
X/Open Guide

Internationalisation Guide

Version 2

X/Open Company Ltd.

 July 1993, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Guide

Internationalisation Guide Version 2

ISBN: 1-85912-002-4
X/Open Document Number: G304

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open Guide (1993)

Contents

Chapter 1 Introduction... 1
 1.1 Background.. 1
 1.1.1 External Influences .. 1
 1.1.2 Historical Development ... 2
 1.2 Internationalisation .. 4
 1.2.1 Language... 4
 1.2.2 Cultural Data .. 4
 1.2.3 Character Sets ... 4
 1.3 Localisation .. 5
 1.3.1 Collating Sequence .. 5
 1.3.2 Character Classification.. 5
 1.3.3 Case Conversion .. 5
 1.3.4 Language Information .. 5
 1.3.5 Message Catalogues .. 5
 1.4 Language Announcement... 6
 1.5 Terms and Definitions.. 7
 1.5.1 Portable Character Set... 7

Chapter 2 Developing Internationalised Software 9
 2.1 Character Sets .. 10
 2.1.1 Data Transparency... 10
 2.1.2 Code Literals... 11
 2.1.3 Multi-byte Characters ... 12
 2.1.4 Trigraphs.. 12
 2.1.5 Classification... 13
 2.1.6 Conversion.. 13
 2.1.7 String Comparison... 14
 2.2 Cultural Data ... 15
 2.2.1 The langinfo Database .. 15
 2.2.2 The nl_langinfo() Function.. 16
 2.2.3 The strftime() Function .. 16
 2.2.4 The strfmon() Function .. 17
 2.2.5 The localeconv() Function ... 17
 2.2.6 Other Functions.. 17
 2.3 Language .. 18
 2.3.1 Messages.. 18
 2.3.2 Formatted Output.. 19
 2.3.3 Formatted Input ... 20
 2.4 Initialisation ... 21
 2.4.1 General Locale Setting .. 21
 2.4.2 Internal Locale Settings .. 21

Internationalisation Guide Version 2 iii

Contents

Chapter 3 The Message System.. 23
 3.1 Message Text Source Files... 24
 3.1.1 General... 24
 3.1.2 The set Directive .. 24
 3.1.3 The delset Directive... 25
 3.1.4 Message Directives .. 25
 3.1.5 Comments ... 25
 3.1.6 Quoting.. 25
 3.2 Programming Using Message Files... 26
 3.2.1 Example of Program Referencing Separate Texts 26
 3.2.2 Example of Related Texts (English Version) 27
 3.2.3 Editing Message Files.. 28
 3.3 Message Translation... 29
 3.4 Generating Message Catalogues ... 31
 3.4.1 The gencat Command... 31
 3.4.2 Multiple Source Files... 31
 3.4.3 Changing an Existing Message Catalogue ... 31
 3.4.4 Portability .. 32
 3.5 Message Catalogue Access ... 33
 3.5.1 NLSPATH .. 33
 3.5.2 The catopen() Function .. 34
 3.5.3 The catclose() Function .. 35
 3.6 Reading Program Messages.. 36
 3.6.1 The catgets() Function.. 36
 3.6.2 Further Examples... 37
 3.6.3 Performance .. 38

Chapter 4 Internationalisation Support Interfaces................................... 39
 4.1 Locale Initialisation .. 42
 4.1.1 The setlocale() Function... 42
 4.1.2 Setting the Program Locale.. 43
 4.1.3 Setting a Specific Category from the Environment 44
 4.1.4 Setting all Categories from the Environment 44
 4.1.5 The POSIX Locale .. 44
 4.2 Character Classification... 48
 4.2.1 The iswalnum() Function .. 48
 4.2.2 The iswalpha() Function.. 48
 4.2.3 The iswcntrl() Function.. 48
 4.2.4 The iswdigit() Function.. 48
 4.2.5 The iswgraph() Function ... 49
 4.2.6 The iswlower() Function.. 49
 4.2.7 The iswprint() Function ... 49
 4.2.8 The iswpunct() Function.. 49
 4.2.9 The iswspace() Function.. 49
 4.2.10 The iswupper() Function ... 49
 4.2.11 The iswxdigit() Function ... 50
 4.2.12 The iswctype() Function .. 50
 4.2.13 The wctype() Function ... 50

iv X/Open Guide (1993)

Contents

 4.3 Case Conversion ... 51
 4.3.1 The towlower() Function... 51
 4.3.2 The towupper() Function .. 51
 4.4 Character Collation .. 52
 4.4.1 The wcscoll() Function... 52
 4.4.2 The wcsxfrm() Function... 54
 4.5 Language Information ... 56
 4.5.1 The nl_langinfo() Function.. 56
 4.5.2 The strfmon() Function .. 58
 4.5.3 The localeconv() Function ... 60
 4.6 Date and Time Functions .. 62
 4.6.1 The strftime() Function .. 62
 4.6.2 The wcsftime() Function.. 65
 4.6.3 The strptime() Function ... 65
 4.7 Printing Functions... 68
 4.7.1 Numbered Argument Lists.. 68
 4.7.2 Decimal-point Characters .. 68
 4.7.3 Thousands Grouping Characters ... 69
 4.7.4 Wide-character Conversions ... 69
 4.8 Scanning Functions... 70
 4.8.1 Numbered Argument Lists.. 70
 4.8.2 Decimal-point Characters .. 70
 4.8.3 Wide-character Conversions ... 71
 4.9 Number Conversion Functions ... 72
 4.9.1 The wcstod() Function ... 72
 4.9.2 The wcstol() Function... 73
 4.9.3 The wcstoul() Function .. 73
 4.10 ISO C Multi-byte Functions .. 74
 4.10.1 The mblen() Function ... 74
 4.10.2 The mbstowcs() Function .. 74
 4.10.3 The mbtowc() Function.. 74
 4.10.4 The wcstombs() Function .. 75
 4.10.5 The wctomb() Function.. 75
 4.11 I/O Functions .. 76
 4.11.1 The getwc() Function.. 76
 4.11.2 The getwchar() Function.. 76
 4.11.3 The fgetwc() Function .. 76
 4.11.4 The fgetws() Function .. 77
 4.11.5 The fputwc() Function.. 77
 4.11.6 The fputws() Function.. 77
 4.11.7 The putwc() Function... 77
 4.11.8 The putwchar() Function... 77
 4.11.9 The ungetwc() Function... 78
 4.12 String Functions .. 79
 4.12.1 The wcscat() Function .. 79
 4.12.2 The wcschr() Function.. 79
 4.12.3 The wcscmp() Function ... 79
 4.12.4 The wcscpy() Function... 79

Internationalisation Guide Version 2 v

Contents

 4.12.5 The wcscspn() Function... 80
 4.12.6 The wcslen() Function.. 80
 4.12.7 The wcsncat() Function.. 80
 4.12.8 The wcsncmp() Function ... 80
 4.12.9 The wcsncpy() Function .. 80
 4.12.10 The wcspbrk() Function... 80
 4.12.11 The wcsrchr() Function .. 80
 4.12.12 The wcsspn() Function... 81
 4.12.13 The wcstok() Function.. 81
 4.12.14 The wcswcs() Function .. 81
 4.12.15 The wcswidth() Function... 81
 4.12.16 The wcwidth() Function .. 81
 4.13 Error Handling .. 82
 4.13.1 The perror() Function ... 82
 4.13.2 The strerror() Function... 82
 4.14 Codeset Conversion ... 83
 4.14.1 The iconv_open() Function ... 83
 4.14.2 The iconv() Function... 83
 4.14.3 The iconv_close() Function ... 83
 4.14.4 Examples.. 84

Chapter 5 Using Internationalised Software.. 87
 5.1 Language Announcement... 87
 5.1.1 General Announcement ... 87
 5.1.2 Announcement Categories .. 88
 5.1.3 The POSIX Locale .. 89
 5.1.4 Single Language Working.. 89
 5.1.5 Mixed Language Working ... 90
 5.1.6 Mixed-locale Working... 91
 5.2 Commands and Utilities ... 92
 5.2.1 LC_COLLATE... 92
 5.2.2 LC_CTYPE... 94
 5.2.3 LC_MONETARY.. 94
 5.2.4 LC_NUMERIC.. 94
 5.2.5 LC_MESSAGES.. 94
 5.2.6 LC_TIME.. 95
 5.2.7 8-bit Transparency ... 96
 5.3 Regular Expressions... 97
 5.3.1 Character Class Expressions ... 97
 5.3.2 Equivalence Classes .. 98
 5.3.3 Collating Symbols.. 98
 5.3.4 Ranges.. 99
 5.3.5 Affected Commands.. 99
 5.3.6 Shell Meta Notation... 99
 5.3.7 Examples and Warnings... 100
 5.4 The iconv Utility ... 101
 5.4.1 Function and Interface .. 101

vi X/Open Guide (1993)

Contents

Chapter 6 Locale Utilities... 103
 6.1 The localedef Utility ... 103
 6.1.1 Function and Interface .. 103
 6.1.2 Character Set Description Files... 104
 6.1.3 General Syntax ... 105
 6.1.4 LC_CTYPE... 106
 6.1.5 LC_COLLATE... 108
 6.1.6 LC_MESSAGES.. 111
 6.1.7 LC_MONETARY.. 111
 6.1.8 LC_NUMERIC.. 114
 6.1.9 LC_TIME.. 115
 6.2 The locale Utility... 117
 6.2.1 Function and Interface .. 117
 6.2.2 Options... 117

Appendix A Migration Issues ... 119
 A.1 XPG2 to XPG3.. 119
 A.2 XPG3 to XPG4.. 122

Appendix B Example Locales.. 123
 B.1 Example Locale 1 .. 123
 B.2 Example Locale 2 .. 127
 B.3 Example Locale 3 .. 133

 Glossary ... 173

 Index... 177

Internationalisation Guide Version 2 vii

Contents

viii X/Open Guide (1993)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable system environment, called the Common
Applications Environment (CAE). This environment covers the standards, above the hardware
level, that are needed to support open systems. It provides for portability and interoperability of
applications, and allows users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical application
programming interfaces (APIs), which significantly enhance portability of application programs
at the source code level, and definitions of, and references to, protocols and protocol profiles,
which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and a
distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be carried
only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is to
use formal approved de jure standards, where they exist, and to adopt widely supported de facto
standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications that
form the basis for conformant and branded X/Open systems. They are intended to be used
widely within the industry for product development and procurement purposes.

Internationalisation Guide Version 2 ix

Preface

Developers who base their products on a current CAE Specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future XPG brand (if not referenced already), and that a variety of compatible, XPG-branded
systems capable of hosting their products will be available, either immediately or in the near
future.

CAE Specifications are not published to coincide with the launch of a particular XPG brand,
but are published as soon as they are developed. By providing access to its specifications in
this way, X/Open makes it possible for products that conform to the CAE (and hence are
eligible for a future XPG brand) to be developed as soon as practicable, enhancing the value
of the XPG brand as a procurement aid to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that are
released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’ specification.
Indeed, it is as stable as X/Open can make it, and on publication has gone through the same
rigorous X/Open development and review procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop products
on the basis of them. However, because of the nature of the technology that a Preliminary
Specification is addressing, it is untried in practice and may therefore change before being
published as a CAE Specification. In such a case the CAE Specification will be made as
upwards-compatible as possible with the corresponding Preliminary Specification, but
complete upwards-compatibility in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to disseminate
information on its current direction and thinking to an interested audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A Snapshot represents the interim results of an X/Open technical activity. Although at the
time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and makes
no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to make
any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying or
claiming X/Open-conformance.

x X/Open Guide (1993)

Preface

This Document

This document is a Guide (see above). It describes Internationalisation facilities provided by
systems that conform to the X/Open Common Applications Environment. The Guide contains
background material on how X/Open facilities have evolved through various issues of the
X/Open Portability Guide (XPG). It also identifies which features are common with other
standards (for example, the ISO POSIX-1 standard and the ISO C standard), and which are
unique to X/Open. It is intended for use by system and application programmers developing
internationalised software, and by end-users requiring to use the multi-language features of a
system that conforms to XPG4. There is also a lot to be learned from the Guide about good
programming style for international portability and maintainability.

This Guide assumes the reader has a working knowledge of:

• system interfaces and headers presented in the X/Open CAE Specification System Interfaces
and Headers, Issue 4

• commands and utilities presented in the X/Open CAE Specification Commands and
Utilities, Issue 4

• the C Programming Language presented in the ISO C standard.

Specific Internationalisation features of the X/Open System Interface (XSI) are re-introduced in
the Guide and no prior knowledge is assumed in this area.

This issue of the Guide is aligned with the XPG4 set of X/Open CAE specifications that define
the XSI Operating System requirements. When these specifications are referred to collectively,
the term XPG4 base specifications is used.

Note: This Guide is intended as a tutorial rather than a specification. Details of system
interfaces are as accurate as possible but readers are referred to the XPG4 base
specifications for a definitive description of these interfaces.

This document is structured as follows:

• Chapter 1 provides background information and an introduction to internationalisation and
localisation.

• Chapter 2 discusses how to develop internationalised software.

• Chapter 3 explains the features of the message system.

• Chapter 4 gives details of the interfaces available in XPG4 systems for internationalisation
support.

• Chapter 5 is about using internationalised software.

• Chapter 6 describes the utilities available for defining and displaying information about
locales.

• Appendix A discusses migration issues up to XPG3. XPG3 to XPG4 migration is covered by
the referenced Migration Guide.

• Appendix B gives three example locales; they are provided to illustrate locale definition files
and are not necessarily provided on systems that conform to XPG4.

A glossary and index are also provided.

Internationalisation Guide Version 2 xi

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a.

xii X/Open Guide (1993)

Trade Marks

AT&T is a registered trade mark of American Telephone & Telegraph Company in the U.S.A.
and other countries.

UNIX is a registered trade mark of UNIX System Laboratories, Inc. in the U.S.A. and other
countries.

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Limited in the U.K. and
other countries.

Internationalisation Guide Version 2 xiii

Referenced Documents

The following standards are referenced in this guide:

ANSI C
ANS X3.159-1989, Programming Language C.

ISO/IEC 646: 1991
Information processing — ISO 7-bit coded character set for information interchange.

ISO 6937: 1983
Information processing — Coded character sets for text communication.

ISO 8859
ISO 8859-*: 1987 Information processing — 8-bit single-byte coded graphic character sets —
Parts 1 to 10 inclusive.

ISO C
ISO/IEC 9899: 1990, Programming languages — C (which is technically identical to ANS
X3.159-1989, Programming Language C).

ISO POSIX-1
ISO/IEC 9945-1: 1990, Information technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (which is
identical to IEEE Std 1003.1-1990).

ISO POSIX-2 DIS
ISO/IEC DIS 9945-2: 1992, Information technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (which is identical to IEEE Std 1003.2-Draft).

JIS X 0201-1976
Japanese Industrial Standard, Code for Information Interchange.

JIS X 0208-1990
Japanese Industrial Standard, Code of the Japanese graphic character set for information
interchange.

The following X/Open documents are referenced in this guide:

Curses
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive, Curses Interface; this specification
was formerly X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Languages
Chapters 1 to 4 of X/Open Specification, 1988, 1989, February 1992, Programming
Languages, Issue 3 (ISBN: 1-872630-39-1, C214); this specification was formerly X/Open
Portability Guide, Volume 4, August 1988 (ISBN: 0-13-685868-6, XO/XPG/89/004).

Migration Guide
X/Open Guide, July 1992, XPG3-XPG4 Base Migration Guide (ISBN: 1-872630-49-9, G204).

XPG3
X/Open Portability Guide Issue 3, December 1988
ISBN: 0-13-685819-8 (set of seven volumes)

xiv X/Open Guide (1993)

Referenced Documents

XPG4
A document set defining XSI Operating System requirements comprising:

XBD
X/Open CAE Specification, July 1992, System Interface Definitions, Issue 4
(ISBN: 1-872630-46-4, C204).

XCU
X/Open CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN:
1-872630-48-0, C203).

XSH
X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2 C202).

Internationalisation Guide Version 2 xv

Referenced Documents

xvi X/Open Guide (1993)

Chapter 1

Introduction

This chapter describes the background to the internationalisation of computer systems.
Internationalisation is the development of language-independent systems and software.
Localisation is the definition of a specific environment such that an internationalised program
performs in the manner expected by a user, in terms of language, cultural data and so on.

1.1 Background
X/Open members market systems in many different countries. Customers and users speak
different languages, conform to different cultural conventions and business practices, and in
many cases are required to cope with multiple language variations on a single system.

It was in response to these requirements that X/Open set out to define a set of system facilities
that would enable:

• programmers to develop internationalised software

• system suppliers to define multiple instances of localisation data

• users to select, either individually or collectively, the specific language operation of system
commands and applications

Previously, UNIX systems and most systems derived from them had been based on ASCII1 and
American English. No facilities were provided for dealing with other coded character sets, nor
for supporting different languages or cultural conventions.

The internationalisation facilities defined in the XSH specification provide enhancements to the
system that enable character-based data to be processed in a way that is independent of the
underlying character encoding. This allows complete flexibility in the choice of coded character
sets supported by an implementation. X/Open systems also allow program messages to be
handled in the native language2 of each user, as well as supporting different formats for cultural
data such as date and time formats, currency values and so on.

1.1.1 External Influences

Various initiatives have been under way for some time to provide the tools for developing
internationalised software in industry-standard operating environments. X/Open has been
cognisant of these developments and has aimed to maintain the X/Open definition in line with
standards laid down by external bodies.

In particular, the ISO C standard defines functions for locale-dependent character classification,
case conversion and string collation. It also defines functions for processing cultural data, and
an initialisation function that binds the required localisation data to a program’s operational
environment. The ISO C standard further defines a basic set of multi-byte functions for handling
coded character sets larger than eight bits.

1. American Standard Code for Information Interchange. ASCII defines 128 characters, including both control characters and
graphic characters, represented by 7-bit binary values.

2. A computer user’s spoken or written language, as opposed to a computer programming language.

Internationalisation Guide Version 2 1

Background Introduction

The ISO POSIX-1 standard extends the ISO C provisions by defining a set of environment
variables and locale categories common to POSIX-based systems.

The UniForum Technical Subcommittee on Internationalisation has, in collaboration with
X/Open, developed a formal definition for internationalised regular expressions. This has been
submitted to the IEEE and is published in the ISO POSIX-2 DIS.

In 1985, the Japan UNIX Advisory Group, mindful that additional interfaces were needed to
support codesets larger than eight bits, proposed a set of multi-byte specifications which were
subsequently adopted by SIGMA and various leading system suppliers. The Worldwide
Portability Interfaces published in the XSH specification were developed primarily from the
SIGMA specifications and include most of the interfaces proposed to ISO by ITSCJ SC22/WG14
C/SWG. This emerging standard is formally known as the MSE working draft. The ISO MSE
standard when finalised will be incompatible with XPG4. Where the documents do not agree,
X/Open’s intention is to adhere to ISO MSE.

X/Open incorporates all of the above, as well as defining a native language message system and
extended C library capability in other key areas.

1.1.2 Historical Development

X/Open Portability Guide, Issue 1 (July 1985)

No Internationalisation facilities were published in this issue of the X/Open Portability Guide
(XPG). However, it did include a statement of direction to the effect that this area of system
operation would be addressed in future issues.

X/Open Portability Guide, Issue 2 (January 1987)

This issue contained a trial-use definition of the X/Open Native Language System interfaces,
which were derived from the Native Language Support system developed by the Hewlett-
Packard Company of Palo Alto, California. This was enhanced by X/Open and modified in
strategic areas to resemble more closely facilities proposed in the ANSI C standard.

Specifically, XPG2 provided a definition of the following facilities:

• transparent single-byte codeset operation

• internationalised versions of library functions

• new functions that allowed applications to determine the format and setting of locale-specific
cultural data items

• message catalogues

• an announcement mechanism

X/Open Portability Guide, Issue 3 (December 1988)

For the first time Internationalisation facilities were defined as mandatory in the X/Open System
Interface. The XPG was also fully aligned with the POSIX.1-1988 standard and ANSI C
standard, except in the area of multi-byte codeset operation and localeconv ().

2 X/Open Guide (1993)

Introduction Background

XPG3 included all the facilities presented in XPG2, modified for alignment with the above
standards, plus:

• an improved announcement mechanism

• internationalised regular expressions

• an optional Internationalised utility environment

• a new utility for codeset conversion

XPG4 Base CAE Specifications (July 1992)

The main changes in this issue are support for Asian languages and a more comprehensive
definition of the Internationalised Utility Environment. Interfaces have also been added that
provide codeset conversion facilities at the program level.

In summary, the XPG4 base specifications include all the facilities published in XPG3, plus:

• Worldwide Portability Interfaces, which enable applications to work with either single- or
multi-byte codesets

• extended support of the Internationalised Utility Environment

• additional system interfaces for date and time conversion (strptime()), monetary value
conversion (strfmon()), and codeset conversion (iconv*())

• full conformance to the ISO C standard

• the localedef and locale utilities

• changes to the catopen() oflag argument.

Internationalisation Guide Version 2 3

Internationalisation Introduction

1.2 Internationalisation
Internationalisation refers to the process of developing programs without prior knowledge of
the language, cultural data or character encoding schemes they are expected to handle. In
system terms, it refers to the provision of interfaces that enable internationalised programs to
modify their behaviour at run time for specific language operation.

1.2.1 Language

An internationalised program should make no assumptions about the language of character data
(text) that it is designed to handle. This refers to data generated internally, extracted from or
written to file store, and message text used for communication with a user.

In particular, language has implications for the processing of text for such things as character
handling and word ordering. X/Open systems provide interfaces that enable internationalised
programs to manipulate text strings according to the language requirements of individual users
(see Chapter 4).

With regards to message text, facilities are provided that enable program messages to be
separated from the code, translated into different languages, and accessed by the program at run
time. These facilities are described in Chapter 3.

1.2.2 Cultural Data

This refers to the conventions of a geographic area or territory for such things as date, time and
currency formats.

An internationalised program cannot assume these formats in advance and must use facilities
provided by the underlying operating system to determine their setting at run time. X/Open
systems provide this capability by defining a language information database that applications
can interrogate for the required format and settings of cultural data items. This facility and
associated functional interfaces are described in Section 4.5 on page 56.

1.2.3 Character Sets

A character set is a set of alphabetic or other characters used to construct the words and other
elementary units of a native language or computer language. A coded character set (codeset) is
a set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

For a program to be able to handle text recorded in different coded character sets, it must not
make assumptions about the size or bit assignment of character encodings. In particular it
should not be assumed that any part of an area used to store a character code is available for
other uses.

X/Open systems provide codeset independent facilities for character classification and case
conversion as described in Section 4.2 on page 48 and Section 4.3 on page 51.

4 X/Open Guide (1993)

Introduction Localisation

1.3 Localisation
Localisation refers to the process of establishing information within a computer system specific
to each supported language, cultural data and coded character set combination. Each such
combination gives rise to the definition of one locale.

How and where localisation data is stored is not defined by X/Open, nor are the permitted
settings of a locale name. However, there are implications for what type of information a locale
should contain, and the interface functions that utilise this information are defined.

1.3.1 Collating Sequence

Each locale contains collating sequence information that informs string compare functions (see
Section 4.4 on page 52) about the relative ordering of characters defined in the associated coded
character set. This ordering may be defined by underlying hardware, or it may be implemented
totally at the software level. Internationalised regular expressions also use this information for
implementing character ranges, collating symbols and equivalence classes (see Section 5.3 on
page 97).

1.3.2 Character Classification

Character classification information provides details about the type of character associated with
each legal character code; that is, whether it is an alphabetic, upper-case, lower-case,
punctuation, control or space character. This information is used by character classification
functions (see Section 4.2 on page 48) and by internationalised regular expressions to implement
character classes.

1.3.3 Case Conversion

This refers to information identifying the possible other case of each legal character code. It is
used by case conversion functions (see Section 4.3 on page 51) to shift from upper-case to lower-
case, and vice versa.

1.3.4 Language Information

Language information refers to localisation data describing the format and setting of locale-
specific cultural data. This data and the functions provided for interrogating it are described in
Section 4.5 on page 56.

1.3.5 Message Catalogues

A message catalogue is a file or storage area containing program messages, command prompts,
and responses to prompts for a particular language. The X/Open messaging system is described
in Chapter 3.

Internationalisation Guide Version 2 5

Language Announcement Introduction

1.4 Language Announcement
Internationalisation and localisation facilities are provided primarily for use by system and
application developers. All a user requires to see of these is the end result; that is, programs
working in his or her own language and culture.

X/Open defines an announcement mechanism whereby language, cultural data and codeset
requirements can be set by users individually. This is done by setting the required locale name in
a set of reserved environment variables. These are read by internationalised applications
whenever they are executed, and are used to attach the associated instance of localisation data to
the program’s operational environment.

Thus the announcement mechanism provides the means by which users can bind specific
language information, message text, and so on to each invocation of an internationalised
application. This binding can be general and direct that an application should work exclusively
with one set of localisation data, or it can be selective and request that different aspects of
program operation use different localisations.

Facilities and details of the announcement mechanism are described in Section 5.1 on page 87.

6 X/Open Guide (1993)

Introduction Terms and Definitions

1.5 Terms and Definitions
At this point it is worth defining a number of fundamental terms used extensively in this guide.
Other, less common terms are defined when they are first encountered in the text.

A character is a sequence of one or more bytes representing a single graphic symbol or control
code. This should not be confused with the char data type in the C programming language,
which is defined as an object large enough to store any member of the basic execution character
set, usually mapped as an 8-bit value. A character can be represented by single-byte or multi-
byte values.

The terms character and multi-byte character are synonymous; that is, they both refer to character
values of any length, including single-byte.

A character string or string is a contiguous sequence of bytes terminated by and including the null
byte. It is an array of type char in the C programming language. The null byte is a value with all
bits set to 0.

A wide character is an integral type large enough to hold any member of the extended execution
character set. In program terms, it is an object of type wchar_t, which is an implementation-
defined integral type defined in the header <wchar.h>. It is permitted for implementations
supporting only single-byte codesets to define this as a byte value.

A wide character string is a contiguous sequence of wide characters terminated by and including
the null wide character. It is an array of type wchar_t. The null wide character is a wchar_t
value with all bits set to 0.

An empty string is a character string whose first element is the null byte. Similarly, an empty
wide character string is a wide character string whose first element is the null wide character.

1.5.1 Portable Character Set

The XPG4 base specifications define a Portable Character Set, which is supported in both the
source (compile-time) and execution (run-time) environments. The Portable Character Set
contains the 26 upper-case letters of the English alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

the 26 lower-case letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z

the 10 decimal digits:

0 1 2 3 4 5 6 7 8 9

the following 32 graphic characters:

! " # $ % & ’ () * + , - . / : ; < = > ? @ [\] ˆ _ ‘ { | } ˜

and the space character, and control characters representing alert, backspace, tab, newline,
vertical-tab, form-feed, carriage return and the null character, NUL.

The Portable Character Set is similar to the basic source and basic execution character sets
defined in the ISO C standard, except that the X/Open version also includes the dollar-sign,
commercial-at and grave-accent characters.

In cases where substitutions are made for any of the above characters (for example, in ISO 646
variants), the substituted character has the same syntactic meaning as the character it replaces in
the Portable Character Set.

Internationalisation Guide Version 2 7

Introduction

8 X/Open Guide (1993)

Chapter 2

Developing Internationalised Software

One of the primary functions of most computer programs is to manipulate data, some or all of
which may involve interaction between the program and a computer user. In commercial
situations it is important that such interactions take place in the native language of each user.
Cultural data should also observe the correct local customs.

Programs intending to support multi-language operation must also take into account the fact
that languages can be represented within the computer system by one or more coded character
sets. Because of the requirements of different languages, these may vary in both size (8-bit, 16-
bit, and so on) and binary representation.

Provision for satisfying the above requirements can be made by writing programs that make no
hard-coded assumptions about language, cultural data or character encodings. Such a program
is said to be internationalised. Data specific to each supported language, territory and codeset
combination are held separate from the program code and can be bound to its run-time
environment by language initialisation functions.

X/Open systems provide facilities for developing internationalised software, for defining
localisation data, and for announcing specific language requirements.

The following facilities are provided for program development:

• library functions that provide language and codeset independent character classification,
case conversion, number format conversion and string collation

• library functions that enable programs to determine cultural and language specific data
dynamically

• a message system that allows program messages to be held apart from the program code,
translated into different languages, and retrieved by a program at run time

• an initialisation function that initialises a program locale according to the stated language
requirements of each user

• library functions that allow applications to handle extended character codes

The remainder of this chapter describes each of the above provisions in greater detail. This is
done from a programming viewpoint, highlighting areas of program operation that need to be
considered when developing internationalised software, and drawing the reader’s attention to
specific facilities offered by X/Open systems.

Internationalisation Guide Version 2 9

Character Sets Developing Internationalised Software

2.1 Character Sets
In the past most UNIX and UNIX-like systems have been based on the 7-bit ASCII coded
character set. Most languages other than English require characters additional to those catered
for by ASCII, and some require an alternative (for example, Arabic) or very large (for example,
Japanese) set of characters.

There is a set of ISO codesets covering the major European languages. Several of these cater for
the mixing of major languages within a single codeset. These codesets also have the advantage
that they include the ASCII codeset within them, making it possible for systems to support
languages other than English without invalidating existing, non-internationalised software.

All the ISO 8859 codesets include ASCII as a proper codeset within them:

ISO 8859-1: Latin 1 - Western European Languages.
ISO 8859-2: Latin 2 - Eastern European Languages.
ISO 8859-3: Latin 3 - Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,

Maltese, Spanish and Turkish.
ISO 8859-4: Latin 4 - Danish, English, Estonian, Finnish, German, Greenlandic, Lappish

and Latvian.
ISO 8859-5: Latin/Cyrillic - Bulgarian, Byelorussian, English, Macedonian, Russian,

Serbo-Croat and Ukranian.
ISO 8859-6: Latin/Arabic - Arabic.
ISO 8859-7: Latin/Greek - Greek.
ISO 8859-8: Latin/Hebrew - Hebrew.
ISO 8859-9: Latin 5 - Danish, Dutch, English, Finnish, French, German, Irish, Italian,

Norwegian, Portuguese, Spanish, Swedish and Turkish.
ISO 8859-10: Latin 6 - Danish, English, Estonian, Finnish, German, Greenlandic, Icelandic,

Sami (Lappish), Latvian, Lithuanian, Norwegian, Faroese and Swedish.

Another codeset that may be supported on many systems is that defined in the ISO 6937: 1983
standard3. This is the normal transmission codeset for X.400 and ISO mail systems.

The XPG4 base specifications make no specific recommendations about which codesets must be
supported on conforming systems; that is, implementations are free to support whichever
codeset or codesets they choose.

2.1.1 Data Transparency

Given the above rationale, it is evident that internationalised software must be written to cater
for a potentially wide variety of character encoding schemes. It must not be assumed that a
particular codeset is supported on all X/Open systems, nor that individual character encodings
occupy a fixed number of bits.

Another legacy of the historical dependence of UNIX systems on 7-bit ASCII is that some
programs use the most significant bit of a byte for their own internal purposes. Arguably this
was always a dubious programming practice, although it was quite safe while characters in the
underlying codeset were always mapped to 7-bits. In the 8-bit or larger world of international
codesets, this practise is clearly untenable and should be avoided at all costs.

3. ISO 7-bit or 8-bit coded character set for text communication using public communication networks, private communication
networks, or interchange media such as magnetic tape and disks.

10 X/Open Guide (1993)

Developing Internationalised Software Character Sets

2.1.2 Code Literals

Another area to be wary of when writing internationalised software is the use of in-code literals.
The danger of statements such as:

if ((c = getchar()) == ’\141’)

are obvious. This piece of code assumes that lower-case a is always represented by a fixed octal
value, which may not be true for all supported codesets. A better way to make the above test is
to use a character constant,

if ((c = getchar()) == ’a’)

although even here there is a need for caution.

By using the getchar() function, which operates on bytes, the above code would not work
correctly if the next character in the input stream was a multi-byte value.

if ((c = getwchar()) == L’a’)

uses the wide-character function getwchar(), which works correctly with any codeset because ’a’
is a member of the portable character set and is transformed into the same wide character code
in all locales.

The X/Open Portability Guide further defines that each source character set member and escape
sequence in character constants and string literals is converted to the same member of the
execution character set in all locales. Thus it is safe to use any of the characters in the Portable
Character Set, either as character constants or within string literals, but it is not guaranteed that
non-English characters are translated correctly.

As an example, in a statement of the form:

if ((c = getwchar()) == L’a ’́)

the accented character á may not be representable in either or both of the source and execution
character sets, or its binary value may not be translatable from one to the other. The results of
specifying such a constant in a source program are undefined.

To make such a test, programmers are advised to use the message system and read the character
value from localisation data, for example:

char *schar;
wchar_t wchar;

. . .
schar = catgets(catd, NL_SETD, MSG_ID, "a");

if (mbtowc(&wchar, schar, MB_CUR_MAX) == -1)
error();

if ((c = getwchar()) == wchar)
. . .

where MSG_ID identifies a message string containing the single character á. The conversion to
wide character is necessary because catgets() may return a multi-byte sequence.

Message catalogues are bound to a program at run time and are locale-specific. Also in the
above example, if the accented character is not available in the current codeset, the test is made
against the base character.

Internationalisation Guide Version 2 11

Character Sets Developing Internationalised Software

2.1.3 Multi-byte Characters

X/Open systems may support multi-byte codesets for use with Asian languages. No
requirement is made that all X/Open systems must support this feature, although they must all
provide the interfaces described in Chapter 4, even if on some implementations these are merely
synonyms for the associated byte functions.

Programmers should be aware that both the source and execution character sets may contain
multi-byte characters. The encoding need not be the same, but both must observe the following
rules:

• The characters defined in Section 2.1.2 on page 11, must be present in both codesets.

• The existence, meaning and encoding of any additional members are locale-specific.

• A character may have a state-dependent encoding. Each sequence of characters begins in an
initial shift state and enters other implementation-defined shift states when specific
characters are encountered in the sequence.

• While in the initial shift state, all characters from the basic character set retain their usual
interpretation and do not alter the shift state.

• The interpretation for subsequent bytes in the sequence is a function of the current shift state.

• A byte with all bits zero is interpreted as a null character, independent of shift state.

• A byte with all bits zero must not occur in the second or subsequent bytes of a multi-byte
character.

A source character set must also observe the following:

• A comment, string literal, character constant or header name must begin and end in the
initial shift state.

• A comment, string literal, character constant or header name must consist of a sequence of
valid multi-byte characters.

2.1.4 Trigraphs

X/Open C Language compilers also support trigraph sequences. These are designed to allow
users to input the full range of basic characters even if their keyboards do not support the full
source character set. The following trigraph sequences are currently defined, each of which is
replaced by the corresponding single character:

trigraph sequence single character

??= #
??([
??/ \
??)]
??’ ˆ
??< {
??! |
??> }
??- ˜

12 X/Open Guide (1993)

Developing Internationalised Software Character Sets

2.1.5 Classification

Another feature of program operation that is dependent on the codeset is character classification;
that is, determining whether a particular character code refers to an upper-case alphabetic,
lower-case alphabetic, digit, punctuation, control or space character.

In the past, many programs classified characters according to whether the character’s value fell
between certain numerical limits. For example:

if (c >= ’A’ && c <= ’Z’)

tests for all upper-case characters. This statement is perfectly valid in the ASCII world, where all
upper-case letters have values in the range 0x41 to 0x5a (A-Z). However, it is not valid in the
ISO 8859-1: 1987 standard world for example, where upper-case letters occupy the ranges 0x41
to 0x5a, 0xc0 to 0xd6, and 0xd8 to 0xdf. In EBCDIC, character values are different again, and in
this case even the upper-case English letters have a different encoding.

In internationalised software, all character classification should be done by calling the
appropriate internationalisation function, for example:

if(iswupper(c))

These functions classify wide character code values according to type information in the
program’s locale, and thus are independent of the language and codeset. The character
classification functions currently defined by X/Open are described in Section 4.2 on page 48.

2.1.6 Conversion

Similarly, case conversion of ASCII characters can be done with a statement of the form

a |= 0x20;

which converts the character in a to lower-case. Alternatively,

a &= 0xdf;

converts the character in a to upper-case.

This code is unsafe in internationalised software because:

• It assumes ASCII-coded character values.

• It does not check for valid input.

The correct way to perform these operations is to call

a = towlower(a);

for conversion to lower case, and

a = towupper(a);

for conversion to upper case. Both functions use information defined in the program locale and
are independent of the codeset. They also check that the input is valid, returning the argument
unchanged if it is not. The case conversion functions are described in Section 4.3 on page 51.

Internationalisation Guide Version 2 13

Character Sets Developing Internationalised Software

2.1.7 String Comparison

UNIX systems have always provided functions for comparing character strings, for example:

int strcmp(s1, s2)

which compares strings s1 and s2, returning an integer greater than, equal to or less than zero,
depending on whether s1 is greater than, equal to or less than s2 in the machine collating
sequence.

However, certain languages also require that X/Open systems support multi-pass collation
algorithms,

• for ordering accented characters within a character class (for example, a, á, à, and so on)

• for collating certain n-character sequences as a single character (for example, ch in Spanish
which collates after c and before d)

• for collating certain single characters as a 2-character sequence (for example, a sharp s in
German which collates as ss)

• for ignoring certain characters altogether for collation purposes (for example, hyphens in
dictionary words).

String comparison in an international environment is thus dependent on the codeset and
language, requiring that additional functions be defined that compare strings according to
collating sequence information in the program’s locale.

A number of such functions are defined in the XSH specification, including:

• wcscoll(), which provides similar capability to strcmp(), except that it operates on wide
characters and uses locale-specific collating information

• wcsxfrm(), which transforms a wide-character string using collating sequence information in
the program’s locale such that the resulting string can be compared using the wcscmp()
function

Note, however, that if the two strings are compared only for equality, the function strcmp() or
wcscmp() can still be used, and they are faster in most environments than strcoll() or
wcscoll().

A comprehensive description of these functions, complete with examples, is given in Section 4.4
on page 52.

14 X/Open Guide (1993)

Developing Internationalised Software Cultural Data

2.2 Cultural Data
Cultural data refers to items of information that can vary from one language to another, or
between geographic areas. For example:

• In the U.K. a period is used to represent the radix character in decimal numbers, and a
comma is used as the thousands separator. The same two characters are used in Germany,
but with exactly the opposite meaning. Thus, 2,345.77 in the U.K. is the same as 2.345,77 in
Germany.

• Even in countries where the same language is spoken, conventions for representing certain
cultural data items may vary. In the U.S.A., October 7, 1986 is represented as 10/7/86,
whereas in the U.K. it is represented as 7/10/86.

• As well as year, month and day, separating delimiters may also vary between countries. In
Germany, the above date is represented as 7.10.86.

• Currency symbols vary both in terms of the character or characters used and with regards to
the position these characters occupy within a currency value; that is, they can precede, follow
or appear within the value.

An internationalised program cannot make assumptions about this type of data. Instead, it must
localise its operation according to the language and local customs of each user.

2.2.1 The langinfo Database

X/Open systems define a language information database (langinfo) which contains details of
cultural data items for each supported locale. At least the following data is available on all
X/Open systems:

• codeset name

• date and time formats

• names of the days of the week

• names of the months of the year

• abbreviated day names

• abbreviated month names

• radix character

• thousands separator character

• affirmative and negative responses for yes/no queries

• currency symbol and its position within a currency value

• Emperor/Era name and year.

Internationalisation Guide Version 2 15

Cultural Data Developing Internationalised Software

2.2.2 The nl_langinfo() Function

Cultural data items can be extracted from the language information database by calling the
nl_langinfo () function. This takes an argument item, which is a constant defined in <langinfo.h>,
and returns a pointer to a string containing the associated data.

For example:

nl_langinfo(D_T_FMT);

extracts the string for formatting date and time information.

2.2.3 The strftime() Function

Other, higher level functions are also provided that allow internationalised programs to make
indirect use of the language information database. The strftime() function, for example, allows
applications to generate date and time strings that observe the local customs of the caller.

In the following example, the strftime() function is used to generate a date string as defined by
item D_FMT in the current language information database.

setlocale(LC_ALL, "");

clock = time((long*) NULL);
tm = localtime(&clock);

strftime(buf, size, "%x", tm);
puts(buf);

The buf argument is a pointer to a string, of up to size bytes, in which the date string is returned.
The next argument is a format string containing conversion specifications. In the above example,
%x is replaced in the output string by the locale’s appropriate date representation. Finally, tm is
a pointer to a time structure.

The following example is similar to the previous example. The capability illustrated is how one
might use nl_langinfo () and strftime() in combination:

setlocale(LC_ALL, "");

clock = time((long*) NULL);
tm = localtime(&clock);

strftime(buf, size,
nl_langinfo(D_T_FMT), tm);

puts(buf);

where strftime() is used to generate a date and time string obtained by nl_langinfo () from the
D_T_FMT item in the current locale.

16 X/Open Guide (1993)

Developing Internationalised Software Cultural Data

2.2.4 The strfmon() Function

Similarly, the strfmon() function is provided for the formatting of monetary values, according to
language information in the current locale.

For example:

strfmon(buf, size, "%n", value);

formats the double argument value according to the locale’s national currency format (for
example, $1,234.56).

2.2.5 The localeconv() Function

The localeconv () function is a more primitive interface that provides formatting details of
numeric quantities, monetary or otherwise, sufficient to enable applications to perform their own
conversions.

struct lconv *lconv = localeconv();

returns a pointer to a structure containing separate fields that describe all aspects of number
formatting in the current locale. This information includes:

• radix character

• thousands separator character

• digit grouping size

• international currency symbol

• local currency symbol

• radix character for monetary values

• thousands separator character for monetary values

• digit grouping size for monetary values

• positive sign

• negative sign

• number of fractional digits to be displayed

• monetary symbol placement

• parenthesis symbols for negative-valued monetary quantities.

2.2.6 Other Functions

Various other functions make use of the language information database to determine the setting
of specific items of cultural data. For example, the scanf(), printf() and wcstod() functions use it
to determine the current radix character.

Internationalisation Guide Version 2 17

Language Developing Internationalised Software

2.3 Language
There are various implications for internationalised software with respect to the language of
program messages, text processed by an application, and the presentation of information to a
user.

2.3.1 Messages

As already mentioned, one of the major requirements for internationalisation is that applications
should communicate with users of the system in their own language. This places a number of
constraints on the development of internationalised programs. For example:

• To cater for multi-language operation, program messages should be defined independently
of the program source and should not be compiled into object programs.

• Once extracted, program messages can be translated into different languages and stored in a
form suitable for linkage to the program at run time.

• Programs can then retrieve appropriate message text translations according to the stated
language requirements of each user.

X/Open systems support a native language message system that contains a definition of
message text source files, a command gencat to generate message catalogues, and a set of C
library functions to retrieve individual messages from one or more message catalogues at run
time.

As an example, the following code provides a simple illustration of how message text can be
retrieved by an internationalised program:

#include <stdio.h>
#include <locale.h>
#include <nl_types.h>
#include "prog.h"

main()
{

nl_catd catd;

setlocale(LC_ALL, "");

catd = catopen("prog", NL_CAT_LOCALE);

puts(catgets(catd, SETN,
HELLO_MSG, "hello world"));

catclose(catd);
}

NL_CAT_LOCALE is defined in <nl_types.h>. Note that the catgets() function allows one set of
message localisations to be held with the program source. The constants SETN and
HELLO_MSG are set and message identifiers assumed to be defined in the header prog.h.

18 X/Open Guide (1993)

Developing Internationalised Software Language

The catopen() function opens a message catalogue for use by catgets(). Access to the required
message catalogue is steered by the value of the NLSPATH environment variable, which contains
a search path and templates for locating and naming message catalogues. If this environment
variable does not exist, or if a message catalogue cannot be found a default path is used. The
oflag argument affects the way NLSPATH substitutions for %L, %l, %t and %c are performed (see
Section 3.5.1 on page 33) as follows:

• If oflag equals 0, the setting of the LANG environment variable is used for NLSPATH
substitutions.

• If oflag equals NL_CAT_LOCALE, the setting of the LC_MESSAGES locale category is used
for these substitutions.

In the latter case, setlocale () must be called before catopen() to ensure the locale is initialised
correctly.

The settings of these are used in conjunction with the first argument to catopen() to generate a
message catalogue name. Once opened, individual messages are identified by means of a set
identifier (set_id argument) and a message identifier (msg_id argument).

Features and capabilities of the message system are explained in Chapter 3.

2.3.2 Formatted Output

Not only does internationalised software need to be aware that the language of program
messages may vary, but also that the construction of message strings may be affected by local
customs. For example, the statement,

printf("%s owned by %s\n", s1, s2);

assumes both an English language locale and a particular language construction. Translations
into different languages can be handled by locating the message string in a message catalogue
and reading the required translation at run time, as follows:

printf(catgets(catd, set_id, msg_id,
"%s owned by %s\n"), s1, s2);

However there is still a problem. Suppose that, in certain languages, translation requires the
words pointed to by s1 and s2 to be included in the output string in a different order (that is, s2
then s1). The argument list in the above example imposes a fixed ordering on substitutions in
the output string, which cannot be overcome by the use of message catalogues alone.

To overcome this type of problem, X/Open has extended the definition of printf() format
specifiers such that conversion can be applied to the nth argument in an argument list, rather
than to the next unused argument. In this case, the % conversion character is replaced by the
sequence %digit$, where digit is a decimal value giving the position of the required argument in
the argument list.

Using this feature, localisations of the above format string can be produced for any language and
cultural-data combination. For example,

"%1$s owned by %2$s\n", or
"%2$s owns %1$s\n"

In format strings containing the %digit$ form of a conversion specification, a field width or
precision may be indicated by the sequence *digit$.

Internationalisation Guide Version 2 19

Language Developing Internationalised Software

2.3.3 Formatted Input

Similar facilities are defined for the scanf() family of functions. The conversion character % is
again replaced by the sequence %digit$, where digit is a decimal value giving the position of the
associated argument in the argument list.

For example,

int day, month, year;

scanf(catgets(catd, NL_SETD, MSG_ID,
"%d/%d/%d"),
&month, &day, &year);

where NL_SETD is a default message set number defined in <nl_types.h> and the setting of the
message identified by MSG_ID is:

American English: "%1$d/%2$d/%3$d" (for example, 10/7/89)
British English: "%2$d/%1$d/%3$d" (for example, 7/10/89)
German: "%2$d.%1$d.%3$d" (for example, 7.10.89)

20 X/Open Guide (1993)

Developing Internationalised Software Initialisation

2.4 Initialisation
To recap, Internationalisation is the process of developing software such that it can be adapted
to meet the needs of different languages, cultures and coded character sets. Localisation is the
process of establishing information in the computer system specific to each supported language,
territory and codeset combination.

For an internationalised program to function correctly, the required localisation data must
therefore be bound to its operational environment at run time. On X/Open systems, this is
achieved by calling the setlocale () function as follows,

setlocale(category, locale)

where category names all or part of the program locale, and locale specifies the required locale
name.

2.4.1 General Locale Setting

The announcement mechanism defines a set of reserved environment variables in which users
can identify their localisation requirements. This is done by assigning a locale name to the
appropriate environment variable, for example:

LANG=locale-name

Note that settings of locale-name are not fixed by X/Open and may vary from one system to
another.

To initialise its locale from the above, an internationalised application would call setlocale () as
follows:

setlocale(LC_ALL, "");

The empty string in the second argument instructs setlocale () to initialise the program’s locale
from the current settings of the international environment variables. The constant LC_ALL
names the entire locale (see Section 4.1 on page 42).

2.4.2 Internal Locale Settings

Alternatively, programs may want to prompt the user for a locale name directly, or allow users
to change localisation data in mid-program. In this case, the locale can be initialised or
reinitialised by calling setlocale () as follows:

nl_catd catd;
char buf[BUFSIZ];

setlocale(LC_ALL, "");
catd = catopen(NAME, NL_CAT_LOCALE);

printf(catgets(catd, NL_SETD, MSG,
"Give locale-name: "));

gets(buf);

setlocale(LC_ALL, buf);

In this example the second argument contains the locale-name directly. NAME and MSG are
constants assumed to be defined elsewhere in the program.

Note: The important thing for programmers to remember is that setlocale () is the only means
by which localisation data is bound to the program locale. Thus, internationalised

Internationalisation Guide Version 2 21

Initialisation Developing Internationalised Software

programs do not function correctly, in terms of language, territory and codeset
operation, until setlocale () has been called successfully.

22 X/Open Guide (1993)

Chapter 3

The Message System

This chapter explains the facilities offered by the X/Open Message System. This is done by
describing the actions that need to be taken to internationalise a non-trivial application,
including:

• message extraction

• message translation

• generating message catalogues

• message catalogue access

• reading program messages.

The application used to illustrate this process is a simple database program, comprising several
source modules and a menu-driven front end. The application makes extensive use of the curses
library package and is designed to operate with character-based terminals.

Before describing functional capabilities of the message system however, it is first necessary for
readers to understand the syntax and semantics of message text source files.

Internationalisation Guide Version 2 23

Message Text Source Files The Message System

3.1 Message Text Source Files
A message text source file is made up of a series of numbered messages and numbered message
sets, containing native language translations of the message text associated with an application.
Each localisation of message text is normally held in a separate source file.

3.1.1 General

The fields of a message text source line are separated by a single space or tab character, as
defined by the source codeset. Any other space or tab characters are considered to be part of the
subsequent field, although use of the quote directive may modify this rule.

Empty lines in a message text source file are ignored. The effects of lines starting with an invalid
character are implementation-defined.

Text strings can contain ordinary characters, and the special characters and escape sequences
listed in the following table:

Description Symbol Sequence
newline NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
bit pattern ddd \ddd

The escape sequence \ddd consists of backslash followed by one, two or three octal digits,
which are taken to specify the value of the desired character. If the character following a
backslash is not one of those specified, the backslash is ignored.

Backslash followed by a newline character is also used to continue a string on the following line,
for example:

1 This line continues \
to the next line

describes a single message equivalent to,

1 This line continues to the next line

3.1.2 The set Directive

$set n comment

This directive specifies the set identifier of subsequent messages until another $set, $delset or
end-of-file appears. The n denotes the set identifier, which is a number in the range [1-
{NL_SETMAX}] (defined in <limits.h>. Set identifiers must be presented in ascending order
within a single source file but need not be contiguous. Any characters following n are treated as
a comment.

If no set directive is specified in a source file, all messages are assigned to a default message set.
The identifier of the default message set is defined by the constant NL_SETD in the header
<nl_types.h>.

24 X/Open Guide (1993)

The Message System Message Text Source Files

The set mechanism is provided to aid the development of large, multi-module applications. A
common use is to assign a set identifier for each source module, thus allowing message numbers
in each module to run consecutively from the first. This reduces the amount of time and effort
required to administer the allocation of message numbers.

3.1.3 The delset Directive

$delset n comment

This directive causes message set n to be deleted from an existing message catalogue. The n
denotes the set identifier and is a number in the range [1-{NL_SETMAX}]. Any string following
the set number is treated as a comment.

3.1.4 Message Directives

m message-text

The m denotes the message identifier and is a number in the range [1-{NL_MSGMAX}]. The
message-text is stored in a message catalogue with the set identifier specified by the last $set
directive, or with set identifier NL_SETD if none has been specified, message number m.

If message-text is empty, and a space or tab field separator is present, an empty string is stored in
the message catalogue. If message-text is empty and m is not followed by a space or tab character,
the existing message with that number (if any) is deleted from an existing message catalogue.

Message identifiers must be presented in ascending order within a single source file but need not
be contiguous. The total length of message-text must not exceed {NL_TEXTMAX} bytes.

3.1.5 Comments

$ comment

A line beginning with $, followed by a space or tab character, is treated as a comment. No
further interpretation of the line takes place.

3.1.6 Quoting

$quote c

This directive allows a quote character to be specified, which can be used to surround message-
text so that trailing spaces or empty (null) strings are visible in a message text source file.

By default, or if an empty $quote directive is specified, no quoting of message-text is recognised.

Internationalisation Guide Version 2 25

Programming Using Message Files The Message System

3.2 Programming Using Message Files
The first action a programmer should perform is to identify all string literals in the program
source that are in some way language-specific. These should be moved from the program
source to a message text source file, where they can be edited or translated to different
languages.

Some implementations may provide tools to assist in this process, although no such tools are
currently defined by X/Open. This section describes how to build message text source files
manually. It is applicable to both the development of new applications and to the
internationalising of existing applications.

3.2.1 Example of Program Referencing Separate Texts

The example database application using the curses library contains numerous messages that are
displayed on the user’s terminal, depending on the current state of operation. In particular, the
main program loop contains code that displays a top-level menu:

clear();

standout();
printw("\t\t Inquire, Update, Add");
printw(" \t\t");
standend();

printw("\n\n\n\n");
printw("\t\t\t 1 - Add Record\n");
printw("\t\t\t 2 - Select Record\n");
printw("\t\t\t 3 - Search by Record\n");
printw("\t\t\t 4 - Search by Field\n");
printw("\t\t\t 5 - Sort by Record\n");
printw("\t\t\t 6 - Read TEXT File\n");
printw("\t\t\t 7 - Define Screens\n");
printw("\t\t\t 8 - Define Formulae\n");
printw("\t\t\t 9 - Recalculate\n");
printw("\t\t\t ! - Execute command\n");
printw("\t\t\t X - Quit\n\n");
printw("\t\t\t > Enter Selection ");
refresh();

As can be seen, the program first clears the screen, displays a screen title in standout mode, and
then builds the menu via calls to the printw() function. Each call to printw() includes a format
string containing control characters, for placing the text, and ordinary characters making up the
message.

To internationalise this code, the programmer must at least separate out the message text. The
programmer could move the entire format string to a message catalogue, but as the control
characters are unlikely to vary from one language to another, this might be wasteful.

26 X/Open Guide (1993)

The Message System Programming Using Message Files

3.2.2 Example of Related Texts (English Version)

Continuing with the database example, the programmer chose to extract only message text from
the program source, giving rise to the following message text source file:

$ English message localisation

$quote "

$set 1
1 "Inquire, Update, Add "
2 "Add Record"
3 "Select Record"
4 "Search by Record"
5 "Search by Field"
6 "Sort by Record"
7 "Read File"
8 "Define Screens"
9 "Define Formulae"
10 "Recalculate"
11 "Execute command"
12 "Quit"
13 "Enter Selection "
14 "Database Name: "
15 "Filename: "
16 "Command: "
17 "[Hit any key to continue]"
18 "Sorting, please wait ..."
19 "File %s locked, please try later ..."

$set 2
1 "Record Number: "

$set 3
1 " U - Update, ENTER - Select Next, \
BREAK - Return"
2 "Insert record? "
3 "Delete record? "

$set 4
1 "Record number: "
2 "Selector: "
3 "Defined Fields"
4 "Field number: "
5 "Selector: "

Internationalisation Guide Version 2 27

Programming Using Message Files The Message System

There are a number of things worth noting about this example:

• The $quote directive has been used to declare double-quote marks as the quoting character.
Thus all subsequent messages are delimited explicitly. This was deemed necessary in this
case as some messages contain trailing blanks (for example, messages 1, 14, 15 and 16 in set
number 1), which the programmer required to be visible in the source file.

• Multiple sets have been used, one per source file. (Note that no fixed usage of the set
mechanism is defined by X/Open.)

• In message lines, the field separator between the message number and message text is a
single tab character, not multiple spaces.

• A backslash (\) at the end of line 1, set 3, has been used to continue the message on another
line.

3.2.3 Editing Message Files

Message text source files can be edited using any text editor, provided that:

• The input device is capable of generating the necessary characters.

• If 8-bit or multi-byte characters are required, the editor is capable of transparently handling
this data.

The XPG4 base specifications define that ed, ex and vi satisfy the second of these requirements,
although it should be remembered that ex and vi may not be available to users working on
synchronous or network-connected terminals.

28 X/Open Guide (1993)

The Message System Message Translation

3.3 Message Translation
Once message text has been separated from the program source, it can be translated into
different language and codeset combinations. For example, the following is a German language
translation of message text for the database program:

$ German message localisation

$quote "

$set 1
1 "Suchen, Aktualisieren, Neuaufnehmen"
2 "Satz neuaufnehmen"
3 "Satz auswa

..
hlen"

4 "nach Satz suchen"
5 "nach Feld suchen"
6 "Sa

..
tze sortieren"

7 "Datei einlesen"
8 "Bildschirm definieren"
9 "Formel definieren"
10 "Neu berechnen"
11 "Kommando ausfu

..
hren"

12 "Beenden"
13 "Auswahl angeben "
14 "Name der Datenbasis: "
15 "Name der Datei: "
16 "Kommando: "
17 "[um weiterzumachen, dru

..
cken Sie Bitte \

irgendeine Taste ...]"
18 "Ein bischen Geduld, es wird sortiert ..."
19 "Die Datei %s ist gelockt, \
versuchen Sie spa

..
ter ..."

$set 2
1 "Nummer des Satzes: "

$set 3
1 " U - Aktualisieren, \
ENTER - na

..
chste Auswahl, \

BREAK - Ru
..

ckkehr"
2 "Satz einfu

..
gen? "

3 "Satz lo
..

schen? "

$set 4
1 "Satznummer: "
2 "Auswahlkriterium: "
3 "Definierte Felder"
4 "Feldnummer: "
5 "Auswahlkriterium: "

This source should be located in a different file from the original English text, and ultimately is
compiled into a message catalogue associated with one or more German-language locales.

Internationalisation Guide Version 2 29

Message Translation The Message System

The following is a French language translation of message text for the database program:

$ French message localisation

$quote "

$set 1
1 "Recherche, Mise a ` jour, Ajout "
2 "Ajout d’un enregistrement"
3 "Choix d’un enregistrement"
4 "Recherche par enregistrement"
5 "Recherche par zone"
6 "Tri par enregistrement"
7 "Lecture du fichier"
8 "Définition d’e ćrans"
9 "Définition de formules"
10 "Recalcul"
11 "Exe ćution d’une commande"
12 "Fin"
13 "Votre choix "
14 "Nom de la base de donne és : "
15 "Nom du fichier : "
16 "Commande : "
17 "[Pressez une touche quelconque, \
pour continuer]"
18 "Tri en cours, attendez SVP ..."
19 "Le fichier %s est bloque ,́ \
essayez plus tard ..."

$set 2
1 "Numéro de l’enre ǵistrement : "

$set 3
1 " U - Mise a ` jour, \
ENTER - Choix du suivant, \
BREAK - Retour"
2 "Désirez-vous inse ŕer l’enregistrement ? "
3 "Désirez-vous supprimer l’enregistrement ? "

$set 4
1 "Numéro de l’enregistrement : "
2 "Crite r̀e de se ĺection : "
3 "Champs définis"
4 "Numéro de zone : "
5 "Crite r̀e de se ĺection : "

30 X/Open Guide (1993)

The Message System Generating Message Catalogues

3.4 Generating Message Catalogues
A message catalogue is a file or storage area containing program messages, command prompts
and responses to prompts, one per supported language, territory and codeset combination. A
message catalogue is thus an example of localisation data.

The location and format of message catalogues is implementation-defined. Generically they are
direct access storage areas, individual elements of which (messages) are indexed by set and
message number.

Message catalogues are created using the gencat command, which takes one or more message
text source files and produces or modifies a message catalogue.

3.4.1 The gencat Command

gencat catfile msgfile ...

The gencat command merges the message text source file or files msgfile into the message
catalogue identified by catfile. The file catfile is created if it does not already exist. Otherwise, if it
does exist, its messages are included in the new catfile. If set and message numbers collide, the
message text defined in msgfile replaces existing message text currently contained in catfile.

For example, the command to compile the three message text source files for the database
application is:

gencat /nlslib/english/prog.cat english/prog.msg
gencat /nlslib/german/prog.cat german/prog.msg
gencat /nlslib/french/prog.cat french/prog.msg

Note that the location of message catalogues, and conventions for naming them, are not defined
by X/Open. The names used above are specific to a particular implementation and vary from
system to system.

3.4.2 Multiple Source Files

The multiple source file capability of gencat allows message catalogues to be created from a
related set of message text source files. For example, instead of locating all the messages for our
database application in one source file, we could have used one file per message set. This can be
useful when more than one programmer is working on a development.

To process multiple source files, use a command of the form:

gencat /nlslib/german/prog.cat german/*.msg

where *.msg expands into a list of file names.

3.4.3 Changing an Existing Message Catalogue

Another feature of gencat is that it can be used to modify an existing message catalogue. For
example, if we wanted to delete message set number 4 from one of our database message
catalogues:

gencat /nlslib/german/prog.cat /dev/tty
$delset 4
<EOF>

Considerable caution needs to be exercised when using this feature as the original version of the
message catalogue is lost.

Internationalisation Guide Version 2 31

Generating Message Catalogues The Message System

A more practical use of the facility is that it allows individual program messages to be updated
on site. For certain types of application, this can provide a useful aid to system administration.

3.4.4 Portability

It should be noted that message catalogues produced by gencat are binary encoded and may not
be portable between different types of systems. Message text source files should be portable,
provided the X/Open recommendations for text transmission are followed.

32 X/Open Guide (1993)

The Message System Message Catalogue Access

3.5 Message Catalogue Access
Message catalogues are opened ready for use by calling the catopen() function, which locates the
identified message catalogue according to search and naming rules defined in the NLSPATH
environment variable.

3.5.1 NLSPATH

The names associated with message catalogues, and their location in file store, can vary from
one system to another. Filename affixes are not standardised, and individual applications can
choose catalogue names suited to their own specific needs. For example:

• Standard commands and utilities
Message catalogues for these are probably located in a well-known system directory, one per
supported locale (for example, in:

/<path-prefix>/<locale-name>/*.cat

where * is the command name).

• Applications
The above structure may be inconvenient for applications, not least because there are no
standards in this area. Instead, it may be easier for an application to locate its message
catalogues in a single directory, with one message catalogue for each supported locale, for
example:

/<path-prefix>/progname/<locale-name>

Recognising both these requirements, X/Open defines an environment variable NLSPATH,
which gives both the location of message catalogues, in the form of a search path, and naming
conventions associated with message catalogue files.

NLSPATH contains a sequence of templates which the catopen() function uses when opening a
message catalogue. Each template consists of an optional prefix, one or more substitution fields,
a filename, and an optional suffix.

For example:

NLSPATH=/system/nlslib/%N.cat

defines that catopen() should look for all message catalogues in the directory /system/nlslib,
where the catalogue name should be constructed from the name argument passed to catopen(),
with suffix .cat.

Substitution fields consist of a % symbol, followed by a single letter keyword. The following
keywords are currently defined:

Key Meaning
The value of the name argument passed to catopen()%N
The value of the LC_MESSAGES category or LANG environment variable.%L
The language element from the LC_MESSAGES category or LANG environment
variable.

%l

The territory element from the LC_MESSAGES category or LANG environment
variable.

%t

The codeset element from the LC_MESSAGES category or LANG environment
variable.

%c

%% A single % character

Internationalisation Guide Version 2 33

Message Catalogue Access The Message System

If the substitution value is not defined in the caller’s environment (see Chapter 5 on page 87), an
empty string is substituted. The field separator characters _ (underscore) and . (period) are not
included in %t and %c substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading colon or two adjacent
colons (::) is equivalent to specifying %N. For example:

NLSPATH=:%N.cat:/nlslib/%L/%N.cat

indicates that catopen() should search in

• name

• name.cat

• /nlslib/<category>/name.cat

NLSPATH is normally set up on a system-wide basis and should not need to be altered by users.
Application developers need to be aware that they may have to add templates if private naming
conventions are employed.

3.5.2 The catopen() Function

The catopen() function and the type nl_catd are defined in the header <nl_types.h>.

nl_catd catopen(const char * name, int oflag);

If successful, catopen() opens the message catalogue identified by the name argument and returns
a valid message catalogue descriptor. This is passed as an argument to subsequent calls of
catgets() and catclose ().

If name contains a slash (/) character, it is assumed to contain a complete message catalogue
name. Otherwise, NLSPATH is used with name substituted for %N. If NLSPATH is not defined
in the environment, or if a message catalogue cannot be opened in any of the specified elements,
an implementation-defined default path may be used.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalogue without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalogue.

The catopen() function should be called immediately after having initialised the program locale.
Until a message catalogue has been attached to the locale, program messages continue to be
produced in the default language of the program (if any).

Programmers should note that a successful call to catopen() may result in the allocation of a file
descriptor. This is taken from the pool of file descriptors available to the process and may have
implications for other aspects of program operation. It also means that catopen() may fail if
{OPEN_MAX} file descriptors are already allocated to the process.

How to use catopen() is largely a matter of personal preference, although one common usage is
to pass the program name given in the argument list as the name argument:

catd = catopen(argv[0], NL_CAT_LOCALE);

although some caution is needed when doing this. The value pointed to by argv[0] normally
contains a filename, but may contain a pathname complete with path-prefix.

34 X/Open Guide (1993)

The Message System Message Catalogue Access

If a call to catopen() is unsuccessful, the value (nl_catd)−1 is returned. Applications may choose
to ignore this condition and allow processing to continue in the default language. In any event,
terminating the program is problematic, as it is not apparent how to inform the user of the
failure, given that message translations into the user’s native language have not been attached to
the program’s locale.

3.5.3 The catclose() Function

This function and the type nl_catd are defined in the header <nl_types.h>.

int catclose(nl_catd catd);

The catclose function closes the message catalogue identified by catd. If a file descriptor is
associated with an underlying catalogue file, this is also closed.

Open message catalogues are also closed by the exit() function when a process terminates.

Internationalisation Guide Version 2 35

Reading Program Messages The Message System

3.6 Reading Program Messages
So far we have seen how to extract messages from the program source, how to generate message
catalogues, and how to locate and open a message catalogue ready for use. All that remains is to
describe how individual messages are read into a program.

3.6.1 The catgets() Function

This function and the type nl_catd are defined in the header <nl_types.h>.

char *catgets(nl_catd catd , int set_id , int msg_id , const char * s);

The catgets() function attempts to read message msg_id, from set set_id, in the message catalogue
identified by catd.

The catd argument is a message catalogue descriptor returned by a previous call to catopen().
The set_id and msg_id are integer values giving the set number and message number respectively
of the required program message. The s argument is a pointer to a default message string.

If the call is successful, catgets() returns a pointer to the null terminated message string. If the
call is unsuccessful for any reason, s is returned. This provides a mechanism whereby one set of
localisation data can be held with the program source, thus allowing the program to operate
meaningfully even if locale-specific message text is not defined.

One thing that programmers need to be wary of is that, if successful, catgets() reads the message
string into an internal buffer area. This area may be overwritten by subsequent calls to catgets().
If it is required to reuse a message, and there are intervening calls to catgets(), the string should
be preserved by moving it to another location.

The set_id and msg_id are defined as integer values for maximum portability. However,
programmers are recommended to use named constants to identify messages rather than having
integer values hardcoded into source programs, particularly in cases where a message is used
from different places in the program, for example:

$ cat prog.h
#define HELLO_MSG 1
...
#define TERM_MSG 42

$ cat prog.c
#include <stdio.h>
#include <locale.h>
#include <nl_types.h>
#include "prog.h"

main()
{

nl_catd catd;

setlocale(LC_ALL, "");

catd = catopen("prog", NL_CAT_LOCALE);

36 X/Open Guide (1993)

The Message System Reading Program Messages

puts(
catgets(catd, NL_SETD, HELLO_MSG,

"signing on - continue"));

...

puts(
catgets(catd, NL_SETD, TERM_MSG,

"signing off - terminate"));

exit(0);
}

The constant NL_SETD is defined in <nl_types.h> and gives the system’s default set number.

3.6.2 Further Examples

The database application code presented in Section 3.2 on page 26 after internationalisation is as
follows:

setlocale(LC_ALL, "");
catopen("prog", NL_CAT_LOCALE);

clear();

standout();
printw("\t\t %s",

catgets(catd, MSET, TITLE,
"Inquire, Update, Add "));

printw(" \t\t");
standend();

printw("\n\n\n\n");
printw("\t\t\t 1 - %s\n",

catgets(catd, MSET, ITEM1, "Add Record"));
printw("\t\t\t 2 - %s\n",

catgets(catd, MSET, ITEM2, "Select Record"));
printw("\t\t\t 3 - %s\n",

catgets(catd, MSET, ITEM3, "Search by Record"));

...

printw("\t\t\t > %s",
catgets(catd, MSET, ITEM12, "Enter Selection "));

Note that all the string literals have been embodied in calls to catgets(). This allows the English
translation to be held with the program source, thus making it unnecessary to provide a message
catalogue in English-language locales.

The default localisation does not have to be in English. However, it is worth bearing in mind
that accented characters, for example, are not defined in the base character set and may not be
supported on all implementations. Thus if any characters from the extended character set are
used in string literals, the code may not be portable to all X/Open systems.

Internationalisation Guide Version 2 37

Reading Program Messages The Message System

3.6.3 Performance

Another area that should be considered is program performance. Having to fetch character
strings from a message catalogue is likely to be slower than having them defined as in-code
literals. Programmers should weigh possible performance degradations that might result
against the added usability that message localisation brings to an application.

In the preceding example, thirteen separate calls to catgets() are required to build the menu
screen. This was measured and, although slower than using literals, was still found to be
acceptable in performance terms. Had this not been the case, an alternative implementation
could have been to load the message translations into a static array and use this in the above
loop rather than going to the message catalogue every time. For example:

char *msgs [MAX_ITEM];

for(i = ITEM1; i <= ITEM12; ++i)
if((s = catgets(catd, MSET, i, NULL)) != NULL) {

if((msgs[i] = malloc(strlen(s)+1)) != NULL)
strcpy(msgs[i], s);

} else
msgs[i] = NULL;

...

would require changes in the main loop of the program as follows:

...
printw("\n\n\n\n");
printw("\t\t\t 1 - %s\n",

(msgs[ITEM1] ? msgs[ITEM1] : "Add Record"));
printw("\t\t\t 2 - %s\n",

(msgs[ITEM2] ? msgs[ITEM2] : "Select Record"));
...

It is also worth remembering that if message catalogues are implemented using file descriptors,
it is highly probable that some form of buffer caching is done by the operating system kernel.
This may reduce the number of I/O operations required, depending on how the message
catalogue is accessed. Also some implementations provide further caching within the message
catalogue.

38 X/Open Guide (1993)

Chapter 4

Internationalisation Support Interfaces

This chapter describes the functions that provide internationalisation support in XPG4 systems.
They are grouped into:

• locale initialisation
• character classification
• case conversion
• character collation
• language information
• date and time
• printing
• scanning
• number conversion
• ISO C multi-byte functions
• I/O
• string handling
• error handling
• codeset conversion.

The ISO C standard includes a number of library functions that have been defined to operate in
an international environment. The XSH specification includes the following functions from the
ISO C standard:

ISO C Compatible Functions
atof () perror()†
fprintf ()† printf()†
fscanf()† scanf()†
isalnum() setlocale ()
isalpha () sprintf()†
iscntrl() sscanf()†
isdigit () strcoll()
isgraph() strerror()
islower() strftime()
isprint() strtod()
ispunct() strxfrm()
isspace() tolower()
isupper() toupper()
isxdigit () vfprintf ()†
localeconv () vprintf()†
mblen() vsprintf()†
mbstowcs() wcstombs()
mbtowc() wctomb()

Items marked with a dagger (†) in the above list have been enhanced by X/Open.

Internationalisation Guide Version 2 39

Internationalisation Support Interfaces

In addition, X/Open defines functions for compiling and matching internationalised regular
expressions (see Chapter 5), native language message handling functions (see Chapter 3),
codeset conversion functions (see Section 4.14 on page 83), functions for processing locale-
dependent date and time strings (see Section 4.6 on page 62), a function for converting monetary
values to strings (see Section 4.5 on page 56), and a function for reading the current setting of
cultural data items (see Section 4.5 on page 56).

X/Open Additional Functions
catclose () regcomp()
catgets() regerror()
catopen() regexec()
iconv() regfree()
iconv_close () strfmon()
iconv_open () strptime()
nl_langinfo ()

All other functions defined in the XSH specification provide at least single-byte transparency on
all XPG4 systems.

The problem with many of the above interfaces, and other interfaces published in the XSH
specification, is that they are defined to work with byte values, which limits them in terms of
multi-byte codeset support. Ideally, these interfaces should be redefined to work with wide
character types (see Section 1.5 on page 7). However, for reasons of compatibility with earlier
systems, this approach is untenable.

X/Open’s solution to this problem has been to define a parallel set of interfaces, known
collectively as the Worldwide Portability Interfaces (WPI), functionally equivalent to the
standard interfaces but which work on wide character values. The byte versions of these are
retained in the interface definition for backward compatibility, but it is the WPI versions that are
recommended for use by character-based portable applications.

40 X/Open Guide (1993)

Internationalisation Support Interfaces

The following such interfaces are defined in the XPG4 base specifications:

Worldwide Portability Interfaces
fgetwc() wcscat()
fgetws() wcschr()
fputwc() wcscmp()
fputws() wcscoll()
getwc() wcscpy()
getwchar() wcscspn()
iswctype() wcsftime()
iswalnum() wcslen()
iswalpha () wcsncat()
iswcntrl() wcsncmp()
iswdigit () wcsncpy()
iswgraph() wcspbrk()
iswlower() wcsrchr()
iswprint() wcsspn()
iswpunct() wcstod()
iswspace() wcstok()
iswupper() wcstol()
iswxdigit () wcstoul()
putwc() wcswcs()
putwchar() wcswidth()
towlower() wcsxfrm()
towupper() wctype()
ungetwc() wcwidth()

These functions are described in detail in the following sections. For a complete description of all
interfaces, see the XSH specification and the Curses specification.

Internationalisation Guide Version 2 41

Locale Initialisation Internationalisation Support Interfaces

4.1 Locale Initialisation
Localisation data is bound to the locale of an internationalised application by calling the
setlocale () function. This should be the first action performed by such an application and should
be called prior to using any of the internationalisation functions listed above.

4.1.1 The setlocale() Function

This function is defined in the header <locale.h>.

char *setlocale(int category , const char * locale);

The setlocale () function selects the appropriate piece of the program’s locale, as defined by the
setting of category and locale, and can be used to change or query the program’s international
environment. The value LC_ALL for category names the entire locale. Other values name a
specific part of the locale, as follows:

LC_COLLATE refers to collating sequence information and affects the behaviour of
internationalised regular expressions and the string collation functions
described in Section 4.4 on page 52.

LC_CTYPE refers to character type information and affects the behaviour of
internationalised regular expressions, the character classification functions
described in Section 4.2 on page 48, the character conversion functions
described in Section 4.3 on page 51, the wide character conversion functions
described in Section 4.9 on page 72 and Section 4.10 on page 74.

LC_MESSAGES refers to message translations, including yes/no responses required by certain
commands and utilities defined in the XCU specification.

LC_MONETARY refers to monetary formatting information and affects the behaviour of the
strfmon() and localeconv () functions described in Section 4.5 on page 56.

LC_NUMERIC refers to number formatting information and affects the behaviour of the
localeconv () function, the printing functions described in Section 4.7 on page
68 and the scanning functions described in Section 4.8 on page 70.

LC_TIME refers to date and time information and affects the strftime(), wcsftime() and
strptime() functions described in Section 4.6 on page 62.

The nl_langinfo () function can also be used to obtain certain information in the program’s locale;
see Section 4.5 on page 56.

42 X/Open Guide (1993)

Internationalisation Support Interfaces Locale Initialisation

The locale argument is a pointer to a character string containing the required setting of category,
in the form of a locale name. The actual settings of this argument are implementation-defined,
with the exception of the following which are supported on all XPG4 systems:

"POSIX" specifies the minimal environment for C language translation. If setlocale () is not called
by an application, the POSIX locale is applied as a default.

"C" same as "POSIX".

"" specifies that the locale should be initialised from the corresponding environment
variables.

NULL this setting is used to direct setlocale () to query the current locale setting and return its
name to the caller.

If successful, setlocale () returns a pointer to a locale-name string; otherwise it returns a null
pointer. A null pointer for locale causes setlocale () to return a pointer to the locale-name string
associated with category.

The string returned by setlocale () is such that a subsequent call with that string and its associated
category restores that part of the program’s locale. Note that this value may be overwritten by
subsequent calls to setlocale () and should be saved by a program if it is to be reused.

Note: The format of the return string from setlocale () is non-standard across vendors’
platforms and should not be parsed by applications.

4.1.2 Setting the Program Locale

Basically there are two ways to set the program locale using the setlocale () function:

setlocale(category , string)
This usage sets a specific category in the program locale to the value of string, as follows:

setlocale(LC_ALL, "fr_FR.8859");

This example sets all categories of the program locale to localisation data associated
with the specified locale name (fr_FR.8859). Remember, however, that this is only an
example and values of locale name are implementation-defined.

If string does not contain a valid locale name, setlocale () returns a null pointer and the
program locale is not changed. Otherwise, it returns the name of the locale.

This special case sets the minimal environment for C translation and is the one locale
guaranteed to exist on all X/Open systems:

setlocale(category , "C")

setlocale(category , "")
This usage sets category to the setting of the associated international environment
variables. This can be further subdivided as follows:

• setting a specific category from the environment

• setting all categories from the environment

The behaviour of these is described in the following sections.

Internationalisation Guide Version 2 43

Locale Initialisation Internationalisation Support Interfaces

4.1.3 Setting a Specific Category from the Environment

This allows one of LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, or LC_TIME to be set individually, for example:

setlocale(LC_COLLATE, "");

In this case, setlocale () takes the name of the new locale for the specified category from the
environment, as determined by the first condition met below:

i. $LC_ALL is defined in the environment and is not null.

ii. A variable is defined in the environment with the same name as the category (for example,
$LC_COLLATE) and is not null.

iii. $LANG is defined in the environment and is not null.

If the resulting value is a supported locale, setlocale () sets the supplied category to that value and
returns its name. If the value does not name a supported locale (and is not null), setlocale ()
returns a null pointer and the program locale is not changed. Otherwise, the behaviour of
setlocale () is implementation-defined.

4.1.4 Setting all Categories from the Environment

This is similar to the previous usage, except that when $LC_ALL is not defined or is null,
setlocale () examines all the environment variables with the same name as the categories to
determine which values to set in the program locale. In this case, setlocale () is called as follows:

setlocale(LC_ALL, "");

To satisfy this request, setlocale () first checks all the environment variables. If the setting of any
variable is invalid, setlocale () returns a null pointer and the program locale is not changed. If
they are valid, setlocale () proceeds as if it had been called for each category, using the value from
the associated environment variable, or from an implementation-defined default if there is no
such value.

4.1.5 The POSIX Locale

As already mentioned, the POSIX locale is the one locale guaranteed to exist on all X/Open
systems. This is useful for verification purposes or if an application needs to establish operation
in a known environment.

Coded Character Set

Although implementations are free to use any coded character set in the POSIX locale, all
characters defined in the Portable Character Set and the Control Code Character Set must be
supported. These characters are collated in the following order (reading from left to right and
top to bottom):

<NUL> <SOH> <STX> <ETX>
<EOT> <ENQ> <ACK>

44 X/Open Guide (1993)

Internationalisation Support Interfaces Locale Initialisation

<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>

<SO> <SI> <DLE> <DC1>
<DC2> <DC3> <DC4> <NAK>
<SYN> <ETB> <CAN>
<SUB> <ESC> <IS4> <IS3>
<IS2> <IS1>

<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>

<zero> <one> <two> <three>
<four> <five> <six> <seven>
<eight> <nine>

<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>

<A> <C> <D>
<E> <F> <G> <H>
<I> <J> <K> <L>
<M> <N> <O> <P>
<Q> <R> <S> <T>
<U> <V> <W> <X>
<Y> <Z>

Internationalisation Guide Version 2 45

Locale Initialisation Internationalisation Support Interfaces

<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underline>
<grave-accent>

<a> <c> <d>
<e> <f> <g> <h>
<i> <j> <k> <l>
<m> <n> <o> <p>
<q> <r> <s> <t>
<u> <v> <w> <x>
<y> <z>

<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

No equivalence classes, N-to-1, 1-to-2 or don’t-care character mappings are defined in this locale.

46 X/Open Guide (1993)

Internationalisation Support Interfaces Locale Initialisation

Cultural Data

The following items of cultural data are defined in the POSIX locale:

LC_TIME
abday "Sun";"Mon";"Tue";"Wed";"Thu";"Fri";"Sat"
day "Sunday";"Monday";"Tuesday";"Wednesday";"Thursday";\

"Friday";"Saturday"
abmon "Jan";"Feb";"Mar";"Apr";"May";"Jun";"Jul";"Aug";"Sep";\

"Oct";"Nov";"Dec"
mon "January";"February";"March";"April";"May";"June";"July";\

"August";"September ";"October";"November";"December"
d_t_fmt "%a %b %d %H:%M:%S %Y"
d_fmt "%m/%d/%y"
t_fmt "%H:%M:%S"
am_pm "AM";"PM"
t_fmt_ampm "%I:%M:%S %p"
END LC_TIME

LC_MONETARY
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
LC_MONETARY

LC_NUMERIC
decimal_point "<period>"
thousands_sep ""
grouping -1
END LC_NUMERIC

LC_MESSAGES
yesexpr "ˆ[yY]"
noexpr "ˆ[nN]"
yesstr "yes"
nostr "no"
END LC_MESSAGES

Note that date and time settings are defined in terms of strftime() format strings.

Language

No specific language is defined, meaning that program messages are produced in the original
language of the program.

Internationalisation Guide Version 2 47

Character Classification Internationalisation Support Interfaces

4.2 Character Classification
Character classification is provided by an internationalised version of the character classification
functions defined in <ctype.h>. These classify wide character values according to the rules of the
coded character set defined by type information in the program’s locale (category LC_CTYPE).
Each function returns non-zero for true, zero for false.

It is important to appreciate what is meant by locale-specific character classification. For
example, in an English language locale supporting the ASCII codeset, only the characters a-z and
A-Z would be classified as alphabetic. In a Japanese locale, alphabetics may also include multi-
byte characters.

These functions are defined in the header <wchar.h>.

4.2.1 The iswalnum() Function

int iswalnum(wint_t wc);

This function tests whether wc is an alphanumeric wide-character code. It returns non-zero if wc
is an alphanumeric wide-character code, that is if iswalpha () or iswdigit () would return non-zero.
Otherwise it returns non-zero.

4.2.2 The iswalpha() Function

int iswalpha(wint_t wc);

This function tests whether wc is an alphabetic wide-character code. It returns non-zero if wc is
an alphabetic wide-character code. The characters that are classified as either upper-case (that is
iswupper() returns non-zero) or lower-case (that is iswlower() returns non-zero) are automatically
classified as alphabetic (iswalpha () returns non-zero). It is worth noting that there are characters
which should be classified as alphabetic but have no difference between upper- and lower-case.
Otherwise it returns zero.

4.2.3 The iswcntrl() Function

int iswcntrl(wint_t wc);

The iswcntrl() function tests whether wc is a control wide-character code. It returns non-zero if
wc is a control wide-character code (for example, character codes 0-31 and 127 in a locale that
supports the ASCII codeset). Otherwise it returns zero.

4.2.4 The iswdigit() Function

int iswdigit(wint_t wc);

The iswdigit () function tests whether wc is a decimal digit wide-character code in the portable
character set; that is, one of the characters

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The iswdigit () function returns non-zero if wc is a decimal digit wide-character code. Otherwise
it returns zero.

48 X/Open Guide (1993)

Internationalisation Support Interfaces Character Classification

4.2.5 The iswgraph() Function

int iswgraph(wint_t wc);

This function tests whether wc is a graphic wide-character code. It returns non-zero if wc is a
wide-character code with a visible representation. Otherwise it returns zero.

4.2.6 The iswlower() Function

int iswlower(wint_t wc);

The iswlower() function tests whether wc is a lower-case letter wide-character code (for example,
character codes 97-122 in a locale that supports the ASCII codeset). It returns non-zero if wc is a
lower-case letter wide-character code. Otherwise it returns zero.

4.2.7 The iswprint() Function

int iswprint(wint_t wc);

This function tests whether wc is a printing wide-character code. It returns non-zero if wc is a
printing wide-character code. Otherwise it returns zero.

The difference between this function and iswgraph() is that iswprint() also returns non-zero if wc
is a space wide-character code. The iswgraph() function would return zero in this case.

4.2.8 The iswpunct() Function

int iswpunct(wint_t wc);

This function tests whether wc is a punctuation wide-character code (for example, character
codes 33-47, 58-64, 91-96 and 123-126 in a locale that supports the ASCII codeset). It returns
non-zero if wc is a punctuation wide-character code. Otherwise it returns zero.

4.2.9 The iswspace() Function

int iswspace(wint_t wc);

This function tests if wc is a wide-character code causing white space in displayed text (for
example, space, tab, carriage return, newline, vertical tab or form feed in a locale that supports
the ASCII codeset). It returns non-zero if wc is a white-space wide-character code. Otherwise it
returns zero.

4.2.10 The iswupper() Function

int iswupper(wint_t wc);

This function tests whether wc is an upper-case wide-character code (for example, character
codes 65-90 in a locale that supports the ASCII codeset). It returns non-zero if wc is an upper-
case wide-character code. Otherwise it returns zero.

Internationalisation Guide Version 2 49

Character Classification Internationalisation Support Interfaces

4.2.11 The iswxdigit() Function

int iswxdigit(wint_t wc);

The iswxdigit () function tests whether wc is a hexadecimal digit wide-character code in the
portable character set; that is, one of the characters:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

or

a, b, c, d, e, f

or

A, B, C, D, E, F

The iswxdigit () function returns non-zero if wc is a hexadecimal digit wide-character code.
Otherwise it returns zero.

4.2.12 The iswctype() Function

int iswctype(wint_t wc, wctype_t charclass);

This function determines whether the wide-character wc has the property charclass, returning
zero (false) or non-zero (true). Thus in the table below, the functions in the left column are
equivalent to the functions in the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))
iswalpha(wc) iswctype(wc, wctype("alpha"))
iswcntrl(wc) iswctype(wc, wctype("cntrl"))
iswdigit(wc) iswctype(wc, wctype("digit"))
iswgraph(wc) iswctype(wc, wctype("graph"))
iswlower(wc) iswctype(wc, wctype("lower"))
iswprint(wc) iswctype(wc, wctype("print"))
iswpunct(wc) iswctype(wc, wctype("punct"))
iswspace(wc) iswctype(wc, wctype("space"))
iswupper(wc) iswctype(wc, wctype("upper"))
iswxdigit(wc) iswctype(wc, wctype("xdigit"))

Note: The "blank" property is defined in XPG4, but there is no iswblank() function. Thus,
iswctype() has to be used to test for the "blank" property.

4.2.13 The wctype() Function

wctype_t wctype(const char * charclass);

This function returns a value that can be passed as the second argument in a call to iswctype().
The values are defined in the LC_CTYPE category. It is a generic function, where charclass is a
string identifying the character class for which locale-specific type information is required.

50 X/Open Guide (1993)

Internationalisation Support Interfaces Case Conversion

4.3 Case Conversion
Case conversion facilities are provided by internationalised versions of the case conversion
functions defined in <ctype.h>. These provide case conversion according to shift information
defined in the program’s locale (category LC_CTYPE).

Note that character classes upper and lower are specific to certain alphabets and general use of
these in internationalised software is discouraged. When they are used, programs continue to
work in all locales but case conversion may be a null function.

All the functions described in this section, the constant WEOF and the data type wint_t are
defined in the header <wchar.h>.

4.3.1 The towlower() Function

wint_t towlower(wint_t wc);

This function takes a wint_t data item as its argument, the value of which is representable as a
wchar_t, and must be a wide-character code corresponding to a valid character in the current
locale or the constant WEOF. If there is a lower-case wide-character code mapping for wc in the
program’s locale, towlower() returns the mapped value. Otherwise it returns the value
unchanged.

4.3.2 The towupper() Function

wint_t towupper(wint_t wc);

This function takes a wint_t data item as its argument, the value of which is representable as a
wchar_t, and must be a wide-character code corresponding to a valid character in the current
locale or the constant WEOF. If there is an upper-case wide-character code mapping for wc in the
program’s locale, towupper() returns the mapped value. Otherwise it returns the value
unchanged.

Internationalisation Guide Version 2 51

Character Collation Internationalisation Support Interfaces

4.4 Character Collation
Two functions are provided for comparing wide-character strings using collating sequence
information in the program’s locale (category LC_COLLATE). The wcscoll() function obeys the
LC_COLLATE category, whereas wcscmp() does not. The function wcsxfrm() allows wide-
character strings to be transformed such that they can be compared using the wcscmp() function.

4.4.1 The wcscoll() Function

This function is declared in the header <wchar.h>.

int wcscoll(const wchar_t * ws1, const wchar_t * ws2);

This function compares the wide-character strings pointed to by ws1 and ws2 using collating
sequence information in the current locale. The wcscoll() function returns a value greater than 0
if ws1 collates after ws2, zero if the two wide-character strings are equal, or a value less than 0 if
ws1 collates before ws2.

On error, wcscoll() sets errno but no return value is reserved to indicate the error condition. In
general an error can only arise if the string pointed to by ws1 or ws2 contains an invalid wide
character. A valid character outside the domain of the collating sequence has no effect on
comparisons and is not an error. Applications wishing to check for errors should set errno to
zero before calling wcscoll() and check its value on return.

As an example of this interface, the following is a simple sort program that uses a combination
of qsort() and wcscoll() to order the records of a text file:

#include <locale.h>
#include <stdio.h>
#include <wchar.h>
#include <nl_types.h>

#define ELEMENTS 512
#define WIDTH 256
#define USE 1
#define FAIL 2
#define SIZE 3

wchar_t table [ELEMENTS] [WIDTH];

52 X/Open Guide (1993)

Internationalisation Support Interfaces Character Collation

main(argc, argv)
int argc;
char **argv;
{

FILE *fp;
nl_catd catd;
int nel, i, wcscoll();

setlocale(LC_ALL, "");
catd = catopen(argv[0], NL_CAT_LOCALE);

if(argc != 2) {
fprintf(stderr,

catgets(catd, NL_SETD, USE,
"usage: qsort file\n"));

exit(1);
}

if((fp = fopen(argv [1], "r")) == NULL) {
fprintf(stderr,

catgets(catd, NL_SETD, FAIL,
"can’t open %s\n", argv [1]));

exit(2);
}

for(nel = 0; nel < ELEMENTS &&
fgetws(table [nel], WIDTH, fp); ++nel) ;

fclose(fp);

if(nel >= ELEMENTS) {
fprintf(stderr,

catgets(catd, NL_SETD, SIZE,
"file too large\n"));

exit(3);
}

qsort(table, nel, WIDTH, wcscoll);

for(i = 0 ; i < nel; ++i)
fputws(table[i], stdout);

exit(0);
}

An advantage of wcscoll() is that the wide-character strings are not modified in any way, and
hence remain printable. A disadvantage is that because strings must be transformed each time
wcscoll() is called, performance overheads may be significant.

Internationalisation Guide Version 2 53

Character Collation Internationalisation Support Interfaces

4.4.2 The wcsxfrm() Function

This function is defined in the header <wchar.h>.

size_t wcsxfrm(wchar_t * ws1, const wchar_t * ws2, size_t n);

The wcsxfrm() function transforms the wide-character string pointed to by ws2 and places the
result in the array pointed to be ws1. The transformation is such that if the wcscmp() function is
applied to two transformed strings, the result is the same as if the strings had been compared
using wcscoll().

No more than n elements are placed in the array pointed to by ws1, including a terminating null
wide character. If n is zero, ws1 can be a null pointer. This form of a call is useful to determine
the size of the ws1 array prior to making the transformation.

The wcsxfrm() function returns the number of elements in the transformed string, not including
the terminating null wide character. If the return value is equal to or greater than n, the contents
of the array pointed to by ws1 are indeterminate.

If unsuccessful, wcsxfrm() returns (size_t)−1 and sets errno to indicate the error. This can only
arise if the string pointed to by ws2 contains an invalid wide character. A valid character outside
the domain of the collating sequence should be ignored and is not an error.

Points worth noting about this function include:

• Where wide-character strings are likely to be compared more than once, it is more efficient to
transform them via wcsxfrm() and then compare them using wcscmp().

• When using wcscmp() to compare transformed wide character strings, both ws1 and ws2 must
have been produced by the wcsxfrm() function; that is, a transformed string cannot be
compared with a non-transformed string.

• No mechanism is defined to return a transformed string to its original state. Thus, assuming
sorted output is required in text form, it is necessary for a program using wcsxfrm() to retain
some form of association between a transformed string and its textual representation.

Using the previous example, instead of identifying wcscoll() as the comparison function in the
call to qsort(), we could supply our own function that uses wcsxfrm(), as follows:

compare(ws1, ws2)
wchar_t *ws1, *ws2;
{

wchar_t *ts1, *ts2;
int result;
size_t n1, n2;

n1 = wcsxfrm(NULL, ws1, 0);
if(n1 ==(size_t)-1)

return(wcscmp(ws1, ws2));

n2 = wcsxfrm(NULL, ws2, 0);
if (n2 == (size_t)-1))

return(wcscmp(ws1, ws2));

54 X/Open Guide (1993)

Internationalisation Support Interfaces Character Collation

if ((ts1 = (wchar_t*)
calloc(n1+1, sizeof(wchar_t)))

== NULL)
return(wcscmp(ws1, ws2));

if ((ts2 = (wchar_t*)
calloc(n2+1, sizeof(wchar_t)))

== NULL) {
free(ts1);
return(wcscmp(ws1, ws2));

}

wcsxfrm(ts1, ws1, n1+1);
wcsxfrm(ts2, ws2, n2+1);
result = wcscmp(ts1, ts2);

free(ts1);
free(ts2);

return(result);
}

Note that in the above example wcsxfrm() is used to determine how much storage space is
required to hold the transformed wide-character strings. This is done by passing a null pointer
as the the first argument in a call to wcsxfrm(). The return value plus 1 gives the amount of
space required in units of type wchar_t. This value is then passed as the first argument to a call
of calloc ().

The above code demonstrates how the wcsxfrm() function can be used but is inefficient in that
the strings are transformed each time the function is called. A better and more competent
implementation would be to retain the transformed strings for subsequent comparisons.

Internationalisation Guide Version 2 55

Language Information Internationalisation Support Interfaces

4.5 Language Information
Various functions are provided that allow a program to access items of cultural data in the
program’s locale. These should be used to determine the prevailing setting and format of
cultural data, rather than having this information built into the program. The nl_langinfo ()
function provides language information, strfmon() converts monetary value to a string and
localeconv () determines the program’s locale.

4.5.1 The nl_langinfo() Function

This function, the type nl_item and constants used for the setting of item are defined in the
header <langinfo.h>.

char *nl_langinfo(nl_item item);

The nl_langinfo () function returns a pointer to a string containing information relevant to the
particular language or cultural area currently defined in the program’s locale. The required item
of language information is identified by the value of item, which is a value of type nl_item.
Permitted settings of this argument are defined by a set of constants in <langinfo.h>. At least
the following are supported on all XPG4 systems:

Constant Category Meaning
CODESET LC_CTYPE codeset name
D_T_FMT LC_TIME string for formatting date and time
D_FMT LC_TIME date format string
T_FMT LC_TIME time format string
T_FMT_AMPM LC_TIME a.m. or p.m. time format string

AM_STR LC_TIME ante meridiem affix
PM_STR LC_TIME post meridiem affix

DAY_1 LC_TIME name of the first day of the week (for example, Sunday)
. . .
DAY_7 LC_TIME name of the seventh day of the week

ABDAY_1 LC_TIME abbreviated name of the first day of the week
. . .
ABDAY_7 LC_TIME abbreviated name of the seventh day of the week

MON_1 LC_TIME name of the first month in the year
. . .
MON_12 LC_TIME name of the twelfth month

ABMON_1 LC_TIME abbreviated name of the first month
. . .
ABMON_12 LC_TIME abbreviated name of the twelfth month

ERA LC_TIME era display format
ERA_D_FMT LC_TIME era date format
ERA_D_T_FMT LC_TIME era date and time format string
ERA_T_FMT LC_TIME era time format string
ALT_DIGITS LC_TIME alternative digit symbols

56 X/Open Guide (1993)

Internationalisation Support Interfaces Language Information

Constant Category Meaning
RADIXCHAR LC_NUMERIC radix character
THOUSEP LC_NUMERIC separator for thousands

implementation-defined (note that this is missing from
the XSH specification)

CODESET LC_CTYPE

affirmative response for yes/no queries (TO BE
WITHDRAWN)

YESSTR LC_MESSAGES

negative response for yes/no queries (TO BE
WITHDRAWN)

NOSTR LC_MESSAGES

YESEXPR LC_MESSAGES affirmative response for yes/no queries
NOEXPR LC_MESSAGES negative response for yes/no queries

currency symbol, preceded by − if the symbol should
appear before the value, + if the symbol should appear
after the value, or . if the symbol should replace the
radix character.

CRNCYSTR LC_MONETARY

The value of CODESET is implementation-defined.

In a locale where language information data is not defined, nl_langinfo () returns a pointer to the
corresponding item in the POSIX locale. In all locales, nl_langinfo () returns a pointer to an
empty string if item contains an invalid setting. A pointer to an empty string is returned, rather
than a null pointer, so that failure conditions set by nl_langinfo () do not invalidate argument
lists.

The array pointed to by the return value should not be modified by the program and may be
overwritten by subsequent calls to nl_langinfo (). This value should be copied to another area if
it is to be reused.

Internationalisation Guide Version 2 57

Language Information Internationalisation Support Interfaces

As an example, the following program outputs day names defined in the current locale:

#include <stdio.h>
#include <locale.h>
#include <langinfo.h>
#include <nl_types.h>

nl_item items[7] = {
DAY_1, DAY_2, DAY_3, DAY_4,
DAY_5, DAY_6, DAY_7};

main()
{

int i;

setlocale(LC_ALL, "");

for(i = 0 ; i < 7; ++i)
puts(nl_langinfo(items [i]));

exit(0);
}

4.5.2 The strfmon() Function

This function is declared in the header <monetary.h>.

ssize_t strfmon(char * s, size_t maxsize , const char * format , ...)

The strfmon() function places characters into the character array pointed to by s as controlled by
the string pointed to by format. No more than maxsize bytes are placed in the array.

The format string consists of zero or more conversion specifications and plain characters. A
conversion specification consists of a % character, optional flags, an optional field width and
precision, and a conversion character that determines the conversion specifications’ behaviour.
All plain characters, including the terminating null character, are copied to s unchanged.

If successful, the strfmon() function returns the number of bytes placed into the array pointed to
by s. Otherwise, −1 is returned and the contents of the array are indeterminate.

Conversion Characters

The following conversion characters are defined in the XSH specification:

%n the argument of type double is formatted according to the locale’s national currency
format.

%i the argument of type double is formatted according to the locale’s international
currency format.

%% is replaced by a single %.

No arguments are converted for %% conversion specifications.

58 X/Open Guide (1993)

Internationalisation Support Interfaces Language Information

Field Width and Precision

Optional field width and precision specifications can immediately follow the % character
introducing a conversion. These are specified as follows:

=f the fill character for #n conversions (space by default).

ˆ indicates that the output value should not be formatted using the thousands grouping
symbol. By default the output is formatted using the thousands grouping symbol
defined in the current locale (if defined).

+ or (indicates the presentation style for positive and negative currency values. If + is
specified, the locale’s equivalent of + and − are used. If (is specified, negative values
are enclosed in parenthesis. If neither flag is specified, + is used.

! suppresses the currency symbol from being output.

− where − specifies the alignment. If this flag is present all fields are left aligned (padded
to the right) rather than the default of right aligned.

w where w is a decimal digit string specifying the minimum field width.

.p where p is a decimal digit string specifying the number of digits after the radix
(decimal-point) character. If p is zero, no radix character appears in the output. If not
specified, a default value is taken from the current locale. Rounding to the specified
number of digits occurs before the number is formatted.

#n where n is a decimal digit string specifying a maximum number of digits output to the
left of the radix character. This option allows output to be aligned. If the number of
output digits is greater than n, the option is ignored; if it is less, the number is padded
on the left with fill characters (see =f).

Examples

double val;
char buf[MAXSIZE];
. . . .
setlocale(LC_ALL, "");
. . . .
if(strfmon(buf, MAXSIZE, catgets(catd, setn, msgw, "%#5=*n"),

val) != -1)
printf(

catgets(catd, setn, msgx,
"amount = %s\n"),

buf);
else

printf(
catgets(catd, setn, msgy,

"value too large \n"))
. . . .

which formats a monetary value with five digits to the left of the radix character, filled with
asterisks if necessary, for example:

$**123.45

Internationalisation Guide Version 2 59

Language Information Internationalisation Support Interfaces

4.5.3 The localeconv() Function

This function is defined in the header <locale.h>.

struct lconv *localeconv(void);

The localeconv () function sets the components of an object with the type struct lconv with the
values appropriate for the formatting of numeric quantities (monetary or otherwise) according
to the rules of the current locale.

The lconv structure contains at least the following members (comments indicate values in the
POSIX locale):

char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *int_curr_symbol; /* "" */
char *currency_symbol; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char int_frac_digits; /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */

Structure members of type char* are pointers to strings, any of which (except decimal_point)
can point to "", indicating that the associated value is not available in the current locale or is of
zero length. Structure members of type char are non-negative numbers, any of which can be
{CHAR_MAX} (defined in <limits.h>), indicating that the associated value is not available in the
current locale.

The element grouping defines the size of each group of digits in formatted non-monetary
quantities.

Note: The ISO C string pointed to by the element grouping is not the same as the definition of
the grouping keyword in the locale definition file (see the XBD specification).

The element grouping points to a string containing a sequence of integers specifying the number
of digits in each group; The initial integer defines the size of the group immediately preceding
the decimal delimiter; the following integers define the preceding groups. Similarly
mon_grouping defines the size of each group of digits in formatted monetary quantities. The
strings pointed to by grouping and mon_grouping are interpreted as follows:

{CHAR_MAX} No further grouping is performed.

0 The previous element is to be used repeatedly for the remainder of the digits.

Note: This option is valid but redundant because exactly the same result is
obtained when the 0 is omitted — in that case the string matches the
next option.

60 X/Open Guide (1993)

Internationalisation Support Interfaces Language Information

other The integer value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of digits
before the current group.

For example, if the octal value of {CHAR_MAX} is 177 and a comma is the thousands separator,
the following strings would produce formatting as shown:

ISO C String Formatted Value
"\3\177" 123456,789
"\3" 123,456,789
"\3\2\177" 1234,56,789
"\3\2" 12,34,56,789
"\177" 123456789

The values of p_sign_posn and n_sign_posn are interpreted as follows:

0 Parenthesis surround the quantity and currency symbol or int_curr_symbol.

1 The sign string precedes (occurs before with or without a space) the quantity and currency
symbol or int_curr_symbol.

2 The sign string succeeds (occurs after with or without a space) the quantity and currency
symbol or int_curr_symbol.

3 The sign string immediately (occurs after with no space) precedes the currency symbol or
int_curr_symbol.

4 The sign string immediately (occurs before with no space) succeeds the currency symbol or
int_curr_symbol.

The localeconv () function returns a pointer to the completed structure. Note that the structure
pointed to by the return value should not be modified by the program. It may be overwritten by
a subsequent call to the localeconv () function, or by calls to the setlocale () function specifying
categories LC_ALL, LC_MONETARY or LC_NUMERIC.

This interface provides all the information necessary for the formatting of numeric quantities.
However, it is the responsibility of the application to interpret that information and format
numeric values accordingly.

Internationalisation Guide Version 2 61

Date and Time Functions Internationalisation Support Interfaces

4.6 Date and Time Functions
In the past, applications have used interfaces like ctime() and asctime() to format date and time
strings. These produced printable representations of date and time in the following form:

Sun Sep 16 01:03:52 1973\n\0

The ctime() function converted a long integer representing the time in seconds since the Epoch,
while asctime() accepted a tm structure as input. The problem with both these interfaces was:

• they had built-in knowledge of language and cultural data formats

• they were too rigid in their definition and provided no facilities for user formatting of date
and time information

Both these functions are retained in the interface definition for compatibility with earlier
systems. New interfaces such as strftime(), wcsftime() and strptime() are also specified, which
provide conversion facilities based on language information defined in the program’s locale.
These functions also allow individual fields of a date and time string to be handled separately.

4.6.1 The strftime() Function

This function is defined in the header <time.h>.

size_t strftime(char * s, size_t maxsize , const char * format ,
const struct tm * timptr);

The strftime() function places bytes into the character array pointed to by s as controlled by the
string pointed to by format. No more than maxsize bytes are placed in the array.

The format string consists of zero or more conversion specifications and ordinary characters. A
conversion specification consists of a % character and a terminating conversion character or
characters that determine the conversion specification’s behaviour. All ordinary characters,
including the terminating null character, are copied unchanged to the array.

Local timezone information is used as though strftime() called the tzset() function.

If the total number of resulting bytes, including the terminating null byte, is not greater than
maxsize, the strftime() function returns the number of bytes placed into the array pointed to by s,
not including the terminating null byte. Otherwise zero is returned and the contents of the array
are indeterminate.

Conversions

The full list of conversion specifications is given in the XSH specification, but at least the
following are supported on all conforming implementations:

%a is replaced by the locale’s abbreviated weekday name.
%A is replaced by the locale’s full weekday name.
%b is replaced by the locale’s abbreviated month name.
%B is replaced by the locale’s full month name.
%c is replaced by the locale’s appropriate date and time representation.
%C† is replaced by the century number (the year divided by 100 and truncated to an integer

as a decimal number [00-99]).
%d is replaced by the day of the month as a decimal number [01,31]
%D† is replaced by the date (%m/%d/%y).
%e† is replaced by the day of the month as a decimal number [1,31] in a 2-digit field with

leading space character fill.
%h† same as %b.

62 X/Open Guide (1993)

Internationalisation Support Interfaces Date and Time Functions

%H is replaced by the hour (24-hour clock) as a decimal number [00,23].
%I is replaced by the hour (12-hour clock) as a decimal number [01,12].
%j is replaced by the day of the year as a decimal number [001,366]
%m is replaced by the month as a decimal number [01,12].
%M is replaced by the minute as a decimal number [00,59].
%n† is replaced by a newline character.
%p is replaced by the locale’s equivalent of either AM or PM.
%r† is replaced by the time in a.m. and p.m. notation; in the POSIX locale this is equivalent

to %I:%M:%S %p.
%R† is replaced by the time in 24-hour notation (%H:%M).
%S is replaced by the second as a decimal number [00,61].
%t† is replaced by a tab character.
%T† is replaced by the time (%H:%M:%S).
%u is replaced by the weekday as a decimal number [1,7], with 1 representing Monday.
%U is replaced by the week number of the year (Sunday as the first day of the week) as a

decimal number [00,53].
%V is replaced by the week number of the year (Monday as the first day of the week) as a

decimal number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1; otherwise it is week 53 of the previous year, and
the next week is week 1.

%w is replaced by the weekday (Sunday as the first day of the week) as a decimal number
[0,6].

%W is replaced by the week number of the year (Monday as the first day of the week) as a
decimal number [00,53].

%x is replaced by the locale’s appropriate date representation.
%X is replaced by the locale’s appropriate time representation.
%y is replaced by the year without century as a decimal number [00,99].
%Y is replaced by the year with century as a decimal number.
%Z is replaced by the timezone name, or by no characters if no timezone exists.
%% is replaced by %.

Items marked with a dagger (†) in the preceding list are X/Open extensions to the interface
definition included primarily for compatibility with previous issues of the Portability Guide.

Some conversion specifiers can be modified by the E and O modifier characters (see the XSH
specification) to indicate a different format or specification. If this information is not supported
in the current locale, the unmodified conversion specifier is used.

If a conversion character is not one of the above, the behaviour of strftime() is undefined.

The range of values for %S is [00,61] rather than [00,59] to allow for the occasional leap second,
and the even more occasional double leap second.

Examples

This example first initialises the curses package, clears the standard window, and moves the
cursor to the bottom left-hand corner of the screen. It then calls strftime() to produce a date and
time string of the form:

Wednesday, January 24, 1990 (09:50:59)

If this call fails (for example, because buf is not large enough), asctime() is used instead to
produce a non-internationalised date and time string.

Internationalisation Guide Version 2 63

Date and Time Functions Internationalisation Support Interfaces

...
time_t tval;
struct tm tmptr;
char buf [bufsize];

setlocale(LC_ALL, "");

initscr();
clear();
move(LINES - 1, 0);

tval = time((time_t*) NULL);
tmptr = localtime(tval);

if (strftime(buf, bufsize,
"%A, %B %d, %Y (%T)", tmptr))

printw("%s", buf);
else

printw("%s", asctime(timptr));
...

The next example uses strftime() to produce output similar to that generated by the date
command:

#include <stdio.h>
#include <langinfo.h>
#include <locale.h>
#include <nl_types.h>
#include <time.h>

#define DEFAULT_TIME "%a %b %d %H:%M:%S %Z %Y"
#define PROG_NAME "xdate"
#define ERROR_MSG 1
#define FMT_MSG 2

char tbuf [BUFSIZ];

main (argc, argv)
int argc;
char **argv;
{

time_t clock = time((time_t*) NULL);
struct tm *tmptr = localtime(&clock);
nl_catd catd;

setlocale(LC_ALL, "");
catd = catopen(PROG_NAME, NL_CAT_LOCALE);

if (argc == 1) {

strftime(tbuf, BUFSIZ,
catgets(catd, NL_SETD, FMT_MSG, DEFAULT_TIME, tmptr);

puts(tbuf);

} else {

64 X/Open Guide (1993)

Internationalisation Support Interfaces Date and Time Functions

for (--argc, ++argv;
argc;
--argc, ++argv) {

if (*argv[0] == ’+’) {
strftime(tbuf, BUFSIZ,

argv[0]+1, tmptr);
puts(tbuf);

} else {
printf(catgets(catd,

NL_SETD, ERROR_MSG,
"%s: unknown argument\n"),
argv[0]);

exit(1);
}

}
}

exit(0);
}

4.6.2 The wcsftime() Function

This function is defined in the header <wchar.h>.

size_t wcsftime(wchar_t * wcs, size_t maxsize , const char * format ,
const struct tm * timptr);

The wcsftime() function places wide-character codes into the array pointed to by wcs as
controlled by the string pointed to by format. No more than maxsize wide characters are placed
into the array.

This function behaves as if the character string produced by the strftime() function had been
converted to a wide character string by calling mbstowcs(). Otherwise this interface is identical
to strftime().

4.6.3 The strptime() Function

This function is defined in the header <time.h>.

char *strptime(const char * buf , const char * format , struct tm * tm);

This function performs the reverse operation to strftime() and converts the character string
pointed to by buf to a time value. This is stored in the tm structure pointed to by tm, using the
format string pointed to by format. If successful, strptime() returns a pointer to the location
character following the last character in buf. Otherwise it returns a null pointer.

The format is a character string containing zero or more fields as follows,

• one or more white-space characters (as defined by the isspace() function)

• an ordinary character (neither % nor a white-space character)

• a conversion specification.

Each conversion specification is introduced by a % character, followed by a conversion character
which specifies the replacement required.

Internationalisation Guide Version 2 65

Date and Time Functions Internationalisation Support Interfaces

A directive composed of white-space characters or a series of directives composed of %n, %t,
white-space characters or any combination, is executed by scanning up to the first character that
is not white space, or until no more characters can be scanned. A directive that is an ordinary
character is executed by scanning the next character from the buffer. Any other conversion
specification is executed by scanning characters until a character matching the next directive is
scanned, or until no more characters can be scanned. The scanned characters are compared to
the local values associated with the conversion specifier. If a match is found, values for the
appropriate tm structure members are set to values corresponding to the locale information. If
no match is found, strptime() fails.

Conversions

The full list of conversion specifications is given in the XSH specification, but at least the
following are supported on all conforming implementations:

%a the locale’s full or abbreviated weekday name.
%A as %a.
%b the locale’s full or abbreviated month name.
%B as %b.
%c the locale’s appropriate date and time representation.
%C the locale’s long format date and time representation.
%d day of the month as a decimal number [01,31]; leading zeros are permitted but are not

required.
%D date as %m/%d/%y.
%e same as %d.
%h as %b.
%H hour (24-hour clock) as a decimal number [00,23]; leading zeros are permitted but are

not required.
%I hour (12-hour clock) as a decimal number [01,12]; leading zeros are permitted but are

not required.
%j day of the year as a decimal number [001,366].
%m month as a decimal number [01,12]; leading zeros are permitted but are not required.
%M minute as a decimal number [00,59]; leading zeros are permitted but are not required.
%n newline character.
%p the locale’s equivalent of either AM or PM.
%r the time in AM/PM notation according to U.K./U.S. conventions (%I:%M:%S %p).
%R the time in 24 hour notation (%H:%M).
%S seconds as a decimal number [00,61]; leading zeros are permitted but are not required.
%t tab character.
%T the time as %H:%M:%S.
%U week number of the year as a decimal number [00,53] (Sunday is the first day of the

week); leading zeros are permitted but are not required.
%w weekday as a decimal number [0,6] (Sunday is the first day of the week); leading zeros

are permitted but are not required.
%W as %w, except Monday is the first day of the week.
%x the locale’s appropriate date representation.
%X the locale’s appropriate time representation.
%y the year without century as a decimal number [00,99]; leading zeros are permitted but

are not required.
%Y the year with century as a decimal number.
%% is replaced by %.

66 X/Open Guide (1993)

Internationalisation Support Interfaces Date and Time Functions

Case is ignored when matching items such as month or weekday names (see the XSH
specification).

Some conversion specifiers can be modified by the E and O modifier characters (see the XSH
specification) to indicate that an alternative format or specification should be used by the
unmodified directive. If the alternative format or specification does not exist in the current
locale, the behaviour is as if the unmodified directive is used.

Examples

The following example accepts a date and time string as its input, which it converts internally to
a tm structure by calling strptime(). The format of the input is fixed (locale-independent) as an
aid to usability.

#include <stdio.h>
#include <nl_types.h>
#include <locale.h>
#include <time.h>

#define PROG_NAME "settm"
#define USAGE 1
#define ERROR 2

main (argc, argv)
int argc;
char **argv;
{

nl_catd catd;
struct tm tm;

setlocale(LC_ALL, "");
catd = catopen(PROG_NAME, NL_CAT_LOCALE);

if(argc != 2) {
puts(

catgets(catd, NL_SETD, USAGE,
"usage: settm date-and-time"));

exit(1);
}

if(strptime(argv[1], "%A %B %d %T", &tm)
== NULL) {
puts(

catgets(catd, NL_SETD, ERROR,
"incorrect date format"));

exit(2);
}
...

}

where date and time is expected as a string of the form:

Sun Mar 31 14:23:00

Internationalisation Guide Version 2 67

Date and Time Functions Internationalisation Support Interfaces

4.7 Printing Functions
X/Open has extended the definition of the printing functions to make their operation more
tenable in an international environment. These changes affect the following interfaces:

Interface
fprintf ()
printf()
sprintf()
vfprintf ()
vprintf()
vsprintf()

4.7.1 Numbered Argument Lists

Conversion specifications have been updated such that conversions can be applied to the nth
argument in the argument list rather than to the next unused argument. This type of conversion
specification is introduced by the sequence %digit$, where digit is a value in the range
[1,{NL_ARGMAX}] (defined in <limits.h>, giving the position of the argument in the argument
list.

Similarly, in format strings containing the above form of a conversion specification, a field width
or precision can be indicated by the sequence *digit$. Again digit is a number in the range
[1,{NL_ARGMAX}], giving the position of the associated argument in the argument list.

As an example:

fmt = catgets(catd, NL_SETD, FMT,
"%1$.*2$d:%3$.*2$d:%4$.*2$d\n");

printf(fmt, hour, width, min, sec);

where the value of width is used to specify the precision for each of the d conversion
specifications.

Note that numbered and unnumbered conversion specifications should not be mixed in a single
format string. The results of doing this are undefined and, even though it may be allowed by
some implementations, there is no guarantee that mixed format strings are portable to other
X/Open systems. Also specifying a numbered argument n requires that all leading arguments,
from the first to the nth, are specified in the format string.

4.7.2 Decimal-point Characters

All the printing functions listed at the start of this section allow for the insertion of a language-
dependent decimal-point (that is, radix) character in the output string. This affects f, e, E, g and
G conversions. The decimal-point character is defined by the value of item RADIXCHAR in the
program’s locale. In the POSIX locale, or in a locale where a decimal-point character is not
defined, the decimal-point character defaults to a period (.).

68 X/Open Guide (1993)

Internationalisation Support Interfaces Printing Functions

4.7.3 Thousands Grouping Characters

The list of flag characters has been extended to allow for the formatting of the integer portion of
decimal conversions with the locale’s thousands (non-monetary) grouping character. This flag is
defined in a format string by specifying an apostrophe (for example, "%’d"). No thousands
grouping character is defined in the POSIX locale.

4.7.4 Wide-character Conversions

The list of conversion characters and their meaning has been updated to include:

C The wchar_t argument is converted to an array of bytes representing the character, and the
resulting character is written. Behaviour when field width or precision is specified is
undefined. The conversion is the same as that expected from the wctomb() function.

S The argument is a pointer to an array of type wchar_t. Wide characters from the array are
converted to a sequence of bytes representing characters and the resulting array is written
up to (but not including) a terminating null byte. Field precision specifies the maximum
number of bytes to be printed. The conversion is the same as that expected from the
wcstombs() function.

Note that these conversion characters are not supported by the printw(), mvprintw(),
mvwprintw() and wprintw() functions (see the Curses specification).

Internationalisation Guide Version 2 69

Scanning Functions Internationalisation Support Interfaces

4.8 Scanning Functions
The formatted-input conversion functions have also been updated to provide operation more
suited to an international environment. The following interfaces are affected by these changes:

Interface
fscanf()
scanf()
sscanf()

4.8.1 Numbered Argument Lists

Like printf(), the definition of conversion specifications has been updated such that conversions
can be applied to a numbered argument list. These are introduced by the sequence %digit$,
where digit is a number in the range [1,{NL_ARGMAX}], giving the position of the associated
argument in the argument list.

For example:

int i; float x; char name[50]; char *fmt;

fmt = catgets(catd, NL_SETD, FMT,
"%2$2d %1$f %*d %3$[0-9]");

scanf(fmt, &x, &i, name);

assuming the default format string and with the input

56789 0123 56a72

assigns 56 to i, 789.0 to x, skip 0123, and places the string "56\0" in name. The next call to fgetc()
returns a.

Note that the assignment suppressing character(*) is not affected and works the same as it
would with plain % conversion specifiers.

Also note that the behaviour of ranges within scansets ([0-9] in the above example) is
implementation-defined. Whether they take notice of collating sequence information in a
program’s locale, or whether they use simple character code ordering, is not specified by
X/Open. For maximum portability, it is recommended that expressions of this form should be
avoided wherever possible.

Like printf(), numbered and unnumbered conversion specifications should not be mixed in the
same format string. Similar warnings also apply to using all arguments up to the highest value
of n specified in a format string.

4.8.2 Decimal-point Characters

The scanf() function in all its forms allows for the detection of language-dependent radix
characters. This affects e, f and g conversions. The radix character is defined by the value of item
RADIXCHAR in the program’s locale. In the POSIX locale, or in a locale where the radix
character is not defined, the radix character defaults to a period (.).

70 X/Open Guide (1993)

Internationalisation Support Interfaces Scanning Functions

4.8.3 Wide-character Conversions

The list of conversion characters has been updated to include:

C Matches a sequence of characters of the number specified by the field width (1 by default).
The sequence is then converted to wide-character format and the resulting wide characters
are stored in the corresponding argument, which is a pointer to the initial wide character of
an array large enough to accept the resulting sequence. The conversion is the same as that
expected from the mbtowc() function. No null byte is added. If field width is specified, the
behaviour is unspecified.

S Matches a sequence of characters that are not white space. The sequence is then converted
to wide-character format and the resulting wide characters are stored in the corresponding
argument, which is a pointer to the initial wide character of an array large enough to accept
the resulting sequence, including a terminating null wide character. The conversion is the
same as that expected from the mbstowcs() function. If field width is specified, it denotes
the maximum number of characters to accept.

Internationalisation Guide Version 2 71

Number Conversion Functions Internationalisation Support Interfaces

4.9 Number Conversion Functions
Three new functions have been added that provide conversion from wide-character strings to
various numeric formats:

Interface
wcstod()
wcstol()
wcstoul()

4.9.1 The wcstod() Function

This function is defined in the header <wchar.h>.

double wcstod(const wchar_t * nptr , wchar_t ** endptr);

The wcstod() function converts the initial portion of the wide-character string pointed to by nptr
to a type double. First it decomposes the input into three parts:

• an initial, possibly empty sequence of white-space characters (as defined by iswspace())

• a subject sequence interpreted as a floating-point constant

• a final sequence of one or more unrecognised wide-character codes.

It then attempts to convert the subject sequence to a floating-point number and returns the
result.

The expected form of a subject sequence is:

• an optional + or − sign

• a sequence of digits optionally containing a radix character

• an optional exponent part consisting of e or E, followed by an optional sign, followed by one
or more decimal digits.

The radix character is defined by the value of item RADIXCHAR in the program’s locale. In the
POSIX locale, or in a locale where the radix character is not defined, the radix character defaults
to a period (.).

Note that implementation-defined forms of a subject sequence may be supported in other than
the POSIX locale.

If the subject sequence is empty or does not have the expected form, no conversion is performed
and a pointer to the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

If successful, the wcstod() function returns the converted value as a type double. If the
conversion could not be performed, zero is returned and errno may be set to indicate the error. If
the correct value is outside the representable range of values, ±HUGEVAL is returned (according
to the sign of the value) and errno is set to [ERANGE]. If the correct value would cause
underflow, wcstod() returns zero and errno is set to [ERANGE].

Note: Be aware that zero is also a valid return value from this function. Applications needing
to check for errors should set errno to zero before calling wcstod(). If the value of errno
is non-zero on return, a failure has occurred.

72 X/Open Guide (1993)

Internationalisation Support Interfaces Number Conversion Functions

4.9.2 The wcstol() Function

This function is defined in the header <wchar.h>.

long int wcstol(const wchar_t * nptr , wchar_t ** endptr , int base);

The wcstol() function converts the initial portion of the wide-character string pointed to by nptr
to a type long int. First it decomposes the input into three parts:

• an initial, possibly empty sequence of white-space characters (as defined by iswspace())

• a subject sequence interpreted as an integer represented in some radix determined by the
value of base

• a final sequence of one or more unrecognised characters

It then attempts to convert the subject sequence to a long integer and returns the result.

If the value of base is zero, the subject sequence is that of an integer constant, optionally preceded
by a + (plus) or − (minus) sign. If the value of base is between 2 and 36, the expected form of a
subject sequence is a sequence of letters or digits, where the letters a (or A) to z (or Z) are
ascribed the values 10 to 35. Only letters whose ascribed values are less than the base are
permitted. If the value of base is 16, the characters 0x or 0X can precede the sequence of letters
and digits, following the sign (if present).

If the subject sequence is empty or does not have the expected form, no conversion is performed
and a pointer to the value of nptr is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

In other than the POSIX locale, additional implementation-defined subject sequence forms may
be accepted.

If successful, the wcstol() function returns the converted value as a type long int. If the
conversion could not be performed, zero is returned and errno may be set to indicate the error. If
the correct value is outside the representable range of values, {LONG_MAX} or {LONG_MIN} is
returned (according to the sign of the value) and errno is set to [ERANGE].

4.9.3 The wcstoul() Function

This function is defined in the header <wchar.h>.

unsigned long int wcstoul(const wchar_t * nptr , wchar_t ** endptr ,
int base);

This function is similar to the wcstol() function except that the return vale is an unsigned long
int. Also, if the correct value is outside the range of representable values, {ULONG_MAX} is
returned and errno is set to [ERANGE].

Internationalisation Guide Version 2 73

ISO C Multi-byte Functions Internationalisation Support Interfaces

4.10 ISO C Multi-byte Functions
As already explained in Section 1.5 on page 7, a multi-byte character is a sequence of one or
more bytes representing a single graphic symbol or control code. A wide character code is an
integral data type of type wchar_t, which is large enough to hold any member of the largest
extended execution character set supported by an implementation.

Text recorded or generated externally to the program is normally encoded as a series of multi-
byte characters. To process these internally, it is recommended that they are first converted to
wide character representation.

The XSH specification defines various functions for converting between multi-byte character
and wide character representations. These functions, and the type wchar_t and size_t, are all
defined in the header <stdlib.h>. The behaviour of these functions may be affected by the setting
of locale category LC_CTYPE.

4.10.1 The mblen() Function

int mblen(const char * s, size_t n);

If s is not a null pointer, this function determines the number of bytes constituting the character
pointed to by s. If an invalid character is encountered, −1 is returned. In no case is the return
value greater than n or the value of MB_CUR_MAX. If s is a null pointer, the function returns
non-zero or zero depending on whether character encodings have or do not have state-
dependent encodings.

4.10.2 The mbstowcs() Function

size_t mbstowcs(wchar_t * pwcs , const char * s, size_t n);

This function converts a sequence of characters that begins in the initial shift state from the array
pointed to by s into a sequence of corresponding wide-character codes. No more than n wide-
character codes are stored in the array pointed to by pwcs. The function returns either the
number of wide-character codes stored in pwcs, which is not greater than n, or (size_t)−1 if an
invalid character is encountered in s. The array is terminated by a null wide character unless the
return value is n.

If pwcs is a null wide character pointer, the mbstowcs() function returns the number of elements
required for the wide character array.

4.10.3 The mbtowc() Function

int mbtowc(wchar_t * pwc, const char * s, size_t n);

If s is not a null pointer, this function determines the number of bytes that constitute the
character pointed to by s, converts this to the corresponding wide-character representation and
stores the result in the wide character pointed to by pwc. In no case is the return value greater
than n or the value of MB_CUR_MAX.

If s is a null pointer, the function returns non-zero or zero depending on whether character
encodings have or do not have state-dependent encodings. Otherwise if s is not a null pointer,
the function returns zero (if s points to a null character), or the number of bytes that constitute
the converted character (if the next n or fewer bytes form a valid character), or −1 (if they do not
form a valid character).

74 X/Open Guide (1993)

Internationalisation Support Interfaces ISO C Multi-byte Functions

4.10.4 The wcstombs() Function

size_t wcstombs(char * s, const wchar_t * pwcs , size_t n);

The wcstombs() function converts the sequence of wide-character codes pointed to by pwcs into a
sequence of characters that begins in the initial shift state and stores the results in the array
pointed to by s. No more than n bytes are stored in this array.

The function returns the number of bytes stored in the array, excluding the terminating null
character, or n (whichever is smaller). If an invalid wide-character code is encountered,
(size_t)−1 is returned.

If s is a null pointer, the wcstombs() function returns the number of bytes required for the
character array.

4.10.5 The wctomb() Function

int wctomb(char * s, wchar_t wchar);

This function converts the wide character wchar to its multi-byte character representation and
stores the result in the array pointed to by s. No more than {MB_CUR_MAX} bytes are stored in
this array.

If s is a null pointer, the function returns non-zero or zero depending on whether character
encodings have or do not have state-dependent encodings. Otherwise if s is not a null pointer,
the function returns the number of bytes that constitute the converted multi-byte character, or −1
if the value of wchar does not correspond to a valid character.

Internationalisation Guide Version 2 75

I/O Functions Internationalisation Support Interfaces

4.11 I/O Functions
The functions described in the previous section allow applications to convert between multi-
byte character representation and wide character representation. This could be used, for
example, to maintain data on file store in character representation, while manipulating it
internally in its wide-character form.

Functions such as printf and scanf remove the need for programs to perform this conversion
manually, by defining conversion characters that convert between wide character and multi-byte
character representations automatically (%C and %S).

The XSH specification also defines a number of other I/O functions that perform this
conversion, as follows:

Interface
getwc()
getwchar()
fgetwc()
fgetws()
fputwc()
fputws()
putwc()
putwchar()
ungetwc()

These functions, the data types wint_t and wchar_t, and the constant WEOF are defined in the
header <wchar.h>.

4.11.1 The getwc() Function

wint_t getwc(FILE * stream);

The getwc() function is equivalent to the fgetwc() function, except that if it is implemented as a
macro, evaluation of the stream may occur more than once, so the argument should never be an
expression with side effects.

4.11.2 The getwchar() Function

wint_t getwchar(void);

The function call getwchar() is equivalent to getwc(stdin).

4.11.3 The fgetwc() Function

wint_t fgetwc(FILE * stream);

The fgetwc() function obtains the next character from the input stream, converts it to wide-
character representation and advances the file position indicator for stream.

If successful, fgetwc() returns a wide character encoded as a value of type wint_t. If a read error
occurs, or if the data obtained from the input stream does not form a valid character, or the
stream is at end-of-file, the constant WEOF is returned and errno is set to indicate the error.

76 X/Open Guide (1993)

Internationalisation Support Interfaces I/O Functions

4.11.4 The fgetws() Function

wchar_t *fgetws(wchar_t * ws, int n, FILE * stream);

The fgetws() function reads characters from stream, converts them to wide-character codes and
stores the results in the array of type wchar_t pointed to by ws. The operation is terminated
when n−1 characters have been read, or a newline character is read and transferred to ws, or an
end-of-file condition is encountered. The wide-character string is then terminated with a null
wide character value.

If successful, fgetws() returns ws. If a read error occurs, or if the data obtained from the stream
does not form a valid character, or the stream is at end-of-file, a null pointer is returned and errno
is set to indicate the error.

4.11.5 The fputwc() Function

wint_t fputwc(wint_t wc, FILE * stream);

The fputwc() function writes the character corresponding to the wide-character code wc to the
output stream pointed to by stream. If successful, fputwc() returns the value it has written.
Otherwise it returns WEOF and sets errno to indicate the error.

4.11.6 The fputws() Function

int fputws(const wchar_t * ws, FILE stream);

The fputws() function writes a character string corresponding to the (null-terminated) wide-
character string pointed to by ws to the stream pointed to by stream. The null terminating wide
character is not written.

If successful, fputws() returns a non-negative number. Otherwise it returns −1 and sets errno to
indicate the error.

4.11.7 The putwc() Function

wint_t putwc(wint_t wc, FILE * stream);

The putwc() function is equivalent to the fputwc() function, except that if it is implemented as a
macro, evaluation of the stream may occur more than once, so the argument should never be an
expression with side effects.

4.11.8 The putwchar() Function

wint_t putwchar(wint_t wc);

The function call putwchar(wc) is equivalent to putwc(wc, stdout)

Internationalisation Guide Version 2 77

I/O Functions Internationalisation Support Interfaces

4.11.9 The ungetwc() Function

wint_t ungetwc(wint_t wc, FILE * stream);

The ungetwc() function pushes the character corresponding to the wide-character code wc back
onto the input stream pointed to by stream. Characters pushed back are returned by subsequent
reads on that stream in the reverse order of their pushing. Any intervening call to a file-
positioning function causes characters pushed back to be discarded. The external storage
associated with stream is unchanged.

Note that only one pushed back character is guaranteed. Also if the value of wc is WEOF, the
call fails and the input stream is unchanged.

If successful, ungetwc() returns the wide-character code corresponding to the pushed-back
character. Otherwise it returns WEOF.

78 X/Open Guide (1993)

Internationalisation Support Interfaces String Functions

4.12 String Functions
In addition to the collation functions described in Section 4.4 on page 52, the following functions
are defined in the XSH specification for manipulating wide-character strings:

Interface
wcscat wcsncpy
wcschr wcspbrk
wcscmp wcsrchr
wcscpy wcsspn
wcscspn wcstok
wcslen wcswcs
wcsncat wcswidth
wcsncmp wcwidth

These functions and the types wchar_t, size_t and wint_t are defined in the header <wchar.h>.

4.12.1 The wcscat() Function

wchar_t *wcscat(wchar_t * ws1, const wchar_t * ws2);

This function appends a copy of the wide-character string pointed to by ws2, including the
terminating null wide-character code, to the end of the wide-character string pointed to by ws1.
It returns ws1 if successful. No return value is reserved to indicate an error.

4.12.2 The wcschr() Function

wchar_t *wcschr(const wchar_t * ws, wint_t wc);

This function locates the first occurrence of wc in the wide-character string pointed to by ws. It
returns a pointer to the wide-character code if successful, or a null pointer.

4.12.3 The wcscmp() Function

int wcscmp(const wchar_t * ws1, const wchar_t * ws2);

This function compares the wide-character strings pointed to by ws1 and ws2. The sign of a
non-zero value returned by wcscmp() is determined by the sign of the difference between the
values of the first pair of wide characters that differ in the objects being compared.

The wcscmp() function returns an integer greater than, equal to or less than zero, depending on
whether the wide string pointed to by ws1 is greater than, equal to or less than the wide string
pointed to by ws2.

4.12.4 The wcscpy() Function

wchar_t *wcscpy(wchar_t * ws1, const wchar_t * ws2);

This function copies the wide-character string pointed to by ws2, including the terminating null
wide character, into the array pointed to by ws1. It returns ws1 if successful. No return value is
reserved to indicate an error.

Internationalisation Guide Version 2 79

String Functions Internationalisation Support Interfaces

4.12.5 The wcscspn() Function

size_t wcscspn(const wchar_t * ws1, const wchar_t * ws2);

This function computes the number of initial elements in the wide-character string pointed to by
ws1 that consist entirely of wide-character codes not included in the wide-character string
pointed to by ws2. It returns ws1. No return value is reserved to indicate an error.

4.12.6 The wcslen() Function

size_t wcslen(const wchar_t * ws);

This function computes the number of wide-character codes in the wide-character string pointed
to by ws, not including the terminating null wide-character code. It returns this number if
successful. No return value is reserved to indicate an error.

4.12.7 The wcsncat() Function

wchar_t *wcsncat(wchar_t * ws1, const wchar_t * ws2, size_t n);

This function is similar to wcscat(), except that at most n wide-character codes from ws2 are
appended to ws1. The initial character from ws2 overwrites the null wide-character code at the
end of ws1. A terminating null wide-character code is always appended to the result.

4.12.8 The wcsncmp() Function

int wcsncmp(const wchar_t * ws1, const wchar_t * ws2, size_t n);

This function is similar to wcscmp(), except that at most n wide-character codes are compared.

4.12.9 The wcsncpy() Function

wchar_t *wcsncpy(wchar_t * ws1, const wchar_t * ws2, size_t n);

This function is similar to wcscpy(), except that at most n wide-character codes are copied from
the array pointed to by ws2 to the array pointed to by ws1.

4.12.10 The wcspbrk() Function

wchar_t *wcspbrk(const wchar_t * ws1, const wchar_t * ws2);

This function locates the first occurrence of any wide-character code from the wide-character
string pointed to by ws2 in the wide string pointed to by ws1. It returns a pointer to a wide-
character code, or a null pointer.

4.12.11 The wcsrchr() Function

wchar_t *wcsrchr(const wchar_t * ws, wint_t wc);

This function locates the last occurrence of wc in the wide-character string pointed to by ws. It
returns a pointer to a wide-character code, or a null pointer.

80 X/Open Guide (1993)

Internationalisation Support Interfaces String Functions

4.12.12 The wcsspn() Function

size_t wcsspn(const wchar_t * ws1, const wchar_t * ws2);

This function computes the number of initial elements in the wide-character string pointed to by
ws1 that consist entirely of wide-character codes included in the wide-character string pointed to
by ws2. It returns the number of initial elements satisfying the above criteria. No return value is
reserved to indicate an error.

4.12.13 The wcstok() Function

wchar_t *wcstok(wchar_t * ws1, const wchar_t * ws2);

A sequence of calls to this function decomposes the wide-character string pointed to by ws1 into
a series of tokens, each of which is delimited by a wide-character code from the wide-character
string pointed to by ws2. The first call in the sequence has ws1 as its first argument; subsequent
calls pass a null pointer as this argument. The wide-character string pointed to by ws2 may
change between calls.

The wcstok() function returns a pointer to the first character of the next token, or a null pointer if
there are no more tokens.

4.12.14 The wcswcs() Function

wchar_t *wcswcs(const wchar_t * ws1, const wchar_t * ws2);

This function locates the first occurrence in the wide-character string pointed to by ws1 of the
sequence of wide-character codes (excluding the terminating null wide-character code) in the
wide-character string pointed to by ws2. It returns a pointer to the located wide-character string,
or a null pointer. If ws2 points to a zero length wide-character string, the function returns ws1.

4.12.15 The wcswidth() Function

int wcswidth(const wchar_t * pwcs , size_t n);

This function determines the number of column positions required for n wide-character codes
(or fewer if a null wide character is encountered in the input string before n has expired) in the
string pointed to by pwcs. It returns zero if pwcs points to a null wide character, or the number of
column positions required, or −1 if pwcs is not a printing wide-character code.

4.12.16 The wcwidth() Function

int wcwidth(wint_t wc);

This function determines the number of column positions required for the wide-character code
wc. The value of wc must be representable as a type wchar_t, and must be a wide-character code
corresponding to a valid character in the current locale. It returns zero if wc is a null wide-
character code, or the number of column positions required, or −1 if wc is not a printing wide-
character code.

Internationalisation Guide Version 2 81

Error Handling Internationalisation Support Interfaces

4.13 Error Handling
Two functions that produce error messages are defined for use by internationalised applications.
The language of messages produced by these functions is locale-specific.

4.13.1 The perror() Function

This function is declared in the header <stdio.h>.

void perror(const char * s)

The perror() function maps the error number in errno to a language-dependent error message,
which is written to the standard output stream as follows:

• If s is not a null pointer or a pointer to an empty string, the string pointed to by s followed by
a colon and space.

• An error message followed by a newline character.

Because it is not possible for a program to retrieve an error message string for internal use,
possible applications of this interface are strictly limited.

4.13.2 The strerror() Function

This function is declared in the header <string.h>.

char *strerror(int errnum)

The strerror() function maps the error number in errnum to a locale-dependent error message
string and returns a pointer thereto. The string pointed to should not be modified by a program,
but may be overwritten by subsequent calls to strerror(). Upon successful completion strerror()
returns a pointer to the generated message string. The contents of the error message strings
should be determined by the setting of the LC_MESSAGES category. On error, errno may be set,
but no return value is reserved to indicate an error.

This interface is generally more useful than perror(), as it allows programs to build their own
error message strings, for example:

. . .
FILE *fp = fopen(argv[1], "w");
int open_error = errno;

if (fp == (FILE*) NULL) {
printf(

catgets(catd, NL_SETD, ERROR,
"%s: fopen fails: %s\n"),

argv[0],
strerror(open_errno));

exit(1);
}
. . .

where the constant ERROR is a message identifier assumed to be defined elsewhere in the
program. This would produce a message of the form:

progname: fopen fails: Too many open files

The second and third arguments access localisation data and could be translated to the language
of the caller.

82 X/Open Guide (1993)

Internationalisation Support Interfaces Error Handling

4.14 Codeset Conversion
The XSH specification defines a set of functions that provide codeset conversion capabilities
from the program level. These require that the user initialise a codeset conversion stream,
identifying both the source and the target codesets. Codeset names are implementation-defined.

Once initialised, character sequences encoded in the source codeset can be passed to the iconv()
function, which performs the conversions and returns equivalent sequences encoded in the
target codeset.

These functions and the data type iconv_t are defined in the header <iconv.h>.

4.14.1 The iconv_open() Function

iconv_t iconv_open(const char * tocode , const char * fromcode);

The iconv_open () function performs the necessary initialisations to convert character encodings
from the source codeset identified by fromcode to the codeset identified by tocode and returns a
conversion descriptor of type iconv_t.

If unsuccessful, iconv_open () returns (iconv_t)−1 and sets errno to indicate the error.

Settings of fromcode and tocode, and permitted combinations thereof, are implementation-
dependent.

4.14.2 The iconv() Function

size_t iconv(iconv_t cd, const char ** inbuf , size_t * inbytesleft ,
char ** outbuf , size_t * outbytesleft);

The iconv() function converts a sequence of characters from one codeset in the array specified by
inbuf, into a sequence of corresponding characters encoded in another codeset, in the array
specified by outbuf. The codesets are those specified in the iconv_open () call that returned the
conversion descriptor cd.

On input, inbytesleft indicates the number of bytes to the end of the input buffer to be converted.
Similarly, outbytesleft indicates the number of bytes available to the end of the out put buffer.
These values are decremented while the conversions are being done, such that on return they
indicate the state of their associated buffers.

If iconv() encounters a character in the input buffer that is legal but for which an identical
character does not exist in the target encoding, iconv() performs an implementation-defined
conversion on the character. If no error occurs, iconv() returns the number of non-identical
conversions that were performed. Otherwise, iconv() updates the variables to reflect the extent
of the conversion, returns (size_t)−1, and sets errno to indicate the error.

4.14.3 The iconv_close() Function

void iconv_close(iconv_t cd);

The iconv_close () deallocates the conversion descriptor cd and all other resources allocated by the
iconv_open () function. Upon successful completion, zero is returned. Otherwise −1 is returned
and errno is set to indicate the error.

Internationalisation Guide Version 2 83

Codeset Conversion Internationalisation Support Interfaces

4.14.4 Examples

The following example shows how these functions might be used to implement a simple codeset
conversion filter, which accepts settings of tocode and fromcode as input arguments.

#include <stdio.h>
#include <locale.h>
#include <nl_types.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>

#define ICONV_DONE() (r >= 0)
#define ICONV_INVAL() ((r == -1) && (errno == EILSEQ))
#define ICONV_OVER() ((r == -1) && (errno == E2BIG))
#define ICONV_TRUNC() ((r == -1) && (errno == EINVAL))

#define USAGE 1
#define ERROR 2
#define INCOMP 3

char ibuf [BUFSIZ], obuf [BUFSIZ];

extern int errno;

main(argc, argv)
int argc;
char **argv;
{

size_t ileft, oleft;
nl_catd catd;
iconv_t cd;
int r;
char *ip, *op;

setlocale(LC_ALL, "");
catd = catopen(argv[0], NL_CAT_LOCALE);

if(argc != 3) {
fprintf(stderr,

catgets(catd, NL_SETD, USAGE,
"usage: conv tocode fromcode\n"));

exit(1);
}

cd = iconv_open(argv[1], argv[2]);

84 X/Open Guide (1993)

Internationalisation Support Interfaces Codeset Conversion

ileft = 0;

while(!feof(stdin)) {

/*
* After the next operation, ibuf will
* contain new data plus any truncated
* data left from the previous read.
*/

ileft += fread(ibuf+ileft, 1,
BUFSIZ - ileft, stdin);

do {
ip = ibuf;
op = obuf;
oleft = BUFSIZ;

r = iconv(cd, &ip, &ileft,
&op, &oleft);

if (ICONV_INVAL()) {
fprintf(stderr,

catgets(catd, NL_SETD, ERROR,
"invalid input\n"));

iconv_close(cd);
exit(2);

}

if (ICONV_TRUNC() || ICONV_OVER())

/*
* Data remaining in buffer - copy
* it to the beginning
*/

memcpy(ibuf, ip, ileft);

fwrite(obuf, 1, BUFSIZ - oleft,
stdout);

/*
* loop until all characters in the input
* buffer have been converted.
*/

} while(ICONV_OVER());
}

Internationalisation Guide Version 2 85

Codeset Conversion Internationalisation Support Interfaces

if(ileft != 0) {

/*
* This can only happen if the last call
* to iconv() returned ICONV_TRUNC, meaning
* the last data in the input stream was
* incomplete.
*/

fprintf(stderr,
catgets(catd, NL_SETD, INCOMP,

"input incomplete\n"));
iconv_close(cd);

exit(3);
}

iconv_close(cd);
exit(0);

}

86 X/Open Guide (1993)

Chapter 5

Using Internationalised Software

This chapter explains how environment variables are used to indicate a user’s requirements for
culture-dependent data.

5.1 Language Announcement
The facilities described so far in this Guide have referred primarily to the development of
internationalised software. Another area that needs to be considered is how users indicate their
requirements for specific language operation.

X/Open systems support a language announcement mechanism that provides for:

• single language working, where a System Administrator can define default language
operation

• mixed language working, where different users of a system can work in different languages

• multi-locale working, where a single user can work in a mixture of locales.

Language announcement is implemented via a set of environment variables, which correspond
to locale categories defined for the setlocale () function.

5.1.1 General Announcement

An environment variable LANG is defined to indicate a user’s requirements for specific
language, territory and codeset operation, where a unique setting of LANG is reserved to
identify each supported locale. Each locale has associated with it instances of collating
sequence, character conversion and character classification tables, language information, and
message catalogues.

The value set in LANG is a locale-name of the form:

LANG=language [_territory][. codeset]

where the length of the entire string cannot exceed {NL_LANGMAX} bytes. The set of
characters, excluding separators, is restricted to alphanumeric characters defined in the portable
character set.

Note that permissible settings of language, territory and codeset are not standardised and may
vary from system to system.

Note: All examples in this section assume a particular implementation and should not be
taken to imply specific naming conventions.

On its own, language selects the required language and implies implementation-defined settings
for territory and codeset. If other than these defaults are required, then territory or codeset can also
be specified. For example:

LANG=fr

might select the French language, French cultural conventions and the ISO 8859-1: 1987 standard
codeset. This could be modified by setting:

LANG=fr_CH

Internationalisation Guide Version 2 87

Language Announcement Using Internationalised Software

which selects Swiss cultural conventions instead of French, or

LANG=fr.6937

which selects the ISO 6937: 1983 standard codeset instead of ISO 8859-1: 1987 standard, or:

LANG=fr_CH.6937

which selects both Swiss cultural conventions and the ISO 6937: 1983 standard codeset.

An alternative general announcement capability is provided by the LC_ALL environment
variable, which has the same syntax as described above. The difference between LANG and
LC_ALL is that LC_ALL takes precedence over all other international environment variables,
whereas LANG has the lowest precedence and can be used together with the category-specific
environment variables (see next section) to provide multi-language working.

For a complete description of the hierarchy and precedence of international environment
variables see Section 4.1.3 on page 44.

5.1.2 Announcement Categories

LANG and LC_ALL provide a general announcement mechanism by which users can identify
their overall language requirements. This is sufficient when a single set of localisation data
covers all aspects of a user’s requirements for native language working. It does not cover the
case where (for example) a user wishes to interface to the system in one language and process
text files recorded in a different language.

This is catered for by defining additional environment variables, one for each of the following
categories supported by the setlocale () function:

LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

These identify a user’s requirements for language, territory and codeset operation with respect to
string collation, character classification and case conversion, message translations, currency
symbol and monetary value formats, numeric data representation, and time formats
respectively. If any of these are not defined in the current environment, LANG provides the
necessary default settings.

As an example, if a user wanted to interface with an application in French, but required to sort
German language text files, LANG and LC_COLLATE might be defined as follows:

LANG=fr
LC_COLLATE=de_DE

Note that LC_ALL cannot be used in this situation. Because LC_ALL takes precedence over all
other international environment variables when the program locale is initialised from the
environment, the assignment to LC_COLLATE in the above example would have no effect.

The category-specific environment variables are also defined to accept an additional modifier
field. This allows the user to select a specific instance of localisation data within a single locale
category. Again the permitted settings of this field are not defined by X/Open, but typically
they would allow users to select between such things as character and dictionary ordering.

88 X/Open Guide (1993)

Using Internationalised Software Language Announcement

The right-hand side of category-specific environment variables is thus defined as:

language [_territory][. codeset][@modifier]

The modifier part can be applied to any valid setting of the language, territory and codeset part, that
is:

LC_COLLATE=de@dict
LC_COLLATE=de_CH@dict
LC_COLLATE=de.6937@dict
LC_COLLATE=de_CH.6937@dict

Permitted settings of the modifier field are not standardised and may or may not be specified by
individual X/Open systems.

5.1.3 The POSIX Locale

In general locale-names are implementation-defined and cannot be relied on to have the same
value on different systems. The POSIX locale, however, is guaranteed to exist on all X/Open
systems and can be useful in situations where it is important to run an application in a well-
known or standard environment. Non-internationalised applications always use this
environment, and internationalised software can be forced to run in it by setting LC_ALL as
follows:

LC_ALL=POSIX

LC_ALL is preferable to LANG in this case because it causes all locale categories to be set,
irrespective of whether other category-specific environment variables are initialised or not.

Setting the POSIX locale explicitly is quite different from not setting the international
environment variables, or setting them to the empty string, either of which causes setlocale () to
behave in an implementation-defined manner.

5.1.4 Single Language Working

Assuming the international environment variables are not set, processing takes place in an
implementation-defined default locale. This may vary from system to system and should not be
relied on by either System Administrators or users.

System Administrators have the option of fixing the default language operation of a system by
declaring the appropriate international environment variables in command interpreter start-up
files. For example, if the sh command is the normal command interpreter, the file /etc/profile
could contain the following assignment:

LANG=en_US.88591

which would ensure English language operation, using U.S. customs and the ISO 8859-1: 1987
standard codeset, unless otherwise overridden by specific user action (see next section).

This situation is complicated by the ability to specify different entry programs for each user of an
X/Open system. If any of these identify a program other than sh, the above file is not executed
and hence language operation again reverts to an implementation-defined default.

Most programs that can be used as initial entry programs have some sort of start-up file, which
can be modified with something equivalent to the above shell assignment. Failing this, another
alternative is to use sh as the start-up program and modify the user’s $HOME/.profile file to pass
control to the required entry program. This ensures that the environment is set up correctly, as
sh executes /etc/profile first, which may set the LANG environment variable. The following
example shows how to pass control to the new entry program (altprog):

Internationalisation Guide Version 2 89

Language Announcement Using Internationalised Software

$ cat $HOME/.profile
#
Dummy script to cause sh to initialise
the environment and then pass control
to another command interpreter.
#

exec altprog

This achieves the desired results without affecting the user image, because the only actions
performed by sh are to initialise the environment and then pass control to the alternative entry
program.

This issue will be addressed more fully in the future.

5.1.5 Mixed Language Working

As the X/Open announcement mechanism works through the environment, of which there is
one per process, it follows that each process can specify different and quite unrelated language
requirements. Hence each user of the system can, if required, specify language requirements
and have them associated with all subsequent processes. This applies to processes set off
directly by the user, and to background processes initiated by commands such as at and batch.

Assuming sh is being used, there are two ways users can override the system default and specify
their own language requirements:

• They can make appropriate assignments in their $HOME/.profile file. This file is executed
(after /etc/profile) whenever a user logs in to the system, or when the shell is invoked by one
of the exec functions and the first character of argument zero is −.

• Thy can assign a language to one of the international environment variables directly from the
command stream.

The first usage identified above allows a user to set up the international environment such that
specific language operation results at each log-in. The second usage allows language operation
to be adjusted between individual commands.

Caveats about the use of other command interpreters apply as in the previous section.

The following is an interactive example:

$ LANG=en date (to set English)
Thu Feb 01 13:36:48 GMT 1990
$ LANG=fr date (to set French)
jeu fe v́ 01 13:36:56 GMT 1990
$ LANG=de date (to set German)
Don Feb 01 13:37:08 GMT 1990

At this point it is worth noting a number of special provisions made by sh for operation in an
international environment:

• Changes to the international environment variables take immediate effect, both within the
shell itself and with respect to the environment of subsequent processes.

90 X/Open Guide (1993)

Using Internationalised Software Language Announcement

• The international environment variables are exported implicitly. For example, in the
statement:

LANG=foo; export LANG

specific binding of LANG to the external environment is not necessary; that is, ‘‘export
LANG’’ could have been omitted.

• Assignments of the form:

LANG=sp cmd
(LANG=sp; cmd)

are equivalent and only affect the environment of the process created to execute cmd.

The first provision indicated above has implications for operation of the shell itself, in that all
subsequent, related actions (for example, filename expansion) are affected by any changes to the
shell’s locale. This also affects the language of internally generated shell messages.

5.1.6 Mixed-locale Working

This refers to the ability of a user to specify that different aspects of program operation are to be
related to different locales. For example, an English user of the sort program might require to
collate Italian language text files, or a user at a terminal supporting the ISO 8859-1: 1987 standard
codeset might want to process files using ISO 6937: 1983 standard character encodings.

These requirements are satisfied by provision of the category-specific environment variables
described in Section 5.1.2 on page 88, which allow individual locale categories to be initialised
with different localisation data.

Internationalisation Guide Version 2 91

Commands and Utilities Using Internationalised Software

5.2 Commands and Utilities
X/Open systems support an internationalised utility environment in which standard commands
and utilities described in the XCU specification operate according to the language requirements
of each user. As with other applications, users state their requirements for language operation
via the international environment variables described in Section 5.1 on page 87.

The effects of internationalisation on individual commands is described in the XCU specification.
The following sections of this Guide describe generic effects on standard commands and utilities
by locale category.

Note that standard commands and utilities initialise their locale from the environment; that is,
by a call to setlocale () of the form:

setlocale(LC_ALL, "");

5.2.1 LC_COLLATE

LC_COLLATE affects the behaviour of internationalised regular expressions (see Section 5.3 on
page 97), and any utility that orders text. A prime example of this is the sort command, which
sorts one or more files according to collating sequence information defined in the current locale.

As an example, the following data:

abcdef
abc
abcd
hot
cheque
cull
abcd
LLLLLL
ABCDE
lot
czech
cult
efgh
chess
llllll
abcde
ábcd
àbcd

when sorted in French and Spanish language locales with the following commands:

$ LANG=fr sort sortdata >french
$ LANG=sp sort sortdata >spanish
$ sdiff -w40 french spanish

results in the differences illustrated in the following list.

92 X/Open Guide (1993)

Using Internationalised Software Commands and Utilities

The French result is in the first column and the Spanish result is in the second column:

abc abc
abcd abcd
abcd abcd
ábcd a b́cd
àbcd a b̀cd
ABCDE ABCDE
abcde abcde
abcdef abcdef
cheque <
chess <
cull <
cult cult

> cull
czech czech

> cheque
> chess

efgh efgh
hot hot

> lot
LLLLLL LLLLLL
llllll llllll
lot <

Notice that in the Spanish example, the character sequences ch and ll are treated as multi-
character collating symbols that collate after c and l respectively. Also note the ordering of
accented characters within the equivalence class of base character a (a, á, à).

Examples of ways in which LC_COLLATE affects other commands include:

• expr
String values are compared using collating sequence information in the program’s locale.
This might yield surprising results in an expression of the form:

expr $reply = "y"

where $reply contains y
.. (y-umlaut) and LC_COLLATE only applies primary weighting. In

this case y
.. and y would compare equally.

• comm, join and uniq
For all these commands the value of LC_COLLATE should be equal to the value it had when
the input files were sorted, otherwise they may produce incorrect results.

• ls
LC_COLLATE determines the order in which output is sorted (ascending collation order by
default).

Internationalisation Guide Version 2 93

Commands and Utilities Using Internationalised Software

5.2.2 LC_CTYPE

LC_CTYPE affects the behaviour of internationalised regular expressions (see Section 5.3 on page
97) and utilities that need to perform some sort of character classification or case conversion.
Character type information in a program’s locale is commonly used by parsing functions to
detect such things as field delimiters (for example, white-space characters) and alphabetic or
numeric character sequences.

As an example, the wc command counts lines, words and bytes in a file or files, where a word is
defined as a maximal string of characters delimited by a white-space character (as defined by the
isspace() function).

Other examples of commands and utilities affected by LC_CTYPE include:

• ed, for determining which characters are classified as non-printing for the l (list) command.

• grep, for determining which characters are defined as letters (character class alpha) and
identifying shift information for the −i option.

• sort, for determining which characters are defined as alphanumeric, space and tab (−d
option), for folding the case of letters (−f option), and for identifying non-printing characters
(−i option).

• yacc, for determining which characters are defined as letters and digits (for name fields).

5.2.3 LC_MONETARY

None of the standard commands and utilities currently defined in the XCU specification are
affected by LC_MONETARY.

5.2.4 LC_NUMERIC

LC_NUMERIC affects the behaviour of commands that handle decimal numbers. For example,
the −n option of the sort command alters the default ordering rules such that lines in a file are
sorted by arithmetic value. A number is defined to consist of:

• optional blanks

• an optional minus sign

• zero or more digits with an optional decimal-point character.

The decimal-point character is defined by the value of item RADIXCHAR in the program’s locale
(category LC_NUMERIC), and may vary from one language to another.

Users should take care, when typing in numeric data, to note what number formats are expected
in the current locale. A misplaced dot or comma could have expensive consequences in a
commercial environment.

5.2.5 LC_MESSAGES

LC_MESSAGES determines the language of program messages, which it does by directing the
operation of the catopen() function when selecting message localisations (see Section 3.5 on page
33). It also affects the behaviour of commands that prompt the user for a yes/no (y/n) type of
response. For example, the −i (interactive) option of the rm command causes the user to be
prompted for an affirmative response before a file is deleted. In the POSIX locale, the affirmative
response character is defined as y. In other locales, it is defined by the regular expression string
found in YESEXPR (category LC_MESSAGES).

94 X/Open Guide (1993)

Using Internationalised Software Commands and Utilities

All the commands and utilities that use XPG4 message catalogues are affected by
LC_MESSAGES. Some examples are:

• ln and mv
If the target file exists and its mode forbids writing, the user is asked for an affirmative
response before the link is created.

• find
If the −ok expression is used, the user is prompted for an affirmative response before the
associated cmd is executed.

• tar
Under the w option, tar prints the action to be taken, followed by the name of the file, and
waits for the user’s confirmation before proceeding.

5.2.6 LC_TIME

LC_TIME affects the format of date and time information produced by various commands. For
example, the date command prints date and time information, optionally under the control of a
user-specified format string, as follows:

$ date
Thu Feb 01 15:08:25 GMT 1990
$ date "+%A, %B %d, %Y"
Thursday, February 01, 1990

In a French language locale this produces:

$ date
jeu fe v́ 01 15:10:36 GMT 1990
$ date "+%A, %B %d, %Y"
jeudi, fe v́rier 01, 1990

And in a German language locale it produces:

$ date
Don Feb 01 15:12:14 GMT 1990
$ date "+%A, %B %d, %Y"
Donnerstag, Februar 01, 1990

Some examples of commands that output date and time information and are affected by
LC_TIME include:

• ar, cpio and tar, when listing the contents of an archive with the v modifier

• lpstat, when displaying line-printer status information with the −a, −o, −p, −t or −u options

• ls, when listing the contents of a directory with the −g, −l, −n or −o options

• mail and mailx, when displaying date information in mail headers

• pr, when including date and time information in page headers

• ps, when generating a full listing with the −f option

• who, when writing the time field of output lines

Internationalisation Guide Version 2 95

Commands and Utilities Using Internationalised Software

5.2.7 8-bit Transparency

X/Open defines that all commands and utilities presented in the XCU specification are
transparent to 8-bit data. This includes all file or character data processed by a command, and
file store object names.

One implication of this provision is that it should be possible to transfer 8-bit data between
systems. However, for the following reasons, this may not always be the case:

• Inter-system mail may be restricted to 7-bit data by underlying mail or network protocols.

• 8-bit data and filenames may not be portable to non-X/Open systems.

Under these circumstances, it is recommended that only characters defined in the Portable
Character Set be used for data transfer, and only characters defined in the Portable Filename
Character Set be used for naming transfer files.

96 X/Open Guide (1993)

Using Internationalised Software Regular Expressions

5.3 Regular Expressions
In the past, regular expressions have provided pattern matching facilities in terms of machine
collating sequences, the English language and the ASCII coded character set. In an international
environment, these facilities need to be extended to cover other languages and other codesets.

Limitations in the syntax of regular expressions also make it difficult to produce constructs that
can be applied to different languages, and in particular to languages with accented characters or
multi-character collating elements.

The syntax of regular expressions has beed updated to overcome these shortcomings and, hence,
to provide a definition of REs that is tenable in an international environment. In doing this, the
following objectives were set by X/Open:

• Existing programs should continue to work correctly, without requiring that they are
modified to allow for new syntax.

• The syntax should provide for the specification of character classes that are independent of
language and codeset, similar to the facilities offered by functions like isalpha () in the C
programming language.

• The syntax should provide for the specification of a base character on its own, or a base
character with diacritical marks (for example, a, á, à, and so on).

• The syntax should provide for the specification of two or more characters as a single collating
element (for example, ll in Spanish).

Character expressions, including character ranges, should also be independent of machine
collating sequences. These should work instead off collating sequence information defined in the
caller’s locale.

5.3.1 Character Class Expressions

Within square brackets, an expression of the form:

[:class:]

is defined as a character class expression, where class can be one of the following:

alpha a letter
upper an upper-case letter
lower a lower-case letter
digit a decimal digit
xdigit a hexadecimal digit
alnum an alphanumeric character (letter or digit)
space a character producing white space in displayed text
punct a punctuation character
print a printing character
graph a character with a visible representation
cntrl a control character
blank a blank character.

Character class expressions provide for the specification of character types in a way that is
independent of language and codeset. For example, the command:

grep ’ˆ[[:upper:]].*[[:punct:]]$’ file

Internationalisation Guide Version 2 97

Regular Expressions Using Internationalised Software

searches file for lines beginning with an upper-case letter and ending with a punctuation
character. This expression continues to work correctly irrespective of the language and codeset
used by characters in file, provided a matching language and codeset is specified in the calling
locale.

5.3.2 Equivalence Classes

Within square brackets, an expression of the form:

[= c=]

is defined as an equivalence class. This matches any collating element having the same relative
order (primary weighting) in the current collating sequence as c.

As an example, if e, é and è belong to the same equivalence class, then the command:

expr $var : ’[[=e=]]fgh’

matches the character sequences:

efgh
éfgh
èfgh

5.3.3 Collating Symbols

Within square brackets, an expression of the form:

[. cc .]

is defined as a collating symbol. Multi-character collating elements (that is, n-character
sequences such as ch and ll in Spanish) must be represented as collating symbols to distinguish
them from single character collating elements. For example, the expression:

[ch].*

is treated as a simple list that matches c or h followed by any sequence of characters, whereas:

[[.ch.]].*

defines a collating symbol that only matches words beginning with the character sequence ch. If
these expressions are applied to the following:

camper
champer
hamper

the first expression matches with all three words, while the collating symbol expression only
matches with the word champer.

Note that if the string ch is not a valid collating symbol in the current locale, the expression is
treated as invalid. This normally results in programs displaying some sort of error message.

98 X/Open Guide (1993)

Using Internationalised Software Regular Expressions

5.3.4 Ranges

In range expressions of the form:

[c- c]

c can be a single character collating element, a collating symbol or an equivalence class, but not a
character class expression. Thus:

[[.ch.]-e]

matches any element that collates between ch and e inclusive, while:

[a-[=e=]]

matches any element that collates between a and e, including accented forms of e defined in the
same equivalence class. An expression of the form [a-e] only matches up to the unadorned form
of e.

[[:digit:]-[:alpha:]]

is an example of an invalid expression; that is, because character class expressions cannot be
used as range terminators.

5.3.5 Affected Commands

At a minimum, the following commands defined in the XCU specification support
Internationalised regular expressions:

Interface
awk
ed
egrep
expr
grep
pg
sed

5.3.6 Shell Meta Notation

Changes have also been made to the shell’s meta notation for matching filenames. On X/Open-
compliant systems, the syntax for filename matching patterns is now defined as:

* Matches any string, including the empty string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. Characters in the list may be:

• single character collating elements, [c].

• collating symbols, [[.cc.]].

• range expressions, [c-c].

• character classes, [[:class:]].

• equivalence classes, [[=c=]].

A pair of characters separated by a dash (-) matches any symbol that collates between
the pair, as defined by collating sequence information in the shell’s locale. If the first

Internationalisation Guide Version 2 99

Regular Expressions Using Internationalised Software

character following the opening square bracket is an exclamation mark (!), any
character not enclosed is matched.

5.3.7 Examples and Warnings

In an international environment, a command of the form:

rm [a-z]*

removes all files whose names begin with a lower-case letter in the range a to z. If dictionary
ordering is defined in the shell’s locale, the above expression may also match filenames
beginning with the upper-case letters A to Z. Conversely, it would fail to match lower-case
letters that collate after z in, for example, the Scandinavian languages.

In an international environment, an expression of the above form is dangerous and should not
be used unless the user is certain what may happen. The correct way to match lower-case letters
is to use a pattern of the form:

rm [[:lower:]]*

which works predictably in all locales.

Because of the dangers described above, it is also recommended that shell scripts imported from
non-internationalised environments be executed in the POSIX locale. This supports the ASCII
set of characters, the English language (usually), U.S. customs, and is the locale most closely
matching that of earlier UNIX environments.

Further examples include:

cat [[=a=]]*

which matches any filename beginning with a character in the same equivalence class as a, and

cp [[.ch.][.ll.]]* dir

which matches any filenames beginning with the collating symbols ch or ll.

100 X/Open Guide (1993)

Using Internationalised Software The iconv Utility

5.4 The iconv Utility
The XCU specification defines generic facilities for handling data recorded in different coded
character sets, although it makes no recommendations about which codesets should be
supported. X/Open systems may support different codesets for specific geographic areas, or to
provide compatibility with an existing field population of systems, or to support a particular
application (for example, ISO mail systems).

All X/Open systems provide the iconv utility for converting to and from supported codesets.
Since the codesets themselves are not standardised, the set of possible codeset conversions is
implementation-dependent.

5.4.1 Function and Interface

iconv -f fromcode -t tocode [file]

The iconv utility converts the encoding of characters in file from the codeset identified by
fromcode to the codeset identified by tocode. The converted file is written to standard output. If
no file argument is given on the command line, iconv reads from standard input.

Character encodings in either codeset may include single-byte values (for example, for West
European and North American usage), or multi-byte values (for example, for Asian usage). The
handling of invalid characters in the input stream is implementation-defined.

Settings of fromcode and tocode are implementation-defined. Users are advised to consult system
documentation to determine the settings for a particular implementation.

As an example:

iconv -f local8 -t IS88591 guide > guide.out

converts the contents of guide from a local 8-bit codeset (local8) to ISO 8859-1: 1987 standard
and writes the results to file guide.out.

Internationalisation Guide Version 2 101

Using Internationalised Software

102 X/Open Guide (1993)

Chapter 6

Locale Utilities

This chapter describes the localedef and locale utilities.

6.1 The localedef Utility
Various facilities are provided for defining localisation data; that is, locale-specific instances of
collating sequence, character classification and character conversion information, language
information and message translations. Provisions for generating message localisations are
described in Chapter 3. Facilities for defining all other types of locale-specific information are
provided by the localedef utility.

6.1.1 Function and Interface

localedef [-c] [-f charmap] [-i sourcefile] name

The localedef utility converts source definitions for locale categories into a localised form suitable
for use by functions and utilities defined to support internationalised behaviour. It is this
information, or some adaptation thereof, that is loaded into a program’s locale by the setlocale ()
function.

The localedef () utility reads source definitions from sourcefile (if specified) or standard input and
writes its output to the target locale identified by name.

Source definitions are accepted for one or more locale categories belonging to the same locale.
Each category source definition in the input is identified by the corresponding category name,
and terminated by an END category-name statement, for example:

LC_CTYPE
. . .
END LC_CTYPE

It is also permitted for the input to contain source for implementation-defined categories,
provided these are defined after the standard categories.

The following standard categories are supported:

LC_CTYPE
LC_COLLATE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

The charmap argument identifies a character set description file (see next section), which contains
a mapping of character symbols and collating element symbols to actual character encodings.
This option must be specified if symbolic names are used in the locale definition file (sourcefile).

The −c option directs localedef to create permanent output even if warning messages are issued.

Internationalisation Guide Version 2 103

The localedef Utility Locale Utilities

6.1.2 Character Set Description Files

A character set description file defines the symbolic names and values of character codes in a
supported coded character set. Each character set description file must contain source
statements for all characters defined in the Portable Character Set and the Control Code
Character Set (see XCU specification), and may define encoding for additional characters
supported by the implementation.

The format of a character set description file is as follows:

CHARMAP
<code_set_name>
<mb_cur_max> <value>
<mb_cur_min> <value>
<escape_char> <value>
<comment_char>
<symbolic-name> <value>
<symbolic-name> <value>
. . .
END CHARMAP

where

<code_set_name> gives the name of the defined coded character set

<mb_cur_max> gives the maximum number of bytes in a character (1 by default)

<mb_cur_min> gives the minimum number of bytes in a character (default
<mb_cur_max>)

<escape_char> gives the character used for expressing numeric values (backslash by
default)

<comment_char> is the character that, when placed in column 1, indicates that the line is to
be ignored (the number-sign (#) by default)

<symbolic-name> is a unique name for each collating element or character

<value> is a character, decimal, octal or hexadecimal constant giving the value of
the associated symbol.

The fields of a source statement are separated by one or more blanks (space, tab, and so on).

Symbolic names are only allowed to contain characters from the portable character set and
should be delimited by less-than and greater-than characters.

For settings of value, a decimal constant is defined as one or more decimal digits preceded by the
escape character and lower case d (for example, \d42), an octal constant is defined as one or
more octal digits preceded by the escape character (for example, \141), and a hexadecimal
constant is defined as one or more hexadecimal digits preceded by the escape character and a
lower-case x (for example, \x6a).

Multi-byte values can be presented by concatenating two or more decimal, octal or hexadecimal
constants.

Symbolic names must be unique within one character set description file, but two or more
symbolic names are allowed to have the same value. It is possible to specify symbolic names for
which no encoding exists in the associated codeset by not specifying a value.

Empty lines or lines containing the comment character in the first column position are treated as
comments and are ignored.

104 X/Open Guide (1993)

Locale Utilities The localedef Utility

The following example is intended to illustrate the syntax of a character set description file and
does not define a real codeset.

CHARMAP
<mb_cur_max> 2
<mb_cur_min> 1
. . .
<acute-accent> \047
<grave-accent> \140
. . .
<A> \101
 \102
<C> \103
<D> \104
. . .
<A-grave> \x60\x41
<A-acute> \x27\x41
<a-grave> \x60\x61
<a-acute> \x27\x61
. . .
END CHARMAP

It is also possible to define ranges of symbolic names using the syntax:

<symbolic-name> . . . <symbolic-name> <value>

In this form, symbolic names consist of zero or more non-numeric characters from the portable
character set, followed by an integer formed from one or more decimal digits. This is interpreted
as a series of symbolic names formed from the common non-numeric stem and each of the
integers between the first and second integer inclusive, for example:

<j0101 > . . . <j0104> \x12\x34

is interpreted as:

<j0101> \x12\x34
<j0102> \x12\x35
<j0103> \x12\x36
<j0104> \x12\x37

6.1.3 General Syntax

Within a localedef input file, the following general syntax applies:

• Each category source definition starts with a category identifier line and ends with a category
trailer line (for example, LC_TIME . . . END LC_TIME).

• Within each category, the definition consists of identifiers and operands separated by one or
more blanks. Identifiers can be either keywords, identifying particular locale elements, or
collating elements. Operands can be characters, collating elements, strings of characters, or
values.

• Lines preceding the first category header can be used to change the comment character (# by
default) and the escape character (backslash by default). These have the format:

comment_char <char>
escape_char <char>

Internationalisation Guide Version 2 105

The localedef Utility Locale Utilities

• Continuation lines are indicated by placing an escape character as the last character on the
line. Any blanks preceding a keyword or the first non-blank character on a continuation line
are ignored.

• Empty lines or lines containing a comment character character in the first column position of
a line are treated as comments and are ignored.

The format of operands is defined in the following sections. When an operand consists of more
than one value, successive values in the definition are separated by semicolons. Strings in
operands are enclosed between quotation marks.

Characters can be entered in one of the following formats:

• Within a string, the double-quote character, the escape character and the left angle bracket
character must be escaped to be interpreted as the character itself.

Note: The XBD specification is incorrect in stating that the right angle bracket must be
escaped to be interpreted as the character itself.

Outside strings, the characters:

, ; < > escape_char

must be escaped to be interpreted as the character itself.

• As an octal constant, specified as the escape character followed by one or more octal digits.

• As a decimal constant, specified as the escape character, followed by lower-case d, followed
by one or more decimal digits.

• As a hexadecimal constant, specified as the escape character, followed by lower-case x,
followed by one or more hexadecimal digits.

• As a symbolic name enclosed between less-than and greater-than symbols. This notation is
only supported if a charmap is specified and the symbolic name exists in the charmap.

6.1.4 LC_CTYPE

The LC_CTYPE category defines character classification, case conversion and various other
character attributes. Each operand consists of one or more characters or digits, separated by
semicolons. Characters can be entered in any of the ways defined in the previous section, or as a
sequence separated by an ellipsis symbol, for example,

\x61 ; . . . ;\x7a

This is interpreted as including in the list all characters with an encoded value equal to or higher
than the character preceding the ellipsis, and equal to or lower than the value following the
ellipsis.

Three types of keyword are recognised:

• General

These include the keyword,

copy

which specifies the name of an existing locale to be used as the source for the definition of
this category. If this keyword is used, no other keyword can be specified.

106 X/Open Guide (1993)

Locale Utilities The localedef Utility

• Character Classification

These include the keywords:

upper
lower
alpha
digit
space
cntrl
punct
graph
print
xdigit
blank

The operand field of each specifies a list of characters defined as belonging to the associated
character class.

Locale-specific character classes can be defined using the charclass keyword. The operand is
a list of names of locale-specific character classes. After defining names, character classes can
be defined using the same syntax as other character class keywords.

• Character Conversion

These include the keywords:

toupper
tolower

where the operands define the mapping of lower-case to upper-case and upper-case to
lower-case letters respectively. Each mapping in the operand is specified as character pairs,
separated by semicolons and enclosed in parentheses (for example, (<a>, <A>);(b,B); and so
on).

As an example:

LC_CTYPE
#
lower <a>;;<c>;<c-cedilla>;<d>; . . . ;<z>
upper A;B;C;C , ;D; . . . ;Z
space \x20;\x09;\x0a;\x0b;\x0c;\x0d
blank \040;\011
toupper (<a>,<A>);(b,B);(c,C);(c , ,C,);(d,D);(z,Z)
END LC_CTYPE
#

Internationalisation Guide Version 2 107

The localedef Utility Locale Utilities

6.1.5 LC_COLLATE

The LC_COLLATE category specifies the codeset collation sequence as a set of collating
elements and the rules defining how strings containing these should be ordered. The following
capabilities are provided:

• multi-character collating elements
• user-defined ordering of collating elements
• multiple weights and equivalence classes
• one-to-many mapping
• many-to-many substitution
• equivalence class definition
• ordering by weights.

The following keywords are recognised in this category:

copy
collating-element
collating-symbol
order_start
order_end

copy
If present, this keyword identifies the name of an existing locale to be used as the source for
the definition of this category, in which case no other keyword can be specified.

collating-element
This keyword is used to define multi-character collating elements, in the form:

collating-element < symbol > from < string >

where <symbol> is a string of one or more characters that does not duplicate any symbolic
name defined in the current charmap file (if any). For example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-symbol <ll> from "ll"

collating-symbol
This keyword allows symbols to be defined for use in collation sequence statements (that is,
between order_start and order_end). For example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

order_start
The order_start keyword precedes collation order entries and also defines the number of
weights and other collation rules for this collation sequence definition.

The syntax of order_start is:

order_start < sort-rules >; . . . ;< sort-rules >

where the optional operands specify the rules to be applied when comparing strings. The
first operand applies to operations performed using primary weight; subsequent operands
apply to operations performed using their corresponding weight. Each sort-rule is a
comma-separated list of collation directives, where the following directives are currently
defined:

108 X/Open Guide (1993)

Locale Utilities The localedef Utility

forward
specifies that string comparison shall proceed from the start to the end of the string.

backward
specifies that string comparison shall proceed from the end to the start of the string.
These two directives are mutually exclusive within a single sort-rule.

position
specifies that compare operations shall consider the relative position of non-ignored
elements in the string, such that if strings compare equal, the element with the shortest
distance from the start of the string collates first.

The maximum number of permissible operands is indicated by the setting of
{COLL_WEIGHTS_MAX}. If no operands are defined, one forward operand is assumed.

For example:

order_start forward;backward

The order_start directive is followed by a series of collating element entries, with the
following syntax:

<collating-element > <weight >; . . . ;< weight >

A collating element can be specified as a character, in any of the permitted forms listed
earlier, a collating-element, a collating-symbol, an ellipsis, or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
collation sequence, such that each collating element compares less than the elements
following it.

A collating-element is used to specify multi-character collating elements and indicates that
the associated characters are to be collated as a single unit in the relative order indicated.

A collating-symbol is used to define a position in the relative order for use in weights.

An ellipsis symbol indicates that a sequence of characters collates according to their
encoded character values, that is:

• An initial ellipsis is interpreted as expanding to all characters with an encoded value
greater than NUL and lower than the value of the collating element specified on the next
line.

• An ellipsis enclosed between other lines is interpreted as expanding to all characters
with an encoded value higher than the value of the collating element on the preceding
line, and lower than the value of the collating element on the following line.

• A trailing ellipsis is expanded to all characters with an encoded value higher than the
value of the collating element on the preceding line and lower than the highest coded
character value in the current codeset.

The symbol UNDEFINED is interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters are inserted in the character
collation order at the point indicated by the symbol, and in ascending order according to
their coded character set values.

The optional operands are used to define primary, secondary or successive weights for the
collating element. These can be expressed as collating elements or as the special symbol
IGNORE, and are interpreted to indicate the relative order between elements, rather than
their absolute value. The following should be noted:

Internationalisation Guide Version 2 109

The localedef Utility Locale Utilities

• A one-to-many mapping is indicated by an operand containing more than one collating
element, for example:

<eszet> <s><s>

• The special symbol IGNORE indicates that the collating element should be ignored
when comparing strings.

• An empty operand is interpreted as the collating element itself.

• An ellipsis may be used as an operand if the collating element is an ellipsis. This is
interpreted as the value of each character defined by the ellipsis.

In the following example the English text has been added for clarity but would not appear
in a source file:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>

indicates (a) string ordering based on primary and secondary weighting, and
(b) that all characters not specified in the definition should be ignored for
collation purposes (for regular expressions they are ordered first).

. . . <LOW> ; . . .
<a> <a>;<a>

All characters between <space> and <a> have the same primary equivalence
class and secondary weights based on their ordinal encoded values.

<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>

The characters <a>, <a-acute> and <a-grave> belong to the same equivalence
class. They are differentiated by secondary weighting.

<ch> <ch>;<ch>
<Ch> <ch>;<Ch>

The multi-character collating elements <c><h> and <C><h> represented by
the collating symbols <ch> and <Ch> respectively, belong to the same
primary equivalence class.

<s> <s>;<s>
<eszet> "<s><s>";"<eszet><eszet>"

The character <eszet> is given the string "<s><s>" as a weight. Comparisons
are performed as if all occurrences of the character <eszet> are replaced by
<s><s> (assuming that <s> has the collating weight <s>). If it is necessary to
define <eszet> and <s><s> as an equivalence class, a collating element must
be defined for the string ss.

. . . <HIGH> ; . . .
<HIGH>
order_end

End of example file.

order_end
This keyword terminates collating order entries introduced by the order_start keyword.

110 X/Open Guide (1993)

Locale Utilities The localedef Utility

6.1.6 LC_MESSAGES

This category defines the format and values used for affirmative and negative responses. The
operands are strings or extended regular expressions assigned to the following keywords:

copy
yesexpr
noexpr
yesstr
nostr

For example:

LC_MESSAGES
#
yesexpr "([yY][[:alpha:]]*)|(OK)"
noexpr "[nN][[:alpha:]]*"
yesstr "yes"
nostr "no"
#
END LC_MESSAGES

The yesexpr string is defined as y or Y followed by any sequence of alphabetic characters, or the
sequence OK. The noexpr string is defined as n or N followed by any sequence of alphabetic
characters.

If copy is present, the operand specifies the name of an existing locale to be used as the source
for the definition of this category. In this case, no other keywords can be specified.

6.1.7 LC_MONETARY

This category defines the rules and symbols used to format monetary information. The
operands are strings or integers. Unspecified keywords, or integer keywords set to −1, are used
to indicate that the value is unspecified.

The following keywords are supported:

copy
Specifies the name of an existing locale to be used as the source for the definition of this
category. If present, no other keywords can be specified.

int_curr_symbol
The international currency symbol specified as a string of four characters, where the first
three characters contain the currency symbol and the last character is used to separate the
symbol from the monetary quantity (for example, "USD ").

currency_symbol
The string used as the local currency symbol (for example, "$").

mon_decimal_point
The character used as a decimal delimiter (for example, ".").

mon_thousands_sep
The character used as a separator for groups of digits to the left of the decimal delimiter (for
example, ",").

Internationalisation Guide Version 2 111

The localedef Utility Locale Utilities

mon_grouping
Defines the size of each group of digits in formatted monetary quantities. The operand is a
sequence of integers separated by semicolons. Each integer specifies the number of digits in
each group, with the initial integer defining the size of the group immediately preceding the
decimal delimiter, and the following integers defining the preceding groups. If the last
integer is not −1, the size of the previous group (if any) is repeatedly used for the remainder
of the digits.

Note: This means that the value of the last integer is used to determine the size of
subsequent groups.

If the last integer is −1, no further grouping is performed.

positive_sign
The string used to indicate a non-negative-valued monetary quantity (for example, "+").

negative_sign
The string used to indicate a negative-valued monetary quantity (for example, "−").

int_frac_digits
An integer indicating the number of digits to be displayed to the right of a decimal delimiter
in monetary values using int_curr_symbol (for example, 2)

frac_digits
An integer indicating the number of digits to be displayed to the right of a decimal delimiter
in monetary values using currency_symbol (for example, 2)

p_cs_precedes
For non-negative monetary values, set to 1 if currency_symbol precedes the value, or 0 if
the symbol succeeds it.

p_sep_by_space
For non-negative monetary values, set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value, set to 1 if space separates the symbol from the value, or set
to 2 if a space separates the symbol and the sign string, if adjacent.

n_cs_precedes
For negative monetary values, set to 1 if currency_symbol precedes the value, or 0 if the
symbol succeeds it.

n_sep_by_space
For negative monetary values, set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value, set to 1 if space separates the symbol from the value, or set
to 2 if a space separates the symbol and the sign string, if adjacent.

p_sign_posn
An integer value indicating where the positive_sign should be placed for a non-negative
monetary value. The values the operand can take are the same as those defined for the
localeconv () function (see Section 4.5.3 on page 60).

n_sign_posn
An integer value indicating where the positive_sign should be placed for a negative
monetary value.

112 X/Open Guide (1993)

Locale Utilities The localedef Utility

As an example:

#
Monetary information for Norway
#
LC_MONETARY
#
int_curr_symbol "NOK "
currency_symbol "kr"
mon_decimal_point ","
mon_thousands_sep "."
mon_grouping 3
positive_sign ""
negative_sign "-"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 2
#
END LC_MONETARY

Internationalisation Guide Version 2 113

The localedef Utility Locale Utilities

6.1.8 LC_NUMERIC

This category defines the rules and symbols for formatting non-monetary numeric values. The
operands are strings or integers. For some keywords, the string can only contain integers.
Undefined keywords, string values set to the empty string, or integer keywords set to −1, are
used to indicate that the value is unspecified.

The following keywords are defined:

copy
Specifies the name of an existing locale to be used as the source for the definition of this
category. If present, no other keywords can be specified.

decimal_point
Specifies the character to be used as the decimal delimiter (for example, ".").

thousands_sep
Specifies the character to be used as the separator for grouping digits to the left of the
decimal delimiter (for example, ",").

grouping
Defines the size of each group of digits in formatted non-monetary quantities. The operand
is a sequence of integers separated by semicolons. Each integer specifies the number of
digits in each group, with the initial integer defining the size of the group immediately
preceding the decimal delimiter, and the following integers defining the preceding groups.
If the last integer is not −1, the size of the previous group (if any) is repeatedly used for the
remainder of the digits.

Note: This means that the value of the last integer is used to determine the size of
subsequent groups.

If the last integer is −1, no further grouping is performed.

A source description might be defined as follows:

#
LC_NUMERIC
#
decimal_point \x2e
thousands_sep \054
grouping 3
#
END LC_NUMERIC

114 X/Open Guide (1993)

Locale Utilities The localedef Utility

6.1.9 LC_TIME

This category defines values of field descriptors supported by the date command and the
strftime(), wcsftime() and strptime() functions. The following keywords are defined:

copy
Specifies the name of an existing locale to be used as the source for the definition of this
category. If present, no other keywords can be specified.

abday
Abbreviated weekday names substituted by the %a conversion directive.

day
Full weekday names substituted by the %A conversion directive.

abmon
Abbreviated month names substituted by the %b conversion directive.

mon
Full month names substituted by the %B conversion directive.

d_t_fmt
The date and time representation substituted by the %c conversion directive, specified as an
strftime() format string.

d_fmt
The date representation substituted by the %x conversion directive, specified as an
strftime() format string.

t_fmt
The time representation substituted by the %X conversion directive, specified as an
strftime() format string.

am_pm
The representation of ante meridiem and post meridiem strings substituted by the %p
conversion directive. The two strings are separated by a semicolon.

t_fmt_ampm
The time representation in 12-hour clock format substituted by the %r conversion directive,
specified as an strftime() format string.

era
Defines how years are counted and displayed for each era in a locale, where each era
description segment has the format:

direction:offset:start_date:end_date:era_name:era_format

There can be as many era description segments as necessary to describe the different eras.

era_d_fmt
Defines the locale’s appropriate alternative date format, corresponding to the %Ex field
descriptor.

era_t_fmt
Defines the locale’s appropriate alternative time format, corresponding to the %EX field
descriptor.

era_d_t_fmt
Defines the locale’s appropriate alternative date and time format, corresponding to the %Ec
field descriptor.

Internationalisation Guide Version 2 115

The localedef Utility Locale Utilities

era_year
Defines the format of the year in alternative Era format, corresponding to the %EY field
descriptor. This is an optional keyword in the ISO POSIX-2 DIS.

alt_digits
Defines alternative symbols for digits as a semi-colon separated string, where the first string
is the alternative symbol corresponding to 0 (zero), the second string the alternative symbol
corresponding to 1 (one), and so on.

An example of a source specification for this category might be:

#
LC_TIME
#
abday "Sun";"Mon";"Tue";"Wed";\

"Thu";"Fri";"Sat"
#
day "Sunday";"Monday";"Tuesday";\

"Wednesday";"Thursday";"Friday";\
"Saturday"

#
abmon "Jan";"Feb";"Mar";"Apr";\

"May";"Jun";"Jul";"Aug";\
"Sep";"Oct";"Nov";"Dec"

#
mon "January";"February";"March";\

"April";"May";"June";"July";\
"August";"September";"October";\
"November"; "December"

#
d_t_fmt "%a %b %d %H:%M:%S %Z %Y"
#
d_fmt "%d/%m/%y"
#
t_fmt "%H:%M:%S"
#
am_pm "AM";"PM"
#
t_fmt_ampm "%I:%M:%S %p"
#
END LC_TIME

116 X/Open Guide (1993)

Locale Utilities The locale Utility

6.2 The locale Utility
The locale utility is provided to allow users to display information about the current locale
environment or all public locales. Command options define what information is produced and
written to the standard output.

6.2.1 Function and Interface

locale [−a | −m]
locale [−ck] name . . .

When locale is invoked without operands, it summarises the current locale environment for each
locale category, as determined by the setting of the international environment variables. For
example:

$ locale
LANG=en_GB.646
LC_CTYPE="en_GB.646"
LC_COLLATE="en_GB.646"
LC_TIME=en_US.646
LC_NUMERIC="en_GB.646"
LC_MONETARY="en_GB.646"
LC_MESSAGES="en_GB.646"
LC_ALL=

where a value enclosed by double quotes indicates that the setting is implied by the setting of
LANG or LC_ALL.

When invoked with operands, locale writes the values assigned to the keywords and locale
categories, as follows:

• Specifying a keyword name selects that keyword and the category containing the keyword.

• Specifying a category name selects the named category and all keywords in that category.

6.2.2 Options

The following options are defined for this utility:

−a Causes information about all public locales to be output. At least the POSIX or C locale
exists on all implementations; other locales are implementation-defined. For example:

$ locale −a
C
POSIX
en_GB.88591
en_US.88591
fr_FR.88591
de_DE.6937
. . .
$

Internationalisation Guide Version 2 117

The locale Utility Locale Utilities

−c Writes the names of selected locale categories. If keywords are also selected for writing, the
category name precedes the keyword output for that category. For example:

$ locale −c noexpr
LC_MESSAGES
[nN][[:alpha:]]*
$

−k Writes the names and values of selected keywords. Non-numeric values are written in the
format:

keyword="value"

For example:

$ locale −ck LC_MESSAGES
LC_MESSAGES
yesexpr="[yY][[:alpha:]]*"
noexpr="[nN][[:alpha:]]*"
$

If the keyword is charmap, the name of the charmap (if any) that was specified via the
localedef −f option when the locale was created is written.

If the value is numeric, output is in the form:

keyword=value

where value may be a decimal value, or an octal or hexadecimal value preceded by the
current escape character, for example:

$ locale −ck frac_digits
LC_MONETARY
frac_digits=2
$

If the −k option is not specified, selected keyword values are written without the keyword
name.

−m Writes the names of all available charmaps, where the output is in a form suitable for use as
the argument to the localedef −f option, for example:

$ locale -m
IS646
IS88591
IS6937
$

118 X/Open Guide (1993)

Appendix A

Migration Issues

This appendix provides guidelines for upgrading source code from one issue of the Portability
Guide to the next. This only refers to functions and interfaces superseded or in some way
changed in successive issues. It does not provide a general statement of capability for each
issue, which is already described elsewhere in this Guide.

A.1 XPG2 to XPG3
XPG2 described a set of Internationalisation facilities that had not had extensive market
exposure at the time. This issue of the Portability Guide was also published ahead of the ANSI
C standard and the POSIX.1-1988 standard, both of which described Internationalisation
facilities that X/Open aligned with in XPG3. XPG2 Internationalisation was therefore something
of a trial-use definition, and was identified as an optional component of XPG2 systems.

In terms of system interfaces and headers, the following were superseded in XPG3:

• nl_init (), which was replaced by the ANSI and POSIX specified setlocale () function.

• nl_cxtime() and nl_ascxtime(), which were replaced by the ANSI strftime() function.

• gcvt(), which was marked WITHDRAWN in XPG3.

• nl_printf (), nl_fprintf () and nl_sprintf(), whose functions were merged with the standard
printing functions.

• nl_scanf(), nl_fscanf () and nl_sscanf(), whose functions were merged with the standard
scanning functions.

• nl_strcmp(), which was replaced by the ANSI strcoll() function.

• nl_strncmp(), which was marked WITHDRAWN in XPG3.

• catgetmsg(), which was marked WITHDRAWN in XPG3.

Internationalisation Guide Version 2 119

XPG2 to XPG3 Migration Issues

With the exception of gcvt() and nl_strncmp(), XPG3 defined equivalent facilities to those
presented in XPG2, and in most cases it is a simple matter to define a function or macro to map
from the XPG2 interface to an equivalent XPG3 interface. For example:

#include <locale.h>
#include <nl_types.h>

#define valid(ptr) (ptr != (char*) NULL)

nl_init (lang)
char *lang;
{

/*
* ensure ’lang’ is valid before calling
* setlocale().
*/

if (valid (lang) && *lang) {
if (valid (setlocale (LC_ALL, lang)))

return (0);
else

return (-1);
} else {

return (-1);
}

}

which converts calls to nl_init () into equivalent calls of setlocale (). Similarly,

#include <nl_types.h>
#include <string.h>
#include <memory.h>

char *
catgetmsg (catd, set_id, msg_id, buf, len)
nl_catd catd;
int set_id;
int msg_id;
char *buf;
int len;
{

strncpy (buf,
catgets (catd, set_id, msg_id,

memset (buf, ’ ’, len)),
len -1);

return (buf);
}

implements catgetmsg() via calls to catgets(). The use of memset() in the above example causes a
null string to be returned if the identified message cannot be read from the message catalogue.

120 X/Open Guide (1993)

Migration Issues XPG2 to XPG3

Finally, the XPG2 ctime functions can be implemented as follows:

#include <nl_types.h>
#include <langinfo.h>
#include <time.h>
#include <string.h>
#include <sys/types.h>

#define TBUFSIZE 128

char _tbuf [TBUFSIZE];
char _bbuf [TBUFSIZE];

#define format(buf) \
(strcat (strcpy (buf, \

nl_langinfo (D_T_FMT)), "\n"))

#define setfmt(fmt) \
(fmt == (char*) NULL ? format (_bbuf) : \

(*fmt == ’\0’ ? format (_bbuf) : fmt))

char *
nl_ascxtime (tm, fmt)
struct tm *tm;
char *fmt;
{

int result;

result = strftime (_tbuf, TBUFSIZE,
setfmt (fmt), tm);

return (result ? _tbuf : asctime (tm));
}

char *
nl_cxtime (clock, fmt)
long *clock;
char *fmt;
{

return (
nl_ascxtime (localtime (clock), fmt));

}

The printing and scanning functions are more simply mapped by #define statements, for
example,

#define nl_printf printf
#define nl_scanf scanf

.

.

.

Internationalisation Guide Version 2 121

XPG2 to XPG3 Migration Issues

The gcvt() function was withdrawn in XPG3 because this function is typically used to
implement certain printf() conversions and should not be used directly by user programs. The
strncmp() function was withdrawn primarily because it could only ever be supported for single-
byte codesets (that is, where there was no distinction between characters and bytes). This was
deemed too restrictive and hence the function was removed from the interface definition.

All other XPG2 functions were carried forward into XPG3.

A.2 XPG3 to XPG4
Refer to the Migration Guide.

122 X/Open Guide (1993)

Appendix B

Example Locales

This appendix contains sample localedef source descriptions. Although these are working
examples, it is not implied that such locales are supported by X/Open systems.

Refer to the X/Open Locale Registry for approved locales.

B.1 Example Locale 1
This example assumes a character set description file that defines a Portable Character Set and
Control Character Set to ASCII mapping.

#
LC_CTYPE
#
upper <A> ; . . . ;<Z>
lower <a> ; . . . ;<z>
space <tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;<space>
cntrl <alert>;<backspace>;<tab>;<newline>;\

<vertical-tab>;<form-feed>;<carriage-return>
punct <exclamation-mark>; . . . ;<slash>;\

<colon>; . . . ;<commercial-at>;\
<left-bracket>; . . . ;<grave-accent>;\
<left-brace>; . . . ;<tilde>

digit <0> ; . . . ;<9>
xdigit <0> ; . . . ;<9>;<A>; . . . ;<F>;<a>; . . . ;<f>
blank <space>;<tab>
#
Note:Characters classified as upper and lower are
automatically classified as alpha. Characters
classified as upper, lower, alpha, digit and
punct are automatically classified as graph.
Characters specified as graph and space are
automatically classified as print.

toupper (<a>,<A>);(,);(<c>,<C>);\
(<d>,<D>);(<e>,<E>);(<f>,<F>);\
(<g>,<G>);(<h>,<H>);(<i>,<I>);\
(<j>,<J>);(<k>,<K>);(<l>,<L>);\
(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);\
(<s>,<S>);(<t>,<T>);(<u>,<U>);\
(<v>,<V>);(<w>,<W>);(<x>,<X>);\
(<y>,<Y>);(<z>,<Z>)

#
tolower (<A>,<a>);(,);(<C>,<c>);\

(<D>,<d>);(<E>,<e>);(<F>,<f>);\
(<G>,<g>);(<H>,<h>);(<I>,<i>);\
(<J>,<j>);(<K>,<k>);(<L>,<l>);\

Internationalisation Guide Version 2 123

Example Locale 1 Example Locales

(<M>,<m>);(<N>,<n>);(<O>,<o>);\
(<P>,<p>);(<Q>,<q>);(<R>,<r>);\
(<S>,<s>);(<T>,<t>);(<U>,<u>);\
(<V>,<v>);(<W>,<w>);(<X>,<x>);\
(<Y>,<y>);(<Z>,<z>)

#
END LC_CTYPE
#
LC_COLLATE
#
This locale uses string ordering, where:
1. The case of letters is folded on primary
weighting and distinguished on secondary weighting.
2. Special and control characters are ignored.
#
order_start
. . . IGNORE;IGNORE
<0> <0>;<0>
. ; . . .
<9> <9>;<9>
. . . IGNORE;IGNORE
<A> <A>;<A>
 ;
<C> <C>;<C>
<D> <D>;<D>
<E> <E>;<E>
<F> <F>;<F>
<G> <G>;<G>
<H> <H>;<H>
<I> <I>;<I>
<J> <J>;<J>
<K> <K>;<K>
<L> <L>;<L>
<M> <M>;<M>
<N> <N>;<N>
<O> <O>;<O>
<P> <P>;<P>
<Q> <Q>;<Q>
<R> <R>;<R>
<S> <S>;<S>
<T> <T>;<T>
<U> <U>;<U>
<V> <V>;<V>
<W> <W>;<W>
<X> <X>;<X>
<Y> <Y>;<Y>
<Z> <Z>;<Z>
. . . IGNORE;IGNORE
<a> <A>;<a>
 ;
<c> <C>;<c>
<d> <D>;<d>

124 X/Open Guide (1993)

Example Locales Example Locale 1

<e> <E>;<e>
<f> <F>;<f>
<g> <G>;<g>
<h> <H>;<h>
<i> <I>;<i>
<j> <J>;<j>
<k> <K>;<k>
<l> <L>;<l>
<m> <M>;<m>
<n> <N>;<n>
<o> <O>;<o>
<p> <P>;<p>
<q> <Q>;<q>
<r> <R>;<r>
<s> <S>;<s>
<t> <T>;<t>
<u> <U>;<u>
<v> <V>;<v>
<w> <W>;<w>
<x> <X>;<x>
<y> <Y>;<y>
<z> <Z>;<z>
. . . IGNORE;IGNORE
order_end
#
END LC_COLLATE
#
LC_MESSAGES
#
yesexpr "[yY][[:alpha:]]*"
noexpr "[nN][[:alpha:]]*"
#
END LC_MESSAGES
#
LC_MONETARY
#
int_curr_symbol "USD "
currency_symbol "$"
mon_decimal_point "."
mon_thousands_sep ","
mon_grouping 3
positive_sign ""
negative_sign "-"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 2
n_sign_posn 2
#

Internationalisation Guide Version 2 125

Example Locale 1 Example Locales

END LC_MONETARY
#
LC_NUMERIC
#
decimal_point "."
thousands_sep ","
grouping 3
#
END LC_NUMERIC
#
LC_TIME
#
abday "Sun";"Mon";"Tue";"Wed";\

"Thu";"Fri";"Sat"
#
day "Sunday";"Monday";"Tuesday";\

"Wednesday";"Thursday";"Friday";\
"Saturday"

#
abmon "Jan";"Feb";"Mar";"Apr";\

"May";"Jun";"Jul";"Aug";\
"Sep";"Oct";"Nov";"Dec"

#
mon "January";"February";"March";\

"April";"May";"June";"July";\
"August";"September";"October";\
"November"; "December"

#
d_t_fmt "%a %b %d %H:%M:%S %Z %Y"
#
d_fmt "%m/%d/%y"
#
t_fmt "%H:%M:%S"
#
am_pm "AM";"PM"
#
t_fmt_ampm "%I:%M:%S %p"
#
END LC_TIME

126 X/Open Guide (1993)

Example Locales Example Locale 2

B.2 Example Locale 2
This example assumes a character set description file that defines a Portable Character Set and
Control Character set to ISO 8859-1 mapping.

#
LC_CTYPE
#
upper <A> ; . . . ;<Z>;\

<A-grave>; . . . ;<O-diaeresis>;\
<O-oblique>; . . . ;<eszet>

#
lower <a> ; . . . ;<z>;\

<eszet>;<a-grave>; . . . ;<o-diaeresis>;\
<o-oblique>; . . . ;<y-diaeresis>

#
space <tab>;<newline>;<vertical-tab>;\

<form-feed>;carriage-return>;<space>;\
<no-break-space>

#
cntrl <NUL> ; . . . ;<IS1>;\

;\
<RES1>; . . . ;<APC>

#
punct <exclamation-mark>; . . . ;<slash>;\

<colon>; . . . ;<commercial-at>;\
<left-bracket>; . . . ;<grave-accent>;\
<left-brace>; . . . ;<tilde>;\
<inverted-exclamation-mark>; . . . ;\
<inverted-question-mark>;\
<multiplication-sign>;<division-sign>

#
digit <0> ; . . . ;<9>
#
xdigit <0> ; . . . ;<9>;<A>; . . . ;<F>;<a>; . . . ;<f>
#
blank <space>;<tab>;<no-break-space>
#
Note:Characters classified as upper and lower are
automatically classified as alpha. Characters
classified as upper, lower, alpha, digit and
punct are automatically classified as graph.
#
Note also that the eszet character is
considered in this example as being both an
upper-case and lower-case character.
#
toupper (<a>,<A>);(,);(<c>,<C>);\

(<d>,<D>);(<e>,<E>);(<f>,<F>);\
(<g>,<G>);(<h>,<H>);(<i>,<I>);\
(<j>,<J>);(<k>,<K>);(<l>,<L>);\
(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);\

Internationalisation Guide Version 2 127

Example Locale 2 Example Locales

(<s>,<S>);(<t>,<T>);(<u>,<U>);\
(<v>,<V>);(<w>,<W>);(<x>,<X>);\
(<y>,<Y>);(<z>,<Z>);(<a-grave>,<A>);\
(<a-acute>,<A>);(<a-circumflex>,<A>);\
(<a-tilde>,<A>);(<a-diaeresis>,<A>);\
(<a-ring>,<A>);\
(<ae-ligature>,<AE-ligature>);\
(<c-cedilla>,<C>);(<e-grave>,<E>);\
(<e-acute>,<E>);(<e-circumflex>,<E>);\
(<e-diaeresis>,<E>);(<i-grave>,<I>);\
(<i-acute>,<I>);(<i-circumflex>,<I>);\
(<i-diaeresis>,<I>);\
(<lowercase-thorn>,<uppercase-thorn>);\
(<n-tilde>,<N>);(<o-grave>,<O>);\
(<o-acute>,<O>);(<o-circumflex>,<O>);\
(<o-tilde>,<O>);(<o-diaeresis>,<O>);\
(<o-oblique>,<O>);(<u-grave>,<U>);\
(<u-acute>,<U>);(<u-circumflex>,<U>);\
(<u-diaeresis>,<U>);(<y-acute>,<Y>);\
(<y-diaeresis>,<Y>)

#
tolower (<A>,<a>);(,);(<C>,<c>);\

(<D>,<d>);(<E>,<e>);(<F>,<f>);\
(<G>,<g>);(<H>,<h>);(<I>,<i>);\
(<J>,<j>);(<K>,<k>);(<L>,<l>);\
(<M>,<m>);(<N>,<n>);(<O>,<o>);\
(<P>,<p>);(<Q>,<q>);(<R>,<r>);\
(<S>,<s>);(<T>,<t>);(<U>,<u>);\
(<V>,<v>);(<W>,<w>);(<X>,<x>);\
(<Y>,<y>);(<Z>,<z>);\
(<A-grave>,<a-grave>);\
(<A-acute>,<a-acute>);\
(<A-circumflex>,<a-circumflex>);\
(<A-tilde>,<a-tilde>);\
(<A-diaeresis>,<a-diaeresis>);\
(<A-ring>,<a-ring>);\
(<AE-ligature>,<ae-ligature>);\
(<C-cedilla>,<c-cedilla>);\
(<E-grave>,<e-grave>);\
(<E-acute>,<e-acute>);\
(<E-circumflex>,<e-circumflex>);\
(<E-diaeresis>,<e-diaeresis>);\
(<I-grave>,<i-grave>);\
(<I-acute>,<i-acute>);\
(<I-circumflex>,<i-circumflex>);\
(<I-diaeresis>,<i-diaeresis>);\
(<uppercase-thorn>,<lowercase-thorn>);\
(<N-tilde>,<n-tilde>);\
(<O-grave>,<o-grave>);\
(<O-acute>,<o-acute>);\
(<O-circumflex>,<o-circumflex>);\
(<O-tilde>,<o-tilde>);\

128 X/Open Guide (1993)

Example Locales Example Locale 2

(<O-diaeresis>,<o-diaeresis>);\
(<O-oblique>,<o-oblique>);\
(<U-grave>,<u-grave>);\
(<U-acute>,<u-acute>);\
(<U-circumflex>,<u-circumflex>);\
(<U-diaeresis>,<u-diaeresis>);\
(<Y-grave>,<y-grave>)

#
END LC_CTYPE
#
LC_COLLATE
#
This locale uses string ordering and assumes that
{COLL_WEIGHT_MAX} is superior or equal to 3.
#
The primary weighting doesn’t distinguish case
nor accents.
#
The second weighting doesn’t distinguish case but
takes accents into account using reverse sorting.
#
The third weighting distinguishes case.
#
Special and control characters are ignored.
#
Characters not used in French are ignored.
#
order_start forward;backward;forward
. . . IGNORE;IGNORE;IGNORE
<0> <0>;<0>;<0>
. ; . . . ; . . .
<9> <9>;<9>;<9>
. . . IGNORE;IGNORE;IGNORE
<A> <A>;<A>;<A>
 ;;
<C> <C>;<C>;<C>
<D> <D>;<D>;<D>
<E> <E>;<E>;<E>
<F> <F>;<F>;<F>
<G> <G>;<G>;<G>
<H> <H>;<H>;<H>
<I> <I>;<I>;<I>
<J> <J>;<J>;<J>
<K> <K>;<K>;<K>
<L> <L>;<L>;<L>
<M> <M>;<M>;<M>
<N> <N>;<N>;<N>
<O> <O>;<O>;<O>
<P> <P>;<P>;<P>
<Q> <Q>;<Q>;<Q>
<R> <R>;<R>;<R>
<S> <S>;<S>;<S>

Internationalisation Guide Version 2 129

Example Locale 2 Example Locales

<T> <T>;<T>;<T>
<U> <U>;<U>;<U>
<V> <V>;<V>;<V>
<W> <W>;<W>;<W>
<X> <X>;<X>;<X>
<Y> <Y>;<Y>;<Y>
<Z> <Z>;<Z>;<Z>
. . . IGNORE;IGNORE;IGNORE
<a> <A>;<A>;<a>
 ;;
<c> <C>;<C>;<c>
<d> <D>;<D>;<d>
<e> <E>;<E>;<e>
<f> <F>;<F>;<f>
<g> <G>;<G>;<g>
<h> <H>;<H>;<h>
<i> <I>;<I>;<i>
<j> <J>;<J>;<j>
<k> <K>;<K>;<k>
<l> <L>;<L>;<l>
<m> <M>;<M>;<m>
<n> <N>;<N>;<n>
<o> <O>;<O>;<o>
<p> <P>;<P>;<p>
<q> <Q>;<Q>;<q>
<r> <R>;<R>;<r>
<s> <S>;<S>;<s>
<t> <T>;<T>;<t>
<u> <U>;<U>;<u>
<v> <V>;<V>;<v>
<w> <W>;<W>;<w>
<x> <X>;<X>;<x>
<y> <Y>;<Y>;<y>
<z> <Z>;<Z>;<z>
. . . IGNORE;IGNORE;IGNORE
<a-grave> <A>;<a-grave>;<a>
<a-acute> IGNORE;IGNORE;IGNORE
<a-circumflex> <A>;<a-circumflex>;<a>
<a-tilde> IGNORE;IGNORE;IGNORE
<a-diaeresis> <A>;<a-diaeresis>;<a>
. . . IGNORE;IGNORE;IGNORE
<c-cedilla> <C>;<c-cedilla>;<c>
<e-grave> <E>;<e-grave>;<e>
<e-acute> <E>;<e-acute>;<e>
<e-circumflex> <E>;<e-circumflex>;<e>
<e-diaeresis> <E>;<e-diaeresis>;<e>
. . . IGNORE;IGNORE;IGNORE
<o-circumflex> <O>;<o-circumflex>;<o>
<o-tilde> IGNORE;IGNORE;IGNORE
<o-diaeresis> <O>;<o-diaeresis>;<o>
. . . IGNORE;IGNORE;IGNORE
<u-circumflex> <U>;<u-circumflex>;<u>

130 X/Open Guide (1993)

Example Locales Example Locale 2

<u-diaeresis> <U>;<u-diaeresis>;<u>
. . . IGNORE;IGNORE;IGNORE
order_end
#
END LC_COLLATE

#
LC_MESSAGES
#
yesexpr "[oO][[:alpha:]]*"
noexpr "[nN][[:alpha:]]*"
#
END LC_MESSAGES

#
LC_MONETARY
#
int_curr_symbol "FFR "
currency_symbol "FR"
mon_decimal_point ","
mon_thousands_sep " "
mon_grouping 3
positive_sign ""
negative_sign "-"
int_frac_digits 2
frac_digits 2
p_cs_precedes 0
p_sep_by_space 1
n_cs_precedes 0
n_sep_by_space 1
p_sign_posn 1
n_sign_posn 1
#
END LC_MONETARY

#
LC_NUMERIC
#
decimal_point ","
thousands_sep ""
grouping 3
#
END LC_NUMERIC

#
LC_TIME
#
abday "dim";"lun";"mar";"mer";\

"jeu";"ven";"sam"
#
day "dimanche";"lundi";"mardi";\

"mercredi";"jeudi";"vendredi";\

Internationalisation Guide Version 2 131

Example Locale 2 Example Locales

"samedi"
#
abmon "jan";"fe v́";"mar";"avr";\

"mai";"jun";"jui";"aou "̂;\
"sep";"oct";"nov";"de ć"

#
mon "janvier";"fe v́rier";"mars";\

"avril";"mai";"juin";\
"juillet";"aou t̂";"septembre";\
"octobre";"novembre";"de ćembre"

#
#
d_t_fmt "%A %d %B %Y %H:%M:%S %Z\n"
#
d_fmt "%d/%m/%y"
#
t_fmt "%H:%M:%S"
#
am_pm "AM";"PM"
#
t_fmt_ampm "%I:%M:%S %p"
#
END LC_TIME

132 X/Open Guide (1993)

Example Locales Example Locale 3

B.3 Example Locale 3
This example assumes a character set description file that defines a Japanese character set. This
is considered to consist of 128 characters in JIS X0201 (the Japanese version of ISO 646), and 8836
characters in JIS X0208-1990 (JIS Kanji).

Note that the character set includes undefined code points in JIS X0208-1990.

The names for JIS Kanji used here are sufficient to identify the above character set. Kanji are
given names based on their code value written in hexadecimal. Users may require a more
general notation to represent all supported characters in a portable manner.

#
LC_CTYPE
#
LC_CTYPE

#
upper class:
Uppercase alphabets in portable character set,
Roman uppercase letters in JIS X 0208,
Greek uppercase letters in JIS X 0208,
Russian uppercase letters in JIS X 0208, and
Uppercase letters in JIS X 0212.
Uppercase letters in udc or vdc classes may be added.

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;\
<j0333>;...;<j0358>;\
<j0601>;...;<j0624>;\
<j0701>;...;<j0733>;\
<J0665>;...;<J0669>;\
<J0671>;\
<J0673>;\
<J0674>;\
<J0676>;\
<J0734>;...;<J0746>;\
<J0901>;\
<J0902>;\
<J0904>;\
<J0906>;\
<J0908>;\
<J0909>;\
<J0911>;...;<J0913>;\
<J0915>;\
<J0916>;\
<J1001>;...;<J1024>;\
<J1026>;...;<J1087>

#
lower class:
Lowercase alphabets in portable character set,
Roman lowercase letters in JIS X 0208,
Greek lowercase letters in JIS X 0208,

Internationalisation Guide Version 2 133

Example Locale 3 Example Locales

Russian lowercase letters in JIS X 0208, and
Lowercase letters in JIS X 0212.
Lowercase letters in udc or vdc classes may be added

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\
<j0365>;...;<j0390>;\
<j0633>;...;<j0656>;\
<j0749>;...;<j0781>;\
<J0681>;...;<J0692>;\
<J0782>;...;<J0794>;\
<J0933>;...;<J0948>;\
<J1101>;...;<J1127>;\
<J1129>;...;<J1135>;\
<J1137>;...;<J1187>

#
alpha class (default):
It includes, by default, all the characters defined in the upper
class and the lower class.
#

#
digit class
#
digit <zero>;<one>;<two>;<three>;<four>;\

<five>;<six>;<seven>;<eight>;<nine>

#
space class:
Space characters defined in ISO DIS 9945-2 "POSIX" locale
Space in JIS X 0208
#

space <tab>;<newline>;<vertical-tab>;<form-feed>;\
<carriage-return>;<space>;\
<j0101>

#
cntrl class:
C0 and C1 control characters as per ISO 6429.
SS2 and SS3 may be excluded if an accompanying charmap uses
them as single shifts to invoke graphic characters (as in EUC).
Control characters in udc or vdc may be added.

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;;\
<BPH>;<NBH>;<NEL>;<SSA>;<ESA>;<HTS>;<HTJ>;\

134 X/Open Guide (1993)

Example Locales Example Locale 3

<VTS>;<PLD>;<PLU>;<RI>;<SS2>;<SS3>;\
<DCS>;<PU1>;<PU2>;<STS>;<CCH>;<MW>;<SPA>;<EPA>;\
<SOS>;<SCI>;<CSI>;<ST>;<OSC>;<PM>;<APC>

#
punct class:
Special characters in udc or vdc may be added as long as they
do not belong to classes cntrl, alpha, digit, jkanji, jhira,
jkata or jdigit.
#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;\
<commercial-at>;\
<left-square-bracket>;<backslash>;<yen-sign>;\
<right-square-bracket>;<circumflex>;<underscore>;\
<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;\
<tilde>;<overline>;\
<kana-full-stop>;<kana-opening-bracket>;\
<kana-closing-bracket>;<kana-comma>;<kana-conjunctive>;\
<j0102>;...;<j0110>;\
<j0113>;...;<j0118>;\
<j0123>;\
<j0126>;\
<j0129>;...;<j0194>;\
<j0201>;...;<j0214>;\
<j0226>;...;<j0233>;\
<j0242>;...;<j0248>;\
<j0260>;...;<j0274>;\
<j0282>;...;<j0289>;\
<j0294>;\
<j0801>;...;<j0832>;\
<J0215>;...;<J0225>;\
<J0234>;...;<J0236>;\
<J0275>;...;<J0281>

#
graph class:
upper, lower, alpha, digit, xdigit
JIS X 0201 graphic characters
JIS X 0208 graphic characters
JIS X 0212 graphic characters
Graphic characters in udc or vdc classes may be added.

graph <exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\

Internationalisation Guide Version 2 135

Example Locale 3 Example Locales

<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<zero>;<one>;<two>;<three>;<four>;\
<five>;<six>;<seven>;<eight>;<nine>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;\
<commercial-at>;\
<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;\
<left-square-bracket>;<backslash>;<yen-sign>;\
<right-square-bracket>;<circumflex>;<underscore>;\
<grave-accent>;\
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;\
<tilde>;<overline>;\
<kana-full-stop>;<kana-opening-bracket>;\
<kana-closing-bracket>;<kana-comma>;<kana-conjunctive>;\
<kana-WO>;...;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;...;<kana-N>;\
<kana-voiced-sound>;<kana-semivoiced-sound>;\
<j0102>;...;<j0194>;\
<j0201>;...;<j0214>;\
<j0226>;...;<j0233>;\
<j0242>;...;<j0248>;\
<j0260>;...;<j0274>;\
<j0282>;...;<j0289>;\
<j0294>;\
<j0316>;...;<j0325>;\
<j0333>;...;<j0358>;\
<j0365>;...;<j0390>;\
<j0401>;...;<j0483>;\
<j0501>;...;<j0586>;\
<j0601>;...;<j0624>;\
<j0633>;...;<j0656>;\
<j0701>;...;<j0733>;\
<j0749>;...;<j0781>;\
<j0801>;...;<j0832>;\
<j1601>;...;<j1694>;\
<j1701>;...;<j1794>;\
<j1801>;...;<j1894>;\
<j1901>;...;<j1994>;\
<j2001>;...;<j2094>;\
<j2101>;...;<j2194>;\
<j2201>;...;<j2294>;\
<j2301>;...;<j2394>;\
<j2401>;...;<j2494>;\
<j2501>;...;<j2594>;\
<j2601>;...;<j2694>;\
<j2701>;...;<j2794>;\
<j2801>;...;<j2894>;\
<j2901>;...;<j2994>;\

136 X/Open Guide (1993)

Example Locales Example Locale 3

<j3001>;...;<j3094>;\
<j3101>;...;<j3194>;\
<j3201>;...;<j3294>;\
<j3301>;...;<j3394>;\
<j3401>;...;<j3494>;\
<j3501>;...;<j3594>;\
<j3601>;...;<j3694>;\
<j3701>;...;<j3794>;\
<j3801>;...;<j3894>;\
<j3901>;...;<j3994>;\
<j4001>;...;<j4094>;\
<j4101>;...;<j4194>;\
<j4201>;...;<j4294>;\
<j4301>;...;<j4394>;\
<j4401>;...;<j4494>;\
<j4501>;...;<j4594>;\
<j4601>;...;<j4694>;\
<j4701>;...;<j4751>;\
<j4801>;...;<j4894>;\
<j4901>;...;<j4994>;\
<j5001>;...;<j5094>;\
<j5101>;...;<j5194>;\
<j5201>;...;<j5294>;\
<j5301>;...;<j5394>;\
<j5401>;...;<j5494>;\
<j5501>;...;<j5594>;\
<j5601>;...;<j5694>;\
<j5701>;...;<j5794>;\
<j5801>;...;<j5894>;\
<j5901>;...;<j5994>;\
<j6001>;...;<j6094>;\
<j6101>;...;<j6194>;\
<j6201>;...;<j6294>;\
<j6301>;...;<j6394>;\
<j6401>;...;<j6494>;\
<j6501>;...;<j6594>;\
<j6601>;...;<j6694>;\
<j6701>;...;<j6794>;\
<j6801>;...;<j6894>;\
<j6901>;...;<j6994>;\
<j7001>;...;<j7094>;\
<j7101>;...;<j7194>;\
<j7201>;...;<j7294>;\
<j7301>;...;<j7394>;\
<j7401>;...;<j7494>;\
<j7501>;...;<j7594>;\
<j7601>;...;<j7694>;\
<j7701>;...;<j7794>;\
<j7801>;...;<j7894>;\
<j7901>;...;<j7994>;\
<j8001>;...;<j8094>;\
<j8101>;...;<j8194>;\

Internationalisation Guide Version 2 137

Example Locale 3 Example Locales

<j8201>;...;<j8294>;\
<j8301>;...;<j8394>;\
<j8401>;...;<j8406>;\
<J0215>;...;<J0225>;\
<J0234>;...;<J0236>;\
<J0275>;...;<J0281>;\
<J0665>;...;<J0669>;\
<J0671>;\
<J0673>;\
<J0674>;\
<J0676>;\
<J0681>;...;<J0692>;\
<J0734>;...;<J0746>;\
<J0782>;...;<J0794>;\
<J0901>;\
<J0902>;\
<J0904>;\
<J0906>;\
<J0908>;\
<J0909>;\
<J0911>;...;<J0913>;\
<J0915>;\
<J0916>;\
<J0933>;...;<J0948>;\
<J1001>;...;<J1024>;\
<J1026>;...;<J1087>;\
<J1101>;...;<J1127>;\
<J1129>;...;<J1135>;\
<J1137>;...;<J1187>;\
<J1601>;...;<J1694>;\
<J1701>;...;<J1794>;\
<J1801>;...;<J1894>;\
<J1901>;...;<J1994>;\
<J2001>;...;<J2094>;\
<J2101>;...;<J2194>;\
<J2201>;...;<J2294>;\
<J2301>;...;<J2394>;\
<J2401>;...;<J2494>;\
<J2501>;...;<J2594>;\
<J2601>;...;<J2694>;\
<J2701>;...;<J2794>;\
<J2801>;...;<J2894>;\
<J2901>;...;<J2994>;\
<J3001>;...;<J3094>;\
<J3101>;...;<J3194>;\
<J3201>;...;<J3294>;\
<J3301>;...;<J3394>;\
<J3401>;...;<J3494>;\
<J3501>;...;<J3594>;\
<J3601>;...;<J3694>;\
<J3701>;...;<J3794>;\
<J3801>;...;<J3894>;\

138 X/Open Guide (1993)

Example Locales Example Locale 3

<J3901>;...;<J3994>;\
<J4001>;...;<J4094>;\
<J4101>;...;<J4194>;\
<J4201>;...;<J4294>;\
<J4301>;...;<J4394>;\
<J4401>;...;<J4494>;\
<J4501>;...;<J4594>;\
<J4601>;...;<J4694>;\
<J4701>;...;<J4794>;\
<J4801>;...;<J4894>;\
<J4901>;...;<J4994>;\
<J5001>;...;<J5094>;\
<J5101>;...;<J5194>;\
<J5201>;...;<J5294>;\
<J5301>;...;<J5394>;\
<J5401>;...;<J5494>;\
<J5501>;...;<J5594>;\
<J5601>;...;<J5694>;\
<J5701>;...;<J5794>;\
<J5801>;...;<J5894>;\
<J5901>;...;<J5994>;\
<J6001>;...;<J6094>;\
<J6101>;...;<J6194>;\
<J6201>;...;<J6294>;\
<J6301>;...;<J6394>;\
<J6401>;...;<J6494>;\
<J6501>;...;<J6594>;\
<J6601>;...;<J6694>;\
<J6701>;...;<J6794>;\
<J6801>;...;<J6894>;\
<J6901>;...;<J6994>;\
<J7001>;...;<J7094>;\
<J7101>;...;<J7194>;\
<J7201>;...;<J7294>;\
<J7301>;...;<J7394>;\
<J7401>;...;<J7494>;\
<J7501>;...;<J7594>;\
<J7601>;...;<J7694>;\
<J7701>;...;<J7767>

#
print class:
<space>, <j0101>,
upper, lower, alpha, digit, xdigit
JIS X 0201 printable characters
JIS X 0208 printable characters
JIS X 0212 printable characters
Pritable characters in udc or vdc classes may be added.

print <space>;\
<exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\

Internationalisation Guide Version 2 139

Example Locale 3 Example Locales

<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<zero>;<one>;<two>;<three>;<four>;\
<five>;<six>;<seven>;<eight>;<nine>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;\
<commercial-at>;\
<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;\
<left-square-bracket>;<backslash>;<yen-sign>;\
<right-square-bracket>;<circumflex>;<underscore>;\
<grave-accent>;\
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;\
<tilde>;<overline>;\
<kana-full-stop>;<kana-opening-bracket>;\
<kana-closing-bracket>;<kana-comma>;<kana-conjunctive>;\
<kana-WO>;...;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;...;<kana-N>;\
<kana-voiced-sound>;<kana-semivoiced-sound>;\
<j0101>;...;<j0194>;\
<j0201>;...;<j0214>;\
<j0226>;...;<j0233>;\
<j0242>;...;<j0248>;\
<j0260>;...;<j0274>;\
<j0282>;...;<j0289>;\
<j0294>;\
<j0316>;...;<j0325>;\
<j0333>;...;<j0358>;\
<j0365>;...;<j0390>;\
<j0401>;...;<j0483>;\
<j0501>;...;<j0586>;\
<j0601>;...;<j0624>;\
<j0633>;...;<j0656>;\
<j0701>;...;<j0733>;\
<j0749>;...;<j0781>;\
<j0801>;...;<j0832>;\
<j1601>;...;<j1694>;\
<j1701>;...;<j1794>;\
<j1801>;...;<j1894>;\
<j1901>;...;<j1994>;\
<j2001>;...;<j2094>;\
<j2101>;...;<j2194>;\
<j2201>;...;<j2294>;\
<j2301>;...;<j2394>;\
<j2401>;...;<j2494>;\
<j2501>;...;<j2594>;\
<j2601>;...;<j2694>;\
<j2701>;...;<j2794>;\
<j2801>;...;<j2894>;\

140 X/Open Guide (1993)

Example Locales Example Locale 3

<j2901>;...;<j2994>;\
<j3001>;...;<j3094>;\
<j3101>;...;<j3194>;\
<j3201>;...;<j3294>;\
<j3301>;...;<j3394>;\
<j3401>;...;<j3494>;\
<j3501>;...;<j3594>;\
<j3601>;...;<j3694>;\
<j3701>;...;<j3794>;\
<j3801>;...;<j3894>;\
<j3901>;...;<j3994>;\
<j4001>;...;<j4094>;\
<j4101>;...;<j4194>;\
<j4201>;...;<j4294>;\
<j4301>;...;<j4394>;\
<j4401>;...;<j4494>;\
<j4501>;...;<j4594>;\
<j4601>;...;<j4694>;\
<j4701>;...;<j4751>;\
<j4801>;...;<j4894>;\
<j4901>;...;<j4994>;\
<j5001>;...;<j5094>;\
<j5101>;...;<j5194>;\
<j5201>;...;<j5294>;\
<j5301>;...;<j5394>;\
<j5401>;...;<j5494>;\
<j5501>;...;<j5594>;\
<j5601>;...;<j5694>;\
<j5701>;...;<j5794>;\
<j5801>;...;<j5894>;\
<j5901>;...;<j5994>;\
<j6001>;...;<j6094>;\
<j6101>;...;<j6194>;\
<j6201>;...;<j6294>;\
<j6301>;...;<j6394>;\
<j6401>;...;<j6494>;\
<j6501>;...;<j6594>;\
<j6601>;...;<j6694>;\
<j6701>;...;<j6794>;\
<j6801>;...;<j6894>;\
<j6901>;...;<j6994>;\
<j7001>;...;<j7094>;\
<j7101>;...;<j7194>;\
<j7201>;...;<j7294>;\
<j7301>;...;<j7394>;\
<j7401>;...;<j7494>;\
<j7501>;...;<j7594>;\
<j7601>;...;<j7694>;\
<j7701>;...;<j7794>;\
<j7801>;...;<j7894>;\
<j7901>;...;<j7994>;\
<j8001>;...;<j8094>;\

Internationalisation Guide Version 2 141

Example Locale 3 Example Locales

<j8101>;...;<j8194>;\
<j8201>;...;<j8294>;\
<j8301>;...;<j8394>;\
<j8401>;...;<j8406>;\
<J0215>;...;<J0225>;\
<J0234>;...;<J0236>;\
<J0275>;...;<J0281>;\
<J0665>;...;<J0669>;\
<J0671>;\
<J0673>;\
<J0674>;\
<J0676>;\
<J0681>;...;<J0692>;\
<J0734>;...;<J0746>;\
<J0782>;...;<J0794>;\
<J0901>;\
<J0902>;\
<J0904>;\
<J0906>;\
<J0908>;\
<J0909>;\
<J0911>;...;<J0913>;\
<J0915>;\
<J0916>;\
<J0933>;...;<J0948>;\
<J1001>;...;<J1024>;\
<J1026>;...;<J1087>;\
<J1101>;...;<J1127>;\
<J1129>;...;<J1135>;\
<J1137>;...;<J1187>;\
<J1601>;...;<J1694>;\
<J1701>;...;<J1794>;\
<J1801>;...;<J1894>;\
<J1901>;...;<J1994>;\
<J2001>;...;<J2094>;\
<J2101>;...;<J2194>;\
<J2201>;...;<J2294>;\
<J2301>;...;<J2394>;\
<J2401>;...;<J2494>;\
<J2501>;...;<J2594>;\
<J2601>;...;<J2694>;\
<J2701>;...;<J2794>;\
<J2801>;...;<J2894>;\
<J2901>;...;<J2994>;\
<J3001>;...;<J3094>;\
<J3101>;...;<J3194>;\
<J3201>;...;<J3294>;\
<J3301>;...;<J3394>;\
<J3401>;...;<J3494>;\
<J3501>;...;<J3594>;\
<J3601>;...;<J3694>;\
<J3701>;...;<J3794>;\

142 X/Open Guide (1993)

Example Locales Example Locale 3

<J3801>;...;<J3894>;\
<J3901>;...;<J3994>;\
<J4001>;...;<J4094>;\
<J4101>;...;<J4194>;\
<J4201>;...;<J4294>;\
<J4301>;...;<J4394>;\
<J4401>;...;<J4494>;\
<J4501>;...;<J4594>;\
<J4601>;...;<J4694>;\
<J4701>;...;<J4794>;\
<J4801>;...;<J4894>;\
<J4901>;...;<J4994>;\
<J5001>;...;<J5094>;\
<J5101>;...;<J5194>;\
<J5201>;...;<J5294>;\
<J5301>;...;<J5394>;\
<J5401>;...;<J5494>;\
<J5501>;...;<J5594>;\
<J5601>;...;<J5694>;\
<J5701>;...;<J5794>;\
<J5801>;...;<J5894>;\
<J5901>;...;<J5994>;\
<J6001>;...;<J6094>;\
<J6101>;...;<J6194>;\
<J6201>;...;<J6294>;\
<J6301>;...;<J6394>;\
<J6401>;...;<J6494>;\
<J6501>;...;<J6594>;\
<J6601>;...;<J6694>;\
<J6701>;...;<J6794>;\
<J6801>;...;<J6894>;\
<J6901>;...;<J6994>;\
<J7001>;...;<J7094>;\
<J7101>;...;<J7194>;\
<J7201>;...;<J7294>;\
<J7301>;...;<J7394>;\
<J7401>;...;<J7494>;\
<J7501>;...;<J7594>;\
<J7601>;...;<J7694>;\
<J7701>;...;<J7767>

#
xdigit class
#
xdigit <zero>;<one>;<two>;<three>;<four>;\

<five>;<six>;<seven>;<eight>;<nine>;\
<A>;;<C>;<D>;<E>;<F>;\
<a>;;<c>;<d>;<e>;<f>

#
blank class
#

Internationalisation Guide Version 2 143

Example Locale 3 Example Locales

blank <space>;<tab>

#
Non-standard character classes specific to the ja_JP locale
#

charclass ascii;line;jdigit;paren;jparen;jisx0201;jisx0201r;\
jisx0208;jisx0212;udc;vdc;gaiji;jhira;jkata;jhankana;\
jkanji;jspace

#
ascii class: characters for which isascii() returns true
C0 control characters
SPACE and DELETE characters in ASCII (or JIS X 0201 Roman)
Graphic characters in ASCII (or JIS X 0201 Roman)

ascii <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;\
<alert>;<BEL>;<backspace>;<tab>;<newline>;\
<vertical-tab>;<form-feed>;<carriage-return>;\
<SO>;<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;\
<space>;\
<exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<zero>;<one>;<two>;<three>;<four>;\
<five>;<six>;<seven>;<eight>;<nine>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;\
<commercial-at>;\
<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;\
<grave-accent>;\
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;\
<tilde>;

#
line class:
The line drawing characters in JIS X 0208
Line drawing characters in udc or vdc classes may be added.
#

line <j0801>;...;<j0832>

#
jdigit class: The digit characters in JIS X 0208

jdigit <j0316>;...;<j0325>

144 X/Open Guide (1993)

Example Locales Example Locale 3

#
paren class:
Parentheses and paired symbols in JIS X 0201 and JIS X 0208.
Parentheses or paired symbols in udc or vdc classes may be added.
#

paren <left-parenthesis>;<right-parenthesis>;\
<left-square-bracket>;<right-square-bracket>;\
<left-curly-bracket>;<right-curly-bracket>;\
<kana-opening-bracket>;<kana-closing-bracket>;\
<j0138>;...;<j0159>

#
jparen class:
The kana bracket characters in JIS X 0201 and the parentheses in
JIS X 0208. Parentheses or paired symbols in udc or vdc classes
may be added.
#

jparen <kana-opening-bracket>;<kana-closing-bracket>;\
<j0138>;...;<j0159>

#
jisx0201 class:
All the printable characters in JIS X 0201.
Printable characters in udc or vdc classes with their code points
in undefined area of JIS X 0201 may be added.
#
jisx0201 <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;\
<space>;\
<exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<zero>;<one>;<two>;<three>;<four>;\
<five>;<six>;<seven>;<eight>;<nine>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;\
<commercial-at>;\
<A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;\
<grave-accent>;\
<a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;\
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;\

Internationalisation Guide Version 2 145

Example Locale 3 Example Locales

<tilde>;;\
<kana-full-stop>;<kana-opening-bracket>;\
<kana-closing-bracket>;<kana-comma>;<kana-conjunctive>;\
<kana-WO>;...;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;...;<kana-N>;\
<kana-voiced-sound>;<kana-semivoiced-sound>

#
jisx0201r class:
All the printable characters in the right hand side of JIS X 0201.
Printable characters in udc or vdc classes with their code points
in undefined area of JIS X 0201 right hand side may be added.
#
jisx0201r <kana-full-stop>;<kana-opening-bracket>;\

<kana-closing-bracket>;<kana-comma>;<kana-conjunctive>;\
<kana-WO>;...;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;...;<kana-N>;\
<kana-voiced-sound>;<kana-semivoiced-sound>

#
jisx0208 class:
All the printable characters in JIS X 0208.
Printable characters in udc or vdc classes whose code points are in
the undefined area of JIS X 0208 may be added.
#

jisx0208 <j0101>;...;<j0194>;\
<j0201>;...;<j0214>;\
<j0226>;...;<j0233>;\
<j0242>;...;<j0248>;\
<j0260>;...;<j0274>;\
<j0282>;...;<j0289>;\
<j0294>;\
<j0316>;...;<j0325>;\
<j0333>;...;<j0358>;\
<j0365>;...;<j0390>;\
<j0401>;...;<j0483>;\
<j0501>;...;<j0586>;\
<j0601>;...;<j0624>;\
<j0633>;...;<j0656>;\
<j0701>;...;<j0733>;\
<j0749>;...;<j0781>;\
<j0801>;...;<j0832>;\
<j1601>;...;<j1694>;\
<j1701>;...;<j1794>;\
<j1801>;...;<j1894>;\
<j1901>;...;<j1994>;\
<j2001>;...;<j2094>;\
<j2101>;...;<j2194>;\
<j2201>;...;<j2294>;\

146 X/Open Guide (1993)

Example Locales Example Locale 3

<j2301>;...;<j2394>;\
<j2401>;...;<j2494>;\
<j2501>;...;<j2594>;\
<j2601>;...;<j2694>;\
<j2701>;...;<j2794>;\
<j2801>;...;<j2894>;\
<j2901>;...;<j2994>;\
<j3001>;...;<j3094>;\
<j3101>;...;<j3194>;\
<j3201>;...;<j3294>;\
<j3301>;...;<j3394>;\
<j3401>;...;<j3494>;\
<j3501>;...;<j3594>;\
<j3601>;...;<j3694>;\
<j3701>;...;<j3794>;\
<j3801>;...;<j3894>;\
<j3901>;...;<j3994>;\
<j4001>;...;<j4094>;\
<j4101>;...;<j4194>;\
<j4201>;...;<j4294>;\
<j4301>;...;<j4394>;\
<j4401>;...;<j4494>;\
<j4501>;...;<j4594>;\
<j4601>;...;<j4694>;\
<j4701>;...;<j4751>;\
<j4801>;...;<j4894>;\
<j4901>;...;<j4994>;\
<j5001>;...;<j5094>;\
<j5101>;...;<j5194>;\
<j5201>;...;<j5294>;\
<j5301>;...;<j5394>;\
<j5401>;...;<j5494>;\
<j5501>;...;<j5594>;\
<j5601>;...;<j5694>;\
<j5701>;...;<j5794>;\
<j5801>;...;<j5894>;\
<j5901>;...;<j5994>;\
<j6001>;...;<j6094>;\
<j6101>;...;<j6194>;\
<j6201>;...;<j6294>;\
<j6301>;...;<j6394>;\
<j6401>;...;<j6494>;\
<j6501>;...;<j6594>;\
<j6601>;...;<j6694>;\
<j6701>;...;<j6794>;\
<j6801>;...;<j6894>;\
<j6901>;...;<j6994>;\
<j7001>;...;<j7094>;\
<j7101>;...;<j7194>;\
<j7201>;...;<j7294>;\
<j7301>;...;<j7394>;\
<j7401>;...;<j7494>;\

Internationalisation Guide Version 2 147

Example Locale 3 Example Locales

<j7501>;...;<j7594>;\
<j7601>;...;<j7694>;\
<j7701>;...;<j7794>;\
<j7801>;...;<j7894>;\
<j7901>;...;<j7994>;\
<j8001>;...;<j8094>;\
<j8101>;...;<j8194>;\
<j8201>;...;<j8294>;\
<j8301>;...;<j8394>;\
<j8401>;...;<j8406>

#
jisx0212 class:
All the printable characters in JIS X 0212.
Printable characters in udc or vdc classes whose code points are in
the undefined area of JIS X 0212 may be added.
#

jisx0212 <J0215>;...;<J0225>;\
<J0234>;...;<J0236>;\
<J0275>;...;<J0281>;\
<J0665>;...;<J0669>;\
<J0671>;\
<J0673>;\
<J0674>;\
<J0676>;\
<J0681>;...;<J0692>;\
<J0734>;...;<J0746>;\
<J0782>;...;<J0794>;\
<J0901>;\
<J0902>;\
<J0904>;\
<J0906>;\
<J0908>;\
<J0909>;\
<J0911>;...;<J0913>;\
<J0915>;\
<J0916>;\
<J0933>;...;<J0948>;\
<J1001>;...;<J1024>;\
<J1026>;...;<J1087>;\
<J1101>;...;<J1127>;\
<J1129>;...;<J1135>;\
<J1137>;...;<J1187>;\
<J1601>;...;<J1694>;\
<J1701>;...;<J1794>;\
<J1801>;...;<J1894>;\
<J1901>;...;<J1994>;\
<J2001>;...;<J2094>;\
<J2101>;...;<J2194>;\
<J2201>;...;<J2294>;\
<J2301>;...;<J2394>;\

148 X/Open Guide (1993)

Example Locales Example Locale 3

<J2401>;...;<J2494>;\
<J2501>;...;<J2594>;\
<J2601>;...;<J2694>;\
<J2701>;...;<J2794>;\
<J2801>;...;<J2894>;\
<J2901>;...;<J2994>;\
<J3001>;...;<J3094>;\
<J3101>;...;<J3194>;\
<J3201>;...;<J3294>;\
<J3301>;...;<J3394>;\
<J3401>;...;<J3494>;\
<J3501>;...;<J3594>;\
<J3601>;...;<J3694>;\
<J3701>;...;<J3794>;\
<J3801>;...;<J3894>;\
<J3901>;...;<J3994>;\
<J4001>;...;<J4094>;\
<J4101>;...;<J4194>;\
<J4201>;...;<J4294>;\
<J4301>;...;<J4394>;\
<J4401>;...;<J4494>;\
<J4501>;...;<J4594>;\
<J4601>;...;<J4694>;\
<J4701>;...;<J4794>;\
<J4801>;...;<J4894>;\
<J4901>;...;<J4994>;\
<J5001>;...;<J5094>;\
<J5101>;...;<J5194>;\
<J5201>;...;<J5294>;\
<J5301>;...;<J5394>;\
<J5401>;...;<J5494>;\
<J5501>;...;<J5594>;\
<J5601>;...;<J5694>;\
<J5701>;...;<J5794>;\
<J5801>;...;<J5894>;\
<J5901>;...;<J5994>;\
<J6001>;...;<J6094>;\
<J6101>;...;<J6194>;\
<J6201>;...;<J6294>;\
<J6301>;...;<J6394>;\
<J6401>;...;<J6494>;\
<J6501>;...;<J6594>;\
<J6601>;...;<J6694>;\
<J6701>;...;<J6794>;\
<J6801>;...;<J6894>;\
<J6901>;...;<J6994>;\
<J7001>;...;<J7094>;\
<J7101>;...;<J7194>;\
<J7201>;...;<J7294>;\
<J7301>;...;<J7394>;\
<J7401>;...;<J7494>;\
<J7501>;...;<J7594>;\

Internationalisation Guide Version 2 149

Example Locale 3 Example Locales

<J7601>;...;<J7694>;\
<J7701>;...;<J7767>

#
udc class: user defined characters
#

udc

#
vdc class: vender defined characters
#

vdc

#
gaiji class: udc or vdc
#

gaiji

#
jhira class:
The Hiragana characters in JIS X 0208.
Hiragana characters in udc or vdc classes may be added.
#

jhira <j0401>;...;<j0483>;\
<j0111>;<j0112>;\
<j0121>;<j0122>;<j0128>

#
jkata class:
The Katakana characters in JIS X 0208 JIS X 0201.
The voiced, semivoiced and prolonged sound marks in JIS X 0208
and JIS X 0201.
The Katakana iteration marks in JIS X 0208.
Katakana characters in udc or vdc classes may be added.
#

jkata <kana-WO>;<kana-a>;<kana-i>;<kana-u>;<kana-e>;<kana-o>;\
<kana-ya>;<kana-yu>;<kana-yo>;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;<kana-I>;<kana-U>;<kana-E>;<kana-O>;\
<kana-KA>;<kana-KI>;<kana-KU>;<kana-KE>;<kana-KO>;\
<kana-SA>;<kana-SHI>;<kana-SU>;<kana-SE>;<kana-SO>;\
<kana-TA>;<kana-CHI>;<kana-TSU>;<kana-TE>;<kana-TO>;\
<kana-NA>;<kana-NI>;<kana-NU>;<kana-NE>;<kana-NO>;\
<kana-HA>;<kana-HI>;<kana-FU>;<kana-HE>;<kana-HO>;\
<kana-MA>;<kana-MI>;<kana-MU>;<kana-ME>;<kana-MO>;\
<kana-YA>;<kana-YU>;<kana-YO>;<kana-RA>;<kana-RI>;\
<kana-RU>;<kana-RE>;<kana-RO>;<kana-WA>;<kana-N>;\

150 X/Open Guide (1993)

Example Locales Example Locale 3

<kana-voiced-sound>;<kana-semivoiced-sound>;\
<j0501>;...;<j0586>;\
<j0111>;<j0112>;\
<j0119>;<j0120>;<j0128>

#
jhankana class:
The Katakana characters in JIS X 0201.
The voiced, semivoiced and prolonged sound marks in JIS X 0201.
Katakana characters, Katakana symbols in JIS X 0201, or udc/vdc
in undefined area of JIS X 0201 may be added.
#

jhankana <kana-WO>;<kana-a>;<kana-i>;<kana-u>;<kana-e>;<kana-o>;\
<kana-ya>;<kana-yu>;<kana-yo>;<kana-tsu>;\
<kana-prolonged-sound>;\
<kana-A>;<kana-I>;<kana-U>;<kana-E>;<kana-O>;\
<kana-KA>;<kana-KI>;<kana-KU>;<kana-KE>;<kana-KO>;\
<kana-SA>;<kana-SHI>;<kana-SU>;<kana-SE>;<kana-SO>;\
<kana-TA>;<kana-CHI>;<kana-TSU>;<kana-TE>;<kana-TO>;\
<kana-NA>;<kana-NI>;<kana-NU>;<kana-NE>;<kana-NO>;\
<kana-HA>;<kana-HI>;<kana-FU>;<kana-HE>;<kana-HO>;\
<kana-MA>;<kana-MI>;<kana-MU>;<kana-ME>;<kana-MO>;\
<kana-YA>;<kana-YU>;<kana-YO>;<kana-RA>;<kana-RI>;\
<kana-RU>;<kana-RE>;<kana-RO>;<kana-WA>;<kana-N>;\
<kana-voiced-sound>;<kana-semivoiced-sound>

#
jkanji class: Kanji (Ideograms)
Kanji in JIS X 0208 and JIS X 0212.
Kanji Iteration mark in JIS X 0208.
Han-numeral zero in JIS X 0208.
Kanji in udc or vdc classes may be added.
#

jkanji <j1601>;...;<j1694>;\
<j1701>;...;<j1794>;\
<j1801>;...;<j1894>;\
<j1901>;...;<j1994>;\
<j2001>;...;<j2094>;\
<j2101>;...;<j2194>;\
<j2201>;...;<j2294>;\
<j2301>;...;<j2394>;\
<j2401>;...;<j2494>;\
<j2501>;...;<j2594>;\
<j2601>;...;<j2694>;\
<j2701>;...;<j2794>;\
<j2801>;...;<j2894>;\
<j2901>;...;<j2994>;\
<j3001>;...;<j3094>;\
<j3101>;...;<j3194>;\
<j3201>;...;<j3294>;\

Internationalisation Guide Version 2 151

Example Locale 3 Example Locales

<j3301>;...;<j3394>;\
<j3401>;...;<j3494>;\
<j3501>;...;<j3594>;\
<j3601>;...;<j3694>;\
<j3701>;...;<j3794>;\
<j3801>;...;<j3894>;\
<j3901>;...;<j3994>;\
<j4001>;...;<j4094>;\
<j4101>;...;<j4194>;\
<j4201>;...;<j4294>;\
<j4301>;...;<j4394>;\
<j4401>;...;<j4494>;\
<j4501>;...;<j4594>;\
<j4601>;...;<j4694>;\
<j4701>;...;<j4751>;\
<j4801>;...;<j4894>;\
<j4901>;...;<j4994>;\
<j5001>;...;<j5094>;\
<j5101>;...;<j5194>;\
<j5201>;...;<j5294>;\
<j5301>;...;<j5394>;\
<j5401>;...;<j5494>;\
<j5501>;...;<j5594>;\
<j5601>;...;<j5694>;\
<j5701>;...;<j5794>;\
<j5801>;...;<j5894>;\
<j5901>;...;<j5994>;\
<j6001>;...;<j6094>;\
<j6101>;...;<j6194>;\
<j6201>;...;<j6294>;\
<j6301>;...;<j6394>;\
<j6401>;...;<j6494>;\
<j6501>;...;<j6594>;\
<j6601>;...;<j6694>;\
<j6701>;...;<j6794>;\
<j6801>;...;<j6894>;\
<j6901>;...;<j6994>;\
<j7001>;...;<j7094>;\
<j7101>;...;<j7194>;\
<j7201>;...;<j7294>;\
<j7301>;...;<j7394>;\
<j7401>;...;<j7494>;\
<j7501>;...;<j7594>;\
<j7601>;...;<j7694>;\
<j7701>;...;<j7794>;\
<j7801>;...;<j7894>;\
<j7901>;...;<j7994>;\
<j8001>;...;<j8094>;\
<j8101>;...;<j8194>;\
<j8201>;...;<j8294>;\
<j8301>;...;<j8394>;\
<j8401>;...;<j8406>;\

152 X/Open Guide (1993)

Example Locales Example Locale 3

<J1601>;...;<J1694>;\
<J1701>;...;<J1794>;\
<J1801>;...;<J1894>;\
<J1901>;...;<J1994>;\
<J2001>;...;<J2094>;\
<J2101>;...;<J2194>;\
<J2201>;...;<J2294>;\
<J2301>;...;<J2394>;\
<J2401>;...;<J2494>;\
<J2501>;...;<J2594>;\
<J2601>;...;<J2694>;\
<J2701>;...;<J2794>;\
<J2801>;...;<J2894>;\
<J2901>;...;<J2994>;\
<J3001>;...;<J3094>;\
<J3101>;...;<J3194>;\
<J3201>;...;<J3294>;\
<J3301>;...;<J3394>;\
<J3401>;...;<J3494>;\
<J3501>;...;<J3594>;\
<J3601>;...;<J3694>;\
<J3701>;...;<J3794>;\
<J3801>;...;<J3894>;\
<J3901>;...;<J3994>;\
<J4001>;...;<J4094>;\
<J4101>;...;<J4194>;\
<J4201>;...;<J4294>;\
<J4301>;...;<J4394>;\
<J4401>;...;<J4494>;\
<J4501>;...;<J4594>;\
<J4601>;...;<J4694>;\
<J4701>;...;<J4794>;\
<J4801>;...;<J4894>;\
<J4901>;...;<J4994>;\
<J5001>;...;<J5094>;\
<J5101>;...;<J5194>;\
<J5201>;...;<J5294>;\
<J5301>;...;<J5394>;\
<J5401>;...;<J5494>;\
<J5501>;...;<J5594>;\
<J5601>;...;<J5694>;\
<J5701>;...;<J5794>;\
<J5801>;...;<J5894>;\
<J5901>;...;<J5994>;\
<J6001>;...;<J6094>;\
<J6101>;...;<J6194>;\
<J6201>;...;<J6294>;\
<J6301>;...;<J6394>;\
<J6401>;...;<J6494>;\
<J6501>;...;<J6594>;\
<J6601>;...;<J6694>;\
<J6701>;...;<J6794>;\

Internationalisation Guide Version 2 153

Example Locale 3 Example Locales

<J6801>;...;<J6894>;\
<J6901>;...;<J6994>;\
<J7001>;...;<J7094>;\
<J7101>;...;<J7194>;\
<J7201>;...;<J7294>;\
<J7301>;...;<J7394>;\
<J7401>;...;<J7494>;\
<J7501>;...;<J7594>;\
<J7601>;...;<J7694>;\
<J7701>;...;<J7767>;\
<j0124>;<j0125>;<j0127>

#
jspace class: The space character in JIS X 0208
#

jspace <j0101>

#
toupper and tolower: also handle Roman, Greek and Russian
characters in JIS X 0208 and JIS X 0212

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\
(<z>,<Z>);\
(<j0365>,<j0333>);(<j0366>,<j0334>);(<j0367>,<j0335>);\
(<j0368>,<j0336>);(<j0369>,<j0337>);(<j0370>,<j0338>);\
(<j0371>,<j0339>);(<j0372>,<j0340>);(<j0373>,<j0341>);\
(<j0374>,<j0342>);(<j0375>,<j0343>);(<j0376>,<j0344>);\
(<j0377>,<j0345>);(<j0378>,<j0346>);(<j0379>,<j0347>);\
(<j0380>,<j0348>);(<j0381>,<j0349>);(<j0382>,<j0350>);\
(<j0383>,<j0351>);(<j0384>,<j0352>);(<j0385>,<j0353>);\
(<j0386>,<j0354>);(<j0387>,<j0355>);(<j0388>,<j0356>);\
(<j0389>,<j0357>);(<j0390>,<j0358>);\
(<j0633>,<j0601>);(<j0634>,<j0602>);(<j0635>,<j0603>);\
(<j0636>,<j0604>);(<j0637>,<j0605>);(<j0638>,<j0606>);\
(<j0639>,<j0607>);(<j0640>,<j0608>);(<j0641>,<j0609>);\
(<j0642>,<j0610>);(<j0643>,<j0611>);(<j0644>,<j0612>);\
(<j0645>,<j0613>);(<j0646>,<j0614>);(<j0647>,<j0615>);\
(<j0648>,<j0616>);(<j0649>,<j0617>);(<j0650>,<j0618>);\
(<j0651>,<j0619>);(<j0652>,<j0620>);(<j0653>,<j0621>);\
(<j0654>,<j0622>);(<j0655>,<j0623>);(<j0656>,<j0624>);\
(<j0749>,<j0701>);(<j0750>,<j0702>);(<j0751>,<j0703>);\
(<j0752>,<j0704>);(<j0753>,<j0705>);(<j0754>,<j0706>);\
(<j0755>,<j0707>);(<j0756>,<j0708>);(<j0757>,<j0709>);\
(<j0758>,<j0710>);(<j0759>,<j0711>);(<j0760>,<j0712>);\
(<j0761>,<j0713>);(<j0762>,<j0714>);(<j0763>,<j0715>);\
(<j0764>,<j0716>);(<j0765>,<j0717>);(<j0766>,<j0718>);\
(<j0767>,<j0719>);(<j0768>,<j0720>);(<j0769>,<j0721>);\

154 X/Open Guide (1993)

Example Locales Example Locale 3

(<j0770>,<j0722>);(<j0771>,<j0723>);(<j0772>,<j0724>);\
(<j0773>,<j0725>);(<j0774>,<j0726>);(<j0775>,<j0727>);\
(<j0776>,<j0728>);(<j0777>,<j0729>);(<j0778>,<j0730>);\
(<j0779>,<j0731>);(<j0780>,<j0732>);(<j0781>,<j0733>);\
(<J0681>,<J0665>);(<J0682>,<J0666>);(<J0683>,<J0667>);\
(<J0684>,<J0668>);(<J0685>,<J0669>);(<J0687>,<J0671>);\
(<J0689>,<J0673>);(<J0690>,<J0674>);(<J0692>,<J0676>);\
(<J0782>,<J0734>);(<J0783>,<J0735>);(<J0784>,<J0736>);\
(<J0785>,<J0737>);(<J0786>,<J0738>);(<J0787>,<J0739>);\
(<J0788>,<J0740>);(<J0789>,<J0741>);(<J0790>,<J0742>);\
(<J0791>,<J0743>);(<J0792>,<J0744>);(<J0793>,<J0745>);\
(<J0794>,<J0746>);(<J0933>,<J0901>);(<J0934>,<J0902>);\
(<J0936>,<J0904>);(<J0938>,<J0906>);(<J0940>,<J0908>);\
(<J0941>,<J0909>);(<J0943>,<J0911>);(<J0944>,<J0912>);\
(<J0945>,<J0913>);(<J0947>,<J0915>);(<J0948>,<J0916>);\
(<J1101>,<J1001>);(<J1102>,<J1002>);(<J1103>,<J1003>);\
(<J1104>,<J1004>);(<J1105>,<J1005>);(<J1106>,<J1006>);\
(<J1107>,<J1007>);(<J1108>,<J1008>);(<J1109>,<J1009>);\
(<J1110>,<J1010>);(<J1111>,<J1011>);(<J1112>,<J1012>);\
(<J1113>,<J1013>);(<J1114>,<J1014>);(<J1115>,<J1015>);\
(<J1116>,<J1016>);(<J1117>,<J1017>);(<J1118>,<J1018>);\
(<J1119>,<J1019>);(<J1120>,<J1020>);(<J1121>,<J1021>);\
(<J1122>,<J1022>);(<J1123>,<J1023>);(<J1124>,<J1024>);\
(<J1126>,<J1026>);(<J1127>,<J1027>);(<J1129>,<J1029>);\
(<J1130>,<J1030>);(<J1131>,<J1031>);(<J1132>,<J1032>);\
(<J1133>,<J1033>);(<J1134>,<J1034>);(<J1135>,<J1035>);\
(<J1137>,<J1037>);(<J1138>,<J1038>);(<J1139>,<J1039>);\
(<J1140>,<J1040>);(<J1141>,<J1041>);(<J1142>,<J1042>);\
(<J1143>,<J1043>);(<J1144>,<J1044>);(<J1145>,<J1045>);\
(<J1146>,<J1046>);(<J1147>,<J1047>);(<J1148>,<J1048>);\
(<J1149>,<J1049>);(<J1150>,<J1050>);(<J1151>,<J1051>);\
(<J1152>,<J1052>);(<J1153>,<J1053>);(<J1154>,<J1054>);\
(<J1155>,<J1055>);(<J1156>,<J1056>);(<J1157>,<J1057>);\
(<J1158>,<J1058>);(<J1159>,<J1059>);(<J1160>,<J1060>);\
(<J1161>,<J1061>);(<J1162>,<J1062>);(<J1163>,<J1063>);\
(<J1164>,<J1064>);(<J1165>,<J1065>);(<J1166>,<J1066>);\
(<J1167>,<J1067>);(<J1168>,<J1068>);(<J1169>,<J1069>);\
(<J1170>,<J1070>);(<J1171>,<J1071>);(<J1172>,<J1072>);\
(<J1173>,<J1073>);(<J1174>,<J1074>);(<J1175>,<J1075>);\
(<J1176>,<J1076>);(<J1177>,<J1077>);(<J1178>,<J1078>);\
(<J1179>,<J1079>);(<J1180>,<J1080>);(<J1181>,<J1081>);\
(<J1182>,<J1082>);(<J1183>,<J1083>);(<J1184>,<J1084>);\
(<J1185>,<J1085>);(<J1186>,<J1086>);(<J1187>,<J1087>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);\
(<Z>,<z>);\
(<j0333>,<j0365>);(<j0334>,<j0366>);(<j0335>,<j0367>);\
(<j0336>,<j0368>);(<j0337>,<j0369>);(<j0338>,<j0370>);\

Internationalisation Guide Version 2 155

Example Locale 3 Example Locales

(<j0339>,<j0371>);(<j0340>,<j0372>);(<j0341>,<j0373>);\
(<j0342>,<j0374>);(<j0343>,<j0375>);(<j0344>,<j0376>);\
(<j0345>,<j0377>);(<j0346>,<j0378>);(<j0347>,<j0379>);\
(<j0348>,<j0380>);(<j0349>,<j0381>);(<j0350>,<j0382>);\
(<j0351>,<j0383>);(<j0352>,<j0384>);(<j0353>,<j0385>);\
(<j0354>,<j0386>);(<j0355>,<j0387>);(<j0356>,<j0388>);\
(<j0357>,<j0389>);(<j0358>,<j0390>);\
(<j0601>,<j0633>);(<j0602>,<j0634>);(<j0603>,<j0635>);\
(<j0604>,<j0636>);(<j0605>,<j0637>);(<j0606>,<j0638>);\
(<j0607>,<j0639>);(<j0608>,<j0640>);(<j0609>,<j0641>);\
(<j0610>,<j0642>);(<j0611>,<j0643>);(<j0612>,<j0644>);\
(<j0613>,<j0645>);(<j0614>,<j0646>);(<j0615>,<j0647>);\
(<j0616>,<j0648>);(<j0617>,<j0649>);(<j0618>,<j0650>);\
(<j0619>,<j0651>);(<j0620>,<j0652>);(<j0621>,<j0653>);\
(<j0622>,<j0654>);(<j0623>,<j0655>);(<j0624>,<j0656>);\
(<j0701>,<j0749>);(<j0702>,<j0750>);(<j0703>,<j0751>);\
(<j0704>,<j0752>);(<j0705>,<j0753>);(<j0706>,<j0754>);\
(<j0707>,<j0755>);(<j0708>,<j0756>);(<j0709>,<j0757>);\
(<j0710>,<j0758>);(<j0711>,<j0759>);(<j0712>,<j0760>);\
(<j0713>,<j0761>);(<j0714>,<j0762>);(<j0715>,<j0763>);\
(<j0716>,<j0764>);(<j0717>,<j0765>);(<j0718>,<j0766>);\
(<j0719>,<j0767>);(<j0720>,<j0768>);(<j0721>,<j0769>);\
(<j0722>,<j0770>);(<j0723>,<j0771>);(<j0724>,<j0772>);\
(<j0725>,<j0773>);(<j0726>,<j0774>);(<j0727>,<j0775>);\
(<j0728>,<j0776>);(<j0729>,<j0777>);(<j0730>,<j0778>);\
(<j0731>,<j0779>);(<j0732>,<j0780>);(<j0733>,<j0781>);\
(<J0665>,<J0681>);(<J0666>,<J0682>);(<J0667>,<J0683>);\
(<J0668>,<J0684>);(<J0669>,<J0685>);(<J0671>,<J0687>);\
(<J0673>,<J0689>);(<J0674>,<J0690>);(<J0676>,<J0692>);\
(<J0734>,<J0782>);(<J0735>,<J0783>);(<J0736>,<J0784>);\
(<J0737>,<J0785>);(<J0738>,<J0786>);(<J0739>,<J0787>);\
(<J0740>,<J0788>);(<J0741>,<J0789>);(<J0742>,<J0790>);\
(<J0743>,<J0791>);(<J0744>,<J0792>);(<J0745>,<J0793>);\
(<J0746>,<J0794>);(<J0901>,<J0933>);(<J0902>,<J0934>);\
(<J0904>,<J0936>);(<J0906>,<J0938>);(<J0908>,<J0940>);\
(<J0909>,<J0941>);(<J0911>,<J0943>);(<J0912>,<J0944>);\
(<J0913>,<J0945>);(<J0915>,<J0947>);(<J0916>,<J0948>);\
(<J1001>,<J1101>);(<J1002>,<J1102>);(<J1003>,<J1103>);\
(<J1004>,<J1104>);(<J1005>,<J1105>);(<J1006>,<J1106>);\
(<J1007>,<J1107>);(<J1008>,<J1108>);(<J1009>,<J1109>);\
(<J1010>,<J1110>);(<J1011>,<J1111>);(<J1012>,<J1112>);\
(<J1013>,<J1113>);(<J1014>,<J1114>);(<J1015>,<J1115>);\
(<J1016>,<J1116>);(<J1017>,<J1117>);(<J1018>,<J1118>);\
(<J1019>,<J1119>);(<J1020>,<J1120>);(<J1021>,<J1121>);\
(<J1022>,<J1122>);(<J1023>,<J1123>);(<J1024>,<J1124>);\
(<J1026>,<J1126>);(<J1027>,<J1127>);(<J1029>,<J1129>);\
(<J1030>,<J1130>);(<J1031>,<J1131>);(<J1032>,<J1132>);\
(<J1033>,<J1133>);(<J1034>,<J1134>);(<J1035>,<J1135>);\
(<J1037>,<J1137>);(<J1038>,<J1138>);(<J1039>,<J1139>);\
(<J1040>,<J1140>);(<J1041>,<J1141>);(<J1042>,<J1142>);\
(<J1043>,<J1143>);(<J1044>,<J1144>);(<J1045>,<J1145>);\
(<J1046>,<J1146>);(<J1047>,<J1147>);(<J1048>,<J1148>);\

156 X/Open Guide (1993)

Example Locales Example Locale 3

(<J1049>,<J1149>);(<J1050>,<J1150>);(<J1051>,<J1151>);\
(<J1052>,<J1152>);(<J1053>,<J1153>);(<J1054>,<J1154>);\
(<J1055>,<J1155>);(<J1056>,<J1156>);(<J1057>,<J1157>);\
(<J1058>,<J1158>);(<J1059>,<J1159>);(<J1060>,<J1160>);\
(<J1061>,<J1161>);(<J1062>,<J1162>);(<J1063>,<J1163>);\
(<J1064>,<J1164>);(<J1065>,<J1165>);(<J1066>,<J1166>);\
(<J1067>,<J1167>);(<J1068>,<J1168>);(<J1069>,<J1169>);\
(<J1070>,<J1170>);(<J1071>,<J1171>);(<J1072>,<J1172>);\
(<J1073>,<J1173>);(<J1074>,<J1174>);(<J1075>,<J1175>);\
(<J1076>,<J1176>);(<J1077>,<J1177>);(<J1078>,<J1178>);\
(<J1079>,<J1179>);(<J1080>,<J1180>);(<J1081>,<J1181>);\
(<J1082>,<J1182>);(<J1083>,<J1183>);(<J1084>,<J1184>);\
(<J1085>,<J1185>);(<J1086>,<J1186>);(<J1087>,<J1187>)

END LC_CTYPE

#
LC_COLLATE
#
LC_COLLATE

order_start forward

#
ISO 646 IRV or JIS X 0201 Roman
#
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>

Internationalisation Guide Version 2 157

Example Locale 3 Example Locales

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>

158 X/Open Guide (1993)

Example Locales Example Locale 3

<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

Internationalisation Guide Version 2 159

Example Locale 3 Example Locales

#
C1 control
#
<BPH>
<NBH>
<NEL>
<SSA>
<ESA>
<HTS>
<HTJ>
<VTS>
<PLD>
<PLU>
<RI>
<SS2>
<SS3>
<DCS>
<PU1>
<PU2>
<STS>
<CCH>
<MW>
<SPA>
<EPA>
<SOS>
<SCI>
<CSI>
<ST>
<OSC>
<PM>
<APC>

#
JIS X 0201 Katakana
#
<kana-full-stop>
<kana-opening-bracket>
<kana-closing-bracket>
<kana-comma>
<kana-conjunctive>
<kana-WO>
<kana-a>
<kana-i>
<kana-u>
<kana-e>
<kana-o>
<kana-ya>
<kana-yu>
<kana-yo>
<kana-tsu>
<kana-prolonged-sound>
<kana-A>

160 X/Open Guide (1993)

Example Locales Example Locale 3

<kana-I>
<kana-U>
<kana-E>
<kana-O>
<kana-KA>
<kana-KI>
<kana-KU>
<kana-KE>
<kana-KO>
<kana-SA>
<kana-SHI>
<kana-SU>
<kana-SE>
<kana-SO>
<kana-TA>
<kana-CHI>
<kana-TSU>
<kana-TE>
<kana-TO>
<kana-NA>
<kana-NI>
<kana-NU>
<kana-NE>
<kana-NO>
<kana-HA>
<kana-HI>
<kana-FU>
<kana-HE>
<kana-HO>
<kana-MA>
<kana-MI>
<kana-MU>
<kana-ME>
<kana-MO>
<kana-YA>
<kana-YU>
<kana-YO>
<kana-RA>
<kana-RI>
<kana-RU>
<kana-RE>
<kana-RO>
<kana-WA>
<kana-N>
<kana-voiced-sound>
<kana-semivoiced-sound>

#
JIS X 0208
#
<j0101>
<j0194>

Internationalisation Guide Version 2 161

Example Locale 3 Example Locales

<j0201>
<j0214>
<j0226>
<J0233>
<J0242>
<J0248>
<j0260>
<j0274>
<J0282>
<J0289>
<j0294>
<j0316>
<j0325>
<j0333>
<j0358>
<j0365>
<j0390>
<j0401>
<j0483>
<j0501>
<j0586>
<j0601>
<j0624>
<j0633>
<j0656>
<j0701>
<j0733>
<j0749>
<j0781>
<j0801>
<j0832>
<j1601>
<j1694>
<j1701>
<j1794>
<j1801>
<j1894>
<j1901>
<j1994>
<j2001>
<j2094>
<j2101>
<j2194>
<j2201>
<j2294>
<j2301>
<j2394>
<j2401>
<j2494>
<j2501>
<j2594>
<j2601>

162 X/Open Guide (1993)

Example Locales Example Locale 3

<j2694>
<j2701>
<j2794>
<j2801>
<j2894>
<j2901>
<j2994>
<j3001>
<j3094>
<j3101>
<j3194>
<j3201>
<j3294>
<j3301>
<j3394>
<j3401>
<j3494>
<j3501>
<j3594>
<j3601>
<j3694>
<j3701>
<j3794>
<j3801>
<j3894>
<j3901>
<j3994>
<j4001>
<j4094>
<j4101>
<j4194>
<j4201>
<j4294>
<j4301>
<j4394>
<j4401>
<j4494>
<j4501>
<j4594>
<j4601>
<j4694>
<j4701>
<j4751>
<j4801>
<j4894>
<j4901>
<j4994>
<j5001>
<j5094>
<j5101>
<j5194>
<j5201>

Internationalisation Guide Version 2 163

Example Locale 3 Example Locales

<j5294>
<j5301>
<j5394>
<j5401>
<j5494>
<j5501>
<j5594>
<j5601>
<j5694>
<j5701>
<j5794>
<j5801>
<j5894>
<j5901>
<j5994>
<j6001>
<j6094>
<j6101>
<j6194>
<j6201>
<j6294>
<j6301>
<j6394>
<j6401>
<j6494>
<j6501>
<j6594>
<j6601>
<j6694>
<j6701>
<j6794>
<j6801>
<j6894>
<j6901>
<j6994>
<j7001>
<j7094>
<j7101>
<j7194>
<j7201>
<j7294>
<j7301>
<j7394>
<j7401>
<j7494>
<j7501>
<j7594>
<j7601>
<j7694>
<j7701>
<j7794>
<j7801>

164 X/Open Guide (1993)

Example Locales Example Locale 3

<j7894>
<j7901>
<j7994>
<j8001>
<j8094>
<j8101>
<j8194>
<j8201>
<j8294>
<j8301>
<j8394>
<j8401>
<j8406>

#
JIS X 0212
#
<J0215>
<J0225>
<J0234>
<J0236>
<J0275>
<J0281>
<J0665>
<J0669>
<J0671>
<J0673>
<J0674>
<J0676>
<J0681>
<J0692>
<J0734>
<J0746>
<J0782>
<J0794>
<J0901>
<J0902>
<J0904>
<J0906>
<J0908>
<J0909>
<J0911>
<J0913>
<J0915>
<J0916>
<J0933>
<J0948>
<J1001>
<J1024>
<J1026>
<J1087>
<J1101>

Internationalisation Guide Version 2 165

Example Locale 3 Example Locales

<J1127>
<J1129>
<J1135>
<J1137>
<J1187>
<J1601>
<J1694>
<J1701>
<J1794>
<J1801>
<J1894>
<J1901>
<J1994>
<J2001>
<J2094>
<J2101>
<J2194>
<J2201>
<J2294>
<J2301>
<J2394>
<J2401>
<J2494>
<J2501>
<J2594>
<J2601>
<J2694>
<J2701>
<J2794>
<J2801>
<J2894>
<J2901>
<J2994>
<J3001>
<J3094>
<J3101>
<J3194>
<J3201>
<J3294>
<J3301>
<J3394>
<J3401>
<J3494>
<J3501>
<J3594>
<J3601>
<J3694>
<J3701>
<J3794>
<J3801>
<J3894>
<J3901>

166 X/Open Guide (1993)

Example Locales Example Locale 3

<J3994>
<J4001>
<J4094>
<J4101>
<J4194>
<J4201>
<J4294>
<J4301>
<J4394>
<J4401>
<J4494>
<J4501>
<J4594>
<J4601>
<J4694>
<J4701>
<J4794>
<J4801>
<J4894>
<J4901>
<J4994>
<J5001>
<J5094>
<J5101>
<J5194>
<J5201>
<J5294>
<J5301>
<J5394>
<J5401>
<J5494>
<J5501>
<J5594>
<J5601>
<J5694>
<J5701>
<J5794>
<J5801>
<J5894>
<J5901>
<J5994>
<J6001>
<J6094>
<J6101>
<J6194>
<J6201>
<J6294>
<J6301>
<J6394>
<J6401>
<J6494>
<J6501>

Internationalisation Guide Version 2 167

Example Locale 3 Example Locales

<J6594>
<J6601>
<J6694>
<J6701>
<J6794>
<J6801>
<J6894>
<J6901>
<J6994>
<J7001>
<J7094>
<J7101>
<J7194>
<J7201>
<J7294>
<J7301>
<J7394>
<J7401>
<J7494>
<J7501>
<J7594>
<J7601>
<J7694>
<J7701>
<J7767>

#
Undefined
#
UNDEFINED

order_end

#
END LC_COLLATE

#
LC_MESSAGES
#
LC_MESSAGES

yesexpr "ˆ[<y><Y><j0389><j0357>]"
noexpr "ˆ[<n><N><j0378><j0346>]"

#
END LC_MESSAGES

#
LC_MONETARY
#

168 X/Open Guide (1993)

Example Locales Example Locale 3

LC_MONETARY

int_curr_symbol "<J><P><Y><space>"
currency_symbol "<yen-sign>"
mon_decimal_point ""
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign ""
negative_sign "<hyphen>"
int_frac_digits 0
frac_digits 0
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 4

#
END LC_MONETARY

#
LC_NUMERIC
#
LC_NUMERIC

decimal_point "<period>"
thousands_sep "<comma>"
grouping 3

#
END LC_NUMERIC

#
LC_TIME
#
LC_TIME

abday: abbreviated weekday names
abday is defined as the first letters of Japanese weekday names
in Kanji, such as Nichi, Getsu, and Ka.
abday "<j3892>";"<j2378>";"<j1848>";"<j3169>";\

"<j4458>";"<j2266>";"<j3758>"

day: full weekday names
day is defined as full names of Japanese weekday names in Kanji,
such as Nichiyoubi, Getsuyoubi, and Kayoubi.
day "<j3892><j4543><j3892>";"<j2378><j4543><j3892>";\

"<j1848><j4543><j3892>";"<j3169><j4543><j3892>";\
"<j4458><j4543><j3892>";"<j2266><j4543><j3892>";\

Internationalisation Guide Version 2 169

Example Locale 3 Example Locales

"<j3758><j4543><j3892>"

abmon: abbreviated month names
abmon is defined as two columns digit of month number, and Gatsu
in Kanji. If month number is less than ten, leading space is padded.
The names are " 1Gatsu", " 2Gatsu", ..., "12Gatsu".
abmon "<space><one>OP;<j2378>";"<space><two><j2378>";\

"<space><three><j2378>";"<space><four><j2378>";\
"<space><five><j2378>";"<space><six><j2378>";\
"<space><seven><j2378>";"<space><eight><j2378>";\
"<space><nine><j2378>";\
"<one><zero><j2378>";"<one><one><j2378>";\
"<one><two><j2378>"

mon: full month names
mon is defined as digit of month number, and Gatsu in Kanji. No
space is padded. The names are "1Gatsu", "2Gatsu", ..., "12Gatsu".
mon "<one><j2378>";"<two><j2378>";"<three><j2378>";\

"<four><j2378>";"<five><j2378>";"<six><j2378>";\
"<seven><j2378>";"<eight><j2378>";"<nine><j2378>";\
"<one><zero><j2378>";"<one><one><j2378>";\
"<one><two><j2378>"

d_t_fmt: date and time format
The format is defined as:
"%YNen%mGatsu%dNichi %HJi%MFun%SByou"
which will be formatted as, for example,
"1993Nen02Gatsu06Nichi 08Ji59Fun07Byou"
d_t_fmt "%Y<j3915>%m<j2378>%d<j3892><space>%H<j2794>%M<j4212>%S<j4135>"

d_fmt: date format
The format is defined as:
"%YNen%mGatsu%dNichi"
which will be formatted as, for example,
"1993Nen02Gatsu06Nichi"
d_fmt "%Y<j3915>%m<j2378>%d<j3892>"

t_fmt: time format
The format is defined as:
"%HJi%MFun%SByou"
which will be formatted as, for example,
"08Ji59Fun07Byou"
t_fmt "%H<j2794>%M<j4212>%S<j4135>"

am_pm: ante meridiem (AM) and post meridiem (PM) strings
"Gozen" for AM, "Gogo" for PM
am_pm "<j2465><j3316>";"<j2465><j2469>"

t_fmt_ampm: time format using am_pm
The format is defined as:
"%p%IJi%MFun%SByou"
which will be formatted as, for example,

170 X/Open Guide (1993)

Example Locales Example Locale 3

"Gozen08Ji59Fun07Byou"
t_fmt_ampm "%p%I<j2794>%M<j4212>%S<j4135>"

era: year count and format for era
era (Gengou) is defined as follows:
from 1990-01-01: "Heisei%EyNen" (1990 is Heisei 2 Nen.)
from 1989-01-08 to 1989-12-31: "HeiseiGannen"
from 1927-01-01 to 1989-01-07: "Showa%EyNen" (1927 is Showa 2 Nen.)
era "+:2:1990/01/01:+*:<j4231><j3214>:%EC%Ey<j3915>";\

"+:1:1989/01/08:1989/12/31:<j4231><j3214>:%EC<j2421><j3915>";\
"+:2:1927/01/01:1989/01/07:<j3028><j4734>:%EC%Ey<j3915>"

era_d_fmt: date format using era
The format is defined as:
"%EY%mGatsu%dNichi"
which will be formatted as, for example,
"Heisei5Nen02Gatsu06Nichi"
era_d_fmt "%EY%m<j2378>%d<j3892>"

era_d_t_fmt: date and time format using era
The format is defined as:
"%EY%mGatsu%dNichi %HJi%MFun%SByou"
which will be formatted as, for example,
"Heisei5Nen02Gatsu06Nichi 08Ji59Fun07Byou"
era_d_t_fmt "%EY%m<j2378>%d<j3892><space>%H<j2794>%M<j4212>%S<j4135>"

era_t_fmt and alt_digits are not defined here.

#
END LC_TIME

Internationalisation Guide Version 2 171

Example Locales

172 X/Open Guide (1993)

Glossary

base character
One of the set of characters defined in the Latin alphabet. In Western European languages
other than English, these characters are commonly used with diacritical marks (accents,
cedilla, and so forth) to extend the range of characters in an alphabet.

byte
An individually addressable unit of data storage that is equal to or larger than an octet, used
to store a character or a portion of a character; see character. A byte is composed of a
contiguous sequence of bits, the number of which is implementation-dependent. The least
significant bit is called the low-order bit; the most significant is called the high-order bit. Note
that this definition of byte deviates intentionally from the usage of byte in some international
standards, where it is used as a synonym for octet (always eight bits). On a system based on
the ISO POSIX-2 DIS, a byte may be larger than eight bits so that it can be an integral
portion of larger data objects that are not evenly divisible by eight bits (such as a 36-bit
word that contains four 9-bit bytes).

character
A sequence of one or more bytes representing a single graphic symbol or control code. This
term corresponds to the ISO C standard term multibyte character (multi-byte character),
where a single-byte character is a special case of a multi-byte character. Unlike the usage in
the ISO C standard, character here has no necessary relationship with storage space, and byte
is used when storage space is discussed.

character array
An array of type char.

character class
A named set of characters sharing an attribute associated with the name of the class. The
classes and the characters that they contain are dependent on the value of the LC_CTYPE
category in the current locale.

character set
A finite set of different characters used for the representation, organisation or control of
data.

character string
A contiguous sequence of characters terminated by and including the first null byte.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

collating element
The smallest entity used to determine the logical ordering of character or wide character
strings. See collation sequence on page 174. A collating element consists of either a single
character, or two or more characters collating as a single entity. The value of the
LC_COLLATE category in the current locale determines the current set of collating
elements.

Internationalisation Guide Version 2 173

Glossary

collation
The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

collation sequence
The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The character order, as defined for the LC_COLLATE
category in the current locale, defines the relative order of all collating elements, such that
each element occupies a unique position in the order. This is the order used in ranges of
characters and collating elements in regular expressions and pattern matching. In addition,
the definition of the collating weights of characters and collating elements uses collating
elements to represent their respective positions within the collation sequence.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up
to the limit {COLL_WEIGHTS_MAX}; see <limits.h> in the XSH specification. On each
level, elements may be given the same weight (at the primary level, called an equivalence
class; see equivalence class) or be omitted from the sequence. Strings that collate equal
using the first assigned weight (primary ordering) are then compared using the next
assigned weight (secondary ordering), and so on.

composite graphic symbol
A graphic symbol consisting of a combination of two or more other graphic symbols in a
single character position, such as a diacritical mark and a basic letter.

control character
A character, other than a graphic character, that affects the recording, processing,
transmission or interpretation of text.

conversion descriptor
A per-process unique value used to identify an open codeset conversion.

downshifting
The conversion of an upper-case character to its lower-case representation.

eight-bit transparency
The ability of a software component to process 8-bit characters without modifying or
utilising any part of the character in a way that is inconsistent with the rules of the current
coded character set.

empty string
A string whose first byte is a null byte.

empty wide character string
A wide-character string whose first element is a null wide-character code.

equivalence class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such
as all accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

era
An alternative method for counting and displaying years.

174 X/Open Guide (1993)

Glossary

graphic character
A character, other than a control character, that has a visual representation when
handwritten, printed or displayed.

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

local customs
The conventions of a geographical area or territory for such things as date, time and
currency formats.

locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions.

localisation
The process of establishing information within a computer system specific to the operation
of particular languages, local customs and coded character sets.

message catalogue
A file or storage area containing program messages, command prompts and responses to
prompts for a particular native language, territory and codeset.

message catalogue descriptor
A per-process unique value used to identify an open message catalogue. A message
catalogue descriptor may be implemented using a file descriptor.

multi-character collating element
A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and ll.

native language
A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian or Swedish.

non-spacing characters
A character, such as a character representing a diacritical mark in the ISO 6937: 1983
standard coded character set, which is used in combination with other characters to form
composite graphic symbols.

null byte
A byte with all bits set to zero.

null pointer
The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value does not match that of any legitimate pointer, so
it is used by many functions that return pointers to indicate an error.

null string
See empty string on page 174.

null wide-character code
A wide-character code with all bits set to zero.

Internationalisation Guide Version 2 175

Glossary

portable character set
The collection of characters that are required to be present in all locales supported by
X/Open-compliant systems:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 ! # % ˆ & * () _ + - = { } []
: " ˜ ; ’ ‘ < > ? , . | \ / @ $

Also included are <alert>, <backspace>, <tab>, <newline>, <vertical-tab>, <form-feed>,
<carriage-return>, <space> and the null character, NUL.

This term is contrasted with the smaller portable filename character set.

portable filename character set
The set of characters from which portable filenames are constructed. For a filename to be
portable across implementations conforming to this document set and the ISO POSIX-1
standard, it must consist only of the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore and hyphen characters, respectively.
The hyphen must not be used as the first character of a portable filename. Upper- and
lower-case letters retain their unique identities between conforming implementations. In
the case of a portable pathname, the slash character may also be used.

printable character
One of the characters included in the print character classification of the LC_CTYPE
category in the current locale.

string
A contiguous sequence of bytes terminated by and including the first null byte.

upshifting
The conversion of a lower-case character to its upper-case representation.

white space
A sequence of one or more characters that belong to the space character class as defined by
the LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more blank characters (space and tab
characters), newline characters, carriage-return characters, form-feed characters and
vertical-tab characters.

wide-character code
An integer value corresponding to a single graphic symbol or control code.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null
wide-character code.

176 X/Open Guide (1993)

Index

/etc/profile ..89
<iconv.h>..83
<langinfo.h> ..16, 56
<locale.h>...42, 60
<monetary.h>..58
<nl_types.h>......................................21, 24, 34-36, 56
<stddef.h>..54, 74
<stdio.h>...82
<string.h>...79, 82
<sys/types.h> ...58
<time.h> ...62, 65
<wchar.h>..............7, 48, 51-52, 54, 65, 72-73, 76, 79
8-bit transparency...96
announcement mechanism................2, 6, 21, 87, 90
ar ..95
ASCII ..1, 10, 13, 48, 97, 100
asctime() ...62-63
at ..90
awk ..99
base character ..173
batch ..90
byte ..173
C locale..43
calloc() ..55
catclose() ..35
catgets() ..18, 36-37
catopen() ..19, 33-34, 94
character ...7, 173
character array ..173
character class.......................................14, 97, 99, 173
character set...4, 173
Character Set Description File104
character string ...7, 173
CHAR_MAX..60
coded character set...4, 173
codeset ..34, 87
collating element98-99, 108, 173
collating symbol ..98-99
collating-symbol ...108
collation ..174
collation sequence ..174
COLL_WEIGHTS_MAX...............................109, 174
comm...93
composite graphic symbol174
control character ...174
Control Code Character Set....................................44

conv functions ...51
conversion descriptor ..174
cpio ..95
ctime()...62
ctype functions..48
date..64, 95, 115
downshifting ...174
EBCDIC...13
ed ...28, 94, 99
egrep..99
eight-bit transparency ...174
empty string ..7, 174
empty wide character string174
empty wide-character string7
equivalence class98-99, 108, 174
era ..174
ERANGE...73
errno...52, 72-73, 76, 82-83
ex ..28
exec ..90
exit() ..35
expr..93, 99
fgetc()..70
fgetwc() ..76
fgetws() ..77
find...95
fprintf()...68
fputwc()..77
fputws()..77
fscanf()..70
gencat ..18, 31
getchar() ...11
getwc()..76
getwchar() ...11, 76
graphic character ..175
grep..94, 99
iconv..101
iconv()...83
iconv_close() ...83
iconv_open() ...83
iconv_t...83
internationalisation1, 4, 21, 92, 175
Internationalised Utility Environment...................2
isalpha() ...97
isspace() ...65, 94
iswalnum() ..48

Internationalisation Guide Version 2 177

Index

iswalpha() ..48
iswcntrl()..48
iswctype() ..50
iswdigit()..48
iswgraph() ...49
iswlower()..49
iswprint() ...49
iswpunct()..49
iswspace() ..49, 72-73
iswupper() ...49
iswxdigit() ...50
join ...93
LANG..19, 33-34, 87-89, 117
langinfo ...5
language...4, 34, 87
language information ..4, 15
LC_ALL......................................21, 42, 61, 88-89, 117
LC_COLLATE................42, 52, 88, 92, 103, 108, 117
LC_CTYPE42, 48, 51, 74, 88, 94, 103, 106, 117
LC_MESSAGES.......19, 34, 42, 88, 94, 103, 111, 117
LC_MONETARY...........42, 61, 88, 94, 103, 111, 117
LC_NUMERIC...............42, 61, 88, 94, 103, 114, 117
LC_TIME...............................42, 88, 95, 103, 115, 117
ln ..95
local customs ...175
locale3, 5, 15, 21, 56, 87, 92, 117, 175

name..6, 21, 43
locale-categories..2
locale-name..5, 87, 89
localeconv()...2, 17, 60
localedef ...3, 103
localisation...1, 5, 21, 175
LONG_MAX..73
LONG_MIN...73
lpstat ..95
ls...93, 95
mail ..95
mailx..95
mblen() ...74
mbstowcs()..65, 71, 74
mbtowc() ...71, 74
MB_CUR_MAX...74-75
message catalogue..5, 175
message catalogue descriptor..............................175
message catalogues..2, 18, 31
message text source files...................................18, 24
multi-byte character...7, 74
multi-character collating element175
mv ..95
mvprintw() ..68
mvwprintw()...68

native language...175
Native Language System ..2
NLSPATH...19, 33
NL_ARGMAX...68, 70
nl_catd ...34-36
nl_item ..56
nl_langinfo() ...16, 42, 56
NL_LANGMAX..87
NL_MSGMAX...25
NL_SETD ...20, 25
NL_SETMAX...24
NL_TEXTMAX..25
non-spacing characters..175
null byte..175
NULL pointer ..55
null pointer ..57, 175
null string ...175
null wide-character code.......................................175
OPEN_MAX ..34
perror() ...82
pg ...99
Portable Character Set...........................7, 44, 96, 104
portable character set...176
Portable Execution Character Set........................104
Portable Filename Character Set96
portable filename character set............................176
POSIX ..2
POSIX locale ..43-44, 73, 89
pr ..95
printable character ...176
printf()..17, 19, 68, 76
printw() ..26, 68
ps..95
putwc() ...77
putwchar()...77
qsort() ...52, 54
RADIXCHAR..68, 70, 72, 94
regular expressions ..97
rm...94, 100
scanf()...17, 20, 70, 76
sed..99
setlocale()21, 42, 87-88, 92, 103
sh ..89
size_t...54, 62, 65, 75, 79
sort ...91-92, 94
sprintf() ..68
sscanf() ...70
strcmp()..14
strerror()...82
strfmon() ..17, 58
strftime()..16, 47, 62, 115

178 X/Open Guide (1993)

Index

string ...176
strptime()...65, 115
struct lconv ..60
struct tm ...62, 65
tar ...95
territory...4, 34, 87
towlower() ...51
towupper() ..51
tzset() ..62
ULONG_MAX...73
ungetwc()...78
uniq..93
UNIX...1, 10, 14
upshifting ...176
vfprintf() ..68
vi ..28
vprintf()..68
vsprintf() ..68
wc...94
wchar_t...................7, 51-52, 54, 65, 69, 72-74, 76, 79
wcscat() ..79
wcschr()..79
wcscmp()...14, 52, 54, 79
wcscoll()...14, 52, 54
wcscpy()...79
wcscspn() ...80
wcsftime()..65, 115
wcslen() ..80
wcsncat()..80
wcsncmp() ...80
wcsncpy() ..80
wcspbrk()...80
wcsrchr() ..80
wcsspn()...81
wcstod() ...17, 72
wcstok()..81
wcstol()...73
wcstombs()..69, 75
wcstoul() ..73
wcswcs() ..81
wcswidth()...81
wcsxfrm() ..14, 54
wctomb() ...69, 75
wctype() ...50
wcwidth() ..81
WEOF..51, 76, 78
white space ..176
who ..95
wide character ...7, 74
wide-character code...176
wide-character string...7, 176

wint_t..48, 51, 76
Worldwide Portability Interfaces2-3, 12, 40
wprintw()...68
yacc ..94
YESSTR ...94

Internationalisation Guide Version 2 179

Index

180 X/Open Guide (1993)

