
X/Open Guide

Systems Management: Managed Object Guide (XMOG)

X/Open Company Ltd.

 August 1993, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Guide

Systems Management: Managed Object Guide (XMOG)

ISBN: 1-85912-006-7
X/Open Document Number: G302

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open Guide (1993)

Contents

Chapter 1 Introduction... 1
 1.1 Intended Audience ... 2

Chapter 2 Overview... 3
 2.1 The Managed Object Development Process ... 3
 2.2 Object Models.. 6

Chapter 3 Identification of Managed Objects ... 7
 3.1 Management Tasks ... 8
 3.2 Managed Objects... 9

Chapter 4 Definition of Managed Objects... 11
 4.1 Introduction ... 11
 4.1.1 The OMG Approach.. 11
 4.1.2 The ISO Approach ... 12
 4.1.3 The Internet Approach ... 12
 4.1.4 The X/Open Approach... 13
 4.2 OMG Object Model .. 15
 4.2.1 Overview... 15
 4.2.2 Object Semantics .. 16
 4.2.2.1 Objects... 16
 4.2.2.2 Requests.. 16
 4.2.2.3 Object Creation and Destruction... 17
 4.2.2.4 Types.. 17
 4.2.2.5 Interfaces... 18
 4.2.2.6 Operations.. 18
 4.2.2.7 Attributes.. 20
 4.2.3 Object Implementation ... 20
 4.2.3.1 The Execution Model: Performing Services 20
 4.2.3.2 The Construction Model ... 21
 4.3 ISO Management Model ... 22
 4.3.1 Objects.. 22
 4.3.1.1 Introduction... 22
 4.3.1.2 Attributes.. 23
 4.3.1.3 Operations.. 24
 4.3.1.4 Attribute Groups... 24
 4.3.1.5 Notifications... 25
 4.3.1.6 Behaviour.. 25
 4.3.1.7 Parameters.. 25
 4.3.1.8 Syntax.. 26
 4.3.2 Structure/Relationships... 26
 4.3.2.1 Introduction... 26

Systems Management: Managed Object Guide (XMOG) iii

Contents

 4.3.2.2 Specialisation/Inheritance.. 26
 4.3.2.3 Uninstantiable Managed Object Classes.. 27
 4.3.2.4 Packages.. 27
 4.3.2.5 Interoperability.. 27
 4.3.2.6 Allomorphism... 28
 4.3.2.7 Containment.. 28
 4.3.2.8 Filters... 29
 4.3.2.9 Scoping.. 29
 4.3.2.10 Relationships ... 29
 4.3.2.11 Attributes of top.. 29
 4.3.3 General Principals for Managed Object Definition........................... 30
 4.3.4 Templates... 31
 4.3.5 IS GDMO Template ... 32
 4.3.5.1 Managed Object Class Template ... 32
 4.3.5.2 Package Template ... 33
 4.3.5.3 Name Binding.. 34
 4.4 Internet Management Models.. 35
 4.4.1 Internet SMI .. 35
 4.4.1.1 Objects... 35
 4.4.1.2 Structure/Relationships.. 37
 4.4.1.3 Internet Managed Object Type Macro.. 37
 4.4.1.4 Extending the Internet MIB .. 38
 4.5 Mapping Between Object Models ... 38
 4.5.1 Mapping Between OMG Objects and ISO Managed Objects 38
 4.5.2 Mapping Internet Managed Objects to ISO Format 38
 4.6 Refinement ... 39
 4.6.1 Inheritance... 39
 4.6.2 Polymorphism .. 39
 4.6.3 Allomorphism .. 39

Chapter 5 Searching for Managed Objects.. 41

Chapter 6 Policy Freedom .. 45
 6.1 OSI Techniques.. 45
 6.2 Policy Objects... 46

Chapter 7 Registration and Publication .. 47
 7.1 OMG Object Registration.. 47
 7.2 ISO/Internet Registration ... 47
 7.3 Publication.. 49
 7.3.1 Catalogues and Repositories ... 49
 7.4 Guidelines for Publishing Objects ... 50

Chapter 8 Naming... 51
 8.1 OMG Naming.. 51
 8.2 OSI Management .. 52
 8.3 SNMP Management ... 52

iv X/Open Guide (1993)

Contents

Chapter 9 Conformance Testing... 53

Appendix A Examples.. 55
 A.1 Internet MIB Definitions.. 55
 A.1.1 The System Group... 55
 A.2 MIB-II GDMO Definitions... 57
 A.2.1 IIMCMIB-II Managed Object Classes .. 57
 A.2.2 IIMCMIB-II Attributes .. 58
 A.2.3 IIMCMIB-II Name Bindings .. 60
 A.2.4 IIMCMIB-II ASN.1 Module ... 60
 A.3 OMG IDL Definitions... 61
 A.3.1 <mib2.h>.. 61
 A.3.2 mib2-control.idl.. 62
 A.3.3 mib2-system.idl.. 62

Appendix B Currently Existing MIBs.. 63

 Glossary ... 65

 Index... 67

List of Figures

2-1 Managed Object Development Process .. 5
4-1 Legal Values .. 18
4-2 Attribute Value Restrictions .. 23

Systems Management: Managed Object Guide (XMOG) v

Contents

vi X/Open Guide (1993)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable system environment, called the Common
Applications Environment (CAE). This environment covers the standards, above the hardware
level, that are needed to support open systems. It provides for portability and interoperability of
applications, and allows users to move between systems with a minimum of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical application
programming interfaces (APIs), which significantly enhance portability of application programs
at the source code level, and definitions of, and references to, protocols and protocol profiles,
which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and a
distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be carried
only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is to
use formal approved de jure standards, where they exist, and to adopt widely supported de facto
standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open Specifications

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications that
form the basis for conformant and branded X/Open systems. They are intended to be used
widely within the industry for product development and procurement purposes.

Systems Management: Managed Object Guide (XMOG) vii

Preface

Developers who base their products on a current CAE Specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future XPG brand (if not referenced already), and that a variety of compatible, XPG-branded
systems capable of hosting their products will be available, either immediately or in the near
future.

CAE Specifications are not published to coincide with the launch of a particular XPG brand,
but are published as soon as they are developed. By providing access to its specifications in
this way, X/Open makes it possible for products that conform to the CAE (and hence are
eligible for a future XPG brand) to be developed as soon as practicable, enhancing the value
of the XPG brand as a procurement aid to users.

• Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that are
released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’ specification.
Indeed, it is as stable as X/Open can make it, and on publication has gone through the same
rigorous X/Open development and review procedures as a CAE Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop products
on the basis of them. However, because of the nature of the technology that a Preliminary
Specification is addressing, it is untried in practice and may therefore change before being
published as a CAE Specification. In such a case the CAE Specification will be made as
upwards-compatible as possible with the corresponding Preliminary Specification, but
complete upwards-compatibility in all cases is not guaranteed.

In addition, X/Open periodically publishes:

• Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to disseminate
information on its current direction and thinking to an interested audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A Snapshot represents the interim results of an X/Open technical activity. Although at the
time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and makes
no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to make
any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying or
claiming X/Open-conformance.

viii X/Open Guide (1993)

Preface

This Document

This document is Guide (see above). It is one of several documents within X/Open’s Systems
Management programme (XSM).

The XSM programme addresses distributed systems management. The primary requirement is
to promote the development of management software that allows an administrator to manage a
network of heterogeneous systems as a single logical system.

The XSM programme is concerned with the definition of those specifications necessary for the
implementation of distributed management systems. In order to meet the goal of
interoperability it is necessary for differing implementations to share both a common means of
transferring information anda common understanding of that information.

The first of these requirements is met by defining communications protocol profiles, and the
second by the definition of a structure for management information. XSM makes use of object-
oriented techniques in its specifications primarily to facilitate this second requirement. Within
XSM, resources to be managed are modelled as one or more managed objects.

The aim of this document is to introduce the essential nature of managed objects, and provide
guidelines for identifying and selecting suitable managed objects, and the necessary framework
for defining them. It discusses the managed object development process and their definition,
and explores the issues involved in registering them and on conformance testing.

Systems Management: Managed Object Guide (XMOG) ix

Trade Marks

UNIX is a registered trade mark of UNIX System Laboratories, Inc. in the U.S.A. and other
countries.

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Limited in the U.K. and
other countries.

x X/Open Guide (1993)

Acknowledgements

X/Open gratefully acknowledges the contribution by the Open Software Foundation of the IDL
examples in Section A.3. This contribution represents work-in-progress, and is intended for use
only as an example.

X/Open gratefully acknowledges the contribution by the Network Management Forum
ISO/Internet Management Coexistence (IIMC) working group of the GDMO examples in
Section A.2. This contribution represents work-in-progress, and is intended for use only as an
example.

Systems Management: Managed Object Guide (XMOG) xi

Referenced Documents

The following documents are referenced in this guide:

CMD
RFC1212, Concise MIB Definition, M. Rose, & K. McCloghrie.

COIW
X/Open Guide, November 1992, ISO/CCITT and Internet management: Coexistence and
Interworking Strategy (ISBN: 1-872630-67-7, G211)

CORBA
X/Open Preliminary Specification, February 1993, The Common Object Request Broker:
Architecture and Specification (ISBN: 1-872630-90-1, P210).

GDMO
ISO/IEC 10165-4: 1992 Information technology — Open Systems Interconnection —
Structure of management information — Part 4: Guidelines for the definition of managed
objects. This is equivalent to CCITT X.722.

GRM
ISO draft: General Relationship Model, ISO SC21/WG4/N6041.

MIB
RFC 1214, April 1991 — OSI Internet Management: Management Information Base, L.
Labarre

MIB-II
RFC 1213, March 1991 — Management Information Base for the Network Management of
TCP/IP-based Internets (MIB-II), M.Rose, & K. McCloghrie

MIM
ISO/IEC 10165-1: 1992 Information technology — Open Systems Interconnection —
Structure of management information — Part 1: Management information model. This is
equivalent to CCITT X.720.

MPMO
OSI Network Management Forum, Technical Report 102: Modelling Principles for Managed
Objects.

MWD
Schlaer S & Mellor SJ, (1988), Object-Oriented Systems Analysis: Modelling the World in
Data, Prentice Hall, Englewood Cliffs, New Jersey 07632.

OMAG
Object Management Architecture Guide 1.0, Chapter 4, OMG TC Document 90.9.1, Object
Management Group Inc.

OOA
P Coad & E Yourdon, (1991), Object-Oriented Analysis, Yourdon Press, Prentice Hall
Building, Englewood Cliffs, New Jersey 07632 (ISBN 0-13-629981-4).

OOD
P Coad & E Yourdon, (1991), Object-Oriented Design, Yourdon Press, Prentice Hall Building,
Englewood Cliffs, New Jersey 07632 (ISBN 0-13-629981-4).

xii X/Open Guide (1993)

Referenced Documents

OODM
P. Arnold, S. Bodoff, et al, (1991), An Evaluation of Five Object-Oriented Development
Methods, HP Laboratories, Bristol, HPL-91-52 (compares the Booch, Buhr, HOOD,
Rumbaugh and Wirfs-Brock methods for object-oriented analysis and/or design).

OODRM
ANSI Object-Oriented Database Task Group — Object Data Management Reference Model,
Document No. OODB89-01R8, 17 September 1991.

OOSD
Colbert E, (1989), Object-Oriented Software Development: A Practical Approach to Object-
Oriented Development, TRI-Ada ’89, Pittsburgh, PA, ACM SIGAda.

PS
X/Open Snapshot, 1991, Systems Management: Problem Statement, (XO/SNAP/91/010,
S110).

SMI
RFC 1155, Structure and Identification of Management Information for TCP/IP-based
Internets (SMI), M. Rose, & K. McCloghrie

SMIv2
RFC 1442, Structure on Management Information for version 2 of the Simple Network
Management Protocol (SNMPv2), J. Case, K. McCloghrie, M. Rose, & S. Waldbusser.

SNMP
RFC 1157, A Simple Network Management Protocol (SNMP), J. Case, M. Fedor, M.
Schoffstall, & J. Davin.

SNMPv2
RFC 1448, Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPv2), J. Case, K. McCloghrie, M. Rose, & S.Waldbusser.

SPM
Schlaer S & Mellor SJ, (1988), Object-Oriented Systems Analysis: State and Process Models,
Prentice Hall, Englewood Cliffs, New Jersey 07632.

XRM
X/Open Guide, August 1993, Systems Management: Reference Model (ISBN: 1-85912-05-9,
G207).

Systems Management: Managed Object Guide (XMOG) xiii

Referenced Documents

xiv X/Open Guide (1993)

Chapter 1

Introduction

The X/Open Systems Management Programme is developing a series of specifications and other
documents in the area of distributed systems management. It is intended to satisfy several
high-level system requirements:

Portability The ability to make software on managed and managing systems
portable in source code form between different vendors’ systems by
extending the X/Open Common Applications Environment (CAE).
An important additional aspect of portability is the "portability" of
human administrators, that is, the ability of an administrator to move
between systems and benefit from a consistent user interface.

Interoperability The ability of management systems, and components of such
systems from different vendors, to interwork, thus allowing a
network of heterogeneous systems to be managed as a single system.

Transparency The ability to administer Resources without the need to be explicitly
aware of their location or details of their implementation.

Extensibility The ability to extend the scope and capabilities of the management
system and to implement different management policies as required.
This includes the ability to make use of new communications
protocols.

Robustness The ability of the management system to provide integrity and the
necessary levels of security and reliability.

The following requirements relate to the form of the interfaces that will be provided to access the
management functionality:

Ease of Use The services and APIs should be simple to use, consistent with the
complexity of the underlying functionality.

Consistency Wherever appropriate, stylistic inconsistency should be avoided in
specification of interfaces.

The X/Open Systems Management Programme is defined in terms of a suite of documents that,
taken together, will describe all the components needed to achieve the goals listed above.

The first of these documents is the X/Open Systems Management Problem Statement (reference
PS). The Problem Statement provides an overview of the problem and a review of current
activities.

The X/Open Systems Management Reference Model (reference XRM) builds on the Problem
Statement, providing a framework in which the various components of the solution can be
identified. The individual components will be defined in subsequent documents.

The Reference Model is based on the use of object-oriented specification techniques. This in no
way requires an implementation to use object-oriented technology. Object-oriented techniques
have been adopted in this area by several other bodies, including vendors, standards bodies, and
other industry consortia.

Systems Management: Managed Object Guide (XMOG) 1

Intended Audience Introduction

1.1 Intended Audience
Fundamental to the approach adopted in the X/Open Systems Management Programme is the
use of Managed Objects to represent the real Resources that are being managed. The purpose of
this document is to explore many of the issues relating to the development of Managed Objects.
The Managed Object Guide provides a combination of introductory, reference, and tutorial
material intended for the following audience:

• Implementers of Managed Objects.

• Users of management systems who wish a better understanding of the underlying concepts.

• End-users who require to create Managed Object objects derived from pre-existing objects.

2 X/Open Guide (1993)

Chapter 2

Overview

The X/Open Systems Management Programme (XSM) is concerned with the definition of those
specifications necessary for the implementation of distributed management systems. In order to
meet the goal of interoperability it is necessary for differing implementations to share both a
common means of transferring information and a common understanding of that information.

The first of these requirements is met by defining communications protocol profiles, and the
second by the definition of a structure for management information. XSM makes use of object-
oriented techniques in its specifications primarily to facilitate this latter requirement. Within
XSM, Resources to be managed are modelled as one or more Managed Objects.

2.1 The Managed Object Development Process
In order for this technique to be effective, all implementations must share a common means of
defining Managed Objects, and a common means of encoding that information for transmission
to other systems. Finally, interoperable implementations must also share a common
understanding of the meaning of the information, such that, when a system requests another
system to perform a particular operation, the desired changes to the environment are actually
carried out. The existence of these specifications allows true interoperability between
management systems.

The aim of this document is to provide guidelines for identifying and selecting Managed
Objects, and the necessary framework for defining them.

In order to produce interoperable Managed Objects, it is necessary to perform a process
consisting of several steps. The sequence of steps is shown in Figure 2-1 on page 5.

Systems Management: Managed Object Guide (XMOG) 3

The Managed Object Development Process Overview

The steps within the process can be summarised as follows:

Identification
One of the most critical steps in the process is that of identifying the set of Managed Objects
that will be used to model the Resource to be managed. The success of this identification is
crucial to the simplicity and usability of the interface that is provided. This topic is covered
in Chapter 3.

Search
Once a set of Managed Objects has been identified, each must be defined. Before this stage
is undertaken, it is generally wise to perform a search of existing Managed Object
definitions in order to determine whether suitable objects have already been defined.

Refinement
If a suitable pre-existing Managed Object definition is identified, it may be necessary to
make some modifications to ’’refine ’’ the definition.

Definition
If no search has been performed, or if no suitable existing Managed Object definitions have
been identified, then Managed Object definitions must be developed. This process is
covered in Chapter 4.

Registration and Publication
In order for the Managed Objects to be used by multiple systems, their definitions must be
made available to those systems. Key aspects of this process are the registration of object
definitions with registration authorities and the publication of definitions so that they can
be used by systems administrators and Managed Object definers. Registration is covered in
Chapter 7.

Cataloguing
In order to encourage their use, published object definitions should be readily available.
Thus, administrators and Managed Object definers should be able to refer to catalogues of
Managed Objects when searching for definitions that can model a Resource they wish to
model.

Implementation
Implementation of Managed Objects generally involves the production of software that
provides the functionality contained within the Managed Object definitions. Details of
implementation techniques are dependent on the precise technology being used and are
beyond the scope of this document.

Conformance Testing
Conformance testing is a key part of the process if interoperability is to be achieved. Some
means of verifying that different implementations of a Managed Object definition are
equivalent is essential in order for full functionality to be achieved. An administrator
initiating a management action must have confidence that the defined behaviour will occur.
This is covered in Chapter 9.

Use
Once the identified Managed Objects have been implemented, they are available for use by
management systems.

4 X/Open Guide (1993)

Overview The Managed Object Development Process

Identification

Search

Refinement

Definition

Registration

Publication Catalogue

Implementation

Conformance
Testing Use

Figure 2-1 Managed Object Development Process

At first sight, this process may seem long and complicated. In practice, although this process will
never become mechanical, as the global catalogue of Managed Objects grows, more and more
requirements will be met from reuse or refinement of existing definitions. The most common
activity will probably be the refinement of an existing generic Managed Object definition, (for
example, a user Managed Object), into a specific definition customised for a user’s environment.
This may simply require the definition of suitable management policy or may involve some
measure of modification in order to provide additional functionality that represent some
locally-defined additions to the environment.

Systems Management: Managed Object Guide (XMOG) 5

Object Models Overview

2.2 Object Models
The object-oriented approach has been used by a number of groups defining network and
systems management standards. This has resulted in the definition of a number of object models
and consequently, one must take care to use the appropriate one for the task at hand. These
models have a number of common features, but are often not directly compatible. They differ not
only in the protocols and encodings they use but also in some of the basic concepts.

The management object models of primary interest to X/Open are those that describe the
facilities needed for network management for OSI and Internet networks. These are primarily
intended for network management, but can be naturally extended to cover distributed systems
management.

In addition to the specifically management-oriented models, there are also general-purpose
object models, notably that defined by the Object Management Group (OMG). The primary
focus of the OMG is to to promote easier application integration within a distributed
environment. Recognising that distributed management systems are essentially no different to
any other distributed applications, such general-purpose technology is increasingly being used
for management.

The OMG has defined a general object-oriented approach that can be used to model network and
systems management. OMG has issued two important documents; one provides a general
definition of an object model (reference OMG), and the other defines an Object Request Broker
(reference CORBA), which provides a general mechanism by which objects transparently make
requests and receive responses. The ORB is intended to provide interoperability between
applications on different machines in heterogeneous distributed environments and seamlessly
interconnects multiple object systems.

6 X/Open Guide (1993)

Chapter 3

Identification of Managed Objects

A Managed Object is the XSM view of a Resource within the X/Open Systems Management
environment that is subject to management. This would include both physical Resources, such
as printers or disks, and logical Resources, such as an application program. Thus, a Managed
Object is the abstract view of such a Resource that represents its properties as seen by (and for
the purposes of) management.

An important term in systems management is Management Information Base (MIB). Within
ISO, the term MIB is used to describe the set of Managed Objects within a system. However,
within the Internet community, the term MIB has a more concrete definition, meaning a specific
set of general definitions for the purposes of network management; thus an Internet system will
implement one or more specific MIBs.

The selection of the set of Managed Objects is a very critical process in the provision of a fully-
featured management system. An important goal of XSM is extensibility, and a major aspect in
achieving this goal is the ability to define new Managed Objects. While a basic set of Managed
Objects will be identified and defined within XSM, it is intended that this will primarily provide
a set of prototypical Managed Objects that will be refined to produce that set of Managed Object
definitions specific to a particular installation or environment.

Having stated that the selection of Managed Objects is of crucial importance, it must also be
pointed out that there are no simple rules that can be used in order to accomplish this. In
general, there will be several different ways in which any given Resource can be broken down
into one or more Managed Objects. This breakdown will significantly influence the management
interface available to manage the Resource.

In many cases, a good starting point in the identification process will be the consideration of the
Management Tasks that need to be supported. Such tasks, which represent the Administrator’s
view of the operation that he wishes to perform, give a high-level view of the low-level
Managed Objects that are needed in order to support the operation. They tend to comprise
relatively high-level concepts such as adding a user, or modifying a mail system routing. However,
the capabilities of the Resource being modelled must also be considered. Thus, there are two
important considerations when attempting to define the Managed Objects required to perform a
Management Task:

• Management Requirements

• Resource Functionality/Capabilities.

The former considers the Management Tasks that need to be supported, while the latter
considers the physical Resource and the restrictions it imposes on the capabilities that can be
modelled by the Managed Object, and made available to management systems. For example, a
management requirement may exist for a ’’printer-out-of-paper’’ notification, but a particular
Resource (for example, a printer) may not be able to generate such a notification.

When considering the management of a particular Resource for which it is desired to define
Management Tasks and Managed Objects, the two views of management requirements versus
Resource functionality/capabilities represent the two extremes of the top-down and bottom-up
approach to the problem. These must be used to guide an iterative approach to the definition of
Managed Objects in order to ensure that the following key requirements are met:

• the functionality provided by the Managed Objects is sufficient to support the Management
Tasks that must be performed

Systems Management: Managed Object Guide (XMOG) 7

Identification of Managed Objects

• the granularity of the Managed Objects is at the right level to permit efficient
implementation.

These issues are addressed in the following two Chapters.

In addition, there may be other objectives in defining Managed Objects. For example:

• a Managed Object definition may be required in order to be provide the basis from which
other Managed Objects may be derived (for example, an X.25 virtual circuit object may be
defined in order to derive from it permanent and switched virtual circuit Managed Object
definitions).

• a Managed Object may be defined in order to provide a facility required by many other
Managed Objects (for example, an event forwarding discriminator may be used by many
objects that generate events).

• access control and security considerations may impose restrictions on how Managed Objects
are defined, and/or may require the definition of additional Managed Objects.

3.1 Management Tasks
Systems management is performed by people, and therefore the tasks available have to be
intuitive to Administrators and reflect what they do from day to day. To be intuitive, the tasks
are likely to represent relatively simple operations on relatively complex Resources. While the
implementation of these tasks is in terms of simple operations on simple Managed Objects, the
purpose of the task is to shield the Administrator from most of the routine detail, such as the
sequencing of the individual operations.

By way of example, when an Administrator wishes to add a user to the system, they need to
specify the various properties of that user, such as a login-name, user-Id, group membership
information, home directory, login shell, etc. In many cases some of these properties may be
provided to him by the system in the form of default values which reflect local policy. The order
in which the operations involving these properties is performed is clearly significant. For
instance, when a user is added to a system, the userid has to be created before a correct
ownership can be given to the assigned directory. However, the precise ordering is not
important to the Administrator performing the task. The Administrator is simply concerned
with the end result of the task and relies on its implementor to perform the operations in the
correct order.

8 X/Open Guide (1993)

Identification of Managed Objects Managed Objects

3.2 Managed Objects
It follows from the discussion of Management Tasks that there need not be a simple one-to-one
mapping between the Resource being managed and the Managed Objects that represent it.

Pursuing the example in the previous section, the process of adding a user involves the
manipulation of several different Resources, userids, the filesystem, security information, etc.
While all the properties considered by the Administrator when he performs the task could
simply be assigned to a single user Managed Object, there may be excellent reasons for
associating them with a number of different, simpler Managed Objects. For example, a user
Managed Object might consist of the most basic information, and be supplemented by
additional Managed Objects that encapsulate:

• aspects of the user’s interaction with other Resources (such as the print and mail systems)

• aspects of management policy

• aspects of shared management functions

• aspects of the user’s interaction with Managed Objects.

The simplest guideline that can be established is the principle of maintaining a practical set of
the simplest Managed Objects. If the Managed Object definition appears to be becoming too
complicated, it is very probably wrong and a new breakdown of the Resource’s properties
should be considered.

One important aspect that should be considered is the definition of common Management
Services. If a certain functionality is required by many different Managed Objects, it could be
provided as a common service and defined once only. As well as simplifying the Managed
Object definition, this also has the benefit of ensuring that shared functionality is defined
consistently.

As has been stated above, there are no simple rules that can be used to make the selection of the
right Managed Objects a mechanical process. A guide to the process of object modelling can be
found in the Network Management Forum Technical Report 102 (reference MPMO). There are
many books and papers published on this subject, and by way of introduction, a few (OODM,
OOD, OOSD, MWD, SPM) are included in the list of Referenced Documents in this Guide.

Systems Management: Managed Object Guide (XMOG) 9

Identification of Managed Objects

10 X/Open Guide (1993)

Chapter 4

Definition of Managed Objects

This Chapter documents the capabilities provided by the OSI, Internet, and OMG object models.
It is beyond the scope of this document to provide full tutorial information, but it is intended to
provide an overview of the fundamental concepts. The material provided here is supplemented
by the provision of a common example in Appendix A.

4.1 Introduction
The object-oriented approach is now widely supported and has been adopted by a number of
groups to model network and systems management. This approach was pioneered by the ISO
Network Management standards, and was subsequently adopted by the Internet community.
The example of this approach was adopted for Systems Management standardisation by the
IEEE P1003.7 POSIX Systems Administration working group. More recently the Object
Management Group has defined a general-purpose, object-oriented model for application
integration. Although the focus of the OMG was not specifically targetted towards Systems
Management, the OMG technology has been widely adopted as the basis of Systems
Management products.

As the various approaches have evolved in different ways, it is inevitable that they have
developed differing terminologies to describe the properties of the objects defined according to
their respective object models. Much of this differing terminology reflects the different approach
that each model employs.

By way of example, The OSI approach can be characterised as being attribute-rich, with the
properties of the underlying Resource being represented by attributes on which explicit set and
get operations can be performed. The OMG model is, in contrast, method-rich, where the interface
to the Resource is represented by a set of methods which manipulate those properties.

Much energy can be (and has been) expended on arguing the relative merits of the differing
approaches, and at times this can obscure the original issue, namely the problem that the
particular approach is being employed to solve. This Chapter describes the characteristics of the
object models that will be used by the X/Open Systems Management programme.

4.1.1 The OMG Approach

In the OMG approach, an object model has been developed which can be used to implement a
variety of applications and services. The model supports a strongly-typed definition language
which separates interface from implementation, thus supporting a high degree of encapsulation
through multiple implementations. The model provides a client-server view of applications and
services; that is, a client sends requests to a server in which the object has been manifested, the
object executes the request, and returns the results back to the client. The interface definition
language (IDL) allows developers to define their objects in a manner that is not only more
consistent with their application’s view of the managed data, but also consistent with object-
oriented programming languages, and consistent with object-oriented databases.

The architecture supporting the OMG object model provides secure, distributed access to the
data encapsulated in the objects. The object is accessed through a opaque object referent, or
handle, and its location is transparent to the client making the request. The infrastructure,
consisting of an Object Request Broker (ORB) and an Object Adaptor (OA) provide not only a
transport, but also a consistent method invocation paradigm. This simplifies object design while

Systems Management: Managed Object Guide (XMOG) 11

Introduction Definition of Managed Objects

enabling portability, interoperability, and building objects which encapsulate the architecture of
the application tasks.

The OMG model defines a set of common object services. These services are themselves
encapsulated as objects within the OMG model, so they can be defined in the same definition
language used by application developers. (There are some exceptions, such as persistent object
stores.) Over time, more abstract services (higher levels of functionality) will be defined
including profiles of services oriented to meet specific application areas. Systems management is
such an application area; that is systems management in an OMG environment would consist of
management applications built from application programs, Management Services, common
object services, and management objects. The management objects would encapsulate
potentially complex Management Tasks, using the underlying Management Services, common
object services, and other objects. These other objects include both Managed Objects (a managed
Resource encapsulated by an object) and OMG objects from non-management applications.

4.1.2 The ISO Approach

ISO has used an object-oriented approach in the ISO/IEC 10165, Structure of Management
Information standard. This is a multi-part standard, and Parts 1 (Management Information
Model, reference MIM) and 4 (Guidelines for the Definition of Managed Objects, (reference
GDMO) are of particular interest to X/Open. The GDMO is discussed later in this document.

The MIM and GDMO have been used by other groups to define Managed Objects. For example,
they have been used by the Network Management Forum (NMF) in a series of interrelated
documents; each document describes either an aspect of Forum interoperable network
management or provides a framework on which other documents are based. The NMF adheres
to ISO standards wherever possible, and otherwise uses snapshots based on existing ISO drafts to
achieve full coverage in its specifications. It refines the standards by adding implementation
agreements to provide a complete specification for multi-developer, interoperable
implementations. The NMF Release 1 specifications were based on a snapshot of ISO CD-level
standards. The Release 1.1 specifications were updated to use the DIS GDMO templates. In
conjunction with other organisations including X/Open, the NMF has defined a comprehensive
set of Network Management specifications, OMNIPoint 1, which are based on the ISO IS-level
standards.

4.1.3 The Internet Approach

The Internet Advisory Board has also adopted an object-oriented approach in defining network
management for the Internet. It recommends that all IP and TCP implementations be network-
manageable. This implies implementation of the Internet Management Information Base II
(MIB-II) described in RFC1213 (see reference MIB-II). There are currently two versions of
Internet management which can be used in conjunction with MIB-II. Version 1 of the Simple
Network management protocol (SNMP) is defined by RFC 1157 (see reference SNMP), the
corresponding Structure of Management Information is defined by RFC 1155 (see reference SMI)
and RFC 1212. Version 2 of SNMP (SNMPv2, currently a proposed draft Internet standard) is
defined by RFC 1448 (see reference SNMPv2); the corresponding SMI is defined by RFC 1442
(see reference SMIv2).

12 X/Open Guide (1993)

Definition of Managed Objects Introduction

4.1.4 The X/Open Approach

The purpose of a Structure of Management Information (SMI) Model is to give structure to the
management information conveyed externally by systems management protocols and to model
the management aspects of the related Resources. The X/Open Systems Management Model is
expressed in terms of object-oriented terminology, where systems management Resources are
represented by objects. Systems management objects (Managed Objects) are abstractions of the
data processing and data communications Resources for the purpose of management.

The distinction between the Managed Object as visible to management and the Resources that it
represents may be described by saying that the attributes, operations and notifications are visible
to management at the Managed Object boundary, whereas the internal functioning of the
Resource that is represented by the Managed Object is not otherwise visible to management.
This concept of a Managed Object boundary has no implications for implementation, but
provides an architectural distinction between the definitions to be developed by Managed
Objects definers (for example, layer groups), which are at the boundary, and the definitions and
specifications of the remainder of systems management, which are at and outside the boundary.
The object model specifies that generic objects are defined, from which specific Managed Object
instances can be instantiated. In general, object instances are created or deleted:

• by management protocol interactions

• as a result of the operation of the Resource to which they relate by other means, for example,
when a disk drive goes on-line.

Managed object classes are arranged in a hierarchy according to commonality of state and
operation. Thus the object model provides an organised presentation of systems management.

The design of systems management requires an approach to be adopted that will allow the
specification to be standardised in a modular fashion and provide for extensibility of the
protocol and procedures. The information model makes use of object-oriented design principles
because they provide the above capabilities and provide for a well managed reuse of previously
defined specifications. It should be noted that whereas the model is described using object-
oriented techniques, such techniques need not be used in implementing systems management.

The X/Open Systems Management Model must encompass Managed Object classes to be used
with CMIP, Management Information Bases (MIBs) to be used with SNMP, and OMG-based
management technology. In a mixed environment, such as X/Open Systems Management, there
is the need for management protocols and sets of management information to coexist. The
following sections describe the definitions of Managed Objects and MIBs and discuss how
mapping may be performed between the various models.

The OSI Management Information Model, Internet Information Model, and the implicit CORBA
object model, have each developed independently of one another. There is the expectation that
further object or information models will be required to satisfy the needs of other technologies
— for example, Databases, Directory Services, etc. We risk proliferation of object models and of
mappings between object models.

To avoid the divergences all this implies, the OMG is working on developing an Object Model
that will present a common core object model, yet will allow technology-specific extensions —
which they call profiles — to be defined.

A group of experts are cooperating to develop a mapping between the OSI Management
Information Model, and later the Internet Information Model, and the OMG Object Model. It is
hoped that this may be achieved by creating profiles that extend the OMG core object model for
OSI management and Internet management. This approach will contribute towards
interoperability of management applications based on these coexisting object models.

Systems Management: Managed Object Guide (XMOG) 13

Introduction Definition of Managed Objects

Reduction in number of object models will contribute towards interoperability of management
applications.

14 X/Open Guide (1993)

Definition of Managed Objects OMG Object Model

4.2 OMG Object Model
This section describes the concrete object model which underlies the Common ORB Architecture
(see reference CORBA). The model is derived from the abstract object model defined by the
Object Management Group (reference OMAG).

4.2.1 Overview

The object model provides an organised presentation of object concepts and terminology. It
defines a partial model for computation that embodies the key characteristics of objects as
realised by the submitted technologies.

The OMG object model is abstract in that it is not directly realised by any particular technology.
The model described here is a concrete object model. A concrete object model may differ from
the abstract object model in several ways:

• It may elaborate the abstract object model by making it more specific, for example, by defining
the form of request parameters or the language used to specify types.

• It may populate the model by introducing specific instances of entities defined by the model,
for example, specific objects, specific operations, or specific types.

• It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from
the providers of services by a well-defined encapsulating interface. In particular, clients are
isolated from the implementations of services as data representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts
as object creation and identity, requests and operations, types and signatures. It then describes
concepts related to object implementations, including such concepts as methods, execution
engines and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients.
The discussion of object implementation is more suggestive, with the intent of allowing maximal
freedom for different object technologies to provide different ways of implementing objects. See
CORBA Chapter 9 for more information on implementation rules for objects which are managed
by the Basic Object Adapter.

There are some other characteristics of object systems that are outside the scope of the object
model. Some of these concepts are aspects of application architecture, and some are associated
with specific domains to which object technology is applied. Such concepts are more properly
dealt with in an architectural reference model. Examples of excluded concepts are compound
objects, links, copying of objects, change management and transactions. Also outside the scope
of the object model is the model of control and execution.

This object model is an example of a classical object model, where a client sends a message to an
object. Conceptually, the object interprets the message to decide what service to perform. In the
classical model, a message identifies an object and zero or more actual parameters. As in most
classical object models, a distinguished first parameter is required, which identifies the operation
to be performed; the interpretation of the message by the object involves selecting a method
based on the specified operation. Operationally, of course, method selection could be performed
either by the object or the ORB.

Systems Management: Managed Object Guide (XMOG) 15

OMG Object Model Definition of Managed Objects

4.2.2 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of
requesting the service. This section defines the concepts associated with object semantics, that
is, the concepts relevant to clients.

4.2.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated
entity that provides one or more services that can be requested by a client.

4.2.2.2 Requests

Clients request services by issuing requests. A request is an event, that is, something that occurs
at a particular time. The information associated with a request consists of an operation, a target
object, zero or more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to
cause the issuing of requests. As described in CORBA Chapter 4 request forms are defined by
particular language bindings. An alternative request form consists of calls to the dynamic
invocation interface to create an invocation structure, to add arguments to the invocation
structure, and to issue the invocation.1

A value is anything that may be a legitimate (actual) parameter in a request. A value may
identify an object, for the purpose of performing the request. A value that identifies an object is
called an object name. More particularly, a value is an instance of an IDL (Interface Definition
Language, defined in CORBA Chapter 4) data type.

An object reference is an object name that reliably denotes a particular object. Specifically, an
object reference will identify the same object each time the reference is used in a request (subject
to certain pragmatic limits of space and time). An object may be denoted by multiple, distinct
object references.

A request may have parameters that are used to pass data to the target object; it may also have a
request context which provides additional information about the request.

A request causes a service to be performed on behalf of the client. One outcome of performing a
service is returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned.
The exception may carry additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an
output parameter, or an input-output parameter. A request may also return a single result value,
as well as any output parameters.

The following semantics hold for all requests:

• Any aliasing of parameter values is neither guaranteed removed nor guaranteed preserved.

• The order in which aliased output parameters are written is not guaranteed.

• Any output parameters are undefined if an exception is returned.

1. Descriptions of these requests are in CORBA Chapter 5 for the C-language binding for IDL and Chapter 6 for the dynamic
invocation interface.

16 X/Open Guide (1993)

Definition of Managed Objects OMG Object Model

• The values which may be returned in an input-output parameter may be constrained by the
value which was input.

Descriptions of the permitted values in requests and the permitted exceptions may be found in
Section 4.2.2.4 and Exceptions on page 19.

4.2.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as an
outcome of issuing requests. The outcome of object creation is revealed to the client in the form
of an object reference that denotes the new object.

4.2.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical
function with a boolean result) defined over values. A value satisfies a type if the predicate is
true for that value. A value that satisfies a type is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterise a possible result.

The extension of a type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify objects). In
other words, an object type is satisfied only by (values that identify) objects.

Data types in this model are constrained as follows:

• Basic types:

— 16-bit and 32-bit signed and unsigned 2’s complement integers

— 32- bit and 64-bit IEEE floating point numbers

— characters, as defined in the ISO 8859-1:1987 standard

— a boolean type taking the values TRUE and FALSE

— an 8-bit opaque data type, guaranteed to not undergo any conversion during transfer
between systems

— enumerated types consisting of ordered sequences of identifiers

— a string type which consists of a variable-length array of characters; the length of the
string is available at run time

— a type any which can represent any possible basic or constructed type.

• Constructed types:

— a record type (called struct), consisting of an ordered set of (name,value) pairs

— a discriminated union type, consisting of a discriminator followed by an instance of a
type appropriate to the discriminator value

— a sequence type which consists of a variable-length array of a single type; the length of
the sequence is available at run time

— an array type which consists of a fixed-length array of a single type

— an interface type, which specifies the set of operations which an instance of that type
must support.

Systems Management: Managed Object Guide (XMOG) 17

OMG Object Model Definition of Managed Objects

Values in a request are constrained to values which satisfy these type constraints. The legal
values are shown in Figure 4-1. No particular representation for values is defined.

Value

Object Reference Constructed Value

Basic Value

Struct Sequence Union Array Interfaces

Short Long Ushort Ulong Float Double Char String Boolean Octal Enum Any

Figure 4-1 Legal Values

4.2.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an object.
An object satisfies an interface if it can be specified as the target object in each potential request
described by the interface.

An interface type is a type that is satisfied by any object (literally, any value that identifies an
object) that satisfies a particular interface.

Interfaces are specified in IDL. Interface inheritance provides the composition mechanism for
permitting an object to support multiple interfaces. The principal interface is simply the most-
specific interface that the object supports, and consists of all operations in the transitive closure
of the interface inheritance graph.

4.2.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value.

An operation has a signature that describes the legitimate values of request parameters and
returned results. In particular, a signature consists of:

• a specification of the parameters required in requests for that operation

• a specification of the result of the operation

• a specification of the exceptions that may be raised by a request for the operation and the
types of the parameters accompanying them

• a specification of additional contextual information that may affect the request

• an indication of the execution semantics the client should expect from a request for the
operation.

18 X/Open Guide (1993)

Definition of Managed Objects OMG Object Model

Operations are (potentially) generic, meaning that a single operation can be uniformly requested
on objects with different implementations, possibly resulting in observably different behaviour.
Genericity is achieved in this model via interface inheritance in IDL and the total decoupling of
implementation from interface specification.

The general form for an operation signature is:

[oneway]<op_type_spec> <identifier> (param1, . . ., paramL)
[raises(except1,. . .,exceptN)] [context(name1, . . ., nameM)]

where:

• The optional oneway keyword indicates that best-effort semantics are expected of requests
for this operation; the default semantics are exactly-once if the operation successfully returns
results or at-most-once if an exception is returned.

• The <op_type_spec> is the type of the return result.

• The <identifier> provides a name for the operation in the interface.

• The operation parameters needed for the operation; they are flagged with the modifiers in ,
out or inout to indicate the direction in which the information flows (with respect to the
object performing the request).

• The optional raises expression indicates which user-defined exceptions can be signalled to
terminate a request for this operation; if such an expression is not provided, no user-defined
exceptions will be signalled.

• The optional context expression indicates which request context information will be available
to the object implementation; no other contextual information is required to be transported
with the request.

Parameters

A parameter is characterised by its mode and its type. The mode indicates whether the value
should be passed from client to server (in), from server to client (out), or both (inout). The
parameter’s type constrains the possible value which may be passed in the direction or
directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully. An
exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialised form of record. As a record, it
may consist of any of the types described in Section 4.2.2.4 on page 17.

All signatures implicitly include the standard exceptions described in CORBA Chapter 4.

Contexts

A request context provides additional, operation-specific information that may affect the
performance of a request.

Systems Management: Managed Object Guide (XMOG) 19

OMG Object Model Definition of Managed Objects

Execution Semantics

Two styles of execution semantics are defined by the object model:

at-most-once If an operation request returns successfully, it was performed exactly once; if
it returns an exception indication, it was performed at-most-once.

best-effort A best-effort operation is a request-only operation, that is, it cannot return any
results and the requester never synchronises with the completion, if any, of
the request.

The execution semantics to be expected are associated with an operation. This prevents a client
and object implementation from assuming different execution semantics.

Note: A client is able to invoke an at-most-once operation in a synchronous or deferred-
synchronous manner.

4.2.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of
accessor functions: one to retrieve the value of the attribute and one to set the value of the
attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

4.2.3 Object Implementation

This section defines the concepts associated with object implementation, that is, the concepts
relevant to realising the behaviour of objects in a computational system.

The implementation of an object system carries out the computational activities needed to effect
the behaviour of requested services. These activities may include computing the result of the
request and updating the system state. In the process, additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction
model. The execution model describes how services are performed. The construction model
describes how services are defined.

4.2.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates
upon some data. The data represents a component of the state of the computational system.
The code performs the requested service, which may change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable
description of a computation that can be interpreted by an execution engine. A method has an
immutable attribute called a method format that defines the set of execution engines that can
interpret the method. An execution engine is an abstract machine (not a program) that can
interpret methods of certain formats, causing the described computations to be performed. An
execution engine defines a dynamic context for the execution of a method. The execution of a
method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters
passed by the requestor are passed to the method, and the output parameters and return value
(or exception and its parameters) are passed back to the requestor.

20 X/Open Guide (1993)

Definition of Managed Objects OMG Object Model

Performing a requested service causes a method to execute that may operate upon an object’s
persistent state. If the persistent form of the method or state is not accessible to the execution
engine, it may be necessary to first copy the method or state into an execution context. This
process is called activation; the reverse process is called deactivation.

4.2.3.2 The Construction Model

A computational object system must provide mechanisms for realising behaviour of requests.
These mechanisms include definitions of object state, definitions of methods, and definitions of
how the object infrastructure is to select the methods to execute and to select the relevant
portions of object state to be made accessible to the methods. Mechanisms must also be
provided to describe the concrete actions associated with object creation, such as association of
the new object with appropriate methods.

An object implementation — or implementation, for short — is a definition that provides the
information needed to create an object and to allow the object to participate in providing an
appropriate set of services. An implementation typically includes, among other things,
definitions of the methods that operate upon the state of an object. It also typically includes
information about the intended type of the object.

Systems Management: Managed Object Guide (XMOG) 21

ISO Management Model Definition of Managed Objects

4.3 ISO Management Model

4.3.1 Objects

4.3.1.1 Introduction

Important base documents to the ISO System Management Model are:

• ISO/IEC 10165-1 (CCITT X.720) Structure of Management Information - Part 1: Management
Information Model (reference MIM)

• ISO/IEC 10165-4 (CCITT X.722) Structure of Management Information - Part 4: Guideline for
the Definition of Managed Objects (reference GDMO).

ISO/IEC JTC1 SC21/WG4 and CCITT SGVII are jointly responsible for the development of
International Standards and Recommendations that describe the architecture for OSI
management, the services, protocols and functions that are used for systems management and
the structure of management information. The MIM and GDMO are primarily aimed at
communications management, but the principles involved are equally applicable to systems
managements and hence are of interest to X/Open Systems Management.

The MIM and GDMO specifications provide developers of Managed Object class definitions
with the information and documentation tools required in order to produce consistent Managed
Object class definitions that are compatible with OSI management standards developed jointly
by ISO/IEC and CCITT. The MIM defines the general means by which Managed Objects are
created and deleted, and how they are assigned initial values. The GDMO addresses some
global issues (such as registration), gives advice on a number of areas of Managed Object
behaviour, and then proceeds to describe notational tools for Managed Object definition. In
Section 4.3.4 on page 31 a number of templates for Managed Object definition are described.

The guidelines and notational tools defined in GDMO have wide support, and are being used
not only for communications management but also for systems management.

The notational tools described in GDMO are the templates that may be used to define Managed
Objects. Again, these are applicable to both communications management and systems
management.

A Managed Object is an abstract view of a Resource in the systems management domain. The
object-oriented model used in systems management allows objects of a similar type to be
grouped together to form what are known as classes. Objects are of a similar type if they have
the same data structures and exhibit the same functionality. A Managed Object is thus an
instance of a Managed Object class.

The object-oriented approach makes it possible to attach to a Managed Object functionalities
that are specifically permitted for it. The object is thus ‘‘encapsulated’’ and can only be
addressed via specified operations that are included in the object definition. Thus the object-
oriented approach abstracts the features of objects enabling classes to be defined that contain all
objects of similar structure. This obviates the need to redescribe structure for every single object
class. It is important to note that structure includes not only the object’s data but also the
operations that may be performed on the object’s data.

ISO defines a Managed Object class as the set of attributes, operations, notifications and
behaviour definitions to which a Managed Object class name has been allocated. Managed object
class definitions are documented by means of a Managed Object class template and one or more
other templates which are directly or indirectly referenced by the Managed Object class
templates. This section defines attributes, operations, notifications and behaviour (subsequent
sections define structuring techniques and templates).

22 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

In outline the structure of an object class can be represented as follows:

<object class c2>
derived from <object class c1> ...
supports mandatory packages <pm1> <pm2> ...
supports conditional packages <pc1> <pc2> ...

In turn, the structure of a package can be summarised as:

<package p1>
possesses attributes <a1>, <a2> ...
supports actions <o1>, <o2> ...
emits notifications <n1>, <n2> ...
supports behaviours <b1> <b2>

Attributes, actions and notifications can be defined independently of packages and Managed
Objects. Each definition can be allocated its own unique OBJECT IDENTIFIER and can thus be
used in more than one Managed Object definition. (An OBJECT IDENTIFIER is an
administratively assigned, globally unique label.)

4.3.1.2 Attributes

Managed objects have attributes. The value of an attribute can determine or reflect the behaviour
of a Managed Object. The operations that can be performed on a particular attribute are specified
in the definition of the Managed Object.

An attribute can have internal structure, that is, it can consist of a set or a sequence of values. In
general, attributes can be read or modified by sending a request to the Managed Object to read
(get) or write (replace) the value. Additional operations are defined for set-valued attributes.

The Managed Object definition may optionally include initial and default values for attributes.
Furthermore, value restrictions on an attribute can be specified in terms of a permitted value set
and a required value set. The permitted value set specifies all values that the attribute is
permitted to take; this is a subset of the values of the syntax of the attribute. The required value
set is a subset of the permitted values and defines all the values that attribute must support (the
required value set may be empty). However, particular assignments may be subject to other
constraints, for example, access control. Value restrictions are illustrated in the example in
Figure 4-2.

BASIC TYPE [INTEGER]

PERMITTED VALUES [INTEGER (0..Max)]

REQUIRED VALUES [INTEGER (0..N)]

(where N <= Max.)

Figure 4-2 Attribute Value Restrictions

Systems Management: Managed Object Guide (XMOG) 23

ISO Management Model Definition of Managed Objects

4.3.1.3 Operations

The ISO Management Information Model defines two types of operations:

• those that can be applied to the Managed Object as a whole

• those that are sent to the Managed Object in order to be applied to its attributes.

Operations that may be performed on a Managed Object are:

• Create Managed Object
This operation instantiates a Managed Object class. The model allows Managed Objects to be
created by other than management action, therefore, not all Managed Object classes need
support the create operation. Templates associated with the Managed Object class include
the precise semantics of creation.

• Delete Managed Object
This operation requests the Managed Object to delete itself. Templates associated with the
Managed Object class include the precise semantics of deletion.

• Action
This operation requests the Managed Object to perform a specified action and optionally to
indicate the result of that action.

Operations on attributes are defined to be performed upon the Managed Object that contains the
attribute and not directly on the attribute. The Managed Object is therefore able to enforce
constraints on attribute values, including constraints between the values of individual attributes.
The following management operations can be applied to attributes:

• get attribute value

• replace attribute value

• replace with default value

• add member (applies to set-valued attributes)

• remove member (applies to set-valued attributes).

The Managed Object definitions may contain consistency constraints that must be satisfied in
order for the operation to be performed (this includes relationships to be maintained between
values of different attributes). In addition, there may be access control restrictions to be
observed.

Where a management system is requested to perform operations across several Managed
Objects, it may do so with atomic synchronisation (that is, either all operations succeed or none
are performed) or on a best effort basis.

4.3.1.4 Attribute Groups

An attribute group allows a collection of attributes to be identified by a single name. Attribute
Groups can be identified in management operations; for example CMIS operations, like M-Get
and M-Set, may refer to Attribute Groups. There are two types of attribute groups:

Fixed This is an attribute group whose members are defined as part of the initial attribute
group definition and whose members may not subsequently be expanded.

Extensible This is an attribute group in which attributes may be added as members as a result
of specialisation. The attributes specified for each extension may be defined in the
same conditional package as the attribute or in a mandatory package.

24 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

4.3.1.5 Notifications

Managed objects may emit notifications when events occur. Notifications are specific to the
Managed Object that emit them, and the information they contain is part of the definition of the
Managed Object class of which the Managed Object is an instance. Notifications can be defined
independently of Managed Object definitions and can then be referenced by more than one
Managed Object class definition. However, the meaning of a notification must be considered in
the context of the class of the Managed Object that emitted it.

4.3.1.6 Behaviour

A Managed Object class includes the definition of the object class’ behaviour. Behaviour is
expressed in natural language and describes the following:

• the semantics of the object’s attributes, operations and notifications

• the response to management operations that may be invoked on the Managed Object

• the circumstances under which notifications may be emitted

• the dependencies between values of particular attributes

• the effects of relationships between different Managed Objects

• consistency constraints on attributes

• preconditions that identify the conditions when operations and notifications can be assumed
to have valid meaning

• postconditions that identify the results of the processing of a management operation or the
emission of a notification

• invariants that are in effect for the entire lifetime of the Managed Object and that describe
conditions that are true for operations of the Managed Object

• synchronisation properties of the Managed Object.

4.3.1.7 Parameters

The GDMO Parameter template is a notational tool that can be used to specify syntax and
semantics of an open-ended ASN.1 type (for example, ANY DEFINED BY) appearing in other
GDMO templates, such as ATTRIBUTE, PACKAGE, ACTION and NOTIFICATION. The
parameter template is best explained using an example.

The following information syntax is associated with an ISO ‘‘communicationsAlarm’’
notification:

AlarmInformation ::= SEQUENCE {
severity Severity,
additionalInformation SET OF ManagementExtension OPTIONAL}

ManagementExtension ::= SEQUENCE {
identifier OBJECT IDENTIFIER,
criticality BOOLEAN,
data ANY DEFINED BY identifier}

At the time of defining the ‘‘communicationsAlarm’’ notification, the syntax for different
management extensions are not known. In other words, an open-ended type is defined so that
the hole can be filled later.

In this example, GDMO parameter templates may be used to register the syntax of a
‘‘ManagementExtension’’. A parameter label associates the value of an object identifier with a

Systems Management: Managed Object Guide (XMOG) 25

ISO Management Model Definition of Managed Objects

specific ASN.1 syntax for the parameter ‘‘data’’ in ‘‘ManagementExtension’’. One or more
parameter labels can then be used to augment a package definition containing the
‘‘communicationsAlarm’’ notification. When a ‘‘communicationsAlarm’’ is emitted by an object
with the augmented package, the notification may contain the syntax registered by the
parameter label in the ‘‘additionalInformation’’ parameter. In addition to the syntax, there may
be semantics or behaviour associated with the registered parameter.

The parameter template may also be used to specify the syntax and possibly the behaviour
associated with specific errors for the different GDMO templates (such as ATTRIBUTE or
ACTION). Each parameter template must specify a context in which the registered syntax can be
used (for example, EVENT-INFO or SPECIFIC-ERROR).

4.3.1.8 Syntax

The definitions of Managed Object classes allow the specification of the syntax to be used with
components of the Managed Object, such as attributes and notifications. The syntax specification
identifies the ASN.1 data type that describes the structure of the information that is carried in the
management protocol.

4.3.2 Structure/Relationships

4.3.2.1 Introduction

The Managed Object model supports a number of techniques for representing the structure in
Managed Objects and to reflect the groupings of data or functionality. Structuring techniques
can be static or dynamic. Static structuring techniques are used to represent common structure
that is present in the object class definition; examples are mandatory packages and attribute
groups. Dynamic structuring techniques are used to define common structure that is present at
implementation, installation or instantiation time; examples are conditional packages and
containment.

The remainder of this section describes structuring techniques used in the ISO systems
management object model.

4.3.2.2 Specialisation/Inheritance

Instances of Managed Objects that share the same operations, attributes, packages, notifications
and behaviour are said to be of the same Managed Object class. Specialisation is the process by
which a new Managed Object class can be derived from one or more other Managed Object
classes. A Managed Object class that is a specialisation of another class is known as a subclass of
that class (its superclass). The subclass inherits the operations, attributes, notifications, packages
and behaviour of its superclass, and differs from it by adding:

• new management operations

• new attributes

• new notifications

• new behaviour

• extensions to the characteristics of its superclass(es).

The hierarchical arrangement of Managed Objects created by the process of specialisation is
called a class hierarchy. A subclass is a Managed Object class that is a specialisation of another
Managed Object class and is lower in the hierarchy than the class of which it is a specialisation.
One Managed Object class, called top, is designated the ultimate superclass in the Managed
Object class hierarchy; top cannot be instantiated.

26 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

The conceptual mechanism by which attributes, operations and behaviour are acquired by a
subclass from its superclass is called Inheritance. Systems management supports only Strict
Inheritance; this allows specialisation only by the addition of new attributes, operations,
notifications or behaviour but not by the deletion of any of the parent class characteristics.
Systems management also allows Multiple Inheritance. This mechanism allows a subclass to
acquire attributes, notifications, operations and behaviour from more than one superclass.

4.3.2.3 Uninstantiable Managed Object Classes

Some Managed Object classes cannot be instantiated. They are used to provide a common base
from which to specialise classes, thus ensuring that two or more Managed Objects classes have a
common set of characteristics. For example, a generic virtual circuit Managed Object class may
be defined, which can have permanent and switched virtual circuit Managed Object classes as
subclasses.

Uninstantiable Managed Object classes may also be used in the definition of relationships. For
example, a superclass might be defined with the relationship properties which should be
inherited by subclasses which have the specified relationship. Such uninstantiable Managed
Object classes are also known as abstract classes.

4.3.2.4 Packages

A package is a collection of characteristics of Managed Objects which is treated as a single
module in the definition of a Managed Object class. The characteristics included in a package
definition consist of attributes, notifications, operations and behaviour. Packages may be
mandatory or conditional. All components of a mandatory package are present in all instances of
a given Managed Object. A conditional package has an explicit condition associated with it,
which determines if the conditional package is present when the Managed Object class is
instantiated.

Conditions that determine the absence or presence of conditional packages are related to the
capability of the underlying Resource being modelled or to the presence/absence of
management functions in the managed system. For example, in a Managed Object covering OSI
transport protocol, conditional packages will model optional protocol functions. Conditional
packages allow small variations in Managed Objects to be handled without the need to
specialise new Managed Object classes, thus limiting the number of Managed Object classes and
object identifiers.

The presence of packages in a Managed Object can be ascertained. All Managed Objects inherit
from top an attribute that is a set of object identifiers corresponding to those instantiated
packages that are registered. With the exception of the Packages attribute, packages are not
visible at the Managed Object boundary; specifically they cannot be used in Management
Services operations nor can they be used as part of scoping rules.

4.3.2.5 Interoperability

The use of options and conditional packages is intended to limit the number of different
Managed Object classes. However, this means that a given Managed Object may represent more
than one Resource and hence may behave differently in different instances. The potential
problem of interoperability is overcome either at the agent system or at the managing system.

• When interoperability for a given Managed Object is provided by the agent systems
implementing the object, then allomorphism (described below) is used. When an allomorphic
object is created, a number of compatibility rules (described in GDMO) must be adhered to.

Systems Management: Managed Object Guide (XMOG) 27

ISO Management Model Definition of Managed Objects

• When interoperability for a given Managed Object is provided by managing systems, the
Managed Object always responds according to its actual class definition. The managing
system is required to handle any additional information that it does not understand or expect
(for example, by ignoring this information). This method does not impose any compatibility
restrictions when new Managed Objects are created by specialisation, but adherence to the
compatibility rules required for allomorphism makes the Management Task easier.

4.3.2.6 Allomorphism

Allomorphism is the ability of a Managed Object of a given class to resemble the behaviour of
another class as observed by systems management protocols. It allows different views of
Resources to be presented to different managing systems and to hide optional facilities from
some managing systems. It thus allows a Managed Object class definition to be extended in a
way that permits interoperability when either the Manager or the Managed Object does not
include the relevant extension.

Allomorphism is intended to allow, to the extent possible, a managing system to manage a
system of high capability as if it was a system of lesser capability. Specifically, it is a requirement
that if none of the extended capabilities are required, management must be possible as
effectively as if the managed system did not have them.

An example where allomorphism may be used would be to extend a Managed Object class to
reflect:

• extensions to a standardised view of a Resource; for example, where a Managed Object
supporting 1988 X.25 is an extension of one which supports 1984 X.25

• vendor-specific extensions to a standardised view of Resources; for example, where a
Managed Object supporting vendor X’s implementation of X.25 is an extension of the
standard view of 1988 X.25.

Allomorphism cannot be used to allow a management agent system to provide a restricted view
of a Managed Object to a managing system, because a management agent system cannot enforce
a particular allomorphic Managed Object definition. If it receives a valid request for an
operation, then (subject to access control restrictions) it must perform it.

An allomorphic class of a given Managed Object may be one of the superclasses of that Managed
Object’s class in the inheritance hierarchy. However, this is not a requirement for allomorphism.

4.3.2.7 Containment

Containment is a structuring relationship between Managed Object instances (not classes).
Containment allows a Managed Object of one class to contain other Managed Objects of the
same or different classes. The contained Managed Object is said to be the subordinate Managed
Object and the containing Managed Object the superior Managed Object. The existence of the
subordinate Managed Object is dependent on the existence of the superior Managed Object. A
Managed Object can be contained within one and only one containing Managed Object.

The specification of a containment relationship can be used to model real-world hierarchies;
these may be physical (for example, an instance of a Managed Object describing a port may have
a containment relationship to an instance of a Managed Object describing a router) or logical (for
example, an instance of a Managed Object describing a user may have a containment
relationship to an instance of a Managed Object describing a particular group of users - for
example, students).

28 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

4.3.2.8 Filters

Filters allow a management function to be applied to a number of Managed Objects that are
selected because their attributes meet specified criteria. Filtering is explicitly supported by the
CMIS services (M-Set, M-Get, M-Delete and M-Action). The managing system can specify that
operations to be performed on Managed Objects selected by filters are to be atomic (that is, they
either all succeed or all fail) or on a best effort basis. Filtering can only be usefully performed on
primitive types. Filtering can be applied together with scoping, in which case scoping is always
applied first.

A filter is an assertion about the presence or the value of an attribute in a Managed Object, and is
satisfied if, and only if, it evaluates to TRUE. A filter may be composed of a number of simpler
filters using logical operators and, or and not; this is referred to as a nesting. An assertion about
the value of an attribute is evaluated only if the attribute is present in the Managed Object. If the
attribute is not present, the attribute assertion for that attribute is assigned the value FALSE.

Filtering on attributes that are not primitive types requires that all values of the attribute be
specified. In other words, if the attribute Person has fields age and haircolour, one cannot filter
Person.age=35 but Person.age=35 and Person.haircolour=brown. Furthermore, it is not always
possible to define attribute assertions that always evaluate to TRUE. Therefore, it is generally
preferable to define an attribute to be used in filtering as a primitive attribute.

Matching rules can be defined for each attribute, restricting or identifying types of filters that can
be applied to the attribute (for example, MATCHES FOR ORDERING, SUBSTRINGS).

4.3.2.9 Scoping

Scoping allows a subset of the objects to be selected for application of a specified operation by
specifying a starting point in the Managed Object containment hierarchy and a depth. The CMIS
M-Set, M-Get, M-Delete and M-Action services allow a scoping parameter that selects:

• a base object alone

• the nth level subordinate of a base object

• a base object and all its subordinates down to and including the nth level

• a base object and all its subordinates.

4.3.2.10 Relationships

General relationships between Managed Objects are possible. They exist when the properties of
one Managed Object affect the properties of other (related) Managed Object(s). They are defined
by their behaviour and may be subtyped on this basis. For example, changing the attribute of a
(target) Managed Object may result in a change in the behaviour or the modification of another
attribute both in the target Managed Object and in another related Managed Object. The
relationship between Managed Objects is described in the ISO draft General Relationship Model
(see reference GRM). Containment, as described previously, is one example of a relationship.

4.3.2.11 Attributes of top

Each Managed Object contains all the information needed to describe itself for the purposes of
management access. Each Managed Object class is derived directly or indirectly from top, and it
inherits from top the following attributes:

Managed Object Class This attribute identifies the class of the Managed Object.

Systems Management: Managed Object Guide (XMOG) 29

ISO Management Model Definition of Managed Objects

Allomorphs This attribute identifies the set of allomorphic classes of this
Managed Object. It is in a conditional package and is present only if
the Managed Object instance supports allomorphic class.

Name Binding This attribute identifies the object identifier of the binding that is in
use between the Managed Object and its superior.

Packages This attribute identifies the packages that have been instantiated. Its
value is a set of object identifiers corresponding to those instantiated
packages that are registered. This attribute is in a conditional
package that is instantiated only if it would not be empty.

4.3.3 General Principals for Managed Object Definition

GDMO gives guidance on a number of issues:

• Managed object class definers should strive to identify and use definitions that appear in
standards or that have been produced by other groups in order to increase commonality.

• Grouping of data or functionality of Managed Objects should be represented through the use
of a number of structuring techniques (described in Section 4.3.2 on page 26. These include:

— attribute groups

— subclasses (specialisation)

— multiple inheritance

— containment

— packages

— relationships.

• In order to ensure compatibility of Managed Object classes to their superclasses, the rules for
inheritance limit:

— the ways in which the required and permitted value sets of attributes of a Managed
Object class can be modified

— the ability to add parameters to actions and notifications.

For this reason, it is necessary to try to anticipate future uses of Managed Object classes and
define them with suitable extension capabilities. This may include the definition of
unrestricted Managed Object classes (which will not be instantiated) from which restricted
Managed Object classes may be defined.

• A value set for an attribute may be defined by:

— defining the attribute value statically, as part of the definition of the Managed Object class

— defining a second attribute, whose value indicates the value set the attribute may contain.

The former method minimises the number of attribute definitions of a Managed Object class,
while the latter minimises the number of Managed Object subclasses to handle different
value set variants.

• Attribute groups should be used in preference to complex attribute types where it is required
to individually modify elements of the attribute.

• The effects of concurrent update on attributes that can be updated by normal operation and
management action should be defined if possible.

30 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

• Managed objects that can be instantiated must include at least one value that can be used for
naming. Normally, when a Managed Object is deleted the value of the attribute used for
naming may be reused, however, for some objects an additional naming attribute whose
value is maintained unique over time may also be defined.

• Where appropriate, the standard Create object, Delete object, Replace attribute value,
Replace attribute with default, Add/Remove Member or Get attribute operations should be
used; in all other circumstances the Action procedure should be used. Examples where the
Action operation should be used include the following:

— where the other operations, together with scoping and filtering, cannot define the
required action

— where operations on more than one Managed Object are required as an atomic operation.

4.3.4 Templates

GDMO defines templates that can be used to define Managed Objects. A template is a high-
level, structured description of a Managed Object class; it excludes syntactic detail and can be
viewed as a form to be filled in by a designer. The use of templates is intended to make the work
of defining Managed Objects more consistent and more structured.

A Managed Object template identifies the inheritance relationships that exist between the
Managed Object class and other Managed Object classes, and the packages of behaviour,
attributes, notifications and operations that are included in the Managed Object class definition
(which have been discussed in Section 4.3.2 on page 26 and Section 4.3.3 on page 30). Details of
the Managed Object’s attributes, behaviour, actions, notifications, parameters and packages can
be specified through a number of subsidiary templates.

A template consists of:

• a specification label

• a template type

• a lists of keywords

• an ASN.1 object identifier.

The specification label is an ASN.1 value reference (ASN.1 — Abstract Notation Number 1 — is
an internationally standardised formal language for describing structured information). It is
allocated to a completed template and must be distinguishable from all other such values. It is
used to refer to the completed template (that is, the Managed Object specification) in other
(human-readable) documents, while the ASN.1 object identifier is used to identify the
specification when a managing system (a Manager) interacts with a managed system (an Agent).
Stand-alone systems should also use ASN.1 object identifiers to ensure globally unique
identifiers, thus allowing future networking expansion. The label has no semantic significance in
itself and any label could be substituted for another without changing the meaning, provided the
new label is used consistently and does not clash with any other labels already in use.

Templates for MANAGED OBJECT CLASS, PACKAGE, PARAMETER, NAME BINDING, ATTRIBUTE,
ATTRIBUTE GROUP, BEHAVIOUR, ACTION and NOTIFICATION are defined.

Systems Management: Managed Object Guide (XMOG) 31

ISO Management Model Definition of Managed Objects

4.3.5 IS GDMO Template

4.3.5.1 Managed Object Class Template

GDMO defines a MANAGED OBJECT CLASS template to be used for the top-level definition of
a Managed Object class. A number of supporting templates define elements of the Managed
Object class template (for example, the attribute template). The MANAGED OBJECT CLASS
template is listed below and its elements described. The following notational conventions are
used:

• the square brackets, [and], enclose clauses that are allowed to be empty in a completed
template. An empty clause may be omitted (in which case the entire clause including the
keyword which introduces it should be omitted). If the square brackets are followed by a *,
then the enclosed clause may be repeated zero or more times.

• The braces { and } indicate a list.

The IS Managed Object class template is, of course, derived from the DIS Managed Object class
template. The main difference between the two templates is the use of packages in the former to
group and indicate as optional or mandatory the elements of the template (the DIS version
indicated mandatory/optional elements by means of MAY CONTAIN and MUST CONTAIN
clauses). The DIS Managed Object template is not used any more and X/Open only endorses the
IS template. The DIS template has been used in the past and users may encounter Managed
Object definitions that use it; however, groups that have used it have now migrated to the IS
version.

The IS GDMO Managed Object class template is shown below.

<class-label> MANAGED OBJECT CLASS
[DERIVED FROM <class-label> [,<class-label>]* ;
]
[CHARACTERIZED BY <package-label> [,<package-label>]*;
]
[CONDITIONAL PACKAGES <package-label> PRESENT IF condition-definition

[,<package-label> PRESENT IF condition-definition]*;
]

REGISTERED AS object-identifier;

• DERIVED FROM
The DERIVED FROM clause specifies the Managed Object classes (superclasses) from which
the Managed Object being defined has been specialised. As multiple inheritance is allowed, a
Managed Object class may have more than one superclass. The DERIVED FROM clause
causes the Managed Object class to inherit all characteristics of its superclass(es), including
behaviour. These may then be augmented or modified by the CHARACTERISED BY and
CONDITIONAL PACKAGES clauses. The DERIVED FROM clause is mandatory in all
Managed Objects except top.

• CHARACTERIZED BY
The CHARACTERIZED BY clause is optional, and if present allows one or more mandatory
packages to be specified. A package that is conditional in the object class’ superclass may be
referenced in the CHARACTERIZED BY clause in order to make it mandatory.

• CONDITIONAL PACKAGES
The CONDITIONAL PACKAGES clause is optional and, if present, allows one or more
packages to be specified. The PRESENT IF construct allows the condition(s) that must be met
for the package to be included in an instance of the class. The condition-definition is expressed
in natural language.

32 X/Open Guide (1993)

Definition of Managed Objects ISO Management Model

• REGISTERED AS
The REGISTERED AS clause allows a globally unique identifier for the object class to be
defined.

4.3.5.2 Package Template

The PACKAGE template includes clauses to define the behaviour, attributes, attribute groups
actions and notifications found in the GDMO template. Mandatory and conditional packages
have the same format, that is, the same template can be used to define both. The PACKAGE
template is shown below:

<package-label> PACKAGE
[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]*;
]
[ATTRIBUTES <attribute-label> propertylist [<parameter-label>]*

[,<attribute-label> propertylist [<parameter-label>]*]*;
]
[ATTRIBUTE GROUPS <group-label> [<attribute-label>]*

[,<group-label> [<attribute-label>]*]*;
]
[ACTIONS <action-label> [<parameter-label]*

[,<action-label> [<parameter-label]*]*;
]
[NOTIFICATIONS <notification-label> [<parameter-label>]*

[,<notification-label> [<parameter-label>]*]*;
]

[REGISTERED AS object-identifier] ;

• BEHAVIOUR
The BEHAVIOUR clause describes the behaviour of the Managed Object class as a whole and
with respect to all its operations. It defines the conditions under which the properties of the
Managed Object may be altered by either internal stimuli (operation of the Managed Object)
or external stimuli (management action). Any CMIS protocol or notification which results
from particular value is also specified. Behaviour is defined in natural language according to
the rules of the OSI GDMO. Assertions (pre- and post-conditions for operations and
invariants for inter-related Managed Objects) define behaviour and should be described in a
more formal manner than natural language.

• ATTRIBUTE
The ATTRIBUTE clause allows one or more attributes to be defined. The associated
propertylist element allows optional specification of default, initial, permitted and required
values, and of what operations on the attribute are allowed. Attributes are defined by means
of the ATTRIBUTE template shown below:

<attribute-label> ATTRIBUTE
DERIVED FROM <attribute-label> |
WITH ATTRIBUTE SYNTAX type-reference
[MATCHES FOR qualifier [, qualifier]*;
]
[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]*;
]
[PARAMETERS <parameter-label> [, <parameter_label>]*;
]

[REGISTERED AS object-identifier] ;

The attribute template may be defined either independently, or derived from another
template. In the latter case the DERIVED FROM clause allows the specification of another
attribute template from which the currently defined template is derived.

Systems Management: Managed Object Guide (XMOG) 33

ISO Management Model Definition of Managed Objects

The WITH ATTRIBUTE SYNTAX specifies the ASN.1 data type of the attribute.

The MATCHES FOR clause specifies the rules by which assertions about the value of an
attribute are evaluated. Allowed rules are EQUALITY, ORDERING, SUBSTRING, SET-
COMPARISON and SET-INTERSECTION. If no MATCHES FOR clause is specified, then no
matching rules are supported for the attribute.

• ATTRIBUTE GROUPS
The ATTRIBUTE GROUPS clause allows a collection of attributes to be referred to using a
single name. The ATTRIBUTE GROUP template is shown below:

<group-label> ATTRIBUTE GROUP
[GROUP ELEMENTS <attribute-label> [, <attribute-label>]*;
]
[FIXED ;
]
[DESCRIPTION delimited-string ;
]

REGISTERED AS object-identifer;

The GROUP ELEMENTS clause specifies the attributes that constitute the attribute group
being defined. If present, the FIXED clause indicates that the attribute group is defined to be
of fixed membership. The DESCRIPTION clause describes the semantics of the group to be
specified.

• ACTIONS
The actions clause allows the definition of the behaviour and syntax associated with a
particular action type. Action types defined by the ACTION template may be used in the M-
ACTION Management Service primitive. The template also specifies if the action is
confirmed or unconfirmed.

• NOTIFICATIONS
This clause allows a list of notifications that may be reported by the Managed Object to be
defined. Notifications are defined by means of a template that specifies the behaviour and
syntax associated with a particular Notification type.

4.3.5.3 Name Binding

OSI define an additional template (the NAME-BINDING template) that allows a Managed
Object to be named. It defines an attribute as a naming attribute for a Managed Object class and
specifies the superior Managed Object class with which a MANAGED OBJECT CLASS instance
can form a containment relationship.

It is really the Name Binding that defines the create operation and behaviour, not the Managed
Object Class. The same Class can have different Name Bindings with different Create/Delete
operations defined, and different behaviours for them. For example, Create may be permitted in
one Name Binding but not in another.

34 X/Open Guide (1993)

Definition of Managed Objects Internet Management Models

4.4 Internet Management Models
The Internet Activity Board (IAB) has recommended that all Internet Resources should be
remotely manageable using SNMP. This requires use of the Internet Structure of Management
Information (SMI) to define Managed Objects, as described in RFC 1155 (SNMPv1) and RFC
1442 (SNMPv2).

The Internet SMI describes how to define management information contained in a Management
Information Base (MIB) for use by SNMP. A MIB has been defined for some common Internet
Resources in RFC 1213 (see reference MIB-II).

The Internet SMI has initially been applied to network Resources, but can naturally be expanded
to cover distributed system Resources.

Earlier IAB attempts to apply the OSI Management model to manage Internet Resources (RFC
1189 — CMOT, and RFC 1214 — the OIM MIB-II) have since been deprecated. More recently, the
Network Management Forum ISO/Internet Management Coexistence (IIMC) working group
has defined an ISO/CCITT GDMO translation of the Internet MIB-II; examples are illustrated in
Section A.2.

4.4.1 Internet SMI

4.4.1.1 Objects

The Internet SMI specifies the format of SNMP Managed Objects. The Internet SMI does not use
object-oriented terminology or concepts to the same extent as GDMO and related standards. It
talks in terms of object types rather than classes. These object types are similar to OSI attribute types.
Sets of these object types are collected into a Management Information Base (MIB) for a specific
managed Resource (for example, the FDDI MIB).

Each type of object (termed an object type) has a name, a syntax and an encoding. The name is
represented uniquely as an object identifier. The syntax for an object type defines the abstract
data structure corresponding to that object type. For example, the structure of a given object
type might be an integer or octet string. The encoding of an object type is simply how instances of
that object type are represented using the object’s type syntax. Implicitly tied to the notion of an
object’s syntax and encoding is how the object is represented when being transmitted on the
network.

To avoid confusion, an SNMP Object is referred to as a variable , which is a synonym for SNMP
Object that is commonly used in the Internet community.

Syntax

The SNMPv1 Internet SMI (RFC 1155) uses the ASN.1 syntax to specify variables. However, only
the following restricted subset of ASN.1 is permitted:

• Only the ASN.1 primitives INTEGER, OCTET STRING, OBJECT IDENTIFIER and NULL are
permitted; BOOLEAN, REAL, ENUMERATED, BIT STRING and character strings are not
permitted. A string of printable characters is expressed as an OCTET STRING (MIB-II uses
the definition:

DisplayString ::= OCTET STRING

for printable strings).

• Enumerated INTEGERs are permitted, but the value 0 is reserved, so must not be present in
the list of enumerations.

Systems Management: Managed Object Guide (XMOG) 35

Internet Management Models Definition of Managed Objects

• Of the ASN.1 structured types, only SEQUENCE and SEQUENCE OF are permitted.

• Application-wide types may be defined provided they resolve into an IMPLICIT-ly defined
ASN.1 primitive type, a SEQUENCE or some other application-wide type.

The SNMPv2 Internet SMI (RFC 1442) adds support for additional ASN.1 features such as full
ASN.1 subtyping and 64-octet counters. A new SNMPv2 construct called ‘‘Textual Conventions’’
(RFC 1443) is defined to facilitate reuse and display of common complex ASN.1 types.

Operations

SNMP models all management functions as alterations or inspections of variables. SNMP
defines the following operations that can be performed on variables:

Get Request This message is used by a managing system to request the values of
one or more specified variables from an Agent system.

Get Next Request This message is used by a managing system to request the values of
objects that are the immediate successors of one of more specified
variables.

Set Request This message is used by a managing system to set the values of one
or more variables in an agent system.

Get Response This message is used by an agent system to indicate failure or to
return data to a managing system in response to a Get Request or Get
Next Request message or to indicate success/failure of a Set Request
operation.

Trap This message is used by an agent system to deliver unsolicited
messages to a managing system. The SNMP specification includes 6
types of specific traps, plus the Enterprise Specific type that can be
used to indicate events that do not fall into the standard set of traps.
The SNMPv1 traps are listed below:

• Cold Start

• Warm Start

• Link Down

• Link Up

• Authentication Failure

• EGP Neighbour Loss

• Enterprise Specific

SNMPv2 (RFC 1448) defines two additional messages: Get-Bulk (an automatically repeating
Get-Next) and Inform-Request (roughly analogous to a confirmed Trap which includes data, or
an unsolicited Get-Response). SNMPv2 SMI (RFC 1442) defines an additional access value
‘‘read-create’’ which can be used to instantiate or erase conceptual table entries (roughly
analogous to OSI create and delete operations). No equivalent functionality exists in ANMPv1.
Note that there is no equivalent to the PSI action; this can be implemented by use of variables
which when set cause an action to occur.

The SNMP protocol does not support the Scoping and Filtering functions of CMIP. However, a
single SNMP message can specify a list of variables as its target, and the Get-Next or Get-Bulk
Request can be used to traverse parts of the Internet MIB.

36 X/Open Guide (1993)

Definition of Managed Objects Internet Management Models

Notifications

The Internet SMI does not formally associate events with managed Resources. Whereas GDMO
includes the definition of notifications (that is, events), in the Managed Object class definition,
the Internet SMI format does not include notifications in variable type definitions. However,
notifications are still supported and, as described above, the SNMP Trap and Inform-Request
messages are used to transmit them.

Definition

The Internet variable type format includes a definition section. This is equivalent to the GDMO
behaviour section and allows a natural language description of the semantics of the variable type.

4.4.1.2 Structure/Relationships

The Internet SMI does not have all the structuring mechanisms of GDMO. The only structuring
mechanisms available are:

Variable Groups The Internet SMI aggregates variable definitions into groups. A group is
the basic unit of conformance, that is, if the semantics of a group are
applicable to an implementation then all objects of the group must be
implemented.

Tables As discussed earlier, the Internet SMI allows the ASN.1 structured type
SEQUENCE OF to be used in the definition of object types. This allows
variables to be defined that contain instances of other variables (similar to
the containment relationship in GDMO). These are referred to as tables,
an example being a routing table which consists of a sequence of route
entries.

4.4.1.3 Internet Managed Object Type Macro

Whereas GDMO expresses the format of Managed Object classes through the definition of
templates, Internet SMI defines an OBJECT-TYPE Macro to aid in the definition of variable
types. The much simpler structure of Internet variables discussed above is reflected in a fairly
simple OBJECT-TYPE macro. The macro allows the following to be defined for SNMPv1:

Object Descriptor A textual name (value reference) for the variable.

Object Identifier As in GDMO, an administratively assigned unique name that can be used
in the protocol to identify the variable.

Syntax The abstract syntax for the variable type.

Definition A textual description of the semantics of the variables type.

Access One of read-only, read-write, write-only or inaccessible.

Status One of mandatory, optional or obsolete.

A slightly extended OBJECT-TYPE macro is defined for SNMPv2 (see reference SMIv2).
SNMPv2 also defines MODULE-IDENTITY and NOTIFICATION-TYPE macros for use when
defining MIBs.

Systems Management: Managed Object Guide (XMOG) 37

Internet Management Models Definition of Managed Objects

4.4.1.4 Extending the Internet MIB

The Internet SMI does not support inheritance, hence this mechanism cannot be used to extend
the MIB. Instead, the following extensibility mechanisms must be used:

• the addition of new standard variables through the definition of new versions of an existing
MIB (for example MIB-II RFC 1213 which supersedes MIB RFC 1158) or the creation of a new
MIB. New versions may declare old variables obsolete (but not delete their names), augment
the definition of list variables by defining additional members, and define entirely new
objects. New versions may not change the semantics of previously-defined variables without
changing their names.

• the addition of widely-available but non-standard variables through the experimental
subtree. The Internet MIB has four nodes at the top of the naming hierarchy: directory,
management, experimental and private. All Managed Objects defined in IAB recommended
RFCs will occur under the management subtree (see Chapter 7).

• the addition of private objects through the enterprise subtree. The enterprise subtree is a
node allocated immediately under the private node.

• in SNMPv2 SMI, Textual Conventions and the AUGMENTS clause have been added to
facilitate reuse and extensibility.

4.5 Mapping Between Object Models

4.5.1 Mapping Between OMG Objects and ISO Managed Objects

Currently the mapping between OMG objects and ISO Managed Objects is not subject to any
standard defined process. Several comparison studies have been performed, and this topic is
expected to be addressed as part of the X/Open Systems Management Programme.

4.5.2 Mapping Internet Managed Objects to ISO Format

Currently, a mapping between Internet objects and ISO Managed Objects is being defined by the
Network Management Forum ISO/Internet Management Coexistence (IIMC) working group.
IIMC specifications include both a mapping of Internet MIBs into ISO GDMO template format,
and a mapping of ISO MIBs into Internet SNMPv1 and SNMPv2 macro format. These mappings
are intended to preserve the syntax and semantics of the source MIB in the target format. An
example of the Internet MIB-II translated into ISO GDMO template format is provided in Section
A.2.

Further information relating to the issues of the coexistence of ISO and Internet management is
contained within another X/Open Guide (see reference COIW).

38 X/Open Guide (1993)

Definition of Managed Objects Refinement

4.6 Refinement
One of the key benefits of the use of object-oriented techniques is the ability to "refine" an
existing object definition to create a new, modified definition, thus re-using the work embodied
in the original definition and implementation.

There are 3 primary techniques by which this is achieved, Inheritance, Allomorphism, and
Polymorphism.

4.6.1 Inheritance

Inheritance is the means by which a new object definition inherits all the properties of the
existing definition. Additional properties are then added to the definition to create a new
definition which has all the original properties plus the new additions.

4.6.2 Polymorphism

Polymorphism (literally ‘‘many forms’’) is a mechanism by which an object class can modify the
behaviour it inherits. It provides a mechanism by which an object can be used exactly as if it
were an instance of another class. The behaviour of the object will depend on the context in
which it is used.

4.6.3 Allomorphism

Allomorphism (literally ‘‘other form’’) provides essentially the same facility as polymorphism.
The term was invented, however, to break away from the assumption that there would be some
inherited implementation. As long as the implementation of an object interface conforms to its
definition, (and encapsulation is complete), there should be no way to tell whether the object’s
implementation is separate or shared with that of another class.

This view of allomorphism as interface compatibility is particularly relevant when considered in
the context of distributed systems. When a ‘‘remote’’ object can only be accessed via some
standard interface, the implementation techniques used to provide that interface on the remote
side are irrelevant provided that the object ‘‘does the right thing’’ in response to any interaction.

Systems Management: Managed Object Guide (XMOG) 39

Definition of Managed Objects

40 X/Open Guide (1993)

Chapter 5

Searching for Managed Objects

A large number of organisations are contributing to Systems Management. They have all
adopted an object-oriented approach to defining the functionality they wish to see in the area of
Systems Management.

This chapter identifies some relevant organisations, and briefly describes their activities.

Appendix B lists some existing ISO and Internet MIBs.

ISO

Within ISO, the principal area of relevance is the definition of standards for both Layer
Management and Systems Management, and the latter deals primarily with application level
facilities for managing communications layers. However, the concepts and facilities are also
applicable to Systems Management as defined in this document. ISO is primarily concerned with
the definition of Managed Object classes relevant to communications systems.

ISO/IEC JTC1/SC21/WG4 is responsible for defining Systems Management standards and
management support object classes, including generic OSI layer management information. A
number of other working groups (including SC21, SC6) within ISO are responsible defining OSI
layer Managed Objects and information models. For example, ISO/IEC 10165-2 defines
management support objects such as Top, System, Event Forwarding Discriminator, and Log.

CCITT

CCITT (Comitée Consultatif Internationale de Télégraphique et Téléphonique) is an
international consultative committee that produces international communications
recommendations which are frequently adopted as standards or aligned with ISO standards.
CCITT is a member of the International Telecommunications Union (a United Nations treaty
organisation). CCITT recommendations in the area of Systems Management are in the X series
(have an identifier of the form X.<number> - primarily in the X.700 series) and are technically
aligned with ISO standards. (For example, CCITT Recommendation X.722 is technically identical
to GDMO.)

A number of study groups within CCITT (including CCITT SG XV, XI and IV) are responsible
for defining Managed Objects and information models. For example, CCITT M.3100 defines a
Generic Network Model containing Managed Objects such as Network, Equipment, and
Managed Element. Many national standards organisations such as ANSI T1 also define Managed
Objects and information models which are often progressed internationally within CCITT study
groups.

IEEE POSIX 1003.7

The POSIX System Administration working group (P1003.7) was formed in January 1989 with
the goal of defining interfaces to systems administration functions in a network of
heterogeneous systems. The group has subdivided into a number of subprojects each
representing a functional subset of the area of interest of P1003.7, hence standards pertaining to
specific areas of interest will be published. These will include Managed Object classes
definitions.

Systems Management: Managed Object Guide (XMOG) 41

Searching for Managed Objects

Object Management Group (OMG)

The Object Management Group is a consortium that exists to define and promote a framework
for distributed application integration based on object-oriented technology.

As part of their work they have announced an intention to establish an Interface Definition
Registry.

Network Management Forum (NMF)

The NMF is an international consortium of information system and communication equipment
suppliers, telecommunications service providers, and users. Focussed exclusively on
management issues, the Forum seeks to accelerate the availability of solutions to industry-wide
problems in network, systems, and service management. To that end, the Forum manages
several programmes, including:

OMNIPoint A framework for service management that delivers comprehensive
specifications for interoperability in multi-technology, multi-standard,
multi-domain management environments. OMNIPoint is a collaborative
effort between the Forum, X/Open, and other consortia, government and
commercial users, and standards bodies from around the world.

AIMS A group of ISVs using fast prototyping to develop ways of integrating
management applications.

SPIRIT An effort by telecommunications service providers and their computing
suppliers to define a procurement specification for a general purpose
computing platform, compliant with XPG and OMNIPoint that meets the
needs of large-scale users.

OSE Regional Workshops

The primary aim of the OSE regional workshops is the development of ISO International
Standardised Profiles (ISPs). There are three workshops:

• European Workshop for Open Systems (EWOS). EWOS has established an Expert Group on
network management.

• OSE Implementors Workshop (OIW). The main OIW group dealing with network
management is the Network Management Special Interest Group (OIW NMSIG).

• Asia and Oceania Workshop for Implementors of OSE (AOW).

All three are contributors to the proposed Draft ISPs in the area of OSI management.

In addition to the above, there are other workgroups that are defining Managed Object classes to
reflect their special needs.

Open Software Foundation (OSF)

OSF is addressing the area of distributed Systems Management. It has defined a Distributed
Management Environment (DME). The OSF Management Special Interest Group is defining
DCE, DME, and Operating System Managed Object classes.

42 X/Open Guide (1993)

Searching for Managed Objects

UNIX International

UI has established a working group to develop a model for distributed management and a
detailed set of requirements for an open management framework. They have developed a
distributed object model for Systems Management covering:

• Framework Common Utilities: these are drawn from the UI Atlas Distributed Computing
Architecture, and are centred on a distributed object management facility. They support
distributed facilities that are common to many application domains.

• Application Objects: these define objects that can be used in designing APIs. Each object
encapsulates a particular aspect of management functionality.

• Application Presentation Layer: this defines a common object-oriented API for human
interaction.

• Application Programming Interface: this defines a common object-oriented API to allow
applications to access Management Services in a location-independent manner.

Internet Engineering Task Force (IETF)

The IETF is one of the principal subsidiary bodies of the Internet Activities Board (IAB). The IAB
has overall responsibility for Internet engineering and management. The IETF responsibilities
include the specification of short and mid-term Internet protocols and architecture, and
recommending standards for IAB approval. It is organised into a number of technical areas
which include network management and OSI coexistence. The IETF has adopted the object
model in order to specify the Internet network management information base and protocols.

There are a large number of working groups within the IETF which are chartered to produce
Internet MIBs. For example, the Host Resources MIB working group is chartered to define an
Internet MIB which represents Resources of special interest to system administrators, such as
operating systems, file systems, and running software processes. Appendix B identifies many
other Internet MIBs developed by IETF working groups.

Systems Management: Managed Object Guide (XMOG) 43

Searching for Managed Objects

44 X/Open Guide (1993)

Chapter 6

Policy Freedom

Managed objects should be defined such that they do not unnecessarily impose a usage policy
on system administrators. The object-oriented systems management model can impose policy
through:

• the definition of Managed Object classes. The existence of a Managed Object corresponding
to a Resource itself imposes policy. For example, if a Managed Object corresponding to a
Resource is defined such that it includes a property password, this imposes the policy of
requiring a password when the Resource is accessed. The definition of more general,
uninstantiable objects may allow administrators to specialise specific objects that are more
appropriate to their systems.

• the definition of initial, default, required and permitted values. Defaults and restrictions on
the values of properties can further tighten the usage policy imposed by the existence of a
Managed Object class definition.

Different instantiations of Managed Object classes will be subject to different usage policies
because different administrators will have different policies. However, the complete absence of
usage policies can be very intimidating to users. Hence vendors should be encouraged to ship
‘‘default policies’’, which can be altered by users to reflect local preferences.

By way of example, when an administrator wishes to add a user to a system, they need to
specify the various properties of that user (such as login name, user-Id, group membership
information, home directory, shell, etc.). However, defaults will be different on different systems;
hence the Managed Objects representing the user should allow this freedom.

6.1 OSI Techniques
Within the OSI environment, the MIM and GDMO allow default and initial values to be
specified in a number of ways:

• the Managed Object class or package definition can specify a fixed default value which may
be assigned during object creation or in response to an M-Set(Replace-With-Default)
operation,
and

• an Initial Value Managed Object (IVMO) can be defined to store values which can be used to
initialise attribute values during object creation.

In addition, it is possible to define the range of permitted values that an attribute may take.

Systems Management: Managed Object Guide (XMOG) 45

Policy Objects Policy Freedom

6.2 Policy Objects
Another technique, used in at least one object-oriented systems management implementation, is
to separate issues of policy into distinct policy objects. Such objects are used to enforce the
locally defined policy.

Such a scheme is implemented by associating policy objects with the definition of an object class.
There are 2 types of policy object:

• Policy Validation Objects which can be used to enforce a range of permitted values.

• Policy Defaults Objects which provide default initial values.

46 X/Open Guide (1993)

Chapter 7

Registration and Publication

7.1 OMG Object Registration
At the present time the OMG has announced an object registration scheme but it has not yet
been implemented.

7.2 ISO/Internet Registration
The process of defining Managed Object classes requires the assignment of globally unique
identifiers to Managed Object classes and to their components (for example, attributes). These
identifiers are known as object identifiers and are carried in protocol, hence they are externally
visible and must be globally unique. The IAB and ISO standards bodies have established a name
registration procedure that can allocate unique object identifiers.

Managed object identifiers have a hierarchical structure, and an object identifier for a Managed
Object class can be viewed as a sequence of labels that navigate through the object identifier tree
to the Managed Object class. This tree consists of a root connected to a number of non-
overlapping nodes, each identified by a label. A label is a pairing of a brief textual description
and an integer (reference SIMI).

The hierarchical structure of object identifiers allows the global name space to be subdivided
hierarchically, and responsibility for administrating specific sub-trees to be delegated to naming
authorities (such as ISO, CCITT or IAB). A registration authority can assign individual object
identifiers and/or delegate responsibility for sub-trees within their responsibility to other
naming authorities. The hierarchical registration scheme actually covers all information objects
(of which management information is only a small subset); examples are Managed Objects
classes, FTAM document types, MHS security categories and Internet management objects.

A registration authority has several responsibilities, which include ensuring the registration of
unambiguous names, and providing any rules that subdomain naming authorities must comply
with to meet the registration requirements.

The root node of the ISO/CCITT object identifier tree is itself unlabelled, but it includes three
labelled nodes:

ccitt(0) which is administered by the International Telegraph and Telephone
Consultative Committee (CCITT)

iso(1) which is administered by the International Organisation for
Standardisation (ISO)

joint-iso-ccitt(2) which is jointly administered by ISO and CCITT.

Systems Management: Managed Object Guide (XMOG) 47

ISO/Internet Registration Registration and Publication

Each node has children of its own which are labelled. For example, under the iso(1) node, a
subtree has been designated for use by other national and international organisations, org(3).
Under the org(3) node the U.S. Department of Defense (DoD) has been assigned to administer a
node. The entire path to this node has the following form:

dod OBJECT IDENTIFIER ::= { iso(1) org(3) dod (6) }
— commonly referred to as —

1.3.6

The IAB administers a node on behalf of the Internet community under the DoD subtree. At the
topmost level the IAB has divided its subtree into four nodes, pertaining to directory,
management, experimental and private use.

Directory The directory subtree is for use of the OSI Directory in the Internet.

Management The Management subtree (mgnt) is used to identify objects that are
defined in IAB approved documents for the purposes of Internet network
management.

Experimental The experimental subtree is used to identify objects used in Internet
experiments.

Private The private subtree is used to identify objects defined unilaterally. This
subtree has one child, enterprise, which is intended to allow parties
providing networking subsystems to register models of their products.

It is important to be aware that that ISO and the IAB use identifiers in different ways. Within OSI
management, object identifiers are assigned to object classes, attributes, notifications, and
actions., but are not used to name instances of Managed Objects. Within Internet management,
object identifiers are assigned to OBJECT-TYPE macros, and are also used to name instances of
MIB variables. An Internet MIB variable is named by concatenating its OBJECT-TYPE object
identifier with a value that uniquely names the instance (either zero, or conceptual table indices).

48 X/Open Guide (1993)

Registration and Publication Publication

7.3 Publication
The Managed Object registration process involves the publication of Managed Object class
definitions. Such Managed Objects are defined in the global space and, therefore, will be
generally understood by open systems management applications (and administrators). X/Open
Systems Management object classes and object classes referenced in systems management
profiles will be published as public Managed Objects that define allomorphic Managed Object
classes. Each hardware and software vendor should define Managed Object classes or packages
that are derived through specialisation from this allomorphic set. In turn, each vendor-specific
package should be registered and the definitions published so that the specialised attributes and
behaviour can be interoperably supported in addition to the allomorphic attributes and
behaviour.

However, it is not desirable that all Managed Object classes definitions should be widely
published. Managed object classes that are created by end-users, or that are short-lived, or
esoteric in nature, should be maintained as private Managed Objects. Private Managed Object
classes are different from Managed Object classes that are registered by vendors as public
Managed Object classes. Private Managed Object classes may be named and formally or
informally registered with a local naming authority.

Public naming authorities are normally organisations such as the U.S. Department of Defense
(DoD) or the Canadian Standardisation Authority (CSA). Private naming-authorities may be as
diverse as a system administrator within a corporate organisation or university, or a central
registration-authority for a conglomerate that shares Resources across a global wide area
network. Private Managed Object classes can be specialised from existing public Managed
Object classes, or created independent of the existing naming tree. In either case, the private
Managed Object class should be assigned an unambiguous name to avoid name space collisions.

Creators of private Managed Object classes should be aware that unless a Managed Object class
definition is made public, the system Manager will have to do something to integrate Managed
Objects instantiated from it into a heterogeneous management system. In addition, should it
ever become necessary or desirable to combine subdomains, private Managed Object classes can
present reconfiguration problems if they are not carefully organised.

7.3.1 Catalogues and Repositories

An effective way of publishing a Managed Object definition is to have it included in a publicly
available repository of definitions. In addition, a Managed Object can be included in a
management information catalogue — a listing and cross-reference which identifies where
Managed Objects are published.

The Network Management Forum maintains both a repository and a catalogue of Managed
Object definitions. The repository, known as the NM Forum Library, accepts objects defined in
GDMO that meet certain defined technical and business criteria (see references NMFTC and
NMFBC). The Catalogue, republished with each OMNIPoint dot release, provides an index of
all Managed Objects included in the NM Forum Library, as well as many others which are under
development throughout the industry. The Catalogue provides keywords and references which
can be used to locate and obtain actual Managed Object definitions that may be of interest to
those defining objects.

The Object Management Group has indicated an intention to maintain a repository of OMG-
based object definitions. The repository will contain objects defined in IDL.

Systems Management: Managed Object Guide (XMOG) 49

Guidelines for Publishing Objects Registration and Publication

7.4 Guidelines for Publishing Objects
X/Open Systems Management recommends the following guidelines for deciding whether or
not to publish Managed Object classes definitions:

1. A Managed Object class should be identified as useful for management of some Resource.

2. Evidence of current use and utility should be required.

3. To the extent possible, the number of Managed Object classes should be limited.

4. Redundant variations of Managed Object classes should be avoided; before defining a new
Managed Object, published Managed Object class definitions should first be searched.

5. Local implementation-specific Managed Object classes should be excluded.

Managed object classes that meet these criteria should be registered through a naming authority.

50 X/Open Guide (1993)

Chapter 8

Naming

The process of registration allows Managed Object classes to be uniquely identified. A related
process is name binding , which allows instances of Managed Objects (that is, instantiations of a
Managed Object class) to be uniquely identified. OSI management uses a hierarchical naming
scheme, while SNMP management uses a flat identification scheme. Names are used to obtain
addresses; the simplest view is of a name-to-address translation mechanism. X/Open systems
management must exist in an environment where multiple naming schemes are used.

8.1 OMG Naming
OMG objects are accessed by means of an object reference, which is a unique, immutable,
opaque value, chosen by the implementation at object creation time. Object references are never
re-used to refer to another object.

The way in which object references are associated with the names of Managed Objects will be
the subject of additional object services.

Systems Management: Managed Object Guide (XMOG) 51

OSI Management Naming

8.2 OSI Management
In OSI systems management, the containment relationship is used to uniquely name instances of
objects. Names are designed to be unambiguous in a specified context; for management this
context is determined by the containing Managed Object. A subordinate Managed Object is
named by the combination of:

• the name of its superior Managed Object

• information that uniquely identifies this Managed Object within the scope of its superior
Managed Object. This information is called a Relative Distinguished Name (RDN). An
RDN consists of one attribute that is part of the Managed Object mandatory package.
Attributes used for RDNs must be testable for equality, and their semantics must permit their
values to be set when the Managed Object is instantiated, and to remain fixed for the lifetime
of the Managed Object.

The naming process can be applied recursively, so that a Managed Object can be given a globally
unique name called a Distinguished Name. A Managed Object’s distinguished name consists of
its RDN concatenated to the sequence of RDNs of each of its superior Managed Objects in
descending order, starting at root. The top level of the naming tree (the root) is a null object (that
is, the Managed Object has no associated properties) and always exists. For interoperability and
portability it is necessary to limit the maximum length of Distinguished Names, and possibly of
RDNs.

The particular attribute to be used to form an RDN of a Managed Object is specified in a name
binding. A Managed Object class can have more than one name binding; however, an instance of
the Managed Object class is created with a single naming attribute. A name binding identifies:

• the Managed Object class being named

• a Managed Object class, instances of which may contain instances of the Managed Object
being named

• one or more attributes that will be used to form the RDN.

8.3 SNMP Management
Internet naming uses a flat identification scheme for naming MIB variables within the context of
a given network address. Each Internet variable has a unique object identifier that can be used
together with the network address of the system implementing the variable to uniquely identify
a variable on a global basis. Object identifiers are assigned by registration authorities, as
described in Section 7.2 on page 47.

52 X/Open Guide (1993)

Chapter 9

Conformance Testing

To ensure interoperability and portability, it is necessary to have the means of testing that
published Managed Objects specifications have been implemented correctly. Such tests can take
two forms:

Conformance Testing These tests ensure that an implementation correctly obeys a
published specification. To aid conformance testing, all OSI
management-based specifications contain an Implementation
Conformance Statement (ICS) proforma, which specifies
conformance information in a tabular format. These ICS are
divided into:

• Managed Object Conformance Statements (MOCS); these are
published in OSI standards, together with Managed Object
definitions.

• Protocol Implementation Conformance Statements (PICS);
these are published in OSI standards together with the
protocol specification.

Interoperability Testing These tests involve the interconnection of systems from various
implementors to demonstrate that they can interwork.
Interoperability testing is undertaken privately or publicly as
part of industry gatherings.

Conformance testing is normally undertaken by recognised bodies. In the area of Network
Management, the NMF has defined conformance tests, while EWOS is defining a conformance
test model which will describe a framework for object conformance testing. The current work of
NMF concentrates entirely on conformance tests for network management based on OSI
protocols. At the time of writing, no conformance testing for Internet network management
exists.

The OMNIPoint Testing Partners work includes conformance testing of both lower-level and
higher-level protocols and of Managed Objects defined by OSI/NMF. They have not only
specified conformance requirements for systems management, but have also endorsed or
developed conformance testing facilities.

To be considered conformant, a product shall go through and pass a sequence of conformance
tests. These tests are designed to provide an initial level of confidence that implementations will
interoperate with minimum effort on the part of those concerned.

Systems Management: Managed Object Guide (XMOG) 53

Conformance Testing

54 X/Open Guide (1993)

Appendix A

Examples

The examples in this section are based on the Internet MIB. This MIB has been translated into
ISO/CCITT GDMO format, and also into OMG IDL.

Selected parts of the definitions, (based on the system group), are presented here for comparison
purposes. In all cases, the examples below are not complete and are provided for illustrative
purposes only.

A.1 Internet MIB Definitions
This section contains the interface and system groups drawn from RFC 1213, Management
Information Base for Network Management of TCP/IP-based internets: MIB-II

A.1.1 The System Group

-- the System group

-- Implementation of the System group is mandatory for all
-- systems. If an agent is not configured to have a value
-- for any of these variables, a string of length 0 is
-- returned.

sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A textual description of the entity. This value
should include the full name and version
identification of the system’s hardware type,
software operating-system, and networking
software. It is mandatory that this only contain
printable ASCII characters."

::= { system 1 }

sysObjectID OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The vendor’s authoritative identification of the
network management subsystem contained in the
entity. This value is allocated within the SMI
enterprises subtree (1.3.6.1.4.1) and provides an
easy and unambiguous means for determining ‘what
kind of box’ is being managed. For example, if
vendor ‘Flintstones, Inc.’ was assigned the
subtree 1.3.6.1.4.1.4242, it could assign the

Systems Management: Managed Object Guide (XMOG) 55

Internet MIB Definitions Examples

identifier 1.3.6.1.4.1.4242.1.1 to its ‘Fred
Router’."

::= { system 2 }

sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized."

::= { system 3 }

sysContact OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION

"The textual identification of the contact person
for this managed node, together with information
on how to contact this person."

::= { system 4 }

sysName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION

"An administratively-assigned name for this
managed node. By convention, this is the node’s
fully-qualified domain name."

::= { system 5 }

sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION

"The physical location of this node (e.g.,
‘telephone closet, 3rd floor’)."

::= { system 6 }

sysServices OBJECT-TYPE
SYNTAX INTEGER (0..127)
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A value which indicates the set of services that
this entity primarily offers.

The value is a sum. This sum initially takes the

56 X/Open Guide (1993)

Examples Internet MIB Definitions

value zero, Then, for each layer, L, in the range
1 through 7, that this node performs transactions
for, 2 raised to (L - 1) is added to the sum. For
example, a node which performs primarily routing
functions would have a value of 4 (2ˆ(3-1)). In
contrast, a node which is a host offering
application services would have a value of 72
(2ˆ(4-1) + 2ˆ(7-1)). Note that in the context of
the Internet suite of protocols, values should be
calculated accordingly:

layer functionality
1 physical (e.g., repeaters)
2 data link/subnetwork (e.g., bridges)
3 internet (e.g., IP gateways)
4 end-to-end (e.g., IP hosts)
7 applications (e.g., mail relays)

For systems including OSI protocols, layers 5 and
6 may also be counted."

::= { system 7 }

A.2 MIB-II GDMO Definitions
This section contains definitions translated from those contained in RFC1213. The translation is
quoted from an Internet Draft entitled ISO/CCITT and Internet Management Coexistence
(IIMC): Translation of Internet MIB-II (RFC1213) to ISO/CCITT GDMO MIB (IIMCMIB-II).

This translation represents work in progress and is intended to illustrative. It does not provide
the final, definitive translation.

A.2.1 IIMCMIB-II Managed Object Classes

internetSystem MANAGED OBJECT CLASS
DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2:1992":top;

CHARACTERIZED BY
internetSystemPkg PACKAGE

BEHAVIOUR
internetSystemPkgBehaviour BEHAVIOUR

DEFINED AS
!BEGINPARSE
REFERENCE !!This Managed Object class maps to the
Internet system group with object id {mib-2 1} in
RFC 1213. See RFC 1213 for attribute semantics.!!;

DESCRIPTION !!When this object class is implemented in
a managed system for use with the ISO/CCITT management
protocol (CMIP), this object class shall emit the
internetAlarm notification in place of SNMP
traps/notifications which are reported using the
unconfirmed service, and in place of InformRequests
which are reported using the confirmed service.

Systems Management: Managed Object Guide (XMOG) 57

MIB-II GDMO Definitions Examples

When this object class is implemented in an ISO/CCITT-
Internet proxy, the internetAlarm shall be emitted upon
receipt of SNMP traps/notifications which are reported
using the unconfirmed service, and emitted upon receipt
of InformRequests which are reported using the
confirmed service.!!;
ENDPARSE!;;
ATTRIBUTES
{iimcManagementDocMan 1}: internetClassId GET,

sysDescr GET,
sysObjectId GET,
sysUpTime GET,
sysContact GET-REPLACE,
sysName GET,
sysLocation GET-REPLACE,
sysServices GET;

NOTIFICATIONS
{iimcManagementDocMan 1}:internetAlarm;;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1};

A.2.2 IIMCMIB-II Attributes

sysContact ATTRIBUTE
DERIVED FROM {iimcManagementDocMan 1} :displayString;
BEHAVIOUR

sysContactBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysContact with object id
{system 4} in RFC1213. See RFC 1213 for attribute
semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 4};

sysDescr ATTRIBUTE
DERIVED FROM {iimcManagementDocMan 1} :displayString;
BEHAVIOUR

sysDescrBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysDescr with object id
{system 1} in RFC1213. See RFC 1213 for attribute
semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 1};

sysLocation ATTRIBUTE
DERIVED FROM {iimcManagementDocMan 1} :displayString;
BEHAVIOUR

sysLocationBehaviour BEHAVIOUR

58 X/Open Guide (1993)

Examples MIB-II GDMO Definitions

DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysLocation with object
id {system 6} in RFC 1213. See RFC 1213 for
attribute semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 6};

sysName ATTRIBUTE
DERIVED FROM {iimcManagementDocMan 1} :displayString;
BEHAVIOUR

sysNameBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysName with object id
{system 5} in RFC1213. See RFC 1213 for attribute
semantics. Usually the node’s domain name.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 5};

sysObjectId ATTRIBUTE
WITH ATTRIBUTE SYNTAX

IIMCRFC1213ASN1.ObjectIdentifier;
MATCHES FOR EQUALITY;
BEHAVIOUR

sysObjectIdBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysObjectId with object
id {system 2} in RFC1213. See RFC 1213 for
attribute semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 2};

sysServices ATTRIBUTE
WITH ATTRIBUTE SYNTAX IIMCRFC1213ASN1.Integer;
MATCHES FOR EQUALITY, ORDERING;
BEHAVIOUR

sysServicesBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysServices with object
id {system 7}. See RFC 1213 for semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 7};

sysUpTime ATTRIBUTE
DERIVED FROM {iimcManagementDocMan 1}: timeTicks;

Systems Management: Managed Object Guide (XMOG) 59

MIB-II GDMO Definitions Examples

BEHAVIOUR
sysUpTimeBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
REFERENCE
!!This attribute maps to sysUpTime with object id
{system 3} in RFC1213. See RFC 1213 for attribute
semantics.!!;
ENDPARSE!;;

REGISTERED AS {iimcAutoTrans 1 3 6 1 2 1 1 3};

A.2.3 IIMCMIB-II Name Bindings

internetSystem-systemNB NAME BINDING
SUBORDINATE OBJECT CLASS internetSystem

AND SUBCLASSES;
NAMED BY SUPERIOR OBJECT CLASS

"Rec. X.721 | ISO/IEC 10165-2 : 1992" :system
AND SUBCLASSES;

WITH ATTRIBUTE
{iimcManagementDocMan 1}: internetClassId;

BEHAVIOUR
internetSystem-systemNBBehaviour BEHAVIOUR
DEFINED AS
!BEGINPARSE
DESCRIPTION
!!The <internet instanceId> portion of
the internetClassId value shall be 0.!!;
ENDPARSE!;;

REGISTERED AS {iimcManagementNB 1 3 6 1 2 1 1 };

A.2.4 IIMCMIB-II ASN.1 Module

IIMCRFC1213ASN1 {iimcManagementModAuto 1213 1354}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
IMPORTS iimcManagementDocAuto, iimcManagementModAuto,

iimcAutoTrans, iimcManagementNB,
FROM IimcAssignedOIDs {iimcManagementModMan 1};

-- The following registration identifier is assigned to this
-- document using procedures defined in [IIMCIMIBTRANS]:

iimcMIBII OBJECT IDENTIFIER ::=
{iimcManagementDocAuto 1213 1354}

-- Generic syntax

Integer ::= INTEGER

OctetString ::= OCTET STRING

ObjectIdentifier ::= OBJECT IDENTIFIER

60 X/Open Guide (1993)

Examples MIB-II GDMO Definitions

-- MIB specific syntax

Integer128 ::= INTEGER (0..127)

Integer64k ::= INTEGER (0..65535)

END

A.3 OMG IDL Definitions
This section contains OMG IDL definitions corresponding to the SNMP interfaces and systems
groups. In addition, it includes a C language header containing supplementary definitions of
data types.

This translation represents work in progress and is intended to be illustrative. It does not
provide the final, definitive translation.

A.3.1 <mib2.h>

/*
* Description:
* C header file for mib2 IDL objects
*
* SNMP MIB-II mandatory objects
* system
* interfaces
* ip
* icmp
* snmp
* objectControl - imposed by this interface
*
* SNMP MIB-II optional objects
* ucp
* tcp
* egp
*/

/*
* General Use Types
*/

typedef unsigned long Counter_t;
typedef unsigned long Gauge_t;
typedef string<256> DisplayString_t;
typedef sequence<octet,128> OctetString_t;
typedef unsigned long TimeTicks_t;
typedef OctetString_t ObjId_t;
typedef OctetString_t IpAddress_t;

typedef unsigned long Index_t;
typedef unsigned long TableId_t;
typedef unsigned long EntryId_t;

Systems Management: Managed Object Guide (XMOG) 61

OMG IDL Definitions Examples

typedef void STATUS

A.3.2 mib2-control.idl

/*
* objectControl
*/

interface mib2-control {

/*
* Attributes
*/

security
commAttr

}

A.3.3 mib2-system.idl

/*
* Description:
* IDL specification file for SNMP MIB II system group
*/

interface mib2-system {

/*
**
** Attributes
**
*/
readonly attribute DisplayString_t sysDescr;
readonly attribute ObjId_t sysObjectId;
readonly attribute unsigned long sysUpTime;
readonly attribute DisplayString_t sysContact;
readonly attribute DisplayString_t sysName;
attribute DisplayString_t sysLocation;
readonly attribute short sysServices; // 0..127

}

62 X/Open Guide (1993)

Appendix B

Currently Existing MIBs

Currently, ISO/CCITT and Internet-based object definitions are available or underway for a
large number of Resource technologies, some of which are shown in the table below.

All of the MIBs listed are in the public domain, even when modeling proprietary Resources.

ISO/CCITT GDMO-based libraries Internet SMI-based MIBs
10165-2|X.721 - Definition of Management Information MIB-II
M.3100 - Generic Network Model Token Bus MIB
802.3H - Hub Management Token Ring MIB
ANSI FDDI DS1 MIB
Forum R1 Library DS3 MIB
CNMA Library Appletalk MIB
IDRP OSPF MIB
ES-IS, IS-IS Routing BGP v3 MIB
G.784 - SDH Remote Network Monitoring MIB
T1.214 Ether-like MIB
T1.215 FDDI MIB
IETF OIM MIB-II Bridge MIB
ETSI Traffic Model DECnet Phase IV MIB
ETSI Transmission Equipment SMDS Interface Protocol MIB
10165-5 - Generic Management Information RS-232-like MIB
10733 - OSI Transport Layer Printer MIB
10737 - OSI Network Layer Character Stream MIB
OSI Data Link, Physical Layer X.25 MIB
OSF DCE Objects Frame Relay MIB
OSF DME Objects IS-IS MIB
OSF/1 Objects Chassis MIB
CCITT SG XV SONET Objects OSI IP MIB
P1003.7 System Administration Objects Host MIB
Forum OMNIPoint Libraries PPP MIB
OIW OMNIPoint Libraries IDRP MIB
IEEE 802.x Objects Ethernet Repeater MIB
Q.751 SS7 Objects IP Forwarding MIB
Q.94x ISDN Objects Token Ring Repeater MIB
T1X1.5 SONET Objects

Systems Management: Managed Object Guide (XMOG) 63

Currently Existing MIBs

64 X/Open Guide (1993)

Glossary

AOW
Asia and Oceania Workshop for implementors of OSE.

ASN.1
Abstract Syntax Notation One.

CD
ISO Committee Draft.

DIS
ISO Draft International Standard.

EWOS
European Workshop for Open Systems

GDMO
Guidelines for the Definition of Managed Objects.

Internet Activity Board
(IAB) The coordinating committee for Internet design, engineering and management. The
body that sets Internet standards (RFCs) and thus standards for the IPS.

IDL
Interface Definition Language.

IEC
International Electrotechnical Commission.

IEEE
(The U.S.A. Institute of Electrical and Electronics Engineers) Organisation of engineers and
engineering organisations that defines standards such as the 802 networking standard.

IETF
Internet Engineering Task Force. NMF ISO/Internet Management Coexistence working
group.

IS
ISO International Standard.

ISO
International Standards Organization.

MIB
Management Information Base.

MIM
Management Information Model.

NMF
Network Management Forum.

NMSIG
Network Management Special Interest Group.

Systems Management: Managed Object Guide (XMOG) 65

Glossary

OIW
OSE Implementers Workshop.

OMG
Object Management Group.

OSE
Open Systems Environment

OSF
Open Software Foundation

OSI
Open Systems Interconnection.

RDN
Relative Distinguished Name.

SMI
Structure of Management Information.

SNMP
Simple Network Management Protocol - a protocol for managing IPS networks.

66 X/Open Guide (1993)

Index

allomorphism ..28, 39
AOW..65
ASN.1 ..65
attribute ..20, 23, 29
attribute group ..24
behaviour ...25
CD..65
common Management Service9
conformance testing...53
consistency ...1
construction model ..21
containment ...28
currently existing MIBs ...63
definition of Managed Objects...............................11
development process

cataloguing ..4
conformance testing...4
definition ..4
identification..4
implementation...4
publication ...4
refinement ..4
registration...4
use..4

DIS ...65
ease of use ..1
EWOS ..65
example...55

Internet MIB definitions......................................55
MIB-II GDMO definitions...................................57
OMG IDL definitions...61

execution model..20
extensibility..1
filter..29
GDMO...65
identification of Managed Objects7
IDL ...65
IEC ...65
IEEE ...65
IETF ...65
inheritance..39
interface ..18

consistency...1
ease of use ..1

Internet Activity Board..65
Internet MIB definitions ..55

Internet SMI ...35
extending the MIB..38
Managed Object type macro37
object ...35
structure ...37

interoperability..1
IS ..65
IS GDMO template...32

Managed Object class ..32
name binding...34
package...33

ISO ...65
ISO model structure ...26

allomorphism ..28
attributes ..29
containment...28
filters..29
inheritance ...26
interoperability ...27
packages ...27
relationships ..29
scoping..29
specialisation ...26
uninstantiable classes ..27

ISO object model...22
attribute ..23
attribute groups ..24
behaviour ...25
notifications ...25
parameters ...25
syntax..26

Managed Object ..3, 9
common Management Service9
definition ..11
development process...3
identification..7
naming..51
policy...45
publication of class definitions..........................49
searching for ..41
set of simplest..9

Management Information Base7
Management Tasks...8
mapping..38

Internet to ISO...38
OMG and ISO..38

Systems Management: Managed Object Guide (XMOG) 67

Index

MIB ..7, 65
currently existing..63
Internet ...38

MIB-II GDMO definitions.......................................57
MIM...65
model

object-oriented approach....................................11
naming ..51

Internet ...52
OMG..51
OSI ...52

NMF...65
NMSIG ..65
notification ...25
object ...16

creation ...17
destruction ...17
implementation...20
reference ...16
semantics..16

object model...6
Internet..11-12
ISO ...22
mapping ...38
OMG ...11, 15
OMG common core..13
OSI..11-12
X/Open...13

OIW ...66
OMG..66
OMG IDL definitions ...61
operation ..18

context ..19
exception ..19
execution semantics ...20
parameter ...19
return result ...19

OSE ..66
OSF ..66
OSI ...66
parameter ...25
policy...45

objects ...46
OSI ...45

polymorphism...39
portability...1
publication ...47, 49

catalogues ..49
guidelines...50
repositories ..49

RDN...66

reference model
object-oriented ..1

refinement ..39
registration...47

Internet ...47
ISO ...47
OMG..47

relationships ..29
request...16
robustness ..1
scoping..29
SMI...66
SNMP ..66
SNMP management ...52
syntax ..26
systems management

CCITT ...41
extensibility..1
IETF ...43
interoperability ...1
ISO ...41
NMF ..42
OMG..42
OSE regional workshops42
OSF ..42
portability...1
POSIX 1003.7 ...41
robustness ..1
transparency ..1
UNIX International ..43
X/Open work..1, 3

task...8
transparency ..1
type ..17
X/Open systems management model13

68 X/Open Guide (1993)

