
Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

SPIRIT Platform Blueprint

SPIRIT C Language Portability Guide

(SPIRIT Issue 3.0)

Network Management Forum

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Copyright December 1995, Network Management Forum

SPIRIT Platform Blueprint

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0)

ISBN: N/A
Document Number: J407

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to:

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

This work is published by X/Open Company Limited, on behalf of and under the terms of an agreement
with the Network Management Forum. The NMF, as authors, have granted X/Open a royalty-free, paid-
up, worldwide license to publish this work. Any enquiries relating to copyright, republication or licensing of
any parts of this publication should be directed to X/Open.

Network Management Forum
1201 Mount Kemble Avenue
Morristown, NJ 07960
U.S.A.

Tel: +1 201 425 1900

ii SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Contents__

Chapter 1 Introduction ... 1
 1.1 Purpose ... 1
 1.2 Programming Technique .. 1
 1.3 How to Read this Document... 2

Chapter 2 Application Program Portability Guide 5
 C-1-1 .. 6
 C-1-2 .. 7
 C-1-3 .. 8
 C-1-4 .. 9
 C-1-5 .. 10
 C-1-6 .. 11
 C-1-7 .. 12
 C-1-8 .. 13
 C-1-9 .. 14
 C-1-10 .. 15
 C-1-11 .. 16
 C-2-1 .. 17
 C-2-2 .. 18
 C-2-3 .. 21
 C-2-4 .. 22
 C-2-5 .. 23
 C-3-1 .. 24
 C-3-2 .. 25
 C-3-3 .. 26
 C-3-4 .. 28
 C-3-5 .. 29
 C-3-6 .. 32
 C-3-7 .. 33
 C-3-8 .. 34
 C-3-9 .. 35
 C-3-10 .. 36
 C-3-11 .. 37
 C-3-12 .. 38
 C-3-13 .. 39
 C-3-14 .. 40
 C-4-1 .. 41
 C-4-2 .. 42

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) iii

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Contents

 C-4-3 .. 43
 C-4-4 .. 45
 C-4-5 .. 47
 C-4-6 .. 48
 C-4-7 .. 49
 C-4-8 .. 50
 C-4-9 .. 51
 C-4-10 .. 53
 C-4-11 .. 54
 C-4-12 .. 55
 C-4-13 .. 56
 C-4-14 .. 57
 C-5-1 .. 58
 C-5-2 .. 59
 C-5-3 .. 60
 C-5-4 .. 61
 C-5-5 .. 62
 C-5-6 .. 63
 C-5-7 .. 64
 C-5-8 .. 65
 C-5-9 .. 66
 C-5-10 .. 67
 C-5-11 .. 68
 C-6-1 .. 69
 C-6-2 .. 71
 C-6-3 .. 72
 C-6-4 .. 73
 C-6-5 .. 74
 C-6-6 .. 75
 C-6-7 .. 77
 C-6-8 .. 78
 C-6-9 .. 79
 C-6-10 .. 80
 C-6-11 .. 81
 C-6-12 .. 83
 C-7-1 .. 84
 C-7-2 .. 85
 C-7-3 .. 86
 C-7-4 .. 87
 C-7-5 .. 88
 C-8-1 .. 89
 C-8-2 .. 92
 C-8-3 .. 93
 C-8-4 .. 95
 C-9-1 .. 97
 C-9-2 .. 98
 C-9-3 .. 99
 C-9-4 .. 100

iv SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Contents

 C-10-1 .. 101
 C-11-1 .. 105
 C-11-2 .. 106
 C-11-3 .. 107
 C-11-4 .. 108
 C-11-5 .. 109
 C-11-6 .. 110
 C-11-7 .. 112
 C-11-8 .. 113
 C-11-9 .. 114
 C-11-10 .. 115
 C-11-11 .. 116
 C-11-12 .. 117
 C-11-13 .. 118
 C-11-14 .. 119
 C-11-15 .. 120
 C-11-16 .. 121
 C-11-17 .. 123
 C-11-18 .. 124
 C-11-19 .. 126
 C-11-20 .. 128
 C-11-21 .. 129
 C-11-22 .. 131
 C-11-23 .. 132
 C-11-24 .. 133
 C-11-25 .. 135
 C-11-26 .. 136
 C-11-27 .. 137
 C-11-28 .. 138

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) v

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Contents

vi SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Chapter 1

Introduction__

1.1 Purpose
This document is intended to make application programs based on the SPIRIT C-language
interface specifications (SPIRIT C) more portable.

SPIRIT C is defined to improve the portability of application programs by eliminating the
differences among implementations as far as possible. Therefore, a SPIRIT C application
program may be ported with little modification. The application program will necessarily contain
some contrived coding in order to make the implementation-defined portion more portable.

The purpose of this document is to improve the portability of the implementation-defined portion.

Implementations may include extensions beyond the range defined by SPIRIT — these are not
described here.

1.2 Programming Technique
This section describes the kinds of technique available for a program for which the wording ‘‘it
should be rewritten’’ is specified in the guide:

1. Cases where changes are made on the word basis.

Replace words with the statement below, and gather occurrences of the statements into a
specific area in the source program:

C: #define preprocessing directive

2. Cases where changes are made on the line basis.

Separate the lines to be changed and then include them into the source program.

C: #include preprocessing directive

3. Cases where changes are made on the execution basis.

Make subroutines from the parts to be changed.

C: function

4. Cases of exception handling.

Exception handling should be localised as described below, regardless of dependency on
implementations.

C: use a signal() function to specify the place where the post-process is written

5. Cases other than the above.

When the methods shown above are not applicable, comments for rewriting information
should be written in situ. How to write a comment is described below.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 1

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Programming Technique Introduction

C: From "/*" to "*/"

Limit Values

In the interface specifications, limit values are defined for each interface. An application
program which exceeds those limit values may be executed properly, but is not portable.
Application programs should be written within the limit value.

1.3 How to Read this Document
Each section of the guide is composed of the following items:

NAME
<type of guide>-<classification number>-<sequence number>

<type of guide> is C (C Language).
<classification number> is a number assigned to CLASSIFICATION.
<sequence number> is a number within the CLASSIFICATION.

CLASSIFICATION
Classification based on the content.

TITLE
A title which represents the content.

CLAUSE
The section/chapter number and its title of the corresponding specification.

GUIDANCE
The matters to be followed in order to improve portability.

EXPLANATION
Reason why it should be done in this way.

EXAMPLE
An example which shows an application program without portability, if necessary, and a
way to improve portability.

Category for Which a Solution is Available

This category includes those programs for which, although implementation-defined, there is a
solution, such as a coding method; for example, order of evaluation. The guidance for a case
like this is expressed as ‘‘shall’’ or ‘‘should’’ for a requirement, and ‘‘shall not’’ or ‘‘should not’’ for
a prohibition.

In EXAMPLE, the example of an application program of low portability is shown in Application
Program Without Portability, and the portion which varies depending on implementation is
explained. In Application Program With Portability, as a solution which does not depend on the
implementation, an example of an application program of high portability is shown.

2 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Introduction How to Read this Document

Category for Which Rewriting is Required

An application program in which names, such as file names, or processing method, such as
input/output, vary with implementations and which requires rewriting belong to this category.

The guidance for this category is expressed as ‘‘shall be rewritten’’ or ‘‘should be rewritten’’.

In EXAMPLE, the example of an application program of low portability is shown in Application
Program Without Portability, and the portion which is not portable is explained.

Others

Reserved words, for example, are listed for reference in EXAMPLE.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 3

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Introduction

4 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Chapter 2

Application Program Portability Guide__

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 5

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-1 Application Program Portability Guide

NAME
C-1-1

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Use of the same label

CLAUSE

6.1 Lexical Elements

GUIDANCE
The same name should not be used as a label more than once within the same function.

EXPLANATION
When a label which has the same name is declared more than once within the same function,
the behaviour is not defined. Therefore, the behaviour for this situation varies with the
implementation. Some treat it as a compilation error, others ignore the second and subsequent
labels. The identifiers of the same name may be used as labels within the same source
program, provided that they appear within different functions. This means that the label is
referenced only within the function where it is defined.

EXAMPLE

Application Program Without Portability

In the example below, if A and B are #defined, the label error: will appear twice.

#ifdef A
/* process of A */
error:
...

#endif /* A */
#ifdef B

/* process of B */
error:
...

#endif /* B */

6 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-1-2

NAME
C-1-2

CLASSIFICATION
Statements and Preprocessing Directives
Character String Handling

TITLE
Character constants during preprocessing and execution

CLAUSE

6.1.3.4 Character Constants

6.8.1 Conditional Inclusion

GUIDANCE
Characters should not be compared by preprocessing directives, and care should be used when
the character is accessed by a value.

EXPLANATION
In SPIRIT, the value of characters is implementation-defined, except that SPIRIT defines that
when 0123456789 identifies the numbers, each number must have a value greater by one than
the previous number. Therefore, an application program which assumes the relation of
characters of a different class is not portable.

EXAMPLE

Application Program Without Portability

In the example below, when the code used by the implementation is ASCII code, it is true,
because ’A’ == 0x41, ’0’ == 0x31. On the other hand, when the code used is EBCDIC code, it is
false, because ’A’ == 0xC1, ’0’ == 0xF0. So, it is not portable.

#if ’A’ > ’0’
#endif

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 7

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-3 Application Program Portability Guide

NAME
C-1-3

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Generation of ‘‘defined’’ wording

CLAUSE

6.8.1 Conditional Inclusion

GUIDANCE
Be careful not to generate, intentionally or unintentionally, the wording of ‘‘defined’’ during the
expansion of #if or #elif preprocessing directives.

EXPLANATION
Prior to evaluation of constant expressions, the #if or #elif preprocessing directive expands the
preprocessing tokens. However, the behaviour is not defined when the token of ‘‘defined’’ is
generated as a result of the expansion and when the format of the unary operator ‘‘defined’’ is
not correct format prior to the macro replacement.

EXAMPLE

Application Program Without Portability

In the example below, though ‘‘defined(bar)’’ is expected, the result can be ‘‘defined(---)’’.

#define cat(a,b) a ## b
#define bar ---
#if cat(defined,(bar))

/* do something */
#endif

8 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-1-4

NAME
C-1-4

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Comment following #else and #endif

CLAUSE

6.8.1 Conditional Inclusion

GUIDANCE
Comment must not be used following #else and #endif .

EXPLANATION
Text used as a comment must not be used following #else and #endif , unless it is surrounded
by comment brackets, /* */.

EXAMPLE
In the examples given below, the first one is incorrect, and the second one is permitted.

/* Incorrect */
#Ifdef TOKEN

...
#endif(Ifdef TOKEN)

/* Permitted */
#Ifdef TOKEN

...
#endif /*(ifdef TOKEN)*/

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 9

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-5 Application Program Portability Guide

NAME
C-1-5

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
The format of header name of #include is in error

CLAUSE

6.8.2 Source File Inclusion

GUIDANCE
Write the header names in standard format correctly.

EXPLANATION
The preprocessing token of the #include preprocessing directive may be macro expanded.
However, the behaviour for the case where the result of the expansion is neither <filename> nor
‘‘filename’’ is not defined.

EXAMPLE
In the following example, INCLUDE_FILE will not be expanded to a form of <filename> or
‘‘filename’’. Therefore, it must be checked-out by the compiler or must follow the
implementation-defined behaviour (for example, the preprocessing directive is ignored).

#define INCLUDE_FILE version6.h
#include INCLUDE_FILE

10 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-1-6

NAME
C-1-6

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Macro actual argument without preprocessing wording

CLAUSE

6.8.3 Macro Replacement

GUIDANCE
The actual argument of the function-like macro should not be null.

EXPLANATION
In SPIRIT, if the actual argument is null in a function-like macro invocation, the behaviour is
undefined. Note that there are implementations which do not treat the null actual-argument as
an error explicitly.

EXAMPLE

Application Program Without Portability

In the example below, the function-like macro GetReq() is defined having two dummy
arguments, but those arguments are invoked in null.

#define SIZEOF(x) sz_##x
#define GetReq(name, req) if ((dpy->bufptr + SIZEOF(x##name##Req)) >

dpy->bufmax) _XFlush(dpy); dpy->bufptr += SIZEOF(x##name##Req);
dpy->request++

...
GetReq();

Some implementations determine this as an error, and others continue processing by expanding
this as shown below on the assumption that both arguments are null.

if ((dpy->bufptr + sz_xReq) > dpy->bufmax)
_XFlush(dpy);

dpy->bufptr += sz_xReq;
dpy->request++

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 11

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-7 Application Program Portability Guide

NAME
C-1-7

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Macro actual argument with preprocessing directive line format

CLAUSE

6.8.3 Macro Replacement

GUIDANCE
This type of macro actual argument should not be provided.

EXPLANATION
If an actual argument is provided in the wording of the preprocessing directive line format in a
function-like macro invocation, the behaviour is undefined. Note that some implementations
handle this case on the assumption that the argument of null character string has been passed.

EXAMPLE
In the following example, fixed behaviour may not be guaranteed, because the actual argument
of the function-like macro F includes a preprocessing directive of "#include".

#define F(X) {X}
...

F(
#include <stddef.h>
)

12 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-1-8

NAME
C-1-8

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Order of processing of the preprocessing operators, # and ##

CLAUSE

6.8.3.2 The # Operator

GUIDANCE
The preprocessing operators, # and ##, should not be used together.

EXPLANATION
The evaluation order of # and ## is unspecified. Therefore, these preprocessing operators
should not be used in a way that may produce a different result depending upon the evaluation
order of the operators.

EXAMPLE

Application Program Without Portability

With the following function-like macro, the reference of g(1) results in "1"y if # is processed first,
and it results in the value of #1y; that is, "1y", if ## is processed first.

#define g(x) #x ##y

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 13

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-9 Application Program Portability Guide

NAME
C-1-9

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Class and behaviour of a #pragma preprocessing directive

CLAUSE

6.8.6 Pragma Directive

GUIDANCE
An application program which uses a #pragma preprocessing directive must be rewritten when
it is transferred to other implementations.

EXPLANATION
The class and behaviour of #pragma is implementation-defined. Some implementations do not
support #pragma .

EXAMPLE

Application Program Without Portability

The following #pragma directives are some of the examples of preprocessing directives which
impair portability.

#pragma assembler
#pragma chars unsigned
#pragma map LongExternFunction,lextfun

The #pragma directives which are not related with generation of codes, such as a listing control
directive, do not impair the portability of an application program in the implementation which
does not support #pragma , because the #pragma is ignored in such an implementation.

14 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-1-10

NAME
C-1-10

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Value of NULL pointer

CLAUSE

7.1.6 Common Definitions <stddef.h>

GUIDANCE
To identify a null pointer, use NULL instead of a value of zero.

EXPLANATION
The type of the NULL pointer is implementation-defined. Therefore, describe the null pointer as
"NULL", for ease of reading of the source code and in view of portability.

EXAMPLE

Application Program Without Portability

In the program given below, the error checking of fopen() results in a comparison of inconsistent
types.

#include <stdio.h>
FILE *fp;
char *filename;
extern void notify(char *msg);

...
if ((fp = fopen(filename, "r")) == 0) {

notify ("can’t open data file");
exit (EXIT_FAILURE);

}

Application Program With Portability

Rewrite the if statement as follows. NULL is defined in <stdio.h> .

#include <stdio.h>
FILE *fp;
char *filename;
extern void notify(char *msg);

...
if ((fp = fopen(filename, "r")) == NULL) {

notify("can’t open data file");
exit (EXIT_FAILURE);

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 15

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-1-11 Application Program Portability Guide

NAME
C-1-11

CLASSIFICATION
Statements and Preprocessing Directives

TITLE
Dummy arguments of offsetof macro

CLAUSE

7.1.6 Common Definitions <stddef.h>

GUIDANCE
A member of a bit-field should not be specified for dummy argument.

EXPLANATION
In SPIRIT, the behaviour is undefined when the structure member which is not addressable by
the & operator (that is, a bit-field), is specified to the second argument of the macro of offsetof.

EXAMPLE
In the example given below, a fixed result is not guaranteed, because the second argument b of
the offsetof refers to a bit-field.

struct foo {
unsigned int a:3;
unsigned int b:4;
unsigned int c:4;
unsigned int d:5;
unsigned int e:10;
unsigned int f:6;

};
...

size = offsetof(struct foo, b);

16 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-2-1

NAME
C-2-1

CLASSIFICATION
Identifiers, File Names and Header Names

TITLE
Identifiers (distinction of lower-case and upper-case letters)

CLAUSE

6.1.2 Identifiers

GUIDANCE
The names for external names (identifiers with external linkage) should not be used if they
become the same name when the distinction between lower-case and upper-case is eliminated.

EXPLANATION
Although it is defined that the lower-case and upper-case letters are handled differently for
internal names; for external names, it is implementation-defined and it is allowed not to
distinguish the lower-case and upper-case letters. Therefore, external names should be
determined on the assumption that there is no distinction between lower-case and upper-case.
Otherwise, the application program may be non-transferrable.

EXAMPLE

Application Program Without Portability

extern int func(char);
extern int FUNC(char);

Some systems treat func and FUNC as the same name, and others treat them as different
names. To make the application program portable, avoid using the same external names with
the only difference being lower-case and upper-case.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 17

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-2-2 Application Program Portability Guide

NAME
C-2-2

CLASSIFICATION
Identifiers, File Names and Header Names

TITLE
Use of the reserved identifiers

CLAUSE

7.1.3 Reserved Identifiers

GUIDANCE
The identifier with the same name as an identifier reserved in that context (other than as allowed
by Clause 7.1.3) should not be declared or defined, because the behaviour is undefined for
those cases.

EXPLANATION
The reserved identifiers for each context are as follows:

1. All identifiers that begin with two underscores, and all identifiers that begin with an
underscore and an upper-case letter in all contexts.

2. All external identifiers that begin with an underscore in the context used as identifiers with
file scope in both the ordinary identifier and tag name spaces.

3. Each macro name listed in Clauses 7.1.4 through 7.16 and used in all contexts, if any of
its associated headers is included.

4. All identifiers with external linkage listed in Clauses 7.1.4 through 7.16 used in all contexts
as identifiers with external linkage.

5. Each identifier used in the context as an identifier with file scope in the same name space
if any of its associated headers is included.

The following table contains the reserved identifiers which belong to 3. through 5. above.

18 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-2-2

Reserved Macro Names (3.)

Associated
Header Corresponding Identifiers

EDOM, ERANGE, EILSEQ, errno (this can be defined as an external
identifier), a macro name which starts with a letter E and the next letter is
either a numeric or an upper-case letter.

<errno.h>

NULL, offsetof<stddef.h>

NDEBUG<assert.h>

LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC,
LC_TIME, NULL, a macro name which starts with letter LC and the next
letter is an upper-case letter.

<locale.h>

HUGE_VAL<math.h>

SIG_DFL, SIG_ERR, SIG_IGN, SIGABRT, SIGFPE, SIGILL, SIGINT,
SIGSEGV, SIGTERM, a macro name which starts with letter SIG or
SIG_ and the next letter is an upper-case letter.

<signal.h>

va_start, va_arg<stdarg.h>

_IOFBF, _IOLBF, _IONBF, BUFSIZ, EOF, FILE, FILENAME_MAX,
L_tmpnam, NULL, SEEK_CUR, SEEK_END, SEEK_SET, TMP_MAX,
stderr, stdin, stdout

<stdio.h>

EXIT_FAILURE, EXIT_SUCCESS, MB_CUR_MAX, NULL, RAND_MAX<stdlib.h>

NULL<string.h>

CLOCK_PER_SEC, NULL<time.h>

Reserved External Identifiers (4.)

Associated
Header Corresponding Identifiers

errno (this can be defined in a macro), an identifier which starts with is or
to and the next letter is a lower-case letter.

<errno.h>

isalnam(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(), tolower(), toupper()

<ctype.h>

<locale.h> setlocale, localeconv
acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, frexp, idexp,
log, log10, modf, pow, sqrt, ceil, fabs, floor, fmod, an identifier consists
of one of the function names listed above and suffixed with an f or l.

<math.h>

<setjmp.h> setjmp(), longjmp()
<signal.h> signal(), raise()
<stdarg.h> va_end

remove(), rename(), tmpfile(), tmpnam(), fclose(), fflush(), fopen(),
freopen(), setbuf(), fprintf(), fscanf(), printf(), scanf(), sprintf(),
sscanf(), vfprintf(), vprintf(), vsprintf(), fgetc(), fgets(), fputc(), fputs(),
getc(), getchar(), gets(), putc(), putchar(), puts(), ungetc(), fread(),
fwrite(), fgetpos(), fseek(), fsetpos(), ftell(), rewind(), clearerr(), feof(),

<stdio.h>

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 19

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-2-2 Application Program Portability Guide

Associated
Header Corresponding Identifiers

ferror(), perror()
atof(), atoi(), atol(), strtod(), strtol(), strtoul(), rand(), srand(), calloc(),
free(), malloc(), realloc(), abort(), atexit(), exit(), getenv(), system(),
bsearch(), qsort(), abs(), div(), labs(), ldiv(), mblen(), mbtowc(),
wctomb(), mbstowcs(), wcstombs(), an identifier which starts with str
and the next letter is a lower-case letter.

<stdlib.h>

memcpy(), memmove(), strcpy(), strncpy(), strcat(), strncat(),
memcmp(), strcmp(), strcoll(), strncmp(), strxfrm(), memchr(), strchr(),
strcspn(), strpbrk(), strrchr(), strspn(), strstr(), strtok(), memset(),
strerror(), strlen(), an identifier which starts with either str, mem or wcs
and the next letter is a lower-case letter.

<string.h>

clock(), difftime(), mktime(), time(), asctime(), ctime(), gmtime(),
localtime(), strftime()

<time.h>

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq<iso646.h>

mbstate_t , NULL, size_t , struct tm , wchar_t ,
WCHAR_MAX,WCHA_MIN, wint_t

<wchar.h>

<wctype.h> wctrans_t, wctype_t, WEOF, wint_t(5)

Identifiers with File Scope (5.)

(The parenthesised phrase represents the corresponding name spaces.)

Associated Header Corresponding Identifiers
<ctype.h> ptrdiff_t , size_t , wchar_t (type names)
<locale.h> lconv (tag name)
<setjmp.h> jmp_buf (type name)
<signal.h> sig_atomic_t (type name)
<stdarg.h> va_list (type name)
<stdio.h> fpos_t , size_t (type names)

div_t , ldiv_t , size_t , wchar_t (type names)<stdlib.h>

<string.h> size_t (type name)
<time.h> clock_t , time_t , size_t (type names)

tm (tag name)

20 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-2-3

NAME
C-2-3

CLASSIFICATION
Identifiers, File Names and Header Names

TITLE
Structure of file names for preprocessing directives, library function

CLAUSE

6.8.2 Source File Inclusion

7.9.3 Files

GUIDANCE
Rewriting of the file name for the #include preprocessing directive, library function may be
required in some cases. It is desirable to use macros and modify only the macros on
conversion, or if the target operating system is known beforehand, separate by macros and
localise the portion to be modified at conversion time.

EXPLANATION
The association operation of the file name in the preprocessing directive, library function within a
program to the actual file name is implementation-defined. Depending on the system, it may be
permitted to add user ID to the file name in the source program, or to assign the member name
to the file name.

EXAMPLE

Application Program Without Portability

#include "infile"

The file name recognised by the system is not necessarily ‘‘infile’’. Sometimes it is ‘‘uid.infile’’, or
‘‘uid.lib(infile)’’ with a member name. It must be rewritten according to the naming rule for file
names of the target system.

Application Program With Portability

#if SYSTEM == ’a’
#include "infile"

#elif SYSTEM == ’b’
#include "uid.infile"

#endif

If the target system is known beforehand, it may be possible to write a program in this way. It
may also be possible to design the naming rule of file names of the target system so as to
eliminate the necessity of rewriting of the file name.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 21

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-2-4 Application Program Portability Guide

NAME
C-2-4

CLASSIFICATION
Identifiers, File Names and Header Names

TITLE
Library function (multiple opens of a file)

CLAUSE

7.9.3 Files

GUIDANCE
The same file should not be opened multiple times.

EXPLANATION
Whether the same file can be simultaneously opened multiple times is implementation-defined.
An application program should not be coded on the assumption that a file can be opened
multiple times.

EXAMPLE

Application Program Without Portability

fp1=fopen("spirit.dat","r");
fp2=fopen("spirit.dat","r");

...
fscanf(fp1,"X=%d",x);
fscanf(fp2,"Y=%d",y);

Application Program With Portability

The following is an alternative:

fp1=fopen("spirit.dat","r");
fp2=fopen("tmp.dat","w");

/* copy the contents from fp1 to fp2 */
fclose(fp1);
fclose(fp2);
fp1=fopen("spirit.dat","r");
fp2=fopen("tmp.dat","r");

...
fscanf(fp1,"X=%d",x);
fscanf(fp2,"Y=%d",y);

22 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-2-5

NAME
C-2-5

CLASSIFICATION
Identifiers, File Names and Header Names

TITLE
Library function (remove() without fclose())

CLAUSE

7.9.4.1 The remove() Function

GUIDANCE
An open file must be closed before a remove() function is executed for it.

EXPLANATION
If the file is open, the behaviour of the remove() function is implementation-defined. This does
not normally happen in a correct program. The remove() function should be executed on the file
after it is closed.

EXAMPLE

Application Program Without Portability

fileptr=fopen("fname","r");
...

remove("fname");

The remove() function can be processed improperly depending upon the implementation.

Application Program With Portability

fileptr=fopen("fname","r");
...

fclose(fileptr);
remove("fname");

An fclose() function should be called prior to the execution of the remove() function.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 23

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-1 Application Program Portability Guide

NAME
C-3-1

CLASSIFICATION
Internal Representation and Type

TITLE
Characters (the range of value of char type)

CLAUSE

6.2.1.1 Characters and Integers

GUIDANCE
When char type data is used as a value, it should be clearly specified signed or unsigned .

EXPLANATION
Whether a ‘‘plain’’ char has the range of equal values of a signed char or of an unsigned char
is implementation-defined.

EXAMPLE

Application Program Without Portability

char a;
...

if (a == 255)
func (a);

In the implementation where the ‘‘plain’’ char is converted to a signed int , the if expression will
never be satisfied and the func() function will not be called.

Application Program With Portability

unsigned char a;
...

if(a == 255)
func (a);

If there are cases where the value of a exceeds the range of the signed char , as in this case, it
should be declared as an unsigned char .

24 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-2

NAME
C-3-2

CLASSIFICATION
Internal Representation and Type

TITLE
Floating-point number (truncation at type conversion)

CLAUSE

6.2.1.3 Floating and Integral

GUIDANCE
When the conversion of a value of integer type to floating type causes a truncation, a direction
of truncation should not be assumed.

EXPLANATION
When a value of integer type is converted to floating type, if the number of significant digits of
the mantissa of the floating-point number is less than that of the integer, cancellation is
performed. It is implementation-defined whether the digits cancelled are to be discarded or
rounded. For example, if the five digits integer, 12345, is to be converted to a floating-point
number which has four significant digits, there are some cases as shown below:

integer floating-point number
12345 1.234 X 104 . . . truncation
12345 1.235 X 104 . . . rounding

The program should be coded in such a way so as not to be affected by the difference of
precision after the type conversion.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 25

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-3 Application Program Portability Guide

NAME
C-3-3

CLASSIFICATION
Internal Representation and Type

TITLE
Floating-point number (the result when demoted)

CLAUSE

6.2.1.4 Floating Types

GUIDANCE
When a floating-point number is converted to a narrower floating-point number, the direction of
truncation or rounding should not be assumed.

EXPLANATION
When a floating-point number is demoted to a narrower floating-point number, the number of
significant digits of the mantissa is reduced and it results in cancellation. It is implementation-
defined whether such digits are discarded or rounded.

float x;
double y;
x=y;

The result of this substitution differs in accordance with the implementation. Therefore,
programs should be coded so as not to be affected by the difference of a type conversion or not
to accumulate the differences of type conversions.

EXAMPLE

Application Program Without Portability

float x;
...

x = 10.0;
while (x < 15.0) {

printf ("x = %e, f(x) = %e0,x,f(x));
x += 1e-5 ; /* operation on float */

}

Application Program With Portability

float x;
long n;

...
x=10.0;
n=(15.0-x)/ 1e-5
while (n--> 0){

printf("x = %e, f(x) = %e0,x,f(x));
x += 1e-5; /* operation on double */

}

26 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-3

The variance of the number of loops caused by the accumulation of errors may be avoided by
counting the number of loops beforehand. The program of this example is portable because it
has a loop-counter n. However, the errors of the value of the variable x still depend on the
implementation.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 27

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-4 Application Program Portability Guide

NAME
C-3-4

CLASSIFICATION
Internal Representation and Type

TITLE
Array and pointer (size_t type)

CLAUSE

6.3.3.4 The sizeof Operator

GUIDANCE
An application program should not assume the type of size_t .

EXPLANATION
size_t is an integer type necessary for holding the maximum size of an array. It is defined as an
unsigned integral type, and the definition of actual type is implementation-defined, such as
unsigned long , unsigned int , and so on.

EXAMPLE

Application Program Without Portability

double fa [10000];
unsigned int x;
x = sizeof fa;

When the result of the application of a sizeof operator to an array is demoted to int , it may
result in cancellation.

Application Program With Portability

double fa [10000];
size_t x;
x = sizeof fa;

Declare x in the form of size_t as shown above.

28 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-5

NAME
C-3-5

CLASSIFICATION
Internal Representation and Type

TITLE
Array and pointer (result of type conversion between pointer and integer)

CLAUSE

6.3.4 Cast Operators

GUIDANCE
A pointer may be converted to an integer and back again after the operation. Care must be
taken if a type conversion between a pointer and an integer is involved, because the result may
vary with the hardware architecture and the value may sometimes not be held.

EXPLANATION
A type conversion between a pointer and an integer is implementation-defined. Some hardware
requires a reversion of the upper and lower addresses when addressing a pointer. Application
programs written for this type of hardware must be rewritten when they are transferred to
hardware which requires no such reversion.

EXAMPLE

Application Program Without Portability

char *p,a;
p = &a;
p = (char *) ((int) p+2);

The coding shown above is applicable for the hardware in which the result of an operation of an
integer value can be used as the address value directly. However, the coding must be rewritten
if the hardware requires the different number of bytes to be added when the address is
incremented by one byte. An application program with portability may be coded using ‘‘void *’’
as shown below, provided that no operation is performed on a pointer, and only a temporary
avoidance of the pointer is required.

Application Program Without Portability

float *fp[F_MAX]; /* fp[] and ip[] are to be stacking the pointer */
int *ip[I_MAX]; /* group for float and the pointer group for int, */

/* respectively.*/
struct stack{

int s_type; /* stack location of pointer type voided */
long s_ptr; /* void locations of various pointers --> */

/* using long type */
}s[S_MAX];
i = 0;
s[i].s_ptr = (long)fp[j]; /* The pointer value will not be always */
s[i].s_type=FLOAT; /* the same as the original value when */
i ++ ; /* reconverted, because the pointer is */

/* converted to long.*/
j ++ ;
s[i].s_ptr = (long)ip[k];
s[i].s_type = INT;

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 29

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-5 Application Program Portability Guide

i ++ ;
k ++;

...
i=0; /* Following is a loop to return the pointer */
while (... /* continue condition */){

switch(s[i].s_type){
case INT;

ip[j++] = (int *) s[i].s_ptr;
/* The pointer value will not be always the */

break; /* same as the original value when reconverted, */
/* because the pointer is converted to long.*/

case FLOAT;
fp[k++] = (float *)) s[i].s_ptr;

break;
...

}
i++ ;

}

Application Program With Portability

float *fp[F_MAX]; /* fp[] and ip[] are to be stacking the pointer */
int *ip[I_MAX]; /* group for float and the pointer group for int, */

/* respectively. */
struct stack{

int s_type; /* stack location of pointer type voided */
void s_ptr; /* void locations of various pointers --> */

/* use ’void *’ type */
} s[S_MAX];
i = 0;
s[i].s_ptr = (void *)fp[j];

/* If a pointer is converted to ’void *’ type, */
s[i].s_type = FLOAT; /* it contains the original value when

reconverted. */
i ++ ;
j ++ ;
s[i].s_ptr = (void *)ip[k];
s[i].s_type = INT;
i ++ ;
k ++ ;
i = 0; /* the following is the loop which returns the

pointer. */
while (.. /* continue condition */){

switch(s[i].s_type){
case INT;

ip[j++] = (int *) s[i].s_ptr;
/* It is guaranteed that the pointer value is the */

break; /* same as the original value when reconverted, */
/* because it has been converted to */
/* ’void *’ type. */

case FLOAT;
fp[k++] = (float *) s[i].s_ptr;

30 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-5

break;
...

}
i++ ;

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 31

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-6 Application Program Portability Guide

NAME
C-3-6

CLASSIFICATION
Internal Representation and Type

TITLE
Array and pointer (ptrdiff_t type)

CLAUSE

6.3.6 Additive Operators

GUIDANCE
An application program which assumes the type of ptrdiff_t should not be coded.

EXPLANATION
The type of ptrdiff_t is a signed integral type, and the actual type, such as long int , is
implementation-defined. Therefore, application programs which are affected by type are not
portable.

EXAMPLE

Application Program Without Portability

int a[n];
int i,j,k;
i = &a[j] - &a[k];

The type of pointer subtraction is ptrdiff_t , so it is possible that the variable i of int type cannot
hold the result.

Application Program With Portability

int a[n];
ptrdiff_t i;
int j,k;
i = &a[j] - &a[k];

32 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-7

NAME
C-3-7

CLASSIFICATION
Internal Representation and Type

TITLE
Structures, unions, enumerations and bit-fields (accessed by a member of a different type)

CLAUSE

6.3.2.3 Structure and Union Members

GUIDANCE
A member of a union object should not be accessed using a member of a different type.

EXPLANATION
If a member of an object is accessed by a member of a different type, the result depends on the
internal representation of the data. The internal representation of data is implementation-
defined, and therefore programs which are affected by the internal representation of data should
not be coded.

EXAMPLE

Application Program Without Portability

union { float a;
struct { char b;

char c[3]; } d
} e ;
...
/* A process where b is an exponent part, and c is a mantissa.*/

The program which depends on the internal representation of data as shown above is not
portable.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 33

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-8 Application Program Portability Guide

NAME
C-3-8

CLASSIFICATION
Internal Representation and Type

TITLE
Structures, unions, enumerations and bit-fields (boundary alignment and padding)

CLAUSE

6.5.2.1 Structure and Union Specifiers

GUIDANCE
Application programs should not be coded in a way that assumes the existence or nonexistence
of boundary alignment when any member of a structure is accessed.

EXPLANATION
It is implementation-defined whether each member of a structure is to be boundary aligned or
not. If a program is coded in such a way that assumes the existence or nonexistence of
boundary alignment, it is not portable.

EXAMPLE

Application Program Without Portability

struc t t { char a;
int b; } x[10][10];

...
memcpy (& x[i], & x[j], 80);

In the example shown above, an alignment at the 4-byte boundary is assumed. However, the
element length of x is implementation-defined.

Application Program With Portability

struc t t { char a;
int b; } x[10][10];

...
memcpy (& x[i], & x[j], sizeof (struct t)*10);

34 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-9

NAME
C-3-9

CLASSIFICATION
Internal Representation and Type

TITLE
Structures, unions, enumerations and bit-fields (bit-fields of int)

CLAUSE

6.5.2.1 Structure and Union Specifiers

GUIDANCE
In the bit-field of a structure of int , whether it is signed or unsigned must be specified explicitly.

EXPLANATION
Whether a ‘‘plain’’ int bit-field is considered signed or unsigned is implementation-defined. In
order to keep the application program portable, either signed or unsigned must be indicated.

EXAMPLE

Application Program Without Portability

struc t t { int a:4 ;
int b:4 ; } x;

x.a = 15;

The range of the values which may be entered in x.a depends on whether the int type indicates
signed or unsigned . If a may have a value of 0 through 15, it should be coded as unsigned int
a:4.

Application Program With Portability

struc t t { unsigned int a:4;
unsigned int b:4; } x;

x.a = 15;

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 35

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-10 Application Program Portability Guide

NAME
C-3-10

CLASSIFICATION
Internal Representation and Type

TITLE
Structures, unions, enumerations and bit-fields (order of allocation of bit-fields)

CLAUSE

6.5.2.1 Structure and Union Specifiers

GUIDANCE
The order of allocation of bit-fields is implementation-defined. Therefore, a program which
assumes the order of allocation of bit-fields should not be coded.

EXPLANATION
The order of allocation of bit-fields within a unit is implementation-defined, and usually it is from
high-order to low-order, but in some implementations, such as 80x86, it is from low-order to
high-order. This presents no problem to the telecommunication protocol process, which mostly
manipulates bit data, because it uses a routine only for the purpose of bit handling, and file
exchange is done on a character basis. As the order of allocation of bit-fields varies with
implementations, the data exchange which is sensitive to bit is not portable.

EXAMPLE

Application Program Without Portability

struct tag {
unsigned a:3,

b:4,
c:25;

};
union utag {

struct tag x;
unsigned m;

} u;
F() {

u.x.a = 0x6;
u.x.b = 0xf;
u.x.c = 0x1ffffff;
if (u.m == 0xdfffffff)
{
/* Execute this if it is from the highest-order bit */
}
else {
/* Execute this if it is from the lowest-order bit */
}

}

36 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-11

NAME
C-3-11

CLASSIFICATION
Internal Representation and Type

TITLE
Structures, unions, enumerations and bit-fields (boundary of bit-fields)

CLAUSE

6.5.2.1 Structure and Union Specifiers

GUIDANCE
Programs should not be coded in such a way that a bit-field straddles a storage-unit boundary.

EXPLANATION
It is implementation-defined whether to allocate storage-units straddling a boundary or to
allocate the next unit when a bit-field which is to straddle a storage-unit boundary is declared.

EXAMPLE

Application Program Without Portability

struct tag { unsigned int a:16;
unsigned int b:24; } x;

p = (int *) &x; /* Assuming that b is in the field immediately */
if ((*p) == 0) ... /* following a */

Application Program With Portability

struct tag { unsigned int a:16;
unsigned int b1:16;
unsigned int b2:8; } x;

p = (int *) &x; /* As b is in the field immediately following a, */
if ((*p) == 0) ... /* so that b1 works as expected. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 37

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-12 Application Program Portability Guide

NAME
C-3-12

CLASSIFICATION
Internal Representation and Type

TITLE
Representation of floating type

CLAUSE

6.1.2.5 Types

GUIDANCE
Programs should not be coded to assume the internal representation of specific hardware.

EXPLANATION
The internal representation of floating type data is unspecified, and it depends on the hardware.
A program which assumes the internal representation of a specific machine type is not portable.

38 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-3-13

NAME
C-3-13

CLASSIFICATION
Internal Representation and Type

TITLE
Alignment of bit-fields

CLAUSE

6.5.2.1 Structure and Union Specifiers

GUIDANCE
An application program which assumes that bit-fields have a specific boundary alignment should
not be coded.

EXPLANATION
Except a special case where the immediately following bit-field of a bit-field with a width of 0 is
the boundary of int , the alignment of the storage unit allocated with bit-fields is unspecified.
Therefore, the application program which assumes that bit-fields have a specific boundary
alignment is not portable.

EXAMPLE

Application Program Without Portability

struct { char a;
int b: 8;
int c: 24; } d;

struct { char x;
int y; } *p;

p = &d;
p -> y = 0;

Which part of a bit-field is reset to 0 varies with the boundary alignment of b.

Application Program With Portability

struct { char a;
union { int y;

struct { int b: 8;
int c: 24; } z;

} w;
} d;

d.w.y = 0;

In order to make the application program portable, specify field sharing explicitly in the
specification of union.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 39

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-3-14 Application Program Portability Guide

NAME
C-3-14

CLASSIFICATION
Internal Representation and Type

TITLE
Storage arrangement of parameters

CLAUSE

6.7.1 Function Definitions

GUIDANCE
An application program which assumes the arrangement of parameters in the storage should
not be coded.

EXPLANATION
How the parameters are arranged in the storage is unspecified. Therefore, the programs which
assume the arrangement of parameters are not portable.

EXAMPLE

Application Program Without Portability

f(char a,char b)
{ char c[2];
...

memcpy(c,&a,2); ...}

Copying two bytes of the values of parameters, a and b, by one memcpy() function is not
always successful, because the arrangement of parameters varies with the implementation.

Application Program With Portability

f(char a,char b)
{ char c[2];
...

c[0] = a;
c[1] = b; ...}

40 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-1

NAME
C-4-1

CLASSIFICATION
Arithmetic Operation

TITLE
Order of evaluation of an expression

CLAUSE

6.3 Expressions

GUIDANCE
An application program which assumes the order of evaluation of an expression should not be
coded.

EXPLANATION
Even if the order of evaluation is intended to be specified explicitly, such an order is unspecified,
and the compiler may change it freely within the constraints of the priority. Therefore, if the
order of evaluation of an expression is important, specify the sequence point explicitly by using a
substitution, for example.

EXAMPLE

Application Program Without Portability

int a, b, c, d;
d = a + (b - c);

/* It cannot be guaranteed that ’b-c’ should be evaluated earlier. */

Application Program With Portability

int a, b, c, d;
d = b - c;
d += a;

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 41

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-2 Application Program Portability Guide

NAME
C-4-2

CLASSIFICATION
Arithmetic Operation

TITLE
Timing of generating side effects

CLAUSE

6.3 Expressions

6.3.2.2 Function Calls

GUIDANCE
The timing of a generation of side effects should not be assumed.

EXPLANATION
The timing of generating side effects is unspecified. The timing may vary depending upon the
place where it is described, even within the same implementation.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
int i = 0;
printf("side effect sample %d : %d 0, i, i++);

In the example shown above, the timing when i++ is evaluated varies with the implementation,
and the result can vary as follows:

side effect sample 0 : 0
side effect sample 0 : 1
side effect sample 1 : 0
side effect sample 1 : 1

Application Program With Portability

An application program should be coded as shown below in order not to be affected by the
timing of generation of side effects, depending on the result required.

#include <stdio.h>
int i = 0;
int j;
j = i;
i++;
printf("side effect sample %d : %d 0, j, i);

The following is a display of the example shown above.

side effect sampl e 0 : 1

42 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-3

NAME
C-4-3

CLASSIFICATION
Arithmetic Operation

TITLE
Returned values of strcmp(), strncmp(), wcscmp() and wcsncmp() functions

CLAUSE

7.11.4.2 The strcmp() Function

7.11.4.4 The strncmp() Function

7.15.2.4.1 The wcscmp() Function

7.15.2.4.3 The wcsncmp() Function

GUIDANCE
Values other than zero which are returned by the strcmp() and strncmp() functions, or the
wcscmp() and wcsncmp() functions for different character types, should not be used.

EXPLANATION
These functions may compare character strings, but the values described below should not be
used, as each of them depends on the character code:

• values other than zero which are returned by strcmp() and strncmp() functions for different
character types

• values other than zero which are returned by wcscmp() and wcsncmp() functions.

EXAMPLE

Application Program With Portability

#include <string.h>
char *func(char *c1, char *c2)
{
if (strcmp(c1, c2) == 0)

return NULL;
if (strcmp(c1, c2) > 0)

return c1;
if (strcmp(c1, c2) < 0)

return c2;
/* If c1 and c2 contain different types of characters, */
/* either c1 or c2 is returned depending upon the implementation. */

}

For example, if the strcmp() function and:

c = func("A0", "AA");

are used together, the result will be as follows:

c = "AA" for ASCII code implementation
c = "A0" for EBCDIC code implementation

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 43

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-3 Application Program Portability Guide

The following chart shows the codes for "A" and "0" represented by ASCII and EBCDIC codes,
respectively:

"A" "0"
ASCII 0x41 0x30
EBCDIC 0xC1 0xF0

44 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-4

NAME
C-4-4

CLASSIFICATION
Arithmetic Operation

TITLE
Arithmetic conversion when the result of the operation cannot be represented in storage

CLAUSE

6.2.1.3 Floating and Integral

6.2.1.4 Floating Types

6.3 Expressions

6.3.4 Cast Operators

GUIDANCE
If an arithmetic conversion or operation is expected to produce a result which cannot be
represented, an algorithm to check the maximum or minimum space provided should be
included before the operation is performed.

EXPLANATION
When a value of floating type is converted to an integral type, the value of the integer cannot be
represented by the integral type.

When a double is demoted to float or a long double to double or float , the value being
converted is outside the range of values that can be represented.

When a pointer is converted to an integral type, the length of the range is not enough.

When an arithmetic conversion/operation produces a result which cannot be represented as in
the cases described above, the behaviour is undefined. The behaviour varies with the
implementation as described below:

• An implementation may abort the process and transfer control to the operating system.

• A system which generates signals.

• An implementation may continue processing with no error indication and with the value
indeterminate.

• An implementation may convert with arbitrary truncation.

The behaviour after conversion will strongly depend on the implementation. To avoid this, the
value of **_MIN or **_MAX of the converting-to type should be checked before the conversion is
performed.

EXAMPLE

Application Program Without Portability

#include <limits.h>
long a;
double b;
a = b; /* If the value of b cannot be represented in a, */

/* the behaviour is undefined. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 45

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-4 Application Program Portability Guide

Application Program With Portability

#include <limits.h>
long a;
double b;
if ((LONG_MIN < b) &&(b < LONG_MAX)) /* checks the range */

a = b;
else {

... /* describes an exception process */
}

46 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-5

NAME
C-4-5

CLASSIFICATION
Arithmetic Operation

TITLE
An object between two sequence points

CLAUSE

6.3 Expressions

GUIDANCE
An object should not be modified more than once between two sequence points.

EXPLANATION
As modifying an object more than once between two sequence points is an undefined
behaviour, great care must be taken not to do so.

EXAMPLE

Application Program Without Portability

The example shown below modifies one object twice between two sequence points, so it is
undefined. The behaviour varies with the implementation.

i = ++i + 1;

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 47

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-6 Application Program Portability Guide

NAME
C-4-6

CLASSIFICATION
Arithmetic Operation

TITLE
Invalid arithmetic operation

CLAUSE

6.3.5 Multiplicative Operators

GUIDANCE
When an invalid arithmetic operation is suspected, an algorithm which checks it beforehand
should be included.

EXPLANATION
For division by zero, for example, the behaviour is undefined and may vary with the
implementation as described below:

1. An implementation may abort processing and transfer control to the operating system.

2. The system which generates signals.

3. An implementation may continue processing with no error indication and with the values
indeterminate.

The behaviour after such an operation will strongly depend on an implementation. To avoid this,
a second operand should be checked prior to the division, if the value of the second operand of
the operation is likely to be zero.

EXAMPLE

Application Program Without Portability

int a;
int b;
int c;
b = a / c;

/* If c is zero, the behaviour after division depends on the
implementation. */

Application Program With Portability

int a;
int b;
int c;
if (c != 0)
b = a / c;
else {
}

48 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-7

NAME
C-4-7

CLASSIFICATION
Arithmetic Operation

TITLE
Incompatibility of types of function with prototype

CLAUSE

6.3.2.2 Function Calls

GUIDANCE
If a function has a function prototype, the declared and defined function types must conform.

EXPLANATION
If a function is called with a function prototype and the function is not defined with a compatible
type, the behaviour is undefined. This case arises in the following circumstances:

• An integral type is used, and long or short and an explicit integer type are used in a function
definition/call.

• Specifier of long or short and an explicit integer type are used in a function prototype, but an
integral type is used in a function definition/call, or a function type specification is not explicit.

• When translation units are different, and each function prototype of the translation units is not
compatible.

EXAMPLE

Application Program Without Portability

long int func1(long int);
func1(long i1)
{
}

In the example above, the type of func1() is long int in the function prototype, but it is int in the
function definition, because the type is not specified explicitly. Whether the ‘‘plain’’ int is
interpreted as a synonym with long int depends on the implementation; some implementations
treat this as a translation error, and others do not.

Application Program With Portability

long int func1(long int);
long int func1(long i1)
{ /* Make the function type compatible with the prototype */
}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 49

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-8 Application Program Portability Guide

NAME
C-4-8

CLASSIFICATION
Arithmetic Operation

TITLE
Shift operation of invalid number of shifts

CLAUSE

6.3.7 Bitwise Shift Operators

GUIDANCE
When an invalid number of shifts is suspected, an algorithm which checks it beforehand should
be included.

EXPLANATION
If a negative number or an amount greater than the width in bits of the expression is being
shifted, the behaviour is undefined and the result is not guaranteed. Therefore, when the
amount being shifted is uncertain and an invalid shift operation may occur, a check should be
performed before the shift operation.

EXAMPLE

Application Program Without Portability

#include <limits.h>
unsigned int bitPattern;
int shift;
unsigned int result;
result = (bitPattern << shift);

/* If a negative number or an amount greater than the width in bits */
/* of the unsigned int is being shifted, the value of the result
/* is undefined. The behaviour after this depends on the

implementation. */

Application Program With Portability

#include <limits.h>
unsigned int bitPattern;
int shift;
unsigned int result;
if (0 <= shift && shift <= (sizeof(bitPattern) * CHAR_BIT))

result = (bitPattern << shift);
else {

... /* describe an exception process */
}

50 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-9

NAME
C-4-9

CLASSIFICATION
Arithmetic Operation

TITLE
Assignment of an overlapping object

CLAUSE

6.3.16.1 Simple Assignment

7.11.2.1 The memcpy() Function

7.11.2.3 The strcpy() Function

7.11.2.4 The strncpy() Function

GUIDANCE
Avoid assignment of a different object which overlaps the domain.

EXPLANATION
If assignment takes place between objects which overlap, the behaviour is undefined.
Therefore, this circumstance should be avoided, if possible. A memmove() function should be
used, if it is inevitable. There are fifteen functions which may cause undefined behaviour:
sprintf(), sscanf(), vsprintf(), mbstowcs(), wcstombs(), strcpy(), strncpy(), strcat(), strncat(),
strxfrm(), strftime(), wcscpy(), wcsncpy(), wcscat(), wcsncat()

EXAMPLE

Application Program Without Portability

#include <string.h>
void insertChar(char ch, char *array, short int id)
{
/* By inserting the character ch after the ordinal number id of

the character array, move the rest of array after id backward.
For example, a function which displays "result text:abcdef" by
coding as shown below: */

char TextArray[1024] = "abcdef";
insertChar("1", TextArray, 2);
printf("result text : %s0, TextArray); */
char *cpl;
cpl = array + id;
strcpy(cpl + 1, cpl); /* Moves the array after id backward */
*cpl = ch;

}

In this example, there is a possibility that the result is unpredictable, depending on the
specification of strcpy().

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 51

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-9 Application Program Portability Guide

Application Program With Portability

#include <string.h>
void insertChar(char ch, char *array, short int id)
{

char *cp1, *cp2;
cp1 = array + id;
cp2 = array + id + 1;
memmove(cp2, cp1, strlen(cp1) + 1);
*cp1 = ch;

}

52 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-10

NAME
C-4-10

CLASSIFICATION
Arithmetic Operation

TITLE
Use of function which does not return a value

CLAUSE

6.6.6.4 The return Statement

GUIDANCE
The function which is to return a value must return a value.

EXPLANATION
If the function which is to return a value returns no value, the behaviour is undefined. This case
arises in the circumstance described below:

• A return statement when an if statement is not satisfied is missing from the selection
statement.

EXAMPLE

Application Program Without Portability

int func(int i)
{

if(i >= 0 && i <= 9)
return 0;

}

In the example above, func() checks whether the value which is given by the argument is one
digit (0 through 9) or not. As no return statement for a case when the condition is not met is
coded, the behaviour is undefined.

Application Program With Portability

int func(int i)
{

if(i >= 0 && i <= 9)
return 0;

return -1;
/* Describes the return value for a case when the condition is not met. */

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 53

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-11 Application Program Portability Guide

NAME
C-4-11

CLASSIFICATION
Arithmetic Operation

TITLE
Result of integer arithmetic functions

CLAUSE

7.10.6 Integer Arithmetic Functions

GUIDANCE
Note that there are some cases where the results of integer arithmetic functions (abs, div, labs,
ldiv) cannot be represented.

EXPLANATION
If the result of an integer arithmetic function cannot be represented, the behaviour is undefined.
When there is a possibility of producing a result which cannot be represented, such cases must
be prevented by, for example, checking the arguments beforehand.

EXAMPLE

Application Program Without Portability

#include <stdlib.h>
main()
{

int i1 = -32768; int i2;
i2 = abs(i1);
...

}

If int is two bytes long and the implementation uses two’s-complement representation for
integers, the absolute value is undefined and the behaviour after running this example depends
on the implementation.

54 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-12

NAME
C-4-12

CLASSIFICATION
Arithmetic Operation

TITLE
Using object pointers of automatic storage duration outside of block

CLAUSE

6.1.2.4 Storage Durations of Objects

GUIDANCE
An object pointer which has automatic storage duration should not be used outside the block.

EXPLANATION
If the value stored in a pointer which referred to an object with automatic storage duration is
used outside the block, the behaviour is undefined, because the automatic storage may be
overwritten and used by another block and the value stored in a pointer may not be a value that
is expected. Such an operation will occur in one of the patterns shown below:

1. Returns the object pointer of automatic storage duration in a return value.

2. Assigns the object pointer of automatic storage duration to a variable outside the block.

3. Assigns the object pointer of automatic storage duration to a variable inside the block of
static storage duration. And the address of the static variable is transferred to outside by
means of 1. or 2. above.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 55

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-4-13 Application Program Portability Guide

NAME
C-4-13

CLASSIFICATION
Arithmetic Operation

TITLE
Invalid reference

CLAUSE

6.3.3.2 Address and Indirection Operators

6.3.6 Additive Operators

GUIDANCE
Invalid references, such as a reference of NULL pointer, should not be used.

EXPLANATION
For an invalid reference, such as a NULL pointer reference, the behaviour is undefined. Care
must be taken not to make invalid references as shown below:

• Use of a unary * operator when an invalid value is assigned to a pointer.

• An invalid array reference (a subscript exceeds the range of array).

56 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-4-14

NAME
C-4-14

CLASSIFICATION
Arithmetic Operation

TITLE
Reference of automatic storage class object after longjmp()

CLAUSE

7.6.2.1 The longjmp() Function

GUIDANCE
Care must be taken for referencing an automatic storage class object after longjmp().

EXPLANATION
If an object of automatic storage class does not have volatile-qualified type after a longjmp(),
the behaviour is undefined. That is to say, the object does not always have the same value as it
did when longjmp() was called.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 57

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-1 Application Program Portability Guide

NAME
C-5-1

CLASSIFICATION
Character String Handling

TITLE
Value of the character which cannot be represented

CLAUSE

6.1.3.4 Character Constants

GUIDANCE
The value of the characters which cannot be represented should not be used.

EXPLANATION
The value of a special character such as a control code or an escape sequence which cannot be
coded in literals is implementation-defined, like other characters. Therefore, an application
program which depends on a value of these characters is not portable. Some of the control
codes which support escape sequences may work in one implementation but not in another
implementation.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
...
putchar(’ 10’);

Application Program With Portability

#include <stdio.h>
...
putchar(’’);

58 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-5-2

NAME
C-5-2

CLASSIFICATION
Character String Handling

TITLE
Value of a character constant of two or more characters

CLAUSE

6.1.3.4 Character Constants

GUIDANCE
A character constant consisting of two or more characters should not be used.

EXPLANATION
In SPIRIT, character constants composed of two or more characters and wide-character
constants are implementation-defined. Therefore, a program which uses a character constant
composed of two or more characters is not portable.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
...
int c;
...
while ((c = getchar()) != EOF) {

if (c == ’ab’) {
...

}
}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 59

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-3 Application Program Portability Guide

NAME
C-5-3

CLASSIFICATION
Character String Handling

TITLE
Modification of string literals

CLAUSE

6.1.4 String Literals

GUIDANCE
String literals should not be modified.

EXPLANATION
If a program attempts to modify a string literal, the behaviour is undefined. In SPIRIT C, string
literals whose appearance is the same need not be stored separately. Care must be taken,
because some implementations allocate a memory area for storing string literals where writing is
prohibited by the system.

EXAMPLE
The first example shown below is not portable, because the string literal is being modified
through a pointer. The second example may seem the same as the first one, but it is not a
modification of a string literal, because it is defined that the string which is written as the
initialised data of a char type array is interpreted as follows:

static char string[] =
[’N’,’u’,’m’,’b’,’e’,’r’,’ ’,’x’,’ ’];

Application Program Without Portability

char *string = "Number x";
...
string[7] = ’1’;

Application Program With Portability

static char string [] = "Number x";
...
string[7] = ’1’;

60 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-5-4

NAME
C-5-4

CLASSIFICATION
Character String Handling

TITLE
Contiguity with wide-character string literals

CLAUSE

6.1.4 String Literals

GUIDANCE
Character string literals should not be placed adjacent to wide-character string literals, and vice
versa.

EXPLANATION
In SPIRIT, character string literals and wide-character string literals are combined into one string
if they are adjacent to each other in a source file. Therefore, it is no problem when two
character string literals or two wide-character string literals are adjacent to each other.
However, when a character string literal is adjacent to a wide-character string literal, the
behaviour is undefined, because it is general that the internal representation of a character
string literal and a wide-character string literal is different.

EXAMPLE

Application Program Without Portability

strp = "Please don’t put string literals and wide-character string
literals0

"next to each other in your source code. 0

L" . \n";

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 61

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-5 Application Program Portability Guide

NAME
C-5-5

CLASSIFICATION
Character String Handling

TITLE
Argument of character handling function outside of domain

CLAUSE

7.3 Character Handling <ctype.h>

GUIDANCE
Check the domain prior to invocation of a function.

EXPLANATION
All the arguments of character handling functions, such as the isalpha() function which tests the
character set, must have int type. In SPIRIT, when such an argument is given a value outside
of the range which can be represented in unsigned char type, or a value other than EOF, the
result is undefined.

EXAMPLE

Application Program Without Portability

In the example shown below, the result of execution is not guaranteed, because the value of c
(generally speaking) exceeds the range of value that an unsigned char can have.

#include <ctype.h>
...
int c;
...
c = 1000;
if (isalpha(c)) {
...
}

Application Program With Portability

As the first example is not practical, another example is shown below. If c is the value returned
by the function, like a getchar() function, which returns a value satisfying the domain check, this
checking is not necessary.

#include <limits.h>
#include <ctype.h>

...
int c;

...
if ((c >= 0 && c <= UCHAR_MAX) || c == EOF) {
if (isalpha(c)) {
...
}

}

62 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-5-6

NAME
C-5-6

CLASSIFICATION
Character String Handling

TITLE
Changing LC_CTYPE category of locale

CLAUSE

7.10.7 Multibyte Character Functions

GUIDANCE
When LC_CTYPE is changed, initialise the shift state.

EXPLANATION
It is undefined whether the shift states for the multi-byte character functions, such as mblen(),
mbtowc(), wctomb(), and so on, are reset to the initial state when the LC_CTYPE category of
the current locale is changed. Therefore, the application program which may possibly change
the LC_CTYPE category during processing multi-byte character strings is not portable. When
the LC_CTYPE category is changed, the shift state must be initialised by passing a null pointer
to the character pointer argument of these functions.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 63

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-7 Application Program Portability Guide

NAME
C-5-7

CLASSIFICATION
Character String Handling

TITLE
Characters to be checked with functions isalnum(), and so on

CLAUSE

7.3.1 Character Testing Functions

GUIDANCE
Functions defined in Clause 7.3.1 should be used for testing of characters. However, the range
of characters for which iscntrl(), isgraph(), isprint() and ispunct() are true remains partially
implementation-defined in LOCALE. So, these functions should not be used assuming the
behaviour exceeding the specification of SPIRIT C described below.

EXPLANATION
In the SPIRIT C specification, it is defined that iscntrl() is true for ‘‘\n’’, ‘‘\t’’, ‘‘\v’, ‘‘\b’’, ‘‘\f’’, ‘‘\r’’,
‘‘\a’’ or any one of the implementation-defined control characters, and isgraph() is true for a
basic execution character (see Clause 5.2.1) or ’@’ or any one of the implementation-defined
characters.

64 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-5-8

NAME
C-5-8

CLASSIFICATION
Character String Handling

TITLE
Character testing, character type conversion functions

CLAUSE

7.3 Character Handling <ctype.h>

GUIDANCE
The implementation-defined features of character testing and character type conversion
functions should not be used.

EXPLANATION
In SPIRIT C, the behaviour of the iscntl() and isgraph() functions in an implementation-defined
LOCALE locale is defined in detail, but the behaviour of implementation-defined features in
ANSI C are all implementation-defined. For only nine functions listed below, the same
behaviour in any SPIRIT conforming implementation is guaranteed all the time: isalnum(),
isalpha(), isdigit(), islower(), isspace(), isupper(), isxdigit(), toupper(), tolower().

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 65

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-9 Application Program Portability Guide

NAME
C-5-9

CLASSIFICATION
Character String Handling

TITLE
Collating sequence of the execution character set

CLAUSE

7.11.4.3 The strcoll() Function

7.11.4.5 The strxfrm() Function

GUIDANCE
In any locale defined in SPIRIT, the collating sequence of all execution characters for strcoll()
and strxfrm() is not defined.

EXPLANATION
In SPIRIT, the collating sequence of the execution character set for strcoll() and strxfrm() is
implementation-defined. Therefore, the application programs in which strcoll() and strxfrm()
functions are used must be rewritten when they are ported to another system.

66 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-5-10

NAME
C-5-10

CLASSIFICATION
Character String Handling

TITLE
Native locale (""Locale) in localisation

CLAUSE

7.4.1.1 The setlocale() Function

GUIDANCE
The ""locale should not be used in localisation, except when the ""locale is equal to a LOCALE
locale.

EXPLANATION
The ""locale (native locale) in localisation is used to define the implementation-defined unique
environment. Therefore, the application program which uses this locale is generally less
portable, except in the implementations where the ""locale is equal to the LOCALE locale.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 67

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-5-11 Application Program Portability Guide

NAME
C-5-11

CLASSIFICATION
Character String Handling

TITLE
Source character set

CLAUSE

5.2.1 Character Sets

GUIDANCE
In a source code, the characters other than those specified in Section 2.2.1 of ANSI C or the
SPIRIT common character set should not be used.

EXPLANATION
In SPIRIT, it is defined that the source and execution character set in LOCALE locale must
contain characters of the character set of the ANSI "C" locale and the SPIRIT common
character set.

68 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-1

NAME
C-6-1

CLASSIFICATION
Input/Output

TITLE
A new-line character in the last line of text stream

CLAUSE

7.9.2 Streams

GUIDANCE
A new-line character at the final position of the last line should not be assumed, but should be
coded.

EXPLANATION
It is implementation-defined whether the last line of a text stream requires a terminating new-line
character. The end of data possibly may not be recognised if there is no new-line character at
the end of output.

EXAMPLE

Application Program Without Portability

1. An example which reads one line from a data stream:

#include <stdio.h>
FILE *stream
char buffer[81];
int i,ch;

...
for (i=0; (i<80) && ((ch = getchar()) != ’0); i++)

buffer[i] = ch;
/* As it is not guaranteed that the last line ends with a

new-line character, it is possible for data to be read beyond
the EOF. */

buffer[i] = ’ ’;

2. An example of output of the last line:

#include <stdio.h>
FILE *fp;
fprintf(fp, "End-of-output");
fclose(fp);
/* Closing without output of a new-line character, the data in the

last line will not be guaranteed depending on the implementation. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 69

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-1 Application Program Portability Guide

Application Program With Portability

1. An example which reads one line from a data stream:

#include <stdio.h>
FILE *stream;
char buffer[81];
int i,ch;

...
for (i=0; (i<80) && ((ch = getchar() != EOF) &&
(ch != ’0); i++) /* checks EOF */

buffer[i] = ch;
buffer[i] = ’ ’;

2. An example of output of the last line:

#include <stdio.h>
FILE *fp;
fprintf(fp, "End-of-output. 0);
fclose(fp);

/* Closing the file after output of a new-line character, */
/* the data of the last line is guaranteed. */

70 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-2

NAME
C-6-2

CLASSIFICATION
Input/Output

TITLE
Space characters immediately before the new-line character

CLAUSE

7.9.2 Streams

GUIDANCE
Whether or not the space character sequence which is written out immediately before the new-
line character appears when it is read from a text stream should not be assumed.

EXPLANATION
It is implementation-defined whether or not the space character sequence which is written out
immediately before a new-line character appears when it is read from a text stream.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
FILE *stream;

fprintf(stream, "SPIRIT 0);
/* A space immediately before a new-line character is not

guaranteed. */

Application Program With Portability

#include <stdio.h>
FILE *stream;

fprintf(stream, "SPIRIT\n");
/* A space immediately before a new-line character should not

be coded. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 71

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-3 Application Program Portability Guide

NAME
C-6-3

CLASSIFICATION
Input/Output

TITLE
The number of null characters to be appended

CLAUSE

7.9.2 Streams

GUIDANCE
The number of null characters to be appended to a binary stream should not be assumed.

EXPLANATION
The number of null characters appended to data which is written in a binary stream is
implementation-defined.

EXAMPLE
It is supposed that data is written in a stream:

#include <stdio.h>
FILE *stream;
int int_1, int_2, ch;
float flt_1, flt_2;
stream = fopen("myfile.dat", "wb");
fwrite(&flt_1, sizeof(float), 1, stream);
fwrite(&int_1, sizeof(int), 1, stream);
fclose(stream);

Application Program Without Portability

stream = fopen(myfile,dat", "rb");
fseek(stream, (long)(-sizeof(int)), SEEK_END);

/* Correct positioning is not guaranteed, because there are
unknown number of null characters before EOF. */

fread(&int_2, sizeof(int),1, stream);

Application Program With Portability

stream = fopen("myfile.dat", "rb");
fseek(stream, (long)(sizeof(float)), SEEK_SET);
fread(&int_2, sizeof(int),1, stream);

/* Positioning from the top of the file. */

72 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-4

NAME
C-6-4

CLASSIFICATION
Input/Output

TITLE
File position in append mode

CLAUSE

7.9.3 Files

GUIDANCE
A file position indicator should not be referenced immediately after the file is opened with
append mode.

EXPLANATION
It is implementation-defined whether the file position indicator is initially positioned at the
beginning or end of the file when the file is opened with append mode.

EXAMPLE
The program is supposed to be one that reads the last position of a file.

Application Program Without Portability

FILE *stream;
long position;
stream = fopen("myfile.dat", "a");

/* At this time, there is a fear of the file position indicator
positioned at the beginning of the file. */

position = ftell(stream);

Application Program With Portability

FILE *stream;
long position;
stream = fopen("myfile.dat", "a");
fseek(stream, 0L, SEEK_END);

/* The file position indicator is positioned at the end of the file. */
position = ftell(stream);

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 73

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-5 Application Program Portability Guide

NAME
C-6-5

CLASSIFICATION
Input/Output

TITLE
Writing into text stream in update mode

CLAUSE

7.9.3 Files

GUIDANCE
When a write on a text stream in update mode is executed, whether or not the subsequent data
of the associated file remains should not be assumed.

EXPLANATION
It is implementation-defined whether a write on a text stream in update mode causes the
associated file to be truncated beyond that point. When the data subsequent to the point of the
stream where data is written should not be truncated, it is common to prepare a work file in
addition to the update file and rename it after all the necessary update activities are done on the
work file. When frequent partial updating on a file is expected, the file is usually generated using
a binary stream.

EXAMPLE
The program is to write all the characters in "myfile.dat" to the "output.dat" after replacing the
first character of "myfile.dat" with "!".

Application Program Without Portability

#include <stdio.h>
FILE *stream, *stream1;
stream = fopen("myfile.dat","r+");

/* To be opened with text mode */
fputc(’!’, stream);
stream1 = fopen("output.dat", "w");
fseek(stream, 0L, SEEK_SET);
while (!feof(stream))

/* Copying characters except ’!’ is not guaranteed */
fputc(fgetc(stream), stream1);

Application Program With Portability

include <stdio.h>
FILE *stream, *stream1;
stream = fopen("myfile.dat", "rb+");

/* To be opened with binary mode */
fputc(’!’, stream);
stream1 = fopen("output.dat", "w");
fseek(stream, 0L, SEEK_SET);
while (!feof(stream)) /* All the characters will be copied */
fputc(fgetc(stream), stream1);

74 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-6

NAME
C-6-6

CLASSIFICATION
Input/Output

TITLE
File of zero-length

CLAUSE

7.9.3 Files

GUIDANCE
A program which assumes the existence or non-existence of a file of zero length should not be
coded.

EXPLANATION
Whether a file of zero length actually exists is implementation-defined.

EXAMPLE

Application Program Without Portability

1. An example which assumes the existence of a file of zero length:

#include <stdio.h>
FILE *stream, *stream1;
stream = fopen("myfile.dat", "w");
fclose(stream);
stream1 = fopen("myfile.dat", "r");
/* In the implementation which cannot generate a file of zero length,

the stream1 is a NULL pointer. */
if ((c = fgetc(stream1)) == EOF) printf("No data 0);
/* fgetc does not behave correctly, because the stream1 can be a

NULL pointer. */

2. An example which assumes the nonexistence of a file of zero length:

#include <stdio.h>
FILE *fp;
int w_flg; /* A flag indicating if the file is written */
char ch, s[L_tmpnam];
tmpnam(s); /* Open the temporary file, and remove it after

completion */
fp = fopen(s, "w");
if (...) {

fputc(ch, fp);
w_flg = 1;

}
...

fclose(fp);
if (w_flg)

remove (s);
/* It is possible that file of zero length may exist */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 75

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-6 Application Program Portability Guide

Application Program With Portability

1. An example which assumed the existence of a file of zero length above:

#include <stdio.h>
FILE *stream, *stream1;
stream = fopen("myfile.dat", "w");
fclose(stream);
if((stream1 = fopen("myfile.dat", "r")) == NULL)

/* Checks if fopen results in error */
printf("No data 0);

else
if((c = fgetc(stream1)) == EOF) printf("No data 0);

2. An example which assumed the nonexistence of a file of zero length above:

#include <stdio.h>
FILE *fp;
int w_flg; /* A flag indicating if a file is written */
char ch, s[L_tmpnam];
tmpnam(s); /* Open the temporary file, and remove it after

completion */
fp = fopen(s, "w");
if (...) {

fputc(ch, fp);
w_flg = 1;

}
fclose(fp);
remove (s); /* Call the remove() function regardless of write */

/* The file is removed regardless of implementation */

76 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-7

NAME
C-6-7

CLASSIFICATION
Input/Output

TITLE
Conversion specifier %p for input or output

CLAUSE

7.9.6.1 The fprintf() Function

7.9.6.2 The fscanf() Function

GUIDANCE
A program which depends on the value of a pointer of different output format and execution unit
should not be coded.

EXPLANATION
The output format of a pointer is implementation-defined. When the execution unit is different,
reference to a pointer value in the different unit is not guaranteed. In this case, the behaviour is
undefined.

EXAMPLE
In the example, it is assumed that a pointer is written into a file in the following format:

#include <stdio.h>
FILE *stream;
int i;
int *ptr;
ptr = &i;
fprintf(stream, "%p", (void *) ptr);
fclose(stream);

Application Program Without Portability

1. #include <stdio.h>
FILE *stream;
char st1[P_LEN];
fscanf(stream, "%s", st1);
if (strcmp(st1, "1234:5678")) {

/* Output format depends on the implementation */
}

2. The following is assumed to be in the function belonging to the different execution unit
from one where the pointer is written out.

#include <stdio.h>
FILE *stream;
int i;
int *ptr1;
fscanf(stream, "%p", (void *) ptr1);

/* Reference to the pointer in a different execution unit is
not guaranteed. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 77

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-8 Application Program Portability Guide

NAME
C-6-8

CLASSIFICATION
Input/Output

TITLE
%[of the fscanf() function

CLAUSE

7.9.6.2 The fscanf() Function

GUIDANCE
A ’-’ character should not be used except as the first or the last character in the scanlist for %[
conversion in the fscanf() function.

EXPLANATION
Some implementations may interpret ’-’ as a specifier of a range, and others as a simple
character ’-’. The choice is implementation-defined.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
FILE *stream,
char st[5];
fscanf(stream, "%[0-3]",st);

/* This identifies either a sequence of "0123" or a combination
of characters ’0’, ’-’ and ’3’, according to circumstances. */

Application Program With Portability

If "0123" is desired, it should be coded as shown below:

#include <stdio.h>
FILE *stream,
char st[5];
fscanf(stream, "%[0123]", st);
Otherwise, use "%[-03]" or "%[03-]".

78 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-9

NAME
C-6-9

CLASSIFICATION
Input/Output

TITLE
Abort with opened files and temporary files

CLAUSE

7.9.4.3 The tmpfile() Function

7.10.4.1 The abort() Function

GUIDANCE
Files should not be aborted while they are open.

EXPLANATION
When abort occurs while files are open or temporary files are not deleted, it is implementation-
defined whether they are closed/deleted or not.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
FILE *stream;
fopen(stream, "file1", "w+");
abort(); /* It is not guaranteed that the file will be closed. */

Application Program With Portability

#include <stdio.h>
FILE *stream;
fopen(stream, "file1", "w+");
fclose(stream);
abort(); /* The program is aborted after the file is closed. */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 79

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-10 Application Program Portability Guide

NAME
C-6-10

CLASSIFICATION
Input/Output

TITLE
Implementation-dependent character printing operation

CLAUSE

5.2.2 Character Display Semantics

GUIDANCE
Printing as specified below should not be done:

• printing a character at the final position of a line

• printing a backspace character at the initial position of a line

• printing a horizontal-tab character at or past the last defined horizontal tabulation position

• printing a vertical-tab character at or past the last defined vertical tabulation position.

EXPLANATION
The behaviours for the above circumstances are unspecified.

80 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-11

NAME
C-6-11

CLASSIFICATION
Input/Output

TITLE
File position of the ungetc() function

CLAUSE

7.9.7.11 The ungetc() Function

GUIDANCE
The file position indicator should not be referenced until all the pushed-back characters are read
or discarded.

EXPLANATION
The value of the file position indicator until all the pushed-back characters are read or discarded
after the successful call to an ungetc() function for the text stream varies with the
implementation. The behaviour is unspecified.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
#include <ctype.h>
FILE *stream;
int ch;
unsigned int result = 0;
long fp1;
while ((ch = getc(stream)) != EOF && isdigit(ch))

result = result * 10 + ch - ’0’;
if (ch != EOF) {

ungetc(ch, stream);
fp1 = ftell(stream);
/* The file position indicator will not be referenced until

the pushed-back characters by the ungetc() function are read
or discarded. */

}

Application Program With Portability

#include <stdio.h>
#include <ctype.h>
FILE *stream;
int ch;
unsigned int result = 0;
long fptemp, fp1;
while ((ch = getc(stream)) != EOF && isdigit(ch)){

result = result * 10 + ch - ’0’;
fptemp = ftell(stream);

}
if (ch != EOF) {

ungetc(ch, stream);

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 81

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-6-11 Application Program Portability Guide

fp1 = fptemp;
/* The value of the file position indicator of the pushed-back

character is read before ungetc() is called. */
}

82 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-6-12

NAME
C-6-12

CLASSIFICATION
Input/Output

TITLE
Details of values of the fgetpos() and ftell() functions

CLAUSE

7.9.8.3 The fgetpos() Function

7.9.8.6 The ftell() Function

GUIDANCE
The value of the file position indicator should not be referenced directly.

EXPLANATION
The value stored by the fgetpos() function and the value stored in a text stream by the ftell()
function are strongly dependent on the implementation. The behaviour is unspecified.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
FILE *fp;
long tel1, tel2;
fp = fopen("SPIRIT", "r");
tel1 = ftell(fp);
while(fgetc(fp) != ’0)
tel2 = ftell(fp);
printf("Number of char =%1d 0, tel2 - tel1);

/* This is to output the character count of the text stream using
the returned value of the ftell() function.
However, the meaning of the value is not defined in the
text stream. */

Application Program With Portability

#include <stdio.h>
FILE *fp;
long tel1,tel2;
int cnt;
fp = fopen("SPIRIT", "r");
cnt = 0;
while (fgetc(fp) != "0)

cnt ++;
printf("Number of char =%1d 0,cnt);

/* Count the number of fgetc() function calls */

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 83

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-7-1 Application Program Portability Guide

NAME
C-7-1

CLASSIFICATION
Error, Diagnostics

TITLE
Library function (treatment at the time of domain error)

CLAUSE

7.2 Diagnostics <assert.h>

GUIDANCE
Domain error should be determined by checking whether or not EDOM is stored in errno.

EXPLANATION
Values which mathematical functions return are implementation-defined.

EXAMPLE

Application Program Without Portability

This program assumes that a negative value is returned when domain error occurs in the sqrt()
function.

#include <math.h>
#include <stdio.h>
double x, y;
if ((y = sqrt(x)) < 0
/* The value of a mathematical function at domain error is

implementation-defined */
printf("Domain Error0);

Application Program With Portability

#include <math.h>
#include <errno.h>
#include <stdio.h>
double x, y;
y = sqrt(x);
if (errno == EDOM)

/* domain error should be determined based on a value of errno */
printf("Domain Error0);

84 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-7-2

NAME
C-7-2

CLASSIFICATION
Error, Diagnostics

TITLE
errno at the time of underflow

CLAUSE

7.5.1 Treatment of Error Conditions

GUIDANCE
It should not be assumed that ERANGE is set at the time of underflow.

EXPLANATION
Whether or not mathematical functions set the value of the macro ERANGE in the integer
expression errno at the time of range error of underflow is implementation-defined.

EXAMPLE

Application Program Without Portability

#include <math.h>
#include <errno.h>
#include <stdio.h>
double x, y;

/* x contains a very small value */
y = log10(x);
if (errno == ERANGE) /* whether or not ERANGE is set at the time of

underflow is implementation-defined */
printf("Underflow 0);

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 85

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-7-3 Application Program Portability Guide

NAME
C-7-3

CLASSIFICATION
Error, Diagnostics

TITLE
errno set by the fgetpos() and ftell() functions

CLAUSE

7.9.8.3 The fgetpos() Function

7.9.8.6 The ftell() Function

GUIDANCE
The value of errno on failure should be determined whether a positive value is set.

EXPLANATION
The value that the fgetpos() or ftell() functions set in errno on failure is implementation-defined.

EXAMPLE

Application Program Without Portability

#include <errno.h>
#include <stdio.h>
if (errno == 1) /* the value may not be 1 depending on implementation */

printf("error 0);

Application Program With Portability

#include <errno.h>
#include <stdio.h>
if (errno > 0) /* not implementation-defined */

printf("error 0);

86 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-7-4

NAME
C-7-4

CLASSIFICATION
Error, Diagnostics

TITLE
Messages in the perror() or strerror() functions

CLAUSE

7.9.9.4 The perror() Function

7.11.6.2 The strerror() Function

GUIDANCE
These functions should only be used for output.

EXPLANATION
The message is implementation-defined.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 87

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-7-5 Application Program Portability Guide

NAME
C-7-5

CLASSIFICATION
Error, Diagnostics

TITLE
errno

CLAUSE

7.1.4 Errors <errno.h>

GUIDANCE
A program should not assume that errno is a macro or an external identifier.

EXPLANATION
Whether errno is a macro or an external identifier is implementation-dependent. This is an
unspecified behaviour.

EXAMPLE

Application Program Without Portability

#include <errno.h>
&errno
/* correct when errno is an external identifier, error when errno

is a macro */

88 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-8-1

NAME
C-8-1

CLASSIFICATION
Environmental Limits

TITLE
Translation limits

CLAUSE

5.2.4.1 Translation Limits

6.1.2 Identifiers

6.5.4 Declarators

6.6.4.2 The switch Statement

GUIDANCE
The limits listed in the following table are the least guaranteed values in SPIRIT; therefore,
coding exceeding these values should not be made.

EXPLANATION
Refer to the following table.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 89

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-8-1 Application Program Portability Guide

Items Limits
Nesting levels of compound statements, iteration control structures and
selection control structures.

15

Nesting levels of conditional inclusion. 8

Number of pointers, arrays and function declarators (in any combination)
which modify an arithmetic, a structure, a union or incomplete type in a
declaration.

12

Nesting levels of parenthesised declarators within a full declarator. 31

Nesting levels of parenthesised expressions within a full expression. 32

Number of the significant initial characters in an internal identifier or a
macro name.

31

Number of the significant initial characters in an external identifier. 6

Number of external identifiers in one translation unit. 511

Number of identifiers with block scope declared in one block. 127

Number of macro identifiers simultaneously defined in a translation unit. 1024

Number of parameters in one function definition. 31

Number of arguments in one function call. 31

Number of parameters in one macro definition. 31

Number of arguments in one macro invocation. 31

The maximum number of characters (bytes) in a logical source line. 509

Number of characters in a (concatenated) byte character string literal or
wide-character string literal.

509

Number of bytes in an object (in a hosted environment; that is, OS
supported execution environment).

32767

Number of nesting levels for the #include file. 8

Number of case labels for a switch statement (excluding those for any
nested switch statements).

257

Number of members in a single structure or a union. 127

Number of enumeration constants in a single enumeration. 127

Number of levels of nested structure or union in a single struct-
declaration-list.

15

EXAMPLE
An example of the number of case labels in a switch statement.

Application Program Without Portability

#define CASE1 1
#define CASE300 300
int sw;
switch(sw) {

case CASE1:
... /* 300 case labels against the least guaranteed limit 257 */

case CASE300:
}

90 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-8-1

Application Program With Portability

#define CASE1 1
#define CASE300 300
int sw;
switch(sw) {

case CASE1 :
case CASE257: /* For example, once cut off at 257 labels, */
default: { /* then continue using labels by nesting */

/* with default */
switch(sw) {

case CASE258:
...
case CASE300:

}
}

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 91

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-8-2 Application Program Portability Guide

NAME
C-8-2

CLASSIFICATION
Environmental Limits

TITLE
Limits at the time of execution

CLAUSE

7.9.4.4 The tmpnam() Function

7.9.3 Files

7.9.6.1 The fprintf() Function

7.9.2 Streams

7.10.2.1 The rand() Function

7.10.4.2 The atexit() Function

GUIDANCE
The limits listed in the following table are the least guaranteed values in SPIRIT, and coding
should be done so as not to exceed these limits at the time of execution.

EXPLANATION
Refer to the following table:

Item Limit
Maximum times of effective calls, TMP_MAX, for the tmpnam() function. 25

The maximum number of files FOPEN_MAX which fopen() can manage
simultaneously, including the three standard text streams.

8

The maximum number of bytes which the fprintf() function can produce
by a single conversion.

509

The maximum number of bytes in a line of a text file. 254

Value of buffer size, BUFSIZ, used by the setbuf() function. 256

The maximum value returned by the rand() function, RAND_MAX. 32767

The maximum number of functions which can be registered by the
atexit() function.

32

92 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-8-3

NAME
C-8-3

CLASSIFICATION
Environmental Limits

TITLE
Numerical limits of integral types

CLAUSE

5.2.4.2 Numerical Limits

6.1.2.5 Types

GUIDANCE
The limits listed in the following table are the least guaranteed values in SPIRIT, and coding
should be done so as not to exceed these limits at the time of coding as well as of execution.
And, at the time of data production, such as the output of a string representing a numerical
value corresponding to each type, these values should be fully considered.

EXPLANATION
Refer to the following table:

Items Limits
Maximum number of bits for smallest object except bitfield (=byte),
CHAR_BIT.

8

The minimum value for an object of type signed char , SCHAR_MIN. −127

The maximum value for an object of type signed char , SCHAR_MAX. +127

The maximum value for an object of type unsigned char , UCHAR_MAX. 255

The minimum value for an object of type char, CHAR_MIN. (note)

The maximum value for an object of type char, CHAR_MAX. (note)

Maximum number of bytes in a multi-byte character, MB_LEN_MAX. 2

The minimum value for an object of type short int , SHRT_MIN. −32767

The maximum value for an object of type short int , SHRT_MAX. +32767

The maximum value for an object of type unsigned short int ,
USHRT_MAX.

65535

The minimum value for an object of type int , INT_MIN. −32767

The maximum value for an object of type int , INT_MAX. +32767

The maximum value for an object of type unsigned int , UINT_MAX. 65535

The minimum value for an object of type long int , LONG_MIN. −2147483647

The maximum value for an object of type long int , LONG_MAX. +2147483647

The maximum value for an object of type unsigned long int ,
ULONG_MAX.

4294967295

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 93

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-8-3 Application Program Portability Guide

Note: If the value of an object of type char is treated as a signed integer when used in an
expression, the value of CHAR_MIN shall be the same as that of SCHAR_MIN and the
value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_MIN shall be 0 and the value of CHAR_MAX shall be the same that of
UCHAR_MAX.

94 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-8-4

NAME
C-8-4

CLASSIFICATION
Environmental Limits

TITLE
Numerical limits of floating types

CLAUSE

5.2.4.2 Numerical Limits

6.1.2.5 Types

GUIDANCE
The limits listed in the following table are the least guaranteed values in SPIRIT, and coding
should be done so as not to exceed these limits at the time of coding as well as of execution.
And, at the time of data production, such as the output of a string representing a numerical
value corresponding to each type, these values should be fully considered.

EXPLANATION
Refer to the following table:

Item Limit
Base of exponent representation FLT_RADIX 2
Number of decimal digits, such that:

Î (p−1) ¥ log10b ° +
B
C
D 0: otherwise

1: if b is a power of 10

FLT_DIG
DBL_DIG
LDBL_DIG

6
14
14

Minimum negative integer such that 10 raised to FLT_MIN_10_EXP −37
that power is in the range of normalised DBL_MIN_10_EXP −78
floating-point numbers, È log10 bemin−1 ˘ LDBL_MIN_10_EXP −78
Maximum integer such that 10 raised to that power FLT_MAX_10_EXP 38
is in the range of representable finite DBL_MAX_10_EXP 75
floating-point numbers, Î log10((1−b−p) ¥ bemax) ° LDBL_MAX_10_EXP 75
Maximum representable finite floating-point number, FLT_MAX 1E+38
(1−b−p) ¥ bemax DBL_MAX 1E+75

LDBL_MAX 1E+75
The difference between 1.0 and the least value FLT_EPSILON 1E−5
greater than 1.0 that is representable in the DBL_EPSILON 1E−13
given floating-point type, (= b1−p) LDBL_EPSILON1E 1E−13
Minimum normalised positive floating-point number, FLT_MIN 1E−37
bemin−1 DBL_MIN 1E−78

LDBL_MIN1E 1E−78

A normalised floating-point number x(f1 > 0 if x π 0) is defined by the following model:

x = s ¥ be ¥
k =1
Σ
p

fk ¥ b−k, emin ≤ e ≤ emax

where; s, b, e, p and fk have the following meanings respectively:

s sign (±1)

b base or radix of exponent representation (an integer>1)

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 95

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-8-4 Application Program Portability Guide

e exponent (an integer between a minimum emin and a maximum emax)

p precision (the number of base-b digits in the significand)

fk non-negative integers less than b (the significand digits).

96 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-9-1

NAME
C-9-1

CLASSIFICATION
Obsolescent Feature

TITLE
The placement of a storage-class specifier in the declaration specifiers

CLAUSE

6.9.3 Storage-class Specifiers

GUIDANCE
The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature, which should not be used.

EXPLANATION
The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is accepted by most of the current implementations. But, this is an
old format, and it is considered that the format shall not be acceptable in future.

EXAMPLE
In the following declaration, a storage-class declaration in the declaration specifier is placed at
the second place.

int static i;

In order to make it portable, the above declaration should be described as follows:

static int i;

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 97

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-9-2 Application Program Portability Guide

NAME
C-9-2

CLASSIFICATION
Obsolescent Feature

TITLE
The use of function declarator with empty parentheses

CLAUSE

6.9.4 Function Declarators

GUIDANCE
The function declarator with empty parentheses should not be used because it is an obsolescent
feature. Also, the function declarator should not be omitted.

EXPLANATION
The use of the function declarator with empty parentheses is accepted by the current
implementations. But this is an old format, and it is considered that the format shall not be
acceptable in future. Also, if the function declaration is omitted, it is treated as declared with
type int in old format; therefore, the same thing is considered in future.

EXAMPLE
The following declaration is an old format, and the information of parameter is not given. In this
case, the same treatment as C language before ANSI is made. Also, if a function prototype is
fully omitted; it is treated as the following old type function declaration (before ANSI).

int f();

The above function declaration should be described using the prototype that gives the following
information of parameter.

/* a case where the first argument is double, and the second is long */
int f(double, long);

98 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-9-3

NAME
C-9-3

CLASSIFICATION
Obsolescent Feature

TITLE
The use of function definitions with separate parameter identifier and Declaration Lists

CLAUSE

6.9.5 Function Definitions

GUIDANCE
This type of definition should not be used, because it is an obsolescent feature.

EXPLANATION
The use of function definitions with separate parameter identifier and declaration lists is
accepted by the current implementations. But, this is an old format, and it is considered that the
format shall not be acceptable in future.

EXAMPLE
The following function definition is an old format.

int fdef(a, b)
double a;
long b;
{ /* function body */ }

The above function definition should be rewritten in the following format.

int fdef(double a, long b)
{ /* function body */ }

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 99

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-9-4 Application Program Portability Guide

NAME
C-9-4

CLASSIFICATION
Obsolescent Feature

TITLE
The use of multiple parameters declared with array type

CLAUSE

6.9.6 Array Parameters

GUIDANCE
The use of multiple parameters declared with an array type in separate lvalues to designate the
same object is an obsolescent feature, which should not be used.

EXPLANATION
If multiple parameters have an array type, a compiler does not know whether or not those
parameters designate the same object. This becomes a big obstacle for the optimisation of
vector operation and parallel processing. In order to utilise the effectiveness of these
implementations, multiple array parameters to designate the same object should not be used.

EXAMPLE

Application Program Without Portability

main(void)
{

char a[5];
f(a,a);
/* the same argument is given to multiple array parameters */

}
f(char pa[5], char pb[5])
{

/* Some implementation might process this function assuming
that the areas designated by pa and pb are not the same

/* function body */
}

100 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-10-1

NAME
C-10-1

CLASSIFICATION
Undefined Behaviour

TITLE
List of undefined behaviours

CLAUSE
Refer to the following table.

GUIDANCE
The items listed in the following table are undefined behaviours, which are likely to prevent
portability of application programs, or cause unexpected problems. This type of programming
should be avoided.

EXPLANATION
Refer to the following table:

Classification Summary of Problems Clause
Statements and preprocessing
directives

Incorrect endings of a source file 5.1.1.2

Character string handling Invalid multi-byte characters 5.2.1.2
Appearance of an unmatched
quotation mark (’ or ")

Character string handling 6.1

Identifiers, etc. An identifier out of the scope 6.1.2.1
An identifier that has both
internal and external linkage

Identifiers, etc. 6.1.2.2

An identifier with external linkage
without external definition

Identifiers, etc. 6.7

Two declarations to the same
object or function that specify
incompatible types

Internal representation and type 6.1.2.6

Unspecified escape sequence
(’\’, etc.)

Character string handling 6.1.3.4

Illegal characters between
delimiters of preprocessing
tokens

Identifiers, etc. 6.1.7

Arithmetic operation An lvalue with an incomplete type 6.2.2.1
Use of the value of a void
expression

Arithmetic operation 6.2.2.2

Object access by an incorrect
lvalue

Arithmetic operation 6.3

Arithmetic operation Arguments of a void expression 6.3.2.2

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 101

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-10-1 Application Program Portability Guide

Classification Summary of Problems Clause
Use of a function pointer after a
type conversion

Arithmetic operation 6.3.4

Mutual conversion between a
pointer to a function and a
pointer to an object

Arithmetic operation 6.3.4

Conversion of a pointer to other
than an integral or pointer type

Arithmetic operation 6.3.4

Addition and subtraction of
pointers to other than an array

Arithmetic operation 6.3.6

Subtraction between pointers
not to point to the same array

Arithmetic operation 6.3.6

Comparison between pointers
not to point to the same
aggregate or union object

Arithmetic operation 6.3.8

An identifier for an object with
no linkage, and also with an
incomplete type

Identifiers, etc. 6.5

A function with block scope
declared other than extern

Identifiers, etc. 6.5.1

A bit-field declaration with
incorrect type

Identifiers, etc. 6.5.2.1

Modification of an object with
const-qualified type

Arithmetic operation 6.5.3

Reference to an object with
volatile-qualified type

Arithmetic operation 6.5.3

Use of an uninitialised object
before a value is assigned

Arithmetic operation 6.5.7

Incorrect initialisation of an
object with an aggregate or
union type

Internal representation and type 6.5.7

A tentative definition of an
identifier for an object with
internal linkage and an
incomplete type

Internal representation and type 6.7.2

Statements and preprocessing
directives

Preprocessing operators #
which results in an invalid
character string literal

6.8.3.2

Statements and preprocessing
directives

Concatenation operator ##
which results in an invalid
preprocessing token

6.8.3.3

Statements and preprocessing
directives

An invalid result after
processing of #line

6.8.4

102 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-10-1

Classification Summary of Problems Clause
Statements and preprocessing
directives

Predefined macro as the subject
of #define or #undef

6.8.8

Statements and preprocessing
directives

An invalid place in which a
standard header is included

7.1.2

Suppression of the errno macro
definition

Error, diagnostics 7.1.4

An invalid value of an argument
of a library function

Arithmetic operation 7.1.7

Suppression of the assert
macro definition

Error, diagnostic 7.2

Suppression of the setjmp
macro definition

Others 7.6

Suppression of the va_start,
va_arg, va_end macro definition

Others 7.8.1

An invocation of va_arg macro
without an actual argument

Others 7.8.1.2

An invocation of va_end macro
without va_start macro

Others 7.8.1.3

Use of the fflush() function for
an input or update stream just
after the input operation

Input/Output 7.9.5.2

An invalidity at switching of
input/output for an update
stream

Input/Output 7.9.5.3

Unmatch of the format and the
argument list for fprintf() or
fscanf()

Input/Output 7.9.6

An invalid conversion in a
format of fprintf() or fscanf()

Input/Output 7.9.6

An invalid %% conversion of
fprintf() or fscanf()

Input/Output 7.9.6

An invalid h, l or L conversion
specifier for the fprintf() function

Input/Output 7.9.6.1

An invalid # flag for the fprintf()
function

Input/Output 7.9.6.1

An invalid 0 flag for the fprintf()
function

Input/Output 7.9.6.1

An invalid argument of the
fprintf() function

Input/Output 7.9.6.1

An invalid h, l or L conversion
specifier for the fscanf()
function

Input/Output 7.9.6.2

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 103

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-10-1 Application Program Portability Guide

Classification Summary of Problems Clause
The conversion result of the
fscanf() function cannot be
represented

Input/Output 7.9.6.2

The conversion result of the
atof(), atoi() or atol() function
cannot be represented

Character string handling 7.10.1

Insufficient size of an array
written to by a copying or
concatenation function

Character string handling 7.11.27.11.3

An invalid conversion specifier
for the strftime() function

Others 7.12.3.5

104 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-1

NAME
C-11-1

CLASSIFICATION
Others (the periphery of execution environment)

TITLE
Meaning of contents of argument argv for the main() function

CLAUSE

5.1.2.2 Hosted Environment

GUIDANCE
The contents of argv are implementation-dependent; therefore, they should be rewritten.

EXPLANATION
The contents and meaning of argv are implementation-defined matters; therefore, they should
be rewritten.

EXAMPLE
A program to display the contents of command lines.

Application Program Without Portability

#include <stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

fputs("command line is ", stdout);
while(*argv != NULL) {(1)

fprintf(stdout, " %s",*argv++);(2)
}
fputc(’0, stdout);

The contents of argv are implementation-dependent, and a rewrite may be required. For
example, there is a fear that no value is given to argv[0] depending on implementation. When
NULL is specified to argv[0], according to the condition of (1), the statement of (2) is not
executed, although the values of and after arg[1] have been given.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 105

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-2 Application Program Portability Guide

NAME
C-11-2

CLASSIFICATION
Others (the periphery of execution environment)

TITLE
Return value of the exit() function

CLAUSE

7.10.4.3 The exit() Function

GUIDANCE
Values other than 0, EXIT_SUCCESS, EXIT_FAILURE should not be used as return values of
the exit() function.

EXPLANATION
The behaviour when values other than the above three are used is implementation-defined, and
generally OS-dependent.

EXAMPLE
A program which returns an error to OS.

Application Program Without Portability

exit(1);

Application Program With Portability

exit(EXIT_FAILURE);

Values other than 0, EXIT_SUCCESS, EXIT_FAILURE are OS-dependent, and should not be
used.

106 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-3

NAME
C-11-3

CLASSIFICATION
Others (the periphery of execution environment)

TITLE
Environment list and the method for altering the environment list

CLAUSE

7.10.4.4 The getenv() Function

GUIDANCE
The set of environment names and the method for altering the environment list in the getenv()
function are implementation-defined; therefore, they should not be used.

EXPLANATION
The method for altering the program environment using the getenv() function is an
implementation-defined behaviour, and not portable; therefore, a rewrite is required.

EXAMPLE
A program is to decide whether lower-case letters can be output to a terminal under the
condition that lower-case letters may not be used on the terminal when ‘‘UPPER’’ is set into
ERR_MESSAGE.

Application Program Without Portability

#include <stdlib.h>
#include <string.h>
char *pc;
short msgflg = 0;(1)
if ((pc = getenv("ERR_MESSAGE")) != NULL {(2)

if (strcmp(pc,"UPPER") == 0) {(3)
msgflg = 1;(4)

}
}

The statement (1) initialises the flag at lower-case letters, and (4) sets the flag at upper-case
letters. The environment variable ERR_MESSAGE in (2) and ‘‘UPPER’’ in (3) do not always
have the same meaning, respectively, depending on implementations.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 107

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-4 Application Program Portability Guide

NAME
C-11-4

CLASSIFICATION
Others (the periphery of execution environment)

TITLE
Use of the system() function

CLAUSE

7.10.4.5 The system() Function

GUIDANCE
The system() function should not be used.

EXPLANATION
The contents of the s character string and the environment of the string to be executed are
implementation-defined, and they should not be used.

EXAMPLE
A program that passes arguments "X", "Y", "Z" to a command "abc" and executes a process of
"abc".

Application Program Without Portability

#include <stdlib.h>
system("abc X Y Z");

The system() function should not be used because it is OS-dependent.

108 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-5

NAME
C-11-5

CLASSIFICATION
Others (the periphery of execution environment)

TITLE
More than one call to the exit() function

CLAUSE

7.10.4.3 The exit() Function

GUIDANCE
Attention should be paid so that the exit() function is not called more than once during program
execution.

EXPLANATION
If more than one call to the exit() function is executed by a program, the behaviour is undefined.
The case that the exit() function itself, or functions which call exit() function indirectly, are
included in functions registered by the atexit(), corresponds to an instant. Such a program is
not portable and should be rewritten.

EXAMPLE

Application Program Without Portability

#include <stdio.h>
main() {

void term(void);
...

if(atexit(term))
abort();
...

return 0;
}
void term(void)
{

fputs("called term()0,stderr);
exit(EXIT_SUCCESS);

}

In this case, a return from main() is equivalent to calling the exit() function, therefore,
regardless of a return value of the atexit() function, the exit() function itself or functions which
call the exit() function indirectly should not be registered by the atexit() function.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 109

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-6 Application Program Portability Guide

NAME
C-11-6

CLASSIFICATION
Others (Signal)

TITLE
Timing of signal generation

CLAUSE

7.7.1.1 The signal() Function

GUIDANCE
Be careful that a signal is not always generated. In addition, it is necessary to pay attention to
the timing of the generation of signals.

EXPLANATION
A signal may not necessarily occur unless specified by the raise() function. And, even if a
signal occurs, the behaviour may have an implementation-defined aspect because of the timing
of the occurrence. Therefore, rewriting may be done, if necessary.

EXAMPLE
A program which issues a message when an interrupt occurs during wait status of an
appropriate interval.

Application Program Without Portability

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#define WAIT 10000
#define OFF 0
#define ON 1
volatile sig_atomic_t intrpt = OFF;
void sigint(int sig) {

intrpt = ON;
}
main()
{

unsigned long cnt ;
signal(SIGINT, sigint);
for(cnt=0; cnt < WAIT ; cnt++)

...
if (intrpt) {(1)

puts("INTERRUPT OCCURRED");
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

If a signal occurs, the signal is not always captured at (1); a rewrite is required.

110 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-6

Application Program With Portability

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#define WAIT 10000
jmp_buf env;
void sigint(int sig) {

longjmp(env,1);
}
main()
{

unsigned long cnt ;
if(setjmp(env) != 0) {

puts("INTERRUPT OCCURRED");
exit(EXIT_SUCCESS);

}
signal(SIGINT, sigint);
for(cnt=0; cnt < WAIT ; cnt++)

;
exit(EXIT_FAILURE);

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 111

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-7 Application Program Portability Guide

NAME
C-11-7

CLASSIFICATION
Others (Signal)

TITLE
Referring to an object at the time of signal occurrence

CLAUSE

7.7.1.1 The signal() Function

GUIDANCE
In signal handler, function calls and object references in other than a defined manner should not
be done.

EXPLANATION
If the signal occurs other than as the result of calling the abort() or raise() functions, and in
addition, the signal handler calls any function in the standard library other than the signal()
function itself, or refers to any object with static storage duration other than by assigning a value
to a static storage duration variable of type volatile sig_atomic_t , the behaviour is undefined.

EXAMPLE
A program in which the signal handler refers to an object with static storage duration.

Application Program Without Portability

#include <signal.h>
#include <setjmp.h>
int error_no;
void memfault(int sig)
{

error_no = MEMFAULT;
longjmp(env, 1);

}

Application Program With Portability

#include <signal.h>
#include <setjmp.h>
volatile sig_atomic_t error_no;
void memfault(int sig)
{

error_no = MEMFAULT;
longjmp(env, 1);

}

112 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-8

NAME
C-11-8

CLASSIFICATION
Others (Signal)

TITLE
Reference to errno at signal occurrence

CLAUSE

7.7.1.1 The signal() Function

GUIDANCE
If the signal occurs other than as the result of calling the abort() or raise() function, errno should
not be referred to.

EXPLANATION
If a call to the signal() function results in a sig_err return, the value of errno is indeterminate.

EXAMPLE
A program which examines an error of the signal() function.

Application Program Without Portability

#include <errno.h>
#include <stdlib.h>
#include <signal.h>
void memfault(int sig)
{

if (signal(sig, fpe_err) == SIG_ERR) {
if (errno == 12)

exit(EXIT_FAILURE);
}

}

The memfault() function is the signal handler. In this example, when a call to the signal()
function results in a SIG_ERR return, the value of errno is not guaranteed; therefore, the coding
of the signal handler should recognise this possibility.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 113

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-9 Application Program Portability Guide

NAME
C-11-9

CLASSIFICATION
Others (Signal)

TITLE
The default handling of the signal() function

CLAUSE

7.7.1.1 The signal() Function

GUIDANCE
A specific default handling concerning the signal() function should not be expected.

EXPLANATION
If a specific default handling concerning the signal() function is expected, it should be explicitly
specified in an application program. At program startup, SIG_IGN may be specified for some
signals, and SIG_DFL is specified for all other signals. Which signals SIG_IGN is specified for
is implementation-defined; therefore, if signals should not be ignored, they should be specified
at the beginning of the program.

EXAMPLE

Application Program With Portability

#include <signal.h>
void fpe_handl(int); /* the signal handler of SIGFPE */
main()
{

signal(SIGABORT, SIG_IGN);
signal(SIGFPE, fpe_hndl);
signal(SIGILL, SIG_IGN);
signal(SIGINT, SIG_IGN);
signal(SIGSEGV, SIG_IGN);
signal(SIGTERM, SIG_IGN);
...

}

114 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-10

NAME
C-11-10

CLASSIFICATION
Others (Signal)

TITLE
Blocking of a signal

CLAUSE

7.7.1.1 The signal() Function

GUIDANCE
An implementation-defined blocking of a signal should not be used.

EXPLANATION
Blocking of a signal is implementation-defined, therefore, if the firm redefinition is required, it
should be explicitly defined in an application program.

EXAMPLE

Application Program With Portability

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
volatile sig_atomic_t fpeerr = OFF;
void sigferr(int sig) {(1)

signal(SIGPFE, SIG_IGN);(2)
fpeerr = ON;
...

}
main()
{

signal(SIGFPE, sigferr);
...

if (fpeerr) {
puts("result value is not correct");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);

}

If SIGFPE occurs during the processing of (1) at the preceding signal occurrence, the behaviour
is implementation-defined; therefore, attention is required. At (2), the redefinition has explicitly
been done. If a firm redefinition is required, it should be explicitly defined as in sigferr.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 115

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-11 Application Program Portability Guide

NAME
C-11-11

CLASSIFICATION
Others (non-local jumps)

TITLE
Context of an invocation of the setjmp macro

CLAUSE

7.6.1.1 The setjmp Macro

GUIDANCE
If the setjmp macro is called, it should not be called from other than the defined context.

EXPLANATION
The contexts in which the setjmp macro can appear are defined in the specifications, but, if it is
called from other than the defined contexts, the behaviour is undefined; therefore, attention is
required. An invocation of the setjmp macro shall appear in only one of the following contexts:

• the entire controlling expression of a selection or iteration statement

• one operand of a relational or equality operator with the other operand an integral constant
expression, with the resulting expression being the entire controlling expression of a
selection or iteration statement

• the operand of a unary ! operator with the resulting expression being the entire controlling
expression of a selection or iteration statement

• the entire expression of an expression statement (possibly cast to void).

EXAMPLE
A program which displays return values of setjmp.

Application Program Without Portability

#include <setjmp.h>
static int ret_val;
ret_val = setjmp(env)

Application Program With Portability

#include <setjmp.h>
static int ret_val;
switch (setjmp(env)) {
case 1:

ret_val = 1;
break;

case 2:
ret_val = 2;
break;

}

116 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-12

NAME
C-11-12

CLASSIFICATION
Others (nonlocal jumps)

TITLE
An invocation of the longjmp() function

CLAUSE

7.6.2.1 The longjmp() Function

GUIDANCE
The longjmp() function should not be invoked from a nested signal handler.

EXPLANATION
If the longjmp() function is invoked from a nested signal handler (that is, from a function invoked
as a result of a signal raised during the handling of another signal), the behaviour is undefined.

EXAMPLE

Application Program Without Portability

#include <setjmp.h>
#include <signal.h>
#define MEMFAULT 1
jmp_buf env:
volatile sig_atomic_t error_no;
signal(SIGFPE, zerodiv);
signal(SIGSEGV, memfault);
void zerodiv(int sig)
{

...
/* if SIGSEGV occurs during this duration, memfault() is invoked. */

...
}
void memfault(int sig)
{

error_no = MEMFAULT;
longjmp(env);(1)

}

The signal handler in which the longjmp() function is described can be prevented moving to a
nested status to some extent by describing a block statement like signal (SIGSEGV,SIG_IGN) at
the top of the signal handler. However, it is not the perfect protection because of the difference
in timing.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 117

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-13 Application Program Portability Guide

NAME
C-11-13

CLASSIFICATION
Others (nonlocal jumps)

TITLE
An implementation of setjmp

CLAUSE

7.6.1.1 The setjmp Macro

GUIDANCE
Assuming that setjmp is a macro or an external identifier should be avoided.

EXPLANATION
It is unspecified whether setjmp is a macro or an external identifier; therefore, program code
assuming this should be avoided.

EXAMPLE
A program which gets the location address of the setjmp() function.

Application Program Without Portability

#include <stdio.h>
#include <setjmp.h>
int (*func)();
func = setjmp;(1)
printf("func address is %p",func);

setjmp is a macro or an external identifier depending on implementation; therefore, there is no
portability. At (1), there is a possibility of a compilation error depending on the implementation.

118 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-14

NAME
C-11-14

CLASSIFICATION
Others (a variable number of arguments)

TITLE
How to realise va_end

CLAUSE

7.8.1.3 The va_end Macro

GUIDANCE
Assuming that va_end is a macro or an external identifier should be avoided.

EXPLANATION
It is unspecified whether setjmp is a macro or an external identifier; therefore, program code
assuming this should be avoided.

EXAMPLE
A program to get the location address of the va_end() function.

Application Program Without Portability

#include <stdio.h>
#include <stdarg.h>
int (*func) ();
func = va_end;(1)
printf("func address is %p",func);

As va_end is a macro or an external identifier depending on the implementation, it loses
portability to have an address assuming an external identifier. And, depending on the
implementation, a compilation error may occur due to statement (1).

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 119

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-15 Application Program Portability Guide

NAME
C-11-15

CLASSIFICATION
Others (a variable number of arguments)

TITLE
Definition of a variable number of arguments

CLAUSE

6.7.1 Function Definitions

GUIDANCE
A function which receives a variable number of arguments should be defined using an ellipsis
notation.

EXPLANATION
When a function which receives a variable number of arguments is defined without a list of
parameters ending with an ellipsis notation, the behaviour is undefined. Then, in such a case, it
is necessary to use an ellipsis notation.

EXAMPLE

Application Program Without Portability

int f(int i, int j, int k)
/* intend to receive three arguments and less */

{
...

}
main(){

int i,j,k;
f(i);
f(i,j);
f(i,j,k);

}

Application Program With Portability

int f(int i,...) /* intend to receive three arguments and less */
{

...
}
main(){

int i,j,k;
f(i);
f(i,j);
f(i,j,k);

}

120 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-16

NAME
C-11-16

CLASSIFICATION
Others (a variable number of arguments)

TITLE
Call of a function with an argument of a va_list type object

CLAUSE

7.8 Variable Arguments <stdarg.h>

GUIDANCE
When an object ap having type va_list is passed as an argument to another function, if that
function invokes the va_arg macro with parameter ap, the calling function shall invoke a va_end
macro with argument ap prior to any further reference to ap.

EXPLANATION
When an object ap having type va_list is passed as an argument to another function, if that
function invokes the va_arg macro with parameter ap, the value of ap in the calling function is
different from the original value prior to the invocation and becomes indeterminate. Then, the
calling function shall invoke a va_end macro with argument ap prior to any further reference to
ap.

EXAMPLE

Application Program Without Portability

#include <stdarg.h>
void f1(char *n_ptr, ...)
{

va_list ap;
va_start (ap, n_ptr);
f2(ap);
...
arg1 = va_arg(ap, int);
...
va_end(ap);

}
- - - - - - - - - - - - - -
#include <stdarg.h>
f2(va_list ap)
{

int i;
i = va_arg(ap, int); ...(1)
va_arg(ap, int) = 100; ...(2)
...

}

Although the value of ap is not changed by the invocation of the va_arg macro by statement (1),
it is changed by statement (2). Then, the value of ap in the calling function is indeterminate.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 121

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-16 Application Program Portability Guide

Application Program With Portability

#include <stdarg.h>
void f1(char *n_ptr, ...)
{

va_list ap;
va_start (ap, n_ptr);
f2(ap);
va_end(ap);
va_start (ap, n_ptr);
arg1 = va_arg(ap, int);
...
va_end(ap);

}
- - - - - - - - - - - - - -
#include <stdarg.h>
f2(va_list ap)
{

int i;
i = va_arg(ap, int);
va_arg(ap, int) = 100;
...

}

122 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-17

NAME
C-11-17

CLASSIFICATION
Others (a variable number of arguments)

TITLE
Parameters of the va_start macro

CLAUSE

7.8.1.1 The va_start Macro

GUIDANCE
Enough attention should be paid to declare the parameter parmN in appropriate type.

EXPLANATION
If the type of the parameter parmN of a va_start macro is not compatible with the register
storage class, with a function or array type, or the type that results after application of the
default argument promotions, the behaviour is undefined.

EXAMPLE

Application Program Without Portability

#include <stdarg.h>
#define MAXARGS 31
void f1(register int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
va_start(ap, n_ptrs);
...

}

When the register storage class is specified for the second argument of the va_start macro, the
behaviour is undefined. So, the argument in appropriate type should be declared.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 123

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-18 Application Program Portability Guide

NAME
C-11-18

CLASSIFICATION
Others (a variable number of arguments)

TITLE
Incompatibility of the type specified as the second parameter of a va_arg macro with the type of
a variable number of arguments

CLAUSE

7.8.1.2 The va_arg Macro

GUIDANCE
The type specified as the second parameter of a va_arg macro shall be compatible with the type
of the actual next argument in the list of a variable number of arguments; therefore, attention is
required.

EXPLANATION
If there is no actual next argument of a va_arg macro, or if the type specified as the second
parameter of a va_arg macro is not compatible with the type of the actual next argument (the
type that results after application of the default argument promotions), then the behaviour is
undefined. So, ensure that such incompatibility may not occur.

EXAMPLE

Application Program Without Portability

void f1 (int n_ptr, ...);
void f2 (void)
{

int i;
long l;
...
f1(l, i);
...
f1(2, i, l); . . . (1)
...

}
- - - - - - - - - - - - -
#include <stdarg.h>
#define MAXARGS 31
void f1 (int n_ptr, ...)
{

va_list ap;
int array[MAXARGS];
int ptr_NO = 0;
...
va_start(ap, n_ptr);
...
while(ptr_NO < n_ptr)

array[ptr_NO ++] = va_arg(ap, int);
va_end(ap);

...
}

124 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-18

This example operates normally for the implementation in which the data size of both int type
and long type is the same. However, for the implementation in which the data size of int type
and long type is not the same, the behaviour is undefined as a result of the invocation of
statement (1). Then, it is necessary to rewrite this.

Application Program With Portability

void f1 (int n_ptr, ...);
void f2 (void)
{

int i, j;
...
f1(l, i);
...
f1(2, i, j);
...
}

- - - - - - - - - - - - -
#include <stdarg.h>
#define MAXARGS 31
void f1 (int n_ptr, ...)
{

va_list ap;
int array[MAXARGS];
int ptr_NO = 0;
...
va_start(ap, n_ptr);
while(ptr_NO < n_ptr)

array[ptr_NO ++] = va_arg(ap, int);
va_end(ap);
...

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 125

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-19 Application Program Portability Guide

NAME
C-11-19

CLASSIFICATION
Others (a variable number of arguments)

TITLE
Return from a function initialised by the va_start macro

CLAUSE

7.8.1.3 The va_end Macro

GUIDANCE
A va_end macro, corresponding to a va_start macro should be invoked.

EXPLANATION
If a return from a function whose variable argument list that was initialised by a va_start macro
occurs before the invocation of a va_end macro, the behaviour is undefined. It is necessary to
invoke a va_end macro, corresponding to a va_start macro.

EXAMPLE
A program gathers into an array a list of arguments that are pointers to strings.

Application Program Without Portability

#include <stdarg.h>
#define MAXARGS 31
void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_NO = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while(ptr_NO < n_ptrs)

array[ptr_NO ++] = va_arg(ap, char *);
f2(n_ptrs, array);

}

126 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-19

Application Program With Portability

#include <stdarg.h>
#define MAXARGS 31
void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_NO = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while(ptr_NO < n_ptrs)

array[ptr_NO ++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 127

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-20 Application Program Portability Guide

NAME
C-11-20

CLASSIFICATION
Others (General utility)

TITLE
The order and contiguity of allocated storage

CLAUSE

7.10.3 Memory Management Functions

GUIDANCE
The order and contiguity of allocated storage should not be assumed.

EXPLANATION
As the order and contiguity of storage allocated by the calloc(), malloc() and realloc() functions
are unspecified, they should not be assumed.

EXAMPLE
A program which calls the malloc() functions successively and accesses by an array.

Application Program Without Portability

#include <stdlib.h>
int *pi0, *pi1;
pi0 = (int *)malloc(sizeof(int));
pi1 = (int *)malloc(sizeof(int));
pi0[0] = 0;
pi1[0] = 1;
printf("pi0[1] = %d", pi0[1]);(1)

If contiguous storage is always allocated by successive calls to the malloc() function, then ’1’ is
always the output from the statement (1). However, if contiguous storage is not always
allocated by successive calls to the malloc() function, then ’1’ is not always the output.

Application Program With Portability

#include <stdlib.h>
int *pi0, *pi1;
pi0 = (int *)malloc(sizeof(int)*2);
pi1 = &pi0[1];
pi0[0] = 0;
pi1[0] = 1;
printf("pi0[1] = %d", pi0[1]);

When contiguous storage is required, the storage must be allocated at once by the malloc()
function. If required contiguous storage is insufficient during execution of a program, expand the
storage using the realloc() function.

128 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-21

NAME
C-11-21

CLASSIFICATION
Others (General utility)

TITLE
The bsearch() function when two elements are equal

CLAUSE

7.10.5.1 The bsearch() Function

GUIDANCE
When the bsearch() function has two elements which are equal, which element is returned as a
result of bsearch() is unspecified. A program which is dependent on the return of a specific
element should not be written.

EXPLANATION
If two elements in an array are equal to the search key, which element is matched is
unspecified.

EXAMPLE
A program which counts the number of characters whose values are less than the code of
character ’c’ in the specified sorted string.

Application Program Without Portability

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
const char *base[] = {"a","a","b","b","c","c"} ;
const char *key = "c";
main() {

char *p;
p = (char *)bsearch((void *)key, (void *) base, sizeof(base),

sizeof(*base), strcmp);
if(p == NULL) {

fprintf(stderr,"not found0);
exit(0);

}
printf("count = %d0,(int)(p-base));

}

This program assumes that the string "c" on the left in the array base is the first pointed.
However, in some implementations, string "c" on the right may be the first found.

Application Program With Portability

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
const char *base[] = "aabbcc";
const char *key = "c";
main() {

char *p;
p = (char *)bsearch((void *)key, (void *) base, sizeof(base),

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 129

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-21 Application Program Portability Guide

sizeof(*base), strcmp);
if(p == NULL) {

fprintf(stderr,"not found0);
exit(0);
}

while(p != base) { /* When "c" on the right matches first */
if(*p == *(p-1))

p--; /* Pointer is moved to the leftmost "c" */
else

break;
}

printf("count = %d0,(int)(p-base));
...

}

130 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-22

NAME
C-11-22

CLASSIFICATION
Others (General utility)

TITLE
The qsort() function when two elements are equal

CLAUSE

7.10.5.2 The qsort() Function

GUIDANCE
If two elements are equal, their order in the sorted array is unspecified; therefore, attention is
required.

EXPLANATION
The qsort() function sorts the elements of an array into ascending order. If two elements are
equal, their order in the sorted array is unspecified, then a specific order shall not be assumed.
A comparison function should be structured so as not to return a value 0 (the result is equal) by
being aware of all keys.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 131

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-23 Application Program Portability Guide

NAME
C-11-23

CLASSIFICATION
Others (General utility)

TITLE
The calloc(), malloc() and realloc() functions whose sizes are zero

CLAUSE

7.10.3 Memory Management Functions

GUIDANCE
Zero as the argument of the calloc(), malloc() and realloc() functions should not be specified.

EXPLANATION
When an argument of the calloc(), malloc() or realloc() function is specified as zero, the
behaviour is implementation-defined. So, zero should not be specified as the argument.

EXAMPLE
A program to find all the areas where the malloc() function can operate.

Application Program Without Portability

if ((p = malloc(0)) == NULL) {(1)
fputs("Cant get malloc area0,stderr);

exit(EXIT_FAILURE);
} else {
}

As the behaviour as a result of malloc(0) in the statement (1) depends on the implementation, it
is necessary to rewrite the statement.

132 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-24

NAME
C-11-24

CLASSIFICATION
Others (General utility)

TITLE
Reference to a pointer to space which has been deallocated by a call to the free() or realloc()
function

CLAUSE

7.10.3 Memory Management Functions

GUIDANCE
Space which has been deallocated should not be referred to.

EXPLANATION
The value of a pointer to space which has been deallocated is undefined.

EXAMPLE
A program which uses a pointer to space (may possibly be deallocated) which has not been
reallocated by the realloc() function.

Application Program Without Portability

#include <stdlib.h>
#define TBLSZ 100
#define ON 1
#define OFF 0

struct TBL {
int flg;
struct TBL * nextp;
} ;

typedef struct TBL tblty;
main() {

tblty * topp, * curlp, * tmpp;
int n, m;
topp = (tblty *)malloc(sizeof(tblty)*TBLSZ);
curlp = topp;
...
curlp = &topp[n];
curlp->flg = ON;
curlp->nextp = &topp[m];
...
if(curlp >= &topp[TBLSZ-1]) {

topp = (tblty *)realloc(topp, sizeof(tblty):TBLSZ*2);
}
...
tmpp = curlp->nextp;

/* nextp is a pointer to the space that has not been */
/* reallocated yet. Then, the reference is invalid. */

if(tmmp->flg == ON){
}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 133

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-24 Application Program Portability Guide

A program like this is necessary to reserve sufficient space by the initial malloc(), or to manage
a chain to each entry of a table by the number of elements in an array, not by pointers.

134 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-25

NAME
C-11-25

CLASSIFICATION
Others (General utility)

TITLE
Pointer argument of the free() or the realloc() function

CLAUSE

7.10.3 Memory Management Functions

GUIDANCE
A pointer to deallocated space as an argument of the free() or realloc() function should not be
specified. A pointer which does not match a pointer earlier returned by the calloc(), malloc() or
realloc() function as an argument should not be specified.

EXPLANATION
If a pointer argument of the free() or realloc() function does not match a pointer earlier returned
by the calloc(), malloc() or realloc() function, or if the object pointed to by the pointer has been
deallocated by a call to the free() or realloc() function, the behaviour is undefined.

EXAMPLE
A program in which an argument of the free() function does not match a pointer returned by the
malloc() function.

Application Program Without Portability

char *pc;
int i;
pc = (char *)malloc(sizeof(char)*5);(1)
for(i = 0 ; i < 5; i++) {

*pc++ = ’A’ + i;
}

free(pc);(2)

As the pointer returned by statement (1) does not match the pointer passed by statement (2),
the behaviour is not guaranteed.

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 135

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-26 Application Program Portability Guide

NAME
C-11-26

CLASSIFICATION
Others (General utility)

TITLE
The base time of the clock() function

CLAUSE

7.12.2.1 The clock() Function

GUIDANCE
The base time of the clock() function should not be assumed.

EXPLANATION
As the base time of the clock() function is implementation-defined, the difference between two
calendar times should be used.

EXAMPLE
A program which manages the CPU time.

Application Program Without Portability

puts("program start");
if (clock()/CLOCKS_PER_SEC > 10) {
fputs("Time limit !!0,stderr);
exit(EXIT_FAILURE);
}

Application Program With Portability

clock_t st_clk;
puts("program start");
st_clk = clock();
if (clock()/CLOCKS_PER_SEC > 10) {
fputs("Time limit !!0,stderr);
exit(EXIT_FAILURE);
}

As the base time of the clock() function depends on the implementation, use the difference
between two calendar times.

136 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Application Program Portability Guide C-11-27

NAME
C-11-27

CLASSIFICATION
Others (General utility)

TITLE
Type of the calendar time returned by the time() function

CLAUSE

7.12.2.4 The time() Function

GUIDANCE
A program should not make an assumption based on the value returned by the time() function.

EXPLANATION
The time() function returns the implementation’s best approximation of the current calendar time
and the encoding of the value is unspecified. Therefore, the value of the time() function should
not be assumed.

EXAMPLE

Application Program Without Portability

#include <time.h>
main() {

time_t x,y;
x = time((time_t *)0);
while() {

if (x+180 < time((time_t *)0))
break;

/* intend to exit from while loop after 3 minutes */
}

}

The value returned by the time function is not always expressed in seconds.

Application Program With Portability

#include <time.h>
main() {

time_t x,y;
x = time((time_t *)0);
while() {

y = time((time_t *)0);
if (difftime(y, x) > 180.0)

break;
/* intend to exit from while loop after 3 minutes */

}
}

SPIRIT C Language Portability Guide (SPIRIT Issue 3.0) 137

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-11-28 Application Program Portability Guide

NAME
C-11-28

CLASSIFICATION
Others (General utility)

TITLE
Flag for daylight saving time (DST)

CLAUSE

7.12.1 Components of Time

GUIDANCE
Whether or not Daylight Saving Time is adopted is decided based on the fact that the value of
tm_isdst is not positive if Daylight Saving Time does not exist.

EXPLANATION
In SPIRIT, it is implementation-defined that the value of tm_isdst is zero or negative when DST
is not adopted.

EXAMPLE

Application Program Without Portability

#include <time.h>
#include <stdio.h>
struct tm *t1;
if(t1->tm_isdst < 0) printf("No DST may exist");

/* the value of tm_isdst may be zero */

Application Program With Portability

#include <time.h>
#include <stdio.h>
struct tm *t1
if(t1->tm_isdst <= 0) printf("No DST may exist");

/* the value of tm_isdst, both zero and negative are examined */

138 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

