS
long dacl_epi_CheckAccessPac(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
sec_id_pac_t * pacP,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP,
int networkRootCheck
);

ARGUMENTS

aclP ACL for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

pacP The PAC8 for the principal desiring access to the object.

userObjP Principal who owns the object.

groupObjP Group that owns the object.

networkRootCheck This is a new argument for versions of DCE greater than 1.1. If true, a check is
to be made for the network root ID which has full access. If true, and pacP
principal UUID is the network root ID, this principal has all rights and the
ACL is ignored.

DESCRIPTION
This function performs the authorization check to determine if the access desired by the
principal, corresponding to the specified PAC, to the object, corresponding to the specified ACL,
is allowed. If permBitsP is non-NULL, the UNIX permission bits are taken into account while
performing the authorization check.

This function has a non-file system specific version called dacl_CheckAccessPac() with the same
interface for versions of DCE prior to DCE 1.2. In DCE 1.2, the argument networkRootCheck has
been added.

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_epi_CheckAccessAllowedPac() which is invoked by this routine as part of its determination.

8. A PAC is an acronym of Privilege Attribute Certificate. It contains certified data that describes a principal’s privilege attributes
including principal name, groups of which the principal is a member and the native cell of the principal.

Part 5: Access Control Lists (ACLs) in DFS 177

dacl_CheckAccessAllowedP ac() ACL Interface Functions

NAME
dacl_CheckAccessAllowedPac — determine access allowed

SYNOPSIS
long dacl_CheckAccessAllowedPac(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
sec_id_pac_t * pacP,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP,
dacl_permset_t * accessAllowedP
);

ARGUMENTS

aclP ACL for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

pacP The PAC for the principal desiring access to the object.

userObjP Principal who owns the object.

groupObjP Group that owns the object.

accessAllowedP If non-NULL, set to access allowed.

DESCRIPTION
This function determines the set of access allowed to the principal, corresponding to the
specified PAC, to the object, corresponding to the specified ACL. If permBitsP is non-NULL, the
UNIX permission bits are taken into account while determining the access allowed.

This function has a filesystem specific version called dacl_epi_CheckAccessAllowedPac() with the
same interface if the version of DCE is not newer then 1.1. For DCE 1.2, the interfaces are no
longer the same, as a new argument, networkRootCheck, has been added to
dacl_epi_CheckAccessAllowedPac() after DCE 1.1.

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_CheckAccessPac() which invokes this routine as part of its determination.

178 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_epi_CheckAccessAllowedP ac()

NAME
dacl_epi_CheckAccessAllowedPac — determine access allowed

SYNOPSIS
long dacl_epi_CheckAccessAllowedPac(

dacl_t * aclP,
u_int32 * permBitsP,
dacl_permset_t * accessRequestedP,
sec_id_pac_t * pacP,
epi_principal_id_t * userObjP,
epi_principal_id_t * groupObjP,
int networkRootCheck,
dacl_permset_t * accessAllowedP
);

ARGUMENTS

aclP ACL for the object to which access is desired.

permBitsP UNIX permission bits for the object, if applicable.

accessRequested Access desired.

pacP The PAC for the principal desiring access to the object.

userObjP Principal who owns the object.

groupObjP Group that owns the object.

networkRootCheck This is a new argument for versions of DCE greater than 1.1. If true, a check is
to be made for the network root ID which has full access. If true, and pacP
principal UUID is the network root ID, this principal has all rights and the
ACL is ignored.

accessAllowedP If non-NULL, set to access allowed.

DESCRIPTION
This function determines the set of access allowed to the principal, corresponding to the
specified PAC, to the object, corresponding to the specified ACL. If permBitsP is non-NULL, the
UNIX permission bits are taken into account while determining the access allowed.

This function has a non-filesystem specific version called dacl_CheckAccessAllowedPac() with the
same interface through DCE 1.1. After that, the interfaces are not the same, as this function then
checks for the network root ID and grants it certain priviledges.

RETURN VALUE
[DACL_ERROR_ACCESS_DENIED], if the access desired is not available in the ACL,

Otherwise, if the access requested is granted, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_epi_CheckAccessPac() which invokes this routine as part of its determination.

Part 5: Access Control Lists (ACLs) in DFS 179

dacl_PacFromUcred() ACL Interface Functions

NAME
dacl_PacFromUcred — construct a PAC from UNIX credentials

SYNOPSIS
void dacl_PacFromUcred(

sec_id_pac_t * pacP,
struct ucred * ucredP
);

ARGUMENTS

pacP The PAC.

ucredP The UNIX credentials.

DESCRIPTION
This function constructs a PAC corresponding to the specified UNIX credentials of a principal. If
the local group pointer in the specified PAC is non-NULL, the memory associated with the local
group list is reused to fill it with group information from the specified UNIX credentials. This
assumes that the group list memory reused is big enough to hold all the groups from the ucred.

If the local group pointer is NULL, this routine will allocate a block of memory big enough to
hold all the groups in the ucred. This memory must be released by the caller by calling
osi_Free(pacP->groups, pacP->num_groups).

The foreign group list of the pacP is preserved. If there are any foreign groups associated with
the pacP, pacP->foreign_groups and pacP->num_foreign_groups must be set appropriately. All
other fields in the pacP will be modified, as appropriate.

Note: The caller must ensure that the group list is big enough and that the memory is released
appropriately.

RETURN VALUE
None.

ERRORS
None.

180 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_FlattenAclWithModeBits()

NAME
dacl_FlattenAclWithModeBits — pack an ACL

SYNOPSIS
long dacl_FlattenAclWithModeBits(

dacl_t * aclP,
char ** fileBufferPP,
unsigned int * bytesInBufferP,
u_int32 modeBits,
int useModeBits,
int flattenForDisk
);

ARGUMENTS

aclP The in-core ACL.

fileBufferPP The buffer to hold the packed ACL.

bytesInBufferP Size of the buffer.

modeBits UNIX permission bits for the object, if applicable.

useModeBits Flag that whether the UNIX permission bits should be used.

flattenForDisk Essentially specifies principal id format to be used in the packed ACL9.

DESCRIPTION
This function converts an in-core ACL to its byte-stream representation. If the useModeBits flag
is set, the packed ACL is modified to correspond to the UNIX permission bits.

RETURN VALUE
[DACL_ERROR_TOO_FEW_BYTES], if bytesInBufferP does not contain enough space. In this
case, no processing is done.

[DACL_ERROR_PARAMETER_ERROR], if aclP or fileBufferPP or bytesInBufferP is not valid
(null). In this instance the appropriate error(s) is(are) logged.

Otherwise, [DACL_SUCCESS] is returned to indicate a successful conversion.

ERRORS
None.

SEE ALSO
This function also uses the following routines — Epi_PrinId_FromUuid(), hton_epi_principal_id (),
hton_epi_uuid ().

9. This flattenForDisk parameter provides the support for storing principal ids in the 32 bits format for filesystem ACLs. When the
corresponding argument is zero, the flattened ACL always has 128 bit principal ids. If the argument is non-zero, then the code
performs a runtime check to determine the size of principal ids in the flat ACL. If other appropriate flags have been defined, this
would result in 32 bits principal ids being used in the flattened ACL. However, it was decided not to use 32 bits format and
currently, the runtime check should always result in 128 bits format being used. Also note, that in-core ACLs always store
principal ids in the 128 bits format.

Part 5: Access Control Lists (ACLs) in DFS 181

dacl_FlattenAcl() ACL Interface Functions

NAME
dacl_FlattenAcl — pack an ACL

SYNOPSIS
long dacl_FlattenAcl(

dacl_t * aclP,
char ** fileBufferPP,
unsigned int * bytesInBufferP
);

ARGUMENTS

aclP The in-core ACL.

fileBufferPP The buffer to hold the packed ACL.

bytesInBufferP Size of the buffer.

DESCRIPTION
This function converts an in-core ACL to its byte-stream representation. There are no UNIX
permission bits considered in This function. The size of principal ids is determined at run time.
This is usually used when a filesystem ACL is flattened to be stored to disk.

This function uses dacl_FlattenAclWithModeBits () with modeBits set to DACL_NO_MODE_BITS
(not applicable), useModeBits set to 0 (don’t use mode bits), and flattenForDisk set to 1 (flatten for
disk).

This function has a filesystem specific version called dacl_epi_FlattenAcl with a different interface
described below.

RETURN VALUE
[DACL_ERROR_TOO_FEW_BYTES], if bytesInBufferP does not contain enough space. In this
case, no processing is done.

[DACL_ERROR_PARAMETER_ERROR], if aclP or fileBufferPP or bytesInBufferP is not valid
(null). In this instance the appropriate error(s) is(are) logged.

Otherwise, [DACL_SUCCESS] is returned to indicate a successful conversion.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits (). This function also uses the following routines —
Epi_PrinId_FromUuid(), hton_epi_principal_id (), hton_epi_uuid ().

182 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_epi_FlattenAcl()

NAME
dacl_epi_FlattenAcl — pack an ACL

SYNOPSIS
long dacl_epi_FlattenAcl(

dacl_t * aclP,
char ** fileBufferPP,
unsigned int * bytesInBufferP,
u_int32 modeBits
);

ARGUMENTS

aclP The in-core ACL.

fileBufferPP The buffer to hold the packed ACL.

bytesInBufferP Size of the buffer.

modeBits UNIX permission bits for the object, if applicable.

DESCRIPTION
This function converts an in-core ACL to its byte-stream representation. The packed ACL is
modified to correspond to the specified UNIX permission bits. The 128 bit principal id format is
used in the flattened ACL.

This function uses dacl_FlattenAclWithModeBits () with modeBits set to the applicable mode bits,
useModeBits set to 1 (use mode bits), and flattenForDisk set to 0 (not for disk).

RETURN VALUE
[DACL_ERROR_TOO_FEW_BYTES], if bytesInBufferP does not contain enough space. In this
case, no processing is done.

[DACL_ERROR_PARAMETER_ERROR], if aclP or fileBufferPP or bytesInBufferP is not valid
(null). In this instance the appropriate error(s) is(are) logged.

Otherwise, [DACL_SUCCESS] is returned to indicate a successful conversion.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits (). This function also uses the following routines —
Epi_PrinId_FromUuid(), hton_epi_principal_id (), hton_epi_uuid ().

Part 5: Access Control Lists (ACLs) in DFS 183

dacl_ParseAclDiskOption() ACL Interface Functions

NAME
dacl_ParseAclDiskOption — unpack a flattened ACL

SYNOPSIS
long dacl_ParseAclDiskOption(

char * fileBufferP,
int bytesInBuffer,
dacl_t * aclBufferP,
epi_uuid_t * mgrUuidP,
int parseFromDisk
);

ARGUMENTS

fileBufferPP The buffer holding the packed ACL.

bytesInBufferP Size of the packed ACL.

aclBufferP The in-core ACL.

mgrUuidP The UUID for the ACL manager.

parseFromDisk Essentially specifies principal id format in the specified packed ACL10>

DESCRIPTION
This function parses the given packed byte-stream format ACL and constructs an in-core ACL.

It uses the following functions in the parse operation - ntoh_epi_uuid () and Epi_PrinId_toUuid().
If a parameter error is found, it is logged.

RETURN VALUE
[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_INCORRECT_MGR_UUID],
[DACL_ERROR_TOO_FEW_BYTES], [DACL_ERROR_TOO_MANY_BYTES],
[DACL_ERROR_DUPLICATE_ENTRY_FOUND],
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE],
[DACL_ERROR_ENTRY_TYPE_TOO_LARGE],
[DACL_ERROR_REQUIRED_ENTRY_MISSING] or [DACL_ERROR_PARAMETER_ERROR].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits (). This function uses the following routines — ntoh_epi_uuid () and
Epi_PrinId_toUuid(). Also, see Appendix B on page 229 for a list of return values and their
meanings.

10. Refer to earlier footnote in dacl_FlattenAclWithModeBits () about flattenForDisk parameter.

184 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_ParseSyscallAcl()

NAME
dacl_ParseSyscallAcl — unpack a flattened ACL

SYNOPSIS
long dacl_ParseSyscallAcl(

char * fileBufferP,
int bytesInBuffer,
dacl_t * aclBufferP,
epi_uuid_t * mgrUuidP
);

ARGUMENTS

fileBufferPP The buffer holding the packed ACL.

bytesInBufferP Size of the packed ACL.

aclBufferP The in-core ACL.

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function parses the given packed byte-stream format ACL and constructs an in-core ACL.
The packed ACL is assumed to store principal ids in the 128 bits format.

It uses the function, dacl_ParseAclDiskOption() with parseFromDisk set to 0 (parse from the syscall
buffer).

RETURN VALUE
[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_INCORRECT_MGR_UUID],
[DACL_ERROR_TOO_FEW_BYTES], [DACL_ERROR_TOO_MANY_BYTES],
[DACL_ERROR_DUPLICATE_ENTRY_FOUND],
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE],
[DACL_ERROR_ENTRY_TYPE_TOO_LARGE],
[DACL_ERROR_REQUIRED_ENTRY_MISSING], or [DACL_ERROR_PARAMETER_ERROR].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits () and dacl_ParseAclDiskOption(). Also, see Appendix B on page 229
for a list of return values and their meanings.

Part 5: Access Control Lists (ACLs) in DFS 185

dacl_ParseAcl() ACL Interface Functions

NAME
dacl_ParseAcl — unpack a flattened ACL

SYNOPSIS
long dacl_ParseAcl(

char * fileBufferP,
int bytesInBuffer,
dacl_t * aclBufferP,
epi_uuid_t * mgrUuidP
);

ARGUMENTS

fileBufferPP The buffer holding the packed ACL.

bytesInBufferP Size of the packed ACL.

aclBufferP The in-core ACL.

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function parses the given packed byte-stream format ACL and constructs an in-core ACL.
The principal id format used in the packed ACL is determined at runtime.

It uses the function, dacl_ParseAclDiskOption() with parseFromDisk set to 1 (parse from the disk
buffer).

RETURN VALUE
[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_INCORRECT_MGR_UUID],
[DACL_ERROR_TOO_FEW_BYTES], [DACL_ERROR_TOO_MANY_BYTES],
[DACL_ERROR_DUPLICATE_ENTRY_FOUND],
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE],
[DACL_ERROR_ENTRY_TYPE_TOO_LARGE],
[DACL_ERROR_REQUIRED_ENTRY_MISSING], or [DACL_ERROR_PARAMETER_ERROR].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits () and dacl_ParseAclDiskOption(). Also, see Appendix B on page 229
for a list of return values and their meanings.

186 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_ExtractPermBits()

NAME
dacl_ExtractPermBits — extract UNIX permission bits from an ACL

SYNOPSIS
long dacl_ExtractPermBits(

dacl_t * daclP,
u_int32 * permBitsP
);

ARGUMENTS

daclP The ACL.

permBitsP The UNIX permission bits corresponding to the ACL.

DESCRIPTION
This function determines the UNIX permission bits corresponding to the ACL. Refer to Section
8.6 on page 160, for the correspondence between UNIX permission bits and the ACL access
rights.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found, which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
The correspondence between UNIX permission bits and ACL access rights can be found in
Section 8.6 on page 160 in the chapter, Access Control List Overview.

Part 5: Access Control Lists (ACLs) in DFS 187

dacl_ChmodAcl() ACL Interface Functions

NAME
dacl_ChmodAcl — synchronize ACL with UNIX permission bits

SYNOPSIS
long dacl_ChmodAcl(

dacl_t * daclP,
u_int32 permBits,
int forDirectory
);

ARGUMENTS

daclP The ACL .

permBits The UNIX permission bits.

forDirectory Flag to specify a directory object ACL.

DESCRIPTION
This function modifies the ACL entries to correspond to the specified UNIX permission bits.
Refer to Section 8.6 on page 160 in the chapter, Access Control List Overview, for the
correspondence between UNIX permission bits and the ACL access rights. If the forDirectory flag
is set, UNIX write permission results in write, insert and delete access rights being granted in the
corresponding ACL entry.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found (no ACL is passed),
which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

188 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_FreeAclEntries()

NAME
dacl_FreeAclEntries — free memory allocated for ACL entries

SYNOPSIS
long dacl_FreeAclEntries(

dacl_t * theAclP
);

ARGUMENTS

theAclP The ACL.

DESCRIPTION
This function releases the memory allocated for the complex entries in the ACL.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found (no ACL is passed),
which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 189

dacl_PrintAclEntry() ACL Interface Functions

NAME
dacl_PrintAclEntry — print an ACL entry

SYNOPSIS
long dacl_PrintAclEntry(

FILE * stream,
dacl_entry_t * aclEntryP,
epi_uuid_t * defaultRealmUuidP,
int local
);

ARGUMENTS

stream Output file stream.

aclEntryP The ACL entry.

defaultRealmUuidP The native cell UUID.

local Specifies whether ids should be interpreted locally or via DCE security
registry.

DESCRIPTION
This function outputs an ascii representation of the ACL entry to the specified file stream. The
various principal/group/organization ids present in the ACL entry are translated into their
symbolic representations. Translations are done either locally or via the security service
depending on the local flag.

RETURN VALUE
[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP],
[DACL_ERROR_SEC_RGY_PGO_ERROR] or [DACL_ERROR_NONLOCAL_ENTRY_TYPE].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
This function also calls dacl_NameAndTypeStringsFromEntry(), dacl_EntryType_ToString(), and
dacl_Permset_ToString().

190 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_PrintAcl()

NAME
dacl_PrintAcl — print an ACL

SYNOPSIS
long dacl_PrintAcl(

FILE * stream,
dacl_t * aclP,
int local
);

ARGUMENTS

stream Output file stream.

aclEntryP The ACL.

local Specifies whether ids should be interpreted locally or via DCE security
registry.

DESCRIPTION
This function outputs an ascii representation of the ACL to the specified file stream. The various
principal/group/organization ids present in the ACL are translated into their symbolic
representations. Translations are done either locally or via the security service depending on the
local flag.

RETURN VALUE
[DACL_ERROR_SEC_RGY_PGO_ERROR], if the cell name cannot be found.

[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP] or
[DACL_ERROR_NONLOCAL_ENTRY_TYPE].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
This function also calls dacl_PrintAclEntry().

Part 5: Access Control Lists (ACLs) in DFS 191

dacl_WriteToDisk() ACL Interface Functions

NAME
dacl_WriteToDisk — store an ACL into a file

SYNOPSIS
long dacl_WriteToDisk(

dacl_t * aclP,
char * filenameP
);

ARGUMENTS

aclP The ACL.

filenameP The file.

DESCRIPTION
This constructs a packed version of the specified in-core ACL and stores it in the specified file.
There are no UNIX permission bits considered in This function. The principal id format for the
packed ACL is determined at run time.

If a buffer was allocated for packing and a failure occurs in processing, the buffer is freed.

RETURN VALUE
[DACL_ERROR_FS_OPEN], [DACL_ERROR_FS_WRITE], [DACL_ERROR_FS_CLOSE],
[DACL_ERROR_TOO_FEW_BYTES] or [DACL_ERROR_PARAMETER_ERROR].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
This function also calls dacl_FlattenAcl () to flatten for disk, dacl_epi_FlattenAcl () to flatten into
the caller’s buffer, dacl_ValidateBuffer() to validate the ACL for correctness.

192 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_CreateAclOnDisk()

NAME
dacl_CreateAclOnDisk — construct an ACL and store it

SYNOPSIS
long dacl_CreateAclOnDisk(

char * filenameP,
epi_uuid_t * mgrUuidP,
epi_uuid_t * defaultRealmUuidP,
dacl_permset_t * userObjPermsP,
dacl_permset_t * groupObjPermsP,
dacl_permset_t * otherObjPermsP,
int useEpisodeFile,
long epiSyscallFlags
);

ARGUMENTS

filenameP The file for the ACL for non-filesystem ACLs; otherwise the filesystem
object for the ACL.

mgrUuidP The UUID for the ACL manager.

defaultRealmUuidP The native cell UUID.

userObjPermsP The permission set for the user_obj entry.

groupObjPermsP The permission set for the group_obj entry.

otherObjPermsP The permission set for the other_obj entry.

useEpisodeFile Filesystem ACL indicator flag.

epiSyscallFlags Flags used in a system call if its a filesystem ACL.

DESCRIPTION
This function constructs an ACL having only user_obj, group_obj and other_obj simple entries and
converts it into a packed byte-stream. If useEpisodeFile is non-zero, it indicates that the ACL is a
filesystem ACL and filenameP specifies the filesystem object for which the ACL is being set.
Otherwise, its a non-filesystem ACL and fileNameP specifies the file to store the packed ACL.

RETURN VALUE
[DACL_ERROR_ACL_FILE_EXISTS] or [DACL_ERROR_FS_STAT].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
This function also calls dacl_WriteToDisk() if this is a non-filesystem ACL, dacl_epi_FlattenAcl ()
to flatten for filesystems if this is a filesystem object, dacl_FreeAclEntries, to free memory
allocated for ACL entries.

Part 5: Access Control Lists (ACLs) in DFS 193

dacl_ReadFromDisk() ACL Interface Functions

NAME
dacl_ReadFromDisk — read an ACL from disk and unpack it

SYNOPSIS
long dacl_ReadFromDisk(

dacl_t * aclP,
char * filenameP,
epi_uuid_t * mgrUuidP
);

ARGUMENTS

aclP The resultant in-core ACL.

filenameP The file storing the packed ACL.

mgrUuidP UUID for the ACL manager.

DESCRIPTION
This function reads the packed ACL from the specified file and unpacks it into the in-core ACL
format. The format of principal id in the packed ACL is determined at runtime.

RETURN VALUE
[DACL_ERROR_FS_READ], if the ACL could not be read from disk.

[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_FS_STAT], if the ACL could not be
found.

[DACL_ERROR_FS_CLOSE], if the file descriptor for the ACL could not be closed,

[DACL_ERROR_ACLFILE_NOT_FOUND], [DACL_ERROR_FS_OPEN], as well as those listed
for dacl_ParseAcl().

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_ParseAcl() which unpacks the ACL read from disk,

194 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_AddEntryToAcl()

NAME
dacl_AddEntryToAcl — add an entry to an ACL

SYNOPSIS
long dacl_AddEntryToAcl(

dacl_t * aclP,
char * typeStringP,
char * nameStringP,
char * permStringP,
char * dataStringP,
epi_uuid_t * mgrUuidP,
int local
);

ARGUMENTS

aclP The ACL.

typeStringP ACL entry type, in symbolic format.

nameStringP Entry name, in symbolic format for complex ACL entries.

permStringP ACL entry access permissions, in symbolic format.

dataStringP Information for extended ACL entry type.

mgrUuidP The ACL manager UUID.

local Specifies whether the entry name should be interpreted locally or via DCE
security registry.

DESCRIPTION
This function constructs an ACL entry with the specified characteristics and adds it to the
specified ACL. The nameStringP parameter is only used for a complex ACL entry type and the
dataStringP parameter only for an extended ACL entry type.

RETURN VALUE
[DACL_ERROR_ENTRY_EXISTS], [DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE] or
[DACL_ERROR_ENTRY_TYPE_TOO_LARGE].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_InitAclEntryFromStrings().

Part 5: Access Control Lists (ACLs) in DFS 195

dacl_ModifyAclEntry() ACL Interface Functions

NAME
dacl_ModifyAclEntry — modify an ACL entry

SYNOPSIS
long dacl_ModifyAclEntry(

dacl_t * aclP,
char * typeStringP,
char * nameStringP,
char * permStringP,
char * dataStringP,
int local
);

ARGUMENTS

aclP The ACL.

typeStringP ACL entry type, in symbolic format.

nameStringP Entry name, in symbolic format for complex ACL entries.

permStringP ACL entry access permissions, in symbolic format.

dataStringP Information for extended ACL entry type.

local Specifies whether the entry name should be interpreted locally or via DCE
security registry.

DESCRIPTION
This function modifies the specified ACL entry to have the specified characteristics.

RETURN VALUE
[DACL_ERROR_ENTRY_NOT_FOUND], [DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE],
[DACL_ERROR_ILLEGAL_ENTRY], [DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP],
[DACL_ERROR_NONLOCAL_ENTRY_TYPE], [DACL_ERROR_SEC_RGY_PGO_ERROR] or
[DACL_ERROR_MISSING_NAME].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_InitAclEntryFromStrings().

196 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_DeleteAclEntry()

NAME
dacl_DeleteAclEntry — delete an ACL entry

SYNOPSIS
long dacl_DeleteAclEntry(

dacl_t * aclP,
char * typeStringP,
char * nameStringP,
epi_uuid_t * mgrUuidP,
int local
);

ARGUMENTS

aclP The ACL.

typeStringP ACL entry type, in symbolic format.

nameStringP Entry name, in symbolic format for complex ACL entries.

mgrUuidP The ACL manager UUID.

local Specifies whether the entry name should be interpreted locally or via DCE
security registry.

DESCRIPTION
This function deletes the specified entry from an ACL.

RETURN VALUE
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE], [DACL_ERROR_ILLEGAL_ENTRY],
[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP],
[DACL_ERROR_NONLOCAL_ENTRY_TYPE], [DACL_ERROR_SEC_RGY_PGO_ERROR],
[DACL_ERROR_MISSING_NAME], [DACL_ERROR_ENTRY_NOT_FOUND] or
[DACL_ERROR_ENTRY_REQUIRED].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_InitAclEntryFromStrings().

Part 5: Access Control Lists (ACLs) in DFS 197

dacl_DeleteAllEntries() ACL Interface Functions

NAME
dacl_DeleteAllEntries — invalidate all ACL entries

SYNOPSIS
long dacl_DeleteAllEntries(

dacl_t * aclP
);

ARGUMENTS

aclP The ACL.

DESCRIPTION
This function invalidates all entries in an ACL and releases any allocated memory for complex
entries.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found (no ACL is passed),
which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FreeAclEntries().

198 X/Open Preliminary Specification (1996)

ACL Interface Functions sec_acl_FlattenAcl()

NAME
sec_acl_FlattenAcl — convert a DCE ACL into a flat DFS ACL

SYNOPSIS
long sec_acl_FlattenAcl(

sec_acl_t * secAclP,
char ** byteBufferPP,
unsigned int * bytesInBufferP
);

ARGUMENTS

secAclP The DCE ACL.

byteBufferPP The buffer to hold the packed DFS ACL.

bytesInBufferP Size of the buffer.

DESCRIPTION
This function converts a DCE ACL into a packed DFS ACL. No UNIX permission are used as
DCE objects have no such construct. The 128 bits principal id format is used in the packed DFS
ACL.

RETURN VALUE
[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_DUPLICATE_ENTRY_FOUND],
[DACL_ERROR_INCORRECT_MGR_UUID] or [DACL_ERROR_PARAMETER_ERROR].

The following can be returned from called functions. [DACL_ERROR_TOO_FEW_BYTES].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FlattenAclWithModeBits () and dacl_FreeAclEntries().

Part 5: Access Control Lists (ACLs) in DFS 199

sec_acl_ParseAcl() ACL Interface Functions

NAME
sec_acl_ParseAcl — convert a flat DFS ACL into a DCE ACL

SYNOPSIS
long sec_acl_ParseAcl(

sec_acl_t * secAclP,
char * byteBufferP,
unsigned int bytesInBuffer
);

ARGUMENTS

secAclP The DCE ACL.

byteBufferPP The buffer holding the packed DFS ACL.

bytesInBufferP Size of the packed DFS ACL.

DESCRIPTION
This function converts a packed DFS ACL into a DCE ACL. The packed DFS ACL is assumed to
store the principal ids in the 128 bit format.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found (no ACL is passed),
which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_FreeAclEntries().

200 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_InitAclEntryFromStrings()

NAME
dacl_InitAclEntryFromStrings — construct an ACL entry

SYNOPSIS
long dacl_InitAclEntryFromStrings(

dacl_entry_t * aclEntryP,
epi_uuid_t * defaultRealmUuidP,
char * typeStringP,
char * nameStringP,
char * permStringP,
char * dataStringP,
epi_uuid_t * mgrUuidP,
int local
);

ARGUMENTS

aclEntryP The resultant ACL entry.

defaultRealmUuidP The native cell UUID.

typeStringP ACL entry type, in symbolic format.

nameStringP Entry name, in symbolic format for complex ACL entries.

permStringP ACL entry access permissions, in symbolic format.

dataStringP Information for extended ACL entry type.

mgrUuidP The ACL manager UUID.

local Specifies whether the entry name should be interpreted locally or via DCE
security registry.

DESCRIPTION
This function constructs an ACL entry with the specified characteristics.

RETURN VALUE
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE], [DACL_ERROR_ILLEGAL_ENTRY],
[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP],
[DACL_ERROR_NONLOCAL_ENTRY_TYPE], [DACL_ERROR_SEC_RGY_PGO_ERROR] or
[DACL_ERROR_MISSING_NAME].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_EntryType_FromString().

Part 5: Access Control Lists (ACLs) in DFS 201

dacl_NameAndTypeStringsFromEntry() ACL Interface Functions

NAME
dacl_NameAndTypeStringsFromEntry — generate ascii representations of complex ACL entry
name and type

SYNOPSIS
long dacl_NameAndTypeStringsFromEntry(

dacl_entry_t * aclEntryP,
epi_uuid_t * defaultRealmUuidP,
char ** typeStringPP,
sec_rgy_name_t globalName,
int local
);

ARGUMENTS

aclEntryP The ACL entry.

defaultRealmUuidP The native cell UUID.

typeStringP Resultant symbolic type of entry type.

globalName Resultant symbolic name of entry principal.

local Specifies whether the entry id should be interpreted locally or via DCE
security registry.

DESCRIPTION
This function generates the ascii string representations of the name and type of the complex
ACL entry. The various principal/group/organization ids present in the ACL entry are
translated into their symbolic representations. Translations are done either locally or via the
security service depending on the local flag.

RETURN VALUE
[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP],
[DACL_ERROR_SEC_RGY_PGO_ERROR] or [DACL_ERROR_NONLOCAL_ENTRY_TYPE].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
Also, see Appendix B on page 229 for a list of return values and their meanings.

202 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_EntryType_ToString()

NAME
dacl_EntryType_ToString — generate symbolic representation of ACL entry type

SYNOPSIS
char * dacl_EntryType_ToString(

dacl_entry_type_t probeType
);

ARGUMENTS

probeType The ACL entry type.

DESCRIPTION
This function generates an ascii string representation from the specified internal representation
of the ACL entry type.

RETURN VALUE
None.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 203

dacl_EntryType_FromString() ACL Interface Functions

NAME
dacl_EntryType_FromString — generate internal representation of symbolic ACL entry type

SYNOPSIS
long dacl_EntryType_FromString(

dacl_entry_type_t * probeTypeP,
char * probeString
);

ARGUMENTS

probeType The ACL entry type.

probeStringP Symbolic representation of the ACL entry type.

DESCRIPTION
This function generates an internal representation of an ACL entry type from the specified ascii
string representation.

RETURN VALUE
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE] or [DACL_SUCCESS].

ERRORS
None.

204 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_Permset_ToString()

NAME
dacl_Permset_ToString — generate a symbolic representation of ACL entry permissions

SYNOPSIS
void dacl_Permset_ToString(

dacl_permset_t * thePermSetP,
char * stringBufferP
);

ARGUMENTS

thePermSetP The ACL entry permissions bitset.

stringBufferP The buffer to hold the symbolic representation.

DESCRIPTION
This function generates the symbolic string representation of the specified ACL entry
permissions bitset.

RETURN VALUE
None.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 205

dacl_Permset_FromString() ACL Interface Functions

NAME
dacl_Permset_FromString — generate internal representation of symbolic ACL entry
permissions

SYNOPSIS
void dacl_Permset_FromString(

dacl_permset_t * thePermSetP,
char * permStringP
);

ARGUMENTS

thePermSetP The generated permission bitset.

permStringP Symbolic ACL entry permissions.

DESCRIPTION
This function generates the internal representation of ACL entry permissions, a bitset, from its
symbolic ascii string representation.

RETURN VALUE
None.

ERRORS
None.

206 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_ValidateBuffer()

NAME
dacl_ValidateBuffer — parse and validate an ACL

SYNOPSIS
long dacl_ValidateBuffer(

char * byteBufferP,
unsigned int * bytesInBufferP,
epi_uuid_t * mgrUuidP,
int makeMinorRepairs,
dacl_t ** daclPP
);

ARGUMENTS

byteBufferP The packed format of the ACL.

bytesInBufferP Size of the packed ACL.

mgrUuidP The UUID of the ACL manager.

makeMinorRepairs Flag that causes correction of minor errors detected during validation.

daclPP The parsed and validate ACL.

DESCRIPTION
This function unpacks the given packed ACL into its in-core format. The 128 bit principal ids
format is assumed in the packed ACL. The resultant in-core ACL is then validated for
correctness. If makeMinorRepairs argument is set, any minor errors detected are corrected.

This function has a filesystem specific version called dacl_epi_ValidateBuffer() with the same
interface.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], which is also logged,
[DACL_ERROR_VALIDATION_FAILURE], if the user_obj entry does not have c permission, or if
the mask_obj entry is missing. It can also indicate that an entry specifies foreign_user within the
default realm.

The following values can be returned from the called functions, below:
[DACL_ERROR_BUFFER_ALLOCATION], [DACL_ERROR_INCORRECT_MGR_UUID],
[DACL_ERROR_TOO_FEW_BYTES], [DACL_ERROR_TOO_MANY_BYTES],
[DACL_ERROR_DUPLICATE_ENTRY_FOUND],
[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE],
[DACL_ERROR_ENTRY_TYPE_TOO_LARGE] or
[DACL_ERROR_REQUIRED_ENTRY_MISSING].

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_ParseSyscallAcl (), dacl_AreObjectEntriesRequired() and dacl_FreeAclEntries().

Part 5: Access Control Lists (ACLs) in DFS 207

dacl_InitEpiAcl() ACL Interface Functions

NAME
dacl_InitEpiAcl — initialize a filesystem ACL

SYNOPSIS
long dacl_InitEpiAcl(

dacl_t * theAclP,
u_int32 * modeP,
int forDirectory,
epi_uuid_t * aclRealmP
);

ARGUMENTS

theAclP The ACL.

modeP The UNIX permission bits.

forDirectory Flag to specify a directory object ACL.

aclRealmP Default realm of ACL (optional).

DESCRIPTION
This function initializes the ACL to be a filesystem ACL in the local cell. The ACL only has 3
simple object entries user_obj, group_obj and other_obj. If the UNIX permission bits argument
modeP is non-NULL, the simple object ACL entries permissions are set to have corresponding
access rights, otherwise user_obj is set to have only control access right and group_obj and
other_obj to have none. If the forDirectory flag is set, UNIX write permission results in write, insert
and delete access being granted in the corresponding ACL entry.

If the realm (aclRealmP) is not null, it is used as the default realm of the ACL. Otherwise, for the
kernel, the realm of the ACL is set to the local cellID; and for a non-kernel user, the realm is set to
zero.

RETURN VALUE
[DACL_ERROR_PARAMETER_ERROR], if a parameter error is found (no ACL is passed),
which is also logged.

Otherwise, [DACL_SUCCESS] is returned.

ERRORS
None.

SEE ALSO
dacl_ChmodAcl ().

208 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_AreObjectEntriesRequired()

NAME
dacl_AreObjectEntriesRequired — determine if simple object entries are needed in the ACL

SYNOPSIS
int dacl_AreObjectEntriesRequired(

epi_uuid_t * mgrUuidP
);

ARGUMENTS

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function determines if the specified ACL requires the user_obj, group_obj and other_obj
simple entries.

RETURN VALUE
[1], if the query determines the requirement must be met.

Otherwise, [0] is returned.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 209

dacl_AreObjectUuidsRequiredOnAccessCheck() ACL Interface Functions

NAME
dacl_AreObjectUuidsRequiredOnAccessCheck — determine if object UUIDs are required for
authorization check

SYNOPSIS
int dacl_AreObjectUuidsRequiredOnAccessCheck(

epi_uuid_t * mgrUuidP
);

ARGUMENTS

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function determines if the the UUIDs corresponding to user_obj and group_obj are required
during the authorization check procedure.

RETURN VALUE
[1], if the query determines the requirement must be met.

Otherwise, [0] is returned.

ERRORS
None.

210 X/Open Preliminary Specification (1996)

ACL Interface Functions dacl_ArePermBitsRequiredOnAccessCheck()

NAME
dacl_ArePermBitsRequiredOnAccessCheck — determine if UNIX permission bits are required
for authorization check

SYNOPSIS
int dacl_ArePermBitsRequiredOnAccessCheck(

epi_uuid_t * mgrUuidP
);

ARGUMENTS

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function determines if UNIX permission bits are required during the authorization check
procedure.

RETURN VALUE
[1], if the query determines the requirement must be met.

Otherwise, [0] is returned.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 211

dacl_AclMgrName() ACL Interface Functions

NAME
dacl_AclMgrName — determine symbolic name of ACL manager

SYNOPSIS
char * dacl_AclMgrName(

epi_uuid_t * mgrUuidP
);

ARGUMENTS

mgrUuidP The UUID for the ACL manager.

DESCRIPTION
This function determines the symbolic name for the ACL manager specified by the given ACL
manager UUID.

RETURN VALUE
The following symbolic names are returned: [epsiode], [bosserver], or [unknown].

ERRORS
None.

212 X/Open Preliminary Specification (1996)

ACL Interface Functions Epi_PrinId_ToUuid()

NAME
Epi_PrinId_ToUuid — generate an UUID from a principal id

SYNOPSIS
void Epi_PrinId_ToUuid(

epi_principal_id_t * epiPrinIdP,
epi_uuid_t * epiUuidP
);

ARGUMENTS

epiPrintIdP The principal id.

epiUuidP The UUID.

DESCRIPTION
This is a macro that generates an UUID corresponding to the specified principal id.

RETURN VALUE
None.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 213

Epi_PrinId_FromUuid() ACL Interface Functions

NAME
Epi_PrinId_FromUuid — generate principal id from an UUID

SYNOPSIS
void Epi_PrinId_FromUuid(

epi_principal_id_t * epiPrinIdP,
epi_uuid_t * epiUuidP
);

ARGUMENTS

epiPrintIdP The principal id.

epiUuidP The UUID.

DESCRIPTION
This is a macro that generates the principal id corresponding to the specified UUID.

RETURN VALUE
None.

ERRORS
None.

214 X/Open Preliminary Specification (1996)

ACL Interface Functions Epi_PrinId_Cmp()

NAME
Epi_PrinId_Cmp — compare 2 principal ids or UUIDs

SYNOPSIS
int Epi_PrinId_Cmp(

(epi_principal_id_t|epi_uuid_t) * idBlob1P,
(epi_principal_id_t|epi_uuid_t) * idBlob2P
);

ARGUMENTS

idBlob1P The first principal id or UUID.

idBlob2P The second principal id or UUID.

DESCRIPTION
This is a macro that compares the 2 specified principal ids or the 2 specified UUIDs for equality.
It returns zero if they are the same, else it returns a non-zero value.

RETURN VALUE
This routine returns zero if the comparison is the same, otherwise it returns a non-zero value.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 215

hton_epi_uuid() ACL Interface Functions

NAME
hton_epi_uuid — convert an UUID from host to network byte format

SYNOPSIS
void hton_epi_uuid(

epi_uuid_t * epiUuidP
);

ARGUMENTS

epiUuidP The UUID.

DESCRIPTION
This function converts an UUID from the host byte order to the network byte order format.

RETURN VALUE
None.

ERRORS
None.

216 X/Open Preliminary Specification (1996)

ACL Interface Functions ntoh_epi_uuid()

NAME
ntoh_epi_uuid — convert a UUID from network to host byte format

SYNOPSIS
void ntoh_epi_uuid(

epi_uuid_t * epiUuidP
);

ARGUMENTS

epiUuidP The UUID.

DESCRIPTION
This function converts an UUID from the network byte order to the host byte order format.

RETURN VALUE
None.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 217

hton_epi_principal_id() ACL Interface Functions

NAME
hton_epi_principal_id — convert a principal id from host to network byte format

SYNOPSIS
void hton_epi_principal_id(

epi_principal_id_t * epiPrinIdP
);

ARGUMENTS

epiPrintIdP The principal id.

DESCRIPTION
This function converts a principal id from host byte order to network byte order format.

RETURN VALUE
None.

ERRORS
None.

218 X/Open Preliminary Specification (1996)

ACL Interface Functions ntoh_epi_principal_id()

NAME
ntoh_epi_principal_id — convert a principal id from network to host byte format

SYNOPSIS
void ntoh_epi_principal_id(

epi_principal_id_t * epiPrinIdP
);

ARGUMENTS

epiPrintIdP The principal id.

DESCRIPTION
This function converts a principal id from network byte order to host byte order format.

RETURN VALUE
None.

ERRORS
None.

Part 5: Access Control Lists (ACLs) in DFS 219

ACL Interface Functions

220 X/Open Preliminary Specification (1996)

Appendix A

Mapping DFS ACLs to UNIX Mode Bits

This appendix discusses the relationship between ACLs and UNIX mode bits and also the file
creation mask and how it relates to ACLs. More detailed information on ACLs can be found
under the topic, Access Control List Overview, in Chapter 8 on page 155, relating to the ACL types
discussed in this appendix.

A.1 Relationship Between ACLs and UNIX Mode Bits
The following summarizes the relationship between ACLs and mode bits:

• owner mode bits correspond to ACL user_obj

• group mode bits correspond as follows:

— group mode bits correspond to ACL group_obj if no mask_obj is present

— UNIX group mode bits correspond to the mask_obj if the ACL has a mask_obj

• other mode bits correspond to ACL other_obj.

This relationship will be demonstrated in the next set of examples. They start out with a basic set
of characterists and then are cumulatively changed. This should be kept in mind as the
examples are examined.

A.1.1 ACLs and UNIX Mode Bits

Example A-1 ACLs and UNIX Mode Bits

In this example, file foo is owned by rajesh@minyan.dce.transarc.com, foo’s owning group is
transarc@transarc.dce.com. The prompt has been shortened to consist of the text, [test] .

The acl_edit command is shown being used with the list option (-l) to display the file’s ACL.

[test] pwd
/.../minyan.dce.transarc.com/fs/test
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
user_obj:rw-c--
group_obj:r-----
other_obj:r-----
[test] ls -l foo
-rw-r--r-- 1 rajesh transarc 0 Sep 15 11:51 foo

Part 5: Access Control Lists (ACLs) in DFS 221

Relationship Between ACLs and UNIX Mode Bits Mapping DFS ACLs to UNIX Mode Bits

A.1.2 Changing other Mode Bits

Example A-2 Changing other Mode Bits

This example starts with the results demonstrated in he=1 .ds ;p Example A-1 on page 221as It
demonstrates that other mode bits correspond to ACL other_obj according to the relationship
stated in Section A.1 on page 221.

[test] chmod o+x foo
[test] ls -l foo
-rw-r--r-x 1 rajesh transarc 0 Sep 15 11:51 foo
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
user_obj:rw-c--
group_obj:r-----
other_obj:r-x---

Notice other_obj now has execute rights.

A.1.3 Changing group Mode Bits on a File with ACL with No mask_obj

Example A-3 Changing group Mode Bits on a File with ACL and No mask_obj

According to the relationship stated in Section A.1 on page 221, this example demonstrates that
group mode bits correspond to the ACL group_obj entry since no mask_obj is present in the object.
The base characteristics of the ACL are as they ended in the previous example, Example A-2.

[test] chmod g+w foo
[test] ls -l foo
-rw-rw-r-x 1 rajesh transarc 0 Sep 15 11:51 foo
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
user_obj:rw-c--
group_obj:rw----
other_obj:r-x---

Notice that group_obj now has w rights.

A.1.4 Changing the user_obj Entry

Example A-4 Changing the user_obj Entry

In this example, owner mode bits will exhibit the changed user_obj, as they correspond to the
ACL user_obj according to Section A.1 on page 221.

[test] acl_edit foo -m user_obj:rwxc
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
user_obj:rwxc--
group_obj:rw----
other_obj:r-x---
[test] ls -l foo

222 X/Open Preliminary Specification (1996)

Mapping DFS ACLs to UNIX Mode Bits Relationship Between ACLs and UNIX Mode Bits

-rwxrw-r-x 1 rajesh transarc 0 Sep 15 11:51 foo
ˆ
ˆ

Notice owner (mode bits) show x rights in the ls -l output.

A.1.5 Changing the group_obj Entry

Example A-5 Changing the group_obj Entry

In this example, since the ACL has no mask_obj, the change will affect the group mode bits. The
starting setup for this example is from the ending of Example A-4 on page 222.

[test] acl_edit foo -m group_obj:rwx
[test] acl_edit foo -l
ls -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
user_obj:rwxc--
group_obj:rwx---
other_obj:r-x---
[test] ls -l foo
-rwxrwxr-x 1 rajesh transarc 0 Sep 15 11:51 foo

The group_obj entry change impacts group mode bits.

A.1.6 Changing the group_obj Entry in an ACL with a mask_obj Entry

Example A-6 Changing the group_obj Entry in an ACL with a mask_obj Entry

At this point, we introduce a mask_obj entry for the ACL. Now lets look at what happens if the
ACL has an mask_obj entry.

Note: A mask_obj entry in an ACL is required if it has entries other than user_obj, group_obj and
other_obj.

According to the relationship stated in Section A.1 on page 221, we should expect that a change
to the group_obj entry in the ACL object will not affect the UNIX group mode bits.

[test] acl_edit foo -m user:ashok:r
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
mask_obj:rwx---
user_obj:rwxc--
user:ashok:r-----
group_obj:rwx---
other_obj:r-x---
[test] ls -l foo
-rwxrwxr-x 1 rajesh transarc 0 Sep 15 11:51 foo

Part 5: Access Control Lists (ACLs) in DFS 223

Relationship Between ACLs and UNIX Mode Bits Mapping DFS ACLs to UNIX Mode Bits

A.1.7 The Results of chmod of the group Bits

Example A-7 The Results of chmod of the group Bits

Starting with where we left off in the previous example, (Example A-6 on page 223,) the
following scenario demonstrates the results of chmod of the group bits. According to the
relationship established in Section A.1 on page 221, we should expect to see a corresponding
change to the mask_obj in the ACL, and no effect upon the group_object entry.

[test] chmod g-x foo
[test] ls -l foo
-rwxrw-r-x 1 rajesh transarc 0 Sep 15 11:51 foo
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
mask_obj:rw----
user_obj:rwxc--
user:ashok:r-----
group_obj:rwx--- #effective:rw----
other_obj:r-x---

Notice that changing the group mode bits affected the mask_obj entry and not the group_obj
entry.

A.1.8 The Results of acl_edit of the mask_obj Bits

Example A-8 The Results of acl_edit of the mask_obj Bits

This example starts with the setup from the previous example, Example A-8, as the base. The
following scenario shows the result of modification of the mask_obj entry.

According to Section A.1 on page 221, modifying the mask_obj entry in the ACL object directly
affects the UNIX group mode bits:

[test] acl_edit foo -m mask_obj:r
[test] acl_edit foo -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
mask_obj:r-----
user_obj:rwxc--
user:ashok:r-----
group_obj:rwx--- #effective:r-----
other_obj:r-x---
[test] ls -l foo
-rwxr--r-x 1 rajesh transarc 0 Sep 15 11:51 foo

Notice that changing the mask_obj to r changed the group bits shown by ls to r.

224 X/Open Preliminary Specification (1996)

Mapping DFS ACLs to UNIX Mode Bits Relationship Between ACLs and UNIX Mode Bits

A.1.9 Changing the group_obj Entry for an ACL with a mask_obj

Example A-9 Changing the group_obj Entry for an ACL with a mask_obj

According to Section A.1 on page 221, for an ACL object with a mask_obj, changing the group_obj
entry for an ACL with mask_obj should have no impact on the group mode bits. The following
scenario demonstrates this.

This example’s setup starts with the results of the previous example, Example A-8 on page 224.

[test] acl_edit foo -m group_obj:- -l
SEC_ACL for foo:
Default cell = /.../minyan.dce.transarc.com
mask_obj:r-----
user_obj:rwxc--
user:ashok:r-----
group_obj:------
other_obj:r-x---
[test] ls -l foo
-rwxr--r-x 1 rajesh transarc 0 Sep 15 11:51 foo

Notice that there is no change in group mode bits.

Part 5: Access Control Lists (ACLs) in DFS 225

File Creation Mask and ACLs Mapping DFS ACLs to UNIX Mode Bits

A.2 File Creation Mask and ACLs
The following rules apply to the file creation mask. The file creation mask refers to the umask.
In this appendix, an Initial Object ACL will be referred to as an IO ACL.

A. In DFS if a directory has an appropriate Initial Object ACL, then the umask setting is not
taken into account when creating a file in that directory. Only the mode bits specified to
the creat syscall and the IO ACL determine the resulting ACL on the file.

B. If the directory does not have an IO ACL, then the umask setting of the process creating the
file is taken into account. In this case the mode bits on the resulting file are determined
using the mode bits specified to creat syscall and the umask.

A.2.1 File Creation with no Initial Object ACL

Example A-10 File Creation with no IO ACL

Let’s say we are in a directory with no IO ACL called simple_dir and we create a file using
touch. In this example, touch specifies 0666 creation mode bits to the creat syscall.

First, let’s set a umask, and then display it.

[simple_dir] umask 77
[simple_dir] umask
77

Now, let’s touch the file, foo (and display it):

[simple_dir] touch foo
[simple_dir] ls -l foo
-rw------- 1 rajesh transarc 0 Sep 15 12:08 foo

touch foo specified creat(foo, 0666). DFS determined that the parent directory did not have an IO
ACL, so case B applies.

The algorithm to determine the mode bits on the resulting file is the same as in traditional UNIX
systems (as in POSIX.1):

resulting file mode bits = syscall creation mode bits & ˜umask =

Thus, in this case:

resulting file mode bits = 0666 & ˜077
= 0600
= owner:rw group:- other:-

as shown in the ls -l output.

A.2.2 File Creation with an Initial Object ACL

Example A-11 File Creation with an IO ACL

Let’s say we are in a directory with an IO ACL called acl_dir. Case A should apply here on both
file and directory creation. First, let’s display the Initial Object ACL. This is done by using
acl_edit with the -io -l options:

[acl_dir] acl_edit . -io -l
Initial SEC_ACL for objects created under: .:
Default cell = /.../minyan.dce.transarc.com

226 X/Open Preliminary Specification (1996)

Mapping DFS ACLs to UNIX Mode Bits File Creation Mask and ACLs

mask_obj:rwx---
user_obj:rwxc--
user:ashok:rwx---
group_obj:rw----
other_obj:r-----

Let’s set the umask and display it, as in the previous example:

[acl_dir] umask 77
[acl_dir] umask
77

Now, let’s touch the file, bar (and display it):

[acl_dir] touch bar
[acl_dir] ls -l bar
-rw-rw-r-- 1 rajesh transarc 0 Sep 15 15:21 bar

Notice that the permissions 664 on the new file,bar, mean that the umask was not applied, else
the group and other permissions would be zero.

A.2.3 File ACL Creation with an initial object ACL

Example A-12 File ACL Creation with an initial object ACL

Let’s see what the ACL for bar is. This can be done by using acl_edit with the -l option, as
follows:

[acl_dir] acl_edit bar -l
SEC_ACL for bar:
Default cell = /.../minyan.dce.transarc.com
mask_obj:rw----
user_obj:rw-c--
user:ashok:rwx--- #effective:rw----
group_obj:rw----
other_obj:r-----

Under this case (A), the permissions on the new file’s ACL are derived by intersecting the parent
directory’s IO ACL permissions with the mode bits specified to the creat syscall, as follows.

Note: The parent directory’s IO ACL permissions are those from the ACL shown in Example
A-11 on page 226.

Also, recall that touch uses creat mode bits as 0666. Thus, the respective owner, group, and other
creation mode bits are rw.

user_obj perms = parent dir IO ACL user_obj perm &
owner creation mode bits

Thus, in this case:

user_obj perms = rwx & rw
= rw.

Also user_obj is always granted c rights.

Similarly for other_obj, intersect IO ACL other_obj permissions with other creat mode bits:

Part 5: Access Control Lists (ACLs) in DFS 227

File Creation Mask and ACLs Mapping DFS ACLs to UNIX Mode Bits

other_obj perms = parent dir IO ACL other_obj perm &
other creation mode bits

Thus:

other_obj perms = r & rw = r

Recall from Section A.1 on page 221, that since the IO ACL has a mask_obj, the IO mask_obj will
be intersected with the group creat mode bits to determine the mask_obj on the file ACL as
follows:

mask_obj perms = parent dir IO ACL mask_obj perm &
group creation mode bits

mask_obj perms = rwx & rw = rw.

Note: If the IO ACL did not have mask_obj, then the group creat mode bits would be
intersected with the IO ACL group_obj permissions to determine the file ACL’s
group_obj permissions.

228 X/Open Preliminary Specification (1996)

Appendix B

Access Control List Package Error List

The following sections contain the return values that are returned from the Access Control List
Interface Functions found in Chapter 10 on page 171.

B.1 Access Control List Return Values
[DACL_SUCCESS]

The operation was successful or no errors were found.

[DACL_ERROR_TOO_MANY_BYTES]
Too many bytes in acl byte buffer.

[DACL_ERROR_TOO_FEW_BYTES]
Too few bytes in acl byte buffer.

[DACL_ERROR_ENTRY_NOT_FOUND]
ACL entry not found.

[DACL_ERROR_ENTRY_EXISTS]
ACL entry already exists.

[DACL_ERROR_UNRECOGNIZED_ENTRY_TYPE]
Unrecognized entry type.

[DACL_ERROR_UNRECOGNIZED_ENTRY_CLASS]
Unrecognized entry class.

[DACL_ERROR_UNIMPLEMENTED_ENTRY_TYPE]
Unimplemented entry type.

[DACL_ERROR_SEC_RGY_PGO_ERROR]
Error returned from security service.

[DACL_ERROR_MISSING_NAME]
Name required for specified entry type.

[DACL_ERROR_ENTRY_REQUIRED]
Attempt to remove required ACL entry.

[DACL_ERROR_BUFFER_ALLOCATION]
Buffer allocation error.

[DACL_ERROR_ACCESS_DENIED]
Requested access (implicitly) denied by ACL.

[DACL_ERROR_ACCESS_EXPLICITLY_DENIED]
Requested access explicitly denied by ACL.

[DACL_ERROR_ACL_FILE_EXISTS]
File in which ACL creation was requested already exists.

[DACL_ERROR_INCORRECT_MGR_UUID]
Attempt to parse ACL by incorrect ACL manager.

[DACL_ERROR_ILLEGAL_ENTRY]
ACL contains an entry not appropriate for the ACL manager type.

Part 5: Access Control Lists (ACLs) in DFS 229

Access Control List Return Values Access Control List Package Error List

[DACL_ERROR_MGR_PARAMETER_ERROR]
ACL manager requires parameters not passed to routine.

[DACL_ERROR_REQUIRED_ENTRY_MISSING]
Required ACL entry missing from ACL.

[DACL_ERROR_PARAMETER_ERROR]
Required pointer parameter has NULL value.

[DACL_ERROR_UNRECOGNIZED_MGR_TYPE]
Unrecognized ACL manager type uuid.

[DACL_ERROR_ENTRY_TYPE_TOO_LARGE]
ACL entry type is too large to be processed by current code.

[DACL_ERROR_DUPLICATE_ENTRY_FOUND]
Duplicate ACL entry found.

[DACL_ERROR_ACLFILE_NOT_FOUND]
Specified ACL file not found.

[DACL_ERROR_VALIDATION_FAILURE]
Flat ACL buffer is of incorrect form.

[DACL_ERROR_UNRECOGNIZED_USER_OR_GROUP]
User or group not recognized by Registry Server.

[DACL_ERROR_NONLOCAL_ENTRY_TYPE]
Non-local entry type encountered running in local mode.

B.2 Filesystem Access Control List Return Values
The following are filesystem return values.

[DACL_ERROR_FS_OPEN]
File system open error.

[DACL_ERROR_FS_CLOSE]
File system close error.

[DACL_ERROR_FS_STAT]
File system stat error.

[DACL_ERROR_FS_READ]
File system read error.

[DACL_ERROR_FS_WRITE]
File system write error.

230 X/Open Preliminary Specification (1996)

X/Open Preliminary Specification

Part 6:

The DCE DFS VFS+ Interface Specification

This part of the DCE DFS provides an overview of the VFS extensions provided by DFS, called
the DCE DFS VFS+ Interface . This interface is an enhancement of the DCE 1.1: Distributed File
Service specification that permits different file systems to coexist within one UNIX kernel.

Part 6: The DCE DFS VFS+ Interface Specification 231

232 X/Open Preliminary Specification (1996)

Chapter 11

DCE DFS VFS+ Interface Introduction

This chapter provides an overview of the VFS+ interfaces and behaviors that a DFS-compliant
physical file system needs to support. Such a file system will be fully interoperable with other
implementations of DCE DFS file systems from the viewpoint of all network protocols and the
vast majority of user-space software for extended filesystem fileset operations, known as EFS
software.

11.1 Definition of Terms
DFS The DCE Distributed File System.

EFS The optional portion of DFS which deals with extended fileset operations (cloning,
backup, replicas, and so on).

LFS Local File System: a physical file system, which in the context of this document,
provides DFS semantics.

Episode is the name of the LFS that Transarc Corporation provides as part of the
DFS EFS package.

UFS The UNIX File System. The name of the file system originally provided by vendors
of UNIX systems.

Aggregate An expanse of physical disk which is managed by a DFS LFS. It is similar in
context to a UNIX partition and is identified by both a device number and a device
file. In many cases, the storage provided to an aggregate will be by a Logical
Volume Manager (LVM).

Cell A collection of DCE machines administered as a single entity. In this context, the
key point is that a cell is serviced by a single registry with a single, consistent set of
user and group identifiers.

Fileset A set of related files, connected via a sub-tree with a single root point, that is
administered as an entity by DFS. Although filesets cannot span aggregates, a
single aggregate can hold many filesets. Filesets which have an associated
maximum size or quota, grow independently of each other and compete for space
within their aggregate. Individual filesets can be mounted locally, backed up and
restored, cloned or transparently moved to another aggregate.

The terms fileset and volume are used interchangeably, although the term volume
is becoming archaic.

Group A membership list, identified by a uuid_t, which contains a list of principals (by
uuid_t) which are members of that group. Again, in a non-DCE environment, they
are identified by a 32-bit (at best) gid.

PAC Privilege Attribute Certificate. A data structure, generated by the DCE Privilege
Server, that contains the identity of a DCE authenticated principal. To a first
approximation, it contains the principal’s uuid_t along with the uuid_t of each
group of which it is a member.

Principal An entity that is interacting with DFS. Although it usually refers to a person, it
could as easily correspond to a DCE server or a computer within a DCE cell. In the

Part 6: The DCE DFS VFS+ Interface Specification 233

Definition of Terms DCE DFS VFS+ Interface Introduction

DCE environment, principals are identified by a uuid_t. In a non-DCE, standard
UNIx, environment, they are identified by a 32- bit (at best) uid.

Realm Equivalent to a Cell. In security DCE security discussions, the term Realm is
typically used instead of Cell.

11.2 VFS+ Interface Goals and Constraints
The DCE DFS VFS+ interface is an enhancement of the VFS interface. The VFS (Virtual File
System) interface was introduced by Sun Microsystems to make it possible to implement
different file systems within one UNIX kernel; specifically, to implement both a physical and a
network file system. The original VFS interface, or variants of it used by other vendors of UNIX
systems, appears in most UNIX kernels today. The VFS+ interface extends VFS in several ways,
serving to generalize VFS and adapt it to fulfill the requirements of operation in a distributed
computing environment.

The principal improvements offered by the VFS+ interface are:

• Generalized credentials. The credential structure passed to most of the VFS functions has
been augmented to accommodate the use of various different authentication mechanisms.
The new credential may thus carry the standard UNIX information as well as Kerberos
tickets, or any other form of authentication information required. This revision is completely
backwards-compatible.

• Synchronization. Most operations are redefined to use a synchronization package. In this
way, protocol exporters can support notification guarantees to their clients (similar to AFS
callbacks, for those familiar with the concept). When an object in any type of virtual file
system is changed, the synchronization system notifies all interested parties. This allows a
more general mechanism for providing appropriate semantics in a distributed file system.

• Fileset/aggregate interface. The VFS+ interface includes operations on filesets, a key
functional enhancement and operability feature in the DCE DFS distributed environment.
Filesets are located within a new form of data container called an aggregate, and the VFS+
interface also allows them to be manipulated.

Historically, filesets were called volumes, but the name was changed to avoid confusion with
features of other file systems.

• Portability. Several portability problems are addressed. Synchronization is equally effective
for vendor file systems (such as the UFS file system in Sun’s SunOS and other Berkeley-
derived kernels) and for local file systems (such as the DCE LFS that is part of DCE DFS).
Vendor file systems need not be enhanced to support the full functionality of filesets and
aggregates, but they can support the full fileset/aggregate interface, with rudimentary
functionality. And lastly, local file systems can be adapted to different kernels. It is necessary
to do this without modifying the kernels above the VFS layer. A complication is that some
vendor kernels, notably IBM’s AIX and DEC’s Ultrix, do not have simple variants of Sun’s
VFS interface, but have their own file system interfaces, with differing data structures (both
AIX and Ultrix have a gnode structure, and Ultrix does not have a vnode structure), and
different designs for the boundary between the file system and the higher levels of the kernel.
Another complication is that the file system is expected to be integrated with the virtual
memory system, and the different kernels have completely dissimilar and independent
virtual memory systems.

An important motivation for these changes is compatibility among protocol exporters. For
example, one protocol exporter (namely, a VFS+ server) may make guarantees about when an

234 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Interface Introduction VFS+ Interface Goals and Constraints

exported file changes. At the same time, other servers (in particular, NFS), as well as the local
UNIX kernel, may simultaneously modify these files.

In order to avoid modifying the file-system-independent layer of the UNIX kernel or the NFS
server, the stock VFS vnode-level functions are redefined to call on a synchronization package
that keeps track of all guarantees made by the various protocol exporter types. The updated
function definitions are implemented by writing what is termed ‘‘wrapper’’ functions for an
already-existing virtual file system. These wrappers perform the appropriate synchronization
calls before and after the original VFS call.

The VFS+ performance issues are fairly straightforward. The principal additional overheads
incurred by using the VFS+ interface are checks for concurrent whole-fileset and checks for
conflicting references to vnodes. The check for concurrent use of a fileset is done by lookup in a
fileset registry (see Section 11.6 on page 239). Checks for conflicting conflicting references to
vnodes are done by calling a file-system-independent layer with the appropriate file ID.

This layer is necessary to ensure that no matter how a vnode is modified or otherwise accessed,
all protocol exporters that may have granted incompatible promises to their clients will have an
opportunity to revoke those promises. Promises are represented by tokens. The VFS+ interface
must obtain tokens for files that it manipulates; in this respect it is no different from a DCE DFS
client.

The fileset registry and the token cache are hash tables in which normal lookups, using the file ID,
are relatively inexpensive. Optimizations allow the fileset synchronization and token obtaining
steps to be skipped, wholly or in part, for those filesets that are not exported, or for filesets that
are read-only. Thus, those file systems that may require inter-machine synchronization are the
only ones that experience this modest performance penalty.

11.3 Overview of Interfaces to the LFS
There are three separate subdomains or areas in the VFS+ interface that are required. A fourth
may be present:

1. Vnode-level facilities. The vnode functions appropriate to the particular kernel, accessible
via a struct vnodeops function array or equivalent, are exported. Each type of LFS
provides a vector of pointers to its vnode facilities, and a pointer to this function array is
placed in vnodes initialized by that LFS. Thus, for vendor file systems, the array will
generally not point to the original vendor functions, but will point perhaps to wrapper
functions, which perform synchronization. The wrappers will need to call non-wrapped
functions (which in the case of vendor file systems could be the original vendor functions).
They will access the non-wrapped versions via the same function array, which therefore is
extended to about twice the original length.

That, however, isn’t the only extension of the struct vnodeops function array. The
methodology for achieving portability in DCE LFS has been to write a set of functions
appropriate for Sun’s original VFS interface, and to use wrapper functions to extend these
for VFS-variant interfaces from other vendors (as well as for Sun’s more recent VFS
extensions). Another layer of wrapper functions means another extension of the function
array, which is consequently about three times the original length.

Of course, the kernel accesses this new triple-length array as if it were just a struct
vnodeops. But components of the server may access other parts of the array. In particular,
the Protocol Exporter accesses the non-synchronized non-portable functions. That is
because it does its own synchronization, and it does not have to use the same VFS-variant
as the kernel.

Part 6: The DCE DFS VFS+ Interface Specification 235

Overview of Interfaces to the LFS DCE DFS VFS+ Interface Introduction

2. Aggregate-level facilities. An aggregate is a data container that holds filesets. Aggregates
are a generalization of the UNIX concept of partition, while filesets are a generalization of
the UNIX concept of a file system. That is, a fileset provides a single connected file
hierarchy, while an aggregate provides a flat address space on disk. In conventional UNIX
systems these concepts are identified so that each partition can contain exactly one file
system, but in the DFS, an aggregate can contain any number of filesets. The VFS+
interface provides facilities for managing aggregates, including creating new filesets within
the aggregate and enumerating existing filesets. Aggregate information is made available
via a global Aggregate Registry table, where each entry describes the data container for
filesets and exposes a function array containing the aggregate operations described above.
This table is reached by means of an aggregate type, which is a small integer that is
provided by the protocol exporter, that is used as an index to this table. (see Chapter 14 on
page 303).

3. Fileset-level facilities. Structures and operations are provided to access and manage the
contents of individual filesets situated within the above aggregates. Each type of LFS
provides a vector of pointers to its vnode operations. A pointer to this vector is returned to
DFS by the aggregate operation which attaches filesets. The global Fileset Registry table
exports entries for each fileset hosted by available aggregates. These entries include a
function array (vector of pointers) allowing use of the intra-fileset operations, such as
creating, deleting, and getting status on files within a fileset (see Chapter 15 on page 325).

4. LFS-specific facilities. A set of facilities that are private or specific to a particular LFS may
be present that are used to communicate between LFS-specific utilities and the LFS. These
may consist of private system calls or other private routines which are perculiar to a
specific vendor’s LFS. Nothing else will be said about them other than as noted here - that
they are not specifically excluded by this specification.

11.3.1 Locking

One of the most important VFS+ aspects is the manipulation of locks above the original VFS
interface layer.

In the VFS+ interface, each VFS function is redefined to perform the following operations:

1. Lock operands and declare the operations to be performed. In this step, the VFS function
calls a locking function common to all virtual file system types. Declarations are made of
the file IDs that are about to be processed, as well as the operations that will be performed
upon them. As part of this function, other virtual file systems may be invoked to revoke
promises (such as callbacks and tokens) that they may have issued pertaining to the same
files.

2. Perform the desired original virtual file system operation.

3. Release the synchronization entries locked in the first step above. This does not cause
the revocation of any guarantees made by the call itself, but rather indicates to the local
synchronization package that revocation is now permitted.

236 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Interface Introduction Overview of Interfaces to the LFS

11.3.2 Credentials

The credential structure (struct ucred) passed to most VFS functions has also been generalized in
the VFS+ interface. Each credential is augmented with a magic cookie value that is associated with
a property list. This property list (and thus the credential containing the appropriate cookie) is
then associated with an arbitrary set of user identification information. Examples of entries on
this property list are NFS and Kerberos identity structures.

Using this generalized structure, file systems that understand the credential magic cookie will
obtain the specific information (such as the user’s Kerberos identity) that they need to use the
relevant protection mechanisms.

File systems that have not been modified to understand the credential magic cookie will continue
to use the basic UNIX uid and group information in order to make authorization decisions,
oblivious of the extra information available.

11.3.3 Operations on Filesets and Aggregates

The final components of the new VFS system are two new virtual interfaces for performing
operations on filesets and on aggregates. The functions in the fileset interface implement such
operations as:

1. Taking filesets off-line and putting them back on-line. While a fileset is off-line, vnode
operations on files stored in that fileset will either wait or fail with distinctive error codes,
depending on the mode in which the fileset was taken off-line. When the fileset operations
in question are completed, that fileset is once again functional, and can be accessed via
protocol exporters or via system calls from the local UNIX kernel.

2. Iterating through all files in a fileset. Many operations require that some operation be
performed on every file within that fileset. Examples are cloning a fileset and restoring a
fileset from a dump.

3. Operating on individual files in a fileset. Cloning of a fileset makes use of an operation
that clones an individual file. Restoring a fileset makes use of several operations on
individual files: one to write the file’s data; one to write its status; possibly one to create a
file, and possibly one to delete a file; and others.

The operations used to support dumping and restoring of filesets correspond roughly to
various vnode operations used by the UNIX kernel. But there are important differences.
The vnode operations implement UNIX semantics, while the fileset operations do not. For
instance, the vnode operation VOP_RDWR, which reads or writes file data, will also set
the file’s atime (for reading) or mtime and ctime (for writing). The corresponding fileset
operations VOL_READ and VOL_WRITE, on the other hand, are carefully coded to avoid
modifying any of the file’s meta-data, except its length. Another important difference is
that, given a consistent file system on entry, a vnode operation will restore the file system
to consistency at exit, while the volume operations do not maintain consistency. For
instance, the above mentioned VOL_WRITE operation is used to restore directories as
well as files. When it finishes writing a directory, the directory may well contain dangling
references to files, which will be corrected only by subsequent volume operations to create
those files. For comparison, vnode operations that modify directories, such as
VOP_CREATE and VOP_REMOVE, also create or remove files in such a way that the
directory hierarchy is correct by the time the operation returns.

4. Accessing files on behalf of protocol exporters. In normal operation, a DFS file exporter
obtains a vnode for a file by passing the file’s ID and uniquifier (generation number) to a
fileset operation.

Part 6: The DCE DFS VFS+ Interface Specification 237

Overview of Interfaces to the LFS DCE DFS VFS+ Interface Introduction

While a fileset is off-line, an operation on a vnode within that fileset should cause the
corresponding virtual file system to either return a distinctive error code or simply wait for the
fileset to come back on line.

The functions in the aggregate interface implement such operations as creating a new fileset on
an aggregate and enumerating all filesets within an aggregate.

11.4 Organization of the VFS+ Switch
Examples of the following description can be found in Section 13.5 on page 290. They can be
referred to for further information to gain an enhanced understanding of this description.

11.4.1 The O-ops

In the VFS+ interface, the base procedures (the ones already defined by the vendor-supplied
kernel) are implicitly redefined. In addition to performing their basic functionality, they also call
the DFS Token Manager in order to revoke any tokens conflicting with the operation the VFS
function is about to perform. The token element will remain locked in the token database until
the VFS operation completes.

The redefined procedures, as used by the vendor-supplied kernel, are referred to as the O-ops.

11.4.2 The N-ops

An additional set of procedures are provided, which represent the extended portion of the
interface. They are similar to the base set, but assume the caller has performed all the required
token synchronization. Since the extended procedures are new to the vnode operations vector,
the only programs that will invoke them are components of DFS, such as the O-ops. Other clients
of the VFS+ interface, such as the UNIX kernel’s file system calls, do not know of the existence of
these extended functions.

These procedures, having the same specifications as the O-ops but not performing
synchronization, are referred to as the N-ops. If the file system is a vendor-supplied file system,
these are generally the original vendor vnode ops.

11.4.3 The X-ops

The last extension is a set of functions that do not conform to the vendor’s VFS-variant
specifications, but rather, conform to the original VFS specifications. These are referred to as the
X-ops. Because the X-op interface is constant across platforms, it is convenient for use by the
Protocol Exporter and other server components. For portability, the DCE LFS has been written
as a set of X-ops, and the corresponding N-ops are wrappers for these X-ops. Vendor-supplied file
systems, on the other hand, come as sets of N-ops, and the corresponding base X-ops are
wrappers for the N-ops.

The X-ops include some extra operations, besides those in Sun’s original VFS. Some of these extra
operations facilitate integration with vendor virtual memory systems. Others facilitate
communication with the Protocol Exporter, or the Fileset Registry, or allow manipulation of
Access Control Lists. A complete set of specifications for the X-ops may be found in Section 16.7
on page 424 and Section 16.8 on page 460.

238 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Interface Introduction Basic Operation

11.5 Basic Operation
Because of the extension of the vnode operation vector, there are some basic bootstrapping
problems in getting a VFS+ interface working in a kernel. It cannot be assumed that any file
system’s code is written with any knowledge of the VFS+ interface, or even that the VFS+
interface is present when the kernel is first booted or at any time soon after boot. In other words,
the VFS+ interface may be loaded as a kernel extension, after a system has been running for
some time.

Pathologically, some kernels may rely upon knowledge of the addresses of vnode operation
vectors. For instance, a kernel may determine whether a vnode will require certain resources, by
comparing the address of its vnode op vector with the known address of the vnode op vector for
a particular file system. This sort of comparison will not work if old vnode ops vectors are
replaced by new ones. Thus, such file systems cannot be exported. Appendix C on page 245
discusses typical components in a typical VFS+ package in a typical VFS kernel.

11.6 The Fileset Registry
In-memory structures describing filesets local to the host are kept in a hash table called the
Fileset Registry. The struct volume fileset descriptor records kept there (see are hashed by
volume ID. One fileset descriptor exists for each fileset served by that host. There are various
ways to generate references to these fileset descriptor structures. Section 11.7 shows how to
determine the proper fileset pointer given an already existing vnode. Section 15.14 on page 375
describes the vol_vget () call, which converts a file ID to a vnode containing the proper fileset
descriptor reference.

Protocol exporters will need to have the Fileset Registry pre-loaded by an application program
which iterates over the filesets on the server’s disk(s) and loads fileset descriptors for each.

Each fileset descriptor stored in the Fileset Registry contains a pointer to an array of operations
(struct volumeops) that may be performed on the associated fileset. Thus, given a fileset ID,
acquiring the Fileset Registry entry for that fileset allows the caller to perform such operations as
attach, destroy, and open, as well as operations on the individual files contained within that
fileset. The struct volumeops operation array is used by such agents as the Fileset Server to
perform higher-level activities such as cloning (replicating), moving, and dumping filesets. Refer
to Chapter 15 on page 325 (in particular, the overview in Section 15.1 on page 325) for a more
detailed examination of the fileset portion of the VFS+ interface.

11.7 The Fileset/Vnode Interfaces
These sections describe the interface between the fileset and vnode layers in more detail. They
primarily define how, given a vnode, one finds the corresponding fileset.

A new VFS+ function, VOPX_GETVOLUMEa, is defined that takes a vnode pointer and returns
the corresponding fileset pointer.

The UFS implementation of this function looks up the VFS pointer of the vnode in a hash table.
The table associates VFS pointers with fileset registry entry pointers. In a file system for which
exportation would make no sense, such as NFS, the implementation of this function would
simply return a NULL pointer, indicating that the fileset concept does not apply to this file
system type.

In DCE LFS, this function obtains a handle for the fileset from the file-system-specific portion of
the vnode structure. From this handle, it obtains the fileset’s ID, and looks up that ID in the fileset

Part 6: The DCE DFS VFS+ Interface Specification 239

The Fileset/Vnode Interfaces DCE DFS VFS+ Interface Introduction

registry in the normal way.

11.8 References from the LFS back into DFS
There is a set of core functionality that is shared between DCE DFS (herein called DFS) and an
DCE LFS, herein called an LFS. These are provided by a set of DFS functions which LFS calls.
This section will list this functionality. In the interest of minimizing the interactions between
DFS and an LFS, only those calls which are truly needed (or seem potentially useful) and cannot
be implemented by code within the LFS itself are actually listed.

11.8.1 LFS Introducing Itself to DFS

An LFS makes itself known to DFS via an ag_setops() call which supplies DFS with an aggregate
operations vector to be used for the given aggregate type (AG_TYPE_xxx). These are listed in
Section 13.2.4 on page 270 and are used in several places such as Section 13.2.1 on page 269.

Note: In Section 13.2.4 on page 270, Valid Aggregate Types, there is also a size definition. If one
were to add a new type (or types), one would also increase the size of the aggregate
operations structures by increasing this size appropriately.

Additionally, the aggregate operations vector whose structure is defined in Section 13.2.6 on
page 270, Aggregate Operations Vector, is supplied. The following signature defines the
ag_setops() function call.

/* agtype: AG_TYPE_xxx encoding for the LFS
* ops: supplied aggregate operations vector
*/

extern void ag_setops(
/* IN */ int agtype,
/* IN */ struct aggrops *ops

);

11.8.2 Operating on DFS Lock Structures

The next set of functions are used by the vol_lock (), vol_unlock (), ag_lock () and ag_unlock ()
operations to operate on DFS lock structures.

The following locks are defined in the DFS header file src/file/osi/lock.h .

#define READ_LOCK 1
#define WRITE_LOCK 2
#define SHARED_LOCK 4

The following lock structure is also defined in this same header. It is the standard "data lock". All
locks wait on excl_locked except for READ_LOCK, which waits on readers_reading

struct lock_data {
unsigned char wait_states; /* type of lockers waiting */
unsigned char excl_locked; /* boosted, shared or write lock? */
unsigned char readers_reading; /* readers actually with read locks */
unsigned char num_waiting; /* probably need this soon */

};

The following locking functions are defined in this header as well. As previously mentioned,
these functions are used to operate on the DFS lock structure, lock_data, defined above.

240 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Interface Introduction References from the LFS back into DFS

extern lock_ObtainRead(lock_data);
extern lock_ObtainWrite(lock_data);
extern lock_ObtainShared(lock_data);
extern lock_ReleaseRead(lock_data);
extern lock_ReleaseWrite(lock_data);
extern lock_ReleaseShared(lock_data);

11.8.3 Allocating and Freeing Memory

The next two calls are used to allocate and free kernel memory. They are specifically needed by
the ag_attach () and ag_detach () functions. They are defined in the DFS header file
src/file/osi/osi.h . See also Appendix F on page 323 for additional information.

/*
* typedef needed for the Alloc and Free functions
*/

typedef unsigned int size_t;

/*
* Generic allocation routine
* Returns pointer to allocated storage, else panics ;
* CAN block
*
* asize: allocation size wanted, in bytes
*/

extern opaque osi_Alloc(
size_t asize
);

/*
* Generic memory deallocation routine
*
* x: pointer to whatever is being freed
* asize: ... and its size (in bytes)
*/

extern void osi_Free(
opaque x,
size_t asize
);

11.8.4 Fileset Creation Assistance

The following call is needed by the ag_volCreate () operation. Its use is described in the
chapter,Aggregate Operations Interface, under that function (see Chapter 14 on page 303). There is
also more information in Appendix D on page 317. It is defined in the DFS header file
src/file/xvolume/vol_init.h .

/* Returns 0 on success, else an error code */

extern int vol_Attach(
afsHyper *volId,
struct vol_status *statusp,
struct aggr *aggrp,

Part 6: The DCE DFS VFS+ Interface Specification 241

References from the LFS back into DFS DCE DFS VFS+ Interface Introduction

struct volumeops *volopsp
);

11.8.5 Obtaining a Fileset Structure

The following call is used by several fileset and vnode operations to determine if a given fileset
(by ID) is exported to DFS and, if so, to obtain a held fileset (volume) structure for it. It is
defined in the DFS header file src/file/volreg/volreg.h . It’s signature can be found in Section
15.15 on page 399 in Fileset Registry Array Functions.

/* Returns 0 on success, else an error code
*
* fidp: fileset ID
* volp: if non-NULL, pointer to held volume
* structure is returned here
*/

extern int volreg_Lookup(
struct afsFid *fidp,
struct volume **volp
);

11.8.6 Releasing a Fileset

The following call is made by the vol_rele() call in Section 15.14 on page 340 when the usage
count on a volume structure goes to zero.

It is defined in the DFS header file src/file/xvolume/vol_init.h .

/* Always returns 0 (success)
*
* volp: pointer to volume structure whose usage
* count has gone to 0.
*/

extern int vol_VolInactive(
struct volume *volp
);

11.8.7 Conversion of Operations Vectors

The following calls assist in the "conversion" of vnode and vfs operations vectors. Consult the
portion of this document on vnode operations, Chapter 16 on page 415.

These don’t appear to exist in any DFS header files. Their source resides in the DFS file
src/xvnode/xvfs_vnode.c .

/* afuns: pointer to LFS extended vnode ops vector
* axfuns: pointer to enhanced (3-part) ops vector
* that is constructed by this call
*/

extern void xvfs_InitFromXOps(
struct xvfs_xops *afuns,
struct xvfs_vnodeops *axfuns
);

/* aofuns: pointer to LFS vfs operations vector
* afuns: pointer to enhanced (2-part) vfs vector

242 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Interface Introduction References from the LFS back into DFS

* that is constructed by this call
* getvolfn: pointer to supplied vfs_getvolume
* function
*/

extern void xvfs_InitFromVFSOps(
struct osi_vfsops *aofuns,
struct xvfs_vfsops *afuns,
int (*getvolfn)()
);

11.8.8 Getting the Local Cell ID

The following call returns the DCE local Cell ID (consult Chapter 12 on page 251 for details on
its use).

extern dacl_GetLocalCellID(
afsUUID *localCellID
);

11.8.9 Getting the Administrative Group ID

The following call returns the uuid of the DFS administrative group. It is the general function
provided for determining if the caller is the member of the DFS administrative group.

extern dacl_GetSysAdminGroupID(
afsUUID *groupID
);

11.8.10 Obtaining the Identity of the Principal

As described in the Obtaining a Principal’s Identity section of the ACL document (see Chapter 12
on page 251), the following calls might be necessary.

Note: As part of its support, a vendor could instead provide a wrapper function within DFS
that performs the full task of extracting a PAC from a set of credentials. Their
signatures can be found in Section 17.1 on page 469, The xcred Package, in Section 17.3 on
page 477, and Section 17.3 on page 480, respectively.

/* aucredP: input unix credentials
* axcredPP: pointer to returned extended credentials
*/

extern xcred_UCredToXCred(
struct ucred *aucredP,
cred_t **axcredPP
);

/* axcredP: input extended credentials
* aattributeP: desired attribute
* aattributeLength: ... and its length
* avaluePP: returned attribute value
* areaLengthPP ... and its length
*/

extern xcred_GetProp(
xcred_t *axcredP,
char *aattributeP,

Part 6: The DCE DFS VFS+ Interface Specification 243

References from the LFS back into DFS DCE DFS VFS+ Interface Introduction

long aattributeLength,
char **avaluePP,
long *areaLengthP
);

244 X/Open Preliminary Specification (1996)

Appendix C

Components of a Typical VFS+ Package

C.1 The VFS Vector
The first item to be considered in providing a VFS+ package is providing a new VFS vector for
the file system to be exported. Typically, the new vector is like the old vector, but some of the
functions are wrappers. In particular, the vfs_root and vfs_vget functions are wrappers; they call
the original function to obtain a vnode, and then convert that vnode, by replacing its old vnode
ops vector with a new one.

Converted (VFS+) vnodes can be distinguished from normal (VFS) vnodes by a status flag in the
v_flag field, V_CONVERTED. (In IBM’s AIX, the flags field is the gn_flags field of the gnode; in
DEC’s Ultrix, the flags field is the g_flag field of the gnode.) If this flag is set, the vnode is a VFS+
vnode, and the functions pointed to by the v_op field have their VFS+ definitions. Otherwise,
the functions are basic VFS functions and have their usual definition.

The conversion process works by checking for the V_CONVERTED flag. If present, there is
nothing to be done, and the conversion process terminates. Otherwise, an updated set of vnode
functions is generated from the existing vnode functions, and the updated function array is
placed into the vnode’s v_op field. Finally, the V_CONVERTED flag is set in the v_flag field in
the converted vnode.

When an updated set of vnode functions has been generated for one vnode in a file system, it can
be used for all the other vnodes in the same file system. So to save conversion effort, an
association list can maintained, in which each pair consists of an old vnode ops array, and a new
one. When a vnode is to be converted, the address of its vnode ops array can be looked up in the
list, and if it is found (as an ‘‘old’’ array), the appropriate ‘‘new’’ array replaces it.

C.2 Naming Conventions
In this document, naming conventions are used for both the macros defined for vnode functions
as well as the functions themselves.

• Vnode functions. One naming convention identifies the ‘‘family’’ to which a given vnode
function belongs. Let us take the example of vnode functions implemented for the UNIX
BSD file system, or UFS. Furthermore, let fname be the suffix portion of the function name
pointed to from the struct vnodeops array, such as rename, lookup, open, and mkdir. In this
appendix, ufs_fname() refers to the version of fname as it normally appears in the struct
vnodeops function array straight from the vendor. The glue version of the same function,
whose address is overwritten into this array (as an O-op) and which performs the additional
synchronization operations transparently, is referred to as xglue_fname(). Finally, the
extended version of the same function, the one that is normally used by the DFS class of
exporters directly (as an X-op) and for which the caller has already performed all the
synchronization work is named xufs_fname(). See Section 11.4 on page 238 for more
information on O-ops, N-opsand X-ops.

• Vnode macros. There are a standard set of vnode macros defined by the file system. As in
the previous paragraph, let fname be the suffix portion of the function name pointed to from
the struct vnodeops array. Then, in Sun’s original VFS, VOP_FNAME is the macro that
indirects through the struct vnodeops array in the vnode descriptor and calls the appropriate

Part 6: The DCE DFS VFS+ Interface Specification 245

Naming Conventions Components of a Typical VFS+ Package

base function there. For clarity in DFS, an equivalent macro, VOPO_FNAME, is defined
which accesses the same slot in the array but indicates clearly that an O-op is expected to be
there. A second set of macros, VOPX_FNAME, used by DFS exporters, is also defined which
indirects through the same array but calls the extended version of the same function (that is,
the X-op). Similarly a third set of macros, VOPN_FNAME, is defined to indirect through the
N-op slots in the same array.

C.3 Glue Functions
Most of these glue functions are derived from the corresponding vnode functions by writing a
new function that calls the old one as part of its operation. Here is pseudo-code for the
xglue_rename() function. It is written with an old-style Sun VFS interface in mind; the versions
for other VFS-like interfaces, such as that used in IBM’s AIX, would be somewhat different.

C.3.1 xglue_rename() Function

Example C-1 xglue_rename() Function

xglue_rename(vnode, name, tovnode, toname, cred)
struct vnode *vnode, *tovnode;
char *name, *toname;
struct ucred *cred; {

struct vnode *tvp1, *tvp2;
struct afs_tokenSet *tset;
struct volume *vold;

if (code = ReferenceCorrespondingVolume(vnode, &vold))
return(code);

if (NoTokensRequired (vold)) {
code = VOPN_RENAME(vnode, name, tovnode, toname, cred);
return(code);

}

VOPN_LOOKUP(vnode, name, &tvp1, cred);
ConvertVnode(tvp1);
VOPN_LOOKUP(tovnode, toname, &tvp2, cred);
ConvertVnode(tvp2);

tset = NewTokenSet();
AddTokenSet(tset, vnode, DATA_WRITE+STATUS_WRITE);
AddTokenSet(tset, tovnode, DATA_WRITE+STATUS_WRITE);
AddTokenSet(tset, tvp1, STATUS_WRITE);
AddTokenSet(tset, tvp2, STATUS_WRITE);
ObtainTokenSet(tset);

code = VOPN_RENAME(vnode, name, tovnode, toname, cred);

ReturnTokenSet(tset);
VN_RELE(tvp1);
VN_RELE(tvp2);

246 X/Open Preliminary Specification (1996)

Components of a Typical VFS+ Package Glue Functions

ReleaseCorrespondingVolume(vold);
return(code);

}

The Token Manager is called to acquire and release tokens on all of the vnode-class operands,
whether they are explicit or implicit in the VFS interface. Thus tokens must be obtained for the
object being renamed, and the object (if any) that it will replace, though their vnodes are not
explicit parameters of the function.

C.3.2 xglue_lookup() Function

Example C-2 xglue_lookup() Function

Calls like those done via the VOP_LOOKUP macro that potentially return new vnodes must also
call the conversion function on the returned vnode parameters. For instance, the xglue_lookup ()
call looks like this:

xglue_lookup(vp, name, vpp, cred)
struct vnode *vp, **vpp;
char *name;
struct ucred *cred; {

long code;
struct afs_tokenSet *tset;
struct volume *vold;

if (code = ReferenceCorrespondingVolume(vp, &vold))
return(code);

if (NoTokensRequired (vold)) {
code = VOPN_LOOKUP(vp, name, vpp, cred);
return(code);

}

tset = NewTokenSet();
AddTokenSet(tset, vp, STATUS_READ);
ObtainTokenSet(tset);
code = VOPN_LOOKUP(vp, name, vpp, cred);
ReleaseTokenSet(tset);
if (*vpp)

ConvertVnode(*vpp); /*Convert to VFS+ vnode*/

ReleaseCorrespondingVolume(vold);
return(code);

}

Note that the returned vnode (*vpp) is converted into a VFS+ vnode. Ensuring that all vnodes in
the system are converted is accomplished by intercepting the vfs_vget() and vfs_root () VFS
functions as well as all returns of newly-created vnodes. The result is that after the interception
code is installed, all VFS vnodes will be converted to VFS+ vnodes, and will thus call the VFS+
code instead of the normal VFS code from then on.

In other words, after the VFS+ interception code is enabled, all processing that starts with a
mount point and continues down the file system tree via lookup () and create() calls will deal
exclusively with VFS+ vnodes, rather than the generic VFS vnodes.

Part 6: The DCE DFS VFS+ Interface Specification 247

Glue Functions Components of a Typical VFS+ Package

Notice the calls to ReferenceCorrespondingVolume() and ReleaseCorrespondingVolume() in the code
above. These functions are responsible for ensuring that whole-fileset operations synchronize
properly with the basic vnode operations. If the fileset concept is meaningless for a particular
type of file system, these functions need do nothing but return zero (in which case the vnode
operations will never wait), or return inaccessible when referring to data on a particular file
system.

If there is a meaningful fileset concept for a particular file system, then there is a reference-
counted fileset structure in one of three states:

Normal File operations may proceed on this fileset.

Busy File operations should wait until the fileset is no longer marked as busy.

Error File operations should fail with the specified error code.

C.4 Extended Functions
Pointers to the xglue_rename() and xglue_lookup () functions replace those of native (base)
functions in the vnode function array. The extended functions, namely the ones that do not
make calls to the Token Manager, must also be defined. In most cases, the extended version of the
vnode function is identical with the original, vendor-supplied version. It is assumed for all extended
functions that the caller has already dealt with all the synchronization requirements, so it is safe
to call the original vendor code. However, all functions in the extended set that return new
vnodes must also make sure that these resulting vnodes are the VFS+ versions (that is, they
point to the augmented struct vnodeops function array). Thus, one may simply use the
ufs_rename() function to implement xufs_rename() since it doesn’t return any new vnode
references. This cannot be said for xufs_lookup (), which must be implemented as follows (old
Sun VFS version):

C.4.1 xufs_lookup() Function

Example C-3 xufs_lookup() Function

xufs_lookup(vp, name, vpp, cred)
struct vnode *vp, **vpp;
char *name;
struct ucred *cred; {

long code;

code = VOPN_LOOKUP(vp, name, vpp, cred);
if (!code)

ConvertVnode(*vpp); /*Convert to VFS+ vnode*/
return(code);

}

This function, like all extended vnode functions, does not attempt fileset synchronization or
token acquisition, but simply performs the native version of the lookup operation and then
converts the resulting vnode, if one was generated.

248 X/Open Preliminary Specification (1996)

Components of a Typical VFS+ Package Extended Vnode Attributes

C.5 Extended Vnode Attributes
The vnode attribute structure (struct vattr) used in UNIX kernels is extended for purposes of
exporting files. The extended structure (struct xvfs_attr) is given in Section 13.6.3 on page 294.
The X-ops, VOPX_GETATTR and VOPX_SETATTR, take an extra argument, which is a flag
specifying whether or not the attribute structure argument is extended.

Part 6: The DCE DFS VFS+ Interface Specification 249

Components of a Typical VFS+ Package

250 X/Open Preliminary Specification (1996)

Chapter 12

The DCE DFS ACL Model for an LFS

This chapter discusses ACLS, security and protection checking as they relate to a DFS physical
file system.

12.1 Overview
DCE DFS ACLs are are an extension of POSIX ACLs. The specific algorithms presented here are
based on draft 13 (/D13) of the POSIX 1003.6.1 spec. This is a recent draft which is simplified in
several respects from the earlier ones which are reflected in some of the existing
implementations of the DCE DFS. It is assumed that the reader has access to this document.

Note: Since it is not clear what POSIX will finally decide on here, this document also
describes (clearly annotated) the older behaviors, as implemented currently in Episode.

12.2 Definition of Terms
The terms here are defined in Section 11.1 on page 233. They are reproduced here for
convenience as they are used extensively in the descriptions that follow.

Cell A collection of DCE machines administered as a single entity. In this context,
the key point is that a cell is serviced by a single registry with a single,
consistent set of user and group identifiers.

Group A membership list, identified by a uuid_t, whicn contains a list of principals
(by uuid_t) which are members of that group. Again, in a non-DCE
environment, they are identified by a 32-bit (at best) gid.

PAC Privilege Attribute Certificate. A data structure, generated by the DCE
Privilege Server, that contains the identity of a DCE authenticated principal.
To a first approximation, it contains the principal’s uuid_t along with
theuuid_t of each group of which it is a member.

Principal An entity that is interacting with DFS. Although it usually refers to a person,
it could as easily correspond to a DCE server or a computer within a DCE cell.
In the DCE environment, principals are identified by a uuid_t. In a non-DCE,
standard UNIX, environment, they are identified by a 32- bit (at best) uid.

Realm Equivalent to a Cell. In security DCE security discussions, the term Realm is
typically used instead of Cell.

Part 6: The DCE DFS VFS+ Interface Specification 251

Primitive Data Types The DCE DFS ACL Model for an LFS

12.3 Primitive Data Types
There are two primitive data types used in this chapter, sec_id_pac_t and permissions_t. Their
definitions can be found in Section 13.1 on page 267.

12.4 Local Realm
Several of the ACL algorithms detailed below require the identity of the local DCE Realm (Cell).
During DCE DFS and LFS (DCE LFS) initialization, this value (a uuid_t) is supplied to the
system via a mechanism discussed elsewhere.

The simplest mechanism is to use the dacl_GetLocalCellID() call detailed in Getting the Local Cell
ID, Section 11.8.8 on page 243. In this document, this Cell (by uuid_t) is referred to as the
LOCAL-REALM.

12.5 DFS Administrator
DFS has the notion of a special System Administrative group which is granted the right to
perform various control functions. (In many regards, this group enjoys the same file system
privileges that ROOT on a typical UNIX system possesses.)

The simplest mechanism is to use the xvfs_IsAdminGroup() or dacl_GetSysAdminGroupID() call
detailed in Getting the Administrative Group ID, Section 11.8.9 on page 243. If DFS is not active,
there is no notion of an administrator.

In this document, this group (by uuid_t) is referred to as the DFS-SYSADMIN-GROUP.

12.6 DFS vs non-DFS requests
In certain situations, the desired behavior depends upon whether or not the operation being
performed originated from DFS. Although a number of short cuts are possible (say, if DFS is not
installed at all), the logical determination of this fact is described in Obtaining the Identity of the
Principal, Section 11.8.10 on page 243.

12.7 ACL Contents
A DFS ACL consists of a certain amount of fixed information along with a variable number of
ACL entries. The fixed information is the following:

Manager Type A UUID defining the type of manager that supports this ACL type.
Alternatively, one can view it as defining an ACL type. In order to be
interoperable with other physical file system implementations, the constant
picked for the Episode LFS should be used.

Default. Realm A UUID identifying the realm that non-qualified (by an explicit realm) entries
in this ACL are interpreted relative to. Usually, this will be the local cell
within which this file system resides.

The definition for ACL structure, of type dacl_t, can be seen in ACL Structure, Section 9.8 on page
169.

252 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS ACL Contents

The remainder of the ACL consists of some number of ACL entries. ACL entries come in several
different types, each of which contains a type field, a set of permission rights and some amount
of information identifying the principal(s) that this entry applies to. The different types of ACL
entries are listed below. They are an amplification from an LFS point of view, of the information
found in ACL Entry Types, Section 8.2 on page 156.

user_obj Contains: permission set. The rights granted to principals within the default realm
that belong to the user file class of the file. (That is, the file oid field matches the
principal’s id field.)

group_obj Contains: permission set. The rights granted to principals within the default realm
that belong to the group file class of the file. (That is, the file gid field matches
either the principal’s gid field or one of groups in its group list.)

other_obj Contains: permission set. The rights granted to any principals from the default
realm not matched by any of the user or group types.

Note: A DFS ACL is required to contain exactly one of each of the above three
entry types (user_obj, group_obj and other_obj). Likewise, the user_obj entry
is required to contain the perm_control right. If either of these
restrictions are violated, the ACL is corrupt and should be rejected by a
vn_setacl() operation.

user Contains: user UUID, permission set. The rights granted to the specified user in
the default realm. No two user entries can contain the same user UUID.

group Contains: user UUID, permission set. The rights granted to the specified group in
the default realm. No two group entries can contain the same group UUID.

foreign_user Contains: realm UUID, user UUID, permission set. The rights granted to the
specified user from the specified realm. No two foreign_user entries can contain
the same realm UUID and user UUID pair.

foreign_group Contains: realm UUID, group UUID, permission set. The rights granted to the
specified group from the specified realm. No two foreign_group entries can
contain the same realm UUID and user UUID pair.

Note: The default realm in the above two entries (foreign_user and foreign_group)
is required to be different than the ACL’s default realm. This requirement
might not be necessary or desirable given ACL inheritance.

foreign_other Contains: realm UUID. The rights granted to any principals from the specified
realm that are not matched by any of the foreign_user or foreign_group entries. No
two foreign_other entries can contain the same realm UUID.

any_other Contains: permission set. The rights granted to any principals not matched by any
of the other entries. At most one any_other entry can appear in an ACL.

extended Contains: an uninterpreted string of bytes (and length). Ignored (but preserved) by
DFS.

Note: This is for future extensions.

mask_obj Contains: permission set. This entry type corresponds to functionality dropped in
the POSIX. The safest behavior, from an interoperability viewpoint, is to ignore
but preserve this entry type. At most one mask_obj entry can appear in an ACL.

Note: This is an optional entry. Not all ACLs contain this entry.

Part 6: The DCE DFS VFS+ Interface Specification 253

ACL Contents The DCE DFS ACL Model for an LFS

12.8 Define the External ACL Representation
Although there are no requirements on ACL representation on disk and in memory, the external
representation as seen outside the LFS is fixed.

The only limit on ACL size is that its external representation must fit within a 8192-byte dfs_acl
structure.

struct dfs_acl {
long acl_len;
char acl_val[8188];

};

The acl_len field gives the number of bytes in acl_val[] that are valid. For an invalid or empty
ACL, this will be 0.

The first few components stored in acl_val[] are fixed as follows:

uuid_t A manager UUID which gives type of ACL this is (literally, it identifies the
manager which interprets it). This field’s only use is to be checked for validity
when an ACL is presented to the file system. If general interoperability is desired,
LFS implementations should use the same UUID value that was selected for its
Episode LFS. Specifically:

uuid_t LFSMgrUui d = { 0xd076c532, 0x0a1d, 0x11ca,
{0x95, 0x3d, 0x02, 0x60, 0x2e, 0xa9, 0x6e, 0x00}
};

uuid_t The default realm that this ACL applies to.

int32 The number of ACL entries which follow.

Following this is some number of ACL entries in an unspecified order. ACL entry types are
identified by a type field with the values shown in the following table. See ACL Entry Type
Format, Section 9.5 on page 167, for their definitions.

ACL Entry Type Value
user_obj 0
group_obj 1
other_obj 2
user 3
group 4
mask_obj 5
foreign_user 8
foreign_group 9
foreign_other 10
unauth_mask 11
extended 12
anyother 13

Table 12-1 ACL Entry Types

254 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Define the External ACL Representation

12.8.1 Formats of ACL Types

The formats for the various types of ACL entries are shown below. These formats are defined by
the ACL entry formats in Complex ACL Entry Format, Section 9.7 on page 168, and Simple ACL
Entry Format, Section 9.6 on page 168, for those that are not foreign or extended. That is to say,
the simple entries contain the permissions, perms, and the value from the above table (to
determine if the entry is good), while the foreign types also have a realm uuid. This distinction
can be seen in the definitions shown in Section 9.9.1 on page 170 and Section 9.9.2 on page 170.

• user_obj, group_obj, other_obj, mask_obj, any_other, unauth_mask

permissions_t Associated permissions.

int32 Type value from above table.

• user, group

permissions_t Associated permissions.

int32 Type value from above table.

uuid_t user or group uuid.

• foreign_user, foreign_group

permissions_t Associated permissions.

int32 Type value from above table.

uuid_t user or group uuid.

uuid_t Realm uuid.

• foreign_other

permissions_t Associated permissions.

int32 Type value from above table.

uuid_t Realm uuid.

• extended

uuid_t Extension type.

u_int16[3] Miscellaneous stuff.

char[2]

U_int32 The number of bytes following this.

char[] (Whatever).

Note: All ACL entries must begin on an integral long (32-bit) boundary in memory. For the
purpose of computing the total size of the ACL and placing additional entries after it,
the size of an extended entry is logically rounded up to a multiple of 4 bytes in size. (Its
internal size field can contain an arbitrary value, however.)

In this external representation, all fields are stored in network canonical order. Fields of type
long, int32 and permissions_t are run through htonl(). Fields of type short (int16) are run
through htons(). Fields within a uuid_t structure are converted as follows:

• Fields with .time_low are run through ntohl().

• Fields with .time_mid are run through ntohs().

Part 6: The DCE DFS VFS+ Interface Specification 255

Define the External ACL Representation The DCE DFS ACL Model for an LFS

• Fields with .time_hi_and_version are run through ntohs().

Consult your <stds.h> header file for definitions of the integer, long and ntoh functions.

12.9 Relationship — ACLs and UNIX Protections
There is a direct equivalence between the user_obj, group_obj and other_obj required entries in an
ACL and the standard UNIX protection bits (the mode bits). If an object does contain an ACL
(as always, optional), these must remain consistent. P Although there are any number of
implementation possibilities, the most obvious ones are listed below.

Approach 1 Don’t associate the standard UNIX protection bits with a file. Instead, require that
all objects have an associated ACL with at least the required user_obj, group_obj and
other_obj entries.

From a performance and disk utilization point of view, it seems most reasonable to
always hold these ACL entries in an object’s inode (anode).

With this approach, changing the mode bits on a file automatically adjusts the ACL
in a corresponding fashion.

Approach 2 Associate both the UNIX protection bits and an optional ACL with an object.
When the object’s mode bits are modified as a result of a chmod operation or file
creation, the required entries in the ACL are changed.

Likewise, when an object’s ACL is explicitly changed as a result of a set ACL
operation, its mode bits are changed as well (to agree with the ACL).

With this approach, an object’s ACL is always consistent with its UNIX permission
bits. However, it may suffer from performance and disk utilization problems.

Approach 3 Associate both the UNIX protection bits and an optional ACL with an object.

When an object’s ACL is explicitly changed as a result of a set ACL operation, its
mode bits are changed as well (to agree with the ACL).

When the object’s mode bits are modified as a result of a chmod operation or file
creation, its ACL is left unchanged.

When an ACL is returned to user space during a get ACL operation, the
read-write-execute permissions in its user_obj, group_obj and other_obj entries are
changed to agree with potentially more up-to-date mode bits on the object.

Note: This does not occur for initial-file and initial-directory ACLs on a
directory.

When this step is performed for a directory’s ACL, the perm_insert and
perm_delete rights will additionally be turned on if the perm_write one ends up
being set (regardless of its initial state). Note the assymetry here: although these
perm_insert and (or) perm_delete rights may be turned on during this process,
they will not be turned off -- even if the perm_write right is removed.

When permission checking is done against an ACL, the permissions from the
mode bits are used instead of what is found in the user_obj, group_obj and other_obj
entries.

This approach has the same advantageous performance and disk utilization
behavior that Approach 1 enjoys.

256 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Relationship — ACLs and UNIX Protections

Note: The second approach is not recommended at all. Either of the other two schemes
seems reasonable. Episode follows the third approach.

The access check algorithm in Access Rights Algorithm, Section 12.16 on page 262, assumes
Approach 3.

12.9.1 Episode Visibility above VFS+

As pointed out in the fileset and vnode operations chapters, under vol_getacl (), (see Section
15.14 on page 365 and so forth) vol_setacl (), vol_copyacl (), vn_setacl() and vn_getacl () (in Section
16.8 on page 465 and so forth), Episode’s choice of Approach 3 above appears to make itself
visible above the VFS+ layer. Specifically:

[1] Episode follows approach 3. Although an object’s mode bits and regular ACL can disagree,
the mode bits are the truth used during ACL checking algorithms.

[2] The vn_getacl() operation coerces (depending upon ACL type) the ACL’s required entries to
agree with the object’s mode bits, while vol_getacl() doesn’t.

[3] The vn_setacl() operation coerces (depending upon ACL type) the object’s mode bits to
agree with an ACL’s required entries, while vol_setacl() doesn’t.

[4] The vol_copyacl() operation, along with vn_setacl() when invoked in its copy mode, totally
ignore an object’s mode bits.

Items [2] and [3] don’t seem to be that major since vol_getacl() and vol_setacl() are used during
backup/restore/move operations. The important point here is that an object backed up by a
vol_getattr() and vol_getacl() (in that order, although it shouldn’t matter) appear UNCHANGED
after it is restored by a vol_copyacl() or vol_setacl()and vol_setattr() (in that order). A major
concern is guaranteeing interoperability of the dump/restore format with other LFS
implementations such as Episode.

Item [4] is more difficult. However, it has the virtue of allowing for maximum ACL sharing if
the application (acl_edit, for instance) takes care of the mode bits itself.

Taking everything into account, the recommendation is to take the safest course and do as
Episode does (Approach 3).

12.10 ACL Creation From Mode Bits Algorithm
There are several circumstances in which it is necessary to construct an ACL from a set of UNIX
mode bits. One example is when a get ACL operation is performed on an object which does not
contain an ACL. In such cases, the ACL is built as follows.

a. The manager type field (uuid_t) is set to the correct value (LFSMgrUuid from above).

b. The default realm field (uuid_t) is set to the LOCAL-REALM.

c. The user_obj, group_obj and other_obj entries (the required ones) all have their permissions
taken from the mode bits in question. The perm_read, perm_write and perm_execute
rights are copied in directly. If the object in question is a directory, perm_insert and
perm_delete rights are granted whenever perm_write rights are. For the user_obj entry, the
perm_control right is added as well.

d. The number-of-entries field within the ACL is set to 3.

Part 6: The DCE DFS VFS+ Interface Specification 257

Initial ACL and File Creation Algorithm The DCE DFS ACL Model for an LFS

12.11 Initial ACL and File Creation Algorithm
Any file system object can have an attached ACL which governs access to that object.
Directories may additionally have two associated optional ACLs that are used during object
creation.

The Initial Object (Creation) ACL, if present, is applied to any files created under that directory.
(Initial ACL.)

The Initial Container (Creation) ACL, if present, is applied to any sub-directories created under
that directory.

Note: Within this chapter, an unqualified use of the term ACL usually refers to the regular
ACL used for access checking.

When an object is created, an initial ACL may be applied to or created for it as follows.

1. When a file is created, any Initial Object ACL of its parent directory is given to the object. If
there is no Initial Object ACL, proceed to step [4].

2. When a directory is created, any Initial Container (Directory) ACL of its parent directory is
given to the new directory. Additionally, the directory’s Initial Object and Initial Container
ACLs are inherited from the parent directory as well. If there is no Initial Container
directory ACL, proceed to step [4].

3. The object’s mode bits (0777) are replaced by a value computed from the user_obj, group_obj
and other_obj entries of its ACL (perm_read, perm_write, perm_execute). If any of these
entries are invalid, the corresponding mode bits are left 0. (In other words, the initial ACL
overrides the initial mode bit setting)

4. If the create operation occurs via DFS, the remote principal’s PAC indicates the realm from
which the request originates (the .realm field of the sec_id_pac_t type). For a non-DFS
operation (there is no PAC), the request is viewed as originating from the LOCAL-REALM.

5. If the originating realm is the LOCAL-REALM and the newly created object has no ACL
(no inherited ACL), proceed to step [6]. If the originating realm agrees with the default
realm in the object’s ACL, proceed to step [6].

Otherwise, the existing ACL (if any) must be modified to reflect the realm from which the
create request actually originated.

If the object has no ACL, one is synthesized for it from the file’s mode bits as described in
ACL Creation From Mode Bits Algorithm, Section 12.10 on page 257.

The resultant ACL, however it was obtained, is modified as listed below.

• If the originating request originated from DFS and is not authenticated (PAC
.authenticated field = 0), an unauth_mask entry is added to the ACL with a permissions
field of all-ones.

Note: Currently, PACs presented to the LFS by DFS are always authenticated. Refer
to Obtaining a Principal’s Identity, Section 12.13 on page 259.

• The default realm in the ACL is set equal to the originating realm (step [4]).

• Any user or group entries in the ACL are changed to foreign_user and foreign_group
ones. The realm field in these foreign_xxx entries is set equal to the ORIGINAL realm
that was associated with the ACL.

• Any foreign_user or foreign_group entries with a realm field equal to the NEW ACL
realm (the originating realm) are changed to user and group ones, respectively.

258 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Initial ACL and File Creation Algorithm

6. If the new object is a directory that posesses an Initial Object (Creation) ACL, perform the
same operations detailed in step [5] on THAT initial file ACL (instead of on the object’s
regular ACL).

If the new object is a directory that possesses an Initial Container ACL, perform the same
operations detailed in step [5] on THAT initial directory ACL (instead of on the object’s
regular ACL).

12.12 User and Group Identities
(This is the saga of the uuid_t versus the 32 bit UNIX ID.) When a DCE registry assigns
accounts, it guarantees that a 32 bit UNIX user or group ID agrees with the first 32 bits of the
corresponding DCE uuid_t. Although this behavior could in theory change at some time in the
future, it is unlikely to as long as the underlying operating systems upon which DCE and DFS
are layered deal natively with these 32s-bit values instead of uuid_t’s.

Because of this fact, the access right algorithm given later is only required to take into account
the first 32-bits of user andgroup uuid_t values. Likewise, only these first 32 bits are taken into
account when comparing a uuid_t against 32-bit file oid or gid values as well as fields from a
non-DFS ucred authentication structure.

12.13 Algorithm for Obtaining a Principal Identity
During a DFS access, a principal’s identity is contained in a PAC structure (sec_id_pac_t). In an
ideal world, each of the extended vnode operations would have been enhanced to include an
argument of this type which could then, as discussed in a following section, be used during
access checks. However (from the point of view of the LFS), these extended vnode operations
continue to take only the standard struct ucred argument from which, in the DFS case, an
appropriate PAC must be obtained.

Before going into how this can be achieved, it might be best to discuss what happens when a
remote DFS request arrives at a server. Although the actual specifics are not in themselves
relevant, a rough understanding of what is happening is useful.

a. We initially start out with an rpc-handle, an afsFid (object identifier) and the call’s
arguments.

b. A call to px_AdjustCell() is made to force the afsFid.Cell field into a known state (.high = 0,
.low = 1). (Presumably, certain code relies upon this behavior.)

c. A call to fshs_InqContext() is made in order to obtain the context (identity, and so forth) of
the remote caller. This is followed by a call to fshs_GetPrincipal() to obtain information
regarding the principal at the remote site, including a PAC (sec_id_pac_t) and an
appropriate ucred structure.

d. A series of xcred_xxx() calls are made in order to embed this ucred and PAC within an
extended credentials xcred structure and also plant within the ucred a PAG (Process
Authentication Group) field which can later be used to "track down" this xcred and, hence,
the PAC.

e. A call is made to volreg_LookupExtended() with the object afsFid in order to locate the
exported fileset in question (indicated by the afsFid .Volume field). This call returns a
pointer to a struct volume. After this volume is held (vol_hold()), the vnode of the desired
file is obtained by a call to vol_vget().

Part 6: The DCE DFS VFS+ Interface Specification 259

Algorithm for Obtaining a Principal Identity The DCE DFS ACL Model for an LFS

f. A call is made into the file system to perform the operation via a VOPX_xxx() call. From
within the file system code, the path back to the PAC structure required for access checks
is the PAG which was left in the ucred structure.

g. The volume and vnode are released via vol_rele() and vn_rele() calls. (The principal and
context structures are released as well.)

From within the LFS (step (f) above), the desired PAC is obtained as follows. This description is
presented as actual C code since it is so dependent upon calls into the DFS portion of the system.

Note: The precise declarations for these xcred_xxx() calls can be found in DCE DFS Credential
Design, Section 17.1 on page 469.

/* Call xcred_UcredToXcred to use a PAG embedded within
* the ucred, if any, to locate an extended credential
* structure (xcred) which will eventually lead to the
* PAC. It takes a ucred argument and, if successful,
* returns a pointer to an xcred structure.
*/

rtn_code = xcred_UcredToXcred(&ucred, &xcred_ptr);
if (rtn_code == 0)

/* Call xcred_GetProp to actually obtain the PAC.
* It takes an xcred structure argument and, if
* successful, returns a pointer to a PAC
* (* sec_id_pac_t) along with the size of the PAC
* - which we don’t care about.
*/

rtn_code = xcred_GetProp(xcred_ptr, "DCE_PAC", 7,
&pac_ptr, &pac_size);

if (rtn_code == 0) {
/* We have a PAC: execute the access check

* detailed below with with this.
*/

}
else {

/* There is no PAC. Presumably, this is a non-DFS or
* local access. Either execute an access check
* algorithm optimized to work off a ucred or "create"
* a PAC from the ucred via the rules given below and
* execute the PAC-based access check algorithms. In
* the latter case, the space for such a PAC (a
* sec_id_pac_t along with a group list) is allocated
* and freed in a file system dependent manner.
*/

}

If the DFS request in question is unauthenticated, the PAC returned by xcred_GetProp() is set to
an unauthenticated identity as shown below. Because even these PACs appear to be
authenticated, normal ACL entries can be established to match unauthenticated users.

.authenticated non-zero (true)

.principal.uuid -2 (1st 32 bits: used in access check)

260 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Algorithm for Obtaining a Principal Identity

.group.uuid -2 (1st 32 bits: used in access check)

.realm.uuid -2 (1st 32 bits)

remaining fields set to 0

12.14 Algorithm for Generating PAC from Ucred Structure
As was mentioned above, (Section 12.13 on page 259), it may be necessary during a on-DFS
access to synthesize a PAC from the contents of a standard ucred structure. The simplest way to
accomplish this is to start out with both a sec_id_pac_t PAC structure and a maximum sized
(OSI_MAXGROUPS_1) sec_id_t group list (array of sec_id_t, that is). The PAC is initialized as
follows with fields not mentioned set to 0).

.pac_type = sec_id_pac_format_v1 (= 0)

.authenticated = true (actually, to, -1)

.realm.uuid = LOCAL-REALM

.principal.uuid.time_low = uid from ucred (by osi_GetUID() call)

.group.group.uuid.time_low = gid from ucred (by osi_GetGID() call)

.num_groups = number of groups in the ucred group list (via
osi_GetNGroups())

.groups = pointer to the sec_id_t group array

For each of these groups, the .groups[] entry is zeroed and then filled in as follows:

.groups[i].uuid.time_low = group-id from ucred .cr_groups[i]

Note that a 32-bit UNIX ID-to-uuid_t conversion is performed via a copy into the first 32-bits of
the uuid_t.

Note: Although this initialization could also be accomplished via a call to the DFS function
dacl_PacFromUcred(), a manual description is presented above in the interest of
minimizing the actual interactions between an LFS and DFS.

12.15 perm_control Access Right
Operations such as chmod() which, would in a traditional UFS file system, require the caller to
own a file in question, instead require perm_control access. The owner of a file will always have
this right.

Part 6: The DCE DFS VFS+ Interface Specification 261

Access Rights Algorithm The DCE DFS ACL Model for an LFS

12.16 Access Rights Algorithm
The access check algorithm presented below uses the following parameters.

desired-access A permset_t detailing the desired access.

file-mode-bits The object’s mode protection bits.

file-oid The object’s owner-ID value (32-bit UNIX uid).

file-gid The object’s group-ID value (32-bit UNIX gid).

When the file-oid or file-gid are compared against a uuid_t below, the
comparison actually occurs against the first 32-bits of the uuid_t.

ucred The ucred structure of the principal on whose behalf the request is being
made.

ACL The object’s ACL, if any.

PAC The PAC identifying the principal on whose behalf the request is being made.
For a DFS access, a PAC is always available (as discussed above). For
non-DFS access (local, NFS access), the following algorithm assumes that a
PAC is built from the available ucred structure as discussed above.
Alternatively, one could provide two bodies of code; one working off of a PAC
(DFS access) and another working off of a ucred (non-DFS access).

Associated with this PAC is an indication of whether this is a DFS access or a
non-DFS access.

Note: A PAC is only available for requests that arrive via DFS. In the
situation where a local user has performed a dce_login, there is no
PAC that an LFS (or DFS) has access to.

For the purpose of user and group comparisons, only the first 32-bits of uuid_t values need to be
considered. This is the size of file-oid and file-id fields as well as the that of the relevant ucred
fields that we started with in the event of a non-DFS access. All realm comparisons are
performed on the full uuid_t .

Note: This is the behavior of Episode LFS.

Several of the steps below test for an authenticated user. Although they are present in Episode,
they are never triggered since PACs presented by DFS to the LFS are always (currently, at least)
authenticated. Refer to Algorithm for Obtaining a Principal’s Identity, Section 12.13 on page 259,
and also ACL Entry Types for Unauthenticated Users, Section 8.2.3 on page 157.

The algorithm shown below can, in general, be executed in one of two situations:

a. The set of rights that the caller has to an object is being computed (as returned by
vn_getattr() or vol_getattr() in the .callerAccess field).

b. A determination is being made as to whether the caller has a specific access to an object (as
performed by the vn_acess(), vn_lookup (), types of vnode operations)

In the Episode implementation, several of the individual steps differ depending upon which of
the two cases is being handled. These are called out below.

If there is no object ACL, the rights that the principal has to the object are determined as in
Section 12.16.1 on page 263.

Note: If the implementation were willing to construct an ACL in this case, the "there is an
ACL" algorithm in Section 12.16.2 on page 263 could presumably be followed.

262 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Access Rights Algorithm

In either case, the desired access can finally be compared against the granted rights computed in
Section 12.16.2 to determine if the access is allowed.

12.16.1 No Object ACL Exists Rights Algorithm

1. If the principal in question is root, full rights are granted: perm_control, perm_read,
perm_write andperm_execute. If the object in question is a directory, perm_insert and
perm_delete rights are granted as well. Root access is indicated by an all-zero
.principal.uuid field in an authenticated PAC (in the non-DFS situation, from a uid of 0).
Continue with step [7].

Note: Episode doesn’t perform this step in the case of a vn (or vol_getattr()) operation
obtaining a remote client’s allowed access (.callerAccess) to an object.

2. If the PAC .authenticated field is 0 (an unauthenticated DFS access), no rights are granted.
Exit the algorithm.

3. If the the .realm.uuid field in the PAC differs from the LOCAL-REALM (a DFS request), no
rights are granted. Exit the algorithm.

4. If the PAC .principal.uuid field matches the file-oid field, the owner bits in the file-mode-bits
are granted. Additionally, perm_control access is granted as well. Continue at step [7].

5. If the file-gid field matches either the .group.uuid field or one of the .groups[].uuid fields in
the PAC, the group bits in the file-mode-bits are granted. Continue at step [7].

6. If all else fails, the other bits in the file-mode-bits is granted.

Note: In the above UNIX mode-to-permset_t rights conversion, a straight forward
read-write-execute to perm_read-write-execute mapping is performed.

7. If the object is a directory and the perm_write right has been granted, the perm_insert and
perm_delete ones are as well.

8. Continue with step [k] in the ACL case algorithm in Section 12.16.2 (the next section).

12.16.2 Object ACL Exists Rights Algorithm

If there is an object ACL, the rights are determined instead of in the previous section, as follows.

a. If the PAC .realm.uuid is all zeroes, the steps below behave as if it were equal to the default
realm field from the ACL.

b. If the principal in question is root, full rights are granted: perm_control,perm_read,
perm_write and perm_execute. If the object in question is a directory, perm_insert and
perm_delete rights are granted as well. Root access is indicated by an all-zero
.principal.uuid field in an authenticated PAC (in the non-DFS situation, from a uid of 0).
Continue with step [l] to perform a Read-only (RO) fileset check.

c.

Note: This step starts User entry checking. It matches from the file-uid

If the PAC .realm.uuid field agrees with the default realm from the ACL and the PAC
.principal.uuid field matches the file-uid (or oid), the rights from the user_obj entry are
granted and continue with step [k].

As discussed earlier, an implementation may need to replace the ACL perm_read,
perm_write and perm_execute rights with the corresponding bits from the file-mode bits.

Part 6: The DCE DFS VFS+ Interface Specification 263

Access Rights Algorithm The DCE DFS ACL Model for an LFS

d. If the PAC .realm.uuid field agrees with the default realm from the ACL:

The ACL is searched for an entry of type user whose user uuid matches the PAC
.principal.uuid field.

Otherwise, the ACL is searched for an entry of type foreign_user whose user uuid matches
the PAC .principal.uuid field and whose realm uuid matches the PAC .realm.uuid field.

If such an entry is found, the rights in it are granted and continue with step [k].

e.

Note: This step starts Group entry checking. It matches from the file-gid

If the PAC .realm.uuid field agrees with the default realm from the ACL:

If the file-gid matches the PAC .group.uuid field or one of the PAC .groups[].id.value fields,
the rights from the group_obj entry are granted and continue with step [k].

As discussed earlier, an implementation may need to replace the ACL perm_read,
perm_write and perm_execute rights with the corresponding bits from the file-mode bits.

f.

Note: This step matches against some ACL group entry.

If the PAC .realm.uuid field agrees with the default realm from the ACL:

The ACL is searched for entries of type group whose .group.uuid matches either the
.group.uuid or one of the .groups[i].id.uuid fields in the PAC.

Otherwise, the ACL is searched for entries of type foreign_group whose .realm.uuid matches
the PAC .realm.uuid and whose .group.uuid matches either the .group.uuid or one of the
.groups[i].id.uuid fields in the PAC.

The rights from ALL such ACL entries found are "or’d" together to form the granted access.

If at least one such ACL entry is found, continue with step [k].

g.

Note: This step matches against the ACL other entry.

If the PAC .realm.uuid field agrees with the default realm from the ACL, the rights from the
other_obj entry are granted and continue with step [k].

As discussed earlier, an implementation may need to replace the ACL perm_read,
perm_write and perm_execute rights with the corresponding bits from the file-mode bits.

h. The ACL is searched for an entry of the type foreign_other whose .realm.uuid matches the
PAC .realm.uuid. If such an entry is found, the rights in it are granted and continue with
step [k].

i. If an ACL entry of the type any_other exists, the rights in it are granted and continue with
step [k].

j. If this step is reached, no rights are granted thus far.

k.

Note: This step begins finishing up, and is arrived at from several previous places in the
processing algorithm.

If the PAC .authenticated field is zero (0), this is an unauthenticated request and the rights
computed thus far are masked with the any_other entry if present, or if not, a mask of zero

264 X/Open Preliminary Specification (1996)

The DCE DFS ACL Model for an LFS Access Rights Algorithm

is used.

Note: See ACL Entry Types for Unauthenticated Users, Section 8.2.3 on page 157. If there
is an unauth_mask entry in the ACL, it should be ignored. If the version of the
system is DCE 1.1 or newer, these entries should be removed.

l. If the object resides on a read-only fileset and is not a device file, the perm_write
permission is removed if it has been granted thus far.

Note: This allows device files to reside on read-only (RO) filesets.

Note: Episode doesn’t perform this step in the case of a vn_getattr() or vol_getattr()
operation obtaining a remote client’s access (.callerAccess) to a file.

m. If the object is a directory:

The perm_insert and perm_delete rights are removed (if present) if perm_write is not
present.

Otherwise, the perm_insert and perm_delete rights are not meaningful and can be
removed.

n.

Note: This is for DFS-SYSADMIN-GROUP processing.

If the PAC .realm.uuid field equals the LOCAL-REALM (the request originates from the
local cell) and the DFS_SYSADMIN_GROUP is equal to one of the groups indicated in the
PAC .group.uuid or .groups[].uuid fields, the perm_control right is added as well.

12.17 mask_obj ACL Entry Algorithm Impact
As was mentioned earlier, no mention was made of the mask_obj ACL entry in the above
algorithms since the functionality provided by it has been dropped from the POSIX ACL
proposals. The impacts that this mask_obj field would have on the above algorithms are listed
below for a number of reasons.

1. Episode and DCE in general, implements to an older POSIX specification that does contain
the mask_obj functionality.

2. POSIX has not as yet accepted the new proposal.

3. Complete interoperability with Episode and the rest of DCE might require that an LFS
implement this functionality.

The general idea is that during a chmod(), the group mode bits are used as a mask (the mask_obj
ACL entry) that weakens all user and group type ACL entries. In order to accomodate this
mask_obj functionality, the above algorithms are modified as follows.

• When an ACL is being validated during a vn_setacl() operation, an ACL is considered corrupt
if it there are any entries of type user, foreign_user, group or foreign_group and there is not a
mask_obj entry.

Note: Episode also requires a mask_obj entry if there are any foreign_other entries.

• During a chmod() operation to an object with an ACL, the read-write-execute group mode
bits being set are copied into the mask_obj entry if it exists. (If there is no mask_obj entry, they
are copied into the group_obj entry instead.)

Part 6: The DCE DFS VFS+ Interface Specification 265

mask_obj ACL Entry Algorithm Impact The DCE DFS ACL Model for an LFS

Note: As discussed earlier, an implementation may leave the ACL alone and instead force
this coercion at the time of a latter vn_getacl() or access rights check.

• During a vn_setacl() operation, the read-write-execute rights from the ACL mask_obj entry
are copied into the group file mode bits. (If there is no mask_obj entry, rights from the
group_obj entry are instead copied into the group file mode bits.)

• During the access rights checking algorithm presented earlier, the rights in a mask_obj entry
(if present) are used to weaken ("and operation") the rights in any ACL entries of type user,
group_obj, group, foreign_user and foreign_group.

Additionally, the presence of an mask_obj entry causes step [f] in the previous section, Section
12.16.2 on page 263, to be performed even if step [e] triggers a hit. In this case, the rights
constructed by [f] and [e] are "or’d" together to construct the actual rights granted.

12.18 Miscellaneous Topics and Suggestions
1. If ACLs become prevalent, performance and disk utilization concerns will likely argue for

ACL sharing (both on disk and in memory). As pointed out, most objects created by
principals in a foreign realm have an ACL.

2. The DFS vn_getattr() and vol_getattr () requests are required to return the minimum rights
granted by an object’s ACL to ANY user (authenticated or not). Performance concerns
might warrant "pre-computing" this value and storing it in a dedicated ACL or anode
(inode) field.

266 X/Open Preliminary Specification (1996)

Chapter 13

VFS+ Data Types

13.1 Primitive Data Types
The following are the primitive data types needed by a DCE LFS .

afsFid A DFS file identifier. See Section 4.11.8 on page 60 for its definition.

afsHyper A 64-bit identifier for objects such as cells, volumes, and so on. See Section
4.11.7 on page 60 for its definition.

afsTimeval A time value. See Section 4.11.6 on page 60 for its definition.

afsUUID Equivalent to an uuid_t. See Section 4.11 on page 59 of Chapter 4 on page 57
for its definition.

permissions_t DCE permissions are stored within a 32-bit word. Within this long, DFS is
cognizant of the rights listed below.

#typedef u_int32 permissions_t

#define perm_read 0x1 /* Read rights */
#define perm_write 0x2 /* Write rights */
#define perm_execute 0x4 /* file: Execute rights */

/* directory: Search rights */
#define perm_control 0x8 /* the right perform various */

/* control operations (for example, */
/* changing the mode bits) */

#define perm_insert 0x10 /* right to add dir entries */
#define perm_delete 0x20 /* right to remove dir entries */

The remaining bits, although not interpreted by DFS, are fully preserved in
ACLs.

sec_id_pac_t The PAC (Privilege Attribute Certificate) identifying an authenticated
principal.

struct sec_id_t {
uuid_t uuid;
idl_char *name;

};
struct sec_id_foreign_t {

sec_id_t id;
sec_id_t realm;

};

struct sec_id_pac_t {
sec_id_pac_format_t pac_type;
long authenticated;
sec_id_t realm;
sec_id_t principal;
sec_id_t group;
short num_groups;

Part 6: The DCE DFS VFS+ Interface Specification 267

Primitive Data Types VFS+ Data Types

short num_foreign_groups;
sec_id_t *groups;
sec_id_foreign_t *foreign_groups;

};

The following are the definitions of the sec_id_pac_t fields.

.pac_type A format type which can be safely ignored (currently,
always sec_id_pac_format_v1 which is 0).

.authenticated Non-zero implies that the principal is authenticated.

.realm The administrative realm with which the user and group
identities in this PAC are associated.

.principal Principal’s identifier.

.group Principal’s primary group.

.num_groups Number of entries in .groups.

.num_foreign_groups
Number of entries in .foreign_groups.

.groups List of groups associated with the default .realm field above
to which the principal is a member; each entry consists of a
group uuid_t and an ignored name.

.foreign_groups List of groups associated with other realms to which the
principal is a member; each entry consists of both a realm
(uuid_t and ignored name) and group (uuid_t and ignored
name).

uuid_t The globally unique name for entities (objects, interfaces, principals, and so
on) known by DCE. The DCE variant of the Universal Unique Identifier is
listed in Appendix A of the X/Open DCE: Remote Procedure Call
specification which lists it in the form of table entries. Its code structure is
listed here for convenience, and is as follows:

typedef struct uuid_t {
u_int32 time_low;
u_int16 time_mid;
u_int16 time_hi_and_version;
unsigned char clock_seq_hi_and_reserved;
unsigned char clock_seq_low;
unsigned char node[6];
};

268 X/Open Preliminary Specification (1996)

VFS+ Data Types Aggregates and Aggregate Registry Data Types

13.2 Aggregates and Aggregate Registry Data Types
#include <dcedfs/osi.h>
#include <dcedfs/common_def.h>
#include <dcedfs/lock.h>

#define MAX_AGGRNAME 64 /* XXXX */

13.2.1 Aggregate Static Status

Aggregate’s general static status information: the piece that sits in the struct aggr defined in
Section 13.2.6 on page 270. These fields are all maintained by software above the LFS and
therefore do not need to be stored on disk. For instance, many are taken from or are derived from
information in the dfstab table.

struct ag_status_st {
long aggrId; /* Aggregate Id */
long nVolumes; /* Number of attached filesets */
long spare1, spare2, spare3, spare4;/* Some spares */
dev_t device; /* major/minor aggr device number */
char aggrName[MAX_AGGRNAME]; /* Aggregate name */
char devName[32]; /* Aggr device’s name */

/*(One of the AG_TYPE_xxx codes)*/
char type; /* UFS, PFS, AIX3, etc. */
char spares[16]; /* More spares */

};

13.2.2 Aggregate Dynamic Status

The dynamic aggregate status information: the piece that is computed on the fly. Fields within
this structure are maintained (or supplied) by the file system dependent code.

The minFree field is the number of blocks on the aggregate held in reserve for the exclusive use of
root. If this field is 0 (as it is for Episode), then the totalUsable field will be equal to the blocks
field.

struct ag_status_dy {
long blocks; /* # blks (of size fragsize) in aggr */
long blocksize; /* block size of aggregate */
long totalUsable; /* total available 1K blocks on aggr */

/* available to non-root users */
long realFree; /* free 1K blocks avail to non-root */
long minFree; /* min free 1K blocks */
long fragsize; /* fragment size of aggr */
long spares[7]; /* Some spares */

};

Part 6: The DCE DFS VFS+ Interface Specification 269

Aggregates and Aggregate Registry Data Types VFS+ Data Types

13.2.3 Aggregate Status

This structure holds the status of an aggregate.

struct ag_status {
struct ag_status_st ag_st;
struct ag_status_dy ag_dy;

};

13.2.4 Valid Aggregate Types

The following are valid aggregate types (ag_status.type). See Section 13.2.1 on page 269.

#define AG_TYPE_UNKNOWN 0
#define AG_TYPE_UFS 1
#define AG_TYPE_EPI 2
#define AG_TYPE_AIX3 3
#define AG_TYPE_VXFS 4

#define MAX_AG_TYPE 5 /* size of array of agops structures */

13.2.5 Adding of New Filesystem Types

Macros to make addition of new file system types easier in the future.

#define AG_TYPE_SUPPORTS_EFS(ag) (((ag) == AG_TYPE_EPI) \
|| ((ag) == AG_TYPE_VXFS))

#define AG_TYPE_TO_STR(ag) ((ag) == AG_TYPE_EPI ? "LFS" : \
(ag) == AG_TYPE_VXFS ? "VXFS" : \
"Non-LFS")

13.2.6 Aggregate Structure

The aggr structure, below, is a memory resident structure maintained for each aggregate. In
general, it is maintained by code above the LFS and is passed as an argument to each of the
aggregate operations.

struct aggr {
struct aggr *a_next; /* next on linked list */
struct aggrops *a_aggrOpsp; /* Ops on aggregates */
long a_states; /* Aggregate states */
long a_refCount; /* Reference counter */
osi_dlock_t a_lock; /* Lock variable for the structure */
struct ag_status_st a_stat_st; /* static part of aggregate’s status */
struct vnode *devvp; /* special vnode for device */
opaque a_fsDatap; /* Pointer to File-system-dependent */

/* private data */
};

270 X/Open Preliminary Specification (1996)

VFS+ Data Types Aggregates and Aggregate Registry Data Types

13.2.7 Aggregate Field Definitions as a_* Items

By defining all aggr’s fields as a_* they can freely be moved around without changing the code
all over the place where this is done.

#define a_aggrId a_stat_st.aggrId
#define a_aggrName a_stat_st.aggrName
#define a_devName a_stat_st.devName
#define a_device a_stat_st.device
#define a_type a_stat_st.type
#define a_nVolumes a_stat_st.nVolumes

The following fields are defined for compatibility.

#define a_blocks a_status.blocks
#define a_blocksize a_status.blocksize
#define a_totalUsable a_status.totalUsable
#define a_realFree a_status.realFree
#define a_minFree a_status.minFree
#define a_volId a_status.volId

13.2.8 Aggregate States

The following state bits within a_states in the aggr structure in Section 13.2.6 on page 270 are
defined. The second, AGGR_DELETED, is obsolete and no longer in use.

#define AGGR_EXPORTED 1 /* Exported aggregate */
#define AGGR_DELETED 2 /* Aggregate deleted */

13.2.9 Fileset Creation Flags

The following are flags for volCreate() in the aggrops structure in Section 13.2.12 on page 272.

#define AGGR_CREATE_ROOT (0x1)
#define AGGR_CREATE_VALID_FLAGS (0x1)

13.2.10 Aggregate Attach Flags

The following are flags for ag_attach() in the aggrops structure in Section 13.2.12 on page 272.

#define AGGR_ATTACH_NOEXPORT (0x1)
#define AGGR_ATTACH_VALID_FLAGS (0x1)

13.2.11 Aggregate Sync Flags

The following are flags for ag_sync() in the aggrops structure in Section 13.2.12 on page 272.

#define AGGR_SYNC_FILESYS 1
#define AGGR_SYNC_COMMITMETA 2
#define AGGR_SYNC_COMMITALL 3

Part 6: The DCE DFS VFS+ Interface Specification 271

Aggregates and Aggregate Registry Data Types VFS+ Data Types

13.2.12 Aggregate Operations Vector

The following is the aggregate operations vector.

struct aggrops {
int (*ag_hold)();
int (*ag_rele)();
int (*ag_lock)();
int (*ag_unlock)();
int (*ag_stat)();
int (*ag_volCreate)();
int (*ag_volInfo)();
int (*ag_detach)();
int (*ag_attach)(); /* NOT an AG_ATTACH; Accessed explicitly */
int (*ag_sync)();

};

13.2.13 Exported Aggregate Registry Items

The following are the exported globals and functions for dealing with the Aggregate Registry.

extern struct aggr *ag_root;
extern osi_dlock_t ag_lock;
extern long ag_attached;

#ifdef KERNEL
extern struct icl_set *xops_iclSetp;
#endif /* KERNEL */

extern void ag_Init(void);
extern int ag_PutAggr(struct aggr *), ag_RemoveAggr();
extern struct aggr *ag_GetAggrByDev(dev_t);
extern struct aggr *ag_GetAggr(long);
extern int ag_NewAggr(

char *aggrNamep,
long aggrId,
char *aggrDevnamep,
char aggrType,
struct aggrops *aggrOpsp,
dev_t dev,
opaque fsdata,
struct aggr **aggrpp,
unsigned flags

);

struct aggrops *agOpvec[MAX_AG_TYPE];

272 X/Open Preliminary Specification (1996)

VFS+ Data Types Aggregates and Aggregate Registry Data Types

13.2.14 Vnode Ops Classification

The following are broad classifications of the vnode ops types.

#define VNOP_TYPE_NOOP 5 /* noop */
#define VNOP_TYPE_READONLY 10 /* read only vnode op */
#define VNOP_TYPE_READWRITE 15 /* read write vnode op */
#define VNOP_TYPE_INVALID 30

13.2.15 Concurrency for vol_stat_st

The following define the concurrency levels for concurrency field in vol_stat_st. They are used
to control concurrency between volops and vnops.

#define VOL_CONCUR_ALLOPS 1
#define VOL_CONCUR_READONLY 10
#define VOL_CONCUR_NOOPS 20

The following is a macro to determine if a vnode op can execute through, even if its fileset is
busy.

#define VOL_VNOP_COMPAT(concurr, type) (((concurr == VOL_CONCUR_ALLOPS) || \
(type == VNOP_TYPE_NOOP) || \
((concurr == VOL_CONCUR_READONLY) && \
(type == VNOP_TYPE_READONLY))) ? \
1 : 0)

13.2.16 Aggregate Table Entry Format

The following defines the /opt/dcelocal dfstab file and the sizes of the strings it contains.

#define ASTAB_INFIX "/var/dfs/"
#define ASTAB_SFX "dfstab"

/* Sizes of strings */

#define ASTABSIZE_SPEC 512
#define ASTABSIZE_DIR 512
#define ASTABSIZE_TYPE 64

This is the actual dfstab table entry structure, defined as a struct astab. This structure identifies
a DCE LFS aggregate that can be exported. For non-LFS partitions only, an additional entry is
present - the Fileset ID. See Section 13.2.17 on page 274, below for the definition. The OSF DCE
DFS Administration Guide and Reference provides pertinent information about the dfstab file.

struct astab {
char as_spec[ASTABSIZE_SPEC]; /* block special device name */
char as_aggrName[ASTABSIZE_DIR]; /* Aggregate name */
char as_type[ASTABSIZE_TYPE]; /* type of physical file system */
u_long as_aggrId; /* Aggregate Id */

};

Part 6: The DCE DFS VFS+ Interface Specification 273

Aggregates and Aggregate Registry Data Types VFS+ Data Types

13.2.17 UFS Entry Extra Data

/* File system extra data: UFS version */

struct ufs_astab {
hyper uas_volId; /* 1st & only volume */
char uas_mountedon[ASTABSIZE_DIR]; /* name of mounted-on dir */

};

13.2.18 Values for Filesystem Type

#define ASTABTYPE_UFS "ufs"
#define ASTABTYPE_EPI "lfs"
#define ASTABTYPE_AIX3 "aix3"
#define ASTABTYPE_VXFS "vxfs"

13.2.19 Adding New Filesystem Types

The following macros are for making the addition of new file system types easier than manual
addition.

#define ASTABTYPE_SUPPORTS_EFS(atype) ((strncmp(atype, ASTABTYPE_EPI, \
ASTABSIZE_TYPE) == 0) || (strncmp(atype, ASTABTYPE_VXFS,

ASTABSIZE_TYPE) \
== 0))

#define ASTABTYPE_TO_AGTYPE(astype, agtype) \
if (!strncmp(astype, ASTABTYPE_UFS, ASTABSIZE_TYPE)) \

agtype = AG_TYPE_UFS; \
else if (!strncmp(astype, ASTABTYPE_EPI, ASTABSIZE_TYPE)) \

agtype = AG_TYPE_EPI; \
else if (!strncmp(astype, ASTABTYPE_VXFS, ASTABSIZE_TYPE)) \

agtype = AG_TYPE_VXFS; \
else \

agtype = AG_TYPE_UNKNOWN

13.3 Fileset Data Types

13.3.1 Define the Fileset Function Array

A description of the operations available within the fileset function array appears below. The
array is an exported data type.

struct volumeops {
/* per-fileset operations */
int (*vol_hold)();
int (*vol_rele)();
int (*vol_lock)();
int (*vol_unlock)();
int (*vol_open)();
int (*vol_seek)();
int (*vol_tell)();
int (*vol_scan)();

274 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

int (*vol_close)();
int (*vol_destroy)(); /* actually whole-fileset */
int (*vol_attach)();
int (*vol_detach)();
int (*vol_getstatus)();
int (*vol_setstatus)();

/* per-file operations */
int (*vol_create)();
int (*vol_read)();
int (*vol_write)();
int (*vol_truncate)();
int (*vol_delete)();
int (*vol_getattr)();
int (*vol_setattr)();
int (*vol_getacl)();
int (*vol_setacl)();

/* more whole-fileset operations */
int (*vol_clone)();
int (*vol_reclone)();
int (*vol_unclone)();

/* vnode lookup operations */
int (*vol_vget)();
int (*vol_root)();
int (*vol_isroot)();

/* more per-fileset operations */
int (*vol_getvv)();
int (*vol_setdystat)();
int (*vol_freedystat)();
int (*vol_setnewvid)();

/* another per-file operation */
int (*vol_copyacl)();

/* per-fileset operations */
int (*vol_concurr)();
int (*vol_swapids)();
int (*vol_sync)();
int (*vol_pushstatus)();

/* per-file operations */
int (*vol_readdir)();
int (*vol_appenddir)();

/* per-fileset operations */
int (*vol_bulksetstatus)();
int (*vol_getzlc)();

/* another per-file operation */

Part 6: The DCE DFS VFS+ Interface Specification 275

Fileset Data Types VFS+ Data Types

int (*vol_getnextholes)();

/* another per-fileset operation */
int (*vol_deplete)();

};

13.3.2 Volume Operations Definitions

The following are the definitions of the system calls for the volume operations in the struct
volumeops Function Array. They can be found in the header file, /src/file/xvolume/vol_init.h .

#define VOLOP_OPEN 4 /* Slots 0-3 are reserved */
#define VOLOP_SEEK 5
#define VOLOP_TELL 6
#define VOLOP_SCAN 7
#define VOLOP_CLOSE 8
#define VOLOP_DESTROY 9
#define VOLOP_GETSTATUS 10
#define VOLOP_SETSTATUS 11
#define VOLOP_CREATE 12
#define VOLOP_READ 13
#define VOLOP_WRITE 14
#define VOLOP_TRUNCATE 15
#define VOLOP_DELETE 16
#define VOLOP_GETATTR 17
#define VOLOP_SETATTR 18
#define VOLOP_GETACL 19
#define VOLOP_SETACL 20
#define VOLOP_CLONE 21
#define VOLOP_RECLONE 22
#define VOLOP_VGET 23
#define VOLOP_ROOT 24
#define VOLOP_ISROOT 25
#define VOLOP_UNCLONE 26
#define VOLOP_FCLOSE 27 /* XXXX */
#define VOLOP_SETVV 28
#define VOLOP_SWAPVOLIDS 29
#define VOLOP_COPYACL 30
#define VOLOP_AGOPEN 31
#define VOLOP_SYNC 32
#define VOLOP_PUSHSTATUS 33

#define VOLOP_PROBE 34
#define VOLOP_LOCK 35
#define VOLOP_UNLOCK 36

#define VOLOP_READDIR 37
#define VOLOP_APPENDDIR 38

#define VOLOP_BULKSETSTATUS 39
#define VOLOP_GETZLC 40
#define VOLOP_GETNEXTHOLES 41
#define VOLOP_DEPLETE 42

276 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

13.3.3 The Fileset NextHole Structure

A description of the operations available within the fileset NextHole structure appears below. It
can be found in the header file, /src/file/xvolume/vol_init.h .

/* Parameter for VOLOP_GETNEXTHOLES */
#define VOLHOLE_MAX_HOLES 10

struct vol_NextHole {
struct afsHyper startPoint; /* Return all holes starting here or later */

/* Zero this to start */
unsigned long flags;
unsigned long outCount; /* count of returned holes */
unsigned long spare1;
unsigned long spare2;
struct vol_holeDesc {
struct afsHyper holeStart; /* byte address in file where hole starts */
struct afsHyper holeLen; /* byte count of the hole */
} holes[VOLHOLE_MAX_HOLES];

};
/* IN flags: */

/* none yet */
/* OUT flags: */
#define VOLHOLE_FLAG_LAST 0x1 /* no more holes in file past these */

13.3.4 Define the vol_stat_st Structure

The following structure defines the static portion of a fileset’s status.

struct vol_stat_st {
afsHyper volId; /* on-disk */
afsHyper parentId; /* on-disk */
afsTimeval cloneTime; /* on-disk */

/* when fileset was made via clone, reclone */
afsTimeval vvCurrentTime; /* when lazy replica’s VV was known current */
afsTimeval vvPingCurrentTime;

/* when last tried for VV of lazy replica */
long type;
u_long accStatus; /* volops we’ll perform in this trans (bit mask) */
u_long accError; /* error to return for incompatible vnode ops */
u_long states; /* on-disk lots of individual VOL_XXX bits */
u_long reclaimDally;/* for the R/W backing some lazy-rep R/O */
long tokenTimeout;
long activeVnops; /* count of active vnode ops */
long volMoveTimeout;
long procID; /* pid of process making fileset busy */
long spare5;
long spare6;
long spare7;
long spare8;
long spare9;
char volName[VOLNAMESIZE]; /* on-disk (VOLNAMESIZE is 112) */
unsigned char concurrency; /* level of concurrency for vnode ops */
char cspares[15];

Part 6: The DCE DFS VFS+ Interface Specification 277

Fileset Data Types VFS+ Data Types

};

The portion of a fileset’s status which (for the most part) is changed by DCE DFS and not by the
LFS. Fields tagged with an "/* on-disk .. */ must be stored in permanent, on-disk storage. Except
as discussed in the chapter Fileset (Volume) Operations Interface or in the chapter Aggregate
Operations Interface, these status fields are ignored by the LFS layer. Several of the fields appear
to be obsolete (and unused). The above fields have the following meanings.

.volId The ID of this fileset.

.parentId For a .backing (VOL_BACKUP) or .readonly (VOL_READONLY) fileset, the
ID of the fileset that it was originally built from (in other words, the
"read-write" member of a fileset group). For the RW fileset, this field is set
to 0,,0.

.cloneTime The time at which a cloned fileset (the backing half) is initially created or
re-cloned.

.vvCurrentTime Time that the lazy replica’s volume version was known to be current.

.vvPingCurrentTime Time when DFS tried to last obtain the lazy replica’s volume version.

.type Set to one of VOL_RW or VOL_READONLY; see Section 13.3.9 on page
282 for the encodings of these.

.accStatus While a fileset is open, set by DFS to the open-type argument that was
passed to the vol_open () call.

.accError While a fileset is open, set by DFS to the error code to be returned to any
conflicting opens that fail.

.states Fileset state bits. See Section 13.3.9 on page 282. Controls the amount o
time to wait (in other words, daily) before actually removing deleted files
on read-only replica filesets.

.tokenTimeout Set to the volume version token expiration time by DFS (at the same time
that the .vvCurrentTime and .vvPingCurrentTime fields are set).

.activeVnops The number of active vnode operations (from either the protocol exporter
or the vfs and vnode glue code) currently operating on this fileset.

.volMoveTimeout For filesets actively involved in a move operation (either the source or
destination), the estimated time of completion. (Used to recover from
failures during the operation.)

.procID The identity of the process (thread, actually) that has the fileset open.

.volName The name of the fileset.

.concurrency For an open fileset, one of the VOL_CONCURR_xxx values determining
the set of vnode operations that are permitted to proceed concurrently.

.states The meanings of the state bits (VOL_xxx flags) within this field are listed
in Section 13.3.4 on page 277.

278 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

13.3.5 Define the vol_stat_dy Structure

The following structure defines the dynamic portion of a fileset’s status.

struct vol_stat_dy {
afsTimeval creationDate; /* on-disk */

/* when this fileset was created */
afsTimeval updateDate; /* on-disk */

/* when any update happened in this fileset */
afsTimeval accessDate; /* on-disk */

/* when any access was made to this fileset */
afsTimeval backupDate; /* spare */
afsTimeval copyDate; /* on-disk */

/* when dump was made that was restored here */
afsHyper volversion; /* on-disk */
afsHyper backupId; /* on-disk */
afsHyper cloneId; /* on-disk */
afsHyper llBackId; /* on-disk */

/* low-level backing ID */
afsHyper llFwdId; /* on-disk */

/* low-level forward ID */
afsHyper allocLimit; /* on-disk */
afsHyper allocUsage; /* on-disk */
afsHyper visQuotaLimit; /* on-disk */
afsHyper visQuotaUsage; /* on-disk */
long fileCount;
long minQuota;
long owner;
long unique; /* on-disk */

/* necessary if ‘‘version’’ is afsHyper? */
long index; /* Redundant */
long rwIndex;
long backupIndex;
long parentIndex;
long cloneIndex;
long nodeMax;
long aggrId;
long spare2;
long spare3;
long spare4;
long spare5;
long spare6;
u_long tag;
u_long msgLen;
char statusMsg[128]; /* on-disk */
char cspares[16];

};

The portion of a fileset’s status which (for the most part) is changed by DCE DFS and not by the
LFS. Fields tagged with an "/* on-disk .. */ must be stored in permanent, on-disk storage. Except
as discussed in the chapter Fileset (Volume) Operations Interface or in the chapter Aggregate
Operations Interface, these status fields are ignored by the LFS layer. Several of the fields appear
to be obsolete (and unused).

Part 6: The DCE DFS VFS+ Interface Specification 279

Fileset Data Types VFS+ Data Types

Note: For fields holding time values, Transarc’s Episode only stores the .sec portions of these
times on-disk. The .usec field is set to zero on get info requests.

The above fields have the following meanings.

.creationDate The time, set by the LFS, at which this fileset was created.

.updateDate Set by the LFS to the current time whenever a fileset’s status is changed.
This includes the creation and deletion of files as well as whenever the
volume version is incremented.

Note: For performance reasons, there is freedom in the granularity of
updates to this field (e,g,: every second or couple of seconds).
Therefore, this field need not be absolutely accurate.

.accessDate Although the original intent of this field is unclear, under Transarc’s
Episode it is updated at exactly the same instants that the above
.updateDate field is. (Exception: at fileset creation, via ag_volCreate (), these
two fields can initially be set to two different values, although they’ll
synchronize themselves almost immediately.) Unless or until the
meaning of these fields changes in the future, it should be possible to
implement them as a single on-disk field.

Note: Transarc considers it unlikely that the .accessDate field will ever
be given a distinct meaning.

.backupDate Appears to be currently unused.

.copyDate When a fileset is restored, this field is set to the time at which the dump
(or backup) from which it is restored was originally taken.

.volversion This field is incremented by the LFS whenever any change is made to any
file on the fileset (to either the status or data portion of the file).

Note: It appears this field is not updated for fileset status updates.

.backupId The ID of any .backup (VOL_BACKUP, created via "fts clone") fileset
within the fileset group of which this one is a member.

.cloneId The ID of any .readonly (VOL_READONLY, release or scheduled replicas)
filesets within the fileset group of which this one is a member.

.llBackId This field, and the one following are related. If non-zero, this field
identifies the fileset backing that is backing this one.

.llFwdId This field and the preceeding one maintain the linked list that maintains
the backing relationship between cloned filesets. If non-zero, this field
identifies the immediate fileset that this one is backing. Refer to Section
15.3 on page 328 for further details if desired.

Note: The next four quota related fields are more thoroughly described in the section, Fileset
quotas, Section 15.7 on page 333. When the Limit values are initially presented to the
file system by a vol_setattr () or ag_volCreate () call, they should be rounded up to cover
an integral number of internal "allocation units". The values returned by vol_getattr ()
should reflect these rounded up values and can, therefore, differ from what was
originally specified.

If, to a vol_setattr () or ag_volCreate () operation, a quota limit is supplied that is larger
than the maximum value that can be represented internally, the maximum value that
can be held internally should be used instead.

280 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

Refer to the section Fileset Quotas, Section 15.7 on page 333.

The following continue to define the meanings of the fields in the struct vol_stat_dy structure.

.allocLimit The maximum size, in bytes, that a fileset’s "allocated" usage can grow to.

.allocUsage The "allocated" measure, in bytes, of the amount of disk space being used
by the fileset.

.visQuotaLimit The maximum size, in bytes, that a fileset’s "visible" usage can grow to.

.visQuotaUsage The "visible" measure, in bytes, of the amount of disk space being used by
the fileset.

.fileCount Currently unused.

.minQuota Currently unused.

.owner Currently unused.

.unique Episode uses this per- fileset counter for the maintenance of inode
generation numbers. Other LFS implementations may or may not use
this field. Consult the section on Inode Generation Numbers, Section 15.8 on
page 334, for further information.

.index The index of this fileset on the aggregate. This value has the same
interpretation and significance as that used by the aggregate ag_volInfo ()
operation. See Section 14.4 on page 312 if desired.

.rwIndex Currently unused.

.backupIndex Currently unused.

.cloneIndex Currently unused.

.parentIndex This field is always returned as 0 by Transarc’s Episode (although there
appears to be latent support for it).

Note: It appears that this field was or is intended to provide the index
(see the .index field above) of the fileset that is backing this one.
(Not the index of the vol_stat_st .parentID fileset.)

.nodeMax The canonical (based on VOL_ROOTINO) index of the highest inode (its
index, that is) allocated within the fileset. (This field indicates the size of
the dynamically allocated inode table.) There does not appear to be any
use of this field.

.aggrId The Id of the aggregate on which this fileset resides.

.tag Currently unused.

.msgLen Currently unused.

.statusMsg A status message -- not necessarily null terminated.

Part 6: The DCE DFS VFS+ Interface Specification 281

Fileset Data Types VFS+ Data Types

13.3.6 Define the vol_status Structure

The following structure defines the combined static and dynamic portions of a fileset’s status.

struct vol_status {
struct vol_stat_st vol_st;
struct vol_stat_dy vol_dy;

};

13.3.7 Define the vol_statusDesc Structure

The following structure defines the status description structure used by such operations as
vol_bulksetstatus ().

#define VOL_MAX_BULKSETSTATUS 3

typedef struct vol_statusDesc {
union {
int volDesc;
struct volume *volp;
} vsd_volId;
u_long vsd_mask;
u_long vsd_spare;
struct vol_status vsd_status;

} vol_statusDesc_t;
#define vsd_volDesc vsd_volId.volDesc
#define vsd_volp vsd_volId.volp

13.3.8 Define Transient Error

The following macros determine if an error is transient or persistent.

#define VOL_ERROR_IS_TRANSIENT(error) (error < VOLERR_TRANS_HIGHEST && \
error > VOLERR_TRANS_LOWEST)

13.3.9 Volume States (for vol_stat_st)

The following general status flags are for the state field of the struct vol_stat_st defined in
Section 13.3.4 on page 277. Following these definitions is an indication of which are stored in
on-disk, permanent storage, in Section 13.3.10 on page 283.

/* These really belong to v_voltypes */
#define VOL_TYPEBITS 0x00003 /* low-level type of volume this is */
#define VOL_RW 0x00001 /* R/W volume */
#define VOL_READONLY 0x00002 /* ReadOnly Volume */

/* Some of these (that is, VOL_OK) are composites */
#define VOL_BUSY 0x00004 /* Volume is Busy */
/* The following three definitions are obsolete */
#define VOL_OFFLINE 0x00008 /* Volume is offline */
#define VOL_DELONSALVAGE 0x00010 /* Delete On Salvage */
#define VOL_OUTOFSERVICE 0x00020 /* Out Of service */
#define VOL_DEADMEAT 0x00040 /* About to be deleted */
#define VOL_LCLMOUNT 0x00080 /* Volume is mounted locally */

/* replication-specific state bits */

282 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

#define VOL_REPFIELD 0x00f00 /* which replication created this? */
#define VOL_REP_NONE 0x00000 /* none */
#define VOL_REP_RELEASE 0x00100 /* ‘‘vos release’’ */
#define VOL_REP_LAZY 0x00200 /* lazy replication */
#define VOL_IS_COMPLETE 0x01000 /* this volume instance is complete */
#define VOL_HAS_TOKEN 0x02000 /* our VVage should always be zero. */
#if 0
/* no longer used -- can be reclaimed for some other purpose */
#define VOL_KNOWDALLY 0x04000 /* know reclaimDally val-this vol */
#endif
#define VOL_NOEXPORT 0x08000 /* Do not export this volume! */

#define VOL_TYPEFIELD 0xf0000 /* what high-lvl type vol this is */
#define VOL_TYPE_RW 0x10000 /* read-write (ordinary) */
#define VOL_TYPE_RO 0x20000 /* ‘‘.readonly’’ */
#define VOL_TYPE_BK 0x30000 /* ‘‘.backup’’ */
#define VOL_TYPE_TEMP 0x40000 /* temporary use, dumps, moves, etc. */

#define VOL_GRABWAITING 0x100000 /* grab is pending for this volume */
#define VOL_LOOKUPWAITING 0x200000 /* lookup is pending for this volume */
#define VOL_REPSERVER_MGD 0x400000 /* managed by repserver */
#define VOL_MOVE_TARGET 0x800000 /* this vol is target for move op */
#define VOL_MOVE_SOURCE 0x1000000 /* this vol is source for move op */
#define VOL_ZAPME 0x2000000 /* delete vol with extreme prejudice */
#define VOL_CLONEINPROG 0x4000000 /* this vol is partially cloned */
#define VOL_IS_REPLICATED 0x8000000 /* this vol is replicated */
#define VOL_OPENDONE 0x10000000 /* back from VOL_OPEN procedure */
#define VOL_OK ˜(VOL_BUSY|VOL_OFFLINE|VOL_DELONSALVAGE| \

VOL_OUTOFSERVICE| VOL_ZAPME|VOL_CLONEINPROG| \
VOL_OPENDONE)

13.3.10 On-disk States

The following set of state definitions is stored in on-disk, permanent storage. All others are not
stored on-disk for the fileset (and hence, not seen by the LFS layer).

VOL_RW

VOL_READONLY

VOL_DELONSALVAGE

VOL_IS_COMPLETE

VOL_NOEXPORT

VOL_REPSERVER_MGD

VOL_MOVE_TARGET

VOL_MOVE_SOURCE

VOL_ZAPME

VOL_CLONEINPROG

VOL_IS_REPLICATED

Part 6: The DCE DFS VFS+ Interface Specification 283

Fileset Data Types VFS+ Data Types

VOL_REPFIELD

VOL_REP_NONE

VOL_REP_RELEASE

VOL_REP_LAZY

VOL_TYPEFIELD

VOL_TYPE_RW

VOL_TYPE_RO

VOL_TYPE_BK

VOL_TYPE_TEMP

13.3.11 Kernel Maintained State Bits

These are the bits that the kernel maintains alone, not by VOLOP_SETSTATUS.

#define VOL_BITS_NOSETSTATUS (VOL_BUSY|VOL_DEADMEAT|VOL_GRABWAITING| \
VOL_LOOKUPWAITING|VOL_DELONSALVAGE| \
VOL_OPENDONE)

/* Don’t turn off VOL_DELONSALVAGE when attaching a volume. It is a */
/* kernel-maintained bit that is also persistent, unlike the other bits */
/* in VOL_BITS_NOSETSTATUS */

#define VOL_BITS_INITIALMASK (VOL_BITS_INITIAL | (VOL_BITS_NOSETSTATUS \
& ˜VOL_DELONSALVAGE))

/* During an identity swap, preserve these bits in their original struct
* volume, because any waiters will be waiting on the address of that
* structure’s v_states field. */

#define VOL_BITS_NOSWAP (VOL_GRABWAITING|VOL_LOOKUPWAITING)

13.3.12 Useful Macros in Volume Pointers

#define VOL_READWRITE(volp) ((volp)->v_stat_st.states & VOL_RW)
#define VOL_EXPORTED(volp) (!((volp)->v_stat_st.states & VOL_NOEXPORT))

13.3.13 Mask Bits for VOL_SETSTATUS MASK Argument

The setstatus operations take a mask that specifies the set of status fields to be updated. Bits
within this mask are defined as follows.

#define VOL_STAT_VOLNAME 0x00000001
#define VOL_STAT_VOLID 0x00000002
#define VOL_STAT_VERSION 0x00000004
#define VOL_STAT_UNIQUE 0x00000008
#define VOL_STAT_OWNER 0x00000010
#define VOL_STAT_TYPE 0x00000020
#define VOL_STAT_STATES 0x00000040
#define VOL_STAT_ALLOCLIMIT 0x00000080
#define VOL_STAT_BACKUPID 0x00000100

284 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

#define VOL_STAT_PARENTID 0x00000200
#define VOL_STAT_CLONEID 0x00000400
#define VOL_STAT_CREATEDATE 0x00000800
#define VOL_STAT_UPDATEDATE 0x00001000
#define VOL_STAT_ACCESSDATE 0x00002000
#define VOL_STAT_COPYDATE 0x00004000
#define VOL_STAT_NODEMAX 0x00008000
#define VOL_STAT_VISLIMIT 0x00010000
#define VOL_STAT_MINQUOTA 0x00020000
/* spare VOL_STAT_SIZE 0x00040000 */
#define VOL_STAT_INDEX 0x00080000
#define VOL_STAT_BACKVOLINDEX 0x00100000
#define VOL_STAT_STATUSMSG 0x00200000
#define VOL_STAT_CLONETIME 0x00400000
#define VOL_STAT_VVCURRTIME 0x00800000
#define VOL_STAT_VVPINGCURRTIME 0x01000000
/* spare VOL_STAT_ACCERROR 0x02000000 */
#define VOL_STAT_BACKUPDATE 0x04000000
#define VOL_STAT_RECLAIMDALLY 0x08000000
#define VOL_STAT_LLBACKID 0x10000000
#define VOL_STAT_LLFWDID 0x20000000
#define VOL_STAT_VOLMOVETIMEOUT 0x40000000

13.3.14 Define the Fileset (volume) Structure

This structure is a memory resident structure maintained for each fileset. It is allocated by the
file system independent layer (in the xvolume manager) at fileset attach time (vol_attach ()0 and
is passed as an argument to each of the fileset operations.

/*
* In-core volume structure
*/

struct volume {
struct squeue v_lruq; /* lruq + free list queue */
struct volume *v_next;
struct aggr *v_paggrp; /* points to aggregate this */

/* fileset belongs to */
struct volumeops *v_volOps; /* points to volumeops vector */
struct lock_data v_lock; /* lock variable
long v_count; /* ref count for storage */
opaque v_fsDatap; /* points to file sys dependent */

/* PRIVATE data */
struct vol_stat_st v_stat_st;

};

Part 6: The DCE DFS VFS+ Interface Specification 285

Fileset Data Types VFS+ Data Types

13.3.15 Define Volume Fields as v_*

By defining all volume’s fields as v_* they can be freely moved around without changing the
code all over.

/* stuff in vol_stat_st */
#define v_volId v_stat_st.volId
#define v_parentId v_stat_st.parentId
#define v_cloneTime v_stat_st.cloneTime
#define v_vvCurrentTime v_stat_st.vvCurrentTime
#define v_vvPingCurrentTime v_stat_st.vvPingCurrentTime
#define v_voltype v_stat_st.type
#define v_accStatus v_stat_st.accStatus
#define v_accError v_stat_st.accError
#define v_concurrency v_stat_st.concurrency
#define v_states v_stat_st.states
#define v_reclaimDally v_stat_st.reclaimDally
#define v_volName v_stat_st.volName
#define v_activeVnops v_stat_st.activeVnops
#define v_procID v_stat_st.procID

13.3.16 Define the vol_Dirent Structure

This is the structure used by vol_readdir () and vol_appenddir (). See Appendix H on page 403 for
information about the fields within this structure.

typedef struct vol_dirent {
int32 offset; /* Logical directory offset */
int32 vnodeNum; /* Canonical vnode number */
u_int32 codesetTag; /* Tag for the name’s codeset */
u_short reclen; /* Len of this rec, 4-byte boundary */
u_short namelen; /* Length of ‘name’ */
char name[OSI_MAXNAMLEN+1]; /* File name, variable sized */

} vol_dirent_t;

13.3.17 Define the Fileset Error Codes

The following define the fileset related error codes. Currently these overlay the errno error
space; in fact, they are returned from the afs_syscall interface via errno.

#define VOL_ERR_EOF 1
#define VOL_ERR_DELETED 2
#define VOL_ERR_EOW 8

13.3.18 Define the Fileset Open Operation Types

When an administrative, user-space utility opens a fileset, it supplies a bitmask that indicates the
types of operations that will be performed on the open fileset. This is used in order to determine
the class of concurrent operations that will be permitted on the fileset while it is open. Bits
within this mask are defined as follows.

/*
* VOLOP bit definitions
*/

#define VOL_OP_SEEK 0x00000001

286 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

#define VOL_OP_TELL 0x00000002
#define VOL_OP_SCAN 0x00000004
#define VOL_OP_DESTROY 0x00000008
#define VOL_OP_GETSTATUS 0x00000010
#define VOL_OP_SETSTATUS 0x00000020
#define VOL_OP_CREATE 0x00000040
#define VOL_OP_READ 0x00000080
#define VOL_OP_WRITE 0x00000100
#define VOL_OP_TRUNCATE 0x00000200
#define VOL_OP_DELETE 0x00000400
#define VOL_OP_GETATTR 0x00000800
#define VOL_OP_SETATTR 0x00001000
#define VOL_OP_GETACL 0x00002000
#define VOL_OP_SETACL 0x00004000
#define VOL_OP_CLONE 0x00008000
#define VOL_OP_RECLONE 0x00010000
#define VOL_OP_UNCLONE 0x00020000
#define VOL_OP_SETNEWVID 0x00040000
#define VOL_OP_COPYACL 0x00080000
#define VOL_OP_SWAPIDS 0x00100000
/* now, for the piece of SETSTATUS that changes the fileset ID */
#define VOL_OP_SETSTATUS_ID 0x00200000
#define VOL_OP_SYNC 0x00400000
#define VOL_OP_PUSHSTATUS 0x00800000
#define VOL_OP_READDIR 0x01000000
#define VOL_OP_APPENDDIR 0x02000000
#define VOL_OP_GETZLC 0x04000000
/* Forcibly (architecturally) deny concurrent vnode ops */
#define VOL_OP_NOACCESS 0x08000000
#define VOL_OP_GETNEXTHOLES 0x10000000
#define VOL_OP_DETACH 0x20000000
#define VOL_OP_DEPLETE 0x40000000

13.3.19 Define the Fileset Operations VOL_SYS_XXX

/*
* VOL syscall to VOLOP translation
* Translates syscalls to volop collections;
* Depends on xvolume/vol_init.c implementation.
*/

#define VOL_SYS_SEEK (VOL_OP_SEEK)
#define VOL_SYS_TELL (VOL_OP_TELL)
#define VOL_SYS_SCAN (VOL_OP_SCAN)
#define VOL_SYS_DESTROY (VOL_OP_DESTROY)
#define VOL_SYS_GETSTATUS (VOL_OP_GETSTATUS)
#define VOL_SYS_SETSTATUS (VOL_OP_SETSTATUS)
#define VOL_SYS_CREATE (VOL_OP_CREATE)
#define VOL_SYS_READ (VOL_OP_READ)
#define VOL_SYS_WRITE (VOL_OP_WRITE)
#define VOL_SYS_TRUNCATE (VOL_OP_TRUNCATE)
#define VOL_SYS_DELETE (VOL_OP_DELETE)
#define VOL_SYS_GETATTR (VOL_OP_GETATTR)

Part 6: The DCE DFS VFS+ Interface Specification 287

Fileset Data Types VFS+ Data Types

#define VOL_SYS_SETATTR (VOL_OP_SETATTR)
#define VOL_SYS_GETACL (VOL_OP_GETACL)
#define VOL_SYS_SETACL (VOL_OP_SETACL)
#define VOL_SYS_CLONE (VOL_OP_CLONE)
#define VOL_SYS_RECLONE (VOL_OP_RECLONE)
#define VOL_SYS_UNCLONE (VOL_OP_UNCLONE)
#define VOL_SYS_SETVV (VOL_OP_GETSTATUS | VOL_OP_SETSTATUS)
#define VOL_SYS_SWAPVOLIDS (VOL_OP_SWAPIDS)
#define VOL_SYS_COPYACL (VOL_OP_COPYACL)
#define VOL_SYS_SYNC (VOL_OP_SYNC)
#define VOL_SYS_PUSHSTATUS (VOL_OP_PUSHSTATUS)
#define VOL_SYS_READDIR (VOL_OP_READDIR)
#define VOL_SYS_APPENDDIR (VOL_OP_APPENDDIR)
#define VOL_SYS_GETZLC (VOL_OP_GETZLC)
#define VOL_SYS_GETNEXTHOLES (VOL_OP_GETNEXTHOLES)
/* Forcibly (architecturally) deny concurrent vnode ops */
#define VOL_SYS_NOACCESS (VOL_OP_NOACCESS)
#define VOL_SYS_DETACH (VOL_OP_DETACH)
#define VOL_SYS_DEPLETE (VOL_OP_DEPLETE)

13.3.20 Sync Type Values for vol_sync()

#define VOL_SYNC_COMMITSTATUS 1
#define VOL_SYNC_COMMITMETA 2
#define VOL_SYNC_COMMITALL 3

13.3.21 Define the Fileset Handle Structure

The following is the internal volume handle for all VOP_* calls. It is an in-kernel structure only; a
volume descriptor (long) is passed to the user space to associate it with this structure.

There, as an administrative utility performs actions on an open fileset, certain information
regarding its progress (namely which file on the fileset is being processed) is recorded in a
vol_handle structure. This is passed as an argument to several of the fileset operations.

The .fid, .index and .type fields below are not interpreted outside of the LFS layer.

struct vol_handle {
struct volume *volp; /* pointer to incore volume */
long opentype; /* Open volume type */

/* Mask of VOL_OP_XXX bits spec- */
/* ified at vol_open(0 time and */
/* gives the type ops to perform */

struct afsFid fid; /* Fid for "active" volume anode */
long index; /* active Anode’s index */

/* set by vol_open(), vol_seek(),*/
/* vol_scan() and vol_create(). */

long type; /* active Anode’s mode/type */
};

288 X/Open Preliminary Specification (1996)

VFS+ Data Types Fileset Data Types

13.3.22 Define the Root Anode Index

The following represents the special index for the volume’s root anode. The special dummy
index is required since various physical file systems use different numbers for their root anode
(ufs = 2, episode = 15, etctera). Do not change its definition since code depends on it (for instance,
scanning -1, 0, 1 ... to maxino is assumed by various programs). Ordinary files are indicated by
indices of 0, 1, 2, and so forth.

#define VOL_ROOTINO -1

13.3.23 Define the Maximum Quota Size

Define the largest 64-bit constant that is evenly divisible by 64K and whose value will fit in 32
bits when divided by 1024. This is the maximum value allowed by LFS when the aggregate
fragment size is 1K (the smallest frag. size allowed); although larger quota values are possible
when the fragment size is increased. The value must also be evenly divisible by 64K to prevent
rounding errors when converting to units of 64K (or less), the largest fragment size allowed by
LFS.

The following 64 bit number is approximately 4.4 terabytes.

#define VOL_MAX_QUOTA_HIGH 0x3ff
#define VOL_MAX_QUOTA_LOW 0xffff0000

13.4 Extended Credential Data Types
This section will define the data types exported by the credential package described in The xcred
Package, Section 17.1 on page 469.

13.4.1 Define the xcred_PListEntry_t Structure

This structure is used to build a list of all attribute-value pairs for an xcred, including derivation
relationships. It is used by xcred_DeleteEntry(). Section 17.3 on page 484.

/* Property list entry. */

typedef struct xcred_PListEntry {
struct xcred_PListEntry *nextP; /* Next entry in linear plist */
struct xcred_PListEntry *prevP; /* Prev entry in linear plist */
long attrBytes; /* Size of attr (incl. null) */
char *attributeP; /* Ptr to attr. component */
long valueBytes; /* Size of value component */
char *valueP; /* Ptr to value component */
long flags; /* Internal flags */

} xcred_PListEntry_t;

Part 6: The DCE DFS VFS+ Interface Specification 289

Extended Credential Data Types VFS+ Data Types

13.4.2 Define the xcred_t Structure

This refcounted and lockable structure contains all the extended credential info associated with a
given user, stored in a property list. Also stored is information on the UNIX cred with which
this structure is associated. Included is a generation number, incremented each time someone
changes the property list.

/* Xcred structure. */

typedef struct xcred {
struct squeue lruq; /* LRU queue */
struct lock_data lock; /* Structure lock */
long refcount; /* Reference count */
long changeCount; /* # times plist changed */
long flags; /* Flags described above */
long uflags; /* More user-defined flags */
xcred_PListEntry_t *propListP; /* Property list */
struct ucred *assocUCredP; /* Assoc UNIX cred struct */
long assocPag; /* Unique identifier in ucred */

} xcred_t;

13.4.3 Reserved Attributes

The following parts of the attribute space are reserved for the following purposes. Other
non-conflicting names may be defined by users.

• NFSId contains a long integer representing the user’s identity according to an
unauthenticated NFS call.

13.5 The VFS+ Switch

13.5.1 DCE LFS VNOPS Vector Organization

Example 13-1 Initializing the Extended VNOPS Vector

/*
* The extended VNOPS vector is initialized as follows:
*
* OOPS point to xglue_*
* XOPS point to the passed in ’axfuns’
* NOPS point to the passed in ’ofuncs’
*
* The CM calls with ’axfuns’ pointing to the CM VNOPS;
* EPISODE calls with ’axfuns’ pointing to the EFS VNOPS;
* Everyone calls with ’ofuncs’ pointing to n<os>_ops.
*
* This results in an extended VNOPS vector such that
* VOP_xxx calls on vnodes in the AFS VFS generate a
* call chain like this:
*
* VOP_xxx
* xglue_xxx() * does tkc synchronization *

290 X/Open Preliminary Specification (1996)

VFS+ Data Types The VFS+ Switch

* n<os>_xxx() * maps VFS to VFS+ *
* cm_xxx()
*
* VOP_xxx calls on vnodes in the LFS VFS generate a
* call chain like this:
*
* VOP_xxx
* xglue_xxx() * does tkc synchronization *
* n<os>_xxx() * maps VFS to VFS+ *
* efs_xxx()
*/

13.5.2 LFS Generating Extended Vnode Operations

Example 13-2 Generating New Style Vnode Operations From Original

/*
* Used by GetNewVnodeOpsFromOld (below) to generate new style vnode
* operations from original-style vnode operations.
* In other words, this is used by ufs (not episode or cm) to
* get extended vnode structures for its vnodes.
*
* We initialize the extended VNOPS vector as follows:
*
* OOPS point to xglue_*
* XOPS point to xufs_*
* NOPS point to the passed in ’aofuns’
*
* The PX calls xvfs_convert(vp) to convert a vnode to a vnode
* with the extended vnode ops. This results in a call
* to this routine, where ’aofuns’ points to ufs vnops or
* efs vnops, depending on which VFS was referenced by PX.
*
* This results in an extended VNOPS vector such that
* VOP_xxx calls on vnodes in the AFS VFS generate a
* call chain like this:
*
* VOP_xxx
* xglue_xxx() * does tkc synchronization *
* ufs_xxx()
*
* or
*
* VOP_xxx
* xglue_xxx() * does tkc synchronization *
* nosf_xxx() * maps VFS to VFS+ *
* efs_xxx()
*
*
* Calls via VOPX (for example, by PX) generate a call chain like this:
*
* VOPX_xxx

Part 6: The DCE DFS VFS+ Interface Specification 291

The VFS+ Switch VFS+ Data Types

* efs_xxx()
*
* or
*
* VOPX_xxx
* xufs_xxx() * maps VFS+ to VFS *
* ufs_xxx
*/

13.5.3 Converting Old Vnode Operations

Example 13-3 GetNewVnodeOpsFromOld Routine

/*
* Enter some old vnode ops into a conversion hash table, which is
* just a linked list for now.
*/

static struct xvfs_vnodeops *GetNewVnodeOpsFromOld(
struct osi_vnodeops *aoldOpsp)

{
register struct xvfs_opspair *tp;
register struct xvfs_vnodeops *np;

/* Look for the vnode ops and see if we’ve already done a conversion
* from this ops. If so, return it.
*
* Also, we look to see if these vnode ops are already converted.
* If they are, we just return the same ops pointer. This
* path is taken when UFS recycles an inode: it clears v_flag (which
* clears the converted flag), but doesn’t reset the vnode ops pointer.
* We *really* don’t want to convert the vnode a second time.
*/

for (tp = xvfs_AllOpsPairs; tp; tp = tp->next) {
if (aoldOpsp == (struct osi_vnodeops *) tp->newOps)

return (struct xvfs_vnodeops *) aoldOpsp;

if (aoldOpsp == tp->oldOps)
return tp->newOps;

}

292 X/Open Preliminary Specification (1996)

VFS+ Data Types Vnode Data Types

13.6 Vnode Data Types

13.6.1 Preliminary Items

There is a preliminary check that must be made for Vnode Operations, as follows.

#ifndef TRANSARC_XVNODE_H
#define TRANSARC_XVNODE_H
#include <dcedfs/volume.h>
#include <dcedfs/common_data.h>
#include <dcedfs/osi.h>
#include <dcedfs/osi_cred.h>

#ifdef AFS_DEFAULT_ENV
#error "Check that xvfs_genvnode.h is right for you"
#include <dcedfs/xvfs_genvnode.h> /* std VFS systems */
#endif /* AFS_DEFAULT_ENV */

13.6.2 Converted Vnode Indication

The status flag described in Section C.1 on page 245 is defined here, along with it’s relatives, as
follows.

/* Exported structures and functions are preceded by module
* name xvfs_ */

/*
* Define constant used in v_flag field to indicate that the vnode
* has already been converted.
*/

#ifndef AFS_OSF_ENV
#define V_CONVERTED 0x1000 /* looks out of the way for now */
#endif

#ifdef AFS_AIX31_ENV
#define IS_CONVERTED(vp) ((vp)->v_gnode->gn_flags & V_CONVERTED)
#define SET_CONVERTED(vp) (vp)->v_gnode->gn_flags |= V_CONVERTED
#define SET_UNCONVERTED(vp) (vp)->v_gnode->gn_flags &= ˜V_CONVERTED
#else
#define IS_CONVERTED(vp) ((vp)->v_flag & V_CONVERTED)
#define SET_CONVERTED(vp) (vp)->v_flag |= V_CONVERTED
#define SET_UNCONVERTED(vp) (vp)->v_flag &= ˜V_CONVERTED
#endif
#define XVFS_CONVERT(vp) (IS_CONVERTED(vp) ? 0 : xvfs_convert(vp))
#define xvfs_PutVolume(volp) if (volp) VOL_RELE(volp)

Part 6: The DCE DFS VFS+ Interface Specification 293

Vnode Data Types VFS+ Data Types

13.6.3 Define the xvfs_attr Structure

The following defines additional attribute fields that have special meaning in DFS; used by both
Episode and UFS. The Fields flagged with an "/* on disk */" must be stored in permanent,
on-disk storage for the file.

struct Txvattr {
afsHyper dataVersion; /* on disk */
afsHyper fileID; /* on disk */
afsHyper volVersion; /* on disk */
u_long author;
u_long callerAccess;
u_long anonAccess;
u_long parentVnode;
u_long parentUnique;
afsTimeval serverModTime;
u_long fstype; /* type of the containing aggregate, from aggr.h */
/* Values that are principally derived from what Episode stores

for DFS */
afsUUID objid; /* on disk */
u_long timeUncertainty; /* on disk */
/* for Episode, the CFLAGS from epia_GetInfo (anode.h),

including EPIA_CFLAGS_COPYONWRITE */
u_long representationFlags;
/* Magic cookies usable to identify common ancestry. */
u_long backingIndex; /* on disk */
u_long backingVolIndex; /* on disk */
/*

* These Ix values are cookies that are interpretable only by the
* underlying representation.
*/

u_long aclIx; /* on disk */
u_long initDirAclIx; /* on disk */
u_long initFileAclIx; /* on disk */
u_long plistIx; /* on disk */
u_long uPlistIx; /* on disk */

u_long clientOnlyAttrs; /* rsrvd for machines that never run FXs */
/* on disk */ /* clientOnlyAttrs */

u_long spare1;
u_long spare2;
u_long spare3;
u_long spare4;
u_long spare5;
u_long spare6;

};

These extended attributes have the following meanings.

.dataVersion This 64-bit version number increases monotonically whenever the file’s
contents change (whenever the mtime is updated). Its advantage over the
mtime is that it will never go backwards.

Note: The value in this field is used by the DFS cache client (CM).

294 X/Open Preliminary Specification (1996)

VFS+ Data Types Vnode Data Types

.fileID The inode index and inode generation numbers for the file, in that order.
These are the same values that would reside in an afsFid naming the file.

.volVersion Whenever the volume version number is incremented due to a change to this
file, that (incremented) volume version is stored with the file.

.author This unused field is set to −1 by the vn_getattr() and vol_getattr () calls.

.callerAccess This permset_t (see the DFS ACL specification, ACL Storage Format, Chapter 9
on page 165) is set to the rights that the caller of the vn_getattr() or
vol_getattr () call has to the file.

.anonAccess This permset_t is equal to the set of rights that an object’s ACL grants to
everyone, even unauthenticated clients. If an object does not have an ACL,
this field will be 0. See the DFS ACL specification mentioned above, and the
description of vn_getattr() in Section 16.7 on page 432. This field is used by
the client cache manager in some situations to avoid having to perform a
remote ACL check.

.parentVnode This unused field is set to −1 by the vn_getattr() and vol_getattr () calls.

.parentUnique This unused field is set to −1 by the vn_getattr() and vol_getattr () calls.

.serverModTime This field should be set to the file’s modified time (mtime) by the vn_getattr()
and vol_getattr () calls.

.fstype This field is set to the appropriate AP_TYPE_XXX constant for the LFS by the
vn_getattr() and vol_getattr () calls.

.objid The object UUID for this file.

.timeUncertainty This field is currently unused; the vol_getattr () and vn_getattr() calls should
return 0 for it and the vol_setattr () and vn_setattr() calls should ignore it. It
was intended to hold DTS time uncertainties to accompany the file’s atime,
mtime and ctime.

.representationFlags
This field is set to a set of internal, LFS-dependent state flags.

Note: These are a set of internal Episode flags. It is not known yet whether
they have any DFS (non-diagnostic) use and hence require
architecting.

The following two fields will only be non-zero for a cloned file. They identify the backing file for
files in a copy-on-write relationship. For example: if F2 is a read-only clone of the read-write
fileset F1 (F1 ==> F2), (meaning F1 is backed by F2), these fields would be zero for F2 and
non-zero for F1.

Note: It is not known whether these fields serve any actual purpose or are there for diagnostic
(or obsolete) reasons. If the former, it’s not clear to what degree a particular LFS has to
agree with what Episode puts here.

.backingIndex The index of the fileset which is holding the backing, copy-on-write file for
this one. This index has the same interpretation (and significance) as the one
used by the ag_volinfo () aggregate call. Note that filesets related by cloning
must reside on the same aggregate.

.backingVolIndex The index of the file which is serving as the backing, copy-on-write file for this
one. This field has the same interpretation (and significance) as the .Vnode
field in a file’s afsFid (or .fileID, see above).

Part 6: The DCE DFS VFS+ Interface Specification 295

Vnode Data Types VFS+ Data Types

In order for fileset moves and backups (both implemented via cloning) to be
transparent, a file and its backing file will ALWAYS have the same index.

.clientOnlyAttrs A set of uninterpreted (by the LFS) flags maintained with the file on behalf of
DFS.

The following five fields should be set to a non-zero value by the vn_getattr() and vol_getattr ()
calls if the file has an associated auxiliary object of the particular type. Although the precise
interpretation of the fields is not architected, it is suggested that they somehow identify or name
their auxiliary object such that sharing within a fileset (for example, shared ACLs) can be
detected via a simple equality check. Obviously, the initial directory and file ACL fields are only
required for directory objects.

.aclIx Object ACL.

.initDirAclIx For a directory: the Initial Container (directory) ACL.

.initFileAclIx For a directory: the Initial File ACL.

.plistIx The system property list.

.uPlistIx The user property list.

The "Enhanced" attribute structure: The standard "vattr" structure is simply an overlay (always
first) in this structure. This structure consists of both the standard vnode and extended DFS
attributes.

struct xvfs_attr {
struct vattr vattr;
struct Txvattr xvattr;

};

13.6.4 Define the Vnode Operations Function Aray

A description of the operations available within the vnode function array appears below. The
array is an exported data type.

/* extended VOPX operations; note that all attr-taking dudes
* take xvattrs, not vattrs.
*/

struct xvfs_xops {
int (*vn_open)();
int (*vn_close)();
int (*vn_rdwr)();
int (*vn_ioctl)();
int (*vn_select)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access)();
int (*vn_lookup)();
int (*vn_create)();
int (*vn_remove)();
int (*vn_link)();
int (*vn_rename)();
int (*vn_mkdir)();
int (*vn_rmdir)();
int (*vn_readdir)();
int (*vn_symlink)();

296 X/Open Preliminary Specification (1996)

VFS+ Data Types Vnode Data Types

int (*vn_readlink)();
int (*vn_fsync)();
int (*vn_inactive)();
int (*vn_bmap)();
int (*vn_strategy)();
int (*vn_ustrategy)(); /* assuming stuff already mapped in */
int (*vn_bread)();
int (*vn_brelse)();
int (*vn_lockctl)();
int (*vn_fid)(); /* op for old style fid op */
int (*vn_hold)(); /* maybe we don’t need these; revisit when done */
int (*vn_rele)();
/*

* new ones for us to provide, rather than just existing to
* make writing the O functions easier (that is, porting).
*/

int (*vn_setacl)();
int (*vn_getacl)();
int (*vn_afsfid)();
int (*vn_getvolume)();
int (*vn_getlength)();
/*

* Some new ops for AIX 3
*/

int (*vn_map)(); /* also used for SunOS 5 */
int (*vn_unmap)();
/*

* A new op for OSF/1
*/

int (*vn_reclaim)();
/*

* Some new ops for SunOS 5
*/

int (*vn_read)();
int (*vn_write)();
int (*vn_realvp)();
void (*vn_rwlock)();
void (*vn_rwunlock)();
int (*vn_seek)();
int (*vn_space)();
int (*vn_getpage)();
int (*vn_putpage)();
int (*vn_addmap)();
int (*vn_delmap)();
int (*vn_pageio)();

#define vn_frlock vn_lockctl /* overlay equivalent ops */
/*

* Ops for HP/UX
*/

int (*vn_pagein)();
int (*vn_pageout)();

};

Part 6: The DCE DFS VFS+ Interface Specification 297

Vnode Data Types VFS+ Data Types

13.6.5 Define the Enhanced Vnode Operations

A description of the operations available within the enhanced (converted) vnode function array
appears below. The array is an exported data type.

/*
* Operations on the Enhanced vnodes.
*/

struct xvfs_vnodeops {
struct osi_vnodeops oops; /* Glued vendor vnodeops */
struct xvfs_xops xops; /* Enhanced (Decorum) vnodeops */
struct osi_vnodeops nops; /* Original vendor vnodeops */

};

The osi_vnodeops structure is somewhat of a misnomer. It is the native Operating System (OS)
vnode vector, which is anything but osi (Operating System Independent).

13.6.6 Define VOPX_XXX for Extended Vnodeops

/*
* Macros for extended vnodeops
*/

#define VOPX_OPEN efs_null
#define VOPX_CLOSE efs_null
#define VOPX_RDWR efs_rdwr
#define VOPX_IOCTL efs_invalid
#define VOPX_SELECT efs_invalid
#define VOPX_GETATTR efs_getxattr
#define VOPX_SETATTR efs_setxattr
#define VOPX_ACCESS efs_access
#define VOPX_LOOKUP efs_lookup
#define VOPX_CREATE efs_create
#define VOPX_REMOVE efs_remove
#define VOPX_LINK efs_link
#define VOPX_RENAME efs_rename
#define VOPX_MKDIR efs_mkdir
#define VOPX_RMDIR efs_rmdir
#define VOPX_READDIR efs_readdir
#define VOPX_SYMLINK efs_symlink
#define VOPX_READLINK efs_readlink
#define VOPX_FSYNC efs_fsync
#define VOPX_INACTIVE efs_inactive
#define VOPX_BMAP efs_bmap
#if defined(AFS_AIX31_VM)
#define VOPX_STRATEGY(VP,BP) efs_strategy (BP)
#else
#define VOPX_STRATEGY efs_null
#endif
#define VOPX_USTRATEGY efs_panic
#define VOPX_BREAD efs_panic
#define VOPX_BRELSE efs_panic
#define VOPX_LOCKCTL efs_lockctl
#define VOPX_FID efs_fid
#define VOPX_HOLD efs_hold

298 X/Open Preliminary Specification (1996)

VFS+ Data Types Vnode Data Types

#define VOPX_RELE efs_rele
#define VOPX_GETACL efsx_getacl
#define VOPX_SETACL efsx_setacl
#define VOPX_AFSFID efs_afsfid
#define VOPX_GETVOLUME efs_getvolume
#define VOPX_GETLENGTH efs_getlength
#ifdef AFS_AIX31_ENV
#define VOPX_MAP efs_map
#define VOPX_UNMAP efs_unmap
#endif
#ifdef AFS_OSF_ENV
#define VOPX_RECLAIM efs_reclaim
#endif
#ifdef AFS_SUNOS5_ENV
#define VOPX_READ efs_vmread
#define VOPX_WRITE efs_vmwrite
#define VOPX_REALVP efs_realvp
#define VOPX_RWLOCK efs_rwlock
#define VOPX_RWUNLOCK efs_rwunlock
#define VOPX_SEEK efs_seek
#define VOPX_SPACE efs_space
#define VOPX_GETPAGE efs_getpage
#define VOPX_PUTPAGE efs_putpage
#define VOPX_ADDMAP efs_addmap
#define VOPX_DELMAP efs_delmap
#define VOPX_PAGEIO efs_pageio
#define VOPX_FRLOCK efs_frlock
#endif
#ifdef AFS_HPUX_ENV
#define VOPX_PAGEIN efs_pagein
#define VOPX_PAGEOUT vfs_pageout
#endif

13.6.7 Define VOPX_UPDATE Flags

/*
* Flags argument for VOPX_UPDATE
*/

#define XVN_ACC 1 /* atime */
#define XVN_UPD 2 /* mtime */
#define XVN_CHG 4 /* ctime */

13.6.8 Define the Enhanced Operations Vector

This is the enhanced (converted) VFS operations vector.

/*
* The extended VFS op vector
*/

struct xvfs_vfsops {
struct vfsops xvfsops;
struct vfsops vfsops;
int (*vfsgetvolume)();

};

Part 6: The DCE DFS VFS+ Interface Specification 299

Vnode Data Types VFS+ Data Types

13.6.9 Define the VFS Operations

The following defines a VFS operations vector.

struct vfsops (
int (*vfs_mount)();
int (*vfs_unmount)();
int (*vfs_root)();
int (*vfs_statfs)();
int (*vfs_sync)();
int (*vfs_vget)();
int (*vfs_getmount)();

};

13.6.10 Define the Vnode Operation Classifications

The following definitions classify the vnode operations into noop, read-only and read-write.

/* Macros to classify vnode ops into noop, read-only and read-write */
#define VNOP_LOCK VNOP_TYPE_READWRITE
#define VNOP_LINK VNOP_TYPE_READWRITE
#define VNOP_UNLINK VNOP_TYPE_READWRITE
#define VNOP_MKDIR VNOP_TYPE_READWRITE
#define VNOP_RMDIR VNOP_TYPE_READWRITE
#define VNOP_RENAME VNOP_TYPE_READWRITE
#define VNOP_SYNCGP VNOP_TYPE_READWRITE
#define VNOP_TRUNC VNOP_TYPE_READWRITE
#define VNOP_GETVAL VNOP_TYPE_READONLY
#define VNOP_RWGP VNOP_TYPE_READWRITE
#define VNOP_STAT VNOP_TYPE_READWRITE
#define VNOP_UPDATE VNOP_TYPE_READWRITE
#define VNOP_OPEN VNOP_TYPE_READWRITE
#define VNOP_CLOSE VNOP_TYPE_READWRITE
#define VNOP_READLINK VNOP_TYPE_READWRITE
#define VNOP_SYMLINK VNOP_TYPE_READWRITE
#define VNOP_BMAP VNOP_TYPE_READWRITE
#define VNOP_NAMEI VNOP_TYPE_READWRITE
#define VNOP_MKNOD VNOP_TYPE_READWRITE
#define VNOP_REMOVE VNOP_TYPE_READWRITE
#define VNOP_LOOKUP VNOP_TYPE_READONLY

/*
* Change MAP and UNMAP to NOOP type vnodeops instead of READWRITE type
* to prevent MAP and UNMAP vnodeops from blocking on busy filesets
* as the AIX kernel global shared memory lock is held across these
* calls. If these vnode ops block, any process trying to start or exit
* will deadlock on the held shared memory lock
*/

#define VNOP_MAP VNOP_TYPE_NOOP
#define VNOP_UNMAP VNOP_TYPE_NOOP

#define VNOP_ACCESS VNOP_TYPE_READONLY
#define VNOP_GETATTR VNOP_TYPE_READONLY
#define VNOP_SETATTR VNOP_TYPE_READWRITE

300 X/Open Preliminary Specification (1996)

VFS+ Data Types Vnode Data Types

#define VNOP_FSYNC VNOP_TYPE_READWRITE
#define VNOP_FTRUNC VNOP_TYPE_READWRITE
#define VNOP_RDWR VNOP_TYPE_READWRITE
#define VNOP_LOCKCTL VNOP_TYPE_READWRITE
#define VNOP_READDIR VNOP_TYPE_READWRITE
#define VNOP_GETACL VNOP_TYPE_READONLY
#define VNOP_SETACL VNOP_TYPE_READWRITE
#define VNOP_PGRD VNOP_TYPE_READWRITE
#define VNOP_PGWR VNOP_TYPE_READWRITE
#define VNOP_CREATE VNOP_TYPE_READWRITE

/* SunOS relies on VFS_ROOT never blocking. If VFS_ROOT blocks, it holds
* the vnode mutex which prevents anybody trying to obtain a reference
* to the vnode to block that leads to a deadlock.
* HP, AIX and Solaris hold a reference to a filesystems’s root vnode always
* and hence there should not be any problem if VFS_ROOT is unglued.
*/

#ifndef AFS_OSF_ENV
#define VFSOP_ROOT VNOP_TYPE_NOOP
#else
#define VFSOP_ROOT VNOP_TYPE_READWRITE
#endif

#define VFSOP_UNMOUNT VNOP_TYPE_READWRITE
#define VFSOP_FHTOVP VNOP_TYPE_READWRITE
#define VFSOP_VGET VNOP_TYPE_READWRITE

13.6.11 Directory Entry Formats

The following defines the native directory entries of various kinds as shown by the ifdef
statements.

#ifdef AIX /* Native dir entry has an offset */
struct dirent {

u_long offset;
u_long inode;
u_short recordlen;
namelen;
char dir_name[];

};
#elif SunOS-5 /* Native dir entry has an offset */
struct dirent {

u_long inode;
u_long offset;
u_short recordlen;
u_short namelen;
char dir_name[];

};
#else /* Native dir entries do NOT have an offset */
struct dirent {

u_long inode;
u_short recordlen;
u_short namelen;

Part 6: The DCE DFS VFS+ Interface Specification 301

Vnode Data Types VFS+ Data Types

char dir_name[];
u_long offset;

};

The fields have the following meaning:

.offset An offset corresponding to whatever (empty space or another entry) follows
this entry in the directory.

.inode An LFS-dependent (interpreted only by the LFS) anode number.

.recordlen Length of this entry, rounded up to a 4 byte boundary. Therefore, the offset
from the start of this entry to the next one in a supplied buffer.

.namelen Length of the file name, not including the terminating null char.

.dir_name Variable sized file name: includes a terminating null char.

302 X/Open Preliminary Specification (1996)

Chapter 14

Aggregate Operations Interface

This chapter describes the portion of the VFS+ interface which allows operations on aggregates,
the DCE DFS data containers which house filesets, as introduced in Section 11.3 on page 235. A
description of each aggregate known to the local host is kept in the Aggregate Registry, a global
kernel table. An aggregate descriptor includes a pointer to a struct aggrops function array,
namely those operations that may be performed on the aggregate. The corresponding aggregate
operation is chosen from the function array and executed. The aggregate operation architecture
is remarkably similar to that used to provide access to VFS operations. In fact, one
implementation technique for these functions is to define an aggregate file system via a struct
vfs, suitably extended, and use the standard VFS mechanisms to manipulate them.

A description of the operations available within the aggregate function array appears below.
The array is presented as an exported data type, and the associated declaration may be found in
Section 13.2.12 on page 272. It is reproduced here for convenience.

struct aggrops {
int (*ag_hold)();
int (*ag_rele)();
int (*ag_lock)();
int (*ag_unlock)();
int (*ag_stat)();
int (*ag_volCreate)();
int (*ag_volInfo)();
int (*ag_detach)();
int (*ag_attach)();
int (*ag_sync)();

};

14.1 Initialization
Each type or implementation of a DFS LFS file system is identified by a small integer constant
within the file aggr.h within the DFS source directory src/file/xaggr. Section 13.2.4 on page 270,
Valid Aggregate Types lists the currently defined aggregate types.

14.1.1 Identifying a New LFS to DCE DFS

When a new file system is implemented, a new AG_TYPE_xxx constant must be added to this
file in order to identify its type. In this constant, the xxx is the actual identifier of the type of
aggregate (and hence, LFS) that is being defined. Additionally, as previously mentioned in
Section 11.8.1 on page 240, the constant MAX_AG_TYPE (in Section 13.2.4 on page 270) should
be adjusted since this controls the size of the aggregate operations array discussed below.

These aggregate types need not be consistent across multiple vendor platforms. They do not
cross the network in any protocols - the aggregate operations are local affairs. It would be
beneficial if they were; however, there is no provision currently by which this can be
accomplished.

Note: Re-using the aggregate type chosen by Transarc for Episode is not an option.

1. It would preclude running with both Episode and the vendor’s LFS.

Part 6: The DCE DFS VFS+ Interface Specification 303

Initialization Aggregate Operations Interface

2. It would probably be illegal.

3. The backup and restore algorithms assume that when moving between
aggregates of the same type, directory offsets can be preserved. Undoubtedly,
there are other technical differences that would cause difficulties.

14.1.2 Registering Aggregate Operations

As previously mentioned in the first paragraph of Chapter 14 on page 303 , in the discussion of
Aggregate-level facilities in Section 11.3 on page 235 and Section 11.8.1 on page 240, there is an
Aggregate Registry table containing aggregate information that has been made available to DCE
DFS, by the act of an LFS registering its aggregate operations at initialization time. Registration
is made by use of the ag_setops() function call. The result is that a pointer to the aggregate
operations vector just identified is inserted in the Aggregate Registry in the appropriate offset
identified by the aggregate type identifier. This results in the user space DFS components being
informed about a new aggregate type.

The aggregate operations for a particular file system are identified by a struct aggrops
entrypoint vector identified in Section 13.2.12 on page 272.

14.2 Exporting volumes to DFS
The dfsexport command is used to export the filesets contained on an aggregate to DFS. Any
aggregates being exported are required to have an entry in the dfstab file
(/opt/dcelocal/var/dfs/dfstab). Each entry in this file identifies an aggregate and, for Transarc
LFS file systems (as opposed to exported UFS file systems), contains the following fields:

Device Name Pathname to the device file for the aggregate.

Aggregate Name A 64-character (byte) aggregate name interpreted by neither DFS nor the LFS.

File System Type The aggregate type, or more succinctly, the file system type that is housing
the aggregate. For an exported UFS, this is "ufs". For Transarc’s Episode, this
is "lfs".

For a new implementation of an LFS, a new type string should be declared in
the DFS source file src/file/xaggr/astab.h. For example, the following type for
an appropriate "xxx" value would be added to those defined in Section 13.2.18
on page 274:

#define ASTABTYPE_XXX "xxx"

Aggregate ID Each aggregate on a machine is identified by an aggregate ID. These IDs,
which are selected by the system administrator as the dfstab file is
constructed, are uninterpreted by DFS/LFS and are simply unique (for that
local machine) integers starting from 1.

Note: The format of entries in this table can be different for different aggregate types. For
example, an exported UFS has a dfstab entry that is different from what is shown
above. If necessary (or beneficial), a new lfs could define private fields holding
information to be passed to it at export time. Since DFS already has a mechanism for
passing LFS-private data to ag_attach (), only the dfsexport command itself would
require changes in this event. (Specifically: dfstab.c and export.c in src/file/xaggr.)

Appendix G on page 401 lists the steps involved in exporting the filesets in an aggregate.

304 X/Open Preliminary Specification (1996)

Aggregate Operations Interface Aggregate Mounts

14.3 Aggregate Mounts
The UNIX operating system, in most implementations, only performs file system updates
(syncs) to file systems that it finds in the local mount table. This immediately causes a problem
for filesets which are exported to DFS but not mounted locally. To overcome this difficulty, DFS
performs a special mount of aggregates as they are attached - just to get them into the mount
table. Specifically:

• No provision is made for allowing access below these mount points since the only goal is to
get an entry into the mount table.

• Aggregates - not individual filesets - are mounted. The mount points used are of the form:

/opt/dcelocal/var/dfs/aggrs/<aggregate-name>

• The mount is performed with a new file system type, MOUNT_AGFS.

• DFS supplies code that implements this file system type (vfs and vnode operations). A few
vnode operations are marginally implemented to allow /bin/ls operations within the mount
directory listed above; most return ENOSYS since they should never be used. The vfs
operations are implemented on top of the aggregate operations (ag_xxx()) provided by the
LFS. They are:

_root Returns a "synthesized" vnode with the V_ROOT flag set.

_statfs Calls ag_stat () to obtain a statfs structure that gives the space usage on the
aggregate.

_sync Calls ag_sync(), with a synctype of AG_SYNC_FILESYS, to actually perform the
sync.

_unmount Updates internal tables to reflect the fact that this aggregate is no longer
"mounted".

• These "pseudo-mounts" exist independently of any local mounts that might already exist or
be created later for filesets on the aggregate.

14.4 Aggregate Array Functions
Descriptions of the members of the struct aggrops function array follow. File system
independent code above the LFS enforces the requirement that with the exception of ag_stat (),
ag_volInfo () and ag_sync(), these operations can only be issued by ROOT (the local super user).

Part 6: The DCE DFS VFS+ Interface Specification 305

ag_hold() Aggregate Operations Interface

NAME
ag_hold — Increment the aggregate reference count

SYNOPSIS
int ag_hold(

/* IN */ struct aggr *aggd
);

ARGUMENTS

aggd Aggregate descriptor pointer.

DESCRIPTION
Increment the reference count of the aggregate described by the aggd pointer.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

306 X/Open Preliminary Specification (1996)

Aggregate Operations Interface ag_rele()

NAME
ag_rele — Decrement an aggregate’s reference count

SYNOPSIS
int ag_rele(

/* IN */ struct aggr *aggd
);

ARGUMENTS

aggd Aggregate descriptor pointer.

DESCRIPTION
Decrement the reference count of the aggregate associated with the aggd pointer. The aggregate
reference count is normally incremented by the ag_hold (), agg_Lookup () and agg_Attach ()
functions.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 307

ag_lock() Aggregate Operations Interface

NAME
ag_lock — Lock access to an aggregate

SYNOPSIS
int ag_lock(

/* IN */ struct aggr *aggd,
/* IN */ int type
);

ARGUMENTS

aggd Aggregate descriptor pointer.

type Type of lock to be obtained. Allowable values are READ_LOCK,
WRITE_LOCK and SHARED_LOCK.

DESCRIPTION
Lock access to an aggregate.

DISCUSSION
This operation is currently unused by DFS. The semantics of this function are unspecified. It is
implementation-dependent. If implemented, this operation could utilize the standard DFS lock
primitives as follows:

{
code = error_status_ok;

{
if (type == READ_LOCK) {

lock_ObtainRead(&aggrp->a_lock);
}
else if (type == WRITE_LOCK) {

lock_ObtainWrite(&aggrp->a_lock);
}
else if (type == SHARED_LOCK) {

lock_ObtainShared(&aggrp->a_lock);
}
else code = EINVAL;
}

return code;
}

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] If type is neither READ_LOCK, WRITE_LOCK or SHARED_LOCK.

308 X/Open Preliminary Specification (1996)

Aggregate Operations Interface ag_unlock()

NAME
ag_unlock — Unlock access to an aggregate

SYNOPSIS
int ag_unlock(

/* IN */ struct aggr *aggd,
/* IN */ int type
);

ARGUMENTS

aggd Aggregate descriptor pointer.

type Type of lock obtainedat call to ag_lock (). Allowable values are READ_LOCK,
WRITE_LOCK and SHARED_LOCK.

DESCRIPTION
Unlock access to an aggregate.

DISCUSSION
This operation is currently unused by DFS. The semantics of this function are unspecified. It is
implementation-dependent. If implemented, this operation could utilize the standard DFS lock
primitives as follows:

{
code = error_status_ok;

{
if (type == READ_LOCK) {

lock_ReleaseRead(&aggrp->a_lock);
}
else if (type == WRITE_LOCK) {

lock_ReleaseWrite(&aggrp->a_lock);
}
else if (type == SHARED_LOCK) {

lock_ReleaseShared(&aggrp->a_lock);
}

else code = EINVAL;
}

return code;
}

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] If type is neither READ_LOCK, WRITE_LOCK, or SHARED_LOCK.

Part 6: The DCE DFS VFS+ Interface Specification 309

ag_stat() Aggregate Operations Interface

NAME
ag_stat — Returns statistics on the given aggregate

SYNOPSIS
int ag_stat(

/* IN */ struct aggr *aggd,
/* INOUT */ struct ag_status *astatd
);

ARGUMENTS

aggd Aggregate descriptor pointer.

astatd Pointer to an aggregate status structure into which the information will be
read.

DESCRIPTION
Provide the caller with the statistics block associated with the aggregate described by aggd
pointer, placing the results at location astatd.

DISCUSSION
Any status fields not explicitely set should be zeroed.

The static portion of the status can be simply copied from the aggrp->a_stat_st to astatp->ag_st .
(This static status is maintained in the agregate structure.)

The dynamic portion of the status in astap->ag_dy is computed as appropriate for the particular
LFS implementation. Fields with no significance (namely, minFree, spares) should be zeroed.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

310 X/Open Preliminary Specification (1996)

Aggregate Operations Interface ag_volCreate()

NAME
ag_volCreate — Create a new fileset within an aggregate

SYNOPSIS
int ag_volCreate(

/* IN */ struct aggr *aggd,
/* IN */ struct afsHyper *avolidp,
/* IN */ struct vol_status *avolstatp,
/* IN */ long aflags
);

ARGUMENTS

aggd Aggregate descriptor pointer.

avolidp Pointer to the ID of the new fileset.

avolstatp Pointer to a fileset status block with initial values in fields that require them.

aflags Miscellaneous flag bits. The only bit which has significance is
AGGR_CREATE_ROOT.

DESCRIPTION
Create and attach (for DFS export) a fileset within the aggregate associated with the descriptor
located at aggd. The initial fileset header is derived from the image provided through the
avolstatp pointer, which has various fields set.

DISCUSSION
The following bit is defined to have significance and is defined as:

/* defined bits within the flags argument */
#define AGGR_CREATE_ROOT 1

See Appendix D on page 317 for further information about this function.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] If not exactly one of VOL_RW and VOL_READONLY are set in the initial
status .v_states field. The new fileset has not been created in this case.

[ENOSPC] There is not enough space to create the fileset. The fileset has not been created
in this case.

[EDQUOT] The disk quota has been exceeded. The fileset has not been created in this case.

Part 6: The DCE DFS VFS+ Interface Specification 311

ag_volInfo() Aggregate Operations Interface

NAME
ag_volInfo — Enumerate the filesets within the given aggregate

SYNOPSIS
int ag_volInfo(

/* IN */ struct aggr *aggd,
/* IN */ long index,
/* OUT */ struct volume *vold
);

ARGUMENTS

aggd Aggregate descriptor pointer that is being enumerated.

index Index of fileset within the aggregate that is to be examined for this call.

vold Fileset descriptor into which to copy information about the fileset located at
slot index within the aggregate.

DESCRIPTION
Determine if there is a fileset at position index within the aggregate described by the aggd
pointer. If there is, put information about it in the fileset descriptor (vold). If there is no fileset at
position index, return ENOENT. The first valid fileset index within an aggregate is zero. To
enumerate all filesets within an aggregate, ag_volInfo () is called repeatedly, with index starting
at zero and incremented at each subsequent call. The iteration completes when ag_volInfo ()
returns VOL_ERR_EOF.

ag_volInfo () can be compared with the fileset operation, vol_getstatus () (see Section 15.14 on
page 355). Both return information about a fileset. But when the former is called, the aggregate
is not necessarily attached, and consequently the aggregate op does not look up the fileset in the
Fileset Registry, nor make any attempt to gather dynamic information about how the fileset is
being used.

DISCUSSION
For information relative to the fields within the fileset structures, see Appendix E on page 321.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[ENOENT] There is no fileset at the position selected by the index argument.

[VOL_ERR_EOF] All filesets on the aggregate have index values smaller than the one supplied
on this call. The calling software should stop looping through the filesets, as
they have all been enumerated.

SEE ALSO
vol_getstatus ().

312 X/Open Preliminary Specification (1996)

Aggregate Operations Interface ag_detach()

NAME
ag_detach — Detach the given aggregate

SYNOPSIS
int ag_detach(

/* IN */ struct aggr *aggd
);

ARGUMENTS

aggd Aggregate descriptor pointer.

DESCRIPTION
Detach the aggregate associated with the aggd pointer, taking all its filesets off-line.

DISCUSSION
This call should release, via osi_Free(), any private storage that was allocated by the af_attach ()
function. In this event, the aggregate structure (struct aggr field .a_fsDatap) should be zeroed as
well. See Section 13.2.6 on page 270 for information pertinent to the fields in this structure.

Other file system dependent clean up might be required as well, keeping in mind that filesets on
the aggregage might still be mounted for local use.

Note: Although Transarc’s Episode file system guarantees that an aggregate will not be
ag_detach ()’d until it is no longer in use (by either DFS or locally mounted filesets),
other implementations of the LFS and mount and umount commands need not behave
in this manner.

Consult Appendix F on page 323 for further information.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[ENXIO] Most failures that are I/O related should be returned with this code.

SEE ALSO
Section 11.8.3 on page 241 defines the signature for the osi_Free() fP function.

Part 6: The DCE DFS VFS+ Interface Specification 313

ag_attach() Aggregate Operations Interface

NAME
ag_attach — Attach the given aggregate

SYNOPSIS
int ag_attach(

/* IN */ dev_t dev,
/* IN */ struct vnode *bdevvP,
/* IN */ u_long flags,
/* IN */ caddr_t data,
/* OUT */ opaque *fsdatap,
/* OUT */ long *fsdatalen
);

ARGUMENTS

dev Device representing the partition on which the aggregate is located.

bdevvP Vnode for the block device of this aggregate that is being attached. The device
numer is obtained from this vnode.

flags Various bits. If the flag AGGR_ATTACH_NOEXPORT is present, this
indicates that the aggregate is not actually being exported to DFS (Instead, one
of its filesets is being mounted locally).

data A data area (in user space), holding filesystem-specific data about the
aggregate. In DCE LFS this parameter is not used. For UFS aggregates it holds
the fileset ID of the aggregate’s one fileset, and the name of the directory on
which the corresponding filesystem is mounted. If present, it should be
copied in via copyin().

fsdatap Pointer to a place to put a filesystem-specific control block.

fsdatalen Length of the filesystem-specific control block, for use in freeing it, in case this
is done in the course of aborting ag_Attach () rather than (as is usually the
case) by ag_Detach().

DESCRIPTION
Attach the aggregate specified, putting all its filesets on-line.

DISCUSSION
Consult Appendix F on page 323 for further information.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[ENXIO] Most failures that are I/O related should be returned with this code. For
instance, this failure indicates that the aggregate is in an inconsistent (corrupt)
state and needs to be run through a disk salvager (such as FSCK) before it can
be accessed.

314 X/Open Preliminary Specification (1996)

Aggregate Operations Interface ag_sync()

NAME
ag_sync — Sync the given aggregate

SYNOPSIS
int ag_sync(

/* IN */ struct aggr *aggd,
/* IN */ int syncType
);

ARGUMENTS

aggd Aggregate descriptor pointer.

syncType Describes the type of sync to be done, choose from one of:
AGGR_SYNC_FILESYS, AGGR_SYNC_COMMITMETA or
AGGR_SYNC_COMMITALL.

DESCRIPTION
Sync the state of the aggregate to the permanent storage, according to the syncType parameter:

AGGR_SYNC_FILESYS
All dirty data on the aggregate (and possibly all aggregates of the same type) is (scheduled
to be asynchronously) written to permanent storage, consistent with the behavior of
sync(2). This is useful to periodically flush dirty data for filesets that have no local mount
point, and thus, are not affected by the system’s periodic calls to sync(2).

AGGR_SYNC_COMMITMETA
All dirty meta-data (for instance, file status) is written to permanent storage. The call does
not return until the I/O has completed (It is synchronous.).

AGGR_SYNC_COMMITALL
All dirty data (both meta-data and user data) is written to permanent storage. The call does
not return until the I/O has completed.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] The syncType argument is not one of AGGR_SYNC_FILESYS,
AGGR_SYNC_COMMITMETA or AGGR_SYNC_COMMITALL.

Part 6: The DCE DFS VFS+ Interface Specification 315

Aggregate Operations Interface

316 X/Open Preliminary Specification (1996)

Appendix D

Information Pertinent to ag_volCreate()

In the process of creating and attaching a fileset on an aggregate, the following fields from the
supplied initial volume status are stored on disk for the newly created fileset. On-disk fileset
status fields not mentioned here should be set to zero.

D.1 Static Status
From the static status portion, statusp->vol_st:

.volName

.volId The volIdp argument is used instead of this.

.parentId

.cloneTime

.states The following fileset state bits are sampled and stored on-disk.

VOL_READONLY \ exactly 1 of these
VOL_RW / should be set
VOL_IS_COMPLETE
VOL_DELONSALVAGE
VOL_ZAPME
VOL_CLONEINPROG
VOL_REPFIELD
VOL_TYPEFIELD
VOL_REPSERVER_MGD
VOL_NOEXPORT
VOL_IS_REPLICATED
VOL_MOVE_SOURCE
VOL_MOVE_TARGET

D.2 Dynamic Status
From the dynamic status portion, .vol_dy

.creationDate If the seconds (.sec) portion of this is 0, the fileset’s creation time is set to the
current time.

Observation: although the hi-level Episode code samples this and leaves it in
the memory structure, the low-level code seems to ignore it and set the
on-disk field to "now".

.updateDate

.accessDate

.copyDate

.volversion

.backupId

Part 6: The DCE DFS VFS+ Interface Specification 317

Dynamic Status Information Pertinent to ag_volCreate()

.cloneId

.llBackId

.llFwdId

.allocLimit

.visQuotaLimit

.unique Observation: although the hi-level Episode code seems to sample .unique and
leave it in the memory structure, the low-level code seems to ignore it and set
the on-disk field to 0.

.statusMsg

D.3 Other Items
The ID of the new fileset is taken from the volIdp argument.

If the AGGR_CREATE_ROOT flag is specified, a properly initialized root directory (containing
"." and "..", owner and group taken from the callers credentials, without ACL or property lists) is
created. Otherwise, the fileset is left in an inconsistent state (namely, waiting for a clone or
restore) and the VOL_DELONSALVAGE volume state flag should be set in both the supplied
volume status structure and the on-disk storage for this fileset.

The .vol_dy.index field in the supplied status structure is set to the value that, if passed as the
index argument to the aggregate ag_volInfo () operation, would select this newly created fileset.

Observation: this .vol_dy.index field may in fact be obsolete or un-needed.

If, for some reason, the operation fails with the new fileset left in an intermediate state (for
instance, cleanup was not possible), the VOL_DELONSALVAGE flag should be set in both the
supplied status .vol_st.states word and in on-disk storage. (Such an intermediate state, while
sometimes unavoidable, is obviously undesirable.)

D.4 Attaching the New Fileset
If a new fileset is created and left on the aggregate (even if in an inconsistent state due to an
error), this operation must export it to DFS via the DFS function vol_Attach () as follows:

/* ... the fileset has been created */
error = vol_Attach(volIdp, statusp, aggrp, &vol_ops_vector);
/* ... and when all done */
return(error);

Note: This is NOT the VFS+ volume vol_attach () operation, but a different one. DFS has
chosen to implement this up-call function in ag_volCreate () rather than having the code
that called ag_volCreate () handle it.

The first three arguments are the same as those passed to ag_volCreate () although in a different
order. The fourth is the address of the volume operations entrypoint vector. This call will itself
make calls to the volume operations vol_setdystat () and vol_attach () fP functions. Note that
there is no need to examine the error code it returns (specifically: if it fails, the fileset is not
deleted or marked inconsistent).

318 X/Open Preliminary Specification (1996)

Information Pertinent to ag_volCreate() Attaching the New Fileset

The vol_Attach call, which is not listed in any of the DCE DFS header files, has the following
signature:

vol_Attach(
afsHyper *volIdp,
struct vol_status *statusp,
struct aggr *aggrp,
struct volumeops *volopsp
);

No checking is performed to see if a volume with the specified volume ID or name already
exists. The LFS is thus relying upon DFS to avoid a problem in this instance. Presently, the
vol_Attach () up-call will fail if an aggregate with the given ID already exists.

Note: For the sake of per-aggregate consistency, it seems reasonable to suggest that an LFS
implementation check within an aggregate for duplicate fileset names and IDs at
creation (returning, perhaps, EEXIST).

Part 6: The DCE DFS VFS+ Interface Specification 319

Information Pertinent to ag_volCreate()

320 X/Open Preliminary Specification (1996)

Appendix E

Information Pertinent to ag_volInfo()

E.1 Volume Structure Fields
Fields within the volume structure (struct volume) should be filled in as follows. (See Section
13.3.14 on page 285 for information on the contents of this structure):

.v_paggrp Set to the aggrp argument passed to this call. (That is, this field points to the
aggr structure for the aggregate that the fileset resides on.)

.v_volOps Set to point at the struct volumeops vector of volume operations provided by
the LFS.

E.2 Static Status
Fields within the volume.v_stat_st structure should be filled in from the fileset status stored on
disk as follows. Any field not mentioned should be zeroed.

.volName

.volId The volIdp argument is used instead of this.

.parentId

.cloneTime

.states Only the following fileset state bits are set and stored on-disk. (Others should
be zeroed.)

VOL_READONLY \ exactly 1 of these
VOL_RW / should be set
VOL_IS_COMPLETE
VOL_DELONSALVAGE
VOL_ZAPME
VOL_CLONEINPROG
VOL_REPFIELD
VOL_TYPEFIELD
VOL_REPSERVER_MGD
VOL_NOEXPORT
VOL_IS_REPLICATED
VOL_MOVE_SOURCE
VOL_MOVE_TARGET

.type The states of the VOL_READONLY and VOL_RW flags from the .v_states
field are replicated here.

Part 6: The DCE DFS VFS+ Interface Specification 321

Information Pertinent to ag_volInfo()

322 X/Open Preliminary Specification (1996)

Appendix F

Information Pertinent to ag_[de,at]tach()

F.1 Making an Aggregate Available
The first operation that must be performed in order for an aggregate to be available for use by
DFS is to attach it to DFS, putting all its filesets on-line. No other aggregate (or volume)
operations will occur on an aggregate until after this has been done. On a successful return from
the ag_attach () call, an aggregate struct (struct aggr) will be allocated by higher level software.

F.2 Private Storage
The af_attach () call can optionally allocate and initialize a block of private storage which will
then be made available to all subsequent aggregate operations. This storage must be allocated
via a call to osi_Alloc (). A pointer to it along with its size are returned in the fsdatap (private
data) and fsdatalen (private data length) arguments. (The length is required so that higher level
software can release the storage if an error occurs later in the attach algorithm.) This pointer is
deposited in the aggr structure .a_fsDatap field, from where it can be retrieved on subsequent
aggregate operations. If no such storage is allocated, return values of NULL and 0 should be
supplied for fsdatap and fsdatalen, respectively.

Section 11.8.3 on page 241 defines the signature for osi_Alloc ().

F.3 Aggregate Structure
Aggregates currently attached (see Note below, or containing filesets mounted locally) are
known to DFS by means of an struct aggr structure that is remembered. This ag_attach () call is
made by DFS whenever it encounters an aggregate that it doesn’t already know about. Once this
call has been made for a fileset, it will not be made again until an intervening ag_detach () occurs.

Note: The AGGR_ATTACH_NOEXPORT flag is not normally issued by DFS. It’s only user is
the local mount command for the Episode LFS, which invokes the DFS attach code to
allocate an aggr structure. There doesn’t appear to be any use to which an LFS can put
this flag: it will be present if the first time DFS encounters an aggregate it is for a local
mount (as opposed to a DFS export). This is either:

a. Merely an artifact of the Episode implementation.

b. DFS requires that it "have" appropriate aggr structures for any filesets mounted
locally regardless of whether or not they are currently attached by DFS.
However, this isn’t being done for UFS file systems.

At the current time, the first alternative is assumed. If that turns out not to be the case,
an interface into DFS for use by the LFS mount and unmount commands will be
needed by any vendor-supplied LFS.

Part 6: The DCE DFS VFS+ Interface Specification 323

Information Pertinent to ag_[de,at]tach()

324 X/Open Preliminary Specification (1996)

Chapter 15

Fileset (Volume) Operations Interface

This chapter describes the facilities provided for the VFS+ Fileset Operations. It provides an
overview, discusses fileset types, clones, fileset and clone requirements, fileset indices, LFS
modification of fileset status, zero link count files, quotas, anode generation numbers, file
identifiers, vnode to LFS association, and lastly, fileset and fileset registry operations.

15.1 Overview
This chapter describes the portion of the VFS+ interface which allows operations on filesets, as
introduced in Section 11.6 on page 239 that must be supported by a DCE LFS. The Fileset
Registry is a global kernel table which contains descriptions of each fileset local to the machine. A
fileset descriptor includes a pointer to a struct volumeops function array, namely those
operations that can be performed on the fileset. The associated declaration may be found in
Section 13.3.1 on page 274.

An agent that wishes to perform a fileset operation will typically use the fileset ID to hash into
the Fileset Registry and thus acquire the appropriate fileset descriptor. It will then perform a
sequence of operations, calling functions obtained from the descriptor’s function array.

In inode-based file systems, a fileset represents an inode table, and individual files are accessed
via inode indexes. In DCE LFS, a fileset represents an anode volume list (avl), and individual
files are accessed via anode indexes. In either case, agents such as the fileset server will typically
iterate over all files and directories in a fileset by iterating over all possible indexes (non-negative
integers), stopping when the highest index in the fileset has been processed. It should be borne
in mind that the order of iteration, from low index to high, is completely unrelated to any order
that might have been derived from the directory hierarchy. There is no guarantee that
directories will be processed before the files that are in them, or vice versa, although the root
directory will generally be processed first.

A description of the operations available within the fileset function array appears below. The
array is an exported data type. (The associated declaration is found in Section 13.3.1 on page
274). It is reproduced here for convenience.

struct volumeops {
/* per-fileset operations */
int (*vol_hold)();
int (*vol_rele)();
int (*vol_lock)();
int (*vol_unlock)();
int (*vol_open)();
int (*vol_seek)();
int (*vol_tell)();
int (*vol_scan)();
int (*vol_close)();
int (*vol_destroy)(); /* actually whole-fileset */
int (*vol_attach)();
int (*vol_detach)();
int (*vol_getstatus)();
int (*vol_setstatus)();

/* per-file operations */
int (*vol_create)();

Part 6: The DCE DFS VFS+ Interface Specification 325

Overview Fileset (Volume) Operations Interface

int (*vol_read)();
int (*vol_write)();
int (*vol_truncate)();
int (*vol_delete)();
int (*vol_getattr)();
int (*vol_setattr)();
int (*vol_getacl)();
int (*vol_setacl)();

/* more whole-fileset operations */
int (*vol_clone)();
int (*vol_reclone)();
int (*vol_unclone)();

/* vnode lookup operations */
int (*vol_vget)();
int (*vol_root)();
int (*vol_isroot)();

/* more per-fileset operations */
int (*vol_getvv)();
int (*vol_setdystat)();
int (*vol_freedystat)();
int (*vol_setnewvid)();

/* another per-file operation */
int (*vol_copyacl)();

/* per-fileset operations */
int (*vol_concurr)();
int (*vol_swapids)();
int (*vol_sync)();
int (*vol_pushstatus)();

/* per-file operations */
int (*vol_readdir)();
int (*vol_appenddir)();

/* per-fileset operations */
int (*vol_bulksetstatus)();
int (*vol_getzlc)();

/* another per-file operation */
int (*vol_getnextholes)();

/* yet another per-fileset operation */
int (*vol_deplete)();

};

326 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Overview

15.1.1 Classes of Fileset Operations

There are four classes of fileset operations, as delineated by the comments in the above structure
declaration:

1. Per-fileset operations. These operations are used to get and set fileset status and iterate
over all files in the fileset.

2. Whole-fileset operations. These operations are similar to the per-fileset operations in that
they operate on an entire fileset, but they differ in that they embed iterations over every
low-level object in a fileset, even those corresponding to ACLs that are not ‘‘files’’ in the
usual sense. These operations are used either to destroy a fileset or to manipluate the clone
status of filesets.

3. Per-file operations. These functions are used to create and delete files, inspect or change
the contents of a file, and get and set the file attributes.

4. Vnode lookup from fileset and file information. Return a vnode pointer associated with a
given fileset and file ID.

The signatures for the fileset operation functions appear in the section of this chapter labeled
Fileset Array Functions. It is Section 15.14 on page 340.

15.1.2 Fileset Registry Functions

The following functions manipulate the fileset registry:

volreg_Enter() Given fileset and aggregate IDs, along with a pointer to the associated fileset
information, create an entry in the Fileset Registry and insert the given
information into it.

volreg_Delete() Delete the Fileset Registry entry (if any) that corresponds to the given fileset
and aggregate ID pair.

volreg_Lookup() Given a file ID, this function returns a pointer for the fileset descriptor and,
optionally, the vnode corresponding to the file.

The signatures for the fileset registry functions appear in the section of this chapter labeled Fileset
Registry Array Functions. It is Section 15.15 on page 396.

15.2 Fileset Types Overview
By means of cloning and read-only replication, filesets will in general be grouped into related
sets. Within these groupings, filesets can have different types (or roles) as indicated by the
VOL_TYPEFIELD field of the fileset status .states field. In the following types, a grouping is
referred to as a group. The types (or roles) are:

VOL_RW The read-write fileset, of which there can be only one within a group.

VOL_READONLY
A read-only replica, of which there can be several within a group (at different
sites). It’s name is the same as the VOL_RW one, with a ".readonly" suffix.
These filesets are managed by the replication servers. It is possible for a
read-only replica to reside within the same aggregate as its read-write master.

VOL_BACKUP A read-only clone of the read(hywrite fileset, created via the fts clone
command. It’s name is the same as the VOL_RW one, with a ".backup" suffix.
Because it is a clone, it MUST reside within the same aggregate as its
read-write master. There can only be one of these within a group.

Part 6: The DCE DFS VFS+ Interface Specification 327

Fileset Types Overview Fileset (Volume) Operations Interface

VOL_TEMP A temporary clone of the read-write master used in the process of moving or
replicating a fileset.

Volume IDs corresponding to the first three of these types (RW, READONLY and BACKUP) are
all allocated when a fileset is first created and are all stored in the FLDB. The fourth (TEMP) type
uses a temporary ID since it is only visible to the algorithm performing the move.

15.3 Fileset Clone Algorithms
In the following discussion, the types from the previous section, Section 15.2 on page 327 , are
referred to. Also, throughout this document, the symbol " ===> " will be used to denote an "is
backed by" relationship.

The fileset cloning mechanism uses copy-on-write techniques to create a "new" fileset that is a
snapshot of the current state of an existing one. Usually, the following steps are followed by DFS
in the creation of a clone.

a. An existing fileset, either a VOL_RW (usually) or VOL_READONLY one (when updating
RO replicas), is to be cloned. Let this fileset be F1.

b. A new fileset, F2, is created via ag_volCreate (). (See Section 14.4 on page 311.) Since the
AGGR_CREATE_ROOT flag is not specified to this call, this fileset starts out totally empty.

c. A series of vol_clone(F2, F1, ..) (description is found in Section 15.14 on page 369) calls are
made to actually create clones on F2 for the files on F1.

d. At this point, the DFS terminology speaks in terms of fileset F2 being backed by F1. That
is: "F2 is backed by F1" (represented by F2 ===> F1). F1, the original fileset, is known as a
backing fileset. Files on F1 are known as backing files.

The LFS should NEVER allow modifications to backing files. In this scenario, only F2 can
be modified.

Throughout this document, the symbol " ===> " is used to denote an "is backed by"
relationship.

e. In many (most, perhaps) scenarios, the desire was to create a read-only clone and have the
original (F1 as in this discussion) fileset continue to be writeable.

To accomplish this, the fileset identities are swapped via a call to vol_bulksetstatus ()
(described in Section 15.14 on page 392) that swaps just about every status field in the two
filesets. Following this, the relationship has been changed to: "F1 ===> F2" where F1 is
writeable and F2 isn’t. Note that the newly created physical fileset (step (b)) is now F1 (it
has F1’s ID, and so forth.).

f. This sequence can be repeated again, giving rise to a chain of related (cloned) filesets.

g. Assume an initial state of "F1 ===> F2". Following steps (b) through (d), the following
relationship holds: "F3 ===> F1 ===> F2".

h. Following another identity swap between F3 and F1, a final result is arrived at, namely: "F1
===> F3 ===> F2".

Note: Unless explicitly indicated in the detailed descriptions, the fileset status fields related to
fileset clones (and replicas, and so on) should not be examined or used by the LFS since
their use by DFS could change in the future.

328 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Fileset Clone Algorithms

15.3.1 Requirements on Cloning

The following requirements on cloning hold.

1. Under ordinary circumstances, a 3-deep chain of cloned filesets is the "worst" that DFS will
ever create. The LFS, however, should be capable of supporting chains of arbitrary, or at
least, somewhat larger than 3 depth.

2. The LFS must prevent any modifications to backing filesets, which are read-only. For
example, given the following state: "F1 ===> F2 ===> F3" only F1 is writeable; F2 and F3
are read-only.

Although Transarc’s Episode appears to return EIO in such cases, EROFS would seem to be
a more appropriate error return.

Note: The above restriction only applies to modifications to the file system visible
contents of a fileset (files, directories, ACLS, and so forth.) via either the vnode or
fileset interface.

The fileset header of these backing filesets can be modified via the following, for example:

• vol_setstatus()

• vol_swapids ()

• vol_bulksetstatus (), and so on.

The following operations are obviously permitted as well:

• vol_delete ()

• vol_unclone ()

• vol_reclone ().

Note: In actuality, there appears to be a number of cases in which Transarc’s Episode
will allow modifications to certain extended file status on these backing filesets.
If so, then perhaps it is the case that DFS is not relying on this behavior.

3. A new clone (as opposed to a reclone operation) will never be made of a backing fileset.
For example,given the following state:

"F1 ===> F2 ===> F3"

only F1 can be the starting point in step (a) above.

4. The act of creating a clone is assumed to be a relatively short operation ("small" number of
seconds for a "reasonable" sized fileset) and consume a "small" amount of additional disk
space. See the discussion Looping Operations in Section 15.10 on page 335.

5. Consult the Copy-on-Write Impacts section (Section 16.3 on page 421) in the vnode
operations chapter for additional assumptions regarding cloning.

6. All files on a fileset, even those with a Zero-Link-Count, are cloned.

Part 6: The DCE DFS VFS+ Interface Specification 329

Fileset Clone Algorithms Fileset (Volume) Operations Interface

15.3.2 Uses for Clones

Among the various uses to which DFS puts clones, the following are typical.

1. The fts backup command creates a backup fileset (with a suffix of ".backup" and a type of
VOL_BACKUP) which can be backed up in parallel to on-going access to the original
fileset or left in place as an on-line backup. The steps followed are precisely those detailed
in the cloning steps (a) through (e) in Section 15.3 on page 328.

2. The fts move command moves a fileset to a new location. It accomplishes this via the
following steps:

i. Create a temporary clone Ft of the original fileset F1. After the fileset identity swap,
the result is "F1 ===> Ft".

If F1 had already had a backing fileset F2 (perhaps a .backup fileset), the result would
be: "F1 ===> Ft ===> F2".

ii. The clone Ft is copied to the new location, while on-going access to F1 is allowed.

iii. The temporary Ft is deleted.

iv. Changes to F1 that occurred during step (ii) are incrementally copied to the new
location. During this hopefully short step, fileset F1 is un-acessible for normal access.

v. The FLDB is updated to reflect the new location for the fileset. Recall that this new
location only applies to VOL_RW and VOL_BACKUP types. (Those types were
discussed in Section 15.2 on page 327.)

vi. The original fileset is deleted. If there is a \.backup fileset to go with it, it is deleted as
well.

Note: It was never copied to the new location! This might be changed in the
future.

3. A replicated read-only fileset (call it Fro) is updated from its master fileset (call it Frw) as
follows. Initially, Frw and Fro exist at different (typically) sites.

i. The contents of Frw are pushed to a staging fileset co-resident with it. This may be
accomplished via a clone created against Frw. Following the usual identity swap, the
result is:

"Frw ===> F1" Master site

F1 will either have a temporary ID or the read-only ID from the FLDB.

ii. A clone is then created at the replica site against Fro. This time, however, the
identities are not swapped and the new fileset (F2) remains writeable. The result is:

"F2 ===> Fro" Replica site

F2 will have a temporary fileset ID.

iii. The contents of F1 (backing Frw) are copied to the new fileset F2. Following this
copy, the identities of Fro and F2 are swapped so that references to the read-only
replica are now directed to the newly updated fileset. This swap is accomplished via
a vol_swapids () fileset call.

Note: Unless explicitly indicated in the detailed descriptions, the fileset status fields
related to fileset clones (and replicas, and so on) should not be examined or used
by the LFS since their use by DFS could change in the future.

330 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Fileset Clone Algorithms

15.3.3 Some Fileset and Clone Requirements

In addition to the requirements detailed elsewhere in these specifications, DFS makes a number
of general assumptions regarding filesets and cloning. They are:

1. Several modes of fileset usage are expected. In some scenarios, small numbers of very
large filesets will prevail while in others large numbers of small filesets will prevail.

2. An aggregate is expected to be capable of supporting a "large" number of filesets. For
suitably large aggregates, a lower limit in the thousands or tens-of-thousands seems
reasonable. (Therefore: if there is a limit, it should scale in some regard with the aggregate
size.)

3. Although it has been mentioned elsewhere, this bears repeating. An LFS must dis-allow
any modifications (except for those via vol_xxx () fileset operations) to files on a read-only
fileset: either a .backup clone or a .readonly replica.

15.4 Fileset Indices
Filesets on an aggregate are identified by a zero-based index about which DFS makes the
following assumptions.

• A fileset index is visible outside the LFS in the following ways.

— The index of the fileset to be queried is passed as an argument to the ag_volInfo () call.

— The ag_volCreate () call returns fileset index for a newly created fileset in the volume
.vol_dy.index field.

— A fileset index is returned in the Txvattr .backingIndex field by the vn_getattr() and
vol_getattr () calls.

Since it is stored internally within DFS, these indices must remain consistent over time.
(Strictly speaking, it ought to be "safe" to allow a fileset’s index to change each time its
aggregate is attached ... although there could well be problems with such an approach.)

• The general expectation is that when a fileset is created (by ag_volCreate ()), the lowest unused
index is assigned to it. Although using monotonically increasing indexes might seem
desirable (not re-using the indices of deleted filesets), this is not really in keeping with the
manner in which ag_volInfo () incrementally steps through the filesets on an aggregate.

• A fileset’s index stays with it forever. It is not changed by the vol_clone (), vol_reclone (),
vol_swapids (), vol_bulksetstatus () or vol_setstatus() operations. Although filesets may change
or swap their DFS identity (fileset ID), their fileset index remains the same.

Part 6: The DCE DFS VFS+ Interface Specification 331

LFS Modification of Fileset Status Fileset (Volume) Operations Interface

15.5 LFS Modification of Fileset Status
For the most part, the LFS neither interprets nor modifies volume status fields. The exceptions,
which are also indicated under the appropriate aggregate and fileset operations, are listed here..
Refer to Section 13.3 on page 274, Fileset Data Types, for details of the fields and flags discussed in
this section.

• The VOL_DELONSALVAGE flag in vol_stat_st.states is modified by a number of operations.

• The VD_RDONLY flag is set in a newly created vnode if either the VOL_READONLY flag is
set in its fileset vol_stat_st.states, the fileset was mounted read-only or the file is backing
(clone) another file in a copy-on-write relationship.

Note: While the above point is correct, it does not really apply to discussing fileset status
modifications.

• The vol_stat_dy .updateDate field is updated whenever a fileset’s status is changed. This
includes file creation and deletion, fileset status operations, the clone operations and
whenever the volume version is incremented.

• The vol_stat_dy .accessDate field is updated whenever the .updateDate field is.

• The vol_stat_dy .volversion is advanced whenever any modification is made to the data or
status of any file contained within that fileset.

Note: Transarc’s Episode advances the volume version by simply incrementing it. Other
approaches, such as setting it to the current time (given enough precision), would
seem to be acceptable as well ... as long as the version changes and never decreases
(64-bits) in value.

• The vol_stat_dy .allocUsage and .visQuotaUsage fields are both adjusted as the size of a fileset
changes.

15.6 Zero Link Count Files
Ordinarily, files whose link count is zero are actually deleted by the LFS when their vnode
reference (usage) count goes to zero. (See the discussion under the vn_inactive () vnode
operation, Section 16.7 on page 453.)

In certain circumstances, DFS will protect a deleted file by artificially holding its vnode until it is
certain that any remote clients are through with it. Following a crash or shutdown, any
remaining zero-link-count files (their vnodes were still held at crash or shutdown time) must be
preserved by the LFS in order to give DFS a chance to re-adopt them once the fileset is attached
again. Any FSCK-like programs that are run must also preserve these files.

Note: These zero-link-count files are copied by the vol_clone () operation into the cloned
fileset.

Note: It is possible for a zero-link-file to have its link count incremented before it is actually
deleted, returning it to a "normal" status. (Although Transarc’s Episode allows for this,
it is not known how this might actually occur ... if it ever does.)

When a read-write fileset is attached, DFS makes a series of vol_getzlc () volume calls to identify
these files with zero link counts. This call returns held vnodes. When and if DFS determines that
the file can safely be deleted, it releases the vnode which, as discussed above, actually triggers
the deletion.

332 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Zero Link Count Files

Note: For a readonly replica or clone, DFS never calls vol_getzlc (); these zero-link-count files
remain intact until they are explicitly deleted (via vol_delete ()) or until their fileset is
destroyed.

Additional discussion can be found under the vn_inactive (), vol_delete (), vol_setattr () and
vol_getzlc () operations.

An obvious difficulty here is that there is no guarantee that, following a re-boot, DFS will
actually trigger the eventual reclamation of these files and the space they occupy. (Specifically,
DFS may not be started again.) Although this problem is outside the scope of DFS, one can argue
that DFS should provide the framework of a solution. One possible way of dealing with this
issue is as follows.

1. Only give this zero-link-count treatment (including retention during FSCK) to files that
have actually been accessed by DFS. (Perhaps their fileset has been exported; perhaps the
file has been operated on by vol_xxx () operations such as vol_vget ().)

2. Employ some sort of (perhaps LFS specific) timeout mechanism to ensure the recovery of
such files if DFS has not come along within a "reasonable" amount of time.

Note: Although the intent here seems desirable (preserving deleted files until they are no
longer in use), practical concerns seem to get in the way. The biggest problem is that
the DFS layer, in order to avoid tying up all the vnodes in a system, will only artificially
hold up to 220 files at most. Although this should be sufficient in some situations, it
will not be enough for large servers.

15.7 Fileset Quotas
There are two measures of the amount of disk space being used by a fileset.

allocated The amount of disk space ACTUALLY in use by a fileset.

visible The amount of disk space LOGICALLY used by a fileset. This is what is
returned by the statfs() vfs operation.

Normally, these these measures will be the same. For cloned filesets that are sharing disk space
via a copy-on-write mechanism, these measures can differ as follows.

• A given disk block can only show up in the allocated measure for a single fileset, regardless of
how many filesets are sharing it via copy-on-write.

Given a disk block that is shared (copy-on-write) by multiple filesets, DFS does not specify
which fileset’s allocated usage measure that block show up under.

Note: This is one possible mechanism by which a particular LFS (and its cloning
algorithms) could be distinguished from the Transarc LFS. Under the Transarc LFS,
shared (copy-on-write) blocks appear allocated under the backing fileset.

This allocated measure is the one that is important from a how full is this physical aggregate
aspect.

• A given disk block will show up in the visible measure of EVERY fileset sharing it via
copy-on-write. In one sense, this visible measure indicates how much physical disk space a
fileset could require if all its copy-on-write linkages were broken.

This visible measure is the one that is normally of most use to users controlling the usage of
their filesets.

Part 6: The DCE DFS VFS+ Interface Specification 333

Fileset Quotas Fileset (Volume) Operations Interface

• A fileset’s visible usage measure will, therefore, always be equal to or larger than its visible
measure (larger than for a cloned fileset; NEVER less than). Considering all the filesets on an
aggregate, the sum of all the allocated usage measures will be no greater than the aggregate
size while the sum of all the visible usage measures may be larger than the aggregate size.

There are several fileset status fields that are related to a fileset’s disk usage. Above the LFS,
they are represented as 64-bit byte counts. The first two are input to the LFS ("quotas"). The
latter two are computed and maintained by the LFS and returned to the higher level’s ("usage").

.allocLimit The maximum allowable size (quota) that a fileset’s allocated usage can grow
to.

.visQuotaLimit The maximum allowable size (quota) that a fileset’s visible usage can grow to.

.allocUsage The allocated measure of the disk space in use by a fileset. The visible measure
of the disk space in use by a fileset.

Operations that would cause the .allocLimit or .visQuotaLimit values for a fileset to be
exceeded fail with an EDQUOT error. The Super User (ROOT) enjoys no special privilege in this
regard.

15.8 Anode Generation Numbers
Note: In the following, "inode" means "anode".

Each inode has an associated generation number which, in combination with an inode index,
uniquely identifies a particular instantiation or use of an inode.

An LFS has freedom in how it generates these generation numbers. For example, it can use
either a per-inode counter or a per-fileset counter (Transarc’s Episode uses the fileset vol_stat_dy
.unique field for this). The key behavior is that each time an inode is re-used (taking into account
any inode table shrinkage and re- growth), a different generation number must be used for it.

The generation number for the root directory on a fileset should always be set to 1.

Within DFS, these inode generation numbers are referred to as "uniquifiers" and reside within
the .Unique field of an afsFid structure.

15.9 File Identifiers (afsFids)
DFS identifies files via an afsFid structure. The fields within an afsFid have the following
significance to an LFS.

.Vnode Represents a file.

.Unique An anode (inode) index and generation number. An LFS is free to use
whatever encoding is appropriate for it. There appears to be an assumption
made that the root directory on a fileset has the lowest (from the set of legal or
possible values) inode index. Consult the description under vol_open ()
(Section 15.14 on page 345) on the setting of the vol_handle.index field.

A .Unique field of -1 is interpreted as a don’t care value; it is not required to
match the inode generation number currently found on the file.

Note: DFS does not appear to rely on this above behavior (.Unique of -1),
although this is what Transarc’s Episode does.

334 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface File Identifiers (afsFids)

.Cell An identifier for the DFS cell.

Although an LFS should not have any reason to to examine this field, higher
levels will generally set it to 0..1 (.high = 0, .low = 1). It seems safest to follow
the same convention for any afsFids that are returned by the LFS.

.Volume An identifier for the DFS fileset.

In general, an LFS should not have any reason to examine this field.

Several of the fileset operations take an afsFid argument which identifies a file. In most (perhaps
all) cases, these afsFids were originally returned to user space via an earlier efs_scan() or
efs_create() call based on a canonical inode position argument (VOL_ROOTINO specifies the
root) passed to them. Normally, therefore, the LFS should always be able to locate the file
corresponding to the specified afsFid. If for some reason, however, the object in question cannot
be located, the operations should fail with either an ESTALE (if the .Unique field was the
problem) or EIO (any other problem; namely, the given .Vnode index not in use) error.

15.10 Looping Operation Considerations
The vol_deplete (), vol_clone (), vol_reclone () and vol_unclone () operations all operate over an
entire fileset. To avoid executing within the kernel for an arbitrarily long time and causing
user-space RPC timeouts, they should periodically return with a code of ELOOP. This return
value tells the user space code that this operation hasn’t completed and that it should repeat the
call. Since these calls do not accept an iteration argument, it may be necessary to record a
"where to continue" marker in the LFS private fileset storage that is established in vol_setdystat ().
If this mechanism is used, it should be reset to "start at the beginning" at vol_open () time and at
the completion (that is, when something other than ELOOP is returned) of any of these
operations.

Note: As currently exists, these timeouts will occur within a small number of minutes. This
document recommends that these looping operations plan on spending no more than
30 seconds or so within the kernel. A certain amount of care may be required since
some operations can clearly take longer than this (namely, deleting or cloning a VERY
large file.) Some possibilities: processing portions of a file each iteration (as much as
will "fit" within 30 seconds) or operating asynchronously with helper daemons to
ensure that the process that issued the vol_xxx () operation is able to return to user
space every 30 seconds.

Part 6: The DCE DFS VFS+ Interface Specification 335

Vnode to LFS Association Fileset (Volume) Operations Interface

15.11 Vnode to LFS Association
During normal operation, there is an association between a vnode and the LFS-specific data
structures which represent that object.

The fileset operations described in this specification enable an administrative utility to come in
and make fundamental changes to the underling LFS state. Depending on the precise
implementation, some of these operations might require that the above mentioned association
between a vnode and its LFS state (namely, location information) be broken. Examples of such
operations are those involved in cloning, uncloning, recloning, deletion, restoration and
movement. In the simplest case, the vnode usage count can be driven to zero so that it can be
simply released or discarded. If this isn’t possible (say a file is open locally), the vnode must be
de-coupled from its LFS state -- which can change out from under the vnode. Such
dis-association between a vnode and the LFS requires at least the following:

• Flushing any modified cache state back to the LFS.

• Leaving enough location information (inode index, generation number, fileset ID) in the
vnode to enable a "hook up" with the LFS at a later time.

For similar reasons, any cached state (in the VM or naming cache, for example) must be
considered in the face of volume operations that might modify or examine that state.

Once such a vnode has been dis-associated with the underlying LFS state, a corresponding
mechanism is required to re-bind the vnode to the LFS (location information, status) before it is
used again.

If the fileset no longer resides at the machine in question, an [ENODEV] error should be returned
from the operation. If the fileset is still local to the machine but the file itself no longer exists, an
[EIO] error should be returned from the operation.

Note: The precise error values returned in these cases appear not to be that crucial. DFS has
suggested that returning [ESTALE] in both cases might be better.

15.11.1 Determining whether a Fileset is Local

Although there are numerous possible LFS-specific mechanisms for determining if a fileset is
still local, Transarc’s Episode does the following.

• Initializes an afsFid from the volume ID recorded in the vnode at dis-association time.

• Calls volreg_Lookup(&fid, &volume_ptr) in the DFS to let it make the determination. This call
returns [ENODEV] if the fileset is not in the fileset registry.

• If this call succeeds, the hold count on the returned volume structure is incremented. The
LFS must decrement it by calling through the fileset ops vector as follows:

(*volume_ptr->v_volOps->vol_rele)(volume_ptr);

Note: The fileset might reside within a different LFS entirely!):

If the volume structure is not needed by the LFS, this step can be avoided by calling
volreg_Lookup () with NULL as the second argument -- indicating that the caller does not
desire a returned volume structure.

• The anode index and generation number recorded in the vnode are used to look up the object
on the fileset.

336 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Vnode to LFS Association

15.11.2 Handling Dis-sociations and Re-associations

There are several alternatives for scheduling these dis-associations and re-associations.

The dis-associations can be handled in several ways. Two possibilities:

[d1] At vol_open () time, all the vnodes on a fileset can be dis-associated.

[d2] At individual vol_xxx () operations, the vnodes affected by that call can be dis-associated.

Likewise, the re-associations can be handled in several ways. Two possibilities:

[a1] At vol_close () time, re-associate any vnodes for the fileset in question. Vnodes that could
not be re-associated are marked such that any use of them (checked for at individual
vn_xxx() operations) fails.

[a2] Before using any vnode (say, as input to individual vn_xxx() operations), check to see if
that vnode requires re-association. Again, if the re-association does not succeed, the
operation fails.

The difference between [d1] and [d2] appear to be minor. One difference between [a1] and [a2] is
whether it is possible for [a1] to encounter a vnode which cannot be re-associated until some
later time (a subsequent vn_xxx()). This should never occur (either it can be re-associated at
vol_close () time or it will never be able to be).

Usually, vnodes will be unused at the time of such destructive operations. Hence, they can be
cleanly discarded at vol_open () time or at re-association time if a problem is encountered.
However, there are two exceptions.

1. Vnodes for files being accessed locally can be in use at vol_open () time. These should not
cause a problem since DFS will not delete or move such a locally mounted fileset.
(However, it would be wise for an LFS to take the proper precautions and not rely on DFS
to protect it.)

2. Normally, the DFS file exporter locks out conflicting fileset operations while it is holding a
vnode (the vnod--to-volume synchronization mechanism). In one situation, however, (in
the read-write path waiting for an RPC data pipe) it retains a held vnode and temporarily
allows fileset operations (of any type) to occur. If a destructive fileset operation does
manage to interrupt it, there will be a vnode which

• cannot be discarded at vol_open () time (since it is held)

• cannot be re-associated at vol_close () time (due to its deletion)

• needs to be detected when the exporter comes back and tries to use it again

Therefore, even if the re-associations are performed as in [a1], the checks in [a2] are still required.

Either way, attempts to use a vnode which could not be re-associated should fail with [ESTALE].

Additional care might be required if the implementation is such that vol_xxx () operations
themselves instantiate or re-associate vnodes. Although DFS normally scans through the
vnodes on a fileset from beginning to end, this need not be so. Another round of dis-association
might be required under approach [d1] above if a vol_scan (), vol_seek() or vol_create () are
observed to back up to a previously processed object or vnode.

Part 6: The DCE DFS VFS+ Interface Specification 337

Vnode to LFS Association Fileset (Volume) Operations Interface

15.11.3 Complications in Dis-sociations and Re-associations

A related complication needs to be kept in mind as well. A number of vol_xxx () operations
delete files. For example, vol_delete (), vol_deplete () and some of the cloning ones. Any
dis-associated vnodes which result (in other words, vnodes which, for whatever reasons, could
not be outright released or freed) must be treated carefully if a new file with the same inode
index and a different generation number (uniquifier) is then created. These dis-associated, stale
vnodes must not be inadvertantly used by a lookup operation working from an anode index
(only) in a directory entry. These lookups are only interested in the one, true object that might
exist on the fileset. The permissable operations on these stale vnodes are:

vn_inactive() when their usage count finally goes to 0.

vol_create() if it attempts to re-create the object with the same fileset ID, anode index and
generation number. (Depending upon the implementation, vol_reclone ()
might encounter this situation as well.)

Because dis-associated vnodes hold both an anode index and generation number (see above),
determining their validity against the actual contents of the fileset is not difficult. The key point
is that there can be several vnodes in existance for a given fileet ID and anode index (but with
different generation numbers). At most one of these is valid; the remainder are stale ... waiting
for vn_inactive () to finally retire them.

The cause of this is situation that the fileset operations aren’t bound by many rules. They can
delete objects that are still being used (presumably, locally mounted). They might (based on the
implementation) give rise to multiple vnodes for the same anode index and fileset. While a
fileset is open (blocking ordinary accesses), they can violate the invariant that a given fid
resolves to one-and-only-one object (the same one every time). What is important is that when
the fileset is finally closed, no inconsistencies are observed to remain (other than the fact that a
file locally open has been deleted and perhaps replaced).

Another complexity to be aware of is that calls to vn_inactive () are not synchronized with fileset
operations (this is discussed in the vnode operations chapter, VFS (Vnode) Interface and
Operations, Chapter 16 on page 415). Therefore, this operation can come in while a fileset is open
and being operated upon (by vol_xxx () operations).

Note: This will change in the future.

15.11.4 Fileset Moves

A brief summary of how the DFS client handles moved filesets follows:

• Fileset movement between machines is only cleanly handled for requests that come in via the
protocol exporter (from a remote cache manager). As alluded to previously in Section 15.11
on page 336 , the DFS fts command refuses to delete, zap or move (non-locally) a fileset that
is mounted locally.

When a remote file request arrives, the exporter first determines if the desired fileset
(identified by a volume ID) is in fact local and available. This determination is made by a
routine (volreg_Lookup (), see Section 15.15 on page 396) that consults a table, maintained by
DFS, of locally attached and exported filesets. If the desired fileset is available and local, it is
held while the operation proceeds. While the fileset is held this way, any conflicting fileset
operations are delayed.

If it turns out that the fileset is currently in use by a conflicting fileset operation, this request
is stalled until it is able to proceed.

338 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface Vnode to LFS Association

If, alternatively, the fileset is not found locally, a [VOLERR_PERS_DELETED] (derived from
a preliminary [ENODEV]) error is returned to the remote client. That client, on receipt of this
error, attempts to re-bind to a correct location (from an updated FLDB) before retrying its
request. (This occurs in the cache manager routine cm_Analyze().)

• Fileset motion within a given machine must be handled entirely within the LFS (The above
DFS mechanism is not triggered since the fileset is still local.). This mechanism also allows
local, non-DFS access to be unaffected by local moves.

The key point is that any LFS implementation needs to carefully consider the VOL_OP_XXX bits
(defined in Section 13.3.18 on page 286) in the type argument passed to vol_open () and decide, on
a case-by-case basis, which warrant vnode dis-association and which might require cache
purging, and so forth. Each VOL_OP_Xxx bit warns of an impending vol_xxx () operation whose
potential effect on file system state requires analysis.

DFS guarantees, with a few exceptions, that while a fileset is open for one of these operations,
conflicting vnode operations are not allowed to come in. See Synchronization Between Vnode and
Fileset Operations Section 16.5 on page 422, in the vnode operations chapter titled VFS (Vnode)
Interface and Operation, Chapter 16 on page 415 of this document. As discussed there, DFS
presently does allow some vnode operations to proceed. The LFS has the responsibility for these
of dealing with in-progress volume operations and dis-associated vnodes.

15.12 Private LFS Fileset Data
As each fileset is exported to DFS, file system independent code makes calls to the vol_setdystat ()
and vol_attach () fileset operations. If an LFS requires that some private data or a handle be made
available to it on subsequent volume operations, it can arrange for this as follows.

• Allocate space during the vol_setdystat () operation and place a pointer to this in the
.v_fsDatap fileset struct volume structure field.

• In subsequent calls, this pointer can be retrieved from the supplied fileset (volume) structure.

Filesets are detached via calls to vol_freedystat () and vol_detach (). Any storage allocated by
vol_setdystat () must be released in vol_freedystat ().

15.13 Fileset Operations
File system independent code above the LFS enforces the requirement that these operations can
only be issued by ROOT (the local super user). For this reason, the credentials argument to
many of these calls can be ignored except as indicated in the individual descriptions in Section
15.14 on page 340, Fileset Array Functions.

The descriptions do not list all possible error cases and return values. The primary intent has
been to identify the DFS specific behavior and situations that would not arise in an ordinary
UNIX (UFS) file system implementation.

With the exception of vol_open(), vol_setdystat(), vol_hold() and vol_rele(), all of these fileset
operations have been preceeded by a corresponding call to vol_open().

Many of these operations accept a position or anode (inode) index argument. These are intended
to ONLY select ordinary files and directories. ACLs and property lists are not visible as distinct
objects via any of the standard LFS interfaces (fileset, vnode, aggregate operations). If they are in
fact implemented as objects on the disk, they must not appear in the "inode space" of visible
filesets.

Part 6: The DCE DFS VFS+ Interface Specification 339

Fileset Operations Fileset (Volume) Operations Interface

Except where explicitly noted in the following descriptions, these fileset operations do not have
the side affect of updating the accessed, modified or changed times (atime, mtime, ctime) of a
file.

15.14 Fileset Array Functions
Descriptions of the members of the struct volumeops function array follow. There are four
classes of fileset operations in this array; per-fileset, whole-fileset, per-file, and vnode lookup.
The function array definition in Section 15.1 on page 325 delineate them as comments in the
structure itself. Refer to it for information about which class the operations belong to.

340 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_hold()

NAME
vol_hold — Increment the reference count of a fileset descriptor

SYNOPSIS
int vol_hold(

/* IN */ struct volume *vold
);

ARGUMENTS

vold fileset descriptor pointer.

DESCRIPTION
Hold a volume structure by incrementing the reference count of the vold fileset descriptor.

DISCUSSION
This operation should be performed under the volume lock as follows:

lock_ObtainWrite(&volp->v_lock);
volp->v_refCount++;
lock_ReleaseWrite(&volp->v_lock);

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 341

vol_rele() Fileset (Volume) Operations Interface

NAME
vol_rele — Decrement the reference count of a fileset descriptor

SYNOPSIS
int vol_rele(

/* IN */ struct volume *vold
);

ARGUMENTS

vold fileset descriptor pointer.

DESCRIPTION
Release a volume structure by decrementing the reference count of the vold fileset descriptor.
Wake up anyone that might be waiting on the structure.

DISCUSSION
This operation should be performed under the volume lock as follows.

{
lock_ObtainWrite(&volp->v_lock);
if (volp->v_count == 1)

vol_VolInactive(volp);
else

volp->v_refCount--;
lock_ReleaseWrite(&volp->v_lock);

}

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

342 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_lock()

NAME
vol_lock — Lock access to a fileset

SYNOPSIS
int vol_lock(

/* IN */ struct volume *vold,
/* IN */ int type
);

ARGUMENTS

vold Fileset descriptor pointer.

type type of lock to be obtained. Allowable values are READ_LOCK,
WRITE_LOCK, and SHARED_LOCK.

DESCRIPTION
Lock access to a fileset.

DISCUSSION
Although this function is exported to user-space DCE DFS , there are no users of it.

This operation should utilize the standard DFS lock primitives as follows:

if (type == READ_LOCK)
lock_ObtainRead(&volp->v_lock);

else if (type == WRITE_LOCK)
lock_ObtainWrite(&volp->v_lock);

else if (type == SHARED_LOCK)
lock_ObtainShared(&volp->v_lock);

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The value of type is not READ_LOCK, WRITE_LOCK or SHARED_LOCK.

Part 6: The DCE DFS VFS+ Interface Specification 343

vol_unlock() Fileset (Volume) Operations Interface

NAME
vol_unlock — Unlock access to a fileset

SYNOPSIS
int vol_unlock(

/* IN */ struct volume *vold,
/* IN */ int type
);

ARGUMENTS

vold Fileset descriptor pointer.

type type of lock to be released. Allowable values are READ_LOCK,
WRITE_LOCK, and SHARED_LOCK.

DESCRIPTION
Unlock access to a fileset.

DISCUSSION
Although this function is exported to user-space DCE DFS , there are no users of it.

This operation should utilize the standard DFS lock primitives as follows:

if (type == READ_LOCK)
lock_ReleaseRead(&volp->v_lock);

else if (type == WRITE_LOCK)
lock_ReleaseWrite(&volp->v_lock);

else if (type == SHARED_LOCK)
lock_ReleaseShared(&volp->v_lock);

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The value of type is not READ_LOCK, WRITE_LOCK or SHARED_LOCK.

344 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_open()

NAME
vol_open — Begin a sequence of user space administrative operations in the given fileset

SYNOPSIS
int vol_open(

/* IN */ struct volume *vold,
/* IN */ long opentype,
/* IN */ long errtoreturn,
/* OUT */ struct vol_handle *handle
);

ARGUMENTS

vold Fileset descriptor pointer.

opentype mask of operations to be carried out in this sequence containing a set of
VOL_OP_xxx bits that indicate the types of operations that will be performed
on the open fileset.

errtoreturn This argument is unused. The error code to return for operations that attempt
to access this fileset between this vol_open () and the associated vol_close ().

handle pointer to the fileset iterator structure created for the given fileset. It should
be filled in as per the DISCUSSION section.

DESCRIPTION
This call is used to begin a sequence of operations on the fileset described by vold. The opentype
parameter declares the kinds of fileset operations to be carried out. The errtoreturn parameter is
used to set the error code to return should other operations attempt to access this fileset between
this vol_open() call and the bracketing vol_close().

The value of the input opentype parameter is constructed as the bitwise inclusive-OR of the
VOL_OP_xxxx definitions from the include file volume.h, such as VOL_OP_SCAN. This value
is useful as a hint that allows the file system to prepare a fileset to perform the operations. If
such preparation is expensive for some operations, that preparation need not be carried out
unless the sequence in question will include those operations.

This is the same operation bit-mask that is passed to the vol_concurr() operation, which is
responsible for selecting the kinds of vnode operations that may be carried out concurrently
with the given sequence of operations.

At most one sequence of fileset operations may be in progress at any time. Calls to vol_open()
that are made while another sequence is in progress will fail, being given as their error code the
value passed as errtoreturn when beginning the sequence in progress.

A sequence of fileset operations is terminated by a call to vol_close().

DISCUSSION
More details pertaining to this operation can be found in Appendix I on page 405.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 345

vol_open() Fileset (Volume) Operations Interface

SEE ALSO
Appendix I on page 405.

346 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_seek()

NAME
vol_seek — Seek to a particular index within a fileset

SYNOPSIS
int vol_seek(

/* IN */ struct volume *vold,
/* IN */ long position,
/* INOUT */ struct vol_handle *handle
);

ARGUMENTS

vold Fileset descriptor pointer.

position canonical anode index within a fileset.

handle pointer to the fileset iterator structure created for the given fileset to be filled
in by this call.

DESCRIPTION
This call is used to seek to a desired position within the file table of the fileset associated with
vold. The handle iterator structure is updated to reflect the new position.

DISCUSSION
The canonical inode number supplied in the position argument is converted to an LFS relative
one and stored in the vol_handle .index field. As a general rule, this indicates the next file that
will be operated upon.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The supplied anode index is an illegal value (It is less than VOL_ROOTINO.).

[VOL_ERR_EOF]
There are no valid objects on the fileset with an inode index greater than or
equal to the supplied position argument.

[VOL_ERR_EOW]
Returned by the UFS volume operations when the position argument is
greater than the size of the statically configured inode table.

SEE ALSO
vol_open().

Part 6: The DCE DFS VFS+ Interface Specification 347

vol_tell() Fileset (Volume) Operations Interface

NAME
vol_tell — Return the current index of the selected file within a fileset

SYNOPSIS
int vol_tell(

/* IN */ struct volume *vold,
/* IN */ struct vol_handle *handle,
/* OUT */ long *position
);

ARGUMENTS

vold Fileset descriptor pointer.

handle pointer to the fileset iterator structure created for the given fileset holding
current position.

position on return, set to the current anode index contained within handle.

DESCRIPTION
Given an iteration structure handle for the fileset described by vold, set position to the current
index pointed to by handle.

DISCUSSION
This LFS relative anode index stored in the struct vol_handle

field (by vol_seek(), vol_scan() or vol_create()) is returned in the position argument. As discussed in vol_seek(),
this is an LFS-specific (non canonical) inode index.

Note: Note the discrepency with the behavior of vol_seek().

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
vol_seek() for discrepancy in behavior with this (vol_tell()) operation.

348 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_scan()

NAME
vol_scan — Read the file table for the given fileset at the current position, verifying that there is a
file at the position

SYNOPSIS
int vol_scan(

/* IN */ struct volume *vold,
/* IN */ long position,
/* IN */ struct vol_handle *handle
);

ARGUMENTS

vold Fileset descriptor pointer.

position canonical anode index within a fileset.

handle pointer to the fileset iterator structure associated with the given fileset
described by vold to be filled in by this call.

DESCRIPTION
Set file descriptor fields in handle to describe the current file for the fileset described by vold, as
specified by the associated iterator handle. If the position within handle is a legal one (it
corresponds to an actual file within the fileset), then information about the file is written in
handle. If the position within handle is not legal, then vol_scan() returns [VOL_ERR_EOF] (if the
position is past the end of the fileset’s file table) or [VOL_ERR_DELETED] (if the position
happens to be empty).

DISCUSSION
This operation performs the same functions carried out by vol_seek() and, additionally, returns in
the supplied vol_handle structure some information on the file selected by position.

The vol_handle .type field is set to the file’s mode bits (including the type -- S_IFMT). The
.fid.Vnode and .fid.Unique fields in the vol_handle are filled in (for .Vnode, from the canonical
anode index in the position argument).

Note: The significance of the vol_handle.fid.Vnode field isn’t actually mandated by DFS. This
vol_handle.fid field will subsequently be passed back to vol_xxx() operations requiring a
fid argument. The vol_scan() and vol_create() calls can use any encoding they wish for
the .Vnode field (either a canonical/DFS or private/LFS index) as long as the other
vol_xxx() operations accept the same encoding in fids passed to them.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[VOL_ERR_EOF]
The supplied position argument is past the end of the fileset’s file table.

[VOL_ERR_DELETED]
The supplied position argument is empty. The vol_SEEK() error values take
precedence.

SEE ALSO
vol_seek() for additional error values returned.

Part 6: The DCE DFS VFS+ Interface Specification 349

vol_close() Fileset (Volume) Operations Interface

NAME
vol_close — Finish an iteration for the given fileset

SYNOPSIS
int vol_close(

/* IN */ struct volume *vold,
/* IN */ struct vol_handle *handle,
/* IN */ long isabort
);

ARGUMENTS

vold Fileset descriptor pointer.

handle pointer to the fileset iterator structure associated with the given fileset
described by vold.

isabort If non-zero, this call is being made in order to abort an open fileset request
(The vol_open () call has already occurred.).

DESCRIPTION
Indicate to the system that file-level operations on the fileset described by vold have completed.
handle is updated so that it no longer refers to the fileset to be closed. Upon a successful
vol_close(), the given fileset is put back on line.

DISCUSSION
If this is an ordinary close (isabort equals 0) and the vol_handle .voltype field indicates that the
VOL_DELONSALVAGE flag was set at vol_open() time, this flag is cleared in both volp-
>v_stat_st.states and in the on-disk fileset storage.

If isabort is non-zero, the fileset may be left marked in an inconsistent state
(VOL_DELONSALVAGE) after it is closed.

See the discussion under vol_open().

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
See the DISCUSSION in vol_open().

350 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_destroy()

NAME
vol_destroy — Delete an empty fileset

SYNOPSIS
int vol_destroy(

/* IN */ struct volume *vold
);

ARGUMENTS

vold Fileset descriptor pointer.

DESCRIPTION
This operation deletes a fileset that is empty. It contains no files or objects.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EIO] An error was encountered (the fileset wasn’t empty) and the operation did not
complete successfully.

Part 6: The DCE DFS VFS+ Interface Specification 351

vol_deplete() Fileset (Volume) Operations Interface

NAME
vol_deplete — Destroy a fileset

SYNOPSIS
int vol_deplete(

/* IN */ struct volume *vold
);

ARGUMENTS

vold Fileset descriptor pointer.

DESCRIPTION
Destroy the fileset described by vold, including all of its files. All in-memory vnodes associated
with this fileset are also deleted, and the Fileset Registry

In the interest of preventing system calls from taking an uncomfortable length of time, this
operation may return before the fileset is completely destroyed. If this has occurred, the
operation should return code [ELOOP], and the caller should simply call it again, until it stops
returning [ELOOP].

DISCUSSION
This operation deletes all files on the specified fileset. Note that files are unconditionally deleted
and do not undergo the normal Zero-Link-Count processing discussed in Section 15.6 on page
332. The fileset itself is not deleted: that task is performed by vol_delete(). See the discussion
under Looping Operations in Section 15.10 on page 335.

When this operation is first called to begin deleting a fileset, the VOL_DELONSALVAGE flag
should be set in both volp->v_stat_st.states and in the on-disk fileset storage.

While DFS guarantees that this call will not be made on a fileset which is backing for another
fileset, this fileset might currently be backed itself. Therefore, using the notation described in
Section 15.3 on page 328 ,if F1 is the fileset being deleted:

F1 ===> Fxxx can happen
while

Fxxx ===> F1 will never occur

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ELOOP] The operation has not finished. The vol_deplete() call should be made again.

[EIO] An error was encountered and the operation did not complete successfully.

SEE ALSO
Section 15.3 on page 328, Fileset Clone Algorithms, discusses backing filesets. Also, see the
discussion under Looping Operations in Section 15.10 on page 335.

352 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_attach()

NAME
vol_attach — Initialize a fileset for use by DFS as the aggregate is attached

SYNOPSIS
int vol_attach(

/* IN */ struct volume *vold
);

ARGUMENTS

vold Fileset descriptor pointer.

DESCRIPTION
Perform filesystem-specific initialization associated with bringing a fileset on-line while
attaching an aggregate.

DISCUSSION
As each fileset is exported to DFS, a call is made to vol_setdystat() and vol_attach() - in that order.
This occurs at aggregate attach time (following calls to ag_attach() and ag_volInfo()) and at fileset
creation time (during the call to ag_volCreate() -- consult its description).

Any LFS actions necessary before a fileset can be exported should be performed here. Such
operations should be performed while a write lock is held on volp->v_lock.

This call succeeds if the VOL_DELONSALVAGE flag is set, even though the fileset may be in a
corrupt state.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
ag_volCreate() and ag_volInfo().

Part 6: The DCE DFS VFS+ Interface Specification 353

vol_detach() Fileset (Volume) Operations Interface

NAME
vol_detach — Make a fileset unavailable for use by DFS as the aggregate is detached

SYNOPSIS
int vol_detach(

/* IN */ struct volume *vold,
/* IN */ int localrefs
);

ARGUMENTS

vold Fileset descriptor pointer.

localrefs Count of references held by the caller.

DESCRIPTION
Perform filesystem-specific takedown associated with taking a fileset off-line while detaching an
aggregate or destroying a fileset. Fails if the fileset descriptor is not idle, where ‘‘idle’’ is defined
as having a reference count equal to the count of long-uterm references for the structure plus
localrefs, the count of fileset references held directly in the caller.

DISCUSSION
As a fileset is made unavailable for use by DFS, calls are made to vol_detach() and vol_freedystat()
- in that order.

Any EBUSY checks and other LFS-specific activity should be performed while a write lock is
held on volp->v_lock.

A fileset can be exported (attached) to DFS and (or) locally mounted. Presumably, an LFS will
defer any low-level "disconnect" until a fileset is neither locally mounted nor exported. If there
are any vnodes that are in-use by DFS, this call should fail with EBUSY. (The Vnode to LFS
Association section, Section 15.11 on page 336, mentions one case in which the file exporter
allows volume operations such as this to come in while it has a held vnode.) Of course, it may
not be possible to differentiate vnodes being used by DFS from those being used locally.

If a fileset is not mounted locally, any in-use vnodes are be due to DFS. If the fileset is mounted
locally, it isn’t crucial that DFS-held vnodes be detected here.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EBUSY] An error was encountered (the fileset descriptor wasn’t idle) and the operation
did not complete successfully.

SEE ALSO
Section 15.11 on page 336.

354 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_getstatus()

NAME
vol_getstatus — Read specified fileset status block and return status

SYNOPSIS
int vol_getstatus(

/* IN */ struct volume *volp,
/* OUT */ struct vol_status *statusp
);

ARGUMENTS

volp Fileset descriptor pointer.

statusp pointer to the fileset status structure to be filled in by this call.

DESCRIPTION
Place the current status of the fileset described by vold into the statusp fileset status block.

DISCUSSION
See Appendix J on page 409 for details concerning the processing this operation does.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EIO] An error was encountered and the operation did not complete successfully.

SEE ALSO
Appendix J on page 409.

Part 6: The DCE DFS VFS+ Interface Specification 355

vol_setstatus() Fileset (Volume) Operations Interface

NAME
vol_setstatus — Write (set) specified fileset status block

SYNOPSIS
int vol_setstatus(

/* IN */ struct volume *volp,
/* IN */ long mask,
/* IN */ struct vol_status *statusp
);

ARGUMENTS

volp Fileset descriptor pointer.

mask A mask consisting of a set of VOL_STAT_XXX bits.

statusp pointer to the supplied fileset status structure.

DESCRIPTION
Set the fileset status block for the fileset described by volp to the contents of statusp, modifying
only the status information indicated by bits set in mask.

DISCUSSION
See Appendix K on page 411 for details concerning the processing this operation does.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] A supplied status parameter is illegal or cannot be handled. For instance, if an
attempt is being made to set both the VOL_RW and VOL_READONLY status
flags.

[EIO] An error was encountered and the operation did not complete successfully.

SEE ALSO
Appendix K on page 411.

356 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_create()

NAME
vol_create — Create a file (or directory, symlink, and so forth) at a given position within a fileset

SYNOPSIS
int vol_create(

/* IN */ struct volume *volp,
/* IN */ long position,
/* IN */ struct xvfs_attr *xvattrp,
/* INOUT*/ struct vol_handle *handlep,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

position A canonical anode index representing the position at which to create a file.

xvattrp The vnode attribute structure giving the attributes to be applied to the new
file.

handlep A pointer to the fileset iterator structure associated with the fileset described
by volp.

credp A pointer to the credentials structure.

DESCRIPTION
Create and initialize a file at the given position within the fileset described by volp. The initial
type, mode, and other attributes of the new file are given by vattrp. Anode descriptor
information in handle is set to describe the new file. If the file at the given position exists,
vol_create() returns [EEXIST] and does not reinitialize it.

DISCUSSION
See Appendix L on page 413 for a more detailed description of the processing done by this
operation.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] A supplied position parameter is illegal or cannot be handled.

[EEXIST] An error was encountered and the operation did not complete successfully.
Specifically, the file already exists at the specified position.

SEE ALSO
Appendix L on page 413.

Part 6: The DCE DFS VFS+ Interface Specification 357

vol_read() Fileset (Volume) Operations Interface

NAME
vol_read — Read data from the given file

SYNOPSIS
int vol_read(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct afsHyper offset,
/* IN */ long length,
/* IN */ char *readbuff,
/* IN */ struct ucred *credp,
/* OUT */ long *amt_read
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file to be read.

offset Byte position in the file at which the read is to commence.

length The number of bytes to be read.

readbuf A pointer to the buffer in which the file’s data are to be deposited.

credp A pointer to the credentials structure.

amt_read Upon return, set to the number of bytes actually read from the specified file.

DESCRIPTION
Given a file described by Fidp within the fileset associated with volp, attempt to read length bytes,
starting at byte position offset. The file data are placed into the buffer pointed to by readbuff,
which must be at least length bytes long. Upon completion, amt_read is set to the number of
bytes actually placed into readbuff. Other than the standard return code indicating success, and
[EINVAL], vol_read() may return [EIO] if a lower-level read error occurred.

DISCUSSION
This call is used to read the contents of a symbolic link. It is the ONLY vol_xxx() operation that
can do this.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] An attempt was made to read a FIFO, Block special device, CHAR special
device or a directory.

[EIO] An actual read error occurred.

358 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_write()

NAME
vol_write — Write data to the given file

SYNOPSIS
int vol_write(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct afsHyper offset,
/* IN */ long length,
/* IN */ char *writebuf,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file to be written.

offset Byte position in the file at which the write is to commence.

length The number of bytes to be written.

writebuf A pointer to the buffer holding the data to be written to the file.

credp A pointer to the credentials structure.

DESCRIPTION
Given a file described by Fidp within the fileset associated with volp, attempt to write length
bytes, starting at byte position offset. The file data are taken from the buffer pointed to by
writebuf, which must be at least length bytes long. Other than the standard return code indicating
success, and [EINVAL], vol_srite() may return [EIO] if a lower-level write error occurred.

DISCUSSION
This call is used to write the contents of a symbolic link. It is the ONLY vol_xxx() operation that
can do this.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] An attempt was made to write a FIFO, Block special device, CHAR special
device or a directory.

[EINVAL] An attempt was made to write to a file offset that is larger than the maximum
supported file size. This can occur if the length argument is larger than 4
Gigabytes and the filesystem is limited to 32 bits.

[EIO] An actual read error occurred.

Part 6: The DCE DFS VFS+ Interface Specification 359

vol_truncate() Fileset (Volume) Operations Interface

NAME
vol_truncate — Truncate a file to a specified size

SYNOPSIS
int vol_truncate(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct afsHyper newsize,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file to be truncated.

newsize New size of Fidp’s file, in bytes.

credp A pointer to the credentials structure.

DESCRIPTION
In the fileset described by vold, truncate the file associated with Fidp to newsize bytes.

DISCUSSION
The specified file is truncated to the given size. A file can have its size increased by this call. If
so, the newly acquired file space is "sparse" and does not show up as allocated space (see the
quota discussion in Section 15.7 on page 333) in the fileset.

If a directory is being truncated, the newsize argument MUST be zero. In this case, the directory
is left in an "empty" state without entries for "." and ".

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] A newsize of something other than 0 is specified for a directory.

[EINVAL] A newsize argument is supplied that is larger than the maximum supported
file size. This can occur if the length argument is larger than 4 Gigabytes and
the filesystem is limited to 32 bits.

SEE ALSO
Section 15.7 on page 333.

360 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_delete()

NAME
vol_delete — Delete a file at a given position within a fileset

SYNOPSIS
int vol_delete(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file to be truncated.

credp A pointer to the credentials structure.

DESCRIPTION
Delete the file described by Fidp in the fileset associated with volp.

DISCUSSION
The specified file is unconditionally deleted. It does not undergo the normal Zero-Link-Count
processing. The deletion is immediate. Any vnodes for the file will be in a dis-associated state
(consult Vnode to LFS Association, Section 15.11 on page 336, and the discussion in Zero Link
Count Files, Section 15.6 on page 332.

If a directory is being truncated, the newsize argument MUST be zero. In this case, the directory
is left in an "empty" state without entries for "." and ".

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
Section 15.11 on page 336, Vnode to LFS Association, and also Zero Link Count Files, Section 15.6 on
page 332.

Part 6: The DCE DFS VFS+ Interface Specification 361

vol_getattr() Fileset (Volume) Operations Interface

NAME
vol_getattr — Get a file’s attributes

SYNOPSIS
int vol_getattr(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* OUT */ struct xvfs_attr *xvattrp,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file.

xvattrp Pointer to a returned vnode structure in which to record the file’s attributes.

credp A pointer to the credentials structure.

DESCRIPTION
Read the attributes of the file indicated by Fidp in fileset volp, into the attribute structure xvattrp.

DISCUSSION
Except as noted below, the standard vnode attributes at xvattrp->vattr are returned in an obvious
manner.

.va_fsid The value returned here should be chosen with care since it needs to be unique
(per fileset). Note that a given aggregate (device) can hold several filesets.
Although a individual LFS is free to use any appropriate algorithm to construct
this field, the following is done by Episode:

.va_fsid = (volumeID.low << 16) |
(device major # << 8) |
(device minor #)

.va_blocks The blocks used value is based on the logical amount of disk space used by the file,
as if there were no copy-on-write (clone) sharing taking place. This corresponds to
the visible (vs actual allocated) quota on a fileset.

The extended attributes at xvattrp->xvattr are returned as described in the VFS (Vnode) Interface
and Operations, Chapter 16 on page 415. The credp argument is used in the computation of the
.callerAccess field.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
VFS (Vnode) Interface and Operations, Chapter 16 on page 415.

362 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_setattr()

NAME
vol_setattr — Set a file’s attributes

SYNOPSIS
int vol_setattr(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct xvfs_attr *xvattrp,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file.

xvattrp Pointer to a vnode structure from which to set the file’s attributes.

credp A pointer to the credentials structure.

DESCRIPTION
Set the attributes of the file indicated by Fidp in the fileset volp, according to the vnode attribute
structure xvattrp. In this structure, a -1 in a field indicates that no new value is to be set for the
corresponding attribute; this is the same convention as is used in VOP_SETATTR.

DISCUSSION
The following file attributes can be set by this call.

• From the standard vnode attributes at xvattrp->vattr:

.va_ctime If the .tv_sec sub-field is not equal to −1.

.va_nlink If not equal to −1. If the link count is being set to zero, the file will be deleted by
vn_inactive() when its vnode reference count goes to zero. As described in the
topic, Zero Link Count Files, Section 15.6 on page 332, such files are preserved
across reboots and FSCKs until vn_inactive() explicitly deletes them.

.va_mode If not equal to −1.

.va_uid If not equal to −1.

.va_gid If not equal to −1.

.va_size If not equal to −1. If a directory is being operated on, an EISDIR is returned.

.va_mtime If the .tv_sec sub-field equals 0 and the .tv_usec sub-field equals −1, the file’s
atime and mtime are both set to the current time. (System V style utime() call.)

Alternatively, if the .tv_sec field is not equal to −1, the file’s mtime is set.

.va_atime If the .tv_sec sub-field is not equal to −1 and the above .va_mtime case does not
supercede this one, the file’s atime is set.

• From the extended vnode attributes at xvattrp->xvattr:

.volVersion If the .high or .low sub-field is not equal to −1.

.dataVersion If the .high or .low sub-field is not equal to −1.

.fileI The anode generation value, from the .low sub-field, can be changed if it is not
equal to −1. The .high field, the anode index, is ignored.

Part 6: The DCE DFS VFS+ Interface Specification 363

vol_setattr() Fileset (Volume) Operations Interface

.clientOnlyAttrs If not equal to −1.

The file’s ctime is NOT advanced by this call (except for an explicit setting).

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EISDIR] An attempt is made to change the length of a directory via this call.

[EROFS] The fileset is read-only.

SEE ALSO
Section 15.6 on page 332.

364 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_getacl()

NAME
vol_getacl — Get a file’s ACL

SYNOPSIS
int vol_getacl(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* OUT */ struct dfs_acl *aclp,
/* IN */ long which,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file.

aclp Pointer to a structure into which the ACL and its length are to be stored.

which A value indicating the type of ACL that is being read.

credp A pointer to the credentials structure.

DESCRIPTION
Read the ACL of the file indicated by Fidp in fileset volp, into the ACL structure aclp. For regular
files this is unambiguous, but directories may have up to three different ACLs, and which
indicates which one is to be read: the directory’s own ACL, the default ACL for subdirectories,
or the default ACL for subfiles.

DISCUSSION
The LFS ACL specification chapter should be consulted for information about the values
discussed here. It is Chapter 12 on page 251. There is further information on DFS ACLs in
Chapter 8 on page 155.

The ACL designated by the which argument is encoded as described in the LFS ACL specification
chapter, Chapter 12 on page 251, and returned. The which argument can take the following
values.

VNX_ACL_REGULAR_ACL
The ACL for the object itself is returned.

VNX_ACL_DEFAULT_ACL
The initial directory ACL for a directory object is returned. If the object in
question is not a directory, a zero-length ACL is returned instead.

VNX_ACL_INITIAL_ACL
The initial file ACL for a the object in question is not a directory. A
zero-length ACL is returned instead.

If the requested ACL does not exist, a zero length dfs_acl is returned (aclp->dfs_acl_len).

Note: If which is VNX_ACL_REGULAR_ACL, the internal Episode implementation of ACLs
makes itself apparent here.

Normally, ACL operations under Episode behave as follows. When one sets an ACL, the file’s
mode bits are changed to agree with the required ACL entries. When a file’s mode bits are
changed (chmod()), its ACL is not physically changed on disk. Instead, the mode bits are
"merged" into the ACL dynamically during ACL checks and when ACLs are returned to user
space.

Part 6: The DCE DFS VFS+ Interface Specification 365

vol_getacl() Fileset (Volume) Operations Interface

The vol_getacl() operation fetches the ACL as it resides on disk, without coercing the ACL’s
required entries to agree with the file’s mode bits (which might be different due to a chmod()
operation that was performed after the ACL was initially applied).

Consult the DFS ACL information in Chapter 8 on page 155 under the topic, Interaction of
Filesystem ACLs with UNIX Permission Bits, and also Appendix A on page 221, Mapping DFS
ACLs to UNIX mode bits. See Chapter 9 on page 165 for information about the structures used by
DFS for ACLs in memory.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The which argument does not equal one of the values mentioned in
DISCUSSION.

SEE ALSO
Chapter 12 on page 251, Chapter 8 on page 155 and Appendix A on page 221.

366 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_setacl()

NAME
vol_setacl — Set a file’s ACL

SYNOPSIS
int vol_setacl(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ struct dfs_acl *aclp,
/* IN */ long index,
/* IN */ long which,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer.

Fidp An afsFid identifying the file ID of the file.

aclp Pointer to a structure from which the ACL is to be applied (or used).

index Index of another file from which to copy the file’s new ACL. This argument is
presently UNUSED by this operation. The argument aclp is always used.

which A value indicating the type of ACL that is to be set.

credp A pointer to the credentials structure.

DESCRIPTION
Set the ACL of the file indicated by Fidp in the fileset volp. If aclp is non-null, the new ACL is
read from it. If aclp is null, the new ACL is copied from the ACL associated
with the file at index. Parameter which indicates which of the file’s ACLs is to be set; for details
see the description of vol_getacl().

DISCUSSION
As described under the vol_getacl() operation, the which argument indicates the type of ACL on
the specified object that is to be set. The mode bits on the target object are NOT changed to
agree with the ACL being applied: see the note below.

Note: If which equals VNX_ACL_REGULAR_ACL, the internal Episode implementation of
ACLs makes itself apparent here.

Normally, ACL operations under Episode behave as follows. When one sets an ACL, the file’s
mode bits are changed to agree with the required ACL entries. When a file’s mode bits are
changed (chmod()), its ACL is not physically changed on disk. Instead, the mode bits are
"merged" into the ACL dynamically during ACL checks and when ACLs are returned to user
space.

The vol_setacl() operation applies the ACL to the file without changing the file’s mode bits
(which might be different due to a chmod() operation that was performed). Later, when the
ACL is used, the "current" mode bits will actually be used.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EIO] The which argument equals VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL and the specified object is not a directory. This is

Part 6: The DCE DFS VFS+ Interface Specification 367

vol_setacl() Fileset (Volume) Operations Interface

returned by Episode only.

[EINVAL] The which argument equals VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL and the specified object is not a directory.

[EINVAL] The which argument does not equal one of the values mentioned in
DISCUSSION.

[EINVAL] The supplied ACL is missing a required field or is in an inconsistent or illegal
state. Specifically, if:

• The ACL’s length is inconsistent with its contents.

• The .mgr_type_field is incorrect.

• The required entries are not all present.

• The entry_type_foreign_user and entry_type_foreign_group do not contain a
realm UUID that differs from the default one.

• The user_obj entry does not grant perm_control rights.

SEE ALSO
vol_getacl(). There is also a set of references there that are pertinent to this operation as well.

368 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_clone()

NAME
vol_clone — Create a cloned image of the files on a fileset in a different fileset

SYNOPSIS
int vol_clone(

/* IN */ struct volume *destvolp,
/* IN */ struct volume *srcvolp,
/* IN */ struct ucred *credp
);

ARGUMENTS

destvolp Fileset descriptor pointer for the destination fileset.

srcvolp Fileset descriptor pointer for the source fileset.

credp A pointer to the credentials structure.

DESCRIPTION
Make progress in making the entire fileset described by destvolp be a set of copy-on-write clones
of all objects in the fileset described by srcvolp. The destination fileset is presumed to be empty
before this call is first made.

In the interest of preventing system calls from taking an uncomfortable length of time, this
operation may return before the fileset is completely processed. If this has occurred, the
operation should return code [ELOOP], and the caller should simply call it again, until it stops
returning [ELOOP].

DISCUSSION
Refer to the earlier topics on Looping Operation Considerations, Section 15.10 on page 335, and
Fileset Clone Algorithms, Section 15.3 on page 328.

When the clone operation is first started, the target fileset specified by destvolp will be completely
empty. When the clone operation has successfully completed, this target fileset will contain a
"snapshot" of the files that reside on the source fileset identified by srcvolp.

The .volversion (VV) on the target (destvolp) fileset is not updated by this operation. The quota
usage fields .visQuotaUsage and .allocUsage on the target (destvolp) fileset are updated as
appropriate.

Both fileset header and individual file status on the source (srcvolp) fileset are unaffected by this
call. When a clone operation is first started, the VOL_DELONSALVAGE flag should be set in
both the target’s on-disk fileset storage and in the vol1p->v_stat_st.states. When the clone has
been successfully completed, the VOL_DELONSALVAGE flag should be cleared again. If the
clone fails part way through, the fileset is left in a potentially inconsistent state with the
VOL_DELONSALVAGE flag set.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ELOOP] The clone operation has not yet completed. This call should be made again.

[EDQUOT] The quota on the target destvolp has been exceeded. (This error should not
occur if the quotas on the destination fileset have been properly established.)

[ENOSPC] The space on the aggregate has been exhausted.

Part 6: The DCE DFS VFS+ Interface Specification 369

vol_clone() Fileset (Volume) Operations Interface

SEE ALSO
Refer to the topics on Looping Operation Considerations, Section 15.10 on page 335, and Fileset
Clone Algorithms, Section 15.3 on page 328 for more information.

370 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_reclone()

NAME
vol_reclone — Update a cloned image of the files on a fileset

SYNOPSIS
int vol_reclone(

/* IN */ struct volume *srcvolp,
/* IN */ struct volume *destvolp,
/* IN */ struct ucred *credp
);

ARGUMENTS

destvolp Fileset descriptor pointer for the destination fileset.

srcvolp Fileset descriptor pointer for the source fileset.

credp A pointer to the credentials structure.

DESCRIPTION
This call performs actions on each of a pair of filesets that are presumed to be in the
copy-on-write relationship established by vol_clone(). The destvolp parameter should refer to the
fileset in which copy-on-write pointers were established by vol_clone() (as its destvolp
parameter), and the srcvolp parameter should refer to the fileset to which the copy-on-write
pointers were made by vol_clone() (as its srcvolp parameter).

All changes made to objects in the copy-on-write fileset (destvolp) are propagated to
corresponding objects in the backing fileset (srcvolp). Any conflicting data that had been in the
backing fileset is truncated and (or) deleted. The copy-on-write fileset is made to contain no
data itself, but to be filled with copy-on-write pointers to the objects in the backing fileset.

In the interest of preventing system calls from taking an uncomfortable length of time, this
operation may return before the fileset is completely processed. If this has occurred, the
operation should return code [ELOOP], and the caller should simply call it again, until it stops
returning [ELOOP].

DISCUSSION

Note: Note that the first two arguments have their order swapped from that in the vol_clone()
operation.

The fileset identified by the srcvolp argument must be directly backed by the fileset identified by
argument destvolp (F1 ===> F2).

This operation renews the clone relationship so that the backing fileset (destvolp) is a snapshot
of the source (srcvolp) as it exists currently. Note that since the clone was originally created, the
source fileset can have been modified with files being either modified or deleted.

If the filesets in question are named F1 and F2 (from srcvolp and destvolp, respectively), there
can in general be other filesets in the backing hierarchy which are logically unaffected by this
operation. For example, filesets Fxxx and Fyyy in the following relationship are not affected:

Fxxx ===> F1 ===> F2 ===> Fyyy

Note: Although DFS will never normally generate the above scenario, it could arise in error
situations.

The .volversion (VV) on the backing (destvolp) fileset is not updated by this operation. The quota
usage fields .visQuotaUsage and .allocUsage on the backing (destvolp) fileset are updated as
appropriate.

Part 6: The DCE DFS VFS+ Interface Specification 371

vol_reclone() Fileset (Volume) Operations Interface

Both fileset and individual file status on the source (srcvolp) fileset are unaffected by this call.

When a reclone is first started, the VOL_DELONSALVAGE flag is set in both the on-disk fileset
storage and in the destvolp->v_stat_st.states. When the reclone has been successfully completed,
the VOL_DELONSALVAGE flag is cleared again. If the reclone fails part way through, the fileset
is left in a potentially inconsistent state with the VOL_DELONSALVAGE flag set.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ELOOP] The clone operation has not yet completed. This call should be made again.

[EDQUOT] The quota on the target destvolp has been exceeded. (This error should not
occur if the quotas on the destination fileset have been properly established.)

[ENOSPC] The space on the aggregate has been exhausted.

[EINVAL] A file on a fileset indicated by srcvolp (F1) is backed by a different fileset than
the one indicated by the destvolp (F2) argument.

[EFBIG] A file on the backing fileset required deleting and cannot be deleted.

SEE ALSO
Refer to the topics on Looping Operation Considerations, Section 15.10 on page 335, and Fileset
Clone Algorithms, Section 15.3 on page 328 for more information.

372 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_unclone()

NAME
vol_unclone — Prepare to destroy a cloned image of the files on a fileset

SYNOPSIS
int vol_unclone(

/* IN */ struct volume *srcvolp,
/* IN */ struct volume *destvolp,
/* IN */ struct ucred *credp
);

ARGUMENTS

srcvolp Fileset descriptor pointer for the source fileset.

destvolp Fileset descriptor pointer for the destination fileset.

credp A pointer to the credentials structure.

DESCRIPTION
This call performs actions on each of a pair of filesets that are presumed to be in the
copy-on-write relationship established by vol_clone(). The destvolp parameter should refer to the
fileset in which copy-on-write pointers were established by vol_clone() (as its destvolp
parameter). The srcvolp parameter should refer to the fileset to which the copy-on-write pointers
were made by vol_clone() (as its srcvolp parameter).

This call breaks the copy-on-write relationship between the two filesets. All copy-on-write data
pointers in the copy-on-write fileset (destvolp) are replaced by ordinary data pointers, which are
moved there from the backing fileset (srcvolp). The pointers are deleted from the backing fileset,
thus truncating the objects it contains. After this operation completes successfully, the contents
of the former backing fileset (srcvolp) are not necessarily meaningful; the former backing fileset is
usually destroyed.

In the interest of preventing system calls from taking an uncomfortable length of time, this
operation may return before the fileset is completely processed. If this has occurred, the
operation should return code [ELOOP], and the caller should simply call it again, until it stops
returning [ELOOP].

DISCUSSION

Note: Note that the first two arguments have their order swapped from that in the vol_clone()
operation.

The fileset identified by srcvolp must be directly backed by the fileset identified by destvolp (F1
===> F2).

This operation is made prior to deleting the backing fileset (destvolp) in order to "break" the
copy-on-write relationship between files on it, files on the source fileset (srcvolp) and on any
fileset that it is backing. Since the fileset is left in an inconsistent state (VOL_DELONSALVAGE)
and is about to be deleted, the internal state of it and its files is undefined at completion. The
important point is that the copy-on-write relationship with upstream and downstream filesets
be broken and their quotas be adjusted. It is unspecified as to whether the no longer needed raw
disk space is given back to the aggregate at vol_unclone() or at avol_delete() time.

This operation should never fail due to a disk full condition. Specifically, it should NOT require
additional disk space beyond what is already in use.

In theory, the quota on an upstream or downstream fileset could be exceeded as the
copy-on-write relationship is broken. In this case, the unclone should proceed, exceeding
(although updating) whatever quotas it encounters.

Part 6: The DCE DFS VFS+ Interface Specification 373

vol_unclone() Fileset (Volume) Operations Interface

Note: Another possibility would be for the unclone to fail with [EDQUOT].

With the exception of copy-on-write related fields and quotas, this call does not affect the fileset
status of upstream and downstream filesets (specifically: .llFwdID ,and .llBackId).

After the unclone operation completes successfully, the backing fileset will actually be deleted
via vol_destroy().

Consider a fileset backing relationship as follows:

F1 ===> F2 ===> F3

Prior to deleting F2, DFS will call vol_unclone(F1, F2, ..) to break the copy-on-write relationships
involving F2, resulting in the following:

F1 ===> F3 F2

If F3 were being deleted instead, DFS would call vol_unclone(F2, F3, ..) to break the
copy-on-write relationship between F2 and F3, resulting in:

F1 ===> F2 F3 .

When an unclone is first started, the VOL_DELONSALVAGE flag is set in both the on-disk fileset
storage and in the destvolp->v_stat_st.states. It remains in this state until the fileset is deleted.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ELOOP] The clone operation has not yet completed. This call should be made again.

[EINVAL] A file on a fileset indicated by srcvolp (F1) is backed by a different fileset than
the one indicated by the destvolp (F2) argument.

[EFBIG] A file on the backing fileset required deleting and cannot be deleted.

SEE ALSO
Refer to the topics on Looping Operation Considerations, Section 15.10 on page 335, and Fileset
Clone Algorithms, Section 15.3 on page 328 for more information.

374 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_vget()

NAME
vol_vget — Return the vnode for a designated afsFid

SYNOPSIS
int vol_vget(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *fidp,
/* OUT */ struct vnode *vnodep
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

fidp Fileset descriptor (afsFid) for the desired file.

vnodep A pointer to the vnode corresponding to the given asfFid, upon completion.

DESCRIPTION
Given a fileset descriptor pointer and a file ID, generate the associated vnode structure.

DISCUSSION
The returned vnode should be held (its .v_count incremented).

This call should return a vnode for a file even if its link count is zero. This is not an error.
Consult the topic on Zero Link Count Files, Section 15.6 on page 332.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ESTALE] The .Unique generation number in the afsFid does not agree with what is
found in the selected vnode. Also, this code is returned on any errors that
might be attributable to a bad .vnode or .unique afsFid field.

SEE ALSO
Refer to the topic on Zero Link Count Files, Section 15.6 on page 332.

Part 6: The DCE DFS VFS+ Interface Specification 375

vol_root() Fileset (Volume) Operations Interface

NAME
vol_root — Return the vnode for the root directory on a particular fileset

SYNOPSIS
int vol_root(

/* IN */ struct volume *volp,
/* OUT */ struct vnode *vnodep
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

vnodep A pointer to the vnode corresponding to the given volp, upon completion.

DESCRIPTION
Given a fileset descriptor pointer, generate the vnode structure for the root of the fileset.

Note: This fileset operation is not used and may be obsolete.

DISCUSSION
The returned vnode should be held (its .v_count incremented).

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

376 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_isroot()

NAME
vol_isroot — Determine if a supplied afsFid represents the root directory on a fileset

SYNOPSIS
int vol_isroot(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *fidp,
/* OUT */ long *flagp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

fidp Fileset descriptor (afsFid) for some file.

flagp A pointer to the returned (boolean) flag, upon completion.

DESCRIPTION
Set the flag pointed to by flagp to 1 if the Fidpresents the root of the fileset, or to 0 if it represents
some non-root file.

DISCUSSION
Only the .Vnode and .Unique fields of the afsFid are examined.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 377

vol_getvv() Fileset (Volume) Operations Interface

NAME
vol_getvv — Get Fileset Version number

SYNOPSIS
int vol_getvv(

/* IN */ struct volume *volp,
/* OUT */ struct afsHyper *vnp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

vnp The returned fileset version number.

DESCRIPTION
Put the fileset version number of the volume represented by volp in the location pointed to by
vnp. (This is a special case of vol_getstatus().)

DISCUSSION
None.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

378 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_setdystat()

NAME
vol_setdystat — Allocate private per-fileset filesystem-specific data area (if needed)

SYNOPSIS
int vol_setdystat(

/* INOUT */ struct volume *volp,
/* IN */ struct vol_stat_dy *dystatp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

dystatp Pointer to dynamic area of fileset status block that has already been
established by a call to ag_volInfo () or within the ag_volCreate () call.

DESCRIPTION
Allocate storage for file-system-specific data about a fileset that is to be attached, and put a
pointer to that storage in the Fileset Registry entry that is being prepared. For DCE LFS filesets,
the file-specific data includes the index of the fileset within the aggregate, the highest valid file
index within the fileset, and an DCE LFS handle token representing the open fileset). The fiileset
index field is initialized at this time from the corresponding field in dystatp, but the other fields
are initialized during vol_attach().

DISCUSSION
If private LFS per-fileset data is required, it should be allocated and a pointer to it stored in the
fileset structure (struct volume) .v_fsDatap field.

Note: Higher level DFS functions do not examine this field, so any desired storage allocation
mechanism can be used.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
Refer to the topic, Private LFS Fileset Data in Section 15.12 on page 339.

Part 6: The DCE DFS VFS+ Interface Specification 379

vol_freedystat() Fileset (Volume) Operations Interface

NAME
vol_freedystat — Free private per-fileset filesystem-specific data area

SYNOPSIS
int vol_freedystat(

/* INOUT */ struct volume *volp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

DESCRIPTION
Free the file-specific data area that was allocated by vol_setdystat.

DISCUSSION
Any storage allocated by vol_setdystat() should be freed. The struct volume .v_fsDatap field
should be cleared as well.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
vol_setdystat().

380 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_setnewvid()

NAME
vol_setnewvid — Set new Fileset’s fileset ID

SYNOPSIS
int vol_setnewvid(

/* INOUT */ struct volume *volp,
/* IN */ struct afsHyper *idp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

idp The returned Fileset ID.

DESCRIPTION
Set the ID of the fileset represented by volp to the ID in idp. This is called twice to carry out an
exchange of fileset identities, generally after a clone fileset is created. For DCE LFS, it modifies
entries in the mount table as well as modifying the fileset data structures.

DISCUSSION
The fileset ID of the specified fileset is changed to the specified value. Only LFS internal and
on-disk structures should be updated by this call; specifically, the fileset ID in the struct volume
structure should not be changed.

Note: This call is obsolete; vol_swapids() appears to be in use these days. It should be
implemented, however, since DFS could choose to use it again in the future (to swap
the IDs of filesets on different aggregates).

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 381

vol_copyacl() Fileset (Volume) Operations Interface

NAME
vol_copyacl — Copy an ACL from one file to another

SYNOPSIS
int vol_copyacl(

/* IN */ struct volume *volp,
/* IN */ struct afsFid *Fidp,
/* IN */ long destw,
/* IN */ long index,
/* IN */ long srcw,
/* IN */ struct ucred *credp
);

ARGUMENTS

volp Fileset descriptor pointer for a fileset.

fidp Fileset descriptor (afsFid) identifying the destination file to which the ACL
should be applied.

destw A value indicating the type of ACL on the destination that is to be set.

index A canonical anode index, as used by vol_seek() or vol_scan (), that identifies the
source file from which the ACL is to be copied.

srcw A value indicating the type of ACL on the source file that is to be copied
(from).

credp A pointer to a credentials structure.

DESCRIPTION
Set an ACL of the file indicated by Fidp in the fileset volp by copying it from an ACL of the file
indicated by index. The ACL copying may be performed by sharing a reference to an ACL, if the
underlying file system supports such shared references, but there is no semantic requirement for
such sharing. Parameter destw indicates which of the file’s ACLs is to be set. Parameter srcw
indicates which of the source file’s ACLs is to be copied. For details, see the description of
vol_getacl().

DISCUSSION
The srcw argument selects an ACL on the source object, identified by the index argument:

VNX_ACL_REGULAR_ACL ACL on the object itself.
VNX_ACL_DEFAULT_ACL Initial directory ACL on a directory.
VNX_ACL_INITIAL_ACL Initial file ACL on a directory.

This ACL is copied to the destination object, identified by the Fidp argument. The type of ACL
to be set is indicated by the destw argument which has the same VNX_ACL_XXX values listed
above.

It is legal for the source ACL to not exist; in this case, the destination ACL, if any, is deleted and
the destination is left without an ACL of the specified type.

Except as noted further below, the srcw and destw arguments can each take any of the legal
values. For example, it is legal to copy an initial directory ACL of a directory to the regular ACL
of a file.

Note: If srcw or destw equal VNX_ACL_REGULAR_ACL, the internal DFS implementation of
ACLs makes itself apparent here. The normal, vnode ACL operations under Episode
behave as follows:

382 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_copyacl()

When one sets an ACL, the file’s mode bits are changed to agree with the required
entries. When a file’s mode bits are changed (chmod()), its ACL is not phyically
changed on disk. Instead, the mode bits are merged with the ACL dynamically during
ACL checks and when ACLs are returned to user space.

As is the case for vol_getacl() and vol_setacl(), this operation entirely ignores the mode bits on the
file (either merging in if srcw is VNX_ACL_REGULAR_ACL or setting if destw is
VNX_ACL_REGULAR_ACL).

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[VOL_ERR_EOF] There are no valid objects on the fileset with an anode index greater than or
equal to the supplied source index.

[EINVAL] The supplied source index is an illegal value. It is a too-small or a negative
value other than VOL_ROOTINO.

[VOL_ERR_DELETED]
No valid file has been selected by the position argument (index). The
preceeding errors, [VOL_ERR_DELETED] and [EINVAL] take precedence.

[EINVAL] If either the srcw or destw arguments are not one of the leagl VNX_ACL_XXX
values; or the srcw or destw argument is either VNX_ACL_INITIAL_ACL or
VNX_ACL_DEFAULT_ACL and the destination object is not a directory; or a
supplied ACL is inconsistent (see vol_setacl()).

SEE ALSO
vol_getacl(), vol_setacl(). Consult the DFS ACL information in Chapter 8 on page 155 under the
topic, Interaction of Filesystem ACLs with UNIX Permission Bits, and also Appendix A on page 221,
Mapping DFS ACLs to UNIX Mode Bits. See Chapter 9 on page 165 for information about the
structures used by DFS for ACLs in memory.

Part 6: The DCE DFS VFS+ Interface Specification 383

vol_concurr() Fileset (Volume) Operations Interface

NAME
vol_concurr — Determine allowable concurrency on a fileset (being opened)

SYNOPSIS
int vol_concurr(

/* IN */ struct volume *volp,
/* IN */ long type,
/* IN */ long errorType,
/* OUT */ char *concurr
);

ARGUMENTS

volp Fileset descriptor pointer.

type A mask consisting of VOL_OP_XXX bits that indicate the activities that will
be performed on the open fileset.

errorType This argument is unused.

concurr Location to store descriptor for the allowable kinds of calls that can take place
conucrrently with the set of planned operations. They are
VOL_CONCUR_ALLOPS, VOL_CONCUR_READONLY, and
VOL_CONCUR_NOOPS.

DESCRIPTION
This function is given a bit mask giving the set of fileset operations to be carried out on the given
fileset. It returns an abbreviated description of the class of vnode operations that may be
executed concurrently with that set of fileset operations.

The value of the input type parameter is constructed as the bitwise inclusive-OR of the
VOL_OP_XXX definitions from the include file <volume.h>, such as VOL_OP_SCAN.

DISCUSSION
This operation examines the type argument and returns a VOL_CONCURR_XXX value
according to the same rules that are listed under vol_open().

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
vol_open().

384 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_swapids()

NAME
vol_swapids — Swap fileset identifiers of two filesets

SYNOPSIS
int vol_swapids(

/* IN */ struct volume *vol1p,
/* IN */ struct volume *vol2p,
/* IN */ struct ucred *credp
);

ARGUMENTS

vol1p Fileset descriptor pointer for a fileset.

vol2p Fileset descriptor pointer for aanother fileset.

credp A pointer to the credentials structure.

DESCRIPTION
This operation exchanges the fileset IDs of the two filesets pointed to. Both filesets are of the
same type.

DISCUSSION
This operation is usually called following a clone operation in order to swap the identities of two
filesets. In addition to updating any relevant LFS-specific data structures, the volume IDs (as
found in the fileset (struct volume) structure .vol_stat_st.volId field) should be swapped in
on-disk storage for the two filesets. The fileset structure itself should not be changed; that will
be taken care of by the caller of this operation.

The two filesets in question will usually reside on the same aggregate (by virtue of being clones).

Note: Currently, Episode DOES allow the filesets to reside on different aggregates. It is the
discretion of the LFS to either restrict the two filesets to the same aggregate or not.

Assume that vol1p and vol2p, prior to this call, referred to filesets as follows:

vol1p fileset index F1 on some aggregate, where say, the fileset ID = X

vol2p fileset index F2 on some aggregate, where say, the fileset ID = Y

After this call completes, fileset F1 will have an ID of Y and fileset F2 will have an ID of X. An
active vnode which, prior to this call, referred to an object on fileset F1 will, after this call, refer to
an object on fileset F2.

The contents of the vol1p and vol2p volume structures, with the exception of the fileset ID fields,
will be swapped by the DFS layer once this call returns.

Note: If, in the future, filesets are allowed to reside on different aggregates, atomicity
concerns arise unless the aggregates can be updated atomically. In this case, the
aggregate holding vol1p should be updated before the one holding vol2p. This rule
permits higher level recovery code to operate and take advantage of this ordering.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 385

vol_sync() Fileset (Volume) Operations Interface

NAME
vol_sync — Sync the given fileset

SYNOPSIS
int vol_sync(

/* IN */ struct volume *vold,
/* IN */ int guarantee
);

ARGUMENTS

vold Fileset descriptor pointer.

guarantee Describes the type of sync to be done, choose from one of:
VOL_SYNC_COMMITSTATUS, VOL_SYNC_COMMITMETA or
VOL_SYNC_COMMITALL.

DESCRIPTION
Sync the state of the fileset to the permanent storage, according to the guarantee parameter:

VOL_SYNC_COMMITSTATUS
The fileset’s status information is written to permanent storage. The call does
not return until the I/O has completed.

VOL_SYNC_COMMITMETA
All dirty meta-data is written to permanent storage. The call does not return
until the I/O has completed.

VOL_SYNC_COMMITALL
All dirty data (both meta-data and user data) is written to permanent storage.
The call does not return until the I/O has completed.

In all cases, this call does not return until the I/O operations have completed. The ability to
write just the requested types of data benefits certain of the DFS fileset operations.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] The guarantee argument is not one of VOL_SYNC_COMMITSTATUS,
VOL_SYNC_COMMITMETA or VOL_SYNC_COMMITALL.

SEE ALSO
The definitions of the VOL_SYNC_XXX types can be found in Section 13.3.20 on page 288.

386 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_pushstatus()

NAME
vol_pushstatus — Serialize fileset status updates

SYNOPSIS
int vol_pushstatus(

/* IN */ struct volume *vold,
);

ARGUMENTS

vold Fileset descriptor pointer.

DESCRIPTION
Serialize subsequent changes to a fileset’s status with respect to prior changes. This operation
guarantees that any preceding modifications of the fileset’s status will be serialized with respect
to later meta-data updates.

DISCUSSION
When this call returns, the LFS guarantees that any operations started subsequently on the fileset
will not commit to disk unless any that ended prior to this call commit as well.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 387

vol_readdir() Fileset (Volume) Operations Interface

NAME
vol_readdir — Read entries from a directory

SYNOPSIS
int vol_readdir(

/* IN */ struct volume *vold,
/* IN */ struct afsFid *Fidp,
/* IN */ u_long bufSize,
/* IN */ char *bufferp,
/* IN */ struct ucred *credp,
/* INOUT */ struct afsHyper *positionp,
/* OUT */ u_long *numEntriesp
);

ARGUMENTS

vold Fileset descriptor pointer.

Fidp File ID of the directory.

bufSize Size, in bytes, of bufferp.

bufferp Pointer to buffer of bufSize bytes into which the directory entries are to be
deposited.

credp Credential structure.

positionp Position at which to start reading. This parameter should be set to zero (0) on
the first call for a given directory. The value of positionp will be modified by
each call, so that, if passed in to a subsequent call, the directory entries will be
fetched starting where the last call ended.

numEntriesp Set to indicate the number of directory entries that are being returned.

DESCRIPTION
This operation returns directory entries in a system-independent representation. The buffer is
filled with vol_dirent structures, as defined in Section 13.3 on page 286. Each directory entry is
returned on a 4 byte boundary.

This operation is meant to be called in a loop until *numEntriesp is zero (0).

DISCUSSION
Appendix H on page 403 contains the fields as they should be filled in by this function.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] (This error is optional. The DCE LFS does not return this value.) If the
supplied buffer is not aligned on a 0-modulo-4 byte boundary.

[EINVAL] The specified object is not a directory.

[EINVAL] A position argument is supplied that is larger than the maximum supported
file size.

388 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_readdir()

Note: The intent is to catch position arguments that are larger than
4-Gigabyes on file systems limited to 32-bits.

Part 6: The DCE DFS VFS+ Interface Specification 389

vol_appenddir() Fileset (Volume) Operations Interface

NAME
vol_appenddir — Append entries to a directory

SYNOPSIS
int vol_appenddir(

/* IN */ struct volume *vold,
/* IN */ struct afsFid *Fidp,
/* IN */ u_long *numEntriesp
/* IN */ u_long bufSize,
/* IN */ char *bufferp,
/* IN */ int preservedOffsets,
/* IN */ struct ucred *credp,
);

ARGUMENTS

vold Fileset descriptor pointer.

Fidp File ID of the directory.

numEntriesp Set to indicate the number of directory entries that are to be appended.

bufSize Size, in bytes, of bufferp.

bufferp Pointer to buffer of bufSize bytes into which the directory entries are to be
appended.

preserveOffsets If true, try to preserve the entries’ offsets; otherwise, strictly append.

credp Credential structure.

DESCRIPTION
This operation appends entries to a directory. The buffer is expected to contain directory entries
in the system-independent representation defined by struct vol_dirent (see Section 13.3 on page
286).

DISCUSSION
Consult the description under the vol_readdir() operation. This function is the inverse of that
operation. Directory entries in the format of the entries in struct vol_dirent in the supplied
buffer, bufferp, are added to the directory.

The inode link counts for files being appended are not updated by the operation of this function.
If the preserveOffsets argument is zero, the entries can be placed anywhere within the directory. If
the preserveOffsets argument is non-zero, the entries should be placed at the directory location
indicated by the .offset field in the struct vol_dirent. This will only be the case if the source (the
vol_readdir()) and the destination (the vol_appenddir()) aggregates are of the same type.

Entries for "." and ".." can be added with this call since directories created by the vol_create()
function operation initially do not contain them.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EINVAL] The specified object is not a directory.

Note: Episode currently does not perform this check.

390 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_appenddir()

[EEXIST] A name being added already exists in the directory.

Note: Episode currently does not perform this check.

[E2BIG] The end of the supplied buffer is reached before the specified number of
directory entries is processed.

[EINVAL] An inconsistency is encountered in a directory entry. For example, if the .offset
field in the struct vol_dirent is not a legal encoding.

[EINVAL] preserveOffsets is non-zero and the entry cannot be placed at the desired
location (for instance, something else is there).

SEE ALSO
vol_readdir().

Part 6: The DCE DFS VFS+ Interface Specification 391

vol_bulksetstatus() Fileset (Volume) Operations Interface

NAME
vol_bulksetstatus — Set statuses of multiple filesets atomically

SYNOPSIS
int vol_bulksetstatus(

/* IN */ unsigned int arrayLen,
/* IN */ struct vol_statusDesc *statusArray,
);

ARGUMENTS

arrayLen The number of elements in statusArray. This number can range from 1
through VOL_MAX_BULKSETSTATUS

statusArray An array containing one status descriptor for each volume being updated. It
describes which filesets’ statuses should be updated and what their new
values should be.

DESCRIPTION
This operation atomically updates the status of multiple filesets and possibly performs a fileset
ID swap. If two of the vol_statusDesc structures indicate that their respective filesets should
have a new ID, the IDs of the two filesets are swapped. See Section 13.3.7 on page 282 for the
definition of the vol_statusDesc structure and also the definition of
VOL_MAX_BULKSETSTATUS.

DISCUSSION
This operation atomically updates the status for a number of filesets. Either all the changes are
made or none of them are. The specified filesets must all reside on the same aggregate.

Each entry in the supplied statusArray argument contains the information necessary to update a
single fileset. The fields have the following meanings:

volp pointer to a fileset structure

vsd_mask a mask (VOL_STAT_xxx flags) indicating the particular status fields to be set

vsd_status The volume status being set

If this call is used to change the fileset IDs of two filesets (VOL_STAT_VOLID mask bits), an
identity swap is being performed and the comments found in the vol_swapids() function apply as
well.

Note: The emphasis here is on change. The LFS can safely ignore attempts to set a fileset ID to
its current value.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function was successful.

ERRORS

[EXDEV] The indicated filesets do not all reside on the same aggregate.

[EINVAL] The two filesets being updated have not had their IDs swapped. Otherwise,
the aggregate would be left with two filesets having possibly the same ID.
This case can be returned if any fileset ID (VOL_STAT_VOLID) is being
changed, meaning that an identity swap is being performed and the fileset IDs
have not been successfully swapped.

392 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_bulksetstatus()

SEE ALSO
See the description under the vol_setstatus() operation for the details of how each fileset is
updated. Also, see the vol_swapids() function for details on identity swap.

Part 6: The DCE DFS VFS+ Interface Specification 393

vol_getzlc() Fileset (Volume) Operations Interface

NAME
vol_getzlc — Get a vnode from fileset zero-link-count (ZLC) list

SYNOPSIS
int vol_getzlc(

/* IN */ struct volume *vold,
/* INOUT */ unsigned long *iterator,
/* OUT */ struct vnode **new_vnode,
);

ARGUMENTS

volp Fileset descriptor pointer.

iterator Iterator used to enumerate the files on the fileset ZLC list.

new_vnode Held vnode for the specified ZLC file, or NULL if there are no more files to be
enumerated.

DESCRIPTION
Return a held vnode representing a file on the fileset’s zero-linkcount (ZLC) file list. It is used at
attach time following the vol_attach() volume operation so that fileset ZLC files can be added to
the DFS ZLC list for use by remote clients. The iterator, *iterator, should be initialized to zero
prior to the first call to this function. It will be updated by every call to this operation so this
function can locate the "next" ZLC file for the next call. There are no more files to be enumerated
when new_vnode comes back NULL. At this point, the return value will also be zero.

DISCUSSION
Consult the Zero-Link-Count file discussion earlier in this document. (See Section 15.6 on page
332.)

Since this operation is performed as each fileset is attached, performance is a consideration and
the time required to identify these zero-link-count files must be kept in mind. As mentioned
earlier in Section 15.6 on page 332, DFS will not make this call on a readonly (.readonly replica or
.backup clone) fileset.

RETURN VALUE
This function is always successful. If this function succeeds, it returns a value of zero. This
function succeeds if:

[error_status_ok] This function was successful.

ERRORS
None.

SEE ALSO
See Section 15.6 on page 332 for information on zero-link-count files.

394 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface vol_getnextholes()

NAME
vol_getnextholes — Identify allocation holes in files.

SYNOPSIS
int vol_getzlc(

/* IN */ struct volume *vold,
/* IN */ struct afsFid *Fidp,
/* INOUT */ struct vol_NextHole *iterp,
/* IN */ struct ucred *credp
);

ARGUMENTS

vold Fileset descriptor pointer.

Fidp An afsFID (file ID) of the directory.

iterp Descriptor for a set of allocation holes. See DISCUSSION below.

credp Credential structure pointer.

DESCRIPTION
Refer to Section 13.3.3 on page 277 for a description of the struct vol_NextHole structure used as
the INOUT parameter iterp.

On each call, the filesystem determines whether there are any allocation holes with byte
addresses beginning at or after the value of startPoint. If there are any, the filesystem describes
between 1 and VOLHOLE_MAX_HOLES of them in the holes array by giving their starting
byte addresses and their length in bytes, and by placing the count of filled-in allocation hole
descriptions in the outCount field. Further, if there are no further allocation holes beyond those
that are being described in the holes array, the filesystem should set the
VOLHOLE_FLAG_LAST bit in the flags field; otherwise, if hole descriptors are being returned
and VOLHOLE_FLAG_LAST is not set, the filesystem updates the startPoint to point past the
last allocation hole being returned. If there are no allocation holes meeting the criteria (starting
at or past the given value of startPoint), a zero is placed in the outCount field and the
VOLHOLE_FLAG_LAST bit is set in the flags field.

All allocation holes for a file may be discovered by making a sequence of calls, where for the first
call, the startPoint field of the struct vol_NextHole structure is zeroed.

DISCUSSION
For each hole returned, .holes[].holeStart gives the file offset of the hole returned, and
.holes[].holeLen gives the length in bytes of the hole.

This function is useful for avoiding backing up, copying (during a move) and restoring regions
within a file that are sparse.

This function is currently unimplemented and returns [ENOSYS].

RETURN VALUE
This function presently never succeeds as it is unimplemented. If this function were to succeed
(in the future), it would return a value of zero.

ERRORS

[ENOSYS] This function always returns this error as it is currently unimplemented.

Part 6: The DCE DFS VFS+ Interface Specification 395

Fileset Registry Array Functions Fileset (Volume) Operations Interface

15.15 Fileset Registry Array Functions
Descriptions of the Fileset Registry Functions follow. These are exported functions that permit a
client to address the registry. They consist of functions to enter, delete and look up entries
(filesets) in the Fileset Registry.

396 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface volreg_Enter()

NAME
volreg_Enter — Enter a fileset and its information into the Fileset Registry

SYNOPSIS
int volreg_Enter(

/* IN */ afsHyper *avolid,
/* IN */ struct volume *avolP,
/* IN */ char *avolname
);

ARGUMENTS

avolid The Fileset ID to enter.

avolP Pointer to the above fileset’s descriptor.

avolname Fileset’s name.

DESCRIPTION
Given fileset and aggregate IDs, along with a pointer to the associated fileset information, create
an entry in the Fileset Registry and insert the given information into it.

DISCUSSION
None.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EEXIST] The fileset was already in the Fileset Registry table.

Part 6: The DCE DFS VFS+ Interface Specification 397

volreg_Delete() Fileset (Volume) Operations Interface

NAME
volreg_Delete — Delete a fileset entry from the Fileset Registry

SYNOPSIS
int volreg_Delete(

/* IN */ afsHyper *avolid,
/* IN */ char *avolname
);

ARGUMENTS

avolid The Fileset ID to delete.

avolname Above Fileset’s name.

DESCRIPTION
Delete the Fileset Registry entry (if any) that corresponds to the given fileset and aggregate ID
pair.

DISCUSSION
None.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

398 X/Open Preliminary Specification (1996)

Fileset (Volume) Operations Interface volreg_Lookup()

NAME
volreg_Lookup — Find the entry in the Volume Registry

SYNOPSIS
int volreg_Lookup(

/* IN */ struct afsFid *afidP,
/* OUT */ struct volume **avolPP,
);

ARGUMENTS

afidP The File ID to look up.

avolPP Set to the address of the fileset descriptor associated with the given file.

DESCRIPTION
Given a file ID, find the entry in the Volume Registry corresponding to the fileset containing the
file and return pointers to the associated struct volume fileset structure and the address of the
file’s vnode pointer.

DISCUSSION
None.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The file ID has a bad fileset ID.

[ENODEV] The file ID could not be found.

Part 6: The DCE DFS VFS+ Interface Specification 399

Fileset (Volume) Operations Interface

400 X/Open Preliminary Specification (1996)

Appendix G

Exporting the Filesets in an Aggregate

G.1 Fileset Export Steps
The steps involved in exporting an aggregate’s filesets are the following.

• The dfsexport command reads the dfstab file and collects the appropriate aggregate
paramaters (device pathname, aggregate name, aggregate type, aggregate Id) into an
argument structure. See Section 13.2.16 on page 273 for a definition of the dfstab entry
structure.

• For an exported UFS volume, additional arguments which will be interpreted by the
UFS-specific file system code, are collected into an auxiliary structure. See Section 13.2.17 on
page 274 for a definition of the ufs_astab entry structure used for UFS volumes.

Note: Other LFS implementations could, if desired, pass in additional information this
way: via an argument structure that is interpreted by only the dfsexport command
and the file system dependent code (with appropriate modifications to suit this
arrangement).

• This aggregate argument structure and optionally, the file system dependent auxiliary one, is
passed into the kernel to execute an aggregate attach operation.

• An ag_attach () call to the file system-dependent aggregate code is made.

• This is followed by a series of ag_volInfo() aggregate operations which are used to obtain the
identities of the filesets that are present. Volume calls to vol_setdystat() and vol_attach() are
made for each fileset discovered.

• At this point, the filesets are considered exported to DFS and can be accessed at any time.

• In order to have file system syncs work properly for filesets that are DFS exported but not
locally mounted, the aggregate (note: aggregate, not fileset!) is specially mounted at
/opt/dcelocal/var/dfs/aggrs/<aggregate-name>. This is discussed in greater detail in
Aggregate Mounts, Section 14.3 on page 305.

An LFS may permit individual filesets to be mounted for local access outside of DFS. Episode
allows this either before or after they have been exported to DFS.

Note: This local mount mechanism is primarily an issue between the local operating system
(OS) and the LFS with, hopefully, marginal impact on DFS.

Similar steps occur when an aggregate is detached from (made unavailable to) DFS. What the
LFS observes is the following (omitting miscellaneous calls to ag_hold() (and) ag_rele() as well as
to vol_hold() (and) ag_rele()):

• The dfsexport -detach command first verifies that filesets on the aggregate are idle by
revoking all tokens for files on them. An optional force argument to the command specifies
that tokens are to be forcibly revoked. This optional option should be used with caution, as it
forces an aggregate (or partition) to be detached even if all tokens cannot be revoked. This
can result in users accessing the data from the aggregate that are unable to save that data.

• A series of ag_volinfo() calls are made in order to ascertain the identities of the filesets on the
aggregate.

Part 6: The DCE DFS VFS+ Interface Specification 401

Fileset Export Steps Exporting the Filesets in an Aggregate

• For each of these filesets, calls to vol_detach() and vol_freedystat() are made -- in that order.

• Finally, an ag_detach() call occurs.

Note: DFS is currently re-working the mechanics of fileset export and attachment (more
cleanly separating the two notions). It is not known when these will appear in the
general DFS product.

402 X/Open Preliminary Specification (1996)

Appendix H

Filled Values for vol_dirent Fields

H.1 Returned Values
Refer to Section 13.3 on page 286 for the definition of the struct vol_dirent structure.

Fields within the vol_dirent structure should be filled in as follows.

.offset An indication of where within the directory this entry was found. The
intention is that if this offset is passed back via the vol_appenddir () operation
during a fileset move, the directory entry will go back to the "same" location.
This allows in-progress (interrupted by the move) directory scans to be
oblivious to the fact that the directory has moved. This functionality is only
required when the vol_readdir () and vol_appenddir () operations were
performed on aggregates of the same type. (That is, the encoding of this .offset
is LFS-private.)

Additional discussion of directory offsets and their properties can be found
under the topic, Directory Offsets, Section 16.5.1 on page 423, and also under
vn_readdir(), Section 16.7 on page 447.

.vnodeNum A canonical inode (anode) index in which -1 refers to the root directory, 0
refers to the first inode after that, and so forth.

.codesetTag For the current implementation, this should be set to 0.

.reclen The total length of this entry, rounded up to a 4 byte boundary. (Therefore it
is the distance from the start of this entry to the next one in a supplied buffer.)

.namelen The length of the file name field, not including the terminating null character.

.name A variable sized file name, including a terminating null character.

As many entries as will fit in the supplied buffer, or as remain in the directory, are actually read.

On return, the count pointed at by the numentriesp argument is set to the number of actual
directory entries returned. If there are no remaining directory entries, this count should be set to
0.

The positionp argument, an afsHyper, will be set to zero to indicate that the directory should be
read from its beginning. On return, it should be updated by the LFS so that a subsequent call
with it will continue with the "next" entry in the directory. DFS makes no assumptions
regarding the ordering of entries within a directory. There is no reason to require the first two
entries returned for a directory to be "." and "..".

Note: Episode rounds the supplied output buffer size down to a multiple of 512 bytes. The
last directory entry returned has its .recordlen field incremented to cover the remaining
space within the final 512 byte "block". (It is set to the next 512 byte boundary)

It is believed that this behavior exists only to allow the file exporter to produce
meaningful directory offsets on platforms whose native entries do not contain such a
field. This scheme is not required. There does not appear to be any reason for an LFS
to mimic this 512-byte block behavior.

Part 6: The DCE DFS VFS+ Interface Specification 403

Returned Values Filled Values for vol_dirent Fields

404 X/Open Preliminary Specification (1996)

Appendix I

Values for vol_open

I.1 The Type Argument
The individual VOL_OP_XXX bits in the type argument indicate the types of vol_xxx()
operations that might be performed on the fileset while it is open. (A user space utility wishing
to open a fileset actually specifies a set of VOL_SYS_XXX values, each of which has been
#define’d to a corresponding VOL_OP_XXX value.) The VOL_SYS definitions can be found in
Section 13.3.19 on page 287. Before a subsequent vol_xxx() operation is executed, DFS will
ensure that the fileset was opened with the appropriate VOL_OP_XXX flag. The following table
indicates the VOL_OP_XXX flags that are required for each vol_xxx() operation. Operations that
aren’t mentioned perform no check (either because they can be performed on any fileset that is
open or because they are invoked as part of a larger DFS operation such as attaching or opening
a fileset).

vol_seek VOL_OP_SEEK
vol_tell VOL_OP_TELL
vol_scan VOL_OP_SCAN
vol_destroy VOL_OP_DESTROY
vol_deplete VOL_OP_DEPLETE
vol_getstatus VOL_OP_GETSTATUS
vol_setstatus VOL_OP_SETSTATUS
vol_create VOL_OP_CREATE
vol_read VOL_OP_READ
vol_write VOL_OP_WRITE
vol_truncate VOL_OP_TRUNCATE
vol_delete VOL_OP_DELETE
vol_getattr VOL_OP_GETATTR
vol_setattr VOL_OP_SETATTR
vol_getacl VOL_OP_GETACL
vol_setacl VOL_OP_SETACL
vol_clone VOL_OP_CLONE
vol_reclone VOL_OP_RECLONE
vol_unclone VOL_OP_UNCLONE
vol_getvv VOL_OP_GETSTATUS && VOL_OP_SETSTATUS
vol_copyacl VOL_OP_COPYACL
vol_swapids VOL_OP_SWAPIDS
vol_sync VOL_OP_SYNC
vol_pushstatus VOL_OP_PUSHSTATUS
vol_readdir VOL_OP_READIR
vol_appenddir VOL_OP_APPENDDIR
vol_bulksetstatus VOL_OP_SETSTATUS
vol_getnextholes VOL_OP_GETNEXTHOLES

User space code uses the VOL_OP_NOACCESS flag as a general mechanism to lock out all other
fileset (vol_xxx()) and vnode accesses to a fileset.

Part 6: The DCE DFS VFS+ Interface Specification 405

The Type Argument Values for vol_open

I.1.1 Concurrency

Based upon the type argument, this call establishes the volp->v_stat_st.concurrency field which
controls the extent to which vnode operations can proceed on the fileset while it is open. Higher
level code in DFS guarantees that a given fileset will only be in use (vol_open()’d) by one utility
(such as fts) at a time.

If there are no restrictions on vnode operations which might proceed in parallel, the .concurrency
field should be set to VOL_CONCUR_ALLOPS.

Note: Episode does this if only VOL_OP_GETSTATUS is set.

If read-only type vnode operations are to be allowed to proceed in parallel, the .concurrency
field should be set to VOL_CONCUR_READONLY.

Note: Episode does this if only bits from the following list are specified.

VOL_OP_GETSTATUS VOL_OP_GETATTR
VOL_OP_GETACL VOL_OP_SEEK
VOL_OP_READ VOL_OP_TELL
VOL_OP_SCAN VOL_OP_READDIR
VOL_OP_GETNEXTHOLES VOL_OP_SETSTATUS
VOL_OP_SYNC VOL_OP_PUSHSTATUS

If no vnode operations are to be allowed to proceed in parallel, the .concurrency field
should be set to VOL_CONCUR_NOOPS.

Note: Episode does this if any other VOL_OP_XXX bits are specified.

WARNING: DFS does allow vnode operations initiated by the process that has the
volume open to proceed!

I.1.2 Handling Inconsistent State

If any of the bits listed below are set in the type argument, the VOL_DELONSALVAGE flag
should be set in both volp- >v_stat_st.states and in the on-disk fileset storage. (This indicates that
the volume may be left in an inconsistent state if DFS is not completely successful in the
operations it is about to perform.)

VOL_OP_CREATE VOL_OP_WRITE
VOL_OP_TRUNCATE VOL_OP_DELETE
VOL_OP_SETACL VOL_OP_SETNEWVID
VOL_OP_APPENDDIR

Note: Certaion volume operations, such as the cloning ones, explicitly set and clear the
VOL_DELONSALVAGE flag.

406 X/Open Preliminary Specification (1996)

Values for vol_open The Fileset Handle

I.2 The Fileset Handle
Refer to Section 13.3.21 on page 288 for the definition of the struct vol_handle structure.

The caller of this operation will record the type argument into the vol_handle .opentype field.

The .index field of the supplied vol_handle argument should be initialized as follows. Note that
the caller of this operation will record the type argument into the vol_handle .opentype field.

The assumption is made that the root directory on a fileset will have the lowest possible (legal)
inode index. This field is set to one past that root index: the index that is (or would be) used by
the "first" non-root object on the fileset. Note that an LFS specific index (as in the .vnode
component of an afsFid) and not a canonical one is used.

Note: There is some uncertainty as to whether DFS really relies on the setting of the .index
field by vol_open() or whether it always does a vol_scan() or vol_seek() before using it.
The behavior of Episode is described here, although in the future this document may
change to leave this field undefined here.

I.2.1 Preparing for Fileset Operations

Although conflicting operations (through either the volume or vnode operations vectors) will be
blocked while this fileset is held open, it might be necessary to purge certain structures or take
other actions in preparation for the volume operations that are about to be performed.

Depending upon the type of open requested, either the purging of cached file and fileset state or
the breaking of associations between vnodes and LFS state might be required. This topic is
discussed in the topic, Vnode to LFS association in Section 15.11 on page 336.

Part 6: The DCE DFS VFS+ Interface Specification 407

Values for vol_open

408 X/Open Preliminary Specification (1996)

Appendix J

Status Returned for vol_getstatus

J.1 Fileset Status Set
The following status fields are set from on-disk fileset storage.

statusp->vol_st.volId
statusp->vol_st.parentId
statusp->vol_st.cloneTime
statusp->vol_st.volName
statusp->vol_st.states

statusp->vol_dy.creationDate
statusp->vol_dy.updateDate
statusp->vol_dy.accessDate
statusp->vol_dy.copyDate
statusp->vol_dy.volversion
statusp->vol_dy.backupId
statusp->vol_dy.cloneId
statusp->vol_dy.llBackId
statusp->vol_dy.llFwdId
statusp->vol_dy.allocLimit
statusp->vol_dy.allocUsage
statusp->vol_dy.visQuotaLimit
statusp->vol_dy.visQuotaUsage
statusp->vol_dy.unique
statusp->vol_dy.index
statusp->vol_dy.parentIndex
statusp->vol_dy.nodeMax
statusp->vol_dy.aggrId
statusp->vol_dy.statusMsg

The statusp->vol_dy.aggrId field is set to the aggregate-ID of the aggregate holding this fileset;
namely, from the aggregate structure:

volp->v_paggrp->a_aggrid

The statusp->vol_st.states field is treated specially. Any flags not stored on disk for the fileset (see
Section 13.3.4 on page 277 and Section 13.3.5 on page 279) are instead taken from whatever value
they currently hold in the volp->v_stat.states field. The VOL_LCLMOUNT flag in this states field
is set (otherwise, cleared) if the fileset is mounted locally. Once the statusp->vol_st.states field has
been computed, it is copied into the fileset struct volume structure as well (at volp-
>v_stat_st.states).

The statusp->vol_dy.nodeMax field is computed in an LFS-specific manner.

Note: Episode always sets statusp->vol_dy.parentIndex to 0.

Static status fields in statusp->vol_st not mentioned above should be copied from the passed in
volp->v_stat_st.vol_st structure.

Part 6: The DCE DFS VFS+ Interface Specification 409

Fileset Status Set Status Returned for vol_getstatus

Dynamic status fields in statusp->vol_dy not mentioned above should be zeroed.

If the fileset in question has not been attached, only the static status from volp->v_stat_st is
copied into the returned vol_status.

410 X/Open Preliminary Specification (1996)

Appendix K

Status Set for vol_setstatus

K.1 Status Set
The mask argument consists of a set of VOL_STAT_xxx flags which indicate which fields from
the supplied status are to be applied to the fileset (and stored on-disk).

The following VOL_STAT_xxx flags are processed by this call.

VOL_STAT_VOLID
statusp->vol_st.vol_st.volId is copied to on-disk fileset storage.

VOL_STAT_PARENTID
statusp->vol_st.vol_st.parentId is copied to on-disk fileset storage and also to the volume
structure (volp->v_stat_st.vol_st.parentId).

Note: Why doesn’t the DFS caller do this?

VOL_STAT_CLONETIME
statusp->vol_st.vol_st.cloneTime is copied to on-disk fileset storage and also to the volume
structure (volp->v_stat_st.vol_st.cloneTime).

If fewer than 64 bits of time are stored on-disk, the value deposited in the volume structure
MUST agree exactly with what is placed on disk.

VOL_STAT_VVCURRTIME
statusp->vol_st.vvCurrentTime is copied to on-disk fileset storage.

VOL_STAT_VVPINGCURRTIME
statusp->vol_st.vvPingCurrentTime is copied to on-disk fileset storage.

VOL_STAT_TYPE
statusp->vol_st.type is copied to on-disk fileset storage.

VOL_STAT_STATES
flags stored by LFS on-disk (see Section 13.3.4 on page 277 and Section 13.3.5 on page 279)
are copied from statusp->vol_st.states to on-disk fileset storage.

With the exception of the following, the supplied state flags are copied into the volume
structure as well (volp->v_stat_st.vol_st.states):

VOL_BUSY
VOL_DEADMEAT
VOL_GRABWAITING
VOL_LOOKUPWAITING
VOL_DELONSALVAGE
VOL_OPENDONE

VOL_STAT_RECLAIMDALLY
statusp->vol_stat.reclaimDally is copied to on-disk fileset storage.

VOL_STAT_VOLMOVETIMEOUT
statusp->vol_stat.volMoveTimeout is copied to on-disk fileset storage.

VOL_STAT_VOLNAME
statusp->vol_stat.volName is copied to on-disk fileset storage and also the volume structure

Part 6: The DCE DFS VFS+ Interface Specification 411

Status Set Status Set for vol_setstatus

(volp->v_stat_st.vol_st.volName).

VOL_STAT_COPYDATE
statusp->vol_dy.copyDate is copied to on-disk fileset storage.

VOL_STAT_VERSION
statusp->vol_dy.volversion is copied to on-disk fileset storage.

VOL_STAT_BACKUPID
statusp->vol_dy.backupId is copied to on-disk fileset storage.

VOL_STAT_CLONEID
statusp->vol_dy.cloneId is copied to on-disk fileset storage.

VOL_STAT_LLFWDID
statusp->vol_dy.llFwdId is copied to on-disk fileset storage.

VOL_STAT_LLBACKID
statusp->vol_dy.llBackId is copied to on-disk fileset storage.

VOL_STAT_ALLOCLIMIT
statusp->vol_dy.allocLimit is copied to on-disk fileset storage.

VOL_STAT_VISLIMIT
statusp->vol_dy.visQuotaLimit is copied to on-disk fileset storage.

VOL_STAT_UNIQUE
statusp->vol_dy.unique is copied to on-disk fileset storage.

VOL_STAT_STATUSMSG
statusp->vol_dy.statusMsg is copied to on-disk fileset storage.

412 X/Open Preliminary Specification (1996)

Appendix L

Processing for vol_create

L.1 Processing Accomplished
The canonical anode number supplied in the position argument specifies the location (anode
index) at which the file is to be created. The anode generation number to be used is taken from
the xvattrp->xvattr.fileID.low field.

Note: If the root directory of a fileset is being created, its anode generation number should be
set to 1.

The initial file state is taken from the following fields in the initial struct vattr at xvattr->vattr.

.va_mode , .va_type file type

.va_oid , .va_gid file owner

.va_rdev for device files

The link count is set to 1. The atime, mtime and ctime times are all set to the current time.

The file’s uuid should be set to zeroes -- ignoring the value supplied via the xvattr argument.

File status fields not mentioned above should be set to 0 (or whatever other default value is
appropriate for the LFS).

The newly created file has no associated ACLs or property lists. In particular, no initial or
inheritance ACL is applied.

Ordinary files, directories, symlinks, FIFOs and device files can all be created via this call.

If a directory is created (the supplied .va_type specifies VDIR), it should be initialized to an
empty state WITHOUT "." and ".." entries (these will be supplied in a subsequent vol_appenddir ()
operation).

This operation fills in several fields in the handlep vol_handle as follows.

handlep->fid The .Vnode and .Unique fields are set to the appropriate value for the newly
created file. See the discussion under vol_scan ().

handlep->type Set to a combination of the initial mode (from .va_mode) and type (S_IFMT
encoding based on the specified .va_type) bits for the newly created file.

handlep->index Set to the same value as the fid.Vnode field (LFS-specific anode index).

Part 6: The DCE DFS VFS+ Interface Specification 413

Processing for vol_create

414 X/Open Preliminary Specification (1996)

Chapter 16

VFS (Vnode) Interface and Operations

16.1 Overview
As DFS was being designed, there were several goals that related to the VFS interface.

1. That DFS itself be as portable as possible.

2. That DFS "plug" into an OS kernel with minimal (none, if possible) changes to that kernel.

3. If files are being accessed both through DFS as well as a local path (including,say, an NFS
exporter), that the local accesses perform the proper DFS token synchronization.

To achieve the first two goals, DFS is itself standardized on a particular definition of the VFS
interface which is very similar to SUN’s initial design. The vnode operations vector for this
interface is the struct xvfs_xops defined in Section 13.6.4 on page 296 and is often referred to as
the extended vnode interface. All components of DFS (the Cache Manager (CM), Protocol
Exporter (PX) and LFS) are written to this set of vnode operations.

The mapping between the format of the native (expected by the OS) vnode operations and this
extended set of operations is handled by a set of glue code. Appendix C on page 245 describes
typical components of a VFS+ package. In particular, some glue code examples are presented in
Section C.3 on page 246. This glue code comes in several types which are invoked in different
situations.

• One type of glue code is invoked whenever the native OS performs a vnode operation on the
filesystem (that is, NOT a DFS access). Its job is to obtain DFS tokens for the operation in
question, call into the file system to perform the operation and then release the DFS tokens
before returning. This code is referred to as "token glue".

• A second type of glue converts from the native OS vnode interface (what its caller expects) to
the extended vnode interface (what the callee expects).

• A third type of glue converts from the extended vnode interface (what its caller expects) to
the native OS vnode interface (what the callee expects). This code is referred to as "vfs glue".

How this glue is invoked will become clear in the following sections.

16.1.1 Enhanced Vnode Operations Vector

For files exported to DFS, vnodes are assumed to have a vnode ops vector that points at a struct
xvfs_vnodeops vector which contains three sets of vnode operation pointers (see Section 13.6 on
page 293 for definition).

In general terms (the specifics should become clearer below), the three sets of vnode operation
vectors contained within this struct xvfs_xops (see Section 13.6.4 on page 296) are the following.

O-ops Native OS format
Invoked by the VOPO_XXX or VOP_XXX macros

The glue routines pointed at by these pointers are invoked by the native OS as part of
ordinary file system activities. For the most part, they behave as shown in the following
pseudo-code:

Part 6: The DCE DFS VFS+ Interface Specification 415

Overview VFS (Vnode) Interface and Operations

xglue_xxx()
if ((the fileset is exported to DFS) &&
(the fileset is read/write))
obtain the needed DFS tokens

/* Perform the operation via indirecting
* through the .nops vector */
VOPN_xxx()

if (we obtained tokens above)
return the tokens

For a typical system, the source for these routines can be found in a location such as
src/file/xvnode/<system>/xvfs_osglue.c .

X-ops Extended format
Invoked by the VOPX_XXX macros.

On a file server the DFS Protocol Exporter, which doesn’t need to obtain DFS tokens, calls
through this vector to perform operations on exported files.

If the physical file system is an LFS that directly supports the extended vnode operations (as
Episode does), the entries in this vector point directly at LFS operations.

If the physical file system does not support the extended vnode operations (a native UFS),
this vector points at a set of glue routines which attempt to implement the extended
operations in terms of the native (or "original") ones pointed at by the N-ops vector. For a
typical system, the source for this glue (the xufs_xxx() routines) can be found in
src/file/xvnode/<system>/xvfs_vfs<xxx>.c .

N-ops Native OS format
Invoked by the VOPN_XXX macros.

Operations pointed at by this vector are only ever directly invoked by "glue" code in either
the O-ops or X-ops routines mentioned above.

If the physical file system is an LFS that directly supports the extended vnode operations (as
Episode does), this vector points at a set of glue routines that convert from native OS vnode
operations to extended ones. For a typical system, the source for this glue (call them, say,
nux_xxx() routines) can be found in src/file/xvnode/HPUX/xvfs_os2vfs.c .

If the physical file system does not support the extended vnode operations (as say, in a
native UFS), this is the original (vendor supplied) vector that points into the filesystem code.

The manner in which these three vectors, along with the different types of glue code, are used is
most easily demonstrated by a few examples.

416 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations Overview

Example 16-1 Protocol Exporter Access to a Fully Functional LFS

The Protocol Exporter already has any tokens that are required. Therefore, it simply calls the
through the X-ops vector:

/* PX routine responding to a remote DFS request */
VOPX_xxx()
/* which lands in the LFS directly */
lfs_xxx()

=>Perform the operation<=

Example 16-2 Protocol Exporter Access to a non-LFS Filesystem

This would be a file system such as UFS. The X-ops vector, which the PS calls through as in the
case above, must point at glue which "reformats" the operation into one that the native
filesystem can perform:

/* PX routine responding to a remote DFS request */
VOPX_xxx()
/* which lands in the xufs_xxx glue */
xufs_xxx()
/* Convert to a native vnode operation and invoke */
VOPN_xxx()
/* which lands in the native f.s. */
ufs_xxx()
=>Perform the operation<=

Example 16-3 Local OS to a Fully Functional LFS

(Not through the DFS protocol exporter.) The native OS, knowing nothing about DFS, calls
through the O-ops vector which lands in the token-obtaining glue:

/* native OS */
VOP_xxx() /* equivalently: VOPO_xxx() */

/* which lands in the xglue_xxx() glue */
xglue_xxx()

Obtain tokens, if necessary
/* Invoke operation */
VOPN_xxx()

/* which lands in the nux_ glue */
nux_xxx()

/* Invoke extended vnode operation */
VOPX_xxx()

/* which lands in the LFS */
lfs_xxx()

=>Perform the operation<=

Part 6: The DCE DFS VFS+ Interface Specification 417

Overview VFS (Vnode) Interface and Operations

Example 16-4 Local OS Access to a Non-LFS Filesystem Such as UFS.

(Not through the DFS protocol exporter.) The native OS, knowing nothing about DFS, calls
through the O-ops vector which lands in the token-obtaining glue:

/* native OS */
VOP_xxx() /* equivalently: VOPO_xxx() */

/* which lands in the xglue_xxx() glue */
xglue_xxx()

/* Obtain tokens, if necessary */
/* Invoke operation */
VOPN_xxx()

/* which lands in the native f.s. */
ufs_xxx()

=>Perform the operation<=

16.1.2 Converted Vnodes

Vnodes which contain an enhanced (3-part, see above) operations vector are said to be
converted. They are identified by the fact that the V_CONVERTED bit is set in their flags word.
The easiest way to obtain such an enhanced vnode vector is to make a call to the DFS procedure
xvfs_InitFromXOps() at initialization time. Once a vector has been constructed, individual
vnodes can be pointed at it and have their V_CONVERTED flag set via one of the mechanisms
described below:

xvfs_InitFromXOps(&lfs_xops, &enh_ops_vector);

The first argument is a struct xvfs_xops vector of extended vnode operations provided by the
LFS.

The second argument is a struct xvnodeops that is filled in by the call as listed below:

O-ops pointed at xglue_xxx() glue routines

X-ops pointed at supplied LFS operations (from the first argument)

N-ops pointed at nux_xxx() glue routines

As mentioned above, files being accessed via DFS must have their vnodes converted to
guarantee that the proper token synchronization occurs for all LFS accesses.

Vnodes for the LFS can always be converted as described above. Although the xglue_xxx() and
nux_xxx() glue are ALWAYS invoked for local accesses, even if DFS is not in the picture, they
"pass through" relatively quickly and don’t have a significant impact on performance.

Note: This is the approach taken by Episode.

418 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations Overview

16.1.3 Enhanced Vfs Vector

In a similar manner, DFS assumes that the vfs operations vector has been converted into an
enhanced struct xvfs_vfsops as follows.

struct xvfs_vfsops {
struct vfsops xvfsops;
struct vfsops vfsops;
int (*vfsgetvolume)();

};

The components of this structure have the following significance:

.xvfsops With the few exceptions listed below, the pointers in this vector are the same as those
found in the .vfsops vector for the LFS.

The _vget, _root and _unmount pointers are replaced by pointers to glue code:
xglue_vget(), xglue_root() and xglue_unmount().

The xglue_root() and xglue_vget() interludes both invoke the LFS operation via the
VFSX_xxx macro and, if necessary (the fileset is exported and writeable), converts the
returned vnode as discussed above. Note that this behavior is only relevant for
exported native UFS filesets; for a fully functional LFS, the assumption is that the
vnodes it returns are already converted.

The xglue_unmount() interlude flushes any held tokens for the fileset in question if
necessary (the fileset is exported and writeable). Unlike the xglue_root() and
xglue_vget() functions, this does serve a purpose for fully functional LFS filesystems.

This vector is used by the native OS and is accessed via the standard VFS_xxx
macros.

.vfsops The "original" vfs operations vector supplied by the LFS. This vector is only used by
DFS and is accessed via the VFSX_xxx macros.

.vfsgetvolume
This pointer is set to point at an LFS routine which is capable of converting between
a vfs structure and a held DFS volume pointer. See the detailed description of
vfs_getvolume() in Section 16.6.1 on page 424.

This procedure is used by the xglue_unmount(), xglue_root() and xglue_vget() glue
routines mentioned above. (They need a fileset structure in order to determine if the
fileset is exported and writeable.)

For native UFS filesystems, this pointer is set to a DFS routine which is able to
"simulate" the needed functionality.

The easiest way to construct a "converted" vfs ops vector is by means of the DFS procedure
xvfs_InitFromVFSOps() as follows:

xvfs_InitFromVFSOps(&lfs_vfsops, &enh_vfsops, lfs_getvolfunct)

The first argument is the address of the standard vfs operations vector provided by the LFS.

The second argument is the address of an enhanced xvfs_vfsops vector which is, as described
above, built by the call.

The third argument is the vfs_getvolume() function provided by the LFS and described in Section
16.6.1 on page 424.

Part 6: The DCE DFS VFS+ Interface Specification 419

Overview VFS (Vnode) Interface and Operations

There are several options for how the vfs operations vector for a fileset is "converted" as
described above. A few are listed below.

1. At initialization time, if it is known that DFS is present, the vfs operations vector can be
constructed as shown above and inserted into the vfssw[] table so that it will work its way
into all vfs structures.

If it is unknown at initialization whether DFS will be installed (dynamically) later, this
vfssw[] can be performed at a later time when DFS "announces" itself to the LFS for the
first time. One possibility would be to do this when an aggregate or fileset was first
attached.

To avoid having to write into the vfssw[] table, it can initially point at a full sized
xvfs_vfsops structure within which only a standard vfsops vector at the front is present. If
DFS is present, the full xvfs_vfsops structure can be converted "in place" by passing that
structure to the first two arguments of xvfs_InitFromVFSOps().

Note: xvfs_InitFromVFSOps() is carefully coded to allow this in-place conversion to
occur.

Once again, this conversion can be done either at initialization or a later time. (Assuming,
as appears to be the case, that the in-place conversion of the vfs ops vector is safe with
regard to other processes and processors.

Note: Episode behaves this way, performing the in-place conversion at initialization
time.

2. Schemes that involve changing, at fileset attach and detach time, the .vfs_ops pointer in a
vfs structure are also possible. The question of what to do if the fileset isn’t mounted (and
hence, there is no vfs structure) at attach time must be addressed, however.

Note: Although DFS currently "mounts" LFS aggregates that are attached in order to
make vol_sync() work properly, this doesn’t occur until after they are attached.

16.2 Administrative Rights
Several of the operations listed here require that the caller have administrative rights to the file
being operated upon. Under standard UNIX, these rights would be granted for ROOT as well as
the owner of the file.

Within the LFS, administrative rights to a file are granted under the following situations (see
Access Control List Overview, Chapter 8 on page 155).

1. If the caller is the local ROOT.

2. If the caller is in the special DFS administrative group.

3. If the caller has perm_control rights to the file in question. If the file is not protected by an
ACL, this right will be granted to the file’s owner.

Vnode operations, both standard and extended, which have traditionally required the caller to be
the owner of a file (or ROOT) should be changed to work as shown above instead.

420 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations Copy-on-Write Impacts

16.3 Copy-on-Write Impacts
As discussed in the volume operations specification, it is expected that some sort of
copy-on-write technology is used in order to make clone operations space and time efficient.
Depending on the particular implementation, a number of the vnode operations listed below
may unexpectedly fail with [ENOSPC] or errors if the copy-on-write sharing cannot be broken.
Specifically:

a. the fileset is currently cloned and the aggregate in question is full (ENOSPC) or

b. the fileset quota limits prevent the fileset in question (which one depends on the
implementation) from physically growing in size (EDQUOT)

As one might expect, any operation that creates or grows something on disk (file, directory,
ACL, and so on) can fail. Additional operations that MIGHT fail as well are listed below.

• Over-writing an existing piece of a file.

• Any operations that modify the contents of a directory. For example: unlink(), rename(),
rmdir(), and so forth.

• Truncating a file to a smaller size. The copy-on-write algorithm should be designed so that
the following operations never fail (with [ENOSPC] or [EDQUOT] errors, at least).

• The vn_setattr() operation. This implies that either anodes are copied or space for them is
reserved during a clone operation. Although it is not a DFS requirement, it is suggested that
the following operations likewise never fail (with (with [ENOSPC] or [EDQUOT] errors).

• Truncating a file to 0 size. Some implementations may only be able to do this if the file has
not been modified since the time of the clone.

16.4 Swap Files
Some operating systems allow swapping to ordinary files in the file system. Since there’s no
benefit in cloning such files, it is suggested that an LFS avoid performance and unexpected error
(see ENOSPC and EDQUOT discussion earlier) problems by "ignoring" such files at clone time.
Although there are any number of possible approaches here (so long as the OS and LFS agree),
the following is one possibility:

• At clone (or reclone) time, any swap files that are encountered are treated as zero-length files.
Although the file IS cloned in order to maintain consistent link counts, the contents of the
swap file are ignored and not subject to any copy-on-write behavior.

• Any attempt to enable swapping on a currently cloned file (perhaps: with greater than zero
length) fails.

• Obviously, any attempt to enable swapping to a file on a read-only clone should fail
(presumably, with [EROFS]).

Part 6: The DCE DFS VFS+ Interface Specification 421

Synchronization Between Vnode and Fileset Operations VFS (Vnode) Interface and Operations

16.5 Synchronization Between Vnode and Fileset Operations
For the most part, DFS protects against undesired interactions between volume (vol_xxx)
administrative operations and ordinary (local or exporter) vnode operations.

a. Both the vnode glue layer and the DFS protocol exporter ensure that vnode operations are
properly synchronized with respect to any fileset operations in progress. If the fileset in
question has been opened with a "cuncurrency mode" that conflicts with a vnode
operation, that vnode operation blocks until fileset is available again. See (c) below.

b. While an administrative application has a fileset open (vol_open()), any other open requests
that arrive for that fileset are refused.

c. When a fileset is opened, the caller indicates the "type" of operations that will be performed
on it. The open blocks until any "conflicting" vnode operations currently in progress finish.

For the duration of the open, step (a) protects against additional vnode operations and step
(b) protects against additional fileset (volume) operations. Consult the vol_open() and
vol_concurr() operations.

d. When a fileset is closed, blocked vnode operations are allowed to proceed. There are a
number of vnode operations for which the glue does not perform any synchronization,
however. The two reasons for these are: (1) the calls are not allowed to block just because a
fileset operation is in progress, or (2) there’s no harm in allowing the call to proceed
concurrently with a volume operation.

In these cases, the LFS appears to be left "on its own" to protect against undesirable (if any
are possible) interactions. A typical set of these glue functions is listed below:

• vn_inactive()

This call cannot block waiting for a series of volume operations to complete. The LFS is
on its own to ensure that the correct thing eventually happens (like, ZLC file deletion) if
the fileset in question is open (via vol_open()).

• vn_bmap()

• vn_strategy()

• vn_bread()

• vn_brelse()

• vn_select()

• vn_ioctl()

• vn_pathconf()

• vn_fpathconf()

• vn_fid()

It appears this operation left unprotected for performance reasons since it doesn’t do
anything that could get it into trouble with respect to concurrent volume operations.

• vn_lockctl()

Due to the blocking nature of this call, the proper synchronization (which itself can
block out other users) is not performed. Depending upon the implementation, no
synchronization may be necessary.

422 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations Synchronization Between Vnode and Fileset Operations

16.5.1 Directory Offsets

The vn_readdir() operation returns (when called by the DFS file exporter, at least) directory
entries that contain an .offset field. DFS assumes that these offsets have the following properties.

• The offset of the first entry in a directory is 0.

• Each directory entry is assumed to have an offset that never changes for that entry.
Specifically: the offset for an entry never changes as the result of the addition or removal of
other entries.

• These offsets increase for directory entries as they are returned by vn_readdir().

• Within a returned directory entry, the .offset field is set to the offset of the NEXT entry to be
returned or, if empty space follows that entry, the offset that would be associated with any
entry to be placed within that space in the future.

• As discussed under vn_readdir(), these offsets are consistent with the .uio_offset value input to
and returned from the call.

Some file systems provide a mechanism for performing online reorganization or compaction of
directories. If such an operation would cause directory entry offsets to change, the following
must hold.

• There must be a way of dynamically disabling this functionality.

• Such reorganization must NEVER be attempted on a readonly fileset (either a .readonly
replica or a .backup clone). Since DFS can switch between replicas at ANY time, these replicas
must appear identical, even down to these directory offsets.

• Such reorganization must advance the directory’s 1.dataVersion attribute to allow DFS clients
to recognize that any directory offsets being cached might be invalid.

Many file systems, including the standard UNIX UFS, will automatically de-fragment (compact)
a directory block during an insertion if there is insufficient space to add a desired entry.
Although there may be no way to inhibit this behavior, the file system should at least advance
the directory’s .dataVersion attribute as mentioned above.

16.6 Vfs Operations
Since DFS doesn’t generally use the vfs operations, they have not been extended or standardized
the way that the vnode ones have. The DFS requirements that do exist on these operations are
listed below:

vfs_vget() Obtain a vnode given an NFS-style fid that was originally handed out by
vn_fid().

As discussed under vn_fid() (see Section 16.7 on page 459), the anode index
and generations within the fid are represented in network (as in hton32())
order.

vfs_statfs() Obtain statistics for a file system. See Section 15.14 on page 340. More
specifically, see Section 13.3.5 on page 279 to see the dynamic status portion of
the fileset’s status.

The returned .f_blocks and .f_free fields should be computed from the fileset
visible quota fields (.visQuotaLimit and

Part 6: The DCE DFS VFS+ Interface Specification 423

Vfs Operations VFS (Vnode) Interface and Operations

Since filesets do not possess fixed size anode tables, something "appropriate" should be
set for the returned .f_files and .f_ffree fields.

Note: Episode returns −1 for these.

16.6.1 vfs_getvolume()

The vfs_getvolume() function below is not part of the standard vfs operations vector. Instead, it
is pointed at by the vfsgetvolume pointer in the extended xvfs_vfsops structure established when
a fileset is exported. See Define the Enhanced Operations Vector, in Section 13.6.8 on page 299 for
information about its fields. There, expect to see the pointer just mentioned.

The vfs_getvolume() function has the following signature:

vfs_getvolume(
/* IN */ struct osi_vfs *vfsp,
/* OUT */ struct volume **volpp

);

It’s description is as follows:

DESCRIPTION Obtain a volume structure from a vfs pointer.

ARGUMENTS

vfsp A pointer to a vfs structure.

volpp A pointer to a held volume structure is returned here.

DISCUSSION This call should obtain a fileset ID from the supplied vfs structure and then
call volreg_Lookup() with that in order to obtain a held fileset structure to
return.

See Section 15.15 on page 399 for a description of volreg_Lookup()

RETURN VALUES This call should return whatever value volreg_Lookup() returned to it. If all is
successful, a 0 will be returned. If the fileset does not reside locally,
[ENODEV] will be returned instead.

16.7 Base Vnode Interface
This chapter describes the X-ops. As discussed in Section 11.4 on page 238, this set of functions is
one of two extensions to the array of vnode operations (or equivalent array of operations in
some kernels). The X-ops do not perform their own synchronization with clients, but assume
that it has been done by the caller. Also, the X-ops have an interface that is nearly identical
across platforms, making them suitable for use by the Protocol Exporter and other components
of the DFS File Server. Most of the X-op function specifications are derived from the original Sun
Microsystems vnode architecture, as described in a paper by Kleiman appearing in the
proceedings of the 1986 Summer Usenix Conference11. Those specifications are given in this
chapter. The next section, Extended Vnode Interface, Section 16.8 on page 460, gives specifications
for some additional X-ops, added to meet the needs of DFS.

A description of the operations available within the vnode function array appears below. The
array is an exported data type. (The associated declaration is found in Section 13.6.4 on page

11. S. R. Kleinman. Vnodes: An Architecture for Multiple File System Types in Sun UNIX, Proceedings Summer Usenix Technical
Conference & Exhipition, pp. 238-247, Atlanta, Georgia, June 1986.

424 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations Base Vnode Interface

296). It is reproduced here for convenience.

/* vnode operations */
struct xvfs_xops {

int (*vn_open)();
int (*vn_close)();
int (*vn_rdwr)();
int (*vn_ioctl)();
int (*vn_select)();
int (*vn_getattr)();
int (*vn_setattr)();
int (*vn_access)();
int (*vn_lookup)();
int (*vn_create)();
int (*vn_remove)();
int (*vn_link)();
int (*vn_rename)();
int (*vn_mkdir)();
int (*vn_rmdir)();
int (*vn_readdir)();
int (*vn_symlink)();
int (*vn_readlink)();
int (*vn_fsync)();
int (*vn_inactive)();
int (*vn_bmap)();
int (*vn_strategy)();
int (*vn_ustrategy)(); /* assuming stuff already mapped in */
int (*vn_bread)();
int (*vn_brelse)();
int (*vn_lockctl)();
int (*vn_fid)(); /* op for old style fid op */
int (*vn_hold)(); /* maybe don’t need these; revisit */
int (*vn_rele)();
/*

* new ones for us to provide, rather than just existing to
* make writing the O functions easier (i.e. porting).
*/

int (*vn_setacl)();
int (*vn_getacl)();
int (*vn_afsfid)();
int (*vn_getvolume)();
int (*vn_getlength)();
/*

* Some new ops for AIX 3
*/

int (*vn_map)(); /* also used for SunOS 5 */
int (*vn_unmap)();
/*

* A new op for OSF/1
*/

int (*vn_reclaim)();
/*

* Some new ops for SunOS 5

Part 6: The DCE DFS VFS+ Interface Specification 425

Base Vnode Interface VFS (Vnode) Interface and Operations

*/
int (*vn_read)();
int (*vn_write)();
int (*vn_realvp)();
void (*vn_rwlock)();
void (*vn_rwunlock)();
int (*vn_seek)();
int (*vn_space)();
int (*vn_getpage)();
int (*vn_putpage)();
int (*vn_addmap)();
int (*vn_delmap)();
int (*vn_pageio)();

#define vn_frlock vn_lockctl /* overlay equivalent ops */
/*

* Ops for HP/UX
*/

int (*vn_pagein)();
int (*vn_pageout)();

};

The following descriptions do not list all possible error cases and return values. The primary
intention has been to identify DFS specific behavior that differs from what would be expected in
an ordinary vnode-based file system implementation. Some operations have a more
comprehensive set of error returns defined than others.

For vn_xxx() operations that are not expected to be called (and, hence, not implemented), it is
recommended that the operations vector point to a function which returns [ENOSYS].

426 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_open()

NAME
vn_open — Open a file associated with a vnode

SYNOPSIS
int vn_open(

/* INOUT */ struct vnode **avpp,
/* IN */ long aflags,
/* IN */ struct ucred *acred
);

ARGUMENTS

avpp Pointer to the vnode to open.

aflags Open flags.

acred Pointer to caller’s credential structure.

DESCRIPTION
Perform an open protocol on the given avpp vnode pointer. The open flags are provide by aflags,
and the caller’s credentials are passed in acred. A new vnode may be created, and is passed back
in avpp.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 427

vn_close() VFS (Vnode) Interface and Operations

NAME
vn_close — Close a file associated with a vnode.

SYNOPSIS
int vn_close(

/* IN */ struct vnode *avp,
/* IN */ long aflags,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode to close.

aflags Flags used with the open.

acred Pointer to caller’s credential structure.

DESCRIPTION
Perform a close protocol on the given avp vnode pointer. The flags passed to the original
vn_open() are passed in aflags, and the caller’s credentials are passed in acred.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

428 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_rdwr()

NAME
vn_rdwr — Read or Write data from or to a vnode

SYNOPSIS
int vn_rdwr(

/* IN */ struct vnode *avp,
/* IN */ struct uio *auio,
/* IN */ enum uio_rw arw,
/* IN */ int aio,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode.

auio Pointer to the user structure which supplies the I/O arguments, including the
address in user space where the data to be read (written) are.

arw Specifies the direction of the I/O. For a read, specify (UIO_READ); for write,
(UIO_WRITE).

aio The associated I/O flags such as IO_APPEND or (and) IO_SYNC.

acred Pointer to caller’s credential structure.

DESCRIPTION
Read or write data from/to the vnode pointed to by avp. The user structure which supplies the
I/O arguments is pointed to by auio, and includes the address in user space where the data is to
be read from or written to. The I/O flags contained in aio may specify that, if the direction of
I/O is output, the output is to be done synchronously. Other flags may be present but will
generally be ignored for regular disk files (they may be used by device special files, FIFO’s, and
the like). If input is done, the file’s atime will be modified. If output is done, the file’s mtime and
ctime will be modified. Under some obscure circumstances, the file’s mode may be modified,
depending on the caller’s credentials.

DISCUSSION
The specified file is either read or written, based on the arw argument. The actual transfer is
controlled by paramaters supplied in the uio structure and aio word.

Note: A symlink (its link text) can be accessed via this call.

For a write (UIO_WRITE):

The usual tests for maximum file size (ulimit) are performed.

IF IO_SYNC is present, a synchronous write is performed. Unless this call is being issued by
ROOT, the file’s set-uid and set-group (VSUID, VSGID) flags are cleared.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] Returned for a FIFO, BLK or CHR special device.

[EROFS] Returned if the fileset is read-only.

Part 6: The DCE DFS VFS+ Interface Specification 429

vn_ioctl() VFS (Vnode) Interface and Operations

NAME
vn_ioctl — Handle I/O control on an open file descriptor

SYNOPSIS
int vn_ioctl(

/* IN */ struct vnode *avp,
/* IN */ long acmd,
/* IN */ char *adata,
/* IN */ long aflags,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to vnode to affect.

acmd Command to perform.

adata Pointer to the data involved.

aflags The associated open flags.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Perform an ioctl() on the vnode pointed to by avp. The command to perform is found in acmd,
the data involved in the command is found in adata, the open flags associated with the file are in
aflags, and acred points to the caller’s credential structure.

This function is more or less irrelevant for files. Both the Cache Manager and Episode functions
return [EINVAL] without doing anything.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

430 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_select()

NAME
vn_select — Perform a select on a vnode

SYNOPSIS
int vn_select(

/* IN */ struct vnode *avp,
/* IN */ long awhich,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode on which to do the select.

awhich Specifies the I/O direction.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Perform a select on the vnode pointed to by avp. The direction of the I/O is specified in awhich,
and the caller’s credential structure is pointed to by acred.

This function is more or less irrelevant for files. Both the Cache Manager and Episode functions
do nothing. On most platforms they return [EINVAL], but on some platforms they return 0.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 431

vn_getattr() VFS (Vnode) Interface and Operations

NAME
vn_getattr — Get the attributes for a vnode

SYNOPSIS
int vn_getattr(

/* IN */ struct vnode *avp,
/* IN */ struct vattr *aattrs,
/* IN */ int aflag,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode whose attributes are desired.

aattrs Pointer to the buffer in which to place the given vnode’s attributes. If aflag is
zero, this is a vattr, structure, else a xfvs_vattr structure.

aflag Flag indicating whether aattrs is an extended attribute structure.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Get the attributes associated with the vnode pointed to by avp. The caller provides aattrs, a
pointer to a struct vattr in which to place the attributes. Also passed is a pointer to the caller’s
credential structure, acred. Vnode attributes include much of the information reported by the stat
system call, such as the owner’s uid and gid, the file size, and access and modify times.

DISCUSSION
The standard vnode attributes at aattrs->vattr are returned in an obvious manner. Fields that
might require special attention are listed below.

.va_fsid The value returned here should be chosen with care since it needs to be
unique (per fileset) and a given aggregate (device) can hold several filesets.
Although an individual LFS is free (seemingly) to use any appropriate
algorithm to construct this field, the following is done by Episode:

.va_fsid = (volumeID.low << 16) |
(device major # << 8) |
(device minor #)

.va_rdev The device number of the aggregate on which this fileset resides is returned.

.va_blocks The blocks used value is based on the logical amount of disk space used by
the file (as if there were no copy-on-write (clone) sharing taking place). This
corresponds to the visible (versus actual allocated) quota on a fileset.

If the flag argument is non-zero, the extended attributes at aattr->xvattr are returned as well.
Definitions of the fields in this structure and the values to be returned for them can be found
earlier in this document. Fields requiring special attention are listed below.

.anonAccess If the object in question does not have an ACL, 0 is returned in this field.
Likewise, if the any_other entry in the ACL is invalid, a 0 is returned.
Otherwise, it is set to the logical intersection of EVERY valid entry in its ACL.

The acred argument is used in the computation of the .callerAccess field.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

432 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_getattr()

[error_status_ok] This function returns success.

ERRORS

[non-zero] This function returns an error.

Part 6: The DCE DFS VFS+ Interface Specification 433

vn_setattr() VFS (Vnode) Interface and Operations

NAME
vn_setattr — Set the attributes for a vnode

SYNOPSIS
int vn_setattr(

/* IN */ struct vnode *avp,
/* IN */ struct vattr *aattrs,
/* IN */ int aflag,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode whose attributes are to be set.

aattrs Pointer to the buffer from which to get the given vnode’s attributes.

aflag Flag indicating whether aattrs is an extended attribute structure.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Set the attributes of the vnode pointed to by avp. The caller provides aattrs, a pointer to a struct
vattr from which the attributes are obtained. In this structure, a value of −1 in any field indicates
that the corresponding attribute is not to be changed. Also passed is a pointer to the caller’s
credential structure, acred. This function is called on behalf of various system calls, such as
chmod, chown, utimes, and ftruncate.

DISCUSSION
The standard vnode attributes at aattrs−>vattr are applied to the designated file as follows.

.va_ctime If the .tv_sec sub−field is not equal to −1. This field is ONLY settable if the
flags argument is non−zero.

.va_nlink If not equal to −1. If the link count is being set to zero, the file will be deleted
by vn_inactive() when its vnode reference count goes to zero. As described
earlier in Zero Link Count Files, Section 15.6 on page 332, such files are
preserved across reboots and FSCKs until vn_inactive() explicitly deletes
them.

.va_mode If not equal to −1.

.va_uid If not equal to −1.

.va_gid If not equal to −1.

.va_size If not equal to −1. The file’s modified time (mtime) is set to the current time
UNLESS it is being explicitly set (.va_mtime). If a directory is being operated
on, an [EISDIR] error is returned.

.va_mtime If the .tv_sec sub−field is 0 and the .tv_usec sub−field is −1, the file’s atime and
mtime are both set to the current time. (System V style utime() call.)

Alternatively, if the .tv_sec field is not equal to −1, the file’s mtime is set.

.va_atime If the .tv_sec sub−field is not equal to −1 and the above .va_mtime case does not
supercede this one, the file’s atime is set.

If the flag argument is non-zero, the extended attributes at aattrs−>xvattr are additionally set as
follows.

434 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_setattr()

.volVersion If the .high or.low sub−field is not equal to −1.

.dataVersion If the .high or.low sub−field is not equal to −1.

.fileID The anode generation value, from the .low sub−field, can be changed if it is not
equal to −1. The .high field, the anode index, is ignored.

.clientOnlyAttrs If not equal to −1.

Unless the file’s ctime is explicitly set, it is set to the current time by this call.

If setting .va_mode, the set-uid (VSVTX) flag is cleared if the caller is not ROOT and the set-gid
(VSGID) flag is cleared if the caller is not a member of the file’s group. Other actions (regarding
the sticky (VTEXT) flag) might be required as well, depending on the OS.

Administrative rights to the object are required for the caller if any of the following fields are
being set: .va_mode, .va_uid, .va_gid, .va_atime, .va_mtime. If .va_mtime and .va_atime are being set
to the current time, either administrative rights or write access to the file are sufficient.

Notes:

1. If flags is non-zero, an extended set-attribute attribute is being performed and
DFS (at the client side) has performed its own permissions check.

2. Episode returne EROFS if the .va_uid or .va_gid is being changed and the file
resides on a readonly fileset

Any permissions checks performed by this operation must be performed against the original
mode, uid and gid fields (as opposed to the new ones set by this call).

DFS expects to be able to change or set the size of a file even if the caller does not currently own
or have write access to the file.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EISDIR] An attempt was made to change the length of a directory with this call.

[EPERM] The caller possesses insufficient rights to perform this operation.

[EROFS] The fileset is read-only.

Part 6: The DCE DFS VFS+ Interface Specification 435

vn_access() VFS (Vnode) Interface and Operations

NAME
vn_access — Check access permissions for a vnode

SYNOPSIS
int vn_access(

/* IN */ struct vnode *avp,
/* IN */ long amode,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode to examine.

amode Mode to check for access. Values are S_IREAD, S_IWRITE, S_IEXEC.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Check the access permission for the vnode pointed to by avp. The access mode to be checked
(read, write, execute) is specified by amode, and a pointer to the caller’s credential structure is
provided by acred. If the specified access is denied, vn_access() returns a non-zero value.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success. The caller has the rights specified in the mode
argument for the object in question.

ERRORS

[EROFS] The fileset is read-only and the caller is asking for writh access. This is either a
.backup clone or a .readonly replica.

[EACCES] The caller does not have the specified rights to the object.

436 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_lookup()

NAME
vn_lookup — Look up a component name in a directory vnode

SYNOPSIS
int vn_lookup(

/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* OUT */ struct vnode **avpp,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode to be searched.

aname Character string name being looked for.

avpp A place to store the address of the vnode corresponding to the name being
looked up (if one exists).

acred Pointer to the caller’s credential structure.

DESCRIPTION
Look up a pathname component name aname in the directory represented by the adp vnode
pointer. The vnode for the corresponding object (if one exists in the given directory) is stored in
avpp. The caller’s credentials are passed in through the acred pointer.

DISCUSSION
If this call succeeds, it returns a pointer to a held (as in vn_hold(), for the object that was found.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success. The caller has the rights specified in the mode
argument for the object in question.

ERRORS

[EACCES] The caller does not have the search rights to the specified directory.

[ENOENT] The name is not found or the directory has been deleted.

Part 6: The DCE DFS VFS+ Interface Specification 437

vn_create() VFS (Vnode) Interface and Operations

NAME
vn_create — Create a new file in the given directory

SYNOPSIS
int vn_create(

/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* IN */ struct vattr *aattrs,
/* IN */ enum vcexcl aexcl,
/* IN */ int amode,
/* OUT */ struct vnode **avpp,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode in which the new file is to be created.

aname Character string name for the file to create.

aattrs Pointer to the attribute structure to give to the new file.

aexcl Exclusive or non-exclusive creation flag. If exclusive, the specified name
(aname) must not already reside within the directory.

amode Access rights required if file exists in a non-exclusive creation (S_IREAD,
S_IWRITE, S_IEXEC).

avpp Set to the address of the vnode corresponding to the newly-created file, if
successful.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Create a file named aname in the directory associated with the adp vnode. The new file’s
information is passed in via the following parameters: aattrs contains the initial attribute
structure, and aexcl specifies whether the create is exclusive or non-exclusive. amode is not the
mode of the new file (that is in the appropriate field in aattrs), but specifies access rights that the
existing file must allow if there is an existing file and the create is non-exclusive. It is derived
from the flags argument to the open system call. A pointer to the caller’s credentials are provided
via acred. If vn_create() is successful, avpp is set to the address of the vnode pointer describing
the new file.

DISCUSSION

• If the desired object already exists:

If the exclusive argument is non-zero, the call fails with [EEXIST].

If the existing object is a directory and the mode argument indicates that the caller wants
write access (S_ISWRITE), the call fails with [EISDIR].

If the caller does not have the rights given by the mode argument to the file, the call fails with
[EACCES].

If the existing object is an ordinary file and the supplied aattrs->va_size field is 0, it is
truncated to zero length.

• If the desired object does not already exist:

438 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_create()

The new file’s user field (va_uid) is taken from the DFS authentication structure which itself is
obtained from the supplied credentials. Depending on whether SYS5 or BSD semantics are
being adhered to, the group field (va_gid) is either taken from this PAC or from the parent
directory. Consult Obtaining the Identity of the Principal, Section 11.8.10 on page 243. If the
PAC indicates that this is an unauthenticated RPC operation, the user and group fields are set
instead to −2 and −1, respectively.

Note: If BSD behavior is in effect (va_gid from parent directory), then it seems equally
valid to form the va_gid this way even for an unauthenticated access. (Episode
does not do this.)

The supplied mode bits (in the attributes structure) are used as supplied if (a) a link (VLNK) is
being created or (b) the parent directory possesses an Initial File ACL. Otherwise, the mode bits
are weakened by the process umask.

Note: For the creation of directories, files and symlinks, DFS sets the file exporter’s umask to
that of the remote client.

Ordinary files, FIFOs and device files can be created via this call. For the latter, the supplied
va_rdev device number is applied.

The new file’s link count is set to 1. Its atime, mtime and ctime are all set to the current time.

The extended object UUID (as in the .objid field of a Txvattr structure) is set to zero.

Any user or system property lists (PLIST) on the parent directory are inherited by the newly
created file.

Consult Initial ACL and File Creation - Algorithm, Section 12.11 on page 258 for additional ACL
processing that might be required for the new object.

The parent directory’s ctime and mtime fields are set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EISDIR] An attempt is made to create a directory with this call.

Also returned if the desired object already exists, is a directory and the amode
argument indicates that the caller desired write access (S_IWRITE).

[ENOTDIR] The object indicated by theadp vnode is not a directory.

[ENOENT] The name is not found or the directory has been deleted.

[EEXIST] An attempt is mad to create a "." or "..", or if the name already exists and the
exclusive flag is non-zero.

[EACCES] The caller does not have the search, write and insert rights to the specified
directory (perm_execute, perm_write, perm_insert).

Also returned if the desired file already exists and the called does not have the
rights specified in the mode argument to the file.

SEE ALSO
Initial ACL and File Creation - Algorithm, Section 12.11 on page 258. Also, Obtaining the Identity of
the Principal, Section 11.8.10 on page 243.

Part 6: The DCE DFS VFS+ Interface Specification 439

vn_remove() VFS (Vnode) Interface and Operations

NAME
vn_remove — Delete a file in the given directory

SYNOPSIS
int vn_remove(

/* IN */ struct vnode *adp,
/* IN */ char *name,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode from which file is to be deleted.

aname Character string name for the file to delete.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Delete a file named aname from the directory corresponding to the vnode pointed to by adp. A
pointer to the caller’s credential structure is found in acred.

In some kernels, the corresponding vnode operation is passed vnodes for both the parent
directory and the file to be deleted. That is, the kernel is expected to look up the file before
calling the vnode operation. When this X-op is called on behalf of such a vnode operation, the
lookup done by the kernel is wasted, as the X-op does the lookup itself.

DISCUSSION
The specified name is removed from the parent directory and the link count on the object is
represents is decremented. The parent’s mtime and ctime fields are set to the current time. The
ctime of hte object being removed is set to the current time its link count is being decremented.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOTDIR] The object indicated by theadp vnode is not a directory.

[EPERM] The specified object is a directory.

Note: The local OS might dictate that ROOT be allowed to vop_remove() a
directory. In such cases, DFS access should fail.

[ENOENT] The name (by anameis not found in the parent directory.

[EINVAL] An attempt was made to remove "." or ".." by this call.

[EACCES] The caller does not have the search, write and delete rights to the specified
directory (perm_execute, perm_write, perm_delete).

SEE ALSO
Zero Link Count Files, Section 15.6 on page 332.

440 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_link()

NAME
vn_link — Create a hard link

SYNOPSIS
int vn_link(

/* IN */ struct vnode *avp,
/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode to be hard-linked.

adp Pointer to the directory vnode in which the hard link is to be made.

aname Target name for the hard link.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Link the vnode avp to the target name aname in the target directory associated with vnode
pointer adp.

DISCUSSION
An entry is made within the target directory which links to the supplied soruce object. The link
count on the source object is incremented. The ctime on the source object along with the ctime
and mtime on the target directory are set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOTDIR] The object indicated by theadp vnode is not a directory.

[EACCES] The caller does not have the search, write and insert rights to the specified
directory (perm_execute, perm_write, perm_insert).

[EXDEV] The sourc eobject and target directory are on different filesets.

[EPERM] The specified object is a directory.

Note: The local OS might dictate that ROOT be allowed to vop_remove() a
directory. In such cases, DFS access should fail.

[EEXIST] The name (by anameis already exists in the target directory.

Part 6: The DCE DFS VFS+ Interface Specification 441

vn_rename() VFS (Vnode) Interface and Operations

NAME
vn_rename — Rename a file

SYNOPSIS
int vn_rename(

/* IN */ struct vnode *aodp,
/* IN */ char *aname1,
/* IN */ struct vnode *andp,
/* IN */ char *aname2,
/* IN */ struct ucred *acred
);

ARGUMENTS

aodp Pointer to the directory vnode where the file currently exists.

aname1 Name of the current file within the above directory.

andp Pointer to the directory vnode to which the file will move.

aname2 The new name of the file.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Rename a file currently named aname1 in the directory associated with vnode pointer aodp. The
file’s new name will be aname2, and it will be moved to the directory associated with vnode
pointer andp. A pointer to the caller’s credential structure is provided by acred.

In some kernels, the corresponding vnode operation is passed vnodes for the parent directories
and the subfiles (or subdirectories). That is, the kernel is expected to look up the files before
calling the vnode operation. When this X-op is called on behalf of such a vnode operation, the
lookups done by the kernel are wasted, as the X-op does the lookups itself.

DISCUSSION
If an object with the target’s name (aname2) already exists:

• If it is a directory, it must be empty.

• If it is a directory, the link count on the target directory is decremented by 1 to account for
the removed ".." reference.

• Its link count is decremented by either 1 if it is a file, or 2 if a directory.

If the source object (aname1, object being renamed) is a directory, the source directory has its link
count decremented by 1 and the target directory has its link count incremented by 1 to account
for the moved ".." reference.

The mtime and ctime of both the source and target directories are set to the current time. The
ctime of the source object (aname1) is set to the current time.

If the target object (aname2) originally existed, tis ctime is set to the current time as well.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOENT] The source name does not exist within the source directory.

442 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_rename()

[EXDEV] The source object and target directory are on different filesets.

[ENOTDIR] The object indicated by theandp (target) vnode is not a directory.

The object indicated by theaodp (source) vnode is not a directory.

The source object (aname1) is a directory, the target object (aname2) exists and
that target object is not a directory.

[EISDIR] The source object (aname1) is not a directory, the target object (aname2) exists
and that target object is a directory.

[ENOTEMPTY] The target object (aname2) exists and is a not-empty directory.

[EINVAL] The source object (aname1) is a directory, and the target directory is a
descendant of it.

The source object (aname1) is either "." or "..".

[EACCES] The caller does not have the search, write and delete rights to the source
directory (perm_execute, perm_write, perm_delete).

The caller does not have the search, write and insert rights to the target
directory (perm_execute, perm_write, perm_insert).

The directories are different, the source object (aname1) is a directory and the
caller does not have write access (perm_write) to that source object.

Part 6: The DCE DFS VFS+ Interface Specification 443

vn_mkdir() VFS (Vnode) Interface and Operations

NAME
vn_mkdir — Create a directory

SYNOPSIS
int vn_mkdir(

/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* IN */ struct vattr *aattrs,
/* OUT */ struct vnode **avpp,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode in which the new directory is to be created.

aname Character string name for the directory to create.

aattrs Pointer to the attribute structure to give to the new directory.

avpp If successful, set to the pointer of the newly-created directory’s vnode.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Create a directory named aname in the directory associated with the adp vnode. The new
directory’s initial attribute structure is passed in aattrs, and a pointer to the caller’s credential
structure appears in acred. If vn_mkdir() is successful, avpp is set to the address of the vnode
pointer describing the new directory.

DISCUSSION
An empty directory, containing just the "." and ".." entries, is created.

The new directory’s user field (va_uid) is taken from the DFS authentication structure which
itself is obtained from the supplied credentials. Depending on whether SYS5 or BSD semantics
are being adhered to, the group field (va_gid) is either taken from this PAC or from the parent
directory. Consult Obtaining the Identity of the Principal, Section 11.8.10 on page 243. If the PAC
indicates that this is an unauthenticated RPC operation, the user and group fields are set instead
to −2 and −1, respectively.

Note: If BSD behavior is in effect (va_gid from parent directory), then it seems equally valid
to form the va_gid this way even for an unauthenticated access. (Episode does not do
this.)

The supplied mode bits (in the attributes structure) are used as supplied if the parent directory
possesses an Initial File ACL. Otherwise, the mode bits are weakened by the process umask.

Note: For the creation of directories, files and symlinks, DFS sets the file exporter’s umask to
that of the remote client.

The new directory’s link count is set to 2. Its atime, mtime and ctime are all set to the current
time.

The extended object UUID (as the .objid field of a Txvattr structure) is set to zero.

Any user or system property lists (PLIST) on the parent directory are inherited by the newly
created directory.

The parent directory’s ctime and mtime fields are set to the current time and its link count is
incremented to account for the new ".." reference.

444 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_mkdir()

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOTDIR] The object indicated by theadp (target) vnode is not a directory.

[EEXIST] The directory name already exists.

[EACCES] The caller does not have search, write and insert rights to the target directory
(perm_execute, perm_write, perm_insert).

SEE ALSO
Also, Obtaining the Identity of the Principal, Section 11.8.10 on page 243.

Part 6: The DCE DFS VFS+ Interface Specification 445

vn_rmdir() VFS (Vnode) Interface and Operations

NAME
vn_rmdir — Delete a directory

SYNOPSIS
int vn_rmdir(

/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode in which the directory appears.

aname Character string name for the directory to delete.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Delete a directory named aname, which appears within the directory whose vnode is pointed to
by adp. The caller’s credentials are passed in via acred.

In some kernels, the corresponding vnode operation is passed vnodes for both the parent
directory and the file to be deleted. That is, the kernel is expected to look up the file before
calling the vnode operation. When this X-op is called on behalf of such a vnode operation, the
lookup done by the kernel is wasted, as the X-op does the lookup itself.

DISCUSSION
If the specified directory (aname) is empty, its name is removed, its link count is decremented by
two (name plus "." reference) and its ctime is set to the current time.

The containing directory (adp) has its link count decremented by 1 (to account for the ".."
reference) and its mtime and ctime set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOENT] The specified directory (aname) does not exist.

[EINVAL] The specified directory (aname) is either "." or "..".

[ENOTDIR] The object specified by the adp vnode is not a directory.

[EACCES] The caller does not have the search, write and delete rights to the containing
directory (perm_execute, perm_write, perm_delete).

[EBUSY] The directory being deleted is mounted on top of.

[ENOTEMPTY] The directory being deleted is not empty.

SEE ALSO
Zero Link Count Files, Section 15.6 on page 332.

446 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_readdir()

NAME
vn_readdir — Read entries from a directory

SYNOPSIS
int vn_readdir(

/* IN */ struct vnode *adp,
/* IN */ struct uio *auio,
/* IN */ struct ucred *acred,
/* IN */ int *eofp,
/* IN */ int isPX
);

ARGUMENTS

adp Pointer to the directory vnode being read from.

auio Pointer to user structure which supplies the I/O arguments, including the
address in user space into which the directory data are to be read.

acred Pointer to the caller’s credential structure.

eofp Optional. A pointer to a returned EOF (end of file) flag.

isPX Optional. If non-zero, this call is being made by the file exporter on behalf of a
remote DFS client.

DESCRIPTION
Read entries from directory adp. The user structure pointed to by auio supplies the I/O
arguments. The uio offset is set to a file system-dependent number which represents the logical
offset in the directory when the reading is done. This is necessary because the number of bytes
returned by vn_readdir() is not necessarily the number of bytes in the equivalent part of the
on-disk directory.

DISCUSSION
Directory entries are read into the supplied buffer. The format of these returned entries is
controlled by the isPX argument. If it is zero, entries are returned in whatever native format the
local OS expects. If this argument is non-zero, the DFS file exporter expects to see entries in
struct dirent format as defined in Directory Entry Formats, Section 13.6.11 on page 301. Fields
should be filled in as follows:

.offset The directory offset of whatever (either a valid entry or empty space)
FOLLOWS this entry in the directory. This field must be consistent with the
uio .uio_offset argument to this call.

Specifically: calling vn_readdir() with a .uio_offset set to the .offset from some
directory entry results in any and all entries AFTER that one being returned.

.inode An LFS-dependent anode number.

.recordlen The offset (in bytes) from this entry in the output buffer to the next entry.
Since directory entries should be aligned on modulo-4 boundaries, this field
will be a multiple of 4.

.namelen The length of the file name field, not including the terminating null character.

.dir_name A variable sized file name, including a terminating null character.

Note: The isPX argument is present because the DFS file exporter requires an .offset field
within directory entries while HPUX (along with OSF1, etc.) does not provide such a
field in its native entry format. For AIX and SunOS-5 platforms, this call behaves the

Part 6: The DCE DFS VFS+ Interface Specification 447

vn_readdir() VFS (Vnode) Interface and Operations

same regardless of the setting of this flag.

As many entries as will fit in the supplied buffer, or as remain in the directory, are actually
returned. Entries are returned on mod-4 byte boundaries. (The supplied return buffer has this
alignment.)

Fields within the uio structure are used as follows.

.uio_iov On entry: a pointer to an array of io vectors describing the buffer to be read
(into).

.uio_iovec On entry: the number of io vectors pointed at by .uio_iov. Episode fails with
[EINVAL] if this number is other than 1.

.uio_offset On entry: the offset, initially 0, at which to begin "reading" directory entries
from.

At exit: the offset (LFS-dependent) at which to continue reading directory
entries from on the next call.

This field should be treated consistently with the .offset field in returned
entries.

.uio_segflg UIO_<whatever>

.uio_resid On entry: the total size of the user supplied buffer.

At exit: the number of bytes in the user’s buffer that were NOT read into by
this call.

If no directory entries are actually returned, the .uio_resid field should be left
unchanged on return.

The .uio_offset argument will initially be set to zero if the caller wishes to read the directory from
the beginning. On return, it should be updated by the LFS so that a subsequent call with it will
continue at the next entry in the directory. As mentioned above, if on input it is set to the .offset
field from an entry read earlier, the directory read will commence immediately FOLLOWING
that entry.

DFS makes no assumptions regarding the ordering of entries within a directory.

The atime of the directory is set to the current time.

Note: Episode rounds the supplied output buffer size down to a multiple of 512 bytes. The
LAST directory entry returned has its .recordlen field incremented to cover the
remaining space within the final 512 byte block. (it "points" to the next 512 byte
boundary)

This behavior exists only to allow the file exporter to manufacture meaningful
directory offsets on platforms whose native entries do not contain such a field. It turns
out that the higher level exporter cannot manufacture correct offsets. There is no
reason for an LFS to mimic this 512-byte block behavior.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] (Optional - not done by Episode) The supplied buffer is not aligned on a
0-modulo-4 byte boundry.

448 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_readdir()

[ENOTDIR] The object indicated by the adp vnode is not a directory.

[EACCES] The caller does not have read rights to the directory.

SEE ALSO
Directory Offsets, Section 16.5.1 on page 423, and also, Directory Entry Formats, Section 13.6.11 on
page 301.

Part 6: The DCE DFS VFS+ Interface Specification 449

vn_symlink() VFS (Vnode) Interface and Operations

NAME
vn_symlink — Create a symbolic link

SYNOPSIS
int vn_symlink(

/* IN */ struct vnode *adp,
/* IN */ char *aname,
/* IN */ struct vattr *aattrs,
/* IN */ char *atargetName,
/* IN */ struct ucred *acred
);

ARGUMENTS

adp Pointer to the directory vnode which will contain the new symlink.

aname Name of the new link, to be inserted into the directory associated with the adp
directory vnode pointer.

aattrs Pointer to the attribute structure to give the new syslink.

atargetName String name of the path which is the target of the new symlink.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Create a symlink named aname within the directory associated with directory vnode pointer adp.
This symlink’s initial attributes are taken from aattrs, and its target pathname is taken from
atargetName. A pointer to the caller’s credential structure is present in acred.

DISCUSSION
The terminating null at the end of atargetName is not written into the link object. The link file is
created as described under vn_create(), with the following exceptions:

• The target name aname cannot already exist.

• The supplied .va_type field is ignored and VLNK is used instead.

• Since the permissions on a symlink are never checked, there is no reason for it to inherit an
Initial ACL from the parent directory.

• The parent directory’s ctime and mtime fields are set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENOTDIR] The object indicated by theadp vnode is not a directory.

[EACCES] The caller does not have search, write and insert rights to the target directory.

[EEXIST] The target name (aname) already exists within the target directory.

450 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_readlink()

NAME
vn_readlink — Read a symbolic link’s value

SYNOPSIS
int vn_readlink(

/* IN */ struct vnode *avp,
/* IN */ struct uio *auio,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the symlink vnode being read from.

auio Pointer to user structure which supplies the I/O arguments, including the
address in user space into which the symlink value is to be read.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Read the value (contents) associated with the symlink associated with the avp vnode pointer.
The user structure pointed to by auio supplies the I/O arguments, including where the symlink’s
value is to be placed. A pointer to the caller’s credential structure is passed via acred.

DISCUSSION
The symbolic link link is read from the supplied object and deposited into the supplied buffer. A
terminating null is not appended to the returned link text.

At the time the call is made, the .uio_offset field should have been set to 0 and the .uio_resid field
has been set to the total size of the supplied buffer. When the call returns, the .uio_resid field has
been decremented by the actual size of the link text copied into the buffer.

The atime of the symbolic link si set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] The object indicated by theavp vnode is not a symbolic link (VLNK).

Part 6: The DCE DFS VFS+ Interface Specification 451

vn_fsync() VFS (Vnode) Interface and Operations

NAME
vn_fsync — Write out all in-memory information for a file

SYNOPSIS
int vn_fsync(

/* IN */ struct vnode *avp,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the file to be flushed to disk.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Flush the state of the file associated with vnode pointer avp to disk. The credential structure
found in acred is ignored.

DISCUSSION
Any modified data or status for the specified file is written to disk along with data from the VM
system.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

452 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_inactive()

NAME
vn_inactive — The given vnode is no longer referenced

SYNOPSIS
int vn_inactive(

/* IN */ struct vnode *avp,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode no longer being actively referenced by the system.

acred Pointer to the caller’s credential structure.

DESCRIPTION
The vnode pointed to by avp is no longer being referenced by any agent in the vnode layer, and
may be safely deallocated. This function is called when a vnode’s reference count drops to zero.
If the corresponding file also has a zero link count, any space allocated for it on disk may also be
freed at this point. The credential structure is ignored.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

This call is made by the vnode (fs independent) layer to indicate that a vnode is no longer
referenced because its .v_count field has been decremented to 0. The deletion does not occur on a
readonly fileset (a .readonly replica or a .backup clone) or a fileset mounted readonly for local
access. Files on a .readonly replica are only destroyed by an explicit vol_depletd() operation. Files
on a .backup clone are only destroyed when their fileset is deleted or as the result of a
vol_reclone() operation.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 453

vn_bmap() VFS (Vnode) Interface and Operations

NAME
vn_bmap — Logical to physical block number mapping

SYNOPSIS
int vn_bmap(

/* IN */ struct vnode *avp,
/* IN */ long abn,
/* OUT */ struct vnode *anvp,
/* OUT */ long anbn
);

ARGUMENTS

avp Pointer to the vnode to consider.

abn Logical block number to map.

anvp Pointer to the vnode representing the associated physical device.

anbn Set to the associated physical block number.

DESCRIPTION
Map logical block number abn in the file associated with vnode pointer avp to its physical device
and block number. A vnode pointer describing the corresponding physical device is returned in
anvp, and anbn is set to the physical block number mapped to by abn.

This X methods of mapping files to virtual memory (see Section 16.8 on page 460).

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

454 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_strategy()

NAME
vn_strategy — Asynchronous read/write interface between file blocks and buffers

SYNOPSIS
int vn_strategy(

/* IN */ struct buf *abp
);

ARGUMENTS

abp Pointer to buffer descriptor.

DESCRIPTION
This function provides an asynchronous, block-oriented interface to read or write a logical block
from a file into or out of a buffer. The only parameter, bp, is a pointer to a buffer header which
contains a pointer to the affected vnode. This function does not write through the buffer cache,
and is used by the kernel’s virtual memory manager (if any) to perform I/O to and from virtual
memory.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 455

vn_bread() VFS (Vnode) Interface and Operations

NAME
vn_bread — Read a logical block from a file into a buffer

SYNOPSIS
int vn_bread(

/* IN */ struct vnode *avp,
/* IN */ daddr_t albn,
/* OUT */ struct buf **abpp,
/* OUT */ long *asizep
);

ARGUMENTS

avp Pointer to the vnode for the file being read from.

albn Logical block number to read.

abpp Set to the pointer to a buffer header containing the desired block.

asizep Pointer to location at which to store the buffer size.

DESCRIPTION
Read logical block albn from the file associated with the vnode pointed to by avp. Parameter abpp
is set to point to a buffer header pointer which describes the buffer just read in.

This X-op is not used in kernels that have more general methods of mapping files to virtual
memory (see Section 16.8 on page 460).

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
Extended Vnode Interface, Section 16.8 on page 460.

456 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_brelse()

NAME
vn_brelse — Release a buffer header pointer

SYNOPSIS
int vn_brelse(

/* IN */ struct vnode *avp,
/* IN */ struct buf *abp
);

ARGUMENTS

avp Pointer to the vnode to which the buffer header belongs.

abp Pointer to the buffer header to be released.

DESCRIPTION
Release the buffer header pointed to by abp, which is associated with the vnode pointed to by
avp. The buffer header pointer was originally generated by vn_bread().

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 457

vn_lockctl() VFS (Vnode) Interface and Operations

NAME
vn_lockctl — File and record locking interface

SYNOPSIS
int vn_lockctl(

/* IN */ struct vnode *avp,
/* IN */ struct flock *af,
/* IN */ int acmd,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to vnode to be locked.

af Pointer to lock structure.

acmd Locking command.

acred Pointer to the caller’s credential structure.

DESCRIPTION
This function provides System V-style locking on vnodes. A pointer to the vnode to be operated
upon is found in avp, a pointer to the desired lock structure in af, the lock command to be
executed in acmd, and a pointer to the caller’s credential structure in acred.

DISCUSSION
This operation is for local access ony. It is NEVER called by the file exporter.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

458 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_fid()

NAME
vn_fid — Return the file ID associated with a vnode

SYNOPSIS
int vn_fid(

/* IN */ struct vnode *avp,
/* OUT */ struct fid **afidpp
);

ARGUMENTS

avp Pointer to the vnode whose file ID is to be discovered.

afidpp Set to the address of a pointer containing the file ID associated with vnode avp.

DESCRIPTION
Given a pointer to a vnode avp, set afidpp to point to a file ID pointer describing the file ID
associated with the vnode.

This X-op is called only on behalf of the NFS server. It is not called on behalf of the Protocol
Exporter, which uses a different interface (see Section 16.8 on page 460).

In most kernels, this X-op allocates the struct fid that is requested; that structure is later freed by
the kernel, rather than by another X-op. In IBM’s AIX kernel, the struct fid is allocated by the
caller. Accordingly, the parameter afidpp is a struct fid * rather than a struct fid **.

DISCUSSION
An NFS-style fid (file ID) is allocated, filled in and returned to the caller of this operation. The
storage for this fid should be allocated via kmem_alloc() since it will be freed by the
FS-independent kernel at a later time.

Any information stored within the fid (for example, an LFS-dependent anode index and
generation number) should be stored in network byte order. Information within these fids must
be stored in network byte order to allow the movement of a fileset to a server with a different
byte ordering while the fid is held at some client.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 459

vn_fid() VFS (Vnode) Interface and Operations

16.8 Extended Vnode Interface

16.8.1 Generalized Differences

A number of X-ops, in addition to those described in the Base Vnode Interface section, have been
added to meet the needs of various components of DFS. There are the following categories:

1. Support for Protocol Exporter. The vn_afsfid() X-op is used by the Protocol Exporter
analogously to the use of the vn_fid() X-op by the NFS server.

2. Support for O-op wrapper functions. As described in earlier chapters, the glue functions
(‘‘O-ops’’) must perform fileset synchronization to avoid conflicts between individual file
references and whole-fileset operations such as cloning, dumping, or restoring. The
vnx_getvolume() X-op is used to identify a file’s fileset. Referring to the pseudocode of
Section C.3 on page 246, this X-op would be called from ReferenceCorrespondingVolume().

3. Support for vnode Operations in newer kernels. The vn_cmp() and _vnctl X-ops were
added to support more recent versions of Sun’s SunOS kernels. The vn_map() and
vn_unmap X-ops were added to support IBM’s AIX kernel. The vn_reclaim X-op was added
to support OSF’s OSF/1 kernel. Additional additions for SunOS 5 include vn_read(),
vn_write(), vn_realvp(), vn_rwlock(), vn_rwunlock(), vn_seek(), vn_space(), vn_getpage(),
vn_putpage(), vn_addmap(), vn_delmap(), vn_pageio() and vn_frlock(), which is equivalent to
vn_lockctl(). Also, the following were added for HP/UX: vn_pagein(), vn_pageout().

As noted in Overview of Interfaces to the LFS, in Section 11.3 on page 235, these are
LFS-specific facilities. They are thus not documented here.

4. Support for ACLs. The X-ops vn_getacl() and vn_setacl() X-ops are used by the Protocol
Exporter to read and write ACLs. There is also a system call interface, implemented using
these X-ops, which makes ACLs available to local users.

5. Support for VM. Hold, Rele, Lock, Unlock, Pvnlock, Getlength, Setlength, Pin, Unpin,
Nlrw, Cached, Update, Readahead, Delaywrite.

The idea of supporting VM by calling VM-related X-ops from the N-op wrapper functions is
no longer being used in new code, but not all old code has been revised at this writing, and
so the VM-related X-ops are still included in the X-op specifications.

460 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_getvolume()

NAME
vn_getvolume — Get the vnode’s fileset

SYNOPSIS
int vn_getvolume(

/* IN */ struct vnode *avp,
/* OUT */ struct volume *avolpp
);

ARGUMENTS

avp Pointer to the vnode whose fileset is desired.

avolpp Pointer to place to put fileset pointer.

DESCRIPTION
If the vnode’s fileset is in the Fileset Registry, put a pointer to the fileset’s entry in the registry in
the location indicated by avolpp. Otherwise, return an error code.

DISCUSSION
This operation extracts a fileset ID from the vnode and uses it to obtain and return the volume
structure for the fileset on which it resides.

Note: This implies that LFS vnodes either contain or point to a fileset ID.

The actual fileset structure (struct volume) should be obtained by an up-level call to the Fileset
Registry routine for that purpose, volreg_Lookup() defined in Section 15.15 on page 399.

RETURN VALUE
This function will return the value that volreg_Lookup() returned to it. If this function succeeds,
it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[ENODEV] The object does not reside on an exported fileset (there is no fileset for the
vnode).

SEE ALSO
volreg_Lookup() defined in Section 15.15 on page 399.

Part 6: The DCE DFS VFS+ Interface Specification 461

vn_afsfid() VFS (Vnode) Interface and Operations

NAME
vn_afsfid — Return file ID suitable for exporter

SYNOPSIS
int vn_afsfid(

/* IN */ struct vnode *avp,
/* OUT */ struct afsFid *af,
/* IN */ int wantv
);

ARGUMENTS

avp Pointer to the vnode whose file ID is desired.

aafsfidp Pointer to the file ID structure as used by the Protocol Exporter.

wantv Flag indicating whether the volume and cell fields in the file ID structure
should be filled in.

DESCRIPTION
vn_fid() and vn_afsfid() have to be separate X-ops. Given a pointer to a vnode avp, set af to point
to a file ID pointer describing the file ID associated with the vnode.

This X-op is called only on behalf of Protocol Exporter.

vn_fid() is called by the NFS server.

DISCUSSION
Fields within the returned afsFid are constructed as follows:

.Vnode Set to the LFS-dependent (non-canonical) anode number.

.Unique Set to the anode generation number.

.Volume If wantv is non-zero, set to the fileset ID of the fileset on which this object
resides.

.Cell If wantv is non-zero, the .high and .low subfields should be set to 1 and 0,
respectively.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
vn_fid() which does a similar function.

462 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_getacl()

NAME
vn_getacl — Get the vnode’s access control list

SYNOPSIS
int vn_getacl(

/* IN */ struct vnode *avp,
/* OUT */ struct dfs_acl *aaclp,
/* IN */ long aw,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode whose ACL is desired.

aaclp Pointer to the buffer to which the contents and length of the chosen ACL are
written.

aw Specifies which of a file’s ACLs is desired.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Read the ACL associated with the file whose vnode pointer is avp. A pointer to the caller’s
credentials is contained in acred. Argument aw describes which of a file’s ACLs is desired. For
regular files, there is only one possbility, but for directories, either the directory’s own ACL, or
the default ACL for its subdirectories, or the default ACL for its subfiles may be specified.

The format of the ACL is described in the topic, ACL Storage Format, Chapter 9 on page 165.

DISCUSSION
The ACL designated by the aw argument is encoded as described in the above mentioned
document and returned. The aw argument can take the following values.

VNX_ACL_REGULAR_ACL
The ACL for the object itself is returned.

VNX_ACL_DEFAULT_ACL
The Initial Container ACL for a directory object is returned. If the object in
question is not a directory, an [EINVAL] error is returned.

VNX_ACL_INITIAL_ACL
The Initial File ACL for a the object in question is not a directory; an [EINVAL]
error is returned. If the specified ACL exists for the object in question, it is
returned. If aw equals VNX_ACL_REGULAR_ACL, it may be necessary to
coerce the "required" (user_obj, group_obj, other_obj) entries to agree with the
mode bits on the file. Consult the "Relationship between an ACL and the
UNIX protection mode bits" section of the LFS ACL specification.

If the requested ACL does not exist, matters are somewhat more complicated. A minimal ACL
is constructed as is described in ACL Creation From Mode Bits Algorithm, Section 12.10 on page
257. The actual specifics differ slightly depending on the type of ACL requested (the aw
argument):

VNX_ACL_REGULAR_ACL
The mode bits used in the ACL synthesis are taken from the object’s mode.

VNX_ACL_DEFAULT_ACL
The default is used.

Part 6: The DCE DFS VFS+ Interface Specification 463

vn_getacl() VFS (Vnode) Interface and Operations

VNX_ACL_INITIAL_ACL
These initial ACLs are synthesized from mode bits of 0777
(Read-Write-Execute for all).

If the object in question does possess a regular ACL, the default realm in the
constructed initial ACL is set to the value from that regular ACL instead of the
LOCAL-REALM (local cell, that is).

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] Returned if the aw argument is not one of the values
VNX_ACL_REGULAR_ACL, VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL.

Also returned if aw is either VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL and the object (avp) is not a directory.

SEE ALSO
ACL Storage Format, Chapter 9 on page 165, and ACL Creation From Mode Bits Algorithm, Section
12.10 on page 257.

464 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_setacl()

NAME
vn_setacl — Set the vnode’s access control list

SYNOPSIS
int vn_setacl(

/* IN */ struct vnode *avp,
/* IN */ char *aaclp,
/* IN */ struct vnode *asvp,
/* IN */ long adestw,
/* IN */ long asrcw,
/* IN */ struct ucred *acred
);

ARGUMENTS

avp Pointer to the vnode whose ACL is to be overwritten.

aaclp Pointer to the buffer from which to read the new length and contents of the
chosen ACL.

asvp Pointer to the vnode structure (if any) to use as the ‘‘shared’’ ACL object.

adestw Indication of which of the file’s ACLs is to be set.

asrcw Indication of which of the source file’s ACLs is to be copied.

acred Pointer to the caller’s credential structure.

DESCRIPTION
Set the contents of the ACL associated with the file whose vnode pointer is avp. If aaclp is
non-null, write the ACL directly from that structure. If aaclp is null and asvp is non-null, then
copy the ACL of avp from the ACL associated with the file whose vnode pointer is asvp. This
copying gives the underlying file system the opportunity to detect sharing of ACLs. However,
the ACL’s are not semantically shared; if a subsequent call to vn_setacl() modifies the ACL of avp,
the ACL of asvp is not modified with it. Exactly one of alen and asvp must be non-zero. A
pointer to the caller’s credentials is passed via acred. The format of the information in the ACL is
identical to that in vn_getacl()

DISCUSSION
This operation sets an ACL on the target object (avp). The destw argument indicates which type
of ACL is being set and can take the following values:

VNX_ACL_REGULAR_ACL
The ACL on the object itself is set.

VNX_ACL_DEFAULT_ACL
The initial directory ACL on a directory object is set.

VNX_ACL_INITIAL_ACL
The initial file ACL on a directory object is set.

The ACL to be applied to the target is specified by either the asvp or aaclp arguments, exactly 1 of
which should be non-NULL:

• If aaclp is non-NULL:

The ACL has been supplied as an argument to this call. It’s representation is described in the
above mentioned LFS ACL specification.

If the supplied ACL is "empty" (.dfs_acl_len == 0), any existing target ACL is removed.

Part 6: The DCE DFS VFS+ Interface Specification 465

vn_setacl() VFS (Vnode) Interface and Operations

If the supplied ACL is present (.dfs_acl_len > 0) and the destw argument equals
VNX_ACL_REGULAR_ACL, it may be necessary to update the mode bits of the object.

The srcw argument is unused.

• If asvp is non-NULL:

The ACL to be applied to the target is copied from the source object indicated by asvp. The
srcw argument indicates which ACL on the source is to be used and will have one of the
VNX_ACL_XXX values listed above. There is no requirement that the source and target ACL
types agree.

Note: If either srcw or destw equal VNX_ACL_REGULAR_ACL, the internal Episode
implementation of aCLs makes itself apaprent here.

Normally, ACL operations under Episode behave as follows. When one sets an
ACL, the file’s mode bits are changed to agree with the required ACL entries. When
a file’s mode bits are changed (chmod), its ACL is not physically changed on disk.
Instead, the mode bits are "merged" into the ACL dynamically during ACL checks
and when ACLs are returned to user space.

If srcw equals VNX_ACL_REGULAR_ACL, the vn_setacl() operation fetches the
source ACL as it resides on disk, without coercing the ACL’s required entries to
agree with the file’s mode bits. If destw equals VNX_ACL_REGULAR_ACL, the
ACL is applied to the target object without changing the file’s mode bits.

Finally, the ctime on the target object is set to the current time.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[EINVAL] Returned if both asvp and aaclp are non-NULL.

Returned if both asvp and aaclp are NULL.

Returned if adestw is not equal to one of the legal values VNX_ACL_XXX
listed above.

Returned if asvp is non-NULL and asrcw is not one of the legal
VNX_ACL_XXX values listed above.

Returned if adestw is either VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL and the target object (avp) is not a directory.

Returned if asrcw is either VNX_ACL_DEFAULT_ACL or
VNX_ACL_INITIAL_ACL, asvp is non-NULL and the source object is not a
directory.

[EINVAL] If aaclp is non-NULL and the supplied ACL is in an illegal or inconsistent
state. Specifically, a valid ACL requires that:

• The ACL’s length is consistent with its actual contents.

• The .mgr_type_field is correct.

• The required entries are all present.

• The entry_type_foreign_user and entry_type_foreign_group entries must
contain a realm UUID that differs from the default one.

466 X/Open Preliminary Specification (1996)

VFS (Vnode) Interface and Operations vn_setacl()

• The user_obj entry grants perm_control rights.

[EPERM] Returned if The caller does not have administrative rights to the target object
(avp).

SEE ALSO
See vn_getacl(), ACL Storage Format, Chapter 9 on page 165, and ACL Creation From Mode Bits
Algorithm, Section 12.10 on page 257.

Part 6: The DCE DFS VFS+ Interface Specification 467

VFS (Vnode) Interface and Operations

468 X/Open Preliminary Specification (1996)

Chapter 17

DCE DFS VFS+ Extended Credential Package

17.1 The xcred Package
This chapter describes the interface used for authentication within the VFS+ layer. It presents an
extensible and upwards-compatible interpretation of the VFS UNIX credential structure. Section
17.2 provides a short overview of this extended credential package, with Section 17.3 on page
470 specifying the exported interface. Important data structures are detailed in Extended
Credential Data Types, Section 13.4 on page 289. The set of reserved attributes for the user’s
property list is described in Section 13.4.3 on page 290.

17.2 Package Overview
This chapter, describing VFS client context extensions, does not describe new VFS interface
functions. Rather, it describes what is essentially a subroutine library allowing VFS functions to
interpret the VFS credentials structure in a more general manner.

Specifically, different file systems may have different authentication requirements, and one
system may not be satisfied with the authentication guarantees made by a particular file
exporter.

17.2.1 Interface Overview

To give an idea of the problems must be solved here, consider some of the possible authenticated
identities a DCE fileset might have to evaluate. First, a call might enter via a authenticated RPC
call, in which case the UUID would be used as the user’s identity. A call might also enter via a
kernel--uthenticated access on the File Exporter itself. In this mode of authentication, the user is
identified by his or her UNIX UID to the DCE fileset. A third user accessing the file system
might come in via an essentially unauthenticated NFS call, also specifying a UNIX UID for the
accessing user. However, this access path, while it results in a UNIX UID identifying the user,
probably should be treated as less secure than a kernel-authenticated access.

So, a client context is created and associated with a typed authentication structure. There are
various calls in the interface to access these objects. One call might ask for the string name for
the authenticated user. Another might ask for a 32- bit UID from the authentication library (and
the interface might call the protection server to map a name to an ID if necessary to provide the
information). Since the authentication level for a 32-bit UID might differ considerably (compare
getting that UID from the kernel versus getting it from an unprotected NFS RPC call), some hint
as to what level of authentication is permitted needs to be provided.

Part 6: The DCE DFS VFS+ Interface Specification 469

xcred Functions DCE DFS VFS+ Extended Credential Package

17.3 xcred Functions
This section describes the functions exported by the credential package.

470 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_Init()

NAME
xcred_Init — Initialize the module

SYNOPSIS
long xcred_Init(

/* No parameters */
);

ARGUMENTS
No parameters.

DESCRIPTION
This function initializes the internal state of the xcred module. It must be called at least once
before any of the other exported routines are invoked. Failure to do so will cause unpredictable
results from the xcred module. Only the first call will actually perform initialization, all others
will be no-ops.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_ALLOC_FAILED]
There was a memory allocation failure.

Part 6: The DCE DFS VFS+ Interface Specification 471

xcred_Create() DCE DFS VFS+ Extended Credential Package

NAME
xcred_Create — Create an extended credential structure

SYNOPSIS
long xcred_Create(

/* OUT */ xcred_t **anewXCredPP
);

ARGUMENTS

newXCredPP Address of xcred pointer to fill.

DESCRIPTION
This function returns the location of a new (empty) xcred structure.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_ALLOC_FAILED]
There was a memory allocation failure.

472 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_Hold()

NAME
xcred_Hold — Increment the reference count on a given xcred structure

SYNOPSIS
long xcred_Hold(

/* IN */ xcred_t *axcredP
);

ARGUMENTS

axcredP Pointer to the xcred structure to update.

DESCRIPTION
This function simply increments the reference count on the relevant structure.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_INVAL_PARAM]
The xcred was invalid.

[XXCRED_EC_BAD_REFCOUNT]
The refcount was already less than or equal to zero.

Part 6: The DCE DFS VFS+ Interface Specification 473

xcred_Delete() DCE DFS VFS+ Extended Credential Package

NAME
xcred_Delete — Mark an xcred structure for deletion

SYNOPSIS
long xcred_Delete(

/* IN */ xcred_t *axP
);

ARGUMENTS

axP Pointer to the xcred structure to delete.

DESCRIPTION
This function marks the xcred structure for deletion. This deletion will occur when the
xcred_Release() function is called with this xcred structure as an argument.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

474 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_Release()

NAME
xcred_Release — Decrement the reference count on a given xcred structure

SYNOPSIS
long xcred_Release(

/* IN */ xcred_t *axcredP
);

ARGUMENTS

axcredP Pointer to the xcred structure to update.

DESCRIPTION
This function decrements the reference count on the relevant structure. If the reference count
drops to zero, or a call to xcred_Delete was previously issued against the xcred structure, then the
structure is freed.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_INVAL_PARAM]
The xcred was invalid.

[XCRED_EC_BAD_REFCOUNT]
The refcount was already less than or equal to zero.

Part 6: The DCE DFS VFS+ Interface Specification 475

xcred_AssociateCreds() DCE DFS VFS+ Extended Credential Package

NAME
xcred_AssociateCreds — Associate the given xcred and UNIX ucred

SYNOPSIS
long xcred_AssociateCreds(

/* IN */ xcred_t *axcredP,
/* OUT */ struct ucred **aucredPP,
/* IN */ long apag
);

ARGUMENTS

axcredP Pointer to the xcred structure for the association.

aucredPP Pointer to the related UNIX credential structure.

apag pag to allocate for linkage, if any.

DESCRIPTION
This function associates the given xcred and ucred structures so that having a pointer to the
ucred structure will permit the location of the xcred structure with which it is associated. If apag
is not-specified, (equal to zero), this function will generate one.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[CRED_EC_ALLOC_FAILERED_EC_INVAL_PARAM]
An invalid structure address was passed in.

[XCRED_EC_BAD_REFCOUNT]
The refcount was already less than or equal to zero.

[XCRED_EC_CRED_FULL]
The UNIX cred can’t handle additional xcreds.

[OSI_NOPAG] The apag value is invalid.

SEE ALSO
xcred_UCredToXCred() .

476 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_UCredToXCred()

NAME
xcred_UCredToXCred — Obtain pointer to ucred associated with the given xcred

SYNOPSIS
long xcred_UCredToXCred(

/* IN */ struct ucred *aucredP,
/* OUT */ xcred_t **axcredPP
);

ARGUMENTS

aucredP Pointer to the UNIX credential structure to examine.

axcredPP Pointer to the xcred structure for the association.

DESCRIPTION
This function obtains the corresponding xcred structure from the given UNIX cred, increments
its reference count by 1, and returns its location. If an xcred structure has not been associated
with the ucred, axcredPP will be set to null and the appropriate error code is returned.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_INVAL_PARAM]
An invalid structure address was passed in.

[XCRED_EC_BAD_REFCOUNT]
The refcount on the xcred was already less than or equal zero.

[XCRED_EC_NO_ENTRY]
The given UNIX cred had no associated xcred.

Part 6: The DCE DFS VFS+ Interface Specification 477

xcred_FindByPag() DCE DFS VFS+ Extended Credential Package

NAME
xcred_FindByPag — Obtain pointer to xcred

SYNOPSIS
long xcred_FindByPag(

/* IN */ long apag
);

ARGUMENTS

apag pag to match against.

DESCRIPTION
This function returns a pointer to the xcred structure that contains the pag equal to apag. If no
match is found then NULL is returned.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[non_NULL] This function returns a non_NULL pointer to the xcred structure upon
success.

ERRORS

[NULL_Pointer] No match was found. This is a FAILURE.

478 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_PutProp()

NAME
xcred_PutProp — Enter a property list attribute-value pair into an xcred

SYNOPSIS
long xcred_PutProp(

/* IN */ xcred_t *axcredP,
/* IN */ char *aattributeP,
/* IN */ long aattrLength,
/* IN */ char *avalueP,
/* IN */ long aLength,
/* IN */ char *abaseAttrP,
/* IN */ long abaseAttrLength
);

ARGUMENTS

axcredP Pointer to the xcred structure to modify.

aattributeP Name of the property list entry.

aattrLength Number of bytes pointed to by aattributeP.

avalueP A counted array of bytes comprising the value portion.

alength The length of the avalueP field in bytes.

abaseAttrP Name of the attribute from which this plist entry is derived.

Note: This parameter is now ignored.

abaseAttrLength Number of bytes pointed to by abaseAttrP.

Note: This parameter is now ignored.

DESCRIPTION
This function modifies the contents of the specified attribute associated with the given xcred. If
avalueP is null, the attribute is deleted from the property list. The avalueP parameter’s type is a
counted array of bytes, not a character string, despite the declaration, and thus may contain null
characters that would otherwise terminate a C language character string. This is also true of
aattributeP.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_INVAL_PARAM]
An invalid parameter was passed in.

[XCRED_EC_BAD_REFCOUNT]
The refcount on the xcred was already less than or equal zero.

[XCRED_EC_NO_BASE_ATTRIBUTE]
The base attribute specified doesn’t exist.

Part 6: The DCE DFS VFS+ Interface Specification 479

xcred_GetProp() DCE DFS VFS+ Extended Credential Package

NAME
xcred_GetProp — Retrieve attribute value from an xcred’s property list

SYNOPSIS
long xcred_GetProp(

/* IN */ xcred_t *axcredP,
/* IN */ char *aattributeP,
/* IN */ long aattrLength,
/* OUT */ char **avaluePP,
/* OUT */ long *arealLengthP

);

ARGUMENTS

axcredP Pointer to the xcred structure to examine.

aattributeP Name of the property to retrieve.

aattrLength Number of bytes pointed to by aattributeP.

avalueP Pointer to counted array of bytes in which to store the retrieved value, if any
(may be null).

arealLengthP The number of bytes placed into *avaluePP.

DESCRIPTION
This function returns the value from the specified attribute for an xcred. The value is placed in
avaluePP, and its length is placed in arealLengthP.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_BAD_REFCOUNT]
The reference count on the xcred was less than or equal zero.

[XCRED_EC_NO_ENTRY]
There was no entry named attribute associated with the xcred.

[XCRED_EC_NOT_ENOUGH_ROOM]
There wasn’t enough room in the caller’s buffer to copy out the value
component.

[XCRED_EC_ALLOC_FAILED]
There was a memory allocation failure.

480 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_GetUFlags()

NAME
xcred_GetUFlags — Get user flags from an xcred

SYNOPSIS
long xcred_GetUFlags(

/* IN */ xcred_t *xcredP
);

ARGUMENTS

xcredP Pointer to the xcred structure from which the flags are to be obtained.

DESCRIPTION
This function returns the value of the user defined flags for the given xcred structure. Currently
this is the value of the uflags field.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always returns success. This
function succeeds if:

[value] This function returns success. The value of the uflags field is returned (here).

ERRORS
None.

Part 6: The DCE DFS VFS+ Interface Specification 481

xcred_SetUFlags() DCE DFS VFS+ Extended Credential Package

NAME
xcred_SetUFlags — Set user flags in an xcred

SYNOPSIS
long xcred_SetUFlags(

/* IN */ xcred_t *xcredP,
/* IN */ long orflags,
/* IN */ long andflags
);

ARGUMENTS

xcredP Pointer to the xcred structure from which the flags are to be set.

orflags Flags that are to be set (turned on).

andflags Flags that are to be unset (turned off).

DESCRIPTION
This function sets the value of the user defined flags in the xcred structure. Currently this is the
value of the uflags field. Those flag bits set in the orflags parameter are set, and the flag bits set in
the andflags parameter are unset.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS
None.

482 X/Open Preliminary Specification (1996)

DCE DFS VFS+ Extended Credential Package xcred_EnumerateProp()

NAME
xcred_EnumerateProp — Apply a function to all elements of the given xcred’s property list

SYNOPSIS
long xcred_EnumerateProp(

/* IN */ xcred_t *axcredP,
/* IN */ long (*aprockP)(),
/* IN */ long *arockP
);

ARGUMENTS

axcredP Pointer to the xcred structure being operated on.

aprocP Ptr to function to call on each member of the xcred’s property list.

arockP The first parameter passed to *aprocP(). The given routine is actually given
three parameters, the second being axcredP and the third a pointer to the
parameter list entry currently being operated upon.

DESCRIPTION
This call applies the function given in aprocP to all the elements of an xcred’s property list. The
function will be passed three arguments, the first is arockP, the second is axcredP, and last is a
pointer to the plist entry currently being operated upon. The function should return a long
value which is 0 for success, and any non-zero value to indicate falure. Note that the xcred is
read-locked for the duration of the call, implying that the function being applied should not try
to lock the xcred itself.

This function will halt at the first unsuccessful invocation of the aprocP function, and a non-zero
value will be returned in this case.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function succeeds if:

[error_status_ok] This function returns success.

ERRORS

[XCRED_EC_INVAL_PARAM]
A parameter was illegal.

[XCRED_EC_BAD_REFCOUNT]
The xcred’s reference count was less than or equal zero.

[any_other_non_zero]
This function did not complete successfully. The function was not applied to
all elements of the xcred’s property list.

Part 6: The DCE DFS VFS+ Interface Specification 483

xcred_DeleteEntry() DCE DFS VFS+ Extended Credential Package

NAME
xcred_DeleteEntry — Mark a property list entry as deleted

SYNOPSIS
long xcred_DeleteEntry(

/* IN */ xcred_t *axcredP,
/* IN */ struct xcred_PlistEntry *aplp
);

ARGUMENTS

axcredP Pointer to the xcred structure being operated on.

aplp The property list entry to mark as deleted.

DESCRIPTION
This function marks a property list entry as deleted. This function is only to be called from
within a function that is invoked via the xcred_EnumerateProp() function (the only legal source
for xcred_PListEntry objects). It assumes this is the case and does not lock the xcred structure.

RETURN VALUE
If this function succeeds, it returns a value of zero. This function always succeeds. This function
succeeds if:

[error_status_ok] This function always returns success.

ERRORS
None.

SEE ALSO
Section 13.4.1 on page 289.

484 X/Open Preliminary Specification (1996)

Index

ACL ...6, 413
ACL Format

Access Type...166
ACL Entry Types ..167
ACL Structure ...169
Complex Entry Type..168
Extended Complex Entry Type169
Foreign Cell Principal ID166
Principal ID..165
Simple Entry Type..168

AFS4Int
IDL Definitions..22-48

AFS4Int Interface
End...49
Start ...13

AFS_BulkFetchVV
IDL Definition ...44

AFS_BulkFetchVV()...139
AFS_BulkKeepAlive

IDL Definition ...45
AFS_BulkKeepAlive()...141
AFS_CreateFile

IDL Definition ...31
AFS_CreateFile() ..118
AFS_FetchACL

IDL Definition ...25
AFS_FetchACL() ..107
AFS_FetchData

IDL Definition ...24
AFS_FetchData() ..105
AFS_FetchStatus

IDL Definition ...26
AFS_FetchStatus()..108
AFS_GetServerInterfaces

IDL Definition ...47
AFS_GetServerInterfaces()143
AFS_GetStatistics

IDL Definition ...43
AFS_GetStatistics()..136
AFS_GetTime

IDL Definition ...41
AFS_GetTime Constants...14
AFS_GetTime()...138
AFS_GetToken

IDL Definition ...39
AFS_GetToken() ...134

AFS_HardLink
IDL Definition ...34

AFS_HardLink()...126
AFS_Lookup

IDL Definition ...38
AFS_Lookup() ..116
AFS_LookupRoot

IDL Definition ...23
AFS_LookupRoot()..104
AFS_MakeDir

IDL Definition ...35
AFS_MakeDir()...128
AFS_MakeMountPoint

IDL Definition ...42
AFS_MakeMountPoint()124
AFS_ProcessQuota

IDL Definition ...46
AFS_ProcessQuota() ...140
AFS_Readdir

IDL Definition ...37
AFS_Readdir() ..132
AFS_ReleaseTokens

IDL Definition ...40
AFS_ReleaseTokens() ..137
AFS_RemoveDir

IDL Definition ...36
AFS_RemoveDir()..130
AFS_RemoveFile

IDL Definition ...30
AFS_RemoveFile() ...114
AFS_Rename

IDL Definition ...32
AFS_Rename()..120
AFS_SetContext

IDL Definition ...22
AFS_SetContext()...103
AFS_SetParams

IDL Definition ...48
AFS_SetParams()..142
AFS_StoreACL

IDL Definition ...28
AFS_StoreACL()...111
AFS_StoreData

IDL Definition ...27
AFS_StoreData()...109

DCE 1.1: Distributed File Service Specification 485

Index

AFS_StoreStatus
IDL Definition ...29

AFS_StoreStatus Mask Values14
AFS_StoreStatus() ..113
AFS_Symlink

IDL Definition ...33
AFS_Symlink()..122
Aggregate ...6
aggregate ..236
Aggregate Operations Vector240
Aggregate Registry ..236, 303
Aggregate Structure...323
Aggregate Type...240
ag_attach()...314
ag_detach()..313
ag_hold()..306
ag_lock() ..308
ag_rele() ...307
ag_setops() ..240
ag_stat() ...310
ag_sync()..315
ag_unlock()..309
ag_volCreate() ..311
ag_volInfo()...312
Algorithms

Access Check...161
Access Check Delegation..................................162
Access Rights257, 262-263, 265
ACL Creation ..257
ACL Exists ...263
File Creation ..258
Initial ACL ...258
mask_obj ACL Impact.......................................265
Mode Bits ...257
No ACL Exists...263
PAC From Ucred ..261
Principals Access ..161
Principals Identity ..259

Anode..6
Anode Index ..6
Backing Anode ..6
Block ..6
callback...234, 236
Cell ...6
Clone ...6
Common_data Interface

End...65
Start ...57

Constants
General AFS constants57
afsConnParams Mask..62

AFS_GetTime ..14
for afsFStype..58
for afsVolumeType ...58
for AFS_Mount ...58
for Cell and Hosts...57
for RPC Versioning Scheme64
for tn_tag ..59
General Client Constants....................................76
General Server Constants84
General UPDATE constants73
IS_COMM_ERR..84
List of Supported Interfaces76
Quota Opcodes ...58
Quota Types...58

Container..6
COW Anode ..6
credential..234, 237
dacl_AclMgrName() ...212
dacl_AddEntryToAcl()..195
dacl_AreObjectEntriesRequired()209
dacl_AreObjectUuidsRequiredOnAccessCheck()210
dacl_ArePermBitsRequiredOnAccessCheck().211
dacl_CheckAccessAllowedPac()178
dacl_CheckAccessId()...172
dacl_CheckAccessPac() ..176
dacl_ChmodAcl()...188
dacl_CreateAclOnDisk()193
dacl_DeleteAclEntry()...197
dacl_DeleteAllEntries()...198
dacl_DetermineAccessAllowed().......................174
dacl_EntryType_FromString().............................204
dacl_EntryType_ToString()203
dacl_epi_CheckAccessAllowedPac().................179
dacl_epi_CheckAccessPac()177
dacl_epi_FlattenAcl() ..183
dacl_ExtractPermBits() ...187
dacl_FlattenAcl()..182
dacl_FlattenAclWithModeBits()181
dacl_FreeAclEntries()..189
dacl_InitAclEntryFromStrings()201
dacl_InitEpiAcl() ..208
dacl_ModifyAclEntry()...196
dacl_NameAndTypeStringsFromEntry()202
dacl_PacFromUcred() ...180
dacl_ParseAcl()...186
dacl_ParseAclDiskOption()184
dacl_ParseSyscallAcl() ..185
dacl_Permset_FromString()206
dacl_Permset_ToString()205
dacl_PrintAcl()..191
dacl_PrintAclEntry() ...190

486 X/Open Preliminary Specification (1996)

Index

dacl_ReadFromDisk() ...194
dacl_ValidateBuffer() ..207
dacl_WriteToDisk()..192
Data Types...................................16, 59, 64, 74, 78, 88

Access Permissions ..166
ACL ...165-170, 254
ACL Formats ...165
ACL Permission Sets ...166
afsACL..20
afsBulkStats ...21
afsBulkVolIDs..21
afsBulkVVs...20
afsConnParams...62
afsDBCacheEntry ...62
afsDBLock ..63
afsDBLockDesc ...62
afsFetchStatus ...17
afsFid...60
afsFids...63
afsFidTaggedName..60
afsHyper...60
afsNetAddr..60
afsNetData ...16
afsQuota ...20
afsRecordLock...61
afsReturnDesc ...62
afsReturns ..63
afsRevokeDesc ..61
afsRevokes ...63
afsStatistics ..18
afsStoreStatus ..17
afsStrings..64
afsTaggedName ..59
afsTaggedPath ...60
afsTimeval..60
afsToken..61
afsTokens..63
afsVolSync..16
aggr..270
Aggregate Dynamic Status...............................269
Aggregate Fields...271
Aggregate Operations Vector272
Aggregate States ...271
Aggregate Static Status269
Aggregate Status ..270
Aggregate Status Types270
Aggregates...270
aggrops ...272
ag_attach() Flags..271
ag_status ..270
ag_status_dy..269

ag_status_st ...269
ag_sync() Flags...271
asfBulkFEX...20
astab ..273
as_type..274
BulkKeepAlive afsFidExp...................................20
BulkKeepAlive re-check......................................20
Client...78
Client Globals..78
Concurrency Levels ...273
dacl ..169
dacl_complex_entry...168
dacl_complex_entry_type168
dacl_entry ..168
dacl_entry_type_t...167
dacl_extended_info..169
dacl_format_label...169
dacl_permset_t..166
dacl_simple_entry..168
dacl_simple_entry_type....................................168
dfstab entries ...273
dfstab File System Type274
dfs_interfaceList ...64
Directory Entry ...301
dirent...301
Enhanced Operations ..299
Enhanced Vnode Functions..............................298
epi_sec_id...170
epi_sec_id_foreign ...170
epi_uuid ...165
epi_uuid_foreign..166
Exported Registry Items272
External ACL...254
File System Type Macros274
Fileset Functions ...274
Fileset NextHole ...277
Flags ..271
for RPC Versioning Scheme64
General..59
General, for AFS Data Structures......................59
Locks ...240
lock_data ..240
Manager..88
Manager Error Exit...88
Manager Locking..88
Manager Unlocking ...88
NextHole ..277
Physical File System...18
Registry...272
Txvattr...294
UFS dfstab entry...274

DCE 1.1: Distributed File Service Specification 487

Index

UPDATE ...74
updateFileStatS ...74
vfsops..300
Vnode Functions ...296
Vnode Ops ...273
volCreate() Flags..271
volume..285
volumeops ...274
vol_dirent...286
vol_handle ...288
vol_NextHole ..277
vol_status ...282
vol_statusDesc ..282
vol_stat_dy ..279
vol_stat_st ..277
xcred Property List...289
xcred Structure..290
xcred_PListEntry_t...289
xcred_t ..290
xvfs_attr..296
xvfs_vfsops ..299
xvfs_vnodeops ..298
xvfs_xops ...296

Defines
Macros ..300
states ...282
Vnode Operation Classifications.....................300
VOLHOLE_MAX_HOLES277
VOLOP_XXX...276
Volume Operations ..276
VOL_ERR_XXX ..286
VOL_MAX_XXX...289
VOL_OP to VOL_SYS287
VOL_OP_XXX...286
VOL_ROOTINO...289
VOL_STAT_XXX...284
VOL_SYNC_XXX ...288
VOL_XXX...282
VOPX_UPDATE ...299
VOPX_XXX..298
v_*..286

DFS...7
DFS Locking Functions ...240
Directory Entry Formats301
EFS ...7
Episode UUID ...254
Epi_PrinId_Cmp()..215
Epi_PrinId_FromUuid()..214
Epi_PrinId_ToUuid()...213
External ACL...254
f2vfs_getvolume()..424

File..7
Fileset ..7
Fileset Dynamic Status ..279
Fileset Handle..288
Fileset Registry.......................236, 239, 325, 327, 352
Fileset Static Status...277
Fileset Status..282
Fileset Status Description282
Flags

for afsRevokeDesc flags59
for afsRevokeDesc outFlags...............................59

Flags
AFS_FetchACL..14
AFS_GetToken ..14
AFS_ReleaseToken ...14
AFS_SetContext ..16
AFS_SetParams...16
AFS_StoreACL..14
for Client-only Attribute.....................................16
for Fileset operations ...15
for Token Recovery ..15
Getting a Token...14
Token Recovery ..52

Fragment...7
glue function..246
Group ..7
hton_epi_principal_id()..218
hton_epi_uuid()..216
LFS ...7
locking ..236, 238
Locking ...240
Locking Functions ..240
Locks ...240
Magic Cookie...7
magic cookie..237, 294
Masks

afsStoreStatus ..14
VOL_SETSTATUS ..284
VOL_STAT_XXX...284

MAX_TOKEN_RELEASE
in AFS_ReleaseTokens()137

ntoh_epi_principal_id()..219
ntoh_epi_uuid()..217
on-disk states...283
PAC..7
Principal..8
Privately Attached Storage...................................323
Quota...8
Quota Size ..289
Realm...8
Replica...8

488 X/Open Preliminary Specification (1996)

Index

Rights ..8
Root Anode Index ..289
sec_acl_FlattenAcl() ..199
sec_acl_ParseAcl() ...200
States

on-disk..283
struct aggr ..323
TKN4Int

IDL Definitions..52-55
TKN4Int Debugging

TKN_GetCE Routine ...54
TKN_GetLock Routine..53

TKN4Int Interface
End...55
Recovery Flags ..52
Start ...51

TKN_AsyncGrant
IDL Definition ...55

TKN_AsyncGrant() ...152
TKN_GetCE

IDL Definition ...54
TKN_GetCellName

IDL Definition ...53
TKN_GetCellName() ..149
TKN_GetLock

IDL Definition ...53
TKN_GetServerInterfaces

IDL Definition ...54
TKN_GetServerInterfaces()151
TKN_InitTokenState

IDL Definition ...52
TKN_InitTokenState()...146
TKN_Probe

IDL Definition ...52
TKN_Probe()...147
TKN_SetParams

IDL Definition ...54
TKN_SetParams() ..150
TKN_TokenRevoke

IDL Definition ...53
TKN_TokenRevoke() ..148
Token...8
token..236
Token Manager238, 247-248
Txvattr Structure...294
UDATE

IDL Definition..74-75
UFS...8
Uniquifier ...8
UPDATE

Exported Procedure............................89-91, 93-94

UPDATE Interface
End...75
Start ...73

UPDATE_FetchFile
Exported Procedure ...90
IDL Definition ...75

UPDATE_FetchInfo
Exported Procedure ...91
IDL Definition ...74

UPDATE_FetchObjectInfo
Exported Procedure ...93
IDL Definition ...75

UPDATE_GetServerInterfaces
Exported Procedure ...89
IDL Definition ...74

UPDATE_v4_0_manager_epv
Entry Point Vector ..94

vfs Operations ...423
VFS Operations Vector ..300
VFS+ Interface ...8
VFS+ Switch...290
Vnode Preliminary..293
VNOPS Vector Organization290
vn_access() ..436
vn_afsfid() ...462
vn_bmap() ...454
vn_bread() ...456
vn_brelse()...457
vn_close()...428
vn_create()...438
vn_fid()...459
vn_fsync() ..452
vn_getacl()...463
vn_getattr()..432
vn_getvolume() ..461
vn_inactive() ...453
vn_ioctl()..430
vn_link()...441
vn_lockctl()..458
vn_lookup()...437
vn_mkdir() ..444
vn_open()...427
vn_rdwr()...429
vn_readdir() ..447
vn_readlink() ..451
vn_remove()..440
vn_rename() ..442
vn_rmdir() ...446
vn_select() ...431
vn_setacl() ...465
vn_setattr() ..434

DCE 1.1: Distributed File Service Specification 489

Index

vn_strategy()...455
vn_symlink()...450
volreg_Delete() ...398
volreg_Enter()...397
volreg_Lookup() ..399
Volume Fields..286
Volume Handle ...288
volumeops ...274
vol_appenddir() ...390
vol_attach() ...353
vol_bulksetstatus() ..392
vol_clone()...369
vol_close() ...350
vol_concurr() ..384
vol_copyacl() ..382
vol_create()..357
vol_delete()..361
vol_deplete() ...352
vol_destroy()...351
vol_detach() ..354
vol_freedystat() ..380
vol_getacl()..365
vol_getattr() ..362
vol_getnextholes() ...395
vol_getstatus() ..355
vol_getvv() ..378
vol_getzlc()..394
vol_hold() ..341
vol_isroot() ..377
vol_lock() ...343
vol_open() ...345
vol_pushstatus() ..387
vol_read() ..358
vol_readdir() ...388
vol_reclone() ...371
vol_rele()..342
vol_root() ...376
vol_scan() ..349
vol_seek()...347
vol_setacl() ..367
vol_setattr() ...363
vol_setdystat() ..379
vol_setnewvid() ...381
vol_setstatus() ..356
vol_swapids() ...385
vol_sync() ..386
vol_tell()...348
vol_truncate() ...360
vol_unclone() ..373
vol_unlock() ..344
vol_vget()...375

vol_write() ...359
VOPX_UPDATE..299
VOPX_XXX ..298
Xcred..7
xcred_AssociateCreds()..476
xcred_Create() ..472
xcred_Delete()...474
xcred_DeleteEntry() ..484
xcred_EnumerateProp()483
xcred_FindByPag() ..478
xcred_GetProp() ...480
xcred_GetUFlags()...481
xcred_Hold()...473
xcred_Init() ..471
xcred_PListEntry_t...289
xcred_PutProp() ...479
xcred_Release() ..475
xcred_SetUFlags()..482
xcred_UCredToXCred()..477
xfvs_attr Structure..296
xvfs_vnodeops Structure......................................298
xvfs_xops Structure ...296

490 X/Open Preliminary Specification (1996)

