
Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

SPIRIT Platform Blueprint

SPIRIT C Language Profile

(SPIRIT Issue 3.0)

Network Management Forum

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Copyright December 1995, Network Management Forum

SPIRIT Platform Blueprint

SPIRIT C Language Profile (SPIRIT Issue 3.0)

ISBN: N/A
Document Number: J406

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to:

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

This work is published by X/Open Company Limited, on behalf of and under the terms of an agreement
with the Network Management Forum. The NMF, as authors, have granted X/Open a royalty-free, paid-
up, worldwide license to publish this work. Any enquiries relating to copyright, republication or licensing of
any parts of this publication should be directed to X/Open.

Network Management Forum
1201 Mount Kemble Avenue
Morristown, NJ 07960
U.S.A.

Tel: +1 201 425 1900

ii SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Contents__

Chapter 1 Introduction ... 1
 1.1 Purpose ... 1
 1.2 Reading Instructions .. 1

Chapter 2 C Language Profile ... 3

Appendix A X/Open C and MIA C ... 49
 A.1 C-language Interface Specifications ... 49
 A.2 Differences .. 51

List of Figures

A-1 C-language Interface Specifications .. 50

List of Tables

A-1 SPIRIT C, X/Open C and MIA C ... 51

SPIRIT C Language Profile (SPIRIT Issue 3.0) iii

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Contents

iv SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Chapter 1

Introduction__

1.1 Purpose
The purpose of this C Language Profile is to define a standard C-language interface between
application programs and systems software for the SPIRIT environment. Any application
program written to this C-language interface is portable across SPIRIT-conforming platforms,
regardless of its vendor. This C-language interface is intended to be used in conjunction with
other SPIRIT APIs that have a C-language binding. An example is the Base System API.

This C-language interface complies with the ISO C Language standard, ISO/IEC 9899 (ISO C),
with its (proposed) amendment, ISO/IEC 9899/AM1.1 Since all the mandatory requirements of
ISO C are also applicable to this interface, any implementation that conforms to this interface is
also ISO C-compliant. However, as this interface defines some additional requirements to
ISO C, an application conforming to this interface may not always strictly conform to ISO C.

1.2 Reading Instructions
This document describes the differences between ISO C and the SPIRIT C-language interface
specification.

Specification elements that are identical to ISO C are not restated in this document. In ISO C,
readers should replace ‘‘This International Standard’’ with ‘‘This specification’’ when applying the
technical contents to the SPIRIT specification.

The indications ‘‘The same as ISO/IEC 9899.’’, ‘‘The same as ISO/IEC 9899/AM1.’’ or ‘‘The
same as ISO/IEC 9899 with ISO/IEC 9899/AM1.’’ mean that the technical contents of this
SPIRIT specification are identical to ISO C.

As far as possible, the organisation of ISO/IEC 9899 is maintained in this profile. New clauses,
such as ‘‘Wide-character classification and mapping utilities’’ and ‘‘Extended multibyte and
wide-character utilities’’ in the corresponding clauses of this profile were introduced by
ISO/IEC 9899/AM1. Also, a clause of ‘‘Code conversion utilities’’ is added to the end of the
‘‘Library’’ section.

Italic font is used to indicate additional requirements to ISO C specified by SPIRIT C.

1. ISO/IEC 9899:1990, Programming Languages — C (technically identical to ANSI standard X3.159-1989).

ISO/IEC 9899:1990/Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 1

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Introduction

2 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Chapter 2

C Language Profile__

This profile is organised according to ISO/IEC 9899.

1. Scope

The same as ISO/IEC 9899.

2. Normative References

The same as ISO/IEC 9899.

3. Definitions and Conventions

In this C language profile, ‘‘shall’’ is interpreted as a requirement on an
implementation or a program; conversely, ‘‘shall not’’ is interpreted as a
prohibition.

For the purposes of this profile, the following definitions apply. Other terms are
defined at their first appearance, indicated by italic type. Terms explicitly defined
in this profile do not refer implicitly to similar terms defined elsewhere. Terms not
defined in this profile are to be interpreted according to ISO 23822 vocabulary
standards.

3.1 Alignment

The same as ISO/IEC 9899.

3.2 Argument

The same as ISO/IEC 9899.

3.3 Bit

The same as ISO/IEC 9899.

3.4 Byte

The same as ISO/IEC 9899.

3.5 Character

The same as ISO/IEC 9899.

3.6 Constraints

The same as ISO/IEC 9899.

3.7 Diagnostic Message

2. ISO 2382, Information Technology — Vocabulary.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 3

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

3.8 Forward References

The same as ISO/IEC 9899.

3.9 Implementation

The same as ISO/IEC 9899.

3.10 Implementation-defined Behaviour

The same as ISO/IEC 9899.

3.11 Implementation Limits

The same as ISO/IEC 9899.

3.12 Multibyte Character

The same as ISO/IEC 9899.

3.13 Object

The same as ISO/IEC 9899.

3.14 Parameter

The same as ISO/IEC 9899.

3.15 Undefined Behaviour

The same as ISO/IEC 9899.

3.16 Unspecified Behaviour

The same as ISO/IEC 9899.

3.17 Conformance Document

A document provided by an implementor that contains implementation details as
described in the ‘‘Documentation’’ clause of the ‘‘Compliance’’ section.

4. Compliance

A conformance document with the following information shall be available for an
implementation claiming conformance to this profile.

The conformance document shall not contain information about extended facilities
or capabilities outside the scope of this profile.

The conformance document shall contain a statement that indicates the full name
and date of the SPIRIT specification that applies.

The conformance document shall describe the limits values found in the
<limits.h> and <float.h> headers, translation limits, stating values, the conditions
under which those values may change, and the limits of such variations, if any.

The conformance document shall describe the behaviour of the implementation for
all implementation-defined features defined in this profile. The conformance
document may specify the behaviour of the implementation for those features
where this profile states that implementations may vary or where features are
identified as undefined or unspecified.

No features, other than those described in this profile, shall be present in the
conformance document.

4 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The phrases ‘‘shall document’’ or ‘‘shall be documented’’ in this profile mean that
documentation of the feature shall appear in the conformance document, as
described above.

5. Environment

The same as ISO/IEC 9899.

5.1 Conceptual Models

The same as ISO/IEC 9899.

5.1.1 Translation Environment

The same as ISO/IEC 9899.

5.1.1.1 Program Structure

The same as ISO/IEC 9899.

5.1.1.2 Translation Phases

The same as ISO/IEC 9899.

5.1.1.3 Diagnostics

The same as ISO/IEC 9899.

5.1.2 Execution Environments

The same as ISO/IEC 9899.

5.1.2.1 Freestanding Environment

The same as ISO/IEC 9899.

5.1.2.2 Hosted Environment

The same as ISO/IEC 9899.

5.1.2.2.1 Program Startup

The same as ISO/IEC 9899.

5.1.2.2.2 Program Execution

The same as ISO/IEC 9899.

5.1.2.2.3 Program Termination

The same as ISO/IEC 9899.

5.1.2.3 Program Execution

The same as ISO/IEC 9899.

5.2 Environmental Considerations

5.2.1 Character Sets

The same as ISO/IEC 9899.

5.2.1.1 Trigraph Sequences

The same as ISO/IEC 9899.

5.2.1.2 Multibyte Characters

SPIRIT C Language Profile (SPIRIT Issue 3.0) 5

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

5.2.2 Character Display Semantics

The same as ISO/IEC 9899.

5.2.3 Signals and Interrupts

The same as ISO/IEC 9899.

5.2.4 Environmental Limits

The same as ISO/IEC 9899.

5.2.4.1 Translation Limits

The same as ISO/IEC 9899.

5.2.4.2 Numerical Limits

The same as ISO/IEC 9899.

5.2.4.2.1 Size of Integral Type <limits.h>

The same as ISO/IEC 9899.

5.2.4.2.2 Characteristics of Floating Types <float.h>

The technical requirements of this clause are the same as ISO/IEC 9899 except
for the implementation limit values shown in the paragraph below.

The values given in the following lists are replaced by implementation-defined
expressions, equal or greater in magnitude (absolute value) to those shown and
with the same sign:

FLT R___ADIX2
FLT M___ANT_DIG
DBL M___ANT_DIG
DBL M___AINT_DIG
FLT D___IG6
DBL D___IG14
LDBL __DIG14
FLT M___IN_EXP
DBL M___IN_EXP
LDBL __MIN_EXP
FLT M___IN_10_EXP-37
DBL M___IN_10_EXP-78
LDBL __MIN_10_EXP-78
FLT M___AX_EXP
DBL M___AX_EXP
LDBL __MAX_EXP
FLT M___AX_10_EXP+38
DBL M___AX_10_EXP+75
LDBL __MAX_10_EXP+75

The values given in the following list are replaced by implementation-defined
expressions with values that are equal to or greater than those shown:

6 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

FLT M___AX 1E+38
DBL M___AX 1E+75
LDBL __MAX 1E+75

The values given in the following list shall be replaced by implementation-defined
expressions with values that are equal to or less than those shown:

FLT E___PSILON1E-5
DBL E___PSILON1E-13
LDBL __EPSILON1E-13
FLT M___IN1E-37
DBL M___IN1E-78
LDBL __MIN1E-78

6. Language

The same as ISO/IEC 9899.

6.1 Lexical Elements

The same as ISO/IEC 9899.

6.1.1 Keywords

The same as ISO/IEC 9899.

6.1.2 Identifiers

Syntax The same as ISO/IEC 9899.

Description The same as ISO/IEC 9899.

Constraints The same as ISO/IEC 9899.

Semantics The same as ISO/IEC 9899.

Implementation Limits
Implementation restricts the significance of an external name to
eight characters (rather than six characters).

The implementation treats at least the first 31 characters of an
internal name (a macro name or an identifier that does not have
an external linkage) as significant. Corresponding lower-case
and upper-case letters are different. The implementation may
further restrict the significance of an external name (an identifier
that has an external linkage) to eight characters and may ignore
distinctions of alphabetical case for such names. These
limitations on identifiers are all implementation-defined.

Any identifiers that differ in a significant character are different
identifiers. If two identifiers differ in a non-significant character,
the behaviour is undefined.

6.1.2.1 Scopes of Identifiers

The same as ISO/IEC 9899.

6.1.2.2 Linkages of Identifiers

The same as ISO/IEC 9899.

6.1.2.3 Name Spaces of Identifiers

SPIRIT C Language Profile (SPIRIT Issue 3.0) 7

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

6.1.2.4 Storage Durations of Objects

The same as ISO/IEC 9899.

6.1.2.5 Types

The same as ISO/IEC 9899.

6.1.2.6 Compatible Type and Composite Type

The same as ISO/IEC 9899.

6.1.3 Constants

The same as ISO/IEC 9899.

6.1.3.1 Floating Constants

The same as ISO/IEC 9899.

6.1.3.2 Integer Constants

The same as ISO/IEC 9899.

6.1.3.3 Enumeration Constants

The same as ISO/IEC 9899.

6.1.3.4 Character Constants

The same as ISO/IEC 9899.

6.1.4 String Literals

The same as ISO/IEC 9899.

6.1.5 Operators

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

6.1.6 Punctuators

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

6.1.7 Header Names

The same as ISO/IEC 9899.

6.1.8 Preprocessing Numbers

The same as ISO/IEC 9899.

6.1.9 Comments

The same as ISO/IEC 9899.

6.2 Conversions

The same as ISO/IEC 9899.

6.2.1 Arithmetic Operands

6.2.1.1 Characters and Integers

The same as ISO/IEC 9899.

8 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

6.2.1.2 Signed and Unsigned Integers

When an unsigned integer is converted to its corresponding signed integer, all
bits are preserved.

When a value with integral type is converted to another integral type, if the value
can be represented by the new type, its value is unchanged.

When a signed integer is converted to an unsigned integer with equal or greater
size, if the value of the signed integer is non-negative, its value is unchanged.
Otherwise, if the unsigned integer has greater size, the signed integer is first
promoted to the signed integer corresponding to the unsigned integer; the value
is converted to unsigned by adding to it one greater than the largest number that
can be represented in the unsigned integer type.

When a value with integral type is demoted to an unsigned integer with smaller
size, the result is the non-negative remainder on division by the number one
greater than the largest unsigned number that can be represented in the type with
smaller size. When a value with integral type is demoted to a signed integer with
smaller size, the least significant bits are preserved, and when an unsigned
integer is converted to its corresponding signed integer, all values are preserved.

6.2.1.3 Floating and Integral

The same as ISO/IEC 9899.

6.2.1.4 Floating Types

The same as ISO/IEC 9899.

6.2.1.5 Usual Arithmetic Conversions

The same as ISO/IEC 9899.

6.2.2 Other Operands

6.2.2.1 Lvalues and Function Designators

The same as ISO/IEC 9899.

6.2.2.2 void

The same as ISO/IEC 9899.

6.2.2.3 Pointers

The same as ISO/IEC 9899.

6.3 Expressions

The same as ISO/IEC 9899.

6.3.1 Primary Expressions

The same as ISO/IEC 9899.

6.3.2 Postfix Operators

The same as ISO/IEC 9899.

6.3.2.1 Array Subscripting

The same as ISO/IEC 9899.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 9

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

6.3.2.2 Function Calls

The same as ISO/IEC 9899.

6.3.2.3 Structure and Union Members

The same as ISO/IEC 9899.

6.3.2.4 Postfix Increment and Decrement Operators

The same as ISO/IEC 9899.

6.3.3 Unary Operators

The same as ISO/IEC 9899.

6.3.3.1 Prefix Increment and Decrement Operators

The same as ISO/IEC 9899.

6.3.3.2 Address and Indirection Operators

The same as ISO/IEC 9899.

6.3.3.3 Unary Arithmetic Operators

The same as ISO/IEC 9899.

6.3.3.4 The sizeof Operator

The same as ISO/IEC 9899.

6.3.4 Cast Operators

The same as ISO/IEC 9899.

6.3.5 Multiplicative Operators

Syntax The same as ISO/IEC 9899.

Constraints The same as ISO/IEC 9899.

Semantics The usual arithmetic conversions are performed on the
operands.

The result of the * operand is the product of the operands. The
result of the / operand is the quotient from the division of the first
operand by the second; the result of the % operator is the
remainder. In both operations, if the value of the second
operand is zero, the behaviour is undefined.

When integers are divided and the division is inexact, if both
operands are positive the result of the / operator is the largest
integer less the algebraic quotient. The result of the % operator
is positive. If either operand is negative, the result of the /
operator is the integer of lesser magnitude, the nearest to the
algebraic quotient. If the quotient a/b is representable, the
expression (a/b) * b + a%b shall equal a.

6.3.6 Additive Operators

The same as ISO/IEC 9899.

6.3.7 Bitwise Shift Operators

10 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

Syntax The same as ISO/IEC 9899.

Constraints The same as ISO/IEC 9899.

Semantics The integral promotion is performed on each of the operands.
The type of result is the promoted left operand. If the value of
the right operand is negative or is greater than or equal to the
width in bits of the promoted left operand, the behaviour is
undefined.

The result of E1 << E2 is E1 left-shifted E2 bit operations;
vacated bits are filled with zeros. If E1 has an unsigned type,
the value of the results is E1 multiplied by the quantity, 2 raised
to the power E2, reduced modulo ULONG_MAX+1 if E1 has
type unsigned long . Otherwise this is UINT_MAX+1. (The
constants ULONG_MAX and UINT_MAX are defined in the
header <limits.h> .)

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1
has an unsigned type or if E1 has a signed type and a non-
negative value, the value of the result is an integral part of the
quotient of E1 divided by the quantity, 2 raised to the power E2.
If E1 has a signed type and a negative value, the sign is
preserved; vacated bits are filled with ones in a two’s-
complement representation.

6.3.8 Relational Operators

The same as ISO/IEC 9899.

6.3.9 Equality Operators

The same as ISO/IEC 9899.

6.3.10 Bitwise AND Operator

The same as ISO/IEC 9899.

6.3.11 Bitwise Exclusive OR Operator

The same as ISO/IEC 9899.

6.3.12 Bitwise Inclusive OR Operator

The same as ISO/IEC 9899.

6.3.13 Logical AND Operator

The same as ISO/IEC 9899.

6.3.14 Logical OR Operator

The same as ISO/IEC 9899.

6.3.15 Conditional Operator

The same as ISO/IEC 9899.

6.3.16 Assignment Operators

The same as ISO/IEC 9899.

6.3.16.1 Simple Assignment

SPIRIT C Language Profile (SPIRIT Issue 3.0) 11

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

6.3.16.2 Compound Assignment

The same as ISO/IEC 9899.

6.3.17 Comma Operator

The same as ISO/IEC 9899.

6.4 Constant Expressions

The same as ISO/IEC 9899.

6.5 Declarations

The same as ISO/IEC 9899.

6.5.1 Storage-class Specifiers

The same as ISO/IEC 9899.

6.5.2 Type Specifiers

The same as ISO/IEC 9899.

6.5.2.1 Structure and Union Specifiers

The same as ISO/IEC 9899.

6.5.2.2 Enumeration Specifiers

The same as ISO/IEC 9899.

6.5.2.3 Tags

The same as ISO/IEC 9899.

6.5.3 Type Qualifiers

The same as ISO/IEC 9899.

6.5.4 Declarators

The same as ISO/IEC 9899.

6.5.4.1 Pointer Declarators

The same as ISO/IEC 9899.

6.5.4.2 Array Declarators

The same as ISO/IEC 9899.

6.5.4.3 Function Declarators (Including Prototypes)

The same as ISO/IEC 9899.

6.5.5 Type Names

The same as ISO/IEC 9899.

6.5.6 Type Definitions

The same as ISO/IEC 9899.

6.5.7 Initialization

12 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

6.6 Statements

The same as ISO/IEC 9899.

6.6.1 Labeled Statements

The same as ISO/IEC 9899.

6.6.2 Compound Statement or Block

The same as ISO/IEC 9899.

6.6.3 Expression and Null Statements

The same as ISO/IEC 9899.

6.6.4 Selection Statements

The same as ISO/IEC 9899.

6.6.4.1 The if Statement

The same as ISO/IEC 9899.

6.6.4.2 The switch Statement

The same as ISO/IEC 9899.

6.6.5 Iteration Statements

The same as ISO/IEC 9899.

6.6.5.1 The while Statement

The same as ISO/IEC 9899.

6.6.5.2 The do Statement

The same as ISO/IEC 9899.

6.6.5.3 The for Statement

The same as ISO/IEC 9899.

6.6.6 Jump Statements

The same as ISO/IEC 9899.

6.6.6.1 The goto Statement

The same as ISO/IEC 9899.

6.6.6.2 The continue Statement

The same as ISO/IEC 9899.

6.6.6.3 The break Statement

The same as ISO/IEC 9899.

6.6.6.4 The return Statement

The same as ISO/IEC 9899.

6.7 External Definitions

SPIRIT C Language Profile (SPIRIT Issue 3.0) 13

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

6.7.1 Function Definitions

The same as ISO/IEC 9899.

6.7.2 External Object Definitions

The same as ISO/IEC 9899.

6.8 Preprocessing Directives

The same as ISO/IEC 9899.

6.8.1 Conditional Inclusion

The same as ISO/IEC 9899.

6.8.2 Source File Inclusion

The same as ISO/IEC 9899.

6.8.3 Macro Replacement

The same as ISO/IEC 9899.

6.8.3.1 Argument Substitution

The same as ISO/IEC 9899.

6.8.3.2 The # Operator

The same as ISO/IEC 9899.

6.8.3.3 The ## Operator

The same as ISO/IEC 9899.

6.8.3.4 Rescanning and Further Replacement

The same as ISO/IEC 9899.

6.8.3.5 Scope of Macro Definitions

The same as ISO/IEC 9899.

6.8.4 Line Control

The same as ISO/IEC 9899.

6.8.5 Error Directive

The same as ISO/IEC 9899.

6.8.6 Pragma Directive

The same as ISO/IEC 9899.

6.8.7 Null Directive

The same as ISO/IEC 9899.

6.8.8 Predefined Macro Names

The following macro names shall be defined in the implementation:

__LINE__ The line number of the current source line (a decimal constant).

14 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

__FILE__ The presumed name of the source line (a character string literal).

__DATE__ The date of translation of the source file (a character string literal of
the form ‘‘Mmm dd yyyy’’, where the names of the months are the
same as those generated by the asctime() function, and the first
character of dd is a space character if the value is less than 10). If
the date of translation is not available, an implementation-defined
valid date shall be supplied.

__TIME__ The time of translation of the source file (a character string literal of
the form ‘‘hh:mm:ss’’ as in the time generated by the asctime()
function). If the time of translation is not available, an
implementation-defined valid time shall be supplied.

__STDC__ The decimal constant 1, intended to indicate a conforming
implementation of ISO/IEC 9899.

__STDC_VERSION__
The decimal constant 199407, intended to indicate an
implementation conforming to ISO/IEC 9899/AM1.

The value of the predefined macros (except for __LINE__and __FILE__) remain
constant throughout the translation unit.

None of these macro names, nor the identifier defined, shall be the subject of a
#define or a #undef preprocessing directive. All predefined macro names are
described with a leading underscore followed by an upper-case letter or a second
underscore.

Note: The decimal constant 199407 for __STDC_VERSION__ is subject to
change at the official publication of ISO/IEC 9899/AM1.

6.9 Future Language Directions

6.9.1 External Names

The same as ISO/IEC 9899.

6.9.2 Character Escape Sequences

The same as ISO/IEC 9899.

6.9.3 Storage-class Specifiers

The same as ISO/IEC 9899.

6.9.4 Function Declarators

The same as ISO/IEC 9899.

6.9.5 Function Definitions

The same as ISO/IEC 9899.

6.9.6 Array Parameters

The same as ISO/IEC 9899.

7. Library

7.1 Introduction

7.1.1 Definitions of Terms

SPIRIT C Language Profile (SPIRIT Issue 3.0) 15

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.1.2 Standard Headers

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.1.3 Reserved Identifiers

The same as ISO/IEC 9899.

7.1.4 Errors <errno.h>

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.1.5 Limits <float.h> and <limits.h>

The same as ISO/IEC 9899.

7.1.6 Common Definitions <stddef.h>

The same as ISO/IEC 9899.

7.1.7 Use of Library Functions

The same as ISO/IEC 9899.

7.2 Diagnostics <assert.h>

The same as ISO/IEC 9899.

7.2.1 Program Diagnostics

7.2.1.1 The assert Macro

The same as ISO/IEC 9899.

7.3 Character Handling <ctype.h>

The same as ISO/IEC 9899.

7.3.1 Character Testing Functions

The same as ISO/IEC 9899.

7.3.1.1 The isalnum() Function

The same as ISO/IEC 9899.

7.3.1.2 The isalpha() Function

The same as ISO/IEC 9899.

7.3.1.3 The iscntrl() Function

The same as ISO/IEC 9899.

7.3.1.4 The isdigit() Function

The same as ISO/IEC 9899.

7.3.1.5 The isgraph() Function

The same as ISO/IEC 9899.

7.3.1.6 The islower() Function

The same as ISO/IEC 9899.

16 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.3.1.7 The isprint() Function

The same as ISO/IEC 9899.

7.3.1.8 The ispunct() Function

The same as ISO/IEC 9899.

7.3.1.9 The isspace() Function

The same as ISO/IEC 9899.

7.3.1.10 The isupper() Function

The same as ISO/IEC 9899.

7.3.1.11 The isxdigit() Function

The same as ISO/IEC 9899.

7.3.2 Character Case Mapping Functions

7.3.2.1 The tolower() Function

The same as ISO/IEC 9899.

7.3.2.2 The toupper() Function

The same as ISO/IEC 9899.

7.4 Localization <locale.h>

The same as ISO/IEC 9899.

7.4.1 Locale Control

7.4.1.1 The setlocale() Function

The same as ISO/IEC 9899.

7.4.2 Numeric Formatting Convention Inquiry

7.4.2.1 The localeconv() Function

Synopsis The same as ISO/IEC 9899.

Description The localeconv() function sets the components of an object with
type struct lconv with values appropriate for the formatting of
numeric quantities (monetary and otherwise) according to the
rules of the current locale.

The members of the structure with type char * are pointers to
strings, any of which (except decimal_point) can point to "" to
indicate that the value is not available in the current locale or is
of zero length. The members with type char are non-negative
numbers, any of which can be {CHAR_MAX} to indicate that the
value is not available in the current locale. The members
include the following:

char *decimal_point
The decimal-point character used to format non-monetary
quantities.

char *thousands_sep
The character used to separate groups of digits before the

SPIRIT C Language Profile (SPIRIT Issue 3.0) 17

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

decimal-point character in formatted non-monetary
quantities.

char *grouping
A string whose elements indicate the size of each group of
digits in formatted non-monetary quantities.

char *int_curr_symbol
The international currency symbol applicable to the current
locale. The first three characters contain the alphabetic
international currency symbol in accordance with those
specified in ISO 42173. The fourth character (immediately
preceding the null character) is the character used to
separate the international currency symbol from the
monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point
in formatted monetary quantities.

char *mon_grouping
A string whose elements indicate the size of each group of
digits in formatted monetary quantities.

char *positive_sign
The string used to indicate a non-negative-valued formatted
monetary quantity.

char *negative_sign
The string used to indicate a negative-value formatted
monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-
point) to be displayed in a internationally formatted
monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-
point) to be displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency_symbol or int_curr_symbol
respectively precedes or succeeds the value for a non-
negative formatted monetary quantity.

3. ISO 4217:1987, Codes for the Representation of Currencies and Funds.

18 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

char p_sep_by_space
Set to 1 or 0 if the currency_symbol or int_curr_symbol
from the value for a non-negative formatted monetary
quantity. Set to 1 if a space separates the symbol from the
value; and set to 2 of a space separates the symbol and the
sign string, if adjacent.

char n_cs_precedes
Set to 1 or 0 if the currency_symbol or int_curr_symbol
respectively precedes or succeeds the value for a negative
formatted monetary quantity.

char n_sep_by_space
Set to 1 or 0 if the currency_symbol or int_curr_symbol
from the value for a negative formatted monetary quantity.
Set to 1 of a space separates the symbol from the value;
and set to 2 of a space separates the symbol and the sign
string, if adjacent.

char p_sign_posn
Set to a value indicating the positioning of the
positive_sign for a non-negative formatted monetary
quantity.

char n_sign_posn
Set to a value indicating the positioning of the
negative_sign for a negative formatted monetary quantity.

The elements of grouping and mon_grouping are interpreted
according to the following:

char__ MAX
No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other
The integer value is the number of digits that comprise the
current group. The next element is examined to determine
the size of the next group of digits before the current group.

The value of p_sign_posn and n_sign_posn is interpreted
according to the following:

0 Parentheses surround the quantity and currency_symbol
or int_curr_symbol .

1 The sign string precedes the quantity and
currency_symbol or int_curr_symbol .

2 The sign string succeeds the quantity and
currency_symbol or int_curr_symbol .

3 The sign string immediately precedes the
currency_symbol or int_curr_symbol .

4 The sign string immediately succeeds the
currency_symbol or int_curr_symbol .

SPIRIT C Language Profile (SPIRIT Issue 3.0) 19

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

Returns The same as ISO/IEC 9899.

Example The same as ISO/IEC 9899.

7.5 Mathematics <math.h>

The same as ISO/IEC 9899.

7.5.1 Treatment of Error Conditions

The same as ISO/IEC 9899.

7.5.2 Trigonometric Functions

7.5.2.1 The acos() Function

The same as ISO/IEC 9899.

7.5.2.2 The asin() Function

The same as ISO/IEC 9899.

7.5.2.3 The atan() Function

The same as ISO/IEC 9899.

7.5.2.4 The atan2() Function

The same as ISO/IEC 9899.

7.5.2.5 The cos() Function

The same as ISO/IEC 9899.

7.5.2.6 The sin() Function

The same as ISO/IEC 9899.

7.5.2.7 The tan() Function

The same as ISO/IEC 9899.

7.5.3 Hyperbolic Functions

7.5.3.1 The cosh() Function

The same as ISO/IEC 9899.

7.5.3.2 The sinh() Function

The same as ISO/IEC 9899.

7.5.3.3 The tanh() Function

The same as ISO/IEC 9899.

7.5.4 Exponential and Logarithmic Functions

7.5.4.1 The exp() Function

The same as ISO/IEC 9899.

7.5.4.2 The frexp() Function

The same as ISO/IEC 9899.

7.5.4.3 The ldexp() Function

20 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

7.5.4.4 The log() Function

The same as ISO/IEC 9899.

7.5.4.5 The log10() Function

The same as ISO/IEC 9899.

7.5.4.6 The modf() Function

The same as ISO/IEC 9899.

7.5.5 Power Functions

7.5.5.1 The pow() Function

The same as ISO/IEC 9899.

7.5.5.2 The sqrt() Function

The same as ISO/IEC 9899.

7.5.6. Nearest Integer, Absolute Value and Remainder Functions

7.5.6.1 The ceil() Function

The same as ISO/IEC 9899.

7.5.6.2 The fabs() Function

The same as ISO/IEC 9899.

7.5.6.3 The floor() Function

The same as ISO/IEC 9899.

7.5.6.4 The fmod() Function

Synopsis The same as ISO/IEC 9899.

Description The same as ISO/IEC 9899.

Returns The fmod() function returns the value x−i * y, for some integer i
such that, if y is non-zero, the result has the same sign as x and
magnitude less than the magnitude of y. If y is zero, fmod()
function returns zero and errno may be set to EDOM.

7.6 Non-local Jumps <setjump.h>

The same as ISO/IEC 9899.

7.6.1 Save Calling Environment

7.6.1.1 The setjump Macro

The same as ISO/IEC 9899.

7.6.2 Restore Calling Environment

7.6.2.1 The longjmp() Function

The same as ISO/IEC 9899.

7.7 Signal Handling <signal.h>

SPIRIT C Language Profile (SPIRIT Issue 3.0) 21

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

7.7.1 Specify Signal Handling

7.7.1.1 The signal() Function

The same as ISO/IEC 9899.

7.7.2 Send Signal

7.7.2.1 The raise() Function

The same as ISO/IEC 9899.

7.8 Variable Arguments <stdarg.h>

The same as ISO/IEC 9899.

7.8.1 Variable Argument List Access Macros

The same as ISO/IEC 9899.

7.8.1.1 The va_start Macro

The same as ISO/IEC 9899.

7.8.1.2 The va_arg Macro

The same as ISO/IEC 9899.

7.8.1.3 The va_end Macro

The same as ISO/IEC 9899.

7.9 Input/Output <stdio.h>

7.9.1 Introduction

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.9.2 Streams

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.9.3 Files

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

7.9.4 Operations on Files

7.9.4.1 The remove() Function

The same as ISO/IEC 9899.

7.9.4.2 The rename() Function

The same as ISO/IEC 9899.

7.9.4.3 The tmpfile() Function

The same as ISO/IEC 9899.

7.9.4.4 The tmpnam() Function

The same as ISO/IEC 9899.

7.9.5 File Access Functions

22 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.9.5.1 The fclose() Function

The same as ISO/IEC 9899.

7.9.5.2 The fflush() Function

The same as ISO/IEC 9899.

7.9.5.3 The fopen() Function

The same as ISO/IEC 9899.

7.9.5.4 The freopen() Function

The same as ISO/IEC 9899.

7.9.5.5 The setbuf() Function

The same as ISO/IEC 9899.

7.9.5.6 The setvbuf() Function

The same as ISO/IEC 9899.

7.9.6 Formatted Input/Output Functions

7.9.6.1 The fprintf() Function

Synopsis The same as ISO/IEC 9899.

Description The fprintf() function writes output to the stream pointed to by
stream , under control of the string pointed to by format that
specifies how subsequent arguments are covered for output. If
there are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain,
the excess arguments are evaluated (as always) but are
otherwise ignored. The fprintf() function returns when the end
of the format string is encountered.

The format shall be a multibyte character sequence, beginning
and ending in its initial shift state. The format is composed of
zero or more directives:

• ordinary multibyte characters (not %), which are copied
unchanged to the output stream

• conversion specifications, each of which results in fetching
zero or more subsequent arguments.

Conversions can be applied to the nth argument after the format
in the argument list, rather than to the next unused argument.
In this case, the conversion character % (see below) is replaced
by the sequence %n$, where n is a decimal integer in the range
[1, {NL_ARGMAX}], giving the position of the argument in the
argument list. This feature provides for the definition of format
strings that select arguments in an order appropriate to specific
languages.

In format strings containing the %n$ form of conversion
specifications, numbered arguments in the argument list can be
referenced from the format string as many times as required.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 23

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of
the conversion specification.

• An optional minimum field width. If the converted value has
fewer characters than the field width, it will be padded with
spaces (by default) on the left (or right, if the left adjustment
flag, described later, has been given) to the field width. The
field width takes the form of an asterisk * (described later) or
a decimal integer.

• An optional precision that gives the minimum number of
digits to appear for the d, i, o, u, x and X conversions, the
number of digits to appear after the decimal-point character
for e, E and f conversions, the maximum number of
significant digits for the g and G conversions, or the
maximum number of characters to be written from a string in
s conversion. The precision takes the form of a period (.)
followed either by an asterisk * (described later) or by an
optional decimal integer; if only the period is specified, the
precision is taken as zero. If a precision appears with any
other conversion specifier, the behaviour is undefined.

• An optional h specifying that a following d, i, o, u, x or X
conversion specifier applies to a short int or unsigned short
int argument (the argument will have been promoted
according to the integral promotions, and its value shall be
converted to short int or unsigned short int before
printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int
argument; an optional l (ell) specifying that a following d, i, o,
x or X conversion specifier applies to a long int or unsigned
long int argument; an optional l specifying that a following n
conversion specifier applies to a pointer to a long int
argument; an optional l specifying that a following c
conversion specifier applies to a wint_t argument; an
optional i specifying that a following s conversion specifier
applies to a pointer to a wchar_t argument; or an optional L
specifying that a following e, E, f, g or G conversion specifier
applies to a long double argument; if an h, l or L appears
with any other conversion specifier, the behaviour is
undefined.

• A character that specifies the type of conversion to be
applied.

As noted above, a field width or precision or both may be
indicated by an asterisk. In this case, an int argument supplies
the field width or precision. The arguments specifying field width
or precision or both shall appear (in that order) before the
argument (if any) to be converted. A negative field width
argument is taken as a - flag followed by a positive field width.
A negative precision argument is taken as if the precision were

24 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

omitted. In format strings containing the %n$ form of a
conversion specification, a field width or precision may be
indicated by the sequence *m$, where m is a decimal integer in
the range [1, {NL_ARGMAX}] giving the position in the argument
list (after the format argument) of an integer argument
containing the field width or precision, for example:

printf ("%1$d:%2$.3$d:%4$.3$d0,
hour, min, precision, sec);

The format can contain either numbered argument specifications
(%n$ and *m$), or numbered argument specifications (% and *),
but normally not both. The only exception to this is that %% can
be mixed with the %m$ form. The results of mixing numbered
and unnumbered argument specifications in a format string are
undefined. When numbered argument specifications are used,
specifying the Nth argument requires that all the leasing
arguments, from the first to the (N-1)th, are specified in the
format string.

The flag characters and their meanings are:

’ The integer portion of the result of a decimal
conversion (%1, %d, %u, %f, %g or %G) will be
formatted with ‘‘thousands’’ grouping characters. For
other conversions the behaviour is undefined. The
non-monetary grouping character is used.

- The result of the conversion will be left-justified within
the field. (It will be right-justified if this flag is not
specified.)

+ The result of a signed conversion will always begin
with a plus or minus sign. (It will begin with a sign only
when a negative value is converted if this flag is not
specified.)

space If the first character of a signed conversion is not a
sign, or of a signed conversion results in no characters,
a space will be prefixed to the result. If the space and
+ flags both appear, the space flag will be ignored.

The result is to be converted to an ‘‘alternate form’’.
For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x (or X)
conversion, a non-zero result will have 0x (or 0X)
prefixed to it. For e, E, f, g and G conversions, the
result will always contain a decimal-point character,
even if no digits follow it. (Normally, a decimal-point
character appears in the result of these conversions
only if a digit follows it.) For g and G conversions,
trailing zeros will not be removed from the results. For
other conversions, the behaviour is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions,
leading zeros (following any indication of sign or base)
are used to pad the field width; no space padding is

SPIRIT C Language Profile (SPIRIT Issue 3.0) 25

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

performed. If the 0 and - flags both appear, the 0 flag
will be ignored. For d, i, o, u, x and X conversions, if a
precision is specified, the 0 flag will be ignored. For
other conversions, the behaviour is undefined.

The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the
style [-]dddd. The precision specifies the minimum
number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded
with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of
zero is no character.

o,u,x,X The unsigned int argument is converted to unsigned
octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x or X) in the style dddd; the
letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is
1. The result of converting a zero value with a
precision of zero is no characters.

f The double argument is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after
the decimal-point character is equal to the precision
specification. If the precision is missing, it is taken as
6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it.
The value is rounded to the appropriate number of
digits.

e,E The double argument is converted to the style [-
]d.ddde1dd, where there is one digit before the
decimal-point character (which is non-zero if the
argument is non-zero) and the number of digits after it
is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is zero and the # flag is not
specified, no decimal-point character appears. The
value is rounded to the appropriate number of digits.
The E conversion specifier will produce a number with
E instead of e introducing the exponent. The exponent
always contains at least two digits. If the value is zero,
the exponent is zero.

g,G The double argument is converted in style for e (or in
style E in the case of a G conversion specifier), with
the precision specifying the number of significant digits.
If the precision is zero, it is taken as 1. The style used
depends on the value converted; style e (or E) will be
used only if the exponent resulting from such a

26 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

conversion is less than −4 or greater than or equal to
the precision. Trailing zeros are removed from the
fractional portion of the result; a decimal-point
character appears only if it is followed by a digit.

c If no l qualifier is present, the int argument is
converted to an unsigned char , and the resulting
character is written. Otherwise, the wint_t argument is
converted as if by an ls conversion specification with
no precision and an argument that points to a two-
element array of wchar_t , the first element containing
wint_t argument to the lc conversion specification and
the second a null wide character.

s If no l qualifier is present, the argument shall be a
pointer to an array of character type. Characters from
the array are written up to (but not including) a
terminating null character. If the precision is specified,
no more than that many characters are written. If the
precision is not specified or is greater than the size of
the array, the array shall contain a null character.

If an l qualifier is present, the argument shall be a
pointer to an array of wchar_t type. Wide characters
from the array are converted to multibyte characters
(each as if by a call to the wcrtomb() function, with the
conversion state described by an mbstate_t object
initialized to zero before the first wide character is
converted) up to and including a terminating null wide
character. The resulting multibyte characters are
written up to (but not including) the terminating null
character (byte).

If no precision is specified, the array shall contain a null
wide character.

If a precision is specified, no more than that many
characters (bytes) are written (including shift
sequences, if any), and the array shall contain a null
wide character if, to equal the multibyte character
sequence length given by the precision, the function
would need to access a wide character one past the
end of the array. In no case is partial multibyte
character written.

P The argument shall be a pointer to void . The value of
the pointer is converted to a sequence of printable
characters, in an implementation-defined manner.

n The argument shall be a pointer to an integer into
which is written the number of characters written to the
output stream so far by this call to fprintf(). No
argument is converted.

% A % is written. No argument is converted. The
complete conversion specification shall be %%.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 27

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

If a conversion specification is invalid, the behaviour is
undefined.

If any argument is, or points to, a union or an aggregate (except
for an array of character type using %s conversion, or a pointer
using %p conversion), the behaviour is undefined.

In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is wider than the
field width, the field is expanded to contain the conversion result.

Returns The same as ISO/IEC 9899.

Example The same as ISO/IEC 9899.

7.9.6.2 The fscanf() Function

Synopsis The same as ISO/IEC 9899.

Description The fscanf() function reads input from the stream pointed to by
stream , under control of the string pointed to by format that
specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as
pointed to the objects to receive the converted input. If there
are insufficient arguments for the format, the behaviour is
undefined. If the format is exhausted while arguments remain,
the excess arguments are evaluated (as always) but are
otherwise ignored.

Conversions can be applied to the nth argument after the format
in the argument list, rather than to the next unused argument.
In this case, the conversion character % (see below) is replaced
by the sequence %n$, where n is a decimal integer in the range
[1,{NL_ARGMAX}]. This feature provides for the definition of a
format string that selects arguments in an order appropriate to
specific languages. In format strings containing the %n$ form of
conversion specifications, it is unspecified whether numbered
arguments in the argument list can be referenced from the
format string more than once.

The format can contain either form of a conversion specification;
that is, % or %n$, but the two forms cannot normally be mixed
within a single format string. The only exception to this is that
%% or %* can be mixed with the %n$ form.

The format shall be a multibyte character sequence, beginning
and ending in its initial shift state. The format is composed of
zero or more directives: one or more white-space characters, an
ordinary multibyte character (neither % nor a white-space
character), or a conversion specification. Each conversion
specification is introduced by the character %. After the %, the
following appear in sequence:

• An optional assignment-suppressing character *.

• An optional non-zero decimal integer that specifies the
minimum field width.

28 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

• An optional h, l (ell) or L indicating the size of the receiving
object. The conversion specifiers d, i and n shall be
preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int , or by i if it is a pointer
to long int . Similarly, the conversion specifiers o, u and x
shall be preceded by h if the corresponding argument is a
pointer to unsigned short int rather than a pointer to
unsigned int , or by i if it is a pointer to unsigned long int .
The conversion specifiers c, s and [shall be preceded by i if
the corresponding argument is a pointer to wchar_t rather
than a pointer to a character type. Finally, the conversion
specifiers e, f and g shall be preceded by i if the
corresponding argument is a pointer to double rather than a
pointer to a float, or by L if it is a pointer to long double . If
an h, l or L appears with any other conversion specifier, the
behaviour is undefined.

• A character that specifies the type of conversion to be
applied. The valid conversion specifiers are described
below.

The fscanf() function executes each directive of the format in
turn. If a directive fails, as detailed below, the fscanf() function
returns. Failures are described as input failures (due to the
unavailability of input characters) or matching failures (due to
inappropriate input).

A directive composed of white-space character(s) is executed
by reading input up to the first non-white-space character (which
remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by
reading the next characters of the stream. If one of the
characters differs from one composing the directive, the
directive fails, and the differing and subsequent characters
remain unread.

A directive that is a conversion specification defines a set of
matching input sequences, as described below for each
specifier. A conversion specification is executed in the following
steps.

Input white-space characters (as specified by the isspace()
function) are skipped, unless the specification includes a [, c or
n specifier.

An input item is read from the stream, unless the specification
includes an n specifier. An input item is defined as the longest
matching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial sequence of
that length in the sequence. The first character, if any, after the
input item remains unread. If the length of the input item is
zero, the execution of the directive fails; this condition is
matching failure unless end-of-file, an encoding error or a read
error prevented input from the stream, in which case it is an
input failure.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 29

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

Except in the case of a % specifier, the input item (or, in the
case of a %n directive, the count of input characters) is
converted to a type appropriate to the conversion specifier. If
the input item is not a matching sequence, the execution of the
directive fails: this condition is matching failure. Unless
assignment suppression was indicated by a *, the result of the
conversion is placed in the object pointed to by the first
argument following the format argument that has not already
received a conversion result if the conversion specification is
introduced by %, or in the nth argument if introduced by the
character sequence %n$. If the object does not have an
appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behaviour is undefined.

The following conversion specifiers are valid:

d Matches an optionally signed decimal integer, whose
format is the same as expected for the subject
sequence of the strtol() function with the value for the
base argument. The corresponding argument shall be
a pointer to an integer.

i Matches an optionally signed integer, whose format is
the same as expected for the subject sequence of the
strtol() function with the value 0 for the base argument.
The corresponding argument shall be a pointer to an
integer.

o Matches an optionally signed octal integer, whose
format is the same as expected for the subject
sequence of the strtol() function with the value 8 for
the base argument. The corresponding argument shall
be a pointer to an integer.

u Matches an optionally signed decimal integer, whose
format is the same as expected for the subject
sequence of the strtol() function with the value 10 for
the base argument. The corresponding argument shall
be a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer,
whose format is the same as expected for the subject
sequence of the strtol() function with the value 16 for
the base argument. The corresponding argument shall
be a pointer to unsigned integer.

e,f,g Matches an optionally signed floating-point number,
whose format is the same as expected for the subject
string of the strtod() function. The corresponding
argument shall be a pointer to floating.

s Matches a sequence of non-white-space characters. If
no i qualifier is present, the corresponding argument
shall be a pointer to a character array large enough to
accept the sequence and terminating with a null
character, which will be added automatically. If an i

30 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

qualifier is present, the input shall be a sequence of
multibyte characters that begins in the initial shift state.
Each multibyte character is converted to a wide
character as if by a call to the mbrtowc() function, with
the conversion state described by an mbstate_t object
initialized to zero before the first multibyte character is
converted. The corresponding argument shall be a
pointer to an array of wchar_t large enough to accept
the sequence and the terminating null wide character,
which will be added automatically.

[Matches a non-empty sequence of characters from a
set of expected characters (the scanset). If no l
qualifier is present, the corresponding argument shall
be a pointer to a character array large enough to
accept the sequence and a terminating null character,
which will be added automatically. If an l qualifier is
present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each
multibyte character is converted to a wide character by
a call to the mbrtowc() function, with the conversion
state described by an mbstate_t object initialized to
zero before the first multibyte character is converted.
The corresponding argument shall be a pointer to an
array of wchar_t large enough to accept the sequence
and terminating null wide character, which will be
added automatically. The conversion specifier includes
all subsequent characters in the format string up to and
including the matching right bracket]. The characters
between the brackets is a circumflex (ˆ), in which case
the scanset contains all characters that do not appear
in the scanlist between the circumflex and the right
bracket. If the conversion specifier begins with [] or
[ˆ], the right bracket character is in the scanlist and the
next bracket character is the matching right bracket
that ends the specification; otherwise the first bracket
character is the one that ends the specification. If a -
character is in the scanlist and is not the first, nor the
second where the first character is a ˆ, nor the last
character, the behaviour is implementation-defined.

c Matches a sequence of characters of the number
specified by the field width (1 if no field width is present
in the directive). If no i qualifier is present the
corresponding argument shall be a pointer to a
character array large enough to accept the sequence.
No null character is added. If an i qualifier is present,
the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte
character in the sequence is converted to a wide
character by a call to the mbrtowc() function, with the
conversion state described by an mbstate_t object
initialized to zero before the first multibyte character is

SPIRIT C Language Profile (SPIRIT Issue 3.0) 31

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

converted. The corresponding argument shall be a
pointer to the initial element of an array of wchar_t
large enough to accept the resulting sequence of wide
characters. No null wide character is added.

p Matches an implementation-defined set of sequences,
which should be the same as the set of sequences that
may be produced by the %p conversion of the fprintf()
function. The corresponding argument shall be a
pointer to a pointer to void . The interpretation of the
input item is implementation-defined. If the input item
is a value converted earlier during the same program
execution, the pointer that results shall compare equal
to that value; otherwise the behaviour of the %p
conversion is undefined.

n No input is consumed. The corresponding argument
shall be a pointer to an integer into which is to be
written the number of characters read from the input
stream so far by this call to the fscanf() function.
Execution of a %n directive does not increment the
assignment count returned at the completion of
execution of the fscanf () function.

% Matches a single %; no conversion or assignment
occurs. The complete conversion specification shall be
%%.

If a conversion specification is invalid, the behaviour is
undefined.

The conversion specifiers E, G and X are also valid and behave
the same as, respectively, e, g and x.

If end-of-file is encountered during input, conversion is
terminated. If end-of-file occurs before any characters matching
the current directive have been read (other than leading white
space, where permitted), execution of the current directive
terminates with an input failure; otherwise, unless execution of
the current directive is terminated with a matching failure,
execution of the following directive (if any) is terminated with an
input failure.

If conversion terminates on a conflicting input character, the
offending input character is left unread in the input stream.
Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of literal matches
and suppressed assignments is not directly determinable other
than via the %n directive.

Returns The same as ISO/IEC 9899.

Examples The same as ISO/IEC 9899.

7.9.6.3 The printf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

32 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.9.6.4 The scanf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fscanf() function is applied.

7.9.6.5 The sprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.9.6.6 The sscanf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fscanf() function is applied.

7.9.6.7 The vfprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.9.6.8 The vprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.9.7 Character Input/Output Functions

7.9.7.1 The fgetc() Function

The same as ISO/IEC 9899.

7.9.7.2 The fgets() Function

The same as ISO/IEC 9899.

7.9.7.3 The fputc() Function

The same as ISO/IEC 9899.

7.9.7.4 The fputs() Function

The same as ISO/IEC 9899.

7.9.7.5 The getc() Function

The same as ISO/IEC 9899.

7.9.7.6 The getchar() Function

The same as ISO/IEC 9899.

7.9.7.7 The gets() Function

The same as ISO/IEC 9899.

7.9.7.8 The putc() Function

The same as ISO/IEC 9899.

7.9.7.9 The putchar() Function

The same as ISO/IEC 9899.

7.9.7.10 The puts() Function

The same as ISO/IEC 9899.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 33

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.9.7.11 The ungetc() Function

The same as ISO/IEC 9899.

7.9.8 Direct Input/Output Functions

7.9.8.1 The fread() Function

The same as ISO/IEC 9899.

7.9.8.2 The fwrite() Function

The same as ISO/IEC 9899.

7.9.8.3 The fgetpos() Function

The same as ISO/IEC 9899.

7.9.8.4 The fseek() Function

The same as ISO/IEC 9899.

7.9.8.5 The fsetpos() Function

The same as ISO/IEC 9899.

7.9.8.6 The ftell() Function

The same as ISO/IEC 9899.

7.9.8.7 The rewind() Function

The same as ISO/IEC 9899.

7.9.9 Error Handling Functions

7.9.9.1 The clearerr() Function

The same as ISO/IEC 9899.

7.9.9.2 The feof() Function

The same as ISO/IEC 9899.

7.9.9.3 The ferror() Function

The same as ISO/IEC 9899.

7.9.9.4 The perror() Function

The same as ISO/IEC 9899.

7.10 General Utilities <stdlib.h>

The same as ISO/IEC 9899.

7.10.1 String Conversion Functions

The same as ISO/IEC 9899.

7.10.1.1 The atof() Function

The same as ISO/IEC 9899.

7.10.1.2 The atoi() Function

The same as ISO/IEC 9899.

34 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.10.1.3 The atol() Function

The same as ISO/IEC 9899.

7.10.1.4 The strtod() Function

The same as ISO/IEC 9899.

7.10.1.5 The strtol() Function

The same as ISO/IEC 9899.

7.10.1.6 The strtoul() Function

The same as ISO/IEC 9899.

7.10.2 Pseudo-random Sequence Generation Functions

7.10.2.1 The rand() Function

Synopsis The same as ISO/IEC 9899.

Description The rand() function computes a sequence of pseudo-random
integers in the range 0 to RAND_MAX, with a period at least
4294967296.

Returns The same as ISO/IEC 9899.

Environmental The same as ISO/IEC 9899.

7.10.2.2 The srand() Function

The same as ISO/IEC 9899.

7.10.3 Memory Management Functions

The same as ISO/IEC 9899.

7.10.3.1 The calloc() Function

The same as ISO/IEC 9899.

7.10.3.2 The free() Function

The same as ISO/IEC 9899.

7.10.3.3 The malloc() Function

The same as ISO/IEC 9899.

7.10.3.4 The realloc() Function

The same as ISO/IEC 9899.

7.10.4 Communication with the Environment

7.10.4.1 The abort() Function

The same as ISO/IEC 9899.

7.10.4.2 The atexit() Function

The same as ISO/IEC 9899.

7.10.4.3 The exit() Function

The same as ISO/IEC 9899.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 35

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.10.4.4 The getenv() Function

The same as ISO/IEC 9899.

7.10.4.5 The system() Function

The same as ISO/IEC 9899.

7.10.5 Searching and Sorting Utilities

7.10.5.1 The bsearch() Function

The same as ISO/IEC 9899.

7.10.5.2 The qsort() Function

The same as ISO/IEC 9899.

7.10.6 Integer Arithmetic Functions

7.10.6.1 The abs() Function

The same as ISO/IEC 9899.

7.10.6.2 The div() Function

The same as ISO/IEC 9899.

7.10.6.3 The labs() Function

The same as ISO/IEC 9899.

7.10.6.4 The ldiv() Function

The same as ISO/IEC 9899.

7.10.7 Multibyte Character Functions

The same as ISO/IEC 9899.

7.10.7.1 The mblen() Function

The same as ISO/IEC 9899.

7.10.7.2 The mbtowc() Function

The same as ISO/IEC 9899.

7.10.7.3 The wctomb() Function

The same as ISO/IEC 9899.

7.10.8 Multibyte String Functions

7.10.8.1 The mbstowcs() Function

The same as ISO/IEC 9899.

7.10.8.2 The wcstombs() Function

The same as ISO/IEC 9899.

7.11 String Handling <string.h>

7.11.1 String Function Conventions

The same as ISO/IEC 9899.

36 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.11.2 Copying Functions

7.11.2.1 The memcpy() Function

The same as ISO/IEC 9899.

7.11.2.2 The memmove() Function

The same as ISO/IEC 9899.

7.11.2.3 The strcpy() Function

The same as ISO/IEC 9899.

7.11.2.4 The strncpy() Function

The same as ISO/IEC 9899.

7.11.3 Concatenation functions

7.11.3.1 The strcat() Function

The same as ISO/IEC 9899.

7.11.3.2 The strncat() Function

The same as ISO/IEC 9899.

7.11.4 Comparison Functions

The same as ISO/IEC 9899.

7.11.4.1 The memcmp() Function

The same as ISO/IEC 9899.

7.11.4.2 The strcmp() Function

The same as ISO/IEC 9899.

7.11.4.3 The strcoll() Function

The same as ISO/IEC 9899.

7.11.4.4 The strncmp() Function

The same as ISO/IEC 9899.

7.11.4.5 The strxfrm() Function

The same as ISO/IEC 9899.

7.11.5 Search Functions

7.11.5.1 The memchr() Function

The same as ISO/IEC 9899.

7.11.5.2 The strchr() Function

The same as ISO/IEC 9899.

7.11.5.3 The strcspn() Function

The same as ISO/IEC 9899.

7.11.5.4 The strpbrk() Function

SPIRIT C Language Profile (SPIRIT Issue 3.0) 37

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

7.11.5.5 The strrchr() Function

The same as ISO/IEC 9899.

7.11.5.6 The strspn() Function

The same as ISO/IEC 9899.

7.11.5.7 The strstr() Function

The same as ISO/IEC 9899.

7.11.5.8 The strtok() Function

The same as ISO/IEC 9899.

7.11.6 Miscellaneous Functions

7.11.6.1 The memset() Function

The same as ISO/IEC 9899.

7.11.6.2 The strerror() Function

The same as ISO/IEC 9899.

7.11.6.3 The strlen() Function

The same as ISO/IEC 9899.

7.12 Date and Time <time.h>

7.12.1 Components of Time

The same as ISO/IEC 9899.

7.12.2 Time Manipulation Functions

7.12.2.1 The clock() Function

The same as ISO/IEC 9899.

7.12.2.2 The difftime() Function

The same as ISO/IEC 9899.

7.12.2.3 The mktime() Function

The same as ISO/IEC 9899.

7.12.2.4 The time() Function

The same as ISO/IEC 9899.

7.12.3 Time Conversion Functions

The same as ISO/IEC 9899.

7.12.3.1 The asctime() Function

The same as ISO/IEC 9899.

7.12.3.2 The ctime() Function

The same as ISO/IEC 9899.

38 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.12.3.3 The gmtime() Function

The same as ISO/IEC 9899.

7.12.3.4 The localtime() Function

The same as ISO/IEC 9899.

7.12.3.5 The strftime() Function

Synopsis The same as ISO/IEC 9899.

Description The strftime() function places characters into the array pointed
to be s as controlled by the string pointed to by format . The
format shall be a multibyte character sequence, beginning and
ending in its initial shift state. The format string consists of zero
or more conversion specifiers and ordinary multibyte characters.
A conversion specifier consists of a % character followed by a
character that determines the behaviour of the conversion
specifier. All ordinary multibyte characters (including the
terminating null character) are copies unchanged into the array.
If copying takes place between objects that overlap, the
behaviour is undefined. No more than maxsize characters are
placed into the array. Each conversion specifier is replaced by
appropriate characters as described in the following list. The
appropriate characters are determined by the LC_TIME
category of the current locale and by the value contained in the
structure pointed to by timeptr .

%a is replaced by the locale’s abbreviated weekday name.

%A is replaced by the locale’s full weekday name.

%b is replaced by the locale’s abbreviated month name.

%B is replaced by the locale’s full month name.

%c is replaced by the locale’s appropriate date and time
representation.

%C is replaced by the century number (the year divided by
100 and truncated to an integer) as a decimal number
[00-99].

%d is replaced by the day of the month as a decimal
number [01,31].

%D same as%m/%d/%y.

%e is replaced by the day of the month as a decimal
number [1,31]; a single digit is replaced by a space.

%h same as%b.

%H is replaced by the hour (24-hour clock) as a decimal
number [00,23].

%I is replaced by the hour (12-hour clock) as a decimal
number [01,12].

%j is replaced by the day of the year as a decimal number
[001,366].

SPIRIT C Language Profile (SPIRIT Issue 3.0) 39

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

%m is replaced by the month as a decimal number [01,12].

%M is replaced by the minutes as a decimal number.

%n is replaced by a newline character.

%p is replaced by the locale’s equivalent of either a.m. or
p.m.

%r is replaced by the time in a.m. and p.m. notation; on
the C locale this is equivalent to %I: %M: %S˜%p.

%R is replaced by the time in 24-hour notation (%H: %M).

%S is replaced by the second as a decimal number [00,61].

%t is replaced by a tab character.

%T is replaced by the time (%H: %M: %S).

%u is replaced by the weekday as a decimal number [1,7],
with 1 representing Monday.

%U is replaced by the week number of the year (Sunday as
the first day of the week) as a decimal number [00,53].

%V is replaced by the week number of the year (Monday
as the first day of the week) as a decimal number
[01,53]. If the week containing 1 January has four or
more days in the new year, then it is considered week
1; otherwise, it is week 53 of the previous year, and the
next week is week 1.

%w is replaced by the weekday as a decimal number [0,6],
with 0 representing Sunday.

%W is replaced by the week number of the year (Monday
as the first day of the week) as a decimal number
[00,53]. All days in a new year preceding the first
Sunday are considered to be week 0.

%x is replaced by the locale’s appropriate date
representation.

%X is replaced by the locale’s appropriate time
representation.

%y is replaced by the year without century as a decimal
number [00,99].

%Y is replaced by the year with century as a decimal
number.

%Z is replaced by the timezone name or abbreviation, or
by no bytes if no timezone information exists.

%% is replaced by%.

If a conversion specification does not correspond to any of the
above, the behaviour is undefined.

40 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

Modified Conversion Specifiers

Some conversion specifiers can be modified by the E or O
modifier characters to indicate that an alternative format or
specification should be used rather than one normally used by
the unmodified conversion specifier. If the alternative format or
specification does not exist for the current locale, the behaviour
will be as if the unmodified conversion specification were used.

%Ec is replaced by the locale’s alternative appropriate date
and time representation.

%EC is replaced by the name of the base year (period) in the
locale’s alternative representation.

%Ex is replaced by the locale’s alternative date
representation.

%EX is replaced by the locale’s alternative time
representation.

%Ey is replaced by the offset from %EC (year only) in the
locale’s alternative representation.

%EY is replaced by the full alternative year representation.

%Od is replaced by the day of the month, using the locale’s
alternative numeric symbols, filled as needed with
leading zeros if there is any alternative symbol for zero,
otherwise with leading spaces.

%Oe is replaced by the day of the month, using the locale’s
alternative numeric symbols, filled as needed with
leading spaces.

%OH is replaced by the hour (24-hour clock) using the
locale’s alternative numeric symbols.

%OI is replaced by the hour (12-hour clock) using the
locale’s alternative numeric symbols.

%Om is replaced by the month using the locale’s alternative
numeric symbols.

%OM is replaced by the minutes using the locale’s alternative
numeric symbols.

%OS is replaced by the seconds using the locale’s alternative
numeric symbols.

%Ou is replaced by the weekday as a number in the locale’s
alternative representation (Monday = 1).

%OU is replaced by the week number of the year (Sunday as
the first day of the week, rules corresponding to %U)
using the locale’s alternative numeric symbols.

%OV is replaced by the week number of the year (Sunday as
the first day of the week, rules corresponding to %V)
using the locale’s alternative numeric symbols.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 41

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

%Ow is replaced by the number of the weekday (Sunday = 0)
using the locale’s alternative numeric symbols.

%OW is replaced by the week number of the year (Monday
as the first day of the week) using the locale’s
alternative numeric symbols.

%Oy is replaced by the year (offset from %C) in the locale’s
alternative representation and using the locale’s
alternative symbols.

Returns The same as ISO/IEC 9899.

7.13 Alternative Spelling <iso646.h>

The same as ISO/IEC 9899/AM1.

7.14 Wide-character Classification and Mapping Utilities <wctype.h>

The same as ISO/IEC 9899/AM1.

7.14.1 Wide-character Classification Utilities

The same as ISO/IEC 9899/AM1.

7.14.1.1 Wide-character Classification Functions

The same as ISO/IEC 9899/AM1.

7.14.1.1.1 The iswalnum() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.2 The iswalpha() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.3 The iswcntrl() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.4 The iswdigit() Function

7.14.1.1.5 The iswgraph() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.6 The iswlower() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.7 The iswprint() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.8 The iswpunct() Function

The same as ISO/IEC 9899/AM1.

7.14.1.1.9 The iswspace() Functions

The same as ISO/IEC 9899/AM1.

7.14.1.1.10 The iswupper() Function

The same as ISO/IEC 9899/AM1.

42 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.14.1.1.11 The iswxdigit() Function

The same as ISO/IEC 9899/AM1.

7.14.1.2 Extensible Wide-character Classification Functions

The same as ISO/IEC 9899/AM1.

7.14.1.2.1 The wctype() Function

The same as ISO/IEC 9899/AM1.

7.14.1.2.2 The iswctype() Function

The same as ISO/IEC 9899/AM1.

7.14.2 Wide-character Mapping Utilities

The same as ISO/IEC 9899/AM1.

7.14.2.1 Wide-character Case-mapping Functions

7.14.2.1.1 The towlower() Function

The same as ISO/IEC 9899/AM1.

7.14.2.1.2 The towupper() Function

The same as ISO/IEC 9899/AM1.

7.14.2.2 Extensible Wide-character Mapping Functions

The same as ISO/IEC 9899/AM1.

7.14.2.2.1 The wctrans() Function

The same as ISO/IEC 9899/AM1.

7.14.2.2.2 The towctrans() Function

The same as ISO/IEC 9899/AM1.

7.15 Extended Multibyte and Wide-character Utilities <wchar.h>

The same as ISO/IEC 9899/AM1.

7.15.1 Formatted Wide-character Functions

The same as ISO/IEC 9899/AM1.

7.15.1.1 Formatted Wide-character Input/Output Functions

7.15.1.1.1 The fwprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.15.1.1.2 The fwscanf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fscanf() function is applied.

7.15.1.1.3 The wprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 43

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.15.1.1.4 The wscanf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fscanf() function is applied.

7.15.1.1.5 The swprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.15.1.1.6 The swscanf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fscanf() function is applied.

7.15.1.1.7 The vfwprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.15.1.1.8 The vwprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.15.1.1.9 The vswprintf() Function

In addition to the requirements specified by ISO/IEC 9899 with
ISO/IEC 9899/AM1, the same modification to the fprintf() function is applied.

7.15.1.2 Wide-character Input/Output Functions

7.15.1.2.1 The fgetwc() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.2 The fgetws() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.3 The fputwc() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.4 The fputws() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.5 The getwc() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.6 The getwchar() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.7 The putwc() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.8 The putwchar() Function

The same as ISO/IEC 9899/AM1.

7.15.1.2.9 The ungetwc() Function

44 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899/AM1.

7.15.1.2.10 The fwide() Function

The same as ISO/IEC 9899/AM1.

7.15.2 General Wide-string Utilities

The same as ISO/IEC 9899/AM1.

7.15.2.1 Wide-string Numeric Conversion Functions

7.15.2.1.1 The wcstod() Function

The same as ISO/IEC 9899/AM1.

7.15.2.1.2. The wcstol() Function

The same as ISO/IEC 9899/AM1.

7.15.2.1.3 The wcstoul() Function

The same as ISO/IEC 9899/AM1.

7.15.2.2 Wide-string Copying Functions

7.15.2.2.1 The wcscpy() Function

The same as ISO/IEC 9899/AM1.

7.15.2.2.2 The wcsncpy() Function

The same as ISO/IEC 9899/AM1.

7.15.2.3 Wide-string Concatenation Functions

7.15.2.3.1 The wcscat() Function

The same as ISO/IEC 9899/AM1.

7.15.2.3.2 The wcsncat() Function

The same as ISO/IEC 9899/AM1.

7.15.2.4 Wide-string Comparison Functions

The same as ISO/IEC 9899/AM1.

7.15.2.4.1 The wcscmp() Function

The same as ISO/IEC 9899/AM1.

7.15.2.4.2 The wcscoll() Function

The same as ISO/IEC 9899/AM1.

7.15.2.4.3 The wcsncmp() Function

The same as ISO/IEC 9899/AM1.

7.15.2.4.4 The wcsxfrm() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5 Wide-string Search Functions

7.15.2.5.1 The wcschr() Function

SPIRIT C Language Profile (SPIRIT Issue 3.0) 45

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899/AM1.

7.15.2.5.2 The wcscspn() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.3 The wcspbrk() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.4 The wcsrchr() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.5 The wcsspn() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.6 The wcsstr() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.7 The wcstok() Function

The same as ISO/IEC 9899/AM1.

7.15.2.5.8 The wcslen() Function

The same as ISO/IEC 9899/AM1.

7.15.2.6 Wide-character Array Functions

The same as ISO/IEC 9899/AM1.

7.15.2.6.1 The wmemchr() Function

The same as ISO/IEC 9899/AM1.

7.15.2.6.2 The wmemcmp() Function

The same as ISO/IEC 9899/AM1.

7.15.2.6.3 The wmemcpy() Function

The same as ISO/IEC 9899/AM1.

7.15.2.6.4 The wmemmove() Function

The same as ISO/IEC 9899/AM1.

7.15.2.6.5 The wmemset() Function

The same as ISO/IEC 9899/AM1.

7.15.3 Date and Time

7.15.3.1 Wide-string Time Conversion Functions

7.15.3.1.1 The wcsftime() Function

The same as ISO/IEC 9899/AM1.

7.15.4 Extended Multibyte and Wide-character Conversion Utilities

The same as ISO/IEC 9899/AM1.

7.15.4.1 Single-byte Wide-character Conversion Functions

46 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

7.15.4.1.1 The btowc() Function

The same as ISO/IEC 9899/AM1.

7.15.4.1.2 The wctob() Function

The same as ISO/IEC 9899/AM1.

7.15.4.2 Conversion State Functions

7.15.4.2.1 The mbsinit() Function

The same as ISO/IEC 9899/AM1.

7.15.4.3 Restartable Multibyte/Wide-character Conversion Functions

The same as ISO/IEC 9899/AM1.

7.15.4.3.1 The mbrlen() Function

The same as ISO/IEC 9899/AM1.

7.15.4.3.2 The mbrtowc() Function

The same as ISO/IEC 9899/AM1.

7.15.4.3.3 The wcrtomb() Function

The same as ISO/IEC 9899/AM1.

7.15.4.4 Restartable Multibyte/Wide-string Conversion Functions

The same as ISO/IEC 9899/AM1.

7.15.4.4.1 The mbsrtowcs() Function

The same as ISO/IEC 9899/AM1.

7.15.4.4.2 The wcsrtombs() Function

The same as ISO/IEC 9899/AM1.

7.16 Future Library Directions

The same as ISO/IEC 9899.

7.16.1 Errors <errno.h>

The same as ISO/IEC 9899.

7.16.2 Character Handling <ctype.h>

The same as ISO/IEC 9899.

7.16.3 Localization <loclae.h>

The same as ISO/IEC 9899.

7.16.4 Mathematics <math.h>

The same as ISO/IEC 9899.

7.16.5 Signal Handling <signal.h>

The same as ISO/IEC 9899.

7.16.6 Input/Output <stdio.h>

SPIRIT C Language Profile (SPIRIT Issue 3.0) 47

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C Language Profile

The same as ISO/IEC 9899.

7.16.7 General Utilities <stdlib.h>

The same as ISO/IEC 9899.

7.16.8 String Handling <string.h>

The same as ISO/IEC 9899.

7.16.9 Wide-character Classification and Mapping Utilities <wctype.h>

The same as ISO/IEC 9899/AM1.

7.16.10 Extended Multibyte and Wide-character Utilities <wchar.h>

The same as ISO/IEC 9899 with ISO/IEC 9899/AM1.

48 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

__

Appendix A

X/Open C and MIA C__

A.1 C-language Interface Specifications
The SPIRIT C-language interface specification (SPIRIT C) is based on ISO C, X/Open C4 and
MIA C.5 Figure A-1 on page 50 shows the relationship between them.

4. The definition of X/Open C is both ISO C (a direct reference to ISO/IEC 9899) and Common Usage C, which is defined in
Chapters 1 to 4 of X/Open Specification, 1988, 1989, February 1992, Programming Languages, Issue 3 (ISBN: 1-872630-39-1,
C214).

5. Multivendor Integration Architecture, Volume 4: Division 2, Application Program Interface Specifications, Part 3-3: Programming
Language C, 31 March 1992.

SPIRIT C Language Profile (SPIRIT Issue 3.0) 49

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

C-language Interface Specifications X/Open C and MIA C

ISO C

AM1

wide
character
handling, etc.

SPIRIT C

signed integer conversion, interger division,
numerical limits (floating types), etc.

API of operating system

System interface and
headers

Boundary alignment of bit-field

MIA C extensions

extensions

System
interface
and headers

memcpy() function, etc.

printf(), scanf(), format(), etc.
X/Open C

Figure A-1 C-language Interface Specifications

50 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

X/Open C and MIA C Differences

A.2 Differences
Table A-1 shows the differences between SPIRIT C, X/Open C (XPG4) and MIA C.

Table A-1 SPIRIT C, X/Open C and MIA C

No. Items XPG4 MIA SPIRIT SPIRIT Rationale
The name of header for wide
character string handling
functions.

The header’s name is specified
by ISO/IEC 9899/AM1.

1 X AM1

wint_t and wctype_t data types
and WEOF macro.

The data types and the macro
are specified by
ISO/IEC 9899/AM1.

2 X AM1

isascii() and toascii() function. The functions should be
specified as system interfaces.

3 X —

iswalnum(), iswalpha(),
iswcntrl(), iswctype(), iswdigit(),
iswgraph(), iswlower(),
iswprint(), iswpunct(),
iswspace(), iswupper(),
iswxdigit(), fgetwc(), fgetws(),
fputwc(), fputws(), getwc(),
getwchar(), putwc(), putwchar(),
towlower(), towupper(),
ungetwc(), wctype(), wcscoll(),
wcsftime(), wcstod(), wcstok(),
wcstol(), wcstoul() and
wcsxfrm() functions.

The functions are specified by
ISO/IEC 9899/AM1.

4 X AM1

wcswidth() and wcwidth()
functions.

The functions should be
specified as system interfaces.

5 X —

The XPG4 specification is a
reasonable extension to ISO C.

6 Behaviour of localconv() function. X XPG4

Behaviour of functions included in
<math.h> .

+Inf, −Ing and NaN are
ANSI/IEEE floating point
representation-dependent
descriptions. SPIRIT C should
be independent of any bit
representation.

7 X —

Constants and external variables
in <math.h> .

The macros are additional
requirements to ISO C. They
are not general requirements.

8 X —

erf(), erfc(), gamma(), hypot(),
lgamma() and external variables,
signgam(), y0(), y1() and yn()
functions.

The functions should be
specified as system interfaces.

9 X —

SPIRIT C Language Profile (SPIRIT Issue 3.0) 51

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Differences X/Open C and MIA C

No. Items XPG4 MIA SPIRIT SPIRIT Rationale

%n$ format specification for
printf() and scanf() family
functions.

This notation is a simple
extension to ISO C and could
contribute to improved
portability of internationalised
applications.

10 X XPG4

′ flag character for printf() family
functions.

This notation is a simple
extension to ISO C and could
contribute to improved
portability of internationalised
applications.

11 X XPG4

Infinity and NaN string
representation for printf() family
functions.

+Inf, −Inf and NaN are
ANSI/IEEE floating point
representation-dependent
descriptions. SPIRIT C should
be independent of any bit
representation.

12 X —

%C and %S conversion character
for printf() and scanf() family
functions.

Equivalent notations (that is,
%wc and %ws) are specified by
ISO/IEC 9899/AM1.

13 X AM1

The description is a kind of
guide for users of this function.
It does not specify any
behaviour of the function.

14 Parameter of fseek() function. X —

memcopy(), strfmon(),
nl_langinfo(), iconv() family,
catopen(), catclose() and
catgets() functions.

The functions should be
specified as system interfaces.

15 X —

The macros should be specified
as system interfaces.

16 Additional macros in <limits.h> . X —

The implementation limit could
make sense and could
contribute to application
portability.

17 Period of rand() function. X XPG4

Requirement of full specification
of ISO C versus Common Usage
C.

XPG4 says that Common
Usage C is obsolescent.

18 X —

Conversion into signed integer
type of smaller or equal size.

To specify ISO C
implementation-defined
behaviour could contribute to
application portability.

19 X MIA

52 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

X/Open C and MIA C Differences

No. Items XPG4 MIA SPIRIT SPIRIT Rationale
Result of the division (/, %) of
negative integer.

To specify ISO C
implementation-defined
behaviour could contribute to
application portability.

20 X MIA

Result of the right shift when the
first operand is a signed integer
type and has a negative value.

To specify ISO C
implementation-defined
behaviour could contribute to
application portability.

21 X MIA

MIA specification conflicts with
both XPG4 and POSIX. On the
other hand, specification of
specific errno that is not
specified by ISO C is out of
scope.

22 Behaviour of freopen() function. X X —

Return value of the fmod()
function when either argument is
zero.

Return value zero required by
MIA is also allowed by XPG4.
There is no description on errno
in MIA.
*1 Compromise between XPG4
and MIA; that is, returns zero
and [EDOM] may be set to
errno.

23 X X *1

These macros should be
specified as system interfaces.
They are not general
requirements.

24 Addition of signals. X X —

Behaviour of the rename()
function when there exists a file
with the same name specified as
a second argument.

The XPG4 and MIA C
specifications are completely
different. These specifications
would not contribute to
application portability.

25 X X —

MIA specification conflicts with
ISO C when multiple 0 width
bit-fields are declared
continuously.

26 Boundary alignment of bit-field. X —

Data type of wcschr() and
wcsrchr() functions.

The functions are specified by
ISO/IEC 9899/AM1.

27 X X AM1

Number of significant initial
characters in an external
identifier.

The limit is an implementation
limit of ISO C. Conditions for
conforming implementations
would contribute to improved
application portability.

28 X X MIA

SPIRIT C Language Profile (SPIRIT Issue 3.0) 53

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

Differences X/Open C and MIA C

No. Items XPG4 MIA SPIRIT SPIRIT Rationale
Numerical value in
<limits.h> (MB_LEN_MAX).

This implementation limit
depends on the locale
supported by a conforming
implementation. It is not a
general requirement.

29 X X —

Numerical value in <float.h> . The limit is an implementation
limit of ISO C. Conditions for
conforming implementations
would contribute to improved
application portability.

30 X X MIA

wcscpy(), wcsncpy(), wcscat(),
wcscmp(), wcsncmp(), wcschr(),
wcscspn(), wcspbrk(), wcsrchr(),
wcsspn() and wcslen() functions.

The functions are specified by
ISO/IEC 9899/AM1.

31 X X AM1

wcswcs() function. Equivalent function (that is, the
wcsstr() function) is specified by
ISO/IEC 9899/AM1. Only the
function name is different.

32 X X AM1

54 SPIRIT Platform Blueprint (1995)

Cop
yr

ig
ht

 N
et

w
or

k
M

an
ag

em
en

t F
or

um

