
X/Open Guide

Security Guide

(Second Edition)

X/Open Company, Ltd.

X/Open Guide

Page : ii Security Guide, Second Edition

 1990, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open Guide

Security Guide (Second Edition)

X/Open Document Number: XO/GUIDE/90/010

Set in Palatino, Helvetica and Courier by X/Open Company Ltd., U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to
X/Open at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open Guide (1990)
Page : ii Security Guide, Second Edition

Contents

SECURITY GUIDE, SECOND EDITION

Chapter 1 INTRODUCTION TO SECURITY

1.1 COMPONENTS OF SECURITY
1.1.1 Availability
1.1.2 Integrity
1.1.3 Confidentiality
1.1.4 Security
1.1.5 Threats to Security
1.1.6 Types of Penetration
1.1.7 Requirements of Effective Security

1.2 TYPES OF USER
1.2.1 Administrator
1.2.2 System Programmers
1.2.3 Application Users

1.3 FORMS OF SECURITY
1.3.1 Physical Security
1.3.2 Emanation Security
1.3.3 Administrative Security
1.3.4 Personnel Security
1.3.5 Software Security
1.3.6 Hardware and Firmware Security
1.3.7 Network Security

1.4 HISTORY OF UNIX SECURITY

Chapter 2 SECURITY MECHANISMS

2.1 USERS
2.1.1 Super-User
2.1.2 Uses
2.1.3 Changes

2.2 GROUPS
2.2.1 Rules
2.2.2 Other Uses
2.2.3 Changes

2.3 PROCESSES
2.3.1 Changes
2.3.2 Subprocesses

2.4 OBJECTS AND PERMISSIONS
2.4.1 Initial States

X/Open Guide (1990)
Security Guide, Second Edition Page : iii

Contents

2.4.2 Changes

2.5 ACCESS RULES
2.5.1 Ability to Change Attributes
2.5.2 Access to Processes
2.5.3 Access to Objects
2.5.4 Access to Devices
2.5.5 Access to IPC Objects
2.5.6 Access to Directories

2.6 SET-USER-ID PROGRAMS

2.7 PRIVILEGES
2.7.1 File Access
2.7.2 Directories
2.7.3 Protected Subsystem
2.7.4 Signals
2.7.5 Process Control
2.7.6 Setuid
2.7.7 Special Services

2.8 REASONABLENESS TESTS
2.8.1 Precautions

Chapter 3 SECURITY FOR USERS

3.1 PHYSICAL SECURITY
3.1.1 Terminals
3.1.2 Intelligent Terminals
3.1.3 Unattended Terminals
3.1.4 Printers and Plotters
3.1.5 Diskettes and Tapes
3.1.6 Personal X/Open-Compliant Systems
3.1.7 PCs Used as Terminals

3.2 PASSWORD
3.2.1 How to Choose a Password
3.2.2 Login Anomalies

3.3 DIRECTORY AND FILE SECURITY
3.3.1 Directory Hierarchies
3.3.2 Temporary Directories
3.3.3 Set-User-ID Programs
3.3.4 Directory Analysis
3.3.5 Groups

3.4 SECURE ENVIRONMENT
3.4.1 Profile Files
3.4.2 Search Path
3.4.3 New Objects

3.5 SPECIFIC UTILITIES
3.5.1 Editors

X/Open Guide (1990)
Page : iv Security Guide, Second Edition

Contents

3.5.2 Electronic Mail
3.5.3 Network Communication
3.5.4 Remote Sessions
3.5.5 Backup and Restore
3.5.6 Copying Objects
3.5.7 Deferred Scripts

Chapter 4 SECURITY FOR PROGRAMMERS

4.1 PROGRAMMING MANAGEMENT

4.2 PROGRAMMING GUIDELINES
4.2.1 Analyse All Return Codes
4.2.2 Write Portable Code
4.2.3 Examine Your Environment
4.2.4 Follow Programming Discipline
4.2.5 Define Appropriate File Access Rights

4.3 MULTI-TASKING GUIDELINES
4.3.1 File Access
4.3.2 Subprocesses
4.3.3 Unrelated Processes

4.4 PRIVILEGED PROGRAMS

4.5 SPECIAL CASES
4.5.1 Shell Scripts
4.5.2 Daemons
4.5.3 Indexed Sequential Access Method (ISAM)
4.5.4 Structured Query Language (SQL)

Chapter 5 MANAGING SECURITY

5.1 ESTABLISHING SECURITY
5.1.1 Occasions for Re-evaluation
5.1.2 Value Assessment Inventory
5.1.3 Justifying Security
5.1.4 Threats to Security

5.2 ONGOING TASKS
5.2.1 Planning
5.2.2 Communication
5.2.3 Education
5.2.4 Attitudes

5.3 SECURITY BREACHES
5.3.1 Identifying the Breach
5.3.2 Determining the Cause
5.3.3 Repairing the Breach
5.3.4 User Cooperation
5.3.5 Responsibility

Chapter 6 ADMINISTRATIVE PROCEDURES

X/Open Guide (1990)
Security Guide, Second Edition Page : v

Contents

6.1 PRIVILEGES
6.1.1 The Super-User
6.1.2 Single-User Mode
6.1.3 Pseudo-Users
6.1.4 Switch to Another User

6.2 TRANSITION TO A SECURE SYSTEM
6.2.1 Users
6.2.2 Groups
6.2.3 Accounts
6.2.4 Directories
6.2.5 Pseudo-Users
6.2.6 Program Binaries
6.2.7 Other Authorisation Files
6.2.8 Auditing Tools

6.3 ADMINISTERING USERS
6.3.1 Adding Users
6.3.2 Disabling an Account
6.3.3 Removing an Account
6.3.4 Moving User Hierarchies
6.3.5 Adding Groups
6.3.6 Removing Groups
6.3.7 Auditing Users

6.4 MACHINE SECURITY
6.4.1 The Computer
6.4.2 The Console
6.4.3 Other Terminals
6.4.4 Tape Drives
6.4.5 Other Shared Devices
6.4.6 Discs
6.4.7 Disc Space Control

6.5 STORAGE
6.5.1 Directories
6.5.2 File Systems
6.5.3 Protections on Objects
6.5.4 Contents of Objects
6.5.5 Protected Subsystems

6.6 COMMUNICATION
6.6.1 Communication Modes
6.6.2 Security Risks
6.6.3 uucp Accounts
6.6.4 Call-Back
6.6.5 Original uucp
6.6.6 HoneyDanBer uucp
6.6.7 Remote Logins
6.6.8 Remotely Executable Commands
6.6.9 Permissions

X/Open Guide (1990)
Page : vi Security Guide, Second Edition

Contents

6.6.10 Breach Detection

Appendix A SECURITY-RELATED UTILITIES AND FILES

A.1 SECURITY-RELATED UTILITIES

A.2 SECURITY-RELATED FILES

A.3 SECURITY-RELATED FUNCTIONS

X/Open Guide (1990)
Security Guide, Second Edition Page : vii

Contents

X/Open Guide (1990)
Page : viii Security Guide, Second Edition

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of
the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring greater value to users through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards
into a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers all the standards,
above the hardware level, that are needed to support open systems. It ensures portability
and connectivity of applications, and allows users to move between systems without
retraining.

The interfaces identified as components of the Common Applications Environment are
defined in the X/Open Portability Guide. This guide contains an evolving portfolio of
practical applications programming interface standards (APIs), which significantly
enhance portability of application programs at the source code level. The interfaces
defined in the X/Open Portability Guide are supported by an extensive set of
conformance tests and a distinct trademark - the X/Open brand - that is carried only on
products that comply with the X/Open definitions.

X/Open is thus primarily concerned with standards selection and adoption. The policy is
to use formal approved de jure standards, where they exist, and to adopt widely
supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organizations to encourage the creation of formal standards covering the
needed functionalities, and to make its own work freely available to such organizations.
Additionally, X/Open has a commitment to align its definitions with formal approved
standards.

The X/Open Product Family - XPG

There is a single family of X/Open products, which has the generic name ‘‘XPG’’.

XPG Versions

There are different numbered versions of XPG within the XPG family (XPG1, XPG2, XPG3).
Each XPG version is an integrated set of elements supporting the development,
procurement and implementation of open systems products, and each comprises its
own:

• XPG Specifications

• XPG Verification Suite

• XPG descriptive guides

X/Open Guide (1990)
Security Guide, Second Edition Page : ix

Preface

• XPG trademark licensing materials

The XPG trademark (or ‘‘brand’’) licensed by X/Open always contains a particular XPG
version number (e.g., ‘‘XPG3’’) and, when associated with a vendor’s system,
communicates clearly and unambiguously to a procurer that the software bearing the
trademark correctly implements the corresponding XPG specifications. Users specifying
particular XPG versions in their procurements are therefore certain as to the XPG
specifications to which vendors’ systems conform.

XPG Specifications

There are four types of XPG specification:

• XPGn Formal Specifications

These are the long-life XPG specifications that form the basis for conformant/branded
X/Open systems, and are the only type of XPG specification released with an XPG
version number (e.g., ‘‘XPG3’’). They are intended to be used widely within the
industry for product development and procurement purposes. Currently, all XPG
Formal Specifications are included in Issue 3 of the X/Open Portability Guide.

Individual XPG specifications are released as Formal Specifications only as part of the
formal release of the complete XPG version to which they belong. However, prior to
the launch of that XPG version, they may be made available as:

• XPG Developers’ Specifications

These are specifically designed to allow developers to create X/Open-compliant
products and applications in advance of the formal launch of a future version of the
XPG.

Developers’ Specifications may be relied on by product developers as the final, base
specification that will appear in a future XPG. They are made available beforehand in
order to meet the need of product developers for advance notification of the contents
of XPG Formal Specifications, to assist in their product planning and development
activities.

By providing such advance notification, X/Open makes it possible for products
conforming to future XPG Formal Specifications to be developed as soon as
practicable, enhancing the value of XPG itself as a procurement aid to users.

• XPG Preliminary Specifications

These are XPG specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for validation purposes. A Preliminary
Specification is not a ‘‘draft’’ specification. Indeed, it is as stable as X/Open can make
it, and on publication will have gone through the same rigorous X/Open
development and review procedures as XPG Formal and Developers’ Specifications.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organizations, and product development teams are intended to
develop product on the basis of them. Because of the nature of the technology they
are addressing, they are untried in practice, and they may therefore change before
being published as an XPG Formal or Developers’ Specification.

X/Open Guide (1990)
Page : x Security Guide, Second Edition

Preface

• Snapshot Specifications

These are ‘‘draft’’ documents, that provide a mechanism for X/Open to disseminate
information on its current direction and thinking to a limited audience, in advance of
formal publication, with a view to soliciting feedback and comment.

A snapshot represents the interim results of an X/Open technical activity. While
X/Open currently intends to progress this activity towards publication of an X/Open
Guide, X/Open is a consensus organisation, and makes no commitment regarding
publication.

Similarly, a snapshot does not represent any commitment on behalf of any X/Open
member to make any specific products available now or in the future.

Guides

X/Open Guides provide information that X/Open believes will be useful in the
evaluation, procurement, development and/or management of open systems,
particularly those that are X/Open-compliant.

X/Open Guides are non-normative, and should not be referenced for purposes of
specifying or claiming X/Open-conformance.

This Document

This document is an X/Open Guide (see above). It provides an introduction to security
and related topics for systems that conform to the X/Open Common Applications
Environment. It is intended for all users of the computer and supplements installation
and management documents provided by the vendor of the system.

The Guide contains background material on security, safeguards, programming
practices, preventive measures, auditing and other topics related to security. Some
topics relate directly to X/Open-compliant systems. Some also apply to most other
general-purpose multi-user operating systems. This Guide assumes that the reader has a
working knowledge of the concepts of the X/Open operating system interfaces, as
described in the X/Open Portability Guide. However, Chapter 2, Security Mechanisms
re-introduces the concepts that apply to security.

This is the second edition of the X/Open Security Guide. The major change for this
edition of the Guide is to align with the X/Open Portability Guide, Issue 3. Many of the
examples are changed to use only interfaces specified by the X/Open Portability Guide,
Issue 3.

Although this guide is based on the X/Open Portability Guide, Issue 3, the majority of
the issues discussed are expected to relate equally to subsequent editions. Where it is
necessary to reference features beyond those specified in the X/Open Portability Guide.
for example systems administration facilities, references have been illustrated with
examples based on UNIX System V.

X/Open Guide (1990)
Security Guide, Second Edition Page : xi

Trademarks

X/OpenTM is a trademark of the X/Open Company Limited.

UNIX is a registered trademark of USL Inc. in the USA and other countries.

X/Open Guide (1990)
Page : xii Security Guide, Second Edition

Referenced Documents

The following documents are referenced in this guide:

• UNIX System V - Release 2.0 Programming Guide (April 1984 - Issue 2)

• Trusted Computing Security Evaluation Criteria, DoD 5200-28-STD (revised in
December 1985)

X/Open Guide (1990)
Security Guide, Second Edition Page : xiii

Referenced Documents

X/Open Guide (1990)
Page : xiv Security Guide, Second Edition

Chapter 1

Introduction to Security

1.1 COMPONENTS OF SECURITY

1.1.1 Availability

A computer system represents value that must be protected. The system’s value includes
the value of the hardware and accessories, the value of the time that users spend working
on the system, and the value of the time and money that the organisation intends
spending on the system, assuming that it will continue to operate correctly. Protection of
this value requires continuing availability (or continuity of service) of the system. Loss of
this availability is called ‘‘denial of service’’.

1.1.2 Integrity

The system’s value also includes the accumulated value of the software at the
installation, and the value of the data that resides in the system. The value of these
objects (data files and programs) lies in their integrity (i.e., in the preservation of their
contents against all unauthorised change). An object that has lost its integrity is said to be
corrupted . The change to the object may have been accidental or it may have been
deliberate and unauthorised. The corruption of certain objects, such as the user database,
has a special significance, since it raises the possibility of corruption of additional objects
and additional loss of value.

The concept of integrity also applies to the computer as a whole. For a system to retain
its integrity, it must preserve the value of its components, i.e.:

• It must remain able to perform its ‘‘file storage’’ functions.1 (A ‘‘corrupted file
system’’ is a file system whose internal accounting of data objects, blocks and
attributes has somehow failed, which raises the possibility of valuable objects being
lost in the future.)

• It must remain able to perform its security functions: the features that protect the
system’s value must continue to work correctly.2

1.1.3 Confidentiality

For certain objects, integrity alone does not ensure the object’s value. For example, the
value of files containing marketing data would diminish if their contents were known to
a competitor. For the object to retain its complete value, it must retain not only integrity
but also confidentiality, i.e., not be accessible to unauthorised persons.

1. This technical definition of integrity is discussed further in Section 6.5.2, File Systems.
2. This is the primary meaning of integrity for the purposes of this Guide.

X/Open Guide (1990)
Security Guide, Second Edition Page : 1

Components of Security Introduction to Security

1.1.4 Security

Security comprises availability, integrity and confidentiality, and everything about the
computer and the organisation’s use of it that protects its value. It requires the
cooperation of the administrator, programmers and users. Certain X/Open software
features relevant to security are discussed in this Guide, as are the correct use of these
features and other procedures that the organisation can take (such as physical security) to
ensure that the software security features cannot be defeated.

Security policy comprises the organisation’s rules that protect the value of the computer.
If the organisation has addressed security in a deliberate way, the security policy
typically takes the form of a written document. If not, the actual policy may be a
combination of individual initiative and tradition, and the effectiveness of the policy may
be questionable.

1.1.5 Threats to Security

A penetration is an act that bypasses or disables security on a computer. The penetrator is
the person who commits or initiates the act.

The penetrator may be a member of the organisation or an outsider. The penetrator’s
goal may be denial of service to other users (sabotage or vandalism of the system), access
to unauthorised data, personal profit (through computer fraud or unauthorised use of
computing services) or to save time by bypassing the organisation’s security discipline.
Alternatively, there may be no goal at all or the penetration may be inadvertent.

Although analysing a penetrator’s motives may help the administrator solve a
penetration or guard against specific penetrations (notably taking precautions when an
employee leaves the organisation), this analysis does not change the general security
policy. It is useful to assume, and plan as though, every penetration is malicious and
designed to disable the entire system.

The administrator seeks to prevent successful penetration of the computer mainly by
enforcing correct use of the X/Open security features. Penetration attempts can also be
dissuaded by having an effective policy that includes auditing (see below). The
administrator may also protect the system by doing certain things expressly to confuse or
bluff a penetrator, and usually cooperates in efforts to discipline a penetrator, in order to
maintain the effectiveness of the security policy.

1.1.6 Types of Penetration

A simple form of penetration occurs when one person assumes the identity of another so
as to perform an unauthorised action. Typical X/Open-compliant systems inhibit this by
the use of passwords.

Automated penetration is more troublesome. It involves placing on the system a program
that threatens security. By using a program, the penetrator may achieve denial of service
or may corrupt objects at a later time or under a different identity. This makes it difficult
for the administrator to associate the damage with the penetration.

Overt automated penetrations, programs that immediately corrupt objects, can usually
be traced in a straightforward way. Automated penetrations that are harder to trace are
the following:

X/Open Guide (1990)
Page : 2 Security Guide, Second Edition

Introduction to Security Components of Security

• A Trojan horse . This is a program that apparently performs a useful task but carries
out other actions covertly, e.g. using the authorisations or rights of the caller to
circumvent the security policy. A special case of a Trojan horse is a spoofing program ,
which tricks the user into typing a password, which it then makes available to the
penetrator.

• A virus. This is an addition to a program with replicating capability. A typical virus
has the ability to damage objects, as well as the ability to hide a partial or full copy of
itself in one or more unrelated programs. Its replication amplifies the damage it does.
The copies may be executed at different times, by different users and often with
greater privileges than at the time of original penetration. Many viruses are written
so as to have a delayed effect, thereby further hampering the administrator’s efforts to
associate the damage and data loss with the penetration event. After penetration by a
virus, restored assurance of a system’s integrity may require analysis or recompilation
of all programs changed since the penetration, since they could contain copies of the
virus.

• A worm. One or more malicious programs that replicate themselves throughout a
computer system or network. A worm is similar to a virus but does not need to reside
in a host program.

1.1.7 Requirements of Effective Security

Effective security requires user education, documentation, assurances, management
support, auditing and effective use of suitable software features.

• User education is necessary to ensure that an installation security policy is followed
throughout all aspects of system use. It may be necessary to ensure secure access and
use of buildings, rooms, and facilities such as terminals. User awareness may also be
necessary for the effective use of software facilities, such as periodic password
change, resource sharing, and access control mechanisms.

• Documentation communicates the policy to all users, since the policy requires their
cooperation.

• Assurances are standards or procedures by which the organisation can verify that the
policy has been implemented correctly and is achieving security. In the X/Open
Portability Guide, typical assurances are that appropriate privileges are required to
access privileged system interfaces (such as setuid()), and that these privileges cannot
easily be used by normal users.3

• Management support is required to define the security policy and to get users to
cooperate in implementing it. Management must establish that protecting the value
of the computer’s assets is part of every user’s job.

• Auditing means recording events that are relevant to security. These events may
include evidence of security breaches. Auditing indirectly increases a system’s

3. This gives rise to the concept of an administrative super-user. This term is used frequently in the remainder of
the Guide when referring to a user with appropriate authorisations.

X/Open Guide (1990)
Security Guide, Second Edition Page : 3

Components of Security Introduction to Security

security by letting the administrator detect and reconstruct security failures. The
administrator can then react to prevent recurrence. The existence of auditing in the
security policy increases the accountability of users and dissuades penetration
attempts. However, unrestrained use of audit capability can potentially affect system
performance and availability.

• Software security features contribute to the enforcement of a system’s security policy by
requiring authentication, access control, isolation, accountability and privilege.

— Authentication means ensuring that users are who they claim to be, typically by the
use of passwords.

— Access control means ensuring that authenticated users can gain access to the
resources they need, and that they cannot gain access to other resources.

— Isolation means separating users from each other, so as to keep users from gaining
access to other users’ resources. By denying a user or process access to such data,
it prevents inadvertent corruption of objects and hinders their malicious use.

— Accountability means ensuring that the use of security-related features can be
traced to the person that used them.

— A privilege is the power to perform some action on the computer that is not
generally available. The ‘‘least privilege’’ principle states that processes that need
to take a certain action: (1) receive the lowest privilege level that lets them do so,
and (2) receive it only for the time they need it.

Chapter 2, Security Mechanisms describes how X/Open-compliant systems provide
these software security features.

The goal of a security policy is to be able to assure users and management that the
computer does and can continue to protect the availability, integrity and confidentiality
of its components.

X/Open Guide (1990)
Page : 4 Security Guide, Second Edition

Introduction to Security Roles

1.2 TYPES OF USER

Informally, a user is anyone who uses the computer. Section 2.1, Users defines ‘‘user’’
formally. Generally, each person has one login name in the user database. It does not
compromise security for a person to have more than one login name.4 But it defeats
security if several people share a single login name, since this undermines personal
accountability for acts that harm security.

This guide divides security tasks and responsibilities according to the type of job a user is
doing on the computer. In particular, security places different requirements on
administrators, system programmers and application users. Chapter 3, Security for
Users discusses the security responsibilities of all users, Chapter 4, Security for
Programmers is intended for system programmers, while much of the rest of the book
covers administration tasks. Note that both system programmers and administrators are
also users of the computer.

1.2.1 Administrator

This Guide, in referring to the administrator, assumes that there is a single individual
with ultimate responsibility for the correct and secure operation of the computer.

The administrator’s managerial significance is as the primary proponent of security, i.e.,
the person who approves, implements and enforces the security policy, and who is
presumed to have authority to use policy to assure a secure system.

The administrator does many things to manage the computer. (Chapter 6,
Administrative Procedures describes these actions.) The administrative manager may
delegate some of these functions. The title ‘‘administrator’’ applies to the administrative
manager or to any assignee performing an administrative function on the computer.

All administrative actions have an impact over one or more of the forms of security
discussed in Section 1.3, Forms of Security. For example, installing software requires
you to acquire the appropriate privilege; this affects software security. Backing up discs
requires physical access to security-sensitive devices. Managing accounting and auditing
records is also a job that greatly influences security.

Administrative Roles

There are actually several administrative roles involved in managing a time-sharing
system. The security administrator is responsible for the security of the system. The
system administrator manages user accounts, the operating system, the basic command
set and the libraries. Other roles maintain individual spooling systems and application
packages such as mail and uucp. Pseudo-users correspond to each of these specialised
administrative roles. (Section 6.1.3, Pseudo-Users lists typical pseudo-users.) A user
switches to the pseudo-user account when serving in that role. This policy helps
implement least privilege. The security administrator must assign ultimate
responsibility for use of a pseudo-user account to a specific person. Operators require

4. The concept of group (see Section 2.2, Groups) can be used instead to effect least privilege if a given individual
needs to use the computer for different purposes at different times.

X/Open Guide (1990)
Security Guide, Second Edition Page : 5

Types Of User Introduction to Security

special authorisations but perform only specialised tasks, such as backing up disks and
doing routine maintenance. The principle of least privilege dictates that a system
separates the administrative role into as many of these specific roles as it can, that a user
should assume only the role needed, and only for the time needed, to do a certain job.

1.2.2 System Programmers

System programmers develop programs and scripts that have security implications. Any
widely used program acquires security implications because users invest a lot of time
assuming the continuing availability and integrity of the program.

Although system programmers need no special security capabilities other than access to
their source code, their products must be studied for security implications, as described
in Section 4.1, Programming Management. Programmers and the administrator must
agree that installation of the new program will not corrupt the system or open it to
penetration.

1.2.3 Application Users

Application users are users who do not fit any of the preceding roles. Their role never
requires special authorisations. Programmers may fit this role when their product does
not become part of the operating system or command set.

X/Open Guide (1990)
Page : 6 Security Guide, Second Edition

Introduction to Security Forms of Security

1.3 FORMS OF SECURITY

There are seven forms of security that may be required. Defects in one can sometimes be
offset by tightening safeguards in another. Although this Guide concentrates on software
security, you should understand all forms. (See Chapter 5, Managing Security for
additional information on determining the requirements for your system.)

1.3.1 Physical Security

Physical security protects the physical plant and equipment, using guards, alarms, cipher
locks, concrete walls, etc.

Physical security is the only form of security that provides protection against physical
damage to the system; no amount of software security can assure the availability and
integrity of the computer and its data if the computer facility can be vandalised.

Although this Guide primarily discusses security against human penetration of the
system, physical security measures should also protect the system from other types of
physical damage, for example through fire or other natural disaster.

1.3.2 Emanation Security

Emanation security protects confidentiality by limiting electromagnetic emissions from
computing devices and should be considered together with physical security. Without
emanation security, sophisticated devices outside a facility can detect emissions and
reproduce data streams or video screen images. Devices that display highly sensitive
data should be identified and placed to the inside of buildings, away from areas like
roads or parking lots that are difficult to observe.

Remember to consider visible emissions. The ability of unauthorised persons to view
sensitive data (notably, viewing video screens through windows) also threatens
confidentiality. The remedies are the same: control of physical placement or use of
shielding.

1.3.3 Administrative Security

Administrative security means establishing and enforcing policies that determine who
gets to do what with the system. It implements the principle of least privilege, and is a
result of management’s analysis of the reason for the system and of each user’s
responsibilities.

1.3.4 Personnel Security

Personnel security is related to administrative security. It describes the ways in which
security policy applies to actual users.

The organisation typically applies a general security policy to its personnel. It may
regulate entry to work areas and require identification badges. System security includes
some of the same steps, implemented in concert with the organisation’s other security
procedures.

Personnel security requires two-way communication on the part of the administrator.
For instance, policy may designate interaction between the administrator and the
Personnel Department. In this way, the administrator learns of new users and of what

X/Open Guide (1990)
Security Guide, Second Edition Page : 7

Forms of Security Introduction to Security

authorisations or roles they need. Similarly, the Personnel Department undertakes to
notify the administrator when a computer user leaves the organisation. The
administrator must educate all users, since security depends on their awareness of the
rules and likelihood of obeying them.

1.3.5 Software Security

Software security includes features of the operating system and supporting programs
that contribute to the implementation of the security policy through functions such as
identification and authentication, resource access control, audit, integrity checks, etc.

1.3.6 Hardware and Firmware Security

This computing level executes the code of the operating system. The difference between
hardware and firmware (between circuitry and a fixed microprogram) is not relevant to
security; typically, the vendor assures the integrity of this computing level and the
installation never changes it. We refer to this level as ‘‘the machine’’.

Since many programming environments give users access to the machine to let them
write faster programs, the machine must implement sufficient isolation to keep users
from bypassing software security. For example, ordinary processes must not be able to
directly input, output or gain access to unrelated memory. Typically, the machine runs
ordinary processes in a non-privileged ‘‘user mode’’. It keeps from users any capability
that has security implications, except the ability to request service from the operating
system.

To assure security, the machine must have enough fault-detection hardware to assure
that it is maintaining isolation.

1.3.7 Network Security

Network security is in its infancy, but is of growing concern and will be addressed in
greater detail by later issues of this Guide.

Most computers are linked to remote computers using Local Area Networks (LANs) and
Wide Area Networks (WANs). Remote computers typically have different security
policies and controls.

The administrator must investigate the level of security that each remote computer
maintains. He can then decide whether or not to connect it, and, if it is to be connected,
what confidence to place in it. A LAN within a single organisation usually maintains a
unified security policy for all users of any machine, whereas a WAN in which there is a
link to a machine in a foreign country, poses a threat from remote security breaches.
Some installations treat all remote systems as foreign and hold received data until it has
been checked by administrative personnel. This approach helps to assure security but is
expensive to implement.

The administrator must distinguish data links he does or does not control. Depending on
the anticipated threats he should decide whether to restrict users’ ability to send sensitive
information through those links.

Network security also depends on the degree to which the network is integrated into the
operating system. Some systems offer syntax that makes remote machines appear as
part of the local file system, others operate networks as an application, such as uucp.

X/Open Guide (1990)
Page : 8 Security Guide, Second Edition

Introduction to Security History of UNIX Security

1.4 HISTORY OF UNIX SECURITY

UNIX was developed at Bell Laboratories in the early 1970s, to be used by a small group
of cooperating users. At that time, security was not a major concern. In the two decades
since then, however, UNIX has been embraced by both the commercial and public sectors,
has been adapted to machines ranging from personal computers to supercomputers, and
now runs commercial, scientific and government computing applications.

In the 1980s, when systems based on UNIX and its derivatives began to proliferate,
vendors began to sell administrative enhancements that allowed control over the use of
the system.

The UNIX operating system and the Common Applications Environment have become a
standard for government procurements. These users typically require the system’s
security to be precisely specified. In the United States, the Department of Defense (DoD)
has required security enhancements on systems it procures. A 1983 DoD publication
Trusted Computing Security Evaluation Criteria5 is an important definition of security
requirements for the industry. TCSEC classifies computer systems from Division D, the
least secure, to Division A, the most secure. Division C is divided into two classes;
Division B is divided into three classes. Classes within a division are identified by a
number starting from 1; higher numbered classes specify more security features than
lower numbered ones. Official ratings are issued by the US National Computer Security
Center (NCSC), which evaluates submissions.

X/Open-compliant systems meet most of the requirements of Class C1 (Discretionary
Security). Some vendors offer enhancements in line with the requirements of Class C2
(Controlled Access Protection) and beyond. These enhancements are outside the scope of
this manual.

5. Trusted Computing Security Evaluation Criteria , DoD 5200-28-STD, revised in December 1985.

X/Open Guide (1990)
Security Guide, Second Edition Page : 9

History of UNIX Security Introduction to Security

X/Open Guide (1990)
Page : 10 Security Guide, Second Edition

Chapter 2

Security Mechanisms

An X/Open-compliant system implements security by preventing certain things from
happening. Every case where a process tries to perform an operation on an object may
have security implications. The system decides whether to permit each, based on:

• Certain attributes of the process1 (see Section 2.3, Processes)

• Certain attributes of the object (see Section 2.4, Objects and Permissions)

• The type of operation the process is attempting

These attributes normally depend on login information. They include descriptions of
users (see Section 2.1, Users) and of groups (see Section 2.2, Groups). On this basis, an
organisation can relate system security to its own policy on personnel, departments and
job assignments.

1. Abstract discussion of security technique often uses the symmetrical terms ‘‘subject’’ and ‘‘object’’ in describing
sensitive events. However, for our purposes, a subject will always be a process.

X/Open Guide (1990)
Security Guide, Second Edition Page : 11

Users Security Mechanisms

2.1 USERS

The X/Open Portability Guide describes a generic user database which is used to hold
information about registered users of the system. This includes each user’s login name,
numerical user ID, numerical group ID, initial working directory, and the path name of
the initial user program. The format and location of password information held in the
authentication database is implementation-defined, although many systems combine the
user and authentication data in a single system file /etc/passwd. This file is controlled by
the system administrator and contains one line per user as follows:

sven:23NUaYaGaBrr6:113:100:Sven Svensson (Employee 1141):/users/sven:/bin/sh

There are seven fields in each line, separated by colons: (1) the user name that identifies a
user to the computer; (2) an encrypted form of the password the user must type to prove
identity;2 (3) a number called the user identifier (UID), which should be unique for all
users; (4) a second number, not necessarily unique to that user, called the group identifier
(GID) (see Section 2.2, Groups); (5) an extra field which typically contains arbitrary
personal identification; (6) the initial working directory; and (7) the path name of the
program to be executed after a login, for example, the user’s default shell.

2.1.1 Super-User

The X/Open Portability Guide is not specific about how appropriate privileges are
determined. However, a common implementation is to define that UID 0 denotes the
super-user, who automatically bypasses most security checks on the system. On such
systems, there must be at least one entry in the user database with 0 specified as the UID.
Typically, the user name for this user is ‘‘root’’. There may be additional entries in the
user database that define other accounts with super-user privilege.

2.1.2 Uses

The user database is checked any time a user must be authenticated. Typically, a login
utility authenticates a user at a previously unused terminal. (After successful
authentication, the user is said to be ‘‘logged in’’.) On some systems, a /bin/su utility lets a
logged-in user create a shell that will operate as a different user. Both utilities generally
require that the user specify a user name and a password. The user name typed selects
an entry from the user database; the password typed, after encryption, must match the
one in an associated authentication database. The other fields in the user database
govern the response to a successful login. For example, the user program field lets the
system respond differently to different users. These remaining fields help implement
isolation, by providing information the system can use to separate users and data.

2. Although the contents of the password field in /etc/passwd are encrypted, the file is open to general access. A
computer system classified in Division C (see Section 1.4, History of UNIX Security) must protect authentication
data from unauthorised access. X/Open-compliant systems designed to qualify for Division C typically do not
use the password field, but store passwords in a separate file. Other X/Open-compliant systems may also do so
in future releases.

X/Open Guide (1990)
Page : 12 Security Guide, Second Edition

Security Mechanisms Users

2.1.3 Changes

Though not guaranteed on all X/Open-compliant systems, users may be allowed to
change their password using the passwd utility. The administrator has exclusive control
over the other fields in the user database.

X/Open Guide (1990)
Security Guide, Second Edition Page : 13

Groups Security Mechanisms

2.2 GROUPS

A ‘‘group’’ is a set of users. As described previously, the user database has a numerical
group identity (GID) that the user acquires after successfully logging-in; this GID should
be valid and meaningful. The placement of a GID in the user database asserts that the
user is a member of the specified group.

2.2.1 Rules

Every user must be a member of at least one group and can be a member of several
groups - the user’s login group, as well as others. (Section 3.3.5, Groups explains how a
user switches between groups.) An organisation can decline to use the group feature by
creating a different group for each user. Where several users are members of the same
group, such a group typically represents a department or project in the organisation.

Authorised groups are defined in a group database. Again the X/Open Portability
Guide is not specific about how this database will be supported, but typical
implementations use the system file /etc/group. Each line in /etc/group defines one
group, just as each line in /etc/passwd defines a single user. A typical line looks like this:

xopen::100:sven,bengt

The lines in this file contain four fields, again separated by colons: (1) the alphanumeric
group name; (2) an encrypted form of the group password;3 (3) the group identity (GID),
also used in /etc/passwd; and (4) a list of names, separated by commas, of the users who
are authorised to be members of this group.

Compare the preceding examples of lines from /etc/passwd and /etc/group. The line
from /etc/passwd asserts that user ‘‘sven’’ (UID 113) is a member of group 100. The line
from /etc/group cites ‘‘xopen’’ as the group name of group 100, and confirms that ‘‘sven’’
is one of its authorised members. Indeed, each GID used in /etc/passwd should refer to a
group that is validly defined in /etc/group, and /etc/group should confirm that the user is
an authorised member of that group. Utilities like login and /bin/su may read both files to
determine whether to grant a user access.

2.2.2 Other Uses

Utilities that list or manipulate group information, including ls, newgrp and chgrp , read
the group database in order to translate between GIDs and group names.

2.2.3 Changes

The administrator has exclusive control over the contents of the group database.

3. This is for an unimplemented feature meant to be used with commands such as newgrp. The X/Open Portability
Guide, Issue 3, Volume 1, XSI Commands and Utilities discourages the use of group passwords and notes (page
192) that ‘‘Group passwords may disappear in the future’’. The double colon in the example of a group file
shows a null password for this group.

X/Open Guide (1990)
Page : 14 Security Guide, Second Edition

Security Mechanisms Processes

2.3 PROCESSES

Logging in changes the security characteristics of the process that controls the terminal.
Executing a utility such as /bin/su creates a new process with specified security
characteristics. These characteristics are:

• Real UID and GID (the UID and GID obtained from the user database as a result of
authenticating the user)

• Effective UID and GID (the UID and GID currently in effect)

• Optionally, a list of supplementary GIDs4

• Mask (restrictions on the attributes applied to objects created by the process - see
Section 2.4, Objects and Permissions)

2.3.1 Changes

Utilities like login and /bin/su change both the real and the effective UID and GID. The
calls setuid() and setgid() change the effective UID and GID.5 On some systems, users can
change GID by invoking newgrp. An unprivileged process never changes its real UID and
GID until a new user logs in.

The mask can be changed by the call umask and by the shell command umask.

2.3.2 Subprocesses

A process can create other processes using fork . These are known as subprocesses, or
child processes, of the original process (which is known as the parent). Notably, the shell
typically effects a user command by creating a process to take the appropriate action.
When one process creates another, the subprocess inherits most of the parent’s current
attributes.

4. A process may have up to {NGROUPS_MAX} supplementary GIDs, where {NGROUPS_MAX} is a system constant
defined in <limits.h>. These are used in determining file access permissions, in addition to the effective GID. If
{NGROUPS_MAX} is set to zero, this feature is not implemented.

5. Another case where the effective UID and GID changes is when one of the exec functions is applied to an object
with the set-user-ID and set-group-ID attributes. This is discussed in Section 2.6, Set-User-ID Programs.

X/Open Guide (1990)
Security Guide, Second Edition Page : 15

Objects and Permissions Security Mechanisms

2.4 OBJECTS AND PERMISSIONS

An object, such as a file, has associated attributes, several of which relate to security.
They specify the object’s owner, group and permissions. An object’s permissions say
who can do what with it, and are based on the nature of the desired action and on the
identity of the process attempting the action. An object’s owner and group let the object
specify different permissions for different users and groups.

There are three types of action a process can attempt on the data in an object: reading it,
writing it and executing it.6 The ls command indicates read, write and execute
permission using the letters ‘‘r w x ’’, always in that order. The letters assert that the
corresponding type of access is allowed. If a particular type of access is prohibited, the
character ‘‘-’’ appears in place of the letter. For example, ‘‘r - - ’’ describes read-only
access. The symbol ‘‘- - - ’’ describes a total lack of access.

Many commands use an octal digit (from 0 to 7) to stand for a group of three
permissions. There are eight possible states of the three flags:

Octal Flags Meaning
0 - - - No access
1 - - x Execute permission
2 - w - Write permission
3 - w x Permission to write and execute (rare)
4 r - - Read permission
5 r - x Permission to read and execute
6 r w - Permission to read and write
7 r w x Total access

An object’s owner and group serve to divide the access rights of processes into three
classes:

• The owner A process whose effective UID matches the object’s UID.
• The group A process whose effective GID, or one of its supplementary GIDs,

matches the object’s GID.7

• Others All processes that do not fit either of the above cases.

An object’s complete permissions are expressed as three concatenated groups, signifying
the owner, the group and the others, respectively. The owner usually has ‘‘r w - ’’ (6) or
‘‘r w x ’’ (7) access. An object for which other processes have read-only access may have
these permissions:

r w - r - - r - - (644)

6. For special cases of execute permission, see Section 2.5, Access Rules.
7. Ownership overrides group membership. An object’s group permissions never apply to its owner, unlike its

owner permissions.

X/Open Guide (1990)
Page : 16 Security Guide, Second Edition

Security Mechanisms Objects and Permissions

An object that is usable only by its owner may have these permissions:

r w x - - - - - - (700)

2.4.1 Initial States

When a process creates an object, the object receives a copy of the process’s effective UID
and GID. So the owner of a process owns any object the process creates. The process’s
mask (see Section 2.3, Processes) restricts the object’s permissions.8

2.4.2 Changes

A process can call chown() and a user can execute chown and chgrp to change an object’s
UID or GID.

8. A process has options in chmod , mknod , open and creat that override these rules.

X/Open Guide (1990)
Security Guide, Second Edition Page : 17

Access Rules Security Mechanisms

2.5 ACCESS RULES

2.5.1 Ability to Change Attributes

A process can change an object’s permissions if the process’s effective UID matches the
object’s UID (that is, if the process owns the object), or if the process has appropriate
privileges.

A process can change an object’s UID and GID if {POSIX_CHOWN_RESTRICTED}9 is not set
and the process’s effective UID matches the object’s UID, or if the process has appropriate
privileges.10 Otherwise, if {POSIX_CHOWN_RESTRICTED} is set, only processes with
appropriate privileges are allowed to change the UID of an object, and the GID can only
be changed, by a process without appropriate privileges, to either its effective GID or one
of its supplementary GIDs.

2.5.2 Access to Processes

A process can send a signal to another process. As a special case, a process can kill
another process. A process can send a signal to another process if the real or effective
UID of the sender matches the real or effective UID of the receiver, or the sender has
appropriate privileges.

2.5.3 Access to Objects

When a process tries to read, write or execute an object, the process’s effective UID,
effective GID, supplementary GIDs and the type of access desired is compared with the
object’s UID, GID and permission for the attempted type of access (read, write or execute).
The decision has four stages:

1. If the process has appropriate privileges, access is permitted.

2. Otherwise, if the process owns the object (process UID = object UID), the object’s
owner permission permits or denies access.

3. Otherwise, if the process is in the same group as the object (process GID or one of
the supplementary GIDs = object GID), the object’s group permission permits or
denies access.

4. Otherwise, the object’s other permission permits or denies access.

2.5.4 Access to Devices

Access to devices is governed by objects called ‘‘device special files’’. They have
attributes specifying owner, group and permissions, as files do, and the rules are the

9. For the definition of {POSIX_CHOWN_RESTRICTED} refer to the interface definition for chown() in the X/Open
Portability Guide, Issue 3, Volume 2, XSI System, Interface and Headers.

10. Changing the object’s UID means that you no longer are the owner. Unless you have appropriate privileges, this
operation is irreversible; i.e., after ceding ownership of an object, you can no longer execute the call necessary to
reclaim ownership of the object.

X/Open Guide (1990)
Page : 18 Security Guide, Second Edition

Security Mechanisms Access Rules

same. For example, the ability of a process to use a magnetic tape drive depends on its
ability to use the device special file that represents the tape drive.

2.5.5 Access to IPC Objects

Optional inter-process communication (IPC) objects include semaphores, shared memory
segments and messages. These objects have a creator as well as an owner. Therefore,
they have two sets of UID and GID. A process qualifies for owner access if its effective
UID matches either the object’s owner UID or creator UID. Otherwise, the process
qualifies for group access if its effective GID or one of its supplementary group IDs
matches either the object’s owner GID or creator GID. Otherwise, the process qualifies for
other access. For more details, see Section 2.7, Inter-Process Communication of the
X/Open Portability Guide, Issue 3, Volume 2, XSI System Interface and Headers.

2.5.6 Access to Directories

Directories, like other objects, have attributes indicating UID and GID. These are derived
from the object’s creator - typically, the process invoking mkdir . The permissions pertain
only to the information in the directory itself: to the filenames and pointers to the object
with which each filename is associated. The permissions do not apply to the objects
themselves. An object’s permissions are stored with the object; they are not in any
directory. (You can think of an object as ‘‘inside’’ a directory; however, the directory does
not contain any objects, it simply points to them.)

Read permission on a directory is the permission to display the names of the objects in
the directory regardless of whether you have permission to read the objects themselves.
Write permission on a directory is permission to change the list of files in a directory, for
instance, to create and delete files.

Execute permission on a directory is called ‘‘search permission’’, and is permission to use
the directory as part of a pathname and to chdir() into that directory.

The rm and mv utilities depend on the access rights to the directories, not on the access
rights of the objects themselves. You can move and delete an object if the directory
permits you to do so, even if you have no permission to the object itself.

It may seem that the directory’s permission is superior to that of the object itself as you
need search access to the directory simply to gain access to the object. However, the
pointer in the directory need not be the only pointer to the object; the latter may have
several valid pathnames and filenames. A user may be kept from using some of these
but be allowed to use others.

X/Open Guide (1990)
Security Guide, Second Edition Page : 19

Set-User-ID Programs Security Mechanisms

2.6 SET-USER-ID PROGRAMS

Two flags in addition to those discussed in Section 2.4, Objects and Permissions are the
set-user-ID and set-group-ID attributes. If a process uses one of the exec functions to
execute an object that has one or both of these attributes, the process’s effective UID or
GID changes to the object’s owner or group, respectively.

A program is typically given the set-user-ID attributes, so as to allow its users the same
access as the program’s owner has to certain objects, such as a database.

Section 3.3.3, Set-User-ID Programs discusses the danger to security that arises when a
user casually applies the set-user-ID attribute to a program. Section 4.4, Privileged
Programs describes precautions you should use when writing a set-user-ID program.

The effective UID and GID of a process retain their values unless changed. Although the
system remembers the real (login) UID and GID, a process’s effective UID or GID never
implicitly lapses back to the real UID or GID.

A subprocess’s UID or GID may differ from that of its parent if it executes a set-user-ID or
set-group-ID program or explicitly calls setuid() or setgid().

X/Open Guide (1990)
Page : 20 Security Guide, Second Edition

Security Mechanisms Privileges

2.7 PRIVILEGES

The execution of certain function calls and function call options requires special
privileges. Only a process with appropriate privilege can perform such a function or
function option. A process with special privileges is called a privileged process .

A program may have special privileges. Such a program is called a privileged program .
The privileges of a privileged program may be inherited by a process executing the
program. Examples of privileged programs could be programs that are set-user-ID with
respect to certain UIDs.

A process may also inherit privileges from its parent process, and a process may change
its own privileges, provided it has appropriate privilege to do so.

Certain programs (e.g., login and su) change the privileges of the executing process as the
result of user authentication. A process executing as a user agent of a user with special
authorisation will typically inherit special privileges even though it executes a non-
privileged program.

Earlier parts of this chapter mentioned cases where security checks are waived for
processes with appropriate privilege. This section further discusses the ability of
processes with special privileges.

2.7.1 File Access

For processes with appropriate privileges, access checking procedures as described in
Section 2.5, Access Rules do not apply. They can read, write or execute any object in the
file system, provided that the object exists and that the attempted operation is reasonable
(this is defined later in this chapter). A process with appropriate privilege can change the
security attributes of an object even if it is owned by someone else.

2.7.2 Directories

For processes with appropriate privileges, access checking procedures as described in
Section 2.5.6, Access to Directories do not apply. They can make new directories
anywhere in the system filestore by calling mkdir(), and remove them by calling rmdir()
or unlink(). (Normal users can only make or remove directory objects in directories to
which they have write permission.) Take care not to remove a non-empty directory,
because its contents may become inaccessible if there are no other links to them.
Inaccessible objects can be recovered by executing a file-system integrity checking utility
such as fsck .

2.7.3 Protected Subsystem

Processes with appropriate privileges can create a protected subsystem (see Section
6.5.5, Protected Subsystems) to restrict the process to a portion of the file tree by using
chroot .

2.7.4 Signals

Processes with appropriate privilege can send any valid signal to any existing process.
They can use kill() to kill a process. They should do this only as a last resort to kill
runaway processes.

X/Open Guide (1990)
Security Guide, Second Edition Page : 21

Privileges Security Mechanisms

2.7.5 Process Control

Any process can call nice() and ulimit() to further limit its scheduler priority and file
sizes. A process with appropriate privilege can use these calls to remove its limitations.
Done incorrectly or maliciously, this can deny service to other users. On some systems, a
process with appropriate privilege can lock part or all of the process memory into the
main memory and prevent swapping or paging on these portions.

2.7.6 Setuid

If a process with appropriate privilege calls setuid() or setgid(), it changes the real as well
as the effective UID/GID. This is exactly what utilities like login and /bin/su do. (If the
process no longer has appropriate privileges, it ceases to be privileged, so the change is
irreversible.) For a privileged program to assume a different UID on a temporary basis, it
must create a subprocess and have the subprocess call setuid().

2.7.7 Special Services

On some systems, a process with appropriate privilege can call utilities like mount() and
umount() to mount and unmount file systems, and acct to activate accounting. Also
appropriate privilege is sometimes required for a process to take the last process slot.
This guarantees the administrator access, if needed, to kill a runaway process that has
used fork () to create many subprocesses.

X/Open Guide (1990)
Page : 22 Security Guide, Second Edition

Security Mechanisms Reasonableness Tests

2.8 REASONABLENESS TESTS

Software security checks may be waived for processes with appropriate privilege.
However, X/Open-compliant systems also test whether attempted operations are
reasonable. Not even privileged processes can perform operations that appear to be
unreasonable; for example,

• No process can gain write access to a directory.

• No process can call fcntl() to break a lock placed on a file, except the process that
placed the lock. However, if that process malfunctions, a process with appropriate
privilege can kill it. This releases the lock.

• If a file has no execute permission, the system infers that the file is not executable. No
process can apply an exec function to such a file. However, a process with
appropriate privilege can change a file’s permissions and then try to execute it.

2.8.1 Precautions

A file’s attributes are independent of its contents. Moreover, a program’s attributes can
make it both set-user-ID and modifiable. These facts concern system vendors, since any
code in a privileged program may execute with special privileges. Different systems may
deal with this problem in one or more of the following ways:

• The system may strip a program’s set-user-ID or set-group-ID attributes any time the
file is modified, any time its owner or group is changed, or on any copy made of the
program file. The owner of the file can always use chmod to reapply privileges to the
program.

• The chmod utility and the chmod() call may ignore attempts to give an object set-user-
ID or set-group-ID attributes if the caller also specifies write permission for anyone
other than the owner. Alternatively chmod may treat such combinations as an error.

This Guide sometimes advises caution that may be unnecessary if your system
implements one or more of these precautions. You should find out what precautions
your system takes.

X/Open Guide (1990)
Security Guide, Second Edition Page : 23

Reasonableness Tests Security Mechanisms

X/Open Guide (1990)
Page : 24 Security Guide, Second Edition

Chapter 3

Security for Users

The security of an X/Open-compliant system requires action on the part of every user.
This chapter discusses a typical system, where users are responsible for protecting their
own data, and describes other security concerns and the measures you can take with
regard to physical security, logging in, and protecting files and directories. It also gives
specific guidelines for using certain utilities.

3.1 PHYSICAL SECURITY

As a user you are responsible for applying physical and other forms of security to the
computer components that you own or control.

3.1.1 Terminals

When private data is displayed, do not let others view the screen. Make sure your office
terminal does not face open windows and doors. Ideally, install it in such a way that you
can identify visitors to your office before they are able to view your terminal.

On a computer that can detect loss of carrier or of the DTR (Data Terminal Ready) signal,
software may end any user session when it detects such a loss. On such systems, turn
your terminal off and on again before starting a session. This helps to ensure that every
time you type your password or other sensitive data, you are using your terminal in a
‘‘known’’ state, and that you are using the authentic login program (instead of an
imposter designed to capture your password).

3.1.2 Intelligent Terminals

Intelligent terminals, such as personal computers (PCs) can sometimes be programmed
to transmit screen data to the host computer based on a keystroke or on a message
received from the host. A penetrator might be able to use the write utility to send a
message to your terminal and cause it to respond in ways unknown to you. Mail
messages and other data originating from other users might produce hidden effects on
the terminal.

If you have such a terminal, keep others from writing to it at any time. Unless you
require direct communication with other terminals, use this command to block
broadcasts to your terminal:

mesg n

Before viewing text from other users, pipe it through a filter that will remove invisible
(control) characters. For example, you can type:

tr -d [\000-\037] < data_from_other_user

3.1.3 Unattended Terminals

Always log out before leaving your terminal. To secure an intelligent terminal, either
lock your office or take other steps to prevent its unauthorised use.

X/Open Guide (1990)
Security Guide, Second Edition Page : 25

Physical Security Security for Users

Do not over-estimate the time required for a security breach. For example, do not
disregard these rules because you expect to be absent from your terminal for only a short
time. When using automated techniques, a penetrator needs only a moment at an
unattended terminal with your authorisations to activate a penetration program
previously placed on the system.

3.1.4 Printers and Plotters

Sensitive data in printed form is no longer protected by passwords or by the requirement
for computer knowledge. You need to take special precautions.

Never print sensitive data on remote printers. If you must use a shared printer, log off
and go to the printer before your data is printed, so that you can control access to it.

The most secure alternative is to print sensitive data on a printer in a secured computer
room where operators will personally hand the output to you. A reasonable alternative
is to print the data on a personal printer in your office. Consult your administrator before
attaching a local printer to your terminal. Policy may require such printers to have a
separate cable to the computer. This prevents autonomous ‘‘local copy’’ operations and
lets the computer keep audit records of the date, time and user requesting each printing.

Once you have the output, treat it with whatever security it requires. Your organisation
may already specify the use of locked cabinets, rubbish bags for incineration or shredders
for sensitive documents, whether or not they are computer-related.

3.1.5 Diskettes and Tapes

Most sensitive information in X/Open-compliant systems is stored centrally; the
administrator determines suitable security procedures for it. Diskettes and backup tapes
may sometimes be under the physical control of individual employees.

The best way to protect these media is to lock them away safely. Diskettes and tapes fit
in typical office safes. For larger media, the administrator may provide or specify a
physically secure storage location. The average office cabinet or desk does not have an
adequate degree of protection for truly sensitive data.

Changing the form of your data prevents casual misappropriation. If your system
supports the crypt utility, use it to produce an encrypted copy of your file. Encryption
may not always be an effective way to protect valuable data from unauthorised
disclosure. For example, the algorithm in crypt is known to be breakable. Depending on
the threats you have identified for your system, you may wish to consider other
encryption techniques, especially if you expect to be confronted by sufficiently skilled
penetrators.

The preceding paragraphs discuss threats to confidentiality. In addition, the integrity of
data and programs is questionable whenever a medium leaves a secure area. If you lend
a medium, never reinstall it on your system without analysing its contents or initialising
it.

X/Open Guide (1990)
Page : 26 Security Guide, Second Edition

Security for Users Physical Security

3.1.6 Personal X/Open-Compliant Systems

X/Open-compliant systems are implemented on some personal computers (PCs).

These computers require effective physical security. You usually achieve this by locking
your office after hours. When PCs are located in shared office space, it may be
impractical to move the entire computer to a secure location. However, you can place
diskettes and tapes in a safe. On many PCs, fixed disks, such as Winchester disks, can be
removed and safely stored.

Fixed disks are otherwise not secure. A thief can analyse data on a fixed disk by
reattaching the disk to another PC. Any data or programs on media that you do not lock
should be considered unsafe.

3.1.7 PCs Used as Terminals

Programs on PCs communicate with X/Open-compliant systems as though the entire PC
were a video terminal. Most programs can capture the interaction to disk, and can send a
disk file as though the keyboard operator were typing it.

The authentic terminal emulator can thus create disk files that may contain passwords
and session transcripts that would give a penetrator access to additional data. This
information survives in the copy even after it has been deleted from the central X/Open-
compliant system.

A malicious program on the PC that appears to be your terminal emulator may record
your password and anything else you type, even faking an entire session without your
knowledge.

You can solve this problem by locking all media that contain programs on which you
rely.

X/Open Guide (1990)
Security Guide, Second Edition Page : 27

Password Security for Users

3.2 PASSWORD

The most important security transition occurs when you log in. Typing your password
authenticates you as a user. Your password is your most sensitive piece of information
on the system; knowledge of it gives a penetrator access to your data and to anyone else’s
data that you are allowed to use. A penetrator may be able to ensure perpetual access to
your information even after you have changed your password.

A crucial security responsibility of all users, therefore, is to protect the secrecy of
passwords. You must follow these rules:

• Look at your screen before typing. Any time it asks you to login:, take the steps
described in the previous section to verify that the program making the request is the
authentic login utility. If there are people in your office when you log in, ask them to
look away while you type your password. Management should set the tone for the
organisation so that nobody interprets your request as signifying distrust.

• Never disclose your password to anyone. It identifies you personally and you can
expect to be held responsible (rightly or wrongly) for whatever happens through the
mis-use of your password.

Do not even give your password to operators or the administrative staff. Anyone
performing sensitive operations on the computer should possess sufficient
authorisations of their own.

Other users requiring access to your data should consult you or the administrator.
This may prove inconvenient or time-consuming, but the alternative destroys any
security by eliminating personal accountability for what happens on the computer.

• Do not make copies of your password. It should be held only in an encrypted form in
the system’s files and in your head. Never write your password down, nor store
copies of it, even on a different computer. Above all, do not program a PC to
automatically log in to your account.

If you use several different computers, you should have a different password on each
one. This keeps a successful penetration of one machine from turning into a
penetration of an entire network.

• Do not use a dictionary word as your password. Programs such as spelling checkers
have an on-line dictionary which a penetrator could use to write a high-speed
penetration program. Of course, do not use your company’s name, a product name
or similar items as a password.

• Choose a password that is difficult to guess (even by those who know your family,
hobbies, or personal interests). Do not base your password on easy-to-locate personal
information, such as names and birthdates of you or your relatives, car licence plate,
social security number, telephone numbers, etc.

• Do not choose a password that is so subtle that it defeats security. For example, one
that is so hard to remember that you must write it down. Do not choose a password
that is so hard to type that you must re-enter it frequently, increasing the chance of its
being studied by a bystander.

• Passwords should be changed periodically. The minimum and maximum lifetime of a
password is dependent on the threats to which the system is exposed and the

X/Open Guide (1990)
Page : 28 Security Guide, Second Edition

Security for Users Password

environment in which it is operated. The longer the lifetime of a password, the greater
the chance that a penetrator, even with limited resources, might determine the
information, especially if he is able to gain access to the encrypted user passwords.
The shorter the lifetime of a password, the greater is the probability of users choosing
bad passwords, forgetting them or writing them down. The choice of the lifetime
period of a password must be part of every security policy.

• Never use a password that you find as an example in this or other texts, as they are
likely to be found in the special dictionaries used by sophisticated ‘‘password
cracking’’ programs.

3.2.1 How to Choose a Password

There are several ways to choose a password that is easy for you to remember and hard
for another person or a program to re-create.

• Use an acronym. Convert a phrase that is easy to remember, by taking the first letter
of each word. In this way, ‘‘This Is My First Secure Password!’’ becomes ‘‘timfsp!’’.

• Devise a translation table that converts a word by substitution of letters. You can
write down the translation table and then choose a dictionary word for your
password, using the table to scramble the word before you type it into your keyboard.
This method depends greatly on the confidentiality of the translation table which
should be kept in a secure place.

• Use a variety of symbols, numbers as well as letters, mixing upper- and lower-case
letters. Choose a password that contains all or nearly all of the maximum number of
characters the system allows. This increases the time an automated penetrator needs
to try all possibilities, and removes short cuts such as trying combinations of numbers
alone.

3.2.2 Login Anomalies

A change in your normal login procedure may have security implications for the
computer. For example:

• Changes in login . If you see messages from login that surprise you, verify with the
administrator or an operator that the change is authorised or known to the
administration. This includes cases where your password no longer works.

• Changes in start-up. If you have a PC in your office, its initial (start-up) process
should be totally under your control. If it displays messages you are unaccustomed
to, someone may have installed a Trojan horse program designed to trick you into
typing your password. Do not use a start-up procedure that erases the screen and
thus removes any evidence of unexpected changes.

• Other anomalies that are basic enough to have security implications include cases
where you have typed a line and the shell ignores it, and cases where your screen
displays text that did not come from you or from any program you were running.

If any of the above occur, log out and switch off your terminal. If they occur during login,
stop immediately. Do not type your password. Report the strange behaviour to the
administrator and use a secure terminal to log in. Execute the local equivalent of the
passwd utility from there to change your password.

X/Open Guide (1990)
Security Guide, Second Edition Page : 29

Directory and File Security Security for Users

3.3 DIRECTORY AND FILE SECURITY

3.3.1 Directory Hierarchies

A ‘‘hierarchy’’ is a directory and all subdirectories under it. Your home directory is the
directory specified in the user database that is your working directory at the start of each
session. The shell variable HOME refers to this directory. Usually, the hierarchy under
HOME is the complete set of files for which you are responsible. The things you must
protect are:

• Availability You will be inconvenienced if someone can delete your data. If you
are maintaining data that others use, such as a database, you must
protect the objects to prevent the waste of others’ time and effort. If
your objects are deleted, you may personally have to arrange for
their restoration.

• Integrity You will be equally inconvenienced if someone can render your
data useless by making unauthorised changes to it. Unauthorised
changes which remain undetected may lead to wrong results and
fatal decisions based on them.

• Confidentiality You know best how much confidentiality your files need. For
example, your directories may contain personal data, corporate
data that could harm the organisation if it reached a competitor, or
a specialised data base containing confidential data of customers or
employees. Software licences, labour agreements, such as your
own employment agreement, and laws, may require confidentiality
for certain data.

Protect Files

Section 2.4, Objects and Permissions and Section 2.5, Access Rules describe
permissions and their meaning when applied to files and directories. You invoke the
chmod utility to change permissions. For example, if other users need to read and execute
one of your files, you might type:

chmod go=rx filename

If other users have no reason to use one of your files, you might type:

chmod go-rwx filename

You can see the permissions on files and directories by using the long form of the ls
utility:

ls -l directory_name

To control the permissions given to newly created files, set your umask command
appropriately, as described in Section 3.4.3, New Objects.

X/Open Guide (1990)
Page : 30 Security Guide, Second Edition

Security for Users Directory and File Security

Protect Directories

Personal files are typically stored in a directory that has

d r w x - - - - - - (700)

access. As an alternative, the permission

d r w x - - x - - x (711)

lets other users search through the directory and refer to its files.

Wider access to directories should be avoided as it creates special security problems.
Write access for other users to your directories allows them to place Trojan horses (see
Section 1.1.6, Types of Penetration) or to replace your files (see Section 3.3.2, Temporary
Directories). Never give other users write access to your home directory. Files there
control the operation of your entire session.

Create Suitable Subdirectories

The single set of permissions in a directory applies to the entire directory. You can give
the objects in the directory different permissions on reading, writing and execution, but
you cannot give them different directory permissions (which control other users’ ability
to reference the objects).

In practice, the objects in a directory often have the same or similar permissions
themselves, except that execute permission may be withheld from non-executable files,
such as some text files. If you find that the objects in a directory have widely different
permissions, you may be able to improve security by creating additional directories with
different permissions to hold the different types of file.

3.3.2 Temporary Directories

Many utilities create temporary files in your working directory or in the system
temporary directories /tmp or /usr/tmp. Generally, anyone can remove an object in a
temporary directory. Objects typically are removed when the computer restarts, nightly,
periodically by the administrator, or by the utility that created them. You can protect
files that you own and files that a utility creates in a temporary directory, by giving them
few permissions. However, the temporary directory itself has no protection; its
permission is

d r w x r w x r w x

This lets anyone create objects in, and remove objects from, a temporary directory,
without your permission or knowledge.

Substitution

A penetrator can remove an object from a temporary directory and quickly create an
object with the same name. This is almost as powerful as the ability to make any desired
changes to the contents of the object.

You may be able to detect this change: usually it gives the object a different owner and
creation date (but you cannot prevent substitutions from occurring once your files move
into an unprotected directory). Scripts that use temporary directories to store data or

X/Open Guide (1990)
Security Guide, Second Edition Page : 31

Directory and File Security Security for Users

pass objects between programs usually do not check for substitutions. Therefore, they
cannot assure the integrity of the data they handle.

Some programs use standard library routines that allow an environment variable, called
TMPDIR, to specify where temporary files reside. Some programs have options (like the
directory option in the vi editor) that let you explicitly specify where temporary files
should reside. Use these variables and options where possible, specifying a temporary
file in your home directory.

Window of Vulnerability

There is a security risk in applying protection to objects placed in an unprotected
directory. In this situation other users are prevented from using your data but they are
allowed to link to it with the ln utility.

If you later changed techniques and decided to move the files to a protected directory
and remove protection from the files themselves, other users could use links to your files
that they made before you changed your technique. They could both refer to and use
your data. Before removing protection from such an object, use ls -l to see if there are any
links to the object. For ordinary files, a link count greater than 1 indicates extra links to
the object. If this is the case, do not remove the protection. First, make a copy of the
object using the cp utility. Then apply the chmod utility to the copy to remove its
protection. This has no effect on the protection of the original and you can remove it
from your directory. Other users who have secretly made links to the original object
retain those links, but are still unable to use the object itself. When they remove those
links, the original ceases to exist.

3.3.3 Set-User-ID Programs

Section 2.6, Set-User-ID Programs describes the set-user-ID file attribute. (This
discussion also applies to programs with set-group-ID.) A process executing a program
from such a file changes its effective UID to that of the owner of the file. This gives the
program user the rights that the owner has. For example, the owner may also own a
database that the users of the program need. The set-user-ID program gives its users
access to such data, usually in accordance with rules imposed by the program.

The saved set-user-ID and saved set-group-ID feature of X/Open-compliant systems
permit a set-user-ID program to change its effective UID back and forth between the UIDs
of the user and the program owner. A malicious program may abuse this feature for a
Trojan horse attack. You should therefore mistrust all set-user-ID programs of unknown
origin if they are not thoroughly tested.

There is typically no reason for general users to own set-user-ID programs. If your
directories contain any such programs, you should know exactly what they do. You
should have a way to quickly make sure that the set-user-ID program is the program you
think it is. Failing any of this, remove the program or its set-user-ID attribute.

If you must own a set-user-ID program, use chmod to deny anyone else permission to
read or write it. This keeps a penetrator from studying the program and determining
how to use its set-user-ID status to breach security.

Keep the program in a separate directory, preferably write-protected from all other users.
Monitor the program carefully; use find as described in Section 3.3.4, Directory Analysis

X/Open Guide (1990)
Page : 32 Security Guide, Second Edition

Security for Users Directory and File Security

to guard against changes to it. If you notice that the program has lost its set-user-ID
attribute, or you have to restore the program from tape or a non-secure location, examine
the program thoroughly or rebuild it from source before you use chmod to reapply the
set-user-ID attribute. This keeps you from applying set-user-ID to a program modified
by a penetrator.

Copying a set-user-ID program using cp has security implications on some systems. (See
Section 3.5.6, Copying Objects.)

3.3.4 Directory Analysis

Review the contents of these directories from time to time. Examine any object you do
not recognise by its title. Preferably, change its title to better reflect its contents. Never
execute an object whose identity is uncertain.

If the ls utility ever lists an object in your directory that you have no permission to read,
be sure you know why the object is there. It may be a program planted there by a
penetrator. If the penetrator gets brief use of your account, or if you execute the program
yourself, the penetrator may get ongoing access to your data.

It weakens the security discipline if another user stores objects in one of your directories,
even if the user’s intention is harmless. That discipline is necessary because a malicious
user could obtain the power to damage your files by doing the same thing.

Using find

The find utility searches a hierarchy. You can make it print the names of files that meet
certain tests. A command that begins with find $HOME searches your complete
hierarchy.

Here are some ways to use find:

• Check for inadequate protection. This command prints the names of any objects in
your hierarchy that a general user can modify:

find $HOME -perm -002 -print

There should typically be no such object anywhere in your hierarchy.

In place of -002 in the example above, you can use -004 to find files general users can
read, and -001 to find files general users can execute. You can use codes such as -020
to test group members’ access to your data. (The ‘‘ - ’’ before the permission code is
important. It says you are looking for files whose permissions include those you
specified. For example, specifying -004 includes files that have 744.)

• Monitor changes to your data from time to time. For example, use this command
once a week:

find $HOME -mtime -7 -print

This displays a list of all of your files that have been modified in the past 7 days. Take
a moment to recall when and why you changed each file. If you cannot recall,
examine the file and see if someone else has modified it.

• Check for set-user-ID/set-group-ID programs. Section 3.3.3, Set-User-ID Programs
discusses the security risk of owning programs with the set-user-ID and set-group-ID

X/Open Guide (1990)
Security Guide, Second Edition Page : 33

Directory and File Security Security for Users

attributes. The long form of the ls directory listing identifies set-user-ID programs by
listing S or s, instead of ‘‘-’’ or x, for the owner execute permission. The listing
identifies set-group-ID programs by listing S or s as the group execute permission.

You can find any set-user-ID or set-group-ID program in your hierarchy by typing,
respectively:

find $HOME ’(’ -perm -4000 -o -perm -2000 ’)’ -print

• Check for device special files, described in Section 6.4, Machine Security. User
directories should not typically contain these. Type this command:

find $HOME ’(’ -type b -o -type c ’)’ -print

Using the output of any of these find utilities as input to ls -laid , you can see dangerous
combinations of notable files—such as set-user-ID files that are also writable. For
example:

ls -laid `find $HOME -mtime -7 -print`

3.3.5 Groups

The administrator may establish groups (as defined in Section 2.2, Groups) for the users
in a certain department or for those working on a certain project. The X/Open compliant
system records your group membership when you log in, based on data the
administrator provides. Being a member of a group gives you greater permission to use
one or more files of shared group data.

If you need access to several sets of project data, the administrator may register you as a
member of several groups. One group will be your ‘‘primary group’’: the group to
which you belong immediately after you log in.

If the supplementary GIDs mechanism is implemented (NGROUPS_MAX > 0), both these
and your effective GID will be used to check group permissions when attempting to
access a file. Alternatively, the optional newgrp utility lets you switch into a new group,
to which you are authorised, at will. Always use the ‘‘-’’ option with newgrp. It sets up
your process environment as though you had just logged in again.

For example, this command resets your environment and changes your group identifier
(GID) to that of the ‘‘electro’’ group:

/bin/newgrp - electro

Group directories (directories containing shared objects for the group) have different
permissions for group members and other users. A process’s GID and supplementary
GIDs determine whether the process qualifies for access to the directory. Group
directories often have the permission:

d r w x r w x - - - (770)

If one user is responsible for applying changes to the objects in the directory, that user
should create the directory while logged in to the relevant group. The user should give
the directory the permission:

d r w x r - x - - - (750)

X/Open Guide (1990)
Page : 34 Security Guide, Second Edition

Security for Users Directory and File Security

3.4 SECURE ENVIRONMENT

3.4.1 Profile Files

When you log in, the shell sh automatically executes the script named $HOME/.profile.
This script typically specifies the rules that apply to your entire session. The .profile file
determines the environment in which you will operate. You can edit .profile to make
things happen automatically whenever you log in.

The contents of .profile, and the order in which they appear, are important to security.
For example, if you let your environment include non-secure directories, you may
unintentionally execute a malicious program written by a penetrator. This program may
create a file, in the penetrator’s directory or in a neutral or temporary directory, that is
set-user-ID to your user identifier. The penetrator can use this program to acquire your
powers, even if you later change your password or correct your .profile file. This
security breach continues until the malicious file is destroyed or its attributes are
changed.

The administrator typically places a .profile file in your home directory. Even so, you
should understand what is in it and how it works.

Usually, the system wide profile file, /etc/profile, that is executed prior to your .profile
file may contain all or some of the following items. If not your .profile files should
contain, in this order:

1. A command to keep other users from sending messages to your terminal with
write, as described in Section 3.1.2, Intelligent Terminals. Use the absolute
pathname when calling the command to avoid the threat of a Trojan horse probably
caused by an improper assignment of the system default environment.

2. A line that sets the PATH shell variable (see Section 3.4.2, Search Path).

Putting this first ensures that all file references, in the rest of .profile and in your
session, are well defined.

3. Lines that set other shell variables. These lines may influence the interpretation of
the remainder of .profile. You may want to set EXINIT (see Section 3.5.1, Editors)
and MAILRC (see Section 3.5.2, Electronic Mail).

4. An appropriate umask command (see Section 3.4.3, New Objects). A related
function that might appear at this point is ulimit(), which keeps malfunctioning
programs from obtaining large amounts of disk space.

5. A site-dependent setup, provided by the administrator.

6. Finally, any commands you wish to take effect automatically on each login, such as
commands to read your mail.

X/Open Guide (1990)
Security Guide, Second Edition Page : 35

Secure Environment Security for Users

Here is an example of a .profile file:

Disable broadcasts to this terminal:

/bin/mesg -n

Set the search path and export it to all subprocesses:

PATH=/bin:/sys/bin:/usr/bin:$ HOME/bin

export PATH

Set other shell variables to influence the operation

of common utilities.

If you have no start-up files,

specify no file, as shown below.

Export these variables

to all subprocesses:

MAILRC=

export MAILRC

EXINIT =

export EXINIT

Limit processes’ resources:

umask 027

ulimit 50

Site-dependent session initialisation might go here.

Session start-up according to personal preference:

if mail -e

then

echo "you have mail"

fi

Regard your .profile file as secret. Information in it, such as your search path, could help
a penetrator determine how to make you execute a Trojan horse program. The
permission to read the .profile file should be restricted to you alone, with

r - - - - - - - -

Change its permission to

r w - - - - - - -

using the chmod utility, if you want to edit the file; change it back after editing it.

3.4.2 Search Path

Typing a filename into the shell utility constitutes a command to execute the file with that
name as a program or a script. However, several directories may have files with the
specified name. The file the shell utility selects normally does not depend on the working
directory you have selected. Instead, it is dictated by the PATH variable.

The PATH variable is set by a shell utility that takes this form:

PATH = pathname:pathname:pathname. . .

To protect you from executing malicious programs, you should follow these rules when
you specify your PATH:

X/Open Guide (1990)
Page : 36 Security Guide, Second Edition

Security for Users Secure Environment

• All pathnames should be absolute. Every directory in the PATH should be defined,
have a specific identity, and be managed by a user who understands and applies the
rules in this Guide for directories.

• No open directories should appear. If your search path includes an open or
temporary directory such as /usr/tmp, a penetrator can trap you by placing a
malicious program there with the same name as a program you are likely to execute.

• The working directory should not appear. You can change your working directory
using the cd command, and then refer to files there without re-typing the pathname.
(However, some of the working directories you select may contain programs you do
not want to execute inadvertently. If you cd to another user’s directory and your
PATH includes the working directory ‘‘.’’, the other user has acquired the ability to
corrupt your data using an automatic penetrator.) If required, you can still call
programs in the working directory by prefixing the command name with ./. You will
soon become acquainted with this technique.

Create a directory called $HOME/bin that will hold your private executable programs
and scripts. Include this directory in your search path. Then, by copying or moving
an executable object to $HOME/bin, you are able to invoke it by simply typing its
name. Make sure that $HOME/bin is not writable by anyone else (see Section 3.3,
Directory and File Security).

• Note the order of entries. This is the order in which the shell searches directories
when you name a program to execute. System directories should appear first. If you
inadvertently create an executable object called the ls utility, this order will keep you
from executing it (until you rename it); any attempt to execute it will instead reference
ls.

• If the path includes another user’s directory, be sure that user knows how and why to
protect directories. Including another user’s directory in your search path raises the
risk that a penetration of that account will result in a trap set for you.

A better approach is to explicitly copy or link the specific files you will need into your
own directory, rather than setting your search path to implicitly obtain the other
user’s files.

• Analyse your PATH syntax. Any null entries in your path list specify your working
directory. Furthermore, ‘‘:’’ is a separator, it does not introduce. Therefore, if the
specification to the right of ‘‘=’’ begins or ends with ‘‘:’’, or contains ‘‘: :’’ anywhere, it
has violated the previous rule.

X/Open Guide (1990)
Security Guide, Second Edition Page : 37

Secure Environment Security for Users

You can check your PATH with a script like this:

if [‘echo ":$ PATH:" | grep -c "::"‘ -gt 0 -o \

‘echo ":$ PATH:" | grep -c ":\.:"‘ -gt 0]

then

echo "Error: PATH contains current directory"

elif [‘echo ":$ PATH:" | grep -c ":[ˆ/]"‘ -gt 0]

then

echo "Error: PATH contains a relative path"

else

echo " PATH contains a proper search path"

fi

3.4.3 New Objects

The umask command helps you restrict the permissions of newly created objects. When
you type umask followed by an octal number, the system keeps you from creating an
object with any of the permissions specified by that number. The highest permission
new objects can have is the complement of the umask number. For example, 027, a typical
umask setting, specifies

- - - - w - r w x

the permissions that would allow group write access and any access by other users.
Therefore, umask 027 keeps objects you create from receiving any of these permissions.
Objects you create are limited to

r w x r - x - - - (750)

which is the complement of 027.

• umask 027 effects the rule described above

• umask 067 further restricts group permission to execute-only.

• umask 077 prevents any group or other access to your newly created objects

One of the above umask forms should be present in your .profile file.

Your umask selection specifies standard permissions for objects that you create, but it
does not keep you from using chmod to change the permission of any object you own. It
does not apply to objects you copy into your directory; the cp utility retains the copied
object’s old permissions.

X/Open Guide (1990)
Page : 38 Security Guide, Second Edition

Security for Users Specific Utilities

3.5 SPECIFIC UTILITIES

3.5.1 Editors

The X/Open Portability Guide describes screen editors called vi and ex. Two security
comments apply to these editors (as well as to edit and view which are common on UNIX
systems):

1. The editor creates a temporary file. This file assists recovery when the editing
session ends abnormally. The file resides in the /tmp temporary directory, unless
you have an .exrc setup file that uses the ‘‘directory’’ option to specify a different
location. Section 3.3.2, Temporary Directories discusses the security problems
inherent in temporary directories.

If the system crashes during an editing session, most systems will use the
temporary file to recover your edits when the system restarts. But if you lose
contact with the editor for another reason (for example, if your terminal connection
is broken), other users could substitute for the temporary file.

Before you use vi -r to recover from a failure during an editing session, make a copy
of the old file. Preserve the copy until you compare it with the restored file and
verify that the changes correspond to your interrupted editing session. For
example, you might type:

$ cp file old_copy
$ vi -r file
:wq
$ diff file old_copy

2. The second security concern for vi is user-specified initialisation. The vi editor
takes initial commands from the EXINIT environment variable, if defined. If not, the
editor looks for the .exrc file to specify the editing environment. Section 3.4.2,
Search Path warns against using relative pathnames in your search path.
Unfortunately, vi is designed with a relative search path for .exrc. It looks first in
your working directory and then in your home directory. If you edit from someone
else’s directory or from a public directory, you may inadvertently use an .exrc file
there whose contents are unknown to you. (Other utilities with rc files use this
search path and therefore have the same security problems.)

The EXINIT variable and .exrc file contain editing commands. Notably, the
command :! executes a shell command from within the editor. Editing under
control of someone else’s EXINIT variable or .exrc file raises the possibility of
executing a penetrator’s program, such as a Trojan horse.

You can always bypass the search for an .exrc file by defining EXINIT in your
.profile. If you do not need special editor initialisation, set EXINIT to a null string:

EXINIT=
export EXINIT

If you use another editor with comparable functionalities, you should take analogous
precautions.

X/Open Guide (1990)
Security Guide, Second Edition Page : 39

Specific Utilities Security for Users

3.5.2 Electronic Mail

The X/Open Portability Guide specifies two utilities for electronic mail: the simple mail
utility, and the advanced mailx utility. The mailx utility uses a setup file called .mailrc.
You can use the utilities interchangeably because they use the same format for mail files.

The mail utility has no method of user-specified initialisation. The mailx utility looks for
an environment variable called MAILRC, analogous to the editor’s EXINIT variable. You
can set MAILRC to force mailx to use a specified file instead of .mailrc.

User-specified initialisation in mailx does not have the security problems of the editor.
The mailx utility looks only in your home directory for .mailrc, not in the working
directory. This reduces the chance that you will participate in a security breach by
picking up the wrong .mailrc.

A potential security problem with any mail system is the authenticity of the sender. Both
mail and mailx require a separate background process called a daemon. The daemon
receives mail (as mail may arrive when you are not running mail or mailx). Some mail
systems use a daemon to send mail. The daemon performs file operations based on the
identity of the sender. However, some mail systems let a sender manually override the
"From:" field in the header. Furthermore, if mail messages can originate from other
machines, the authenticity of the sender may be in further doubt.

The integrity of the mail utilities, the daemons and all potential sources of mail, affect the
security of electronic mail. Personal delivery, signed memoranda and telephone contact
establish the sender’s identity more reliably. An organisation should not use electronic
mail to implement sensitive parts of its security policy, such as to assert that a new user
is authorised.

If you use another mailer with comparable functionality to mail and mailx, you should
take analogous precautions.

3.5.3 Network Communication

Anyone who uses uucp or similar network utilities should first have an idea of how
secure the network is. Because uucp and related programs are not part of the kernel,
most security checks are contained within those programs.

Section 6.6, Communication explains security problems you may encounter if your
system is on a network with less secure systems, and security problems with the
communication media between systems. If you cannot completely trust the
communication path and the remote machine, you should consider programs like uucp to
be inherently insecure. For example, assume that data you send using uucp could be
intercepted. Likewise, examine any data you receive over the network.

3.5.4 Remote Sessions

The cu (call UNIX) utility lets you communicate with a remote computer. You use your
terminal to interact with the remote computer as though the terminal were directly
connected there. Before using cu, you must consider how secure the remote system is
and how secure the communication medium between the systems is. Some of the issues
discussed in the previous section apply to cu.

X/Open Guide (1990)
Page : 40 Security Guide, Second Edition

Security for Users Specific Utilities

Using cu poses the same security problems as using a PC as a terminal (see Section 3.1.7,
PCs Used as Terminals). You will be typing a password through cu to the remote
computer, and you will be typically typing other commands that a penetrator might find
useful to gain access to your data. Therefore:

• Be sure that the program you are using is the authentic cu program. Do not use a
terminal that seems to already be running cu; exit and re-invoke cu.

• Do not devise an automatic login procedure, such as sending your remote password
from a file on the local computer.

• If you are capturing the session transcript into a local file, begin the capture only after
completing remote login . Capture only the data you need; avoid capturing the
dialogue you used to obtain the data.

Suspended Session

Avoid leaving your terminal or using it for other things while a remote session is in
progress. If your connection with the remote system is broken, immediately re-establish
contact, check to see whether your first session produced any processes that are
suspended, and kill those processes. Different X/Open-compliant systems may provide
different ways for a penetrator to attach to a remote session that you neglect.

3.5.5 Backup and Restore

The cpio and tar utilities allow orderly backup and restoration of files between the file
system and an archive on a medium, such as a tape or disk, that is not part of the file
system.

On multi-user X/Open-compliant systems, the administrator or operations staff does
backups. However, on personal X/Open-compliant systems, you may be responsible for
backing up your own data.

Preparing a Backup

Typically you make a backup to ensure against a failure of the computer.

You should therefore plan for the possibility that you might later restore the files to a
different computer. Each X/Open-compliant system has a different naming system for
users, groups, UIDs, GIDs and file system structures. Therefore, use relative pathnames
on your backup medium.

Imported media from another installation likewise have UIDs, GIDs and file system
structures that do not relate to your system. Furthermore, on some systems, the cpio
utility calls the chown() function to set the UID and GID of restored files based on what
was on the tape. However, that UID/GID pair typically refers to another user altogether.
The super-user may have to apply chown() to give the restored files the proper UID/GID
for the system on which they now reside.

Security of Backup Medium

The resident files are as secure as the organisation’s security policy. However, the
archived files are not necessarily secure at all. They depend on the security that has been

X/Open Guide (1990)
Security Guide, Second Edition Page : 41

Specific Utilities Security for Users

applied to the archive medium. You should assume that restoration of files with cpio or
tar is inherently insecure. In particular, the names and permissions on files on backup
media are not necessarily an accurate description of the files’ contents. If the medium is
under the physical control of an individual, that person should perform the restoration,
using their own user account and access restrictions.

Precautions

You should restore files to a temporary directory within your home hierarchy. You
should give this directory permission

d r w x - - - - - -

preventing anyone else from using it, even if others will be able to use the files after you
verify their identities and move them to their final destinations.

You should use the t and v options of cpio to view the contents of the archive medium
before you restore any files. For example, you might type:

cpio -itcv </dev/sctmtm0

Note any special files, and files with permissions that are too liberal, or special attributes
such as set-user-ID. Use chmod to change attributes if this is warranted.

Here is an example where you restore the contents of a directory named in the variable
OLDDIR to a temporary directory (here called readtape) and analyse the result before
actually restoring the files:

The following special filename is assumed to

reference an archive device with automatic

rewind on close

#

RTP=${RTP:-/dev/rtp}

Exit if the cpio archive contains absolute paths.

(This example does not use the v option, since X/Open

has not defined the output format when the

combination cpio -tv is used.)

#

cpio -itc <$ RTP 2>/dev/null | grep ’ˆ/’ >/dev/null

if [$? -eq 0]

then

echo Archive contains absolute paths.

exit 2

fi

X/Open Guide (1990)
Page : 42 Security Guide, Second Edition

Security for Users Specific Utilities

#

read archive into temporary directory.

#

umask 077

mkdir readtape

cd readtape

cpio -icvaml <$ RTP

#

Check for special files, FIFOs and files with

the SETUID, SETGID or sticky bit set, and report.

#

echo The following files are character, block, or FIFO

echo special files or have setuid, setgid, or sticky

echo bit set

#

The check for special files is only necessary if

the script is run by a super-user

#

find . \(-type c -o -type b -o -type p -o \

-perm -04000 -o -perm -02000 -o -perm \

-01000 \) -print | grep ’. ∗’

if [$? -eq 0]

then

echo Warning: Tape contains files with special modes.

echo Press RETURNto continue.

read x

fi

#

Compare with original directory

#

dircmp -d $ OLDDIR .

#

Move to true place and remove temporary directory,

#

find . -depth -print | cpio -pcdvlamu $ OLDDIR

cd ..

rm -rf readtape

Even when new files are extracted, consider them insecure until you fully analyse code
and data.

tar

The tar utility cannot archive special files as the cpio utility can. This simplifies the
auditing before restoring files. Use a command like this to view the contents of the
archive medium before restoring any files:

X/Open Guide (1990)
Security Guide, Second Edition Page : 43

Specific Utilities Security for Users

tar tfv /dev/sctmtm0

To restore files with tar , use a procedure comparable to the example shown for cpio . On
the tar command, use the xfvlmp options.

Some systems support the p option. This restores each file to its original mode, as carried
on the archive medium. If you notice files with set-user-ID, set-group-ID or the sticky bit,
omit this option and use chmod , once you have verified the files and moved them to their
final directory, to place appropriate permissions and attributes on them. If your system
supports the o option to place all files under your ownership, you may use this option
but you must closely examine files that did not previously belong to you. Use the
technique described above to obtain a contents list for the archive from which to identify
such files.

Physical Security

Take precautions to prevent a penetrator from writing to your backup medium after you
mount it. If your installation has a program to request exclusive access to the drive,
reserve access before your medium is physically mounted, and do not release the drive
until your medium is physically unmounted. If your installation supports it, issue a
command to unload your medium from the drive after backing up or restoring files.
Retrieve your tape from the drive promptly after you have finished using it.

3.5.6 Copying Objects

The cp utility makes copies of objects. If you copy data to an existing object, the
ownership and attributes of the destination object do not change, and there are no special
security issues.

If you use cp to create an object, you are its owner.

However, the file’s data and its other attributes may follow those of the source of the
copy. On some systems, if you copy a set-user-ID program (see Section 2.6, Set-User-ID
Programs), creating a new file, the new file is set-user-ID to your UID/GID. Section 3.3.3,
Set-User-ID Programs explains why this may be a problem. In this case, after you have
copied a set-user-ID file, use chmod to remove the set-user-ID attribute.

Your umask (see Section 3.4.3, New Objects) limits the permissions that new objects
receive. The cp utility ignores your umask. In other words, by copying, you can place
objects in your directories with permissions more liberal than those the system would let
you apply to new objects. This is a good reason to periodically review all of your
directories, as described in Section 3.3.4, Directory Analysis.

This discussion of the cp utility also applies to the mv utility, which ‘‘moves’’ an object. If
the source and destination file are in the same file system, mv creates a new link to the
existing object (as does ln) and removes the old link. This never affects the object’s
protection. However, when ‘‘moving’’ an object to a different file system, mv copies the
object, as does cp. As described previously, this may require care when moving set-
user-ID programs.

X/Open Guide (1990)
Page : 44 Security Guide, Second Edition

Security for Users Specific Utilities

3.5.7 Deferred Scripts

The at utility lets you execute a script at a future time. Enqueuing a job for at essentially
schedules an automatic login under your login name at a future time. The script may
make assumptions about the future contents of certain stored objects. A penetrator who
detects and analyses your at job knows that a login under your user name will occur at a
certain time in the future. By studying the script, the penetrator may be able to make
changes that trick your automatic login into giving the penetrator some of your power.

For sensitive operations, and for operations that depend on co-operation from other
persons, such as tape operators, execute the script manually and watch the output on
your terminal.

Do not use at for scripts you wish executed in the near future. If the system is busy, cron
may not schedule your batch until the desired time tomorrow. Use batch instead. If the
ps utility reveals that a process is not running as expected, cancel the job.

Capture the output (standard output and error output) from all deferred scripts. Either
redirect it to a file, using a full pathname, or specify that the output be mailed to you.
(On some systems, cron does this implicitly.)

X/Open Guide (1990)
Security Guide, Second Edition Page : 45

Specific Utilities Security for Users

X/Open Guide (1990)
Page : 46 Security Guide, Second Edition

Chapter 4

Security for Programmers

Every programmer of an X/Open-compliant system is also a user, and should read and
follow the guidelines in Chapter 3, Security for Users. For example, programmers
should protect passwords, apply proper permissions to their files and know how to
check their computer environment for possible security problems.

This chapter discusses additional security-related topics of relevance to programmers.
Some of this information, such as the need to take precautions when using shared data
structures, applies to any time-sharing system, but the technical information and all
examples are specific to X/Open-compliant systems.

Special authorisations are not needed to write programs on an X/Open-compliant
system, but the programming in itself may have security implications, as in the following
situations:

• Where you are maintaining a utility that has inherent security implications, such as
login .

• Where you are writing or maintaining a program that will require special privileges
when completed and installed for general use.

• Where you are writing or maintaining a program in which others will invest time and
effort.

X/Open Guide (1990)
Security Guide, Second Edition Page : 47

Programming Management Security for Programmers

4.1 PROGRAMMING MANAGEMENT

Good programming management is obviously important, because it produces more
efficient results from the programming staff. It is also important, however, when
developing or maintaining security programs, because of the impact of such programs on
other users. The following principles should therefore be applied to all programming
projects:

• Assignment of personal responsibility. One way to apply this general principle in
software development is to assign an owner to each software module. Changes to the
module, however minor, should be cleared with, and preferably applied by, the
module’s owner. Section 3.3, Directory and File Security describes how to use
permissions to enforce this rule.

• Encouragement of structured programming. The objective of structured
programming is to produce code that is easy to read and maintain. Structured
programming saves development time and improves maintainability without
detracting from the final product’s size or speed. This is especially important for
sensitive programs.

• Review of program design. A programmer assigned to revise a program does not
necessarily understand all parts of the program, how it fits together or aspects of the
program that are important to maintaining security. Misunderstandings can occur
even if the program is well documented. Group review of program changes can
sometimes identify potential security problems, and should catch any potential
program malfunctions and make it less likely that departures will be made from the
original design philosophy.

• Provide reproducible test suites and document them. If possible make these tests run
without user interaction and give a clear indication of success or failure. Use this
technique not only for the whole product but also for each subsystem. In case of
abnormal behaviour by corrupt programs, there is then an opportunity to check the
components.

The following aspects of good programming management take advantage of specific
X/Open features:

• Use of the Source Code Control System (SCCS). The SCCS system helps manage
software projects by assigning ownership of individual modules to programmers
making changes. It provides a change history that makes it easy to see the essence of
each revision of the source code. If a security breach appears to have involved
deliberate changes to security programs, SCCS may help to identify the culprit.
However, this will not work for unauthorised changes.

• Control of the application of privileges. Create a non-critical environment for
programs under development, such as a protected subsystem (see Section 6.5.5,
Protected Subsystems).

Establish a policy that programs must be written in such a way that they can be tested
on non-critical data, without privileges such as the set-user-ID or set-group-ID
attributes. Apply those attributes only after the code has been reviewed and all
affected departments are satisfied that the new programs maintain security.

X/Open Guide (1990)
Page : 48 Security Guide, Second Edition

Security for Programmers Programming Guidelines

4.2 PROGRAMMING GUIDELINES

The following guidelines are useful in all programs that use shared resources. They
address security issues because a runaway process, especially a privileged one, can deny
service to other users by requesting an extreme amount of resources.

4.2.1 Analyse All Return Codes

Virtually all function calls described in the X/Open Portability Guide, Issue 3, Volume 2,
XSI System Interface and Headers to Volume 4, Programming Languages inclusive
return numerical result codes. Programs should verify that each service request reports
success. In the case of failure, the programmer should ask:

• Should this failure be reported to the user?

• Does this failure affect the security of the program or of the system? Should it be
recorded in a log?

• Can the program proceed? Should the program retry the failed operation?

Often the answers to these questions are different for different types of error, in which
case the program must analyse the numerical value of the result code and handle each
case separately.

There are several notable causes of program failure:

• Section 4.4, Privileged Programs describes error returns from system calls that
suggest a security breach, and suggests ways in which the program should respond.

• Privileged functions can execute calls such as chroot (), which other functions cannot
execute successfully. However, the function or a copy of it may be executed without
its privileges. The program should detect this situation and exit cleanly if it is not able
to perform the user’s request.

• The fork () call can fail if there is insufficient space in the memory or in the process
table to create another process. The result code from fork () distinguishes the parent
process (result > 0) from the child process (result = 0). Programs often fail to test for a
negative result code, which indicates failure. Here is an incorrect example:

/ ∗ INCORRECT EXAMPLE∗/

int pid;

...

if ((pid = fork()) == 0) {

child_process_code;

exit(0);

}

parent_process_code;

...

In this example, the parent process executes parent_process_code regardless of
whether fork () succeeded. The code should be structured like this:

X/Open Guide (1990)
Security Guide, Second Edition Page : 49

Programming Guidelines Security for Programmers

/ ∗ CORRECT EXAMPLE∗/

int pid;

...

switch (pid = fork()) {

case 0:

child_process_code;

exit(0);

break;

case - 1:

report_error;

break;

default:

parent_code;

break;

}

• Programs should even check for error cases that seem impossible, since changes over
the life of the program may make those errors occur.

• Programs can test the global variable errno to obtain additional information on why
certain calls have failed. This can help the program decide how to respond, or
produce a more helpful diagnostic message.

User programs should not modify errno (except in the manner described by the
X/Open Portability Guide Issue 3). This ensures that the text obtained from perror()
or strerror() is valid and reasonable.

4.2.2 Write Portable Code

The X/Open Portability Guide defines many constants to account for different
implementations. Programs should always use the symbolic names for these constants
instead of coding the actual value that is correct for their current implementation. Where
a program’s constants could change in different implementations as a function of one or
more symbolic constants, you should write the appropriate formula, not code the value
that works at the particular time.

For example, the constant {OPEN_MAX} is defined in <limits.h> as the maximum number
of open files. At the start of a program that could run as a fork () process, you might want
to ensure that all files are closed. You might write:

for (fd = 0; fd < OPEN_MAX; fd++)

(void) close(fd);

The typical value for {OPEN_MAX} is 16. But if you coded 16 into your program instead
of {OPEN_MAX}, your program might fail to close all files if run on
an X/Open-compliant system where a process could have twenty files open
simultaneously.

4.2.3 Examine Your Environment

If your program makes assumptions (about the language, compiler, processor or
instruction set) that may differ among implementations, start your program with code

X/Open Guide (1990)
Page : 50 Security Guide, Second Edition

Security for Programmers Programming Guidelines

that tests your assumptions and reports failure if they are not met.

Any assumptions your program makes about its caller should also be verified. For
example, the program should test signals, examine the umask() under which it is running
and verify any files that the caller should have opened.

Give up unneeded privileges. Programs that do not need set-user-ID privileges may
have them anyway if someone applies the set-user-ID attribute to the executable file or to
a copy of it. Such a program should start by explicitly giving up privileges. For instance,
call setuid() to set your effective UID back to your real UID:

retcode = setuid (getuid());

4.2.4 Follow Programming Discipline

Remember that you are writing a program that will be maintained by other people,
perhaps after you have left the organisation. Their ability to maintain your work, and the
organisation’s ability to assure that your product preserves the security of the system,
depends on your communication. Typically, the most reliable method of communication
is to document your design, include explanatory comments liberally throughout your
program, and write the program so that it can accommodate future changes.

Not only is programming discipline necessary for the initial version of the program but it
must also be maintained throughout the program’s lifetime. Hence for every change to
the code, corresponding changes should be made to the design documentation, the code
comments and the change history.

4.2.5 Define Appropriate File Access Rights

Be sure to give the proper access rights to files created by your programs. You may not
want to rely on the process’s file mode creation mask, nor on the user ID and group ID of
the process. If necessary, call chmod(), chown() or chgrp() explicitly to set the appropriate
access rights. Remember that even for programs that are restricted to a group of users,
you may not make assumptions about the group ID because of the supplementary group
mechanism of X/Open-compliant systems. You should pay the same attention to files
you maintain for recovery and backup purposes and not give wider access rights to them
than you give to the data files themselves.

X/Open Guide (1990)
Security Guide, Second Edition Page : 51

Multi-Tasking Guidelines Security for Programmers

4.3 MULTI-TASKING GUIDELINES

4.3.1 File Access

Whenever you write or modify a program, you must consider the possibility that two
users may run the program at the same time. If this makes it possible that two processes
may use the same file, you must ensure that they do so in an orderly way.

Static Files

Most public files are not meant to change. Some, like program image files, never change
once they are installed. Programs do not need to anticipate competition for these files,
since the exact access sequence does not matter when processes are simply reading the
files.

Some application packages are designed so that a file containing application data is
read-only, at least during multi-tasking. For example, a transaction package may
perform posting functions as a ‘‘batch’’ at a time of day when transaction processing is
not occurring. This eliminates problems with simultaneous writes to certain files, if all
programmers obey the plan.

File Locking

If a process is going to modify a file’s contents, other processes must neither read nor
write to the file at the same time without precautions. A process independently reading
the file might read a version of the file that was only partially updated by the modifying
process and therefore contain inconsistent data, which could lead to a malfunction. Two
processes trying to write to the same file at the same time without precautions could
interfere with each other. Each process’s in-memory copy of the disk data might not
contain each other’s changes. The second process that wrote to disk might therefore
undo some of the changes that the first process applied to the file.

A simple way to prevent simultaneous access to a file is for each modifier to make a copy
of the file and to apply the modification to the copy. (Other potential modifiers, detecting
that a copy existed, must delay their attempt to modify the file.) Once the modifier has
finished the change to the file, it uses the link() call to make the old name point to the new
data. The change seems instantaneous to all other processes.

If the modifier places the copy of the file in a temporary directory, programmers and
users should read the warnings in Section 3.3.2, Temporary Directories.

File locking by changing links is adequate for small files whose contents undergo changes
infrequently.

Record Locking

An X/Open-compliant system supports locking of individual records in files. This is the
preferred method of preventing simultaneous writes to files. The fcntl() system call
gives a process exclusive access to a single record in a file, as in the following example.
All other processes lose their ability to read or write to the locked record, but are still able
to use the rest of the file normally.

X/Open Guide (1990)
Page : 52 Security Guide, Second Edition

Security for Programmers Multi-Tasking Guidelines

/ ∗
∗ Example of file locking with fcntl

∗/

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

main(argc,argv)

int argc;

char ∗argv[];

{

int fd;

struct flock lck;

if (argc != 2) {

fprintf(stderr,

"Usage: %s filename \n", argv[0]);

exit(1);

}

/ ∗ open file for reading ∗/

if ((fd = open(argv[argc - 1], O_RDONLY)) == - 1) {

fprintf(stderr, "%s: Cannot open %s \n",

argv[0], argv[argc - 1]);

}

/ ∗ set up location and size of segment lock ∗/

/ ∗ offset from start of file ∗/

lck.l_whence = SEEK_SET;

lck.l_start = (off_t) 2;

lck.l_len = (off_t) 10;

/ ∗ lock the segment ∗/

lck.l_type = F_RDLCK;

fcntl(fd, F_SETLK,&lck);

/ ∗ read the segment ∗/

/ ∗ unlock the segment ∗/

lck.l_type = F_UNLCK;

fcntl(fd, F_SETLK,&lck);

}

Recovery from Locks

Applying locks to files has security implications in that if your program fails with locks
outstanding, it can deny service to many users. Programs that lock files should check exit
status codes from any system call and ensure that they remove their locks as soon as they
are no longer needed.

X/Open Guide (1990)
Security Guide, Second Edition Page : 53

Multi-Tasking Guidelines Security for Programmers

If a program hangs with locks outstanding, the locks are easy to clear if the program uses
temporary files. You can manually delete the copied file or change links. If the program
locks individual records, you must find the failed process and issue kill . This releases
any records that the process locked.

Deadlocks

Security-related programs must be especially careful to avoid deadlocks. A
recommended technique is for a program to obtain all locks prior to performing its real
function.

In the case of a deadlock occurring, kill() can recover the situation. One method of
detecting and managing deadlocks is for a program to create a subprocess in which to
manage the locks and perform its critical function. The parent, meanwhile, imposes a
timeout interval on the subprocess so as to detect a deadlock.

4.3.2 Subprocesses

The fork () call lets a program create another process. In this way the program can specify
multiple actions that take place in parallel.

Shared Open Files

To communicate with a subprocess, the parent often opens files. The subprocess can use
these files. A process that is about to create a subprocess with fork () should explicitly
close all files it has opened except those that the subprocess will need. This is especially
necessary for privileged programs where the subprocess may release its privileges.

Opening files is also a way to communicate with different programs that a single process
chains to by calling one of the exec functions. The successor program has continued
access to the files that its predecessor opened. Programs should therefore close all
unrelated files before calling one of the exec functions. An alternative is to use fcntl() to
set the FD_CLOEXEC flag on these files

Environment

When a process calls fork (), the subprocess receives an exact copy of the parent’s
environment. If a program chains to another program by calling one of the exec functions,
it may specify a different environment for the target program. Section 3.4, Secure
Environment describes the importance of a secure environment. For example, the PATH
variable, if set incorrectly, can cause a process that executes the shell, sh, inadvertently to
obtain files from an improper directory.

Signals

Subprocesses inherit the signals set by the parent process before calling fork (). Each
process should examine its signals. Subprocesses that implement background activities
often explicitly specify SIG_IGN for some signals, so that they will not respond to real-
time events such as keystrokes.

X/Open Guide (1990)
Page : 54 Security Guide, Second Edition

Security for Programmers Multi-Tasking Guidelines

The following is a useful example of code to reset a program’s environment:

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

main (argc, argv)

int argc;

char ∗argv[];

{

mode_t old_mask;

int sig, fd, max_open;

struct sigaction ∗sig_state;

sigset_t set;

/ ∗
∗ Reset standard error to ensure the arrival

∗ of error messages at the terminal.

∗
∗ Similar action may be necessary for standard

∗ in and standard out.

∗/

freopen ("/dev/tty", "w", stderr);

/ ∗
∗ Exit if unable to determine

∗ highest signal number

∗/

#ifndef NSIG

fprintf (stderr, " NSIG not defined\n");

exit (1);

#else

/ ∗
∗ Allocate space for signal structures

∗/

sig_state =

malloc (sizeof (struct sigaction) ∗ NSIG);

if (sig_state == NULL) {

fprintf (stderr, "malloc fails\n");

exit (2);

}

X/Open Guide (1990)
Security Guide, Second Edition Page : 55

Multi-Tasking Guidelines Security for Programmers

/ ∗
∗ Obtain and save all signal states

∗/

for (sig = 1; sig < NSIG; sig++)

if (sigaction (sig, NULL,

sig_state + sig) == -1) {

fprintf (stderr, "invalid signal\n");

exit (3);

}

/ ∗
∗ Close all open files except for

∗ ones expected to be open.

∗/

max_open = (int) sysconf (_SC_OPEN_MAX);

for (fd = 0; fd < max_open; fd++)

if ((fd != fileno(stdin)) &&

(fd != fileno(stdout)) &&

(fd != fileno(stderr))) {

if (close(fd)) {

fprintf (stderr, "close fails\n");

exit (4);

}

}

/ ∗
∗ Save the old mask and specify a more

∗ secure mask.

∗/

old_mask = umask(˜(S_IRWXG | S_IRWXO));

/ ∗
∗ Remainder of program follows.

∗/

#endif

}

4.3.3 Unrelated Processes

Signals

A process can send a signal to another process (see Section 2.5.2, Access to Processes).
The X/Open Portability Guide specifies a set of ‘‘user-defined’’ signals, which should be
used in preference to the signals reserved for bus, keyboard, protection or other events
for inter-process communication.

Signals effect one-way inter-process communication. The operating system keeps track
of signals even while the receiving process is dormant; it may or may not keep track of
multiple occurrences of the same signal. Unless the receiving process acknowledges the
signal by sending a signal back to the first process, multiple requests for service may

X/Open Guide (1990)
Page : 56 Security Guide, Second Edition

Security for Programmers Multi-Tasking Guidelines

produce only a single delivery of the service. A signal might even be completely ignored
because the target process terminated or disabled the signal. In these cases, a
combination of signals and messages should be used. Messaging can be implemented
using X/Open IPC mechanisms, if supported, or FIFOs. The sender should identify itself
by a message specifying the requested service, which it notifies to the receiver by means
of a signal.

The X/Open Portability Guide, Issue 3, Volume 3, XSI Supplementary Definitions
defines shared memory, semaphores and message queues. These are optional techniques
that effect inter-process communication. They have a unique identifier, owner, group,
permissions and attributes, just like files. You can control access to IPC objects in the
same way as for files. These optional IPC objects may produce more reliable inter-
process communication than that produced by reliance on signals alone.

FIFO Special Files

All X/Open-compliant systems support the ‘‘FIFO special file’’ mechanism for inter-
process communication. You call mkfifo() to create a FIFO special file for reading or
writing, give it a pathname, and specify its attributes and permissions. You should give
FIFOs no greater permissions than are needed to effect the communication.

Temporary Files

In some situations you need to ensure that unrelated processes do not have access to a
program’s data, such as temporary files. A named file is addressable and accessible to
any process with sufficient authorisation. The usual way to effect temporary files on an
X/Open-compliant system is with tmpfile(). Although the temporary file appears in no
directory, it remains in existence for the duration of the process, because the process
retains a reference to the file. The process can pass the file to subprocesses through fork ()
or to other programs through one of the exec functions. When the last reference is
discarded, either explicitly by a call to close () or implicitly by a process exit, the
temporary file ceases to exist.

X/Open Guide (1990)
Security Guide, Second Edition Page : 57

Privileged Programs Security for Programmers

4.4 PRIVILEGED PROGRAMS

Section 2.6, Set-User-ID Programs and Section 2.7, Privileges define the set-user-ID and
set-group-ID attributes and privileged programs. In X/Open-compliant systems, a
privileged program typically obtains more power than it needs in order to do its job. For
this reason, privileged programs should take special precautions, and should implement
the principle of least privilege themselves by reducing their power when appropriate.

• Identify the user. As your program begins, the set-user-ID attribute may have
changed the process’s effective UID. The program’s behaviour, and its ability to
perform sensitive operations, depends on the effective UID. However, the process
still identifies (as the real UID) the identity of the user that invoked the program. The
getuid() call obtains this information.

• Consider using an ‘‘authorisation file’’: i.e., a file that lists the users who are entitled
to use the privileged program. In this way the program is written so that it exits
without performing service if invoked by a process whose real UID is not found in the
authorisation file.

The access () system call checks file access based on the real UID. That is, it tells you if
the user could have gained access to a specified object without the privileges it gained
from your program.

For example, a program might require files in a directory that the typical user has no
permission to read. The programmer finds it acceptable to give the user access to
these files under the control of the program, so the program is given the set-user-
ID/set-group-ID attributes. However, the user may specify other files, but the
programmer wants to keep the user from taking advantage of the program’s set-user-
ID/set-group-ID powers. In this situation the access () system call confirms that the
user has independent permission to use a specified file.

• Log all uses. The privileged program should create a log file to record all uses of the
program. Take advantage of the program’s privileges and locate the log file in a
directory that the user could not otherwise gain access to. Ensure that the log file has
no permissions for users other than the owner; for example, give it

- r w - - - - - - -

Record at least the date and time of use, the user command and the user’s real
UID/GID. (The effective UID is typically a constant because the program is set-user-
ID.)

Always log any abnormality or apparent security violation, even unsuccessful
penetration attempts. Logging can be achieved by sending mail . Section 6.5.4,
Contents of Objects gives a useful example of this for shell scripts.

• Handle security errors intelligently. If the program detects that its current user is not
authorised, it should always log the incident.

• Deny information to penetrators. If your program’s user authentication tests fail,
presume that the user is trying to penetrate the system and design your program to
disclose as little information as possible.

When producing numerical return status codes, one number should cover all types of
security violations. Alternatively, a security violation should be covered by the same

X/Open Guide (1990)
Page : 58 Security Guide, Second Edition

Security for Programmers Privileged Programs

result code that applies to attempts to use an unimplemented feature.

Never display a diagnostic message that discloses the nature of the security violation.
For instance, never list the name of the authorisation file the user’s UID did not appear
in. Always test for a security violation before trying to do any part of the prohibited
operation. Do not provide information about whether the operation would have
succeeded for an authorised user.

You may elect to program a small delay before issuing the diagnostic message. This
hinders programmed attempts to penetrate your program by systematically trying a
variety of inputs.

• Give the administrator flexibility. Have your program use command line arguments,
environment variables or configuration files to stipulate anything that an
administrator might need to specify to ensure your program’s security. This includes
script names and default directories. Particular names hard-coded into your program
may not be secure areas at some installations.

• Give up privileges as soon as possible. Section 4.2, Programming Guidelines
suggests starting a program with a form of the setuid() call that forfeits unneeded
privileges granted by a program’s set-user-ID attribute. You can also call setuid() later
in the program to give up privileges after taking steps that required privileges.

• Give up indirect privileges. Whether your program exits successfully or
unsuccessfully, always delete temporary files. If a penetrator finds a program that
produces suitable files, even an unsuccessful use of that program may be sufficient to
empower another program to breach security. If temporary files contain security
relevant or confidential information, you might need to catch signals to ensure they
are deleted should the process be abnormally terminated.

You should close files immediately after using them, especially if you used special
privileges to gain access to them. Doing this, rather than relying on the automatic
mechanism that fcntl() provides, makes it more likely that the files will be closed if
the program ends abnormally in ways that you do not anticipate.

• Use ‘‘privilege bracketing’’ whenever possible. An X/Open-compliant system
supports a saved set-user-ID and saved set-group-ID which allows set-user-ID and
set-group-ID programs to change their effective UID and GID. Privileges should be
removed immediately after program startup. When privileges are needed, surround
that code with calls of setuid() and setgid() as appropriate. Privilege bracketing in this
manner reduces the chance of privilege abuse.

If the privileged program allows escapes to other programs (e.g., sh), it must first
release its privileges.

• Consider having the program use a protected subsystem (see Section 6.5.5, Protected
Subsystems). This makes the program incapable of being applied to the system at
large.

X/Open Guide (1990)
Security Guide, Second Edition Page : 59

Special Cases Security for Programmers

4.5 SPECIAL CASES

4.5.1 Shell Scripts

The permission scheme in the X/Open Portability Guide lets you enable a class of user to
execute a program but not determine its contents. You do not have this flexibility when
the program is a shell script. To execute a shell script, a user must have both read and
execute permissions. This lets the user view the exact procedure the shell script uses.

Programs that are essential to security should be written in a language such as C and
made available to general users only with execute permission to the executable file. A
procedure implemented as a script cannot be protected adequately by including
authentication and logging in the script. Any penetrator executing the script could make
a copy of it and remove those features. Also bear in mind that a shell script should never
have the set-user-ID or set-group-ID permissions set.

4.5.2 Daemons

A daemon is a background process that performs some service independently of any
user. Typically, a user requests action from the daemon. The daemon may take the
action later; the user may not then be present at a terminal.

The user typically invokes a ‘‘helper program’’ to communicate with the daemon. The
helper specifies what action the daemon should take by sending specific files to the
daemon or by using various inter-process communication techniques. For example, at is
a helper program for the cron daemon.

Follow these guidelines when writing daemons:

• Study your use of privilege. The helper program typically has to be a privileged
program to communicate with the daemon, but the daemon may not have to be
privileged. The daemon may be owned by a pseudo-user and perform useful work
by manipulating objects owned by the same pseudo-user, to which users could not
gain access themselves.

• Structure the daemon’s work. After the daemon initialises, its activity should be
divided into discrete tasks that carry out a separate user request. For example, one
pass through the daemon’s main loop might correspond to a single use of the helper
program.

• Verify the user’s identity. Unlike a privileged program, a daemon cannot call getuid()
to determine the real UID of the process that is requesting service. The helper
program, as a privileged program, should verify the real UID of its requester and
include that in its request to the daemon. If the helper requests service by passing a
file to the daemon, the daemon should do more than just examine the file’s owner in
order to determine correct identity. In some systems, any user can call chown() to
change a file’s owner (to give it away), and by using this technique a penetrator could
convince the daemon that a request came from someone else.

• Use resources carefully. Always bear in mind that the daemon usually continues
running indefinitely. For example, release terminals as soon as possible or you may
delay a new session at that terminal.

X/Open Guide (1990)
Page : 60 Security Guide, Second Edition

Security for Programmers Special Cases

4.5.3 Indexed Sequential Access Method (ISAM)

The X/Open Portability Guide, Issue 3, Volume 5, Data Management describes an
Indexed Sequential Access Method (ISAM) for managing data files. A typical X/Open-
compliant system implements ISAM through library routines instead of system calls.
System calls could impose security restrictions based on the user and the purpose of the
call. Library routines have no special ability to restrict certain callers.

If you are using ISAM routines to implement a sensitive database, you must use other
protection techniques that the operating system interfaces provide. For example, make
sure that your data access technique is the only one that can give a general user access to
the sensitive files.

A typical way to do this is to apply protection to the data files. For example, there could
be a pseudo-user that is the owner of the data files, or the files could belong to a special
group to which no real user of the system belongs. Permissions on the data files prevent
general users from any access to them.

Once the files are protected in this way, users must invoke a program with the set-user-
ID or set-group-ID attribute to gain access to the files. This program must authenticate
the user’s identity and the user’s authority to perform the desired operation on the files.
Dependent on the data, users decide whether the contents of files should be closed.

In situations where many users need to update files simultaneously, the simplest way of
implementing an ISAM application may be to write a daemon (see Section 4.5.2,
Daemons) and have general users invoke a helper program to ask the daemon to read or
write to the file.

4.5.4 Structured Query Language (SQL)

Structured Query Language (SQL) is a language and a set of corresponding routines that
implement relational databases. On many X/Open-compliant systems, SQL is
implemented using ISAM (described above) and this means that SQL raises the same
security issues as ISAM.

File Security

SQL information is stored in files, which must be accessible to general users unless you
use an access scheme via a privileged program.

Imprecision of Authorisation

As SQL is defined, the user who creates a relation (a table) owns it. That user can
selectively grant and revoke access to other users but a user thus authorised has access to
the entire table. This is because each table is a separate file.

You may often need to restrict certain users by row or by column. For instance, you may
want to deny some users information on certain records (certain persons, data points,
accounts, or so on). Or you may want to deny some users certain data fields pertaining
to all records in the database (for example, the salary or telephone-number field). SQL
lets you do this, but only by your designing the database as separate tables; this reduces
the efficiency of such a database.

X/Open Guide (1990)
Security Guide, Second Edition Page : 61

Special Cases Security for Programmers

Inference

Inference means a user’s ability to gain information by indirect query. It can be a security
problem in any database system. Although a database may restrict a user from asking
for certain information, the user can infer the desired information by asking related
questions that are not restricted.

Other than revoking a user’s access to a given relation, you can make inference less likely
by forcing query sizes to be large, or by randomly restricting the data released with each
query. Each approach has practical disadvantages.

X/Open Guide (1990)
Page : 62 Security Guide, Second Edition

Chapter 5

Managing Security

To establish a security policy for a computer system based on an assessment of the
security risk, an administrator should consider:

• the value of the system and its contents

• the potential threats to the system

• the system’s vulnerability to the threats

A good security policy sets out cost-effective countermeasures against the risks.

This chapter considers the different aspects of a system’s value and the threat assessment.
It then describes the many ways in which the administrator establishes and maintains a
secure X/Open-compliant system.

Related Information

Chapter 6, Administrative Procedures gives technical details of specific operations done
by the administrator. Section 4.1, Programming Management gives advice for
programming managers.

X/Open Guide (1990)
Security Guide, Second Edition Page : 63

Establishing Security Managing Security

5.1 ESTABLISHING SECURITY

5.1.1 Occasions for Re-evaluation

A common situation that causes an organisation to study security arises where
management or the administrator believes that a system is insufficiently secure.
Dissatisfaction with the previous state may be the result of a new factor, such as:

• A new computer system, for which security policy has not been devised.

• A new administrator, either newly hired or assigned from other duties, who sees a
need for increased security.

• Renewed management interest in potential security problems, perhaps based on
events within the company, stories heard from other managers or news stories.
Security often undergoes complete re-evaluation at this time.

Re-evaluation may take place if:

• The company’s security strategy enforces regular re-evaluations as is required by
some standards like ISO 9000.

• The legal situation changes (e.g., new laws to enforce data security, the system begins
to use data which is subject to existing laws).

Section 1.1, Components of Security explains that the computer system has a value and
the goal of security is to provide assurances that the integrity of the system will be
preserved. If the organisation responds to the need for greater security by simply
increasing funding, specific problems may be solved but the funds may not be spent
optimally. A better approach is to evaluate the entire security policy to see whether it
meets the goal of security. In other words, instead of asking, ‘‘How much more security
does this computer need?’’, the organisation should ask, ‘‘How much security, and in
what forms, will ensure the preservation of the system’s integrity?’’

Before you can answer that question, you need to take an inventory of the system’s value.

5.1.2 Value Assessment Inventory

The following aspects of a computer system that needs to be protected by the security
policy should be considered when assessing its value.

Physical Equipment

Physical equipment has a readily quantifiable value that the organisation should relate to
the level of security required.

Physical security is required to protect physical assets (see Section 1.3.1, Physical
Security).

Investment of Time

Purchased software can be replaced or purchased anew. But proprietary software,
including the installation’s custom administration programs, the company’s custom
applications and user data, can only be recovered by repetitious work on the part of the
employees. The value of this software to the organisation can be quantified by estimating

X/Open Guide (1990)
Page : 64 Security Guide, Second Edition

Managing Security Establishing Security

how much it would cost to replace the software.

Frequent, secure backups and off-site storage can protect the products of time and effort
already invested from all dangers except deliberate attack. To protect against deliberate
attack, adequate software security is required.

Availability

The denial of service by a computer could have a quantifiable effect on the organisation’s
work; i.e., in lost business during the denial of service, and the cost of procuring and
converting to other computing alternatives.

Protection against denial of service usually relies on procedures in the computer centre
itself. Denial of service in the case of single terminals or distributed data is less likely to
incur a large cost.

Sensitive Data

A typical computer owned by a commercial organisation will contain sensitive data of
some sort, e.g., a company’s proprietary process, trade secrets and customer lists. Illegal
access to personnel data held on a computer could help a competitor lure away key
people. An organisation may be able to quantify the loss owing to disclosure of sensitive
data by estimating lost profits or lost revenues.

5.1.3 Justifying Security

The justification for security will depend on many factors (including existing security
arrangements and non-monetary factors), and the type and level of security adopted can
be assessed by using risk analysis procedures. Multiplying the prospective cost to an
organisation of a security breach by its probability of occurring produces a useful
estimate of risk. Although increased security decreases the probability of a breach, there
is a diminishing return with each additional security step.

Diminishing Returns

An initial investment in security is usually justified by the significant reduction in risk
that it produces. At a certain level of investment, increased security may not reduce the
probability of loss enough to justify the additional investment.

Existing Security

Most organisations already have a security policy in place for non-computer-related
assets. For example, they may restrict physical access to the workplace and require
identification badges. Large multi-user systems are often already located within a
dedicated environment, such as a laboratory, and it is often inexpensive to establish
tighter physical security over such an area.

X/Open Guide (1990)
Security Guide, Second Edition Page : 65

Establishing Security Managing Security

Non-Monetary Factors

There are factors other than quantifiable losses that may prompt an organisation to
impose or tighten a security policy:

• The viability of the organisation may be so threatened by certain types of security
breach that management must elect to guard against them even though they may be
unlikely.

• Contracts with customers or with suppliers of software for the computer may specify
a degree of security that the organisation must take in order to protect the
confidentiality of data.

• Duty of care. If a computer contains personnel data, the employees may have a legal
right to compel the company to take certain precautions to protect their privacy.

• Goodwill and trust. Organisations in sensitive fields, such as banking, would suffer a
loss of credibility if a publicised security breach occurred.

Other Approaches

In rare cases where certain security procedures are too costly, not certain to be effective,
or cannot be imposed for political reasons, management may take a different approach,
such as by insurance to compensate for any loss or by arranging alternative computing
facilities should a breach occur. However, these approaches are less attractive than
providing security because they are reactive, while security is preventive.

5.1.4 Threats to Security

Threats to the availability, integrity and confidentiality of the system may arise from any
of the following sources.

Inadvertent Breach

Security measures should be such that random typing mistakes or other common
mistakes do not result in denial of service or irretrievable destruction of data.

Impatient Employees

A security policy must be mandatory enough and/or popular enough that all employees
will obey it even though they may have to spend extra time doing their jobs.

Improper Employee Use

A security policy must effectively isolate sensitive data from non-authorised access. It
must, for example, be able to prevent damage from being inflicted by a disgruntled
employee or ex-employee.

Outside Penetration

Examine the external attachments to the computer (such as telephone and network
connections) and ensure that they will adequately prevent penetration.

X/Open Guide (1990)
Page : 66 Security Guide, Second Edition

Managing Security Establishing Security

A security policy must be constructed so that it caters for the variety of motives for
penetration. Penetration by ‘‘hackers’’ may be motivated by curiosity or intellectual
challenge. Other motives include:

• specific disclosure Theft of data, for example, by an unscrupulous competitor, who
is likely to be more determined than a hacker, but whose goals
are more limited.

• personal profit Electronic forgery, or theft or misuse of computer services.

• sabotage Denial of service, perhaps by an ex-employee or terrorist.

Other Threats

A proposed physical security must guard against natural calamity, such as fire, flood or
earthquake. It must protect against armed attack and provide for alternative plans in the
case of disruption of routine that might occur in the case of war or civil disorder.

Transition to a Secure System

Section 6.2, Transition to a Secure System provides administrative procedures that
review the security of an existing X/Open-compliant system.

X/Open Guide (1990)
Security Guide, Second Edition Page : 67

Ongoing Tasks Managing Security

5.2 ONGOING TASKS

The goal of security is to provide assurances of continuing protection. Such a goal
requires a continuous process involving planning, communication, education and
personal attitudes.

5.2.1 Planning

The security policy you devise should be in written form, and be reviewed and approved
by sufficiently senior management to ensure compliance by all users. It should make
provisions for each of the seven forms of security listed in Section 1.3, Forms of Security.
The organisation should determine that the proposed policy protects against the threats
to the system listed in Section 5.1.3, Justifying Security. To make security awareness a
continuous process, the policy must operate in such a way that it can be revised as
conditions change.

In this way, the organisation will effect security by design, not as a result of reactive
efforts on your part.

A prerequisite for security is that the computer systems should be clearly documented.
Where many machines are closely related or are operated by common staff, a uniform
structure is important and takes precedence over special requests from users.

Job Descriptions

You may find it useful to include security considerations in job descriptions. Defining
security duties in an employee’s job description can give the employee greater motivation
and make it automatic for new employees to learn the organisation’s expectations for
security.

Chains of Command

Chains of command are planning aids that ensure security duties are carried out even if
key persons are unavailable. Overdependence on a single employee is not advisable, and
therefore every important security function should have a responsible alternative person.

5.2.2 Communication

Much of your job depends on receiving information from other departments. (Much also
depends on giving information; see Section 5.2.3, Education.)

New-User Information

You must define a procedure for obtaining timely information from site security,
personnel, purchasing or project management on new employees and contractors who
will need to use the computer.

You must define how to decide each new user’s needs for computer access and special
authorisations, such as physical access to the computer room. You or your operations
staff interpret these requirements, assign user names, assign users to groups and set
appropriate authorisations.

X/Open Guide (1990)
Page : 68 Security Guide, Second Edition

Managing Security Ongoing Tasks

The process you define must respond to changes in the organisation. For example, users
may need to change groups as their project assignments change. An employee writing a
software package for other users may require special authorisations to install and test the
package.

The process should provide for periodic re-evaluation of the authorisations that are
granted to certain users. For example, access to the computer room is an attribute that
can be taken away as well as given (e.g., when an employee’s role changes).

The process must provide for automatic notification when an employee or consultant
leaves the organisation, and comparable input from project management when a
computer user ceases to work on the project concerned. This input should automatically
cause a computer security officer to remove authorisation for that person. Such action is
crucial because the reason the person leaves the organisation may also provide the
motive for breaching security.

Site Security

You must establish regular lines of communication with the site security department,
since your security policy must mesh with, and take advantage of, the organisation’s
existing security policy for non-computer assets.

Site security is usually responsible for physical security, which often includes emanation
security (see Section 1.3.2, Emanation Security). In writing the security plan and in
assuring ongoing security, you need to know what level of physical security is already
present. You need to inform site security if additional security is needed to physically
protect the computer room.

Building Engineering

Building engineering, for the computer room or laboratory, is an aspect of physical
security for which the site security department may not be responsible. You may instead
have to work with the site engineers. To assure availability, one should protect against
incidents caused by natural or man-made disasters.

Remote Connections

If you have communications lines to other computing centres, establish contact with the
administrator at these centres. Regular meetings with these administrators may be
useful to exchange information on security issues. This may help to avoid errors which
have already been encountered.

Should one of the centres be the subject of an attack, it should warn the others as soon as
possible. For this purpose, you must establish a route that allows rapid notification of the
administrator and a means by which the authenticity of the notification can be verified.
This is likely to involve a ‘‘callback’’. Where such notifications are authentic, you may
wish to close down the service for a certain time.

X/Open Guide (1990)
Security Guide, Second Edition Page : 69

Ongoing Tasks Managing Security

5.2.3 Education

Management

As the primary advocate of security, you must often educate management on the true
value of the computer system and the need for a security policy. Preservation of integrity
is a potent selling point for establishing a security policy, but you may have to overcome
the resistance to some effects created by the security imposed. For example,
management may value an informal work environment, or, once security is imposed,
managers may find they are impeded by it, since a management role in the organisation
does not necessarily justify security authorisations on the computer.

You must make management aware that occasionally you may require their support to
establish cooperation from all classes of computer user.

Operations Staff

A security policy must include a process by which new employees learn the
organisation’s security policy. Since special authorisations are a function of an
employee’s role, not seniority, new employees in certain jobs may acquire authorisations
shortly after they are hired. This should not occur until they have received suitable
training on the security implications of their authorisations.

A new operator may be asked to take an action that has security implications. Even
before the nature of that action is learnt, the operator should know the security policy
well enough to know whether or not to seek administrative approval for the action.

System Programmers

The security policy puts constraints on the design, coding and review of system
programs (see Chapter 4, Security for Programmers), and you must define a way for
these constraints to be routinely conveyed to programmers. Teaching materials will be
more effective if they include examples of both proper and improper programs.

The educational effort should be directed at all phases of program development, because
it is easier to design a program with security in mind than it is to add security as an
afterthought.

To help overcome resistance that might be met, the educational effort should emphasise
the benefit of the continuing availability of the computer and the preservation of the
programmer’s work. Some programmers view security as an issue that is not germane to
their assigned task, while some prefer to concentrate on technical issues, perceiving
security as a personnel or political issue.

Users

All users must take action to make security work (see Chapter 3, Security for Users).
While or before learning their task on the computer, new users should learn routine
security procedures.

You can help new users by providing shell scripts, procedures to protect files and
warnings about executing programs.

X/Open Guide (1990)
Page : 70 Security Guide, Second Edition

Managing Security Ongoing Tasks

Updates

Security policy may change from time to time, as the organisation receives new hardware
and software, as the use of the system changes and as dictated by actual breaches.

The education plan must include a way of conveying policy changes to each of the
groups listed in this section.

5.2.4 Attitudes

A security policy imposes short-term costs on all computer users. (In this context, costs
refer to, for example, the loss of freedom incurred by restricted access or the extra work
involved in making something secure.) Although a well-devised security policy is worth
while, its benefit is intangible and long-term, and not all users will perceive its
worthiness at all times.

To foster universal compliance with the security policy, you should consider the effects
of your actions, including subliminal or motivational effects. In particular, the following
points should be borne in mind.

Avoid Favouritism

You seek to impose a security discipline on all users. Users will accept the policy most
readily if they perceive that the policy treats all similarly situated users equally. Over
time, the organisation may come to trust different employees to different degrees. But
you will give widest effect to the security policy by avoiding the appearance that
application of the policy is based on a level of trust. This may avoid the situation
whereby users feel that being asked to obey certain rules implies a lack of trust.

It motivates by example for employees whom the organisation clearly trusts, notably the
administrator, to scrupulously obey the rules.

It harms motivation if you seem hypocritical or do not elect to pay the costs that the
policy imposes on others. For example, an administrator who gave relatives a tour of the
facility, without the clearances that other employees would require, would produce
resentment.

Use Courtesy

An employee’s opinion of the administrator or operations staff, in the extreme case, can
become a motive for disobeying security policy or trying to penetrate the system. It is
therefore important that you apply the security policy with courtesy. In particular, do not
make accusations that you cannot substantiate.

Avoid Boasting

Conspicuously advertising the level of security you have achieved may in itself motivate
someone to try to penetrate the system.

X/Open Guide (1990)
Security Guide, Second Edition Page : 71

Security Breaches Managing Security

5.3 SECURITY BREACHES

If a breach occurs, restoring security has the highest priority and demands immediate
action.

5.3.1 Identifying the Breach

You may discover a potential security problem in the following ways:

• Review of a log file shows unusual activity on the computer, indicating possible
unauthorised use.

• A user reports a loss of data or denial of service. A particular example is any case of a
complete system crash.

• An event outside the computer environment occurs suggesting that unauthorised
disclosure of computer data has occurred.

5.3.2 Determining the Cause

Restoring lost data will not close the security breach. You must identify the cause of the
loss and take steps to prevent its recurrence.

The first step is to examine the audit logs that recorded events around the time of the
breach. They may show unusual user behaviour or identify unauthorised use of special
privileges. Information from system users and from ‘‘sign-in’’ sheets may indicate
improper use by imposters.

Examine other sources of information, such as handwritten logs and hardware field-
service records. You may find a correlation here that could identify the cause of the
problem.

5.3.3 Repairing the Breach

If you can prove that the failure affected only a portion of the system, such as a single file
system, you can limit the amount of restoration needed. Otherwise, you must work to
restore the integrity of the entire file system.

If you cannot trace the cause of the problem, restoring integrity involves an analysis of
every sensitive data file and restoration of every security-related program in the affected
portion, either by recompiling or rebuilding programs, or copying known unbreached
versions from distribution media or from secure backup media. (Observe the cautions in
Section 3.5.5, Backup and Restore about the inherent security problems of backup
media.) You should also restore the operating system code from a known unbreached
version, and use diagnostic programs supplied by the vendor in order to eliminate the
machine as a possible cause of the problem.

If the organisation has achieved true security even in the absence of problems, you can
back up files from a known date and assure users that the problem will not recur.
Otherwise, you may be replacing corrupted software with equally corrupted software.

5.3.4 User Cooperation

User cooperation is typically needed to identify the cause of the breach and replace any
lost data. You must notify users of the impact the breach will have on them. If you

X/Open Guide (1990)
Page : 72 Security Guide, Second Edition

Managing Security Security Breaches

cannot identify the cause, you must inform users of the possibility of continuing
problems, and of the timetable for restoring the system.

In any malicious or unexplained breach, require all users to select new passwords as
though they were new users. If your system has password aging, declare all passwords
to be aged, so that the system itself requires each user to select a new password.

5.3.5 Responsibility

If the breach was willful and caused a loss, you will want to hold the penetrator
responsible. In the case of an external penetration, such as by a competitor, the
organisation may sue, and you will have to participate to enable the recovery of
damages. Even in cases where the organisation cannot win restitution for its losses, you
will want to determine who is responsible as a means of strengthening the security
policy.

To allow your company to sue a penetrator, you must be prepared to give proper
evidence in court. The necessary actions, such as collection and storage of data for such a
purpose, should be part of the written security policy.

X/Open Guide (1990)
Security Guide, Second Edition Page : 73

Security Breaches Managing Security

X/Open Guide (1990)
Page : 74 Security Guide, Second Edition

Chapter 6

Administrative Procedures

6.1 PRIVILEGES

Many administrative procedures, if misused, could deny service to users, or corrupt or
disclose files. On a secure system, general users cannot do these things. The
administrator cannot do them either without first obtaining special authorisations. The
principle of least privilege dictates that a process should acquire only those privileges
needed, and only for as long as needed.

6.1.1 The Super-User

As a super-user you obtain appropriate authorisations by logging-in or switching to
another account with authorisations. Section 2.1, Users describes this mechanism and
explains how it can be implemented using /etc/passwd to hold user and authentication
data.

A user must type a correct super-user password before acquiring appropriate
authorisations. You should select and protect super-user passwords in the same way as
specified in Section 3.2, Password for general passwords. Disclosure of the super-user
password would have system-wide impact on security. It is necessary to change this
password frequently.

The principle of least privilege dictates that you use privilege only when necessary and
only for as long as necessary. The principle of personal accountability dictates that, each
time you use the super-user account, you do it in a way that identifies you personally.
There are several techniques for letting authorised users acquire super-user
authorisations:

• Have a single super-user account, with user name ‘‘root’’. You should require users
to use a utility such as /bin/su, not login , to switch to the ‘‘root’’ account. Users
establish the super-user shell as a subprocess of their normal environment, and have
already used login to record their identity. This method produces better logging of
the use of privileges if your /bin/su maintains a sulog log file. It also makes it easy for
users to revert to their login environment for routine procedures. Finally, there is a
single password giving access to super-user authorisations. In the case of a security
breach, you can quickly raise the system’s defences by changing this password.

A variant of this scheme specifies two administrator accounts. One of the accounts is
called ‘‘root’’, has a non-zero UID and cannot be used for login (e.g., it has an
impossible value of password). It is defined only for compatibility purposes. The
other account has a name known only by the administrator, has a UID of zero and can
be used to login. This increases the effort required by a penetrator.

• You can create several super-user accounts in the user database, giving a specific
individual responsibility for each one. Users should also have regular accounts for
actions that do not require privileges. If you experience problems with disclosure of
super-user passwords, this approach lets you trace the problem.

X/Open Guide (1990)
Security Guide, Second Edition Page : 75

Privileges Administrative Procedures

• Some advanced versions of /bin/su require entry of the correct super-user password
plus additional authentication.

• If possible, try to separate administrative tasks and associate them with different
accounts. Using set-user-ID programs tailored to the needs of operators,
authentication administrators, etc., avoids the need to give super-user privileges to
the account.

Guidelines for Becoming Super-User

• Plan your actions before becoming super-user. This helps ensure that when you
complete these actions, you will remember to revert to your login shell. Also, in case
of problems, you will know exactly what you planned and what you did.

• Understand what you are about to do. If you are about to become super-user at the
request of another user, you should understand the nature and implications of the
request. If it seems unusual or appears to contradict these guidelines, obtain
independent confirmation. For example, operators should seek approval from
superiors. Managers should read reference documentation in order to understand the
nature of the request.

• Do not delegate any task that requires super-user power: do it yourself.

• Try to use a terminal that is dedicated to administrators and physically and visually
protected from other users. Consider any unusual response during your login to be a
security breach. Find out what happened and why before you continue logging in or
take any action as super-user. Note especially the previous user of the terminal.

• Always type the full pathname for commands like /bin/su. Do not just type su, even if
it works. Depending on the integrity of your search path and the directories it points
to (see Section 3.4.2, Search Path), you could be tricked into running a Trojan horse
program planted by a penetrator (see Section 1.1.6, Types of Penetration). It would
typically capture the su password for the penetrator’s use.

Guidelines for Super-User Sessions

The intent of these guidelines is to make it impossible for you to execute a penetrator’s
program while you have super-user power.

• Use the ‘‘-’’ option of su. That is, type:

$ /bin/su -

This obtains the normal environment expected by the super-user account. Section
3.4, Secure Environment explains the importance of a secure environment. For
example, it obtains the correct working directory and search path.

• Use full pathnames to specify all programs you invoke as super-user.

• As super-user, never execute a program whose identity is in doubt, whose effect is
unknown to you, that has not been tested and reviewed or that resides outside a
system directory.

X/Open Guide (1990)
Page : 76 Security Guide, Second Edition

Administrative Procedures Privileges

6.1.2 Single-User Mode

Many X/Open-compliant systems allow single-user mode. The system may enter
single-user mode before time-sharing begins. The super-user can invoke single-user
mode in order to end time-sharing.

Single-user mode lets you perform actions such as backups, software installation and file
reorganisation, without the possibility of interference from or to sessions of general users.
These operations do not necessarily require super-user authorisations. When you
operate in single-user mode, you typically have super-user authorisation. When doing
something that does not require this authorisation, such as a backup, you should invoke
/bin/su as described in Section 6.1.4, Switch to Another User. In this situation /bin/su
obtains a lower authorisation (so that any mistakes have the minimum impact on the
system).

In single-user mode, the shell appears at the console (the terminal usually represented by
the special file /dev/console).

On a system that restarts in single-user mode, a penetrator with physical access to the
console and to the computer can bypass all software security to force a restart.

Daemons typically call sync() periodically to write changed data from memory to disk.

In single-user mode, daemons typically do not run, and so you should synchronise the
filestore manually after changing a disk file, to ensure that your change is applied to the
file system1.

6.1.3 Pseudo-Users

For many tasks, all the user needs is ownership of specific resources. You typically
define a variety of pseudo-user accounts for this purpose, rather than super-user power.
A pseudo-user is an account in the user database that does not correspond to a human
user of the computer. A pseudo-user has a password, a home directory and a login shell.
Like all other accounts, a particular user should have ultimate responsibility for actions
taken under a pseudo-user name. Pseudo-user accounts should not be shared.

A typical X/Open-compliant system has the pseudo-user account ‘‘root’’, discussed in
Section 6.1.1, The Super-User. The system may have other pseudo-user accounts,
without super-user power, such as the following:

acct The account that owns the accounting logs.
bin The account that owns most of the programs and system directories.
lp The account that maintains the printer spooling system. Other pseudo-user

accounts may exist for other spooled devices or systems.
mail The account used by the mail administrator. It is the owner of the mail

utilities and associated data files.
uucp The account that handles the uucp subsystem. It needs help from ‘‘root’’ to

1. On many systems this can be done by calling the sync utility, or, from the program level, by calling the sync()
function.

X/Open Guide (1990)
Security Guide, Second Edition Page : 77

Privileges Administrative Procedures

establish login accounts for remote computers.

As with the ‘‘root’’ account, divide any pseudo-user account into however many
accounts you need so that each person has a separate account. This permits
accountability. If you do so, you must set up groups of pseudo-users, as described in
Section 6.3.5, Adding Groups.

For example, with separate accounts, pseudo-users ‘‘uucp1’’ and ‘‘uucp2’’ both have
access (through group permissions) to the uucp subsystem. Typical X/Open-compliant
systems have the following groups:

admin The group for most system files and directories. Any object that
does not need different group and other permissions can be in this
group.

lp The group for line printer administrators.
mail The group for mail administrators. Mail administrators can

maintain the /usr/mail spool directory.
uucp The group for uucp administrators.

6.1.4 Switch to Another User

Section 6.1.1, The Super-User describes how /bin/su can be used to become the super-
user. Most implementations of /bin/su allow an argument to be specified, so you can
assume the identity of another user.

The form of the command is:

$ /bin/su - new_login_name

The ‘‘-’’ option ensures that you will use the environment that the specified user would
have if logging in normally. Omitting ‘‘-’’ retains your current environment. This can
conflict with other attributes of the specified user. It could result in your executing bogus
code planted by a penetrator.

The /bin/su utility requires you to type the correct password for the desired user (unless
you were the super-user).

You should use this form of /bin/su for two purposes:

• To reduce your authorisation when operating in single-user mode (see Section 6.1.2,
Single-User Mode) if you do not need the super-user power that comes with single-
user mode.

• To make a transition into a pseudo-user account (see Section 6.1.3, Pseudo-Users).

Do not use /bin/su to assume the identity of a general user. Although you might want to
do this in order to change the ownership, attributes or permissions of an object that the
user owns, there are two adequate alternatives: (1) have the actual user assist in the
operation, or (2) become the super-user. These alternatives make it unnecessary for any
administrator or operator to learn the password of a general user.

X/Open Guide (1990)
Page : 78 Security Guide, Second Edition

Administrative Procedures Transition to a Secure System

6.2 TRANSITION TO A SECURE SYSTEM

This section describes the aspects that should be reviewed when making the transition to
a secure system.

6.2.1 Users

Your review must determine who is authorised to use the computer and for what
purpose. You must change the user database to reflect the current set of users. You will
typically find several lines that correspond to former employees or to modes of operation
that are no longer relevant (for example, obsolete pseudo-user accounts).

On implementations that map user and authentication data into a file such as
/etc/passwd, no password entry should be null. You can quickly detect violations of this
rule by typing:

$ grep ’ˆ[ˆ:]∗::’ /etc/passwd

If you are using a system that permits password aging, then you should enable it.

6.2.2 Groups

Section 2.2, Groups describes the group database and a common implementation using
/etc/group. Administrators often fail to keep this file current. This file must contain valid
data, based on considerations such as project team assignments that require users to
share files.

Define a separate group, containing only one user, for each user who does not need to
share files.2

6.2.3 Accounts

Reviewing an account includes examining the user’s directories (see below) and the
user’s initial environment given in the .profile file. Suggestions for the contents of .profile
are given in Section 3.4.1, Profile Files. Users prefer total control of their files, but
.profile is one case where you share responsibility and can justify making changes to a
user’s file if its contents threaten security. You should also assign appropriate
permissions to each user’s home directory. Inform the file’s owner before making any
such changes.

6.2.4 Directories

Examine all user hierarchies for files owned by that user and containing the set-user-ID or
set-group-ID attribute. Understand the purpose of each such file. If these files are being
used to effect sharing of data, create adequate groups and ask users to apply group
permissions to the files they want to share.

2. This makes it easy to implement group file sharing at a later date if desired. If everyone is put in the same group,
dividing users into groups later might require that you apply chgrp or chmod to existing files to prevent group
access.

X/Open Guide (1990)
Security Guide, Second Edition Page : 79

Transition to a Secure System Administrative Procedures

A general user’s directories must never contain set-user-ID programs with some other
user’s UID, or especially the super-user UID. These programs can give a general user
great power. The existence of these programs in these locations undermines security. If
the user has a reason to have such authorisation, the user should obtain authorisations in
a more conventional and easily monitored way. A general user must not have write
access to a directory in the system default search path (e.g., as set by /etc/profile).

6.2.5 Pseudo-Users

Protect certain security-related programs and data files by using pseudo-users. Create a
user account in the user database that does not correspond to any real user. Make this
pseudo-user the owner of a specific class of security-related objects. Then you can give a
user access to that class without having to give out unlimited authorisation.

6.2.6 Program Binaries

Review the program code of all sensitive programs. In particular, review programs that
have the set-user-ID, set-group-ID or privilege attributes, making sure they follow the
precautions given in Section 4.4, Privileged Programs.

If you must install third-party software with privileges and you have only the executable
file, search it for references to pathnames. If your system has the strings utility, which
searches for printable strings in an executable file, you can type:

$ strings - executable_file | grep /

6.2.7 Other Authorisation Files

If any programs have authorisation files that describe legitimate users of the program,
review them and remove obsolete information. Notably, review the following:

• the at.allow and at.deny files

• the cron.allow and cron.deny files

• the appropriate uucp authorisation files (see Section 6.6, Communication)

6.2.8 Auditing Tools

Many programs can be directed to produce log files listing all their uses. This logging
should be enabled. Create any necessary directories and assign correct permissions.

If the program is privileged, it will be able to write the log regardless of permissions. You
may want to deny search permission to log directories so that ordinary users cannot
easily determine which activities are logged.

X/Open Guide (1990)
Page : 80 Security Guide, Second Edition

Administrative Procedures Administering Users

6.3 ADMINISTERING USERS

The administration of users is a basic part of the job of administrator. Before a new user
can use a secure computer, you must establish a user account. You must follow certain
rules when setting up or changing an account to ensure isolation. Use caution when you
edit account data. The consequences of errors can range from user inconvenience to a
system-wide security breach.

Most X/Open-compliant systems provide an administrative package that automates
tasks such as adding new users. Use of such a package reduces error. In addition, these
packages typically recover from any errors without partially adding an account or failing
to complete some other operation, which could leave the system in a non-secure state.

6.3.1 Adding Users

To establish a user account, you must edit the user database, create a home directory and
place certain files there. The automated administrative package typically carries out
these tasks.

Adding the Account

If you use an automated package, you must type certain items to describe the new user.
If you do not use such a package, you must edit the user database manually. If your user
database is implemented using /etc/passwd, enter a new line in the file format described
in Section 2.1, Users. It is important that only one person edit the user database at any
one time, to ensure the preservation of all changes to this file.

Login Name Use a separate login name and a separate UID number for each
user. This ensures individual accountability.

Do not choose login names beginning with numbers. Utilities like
chown treat such names as UIDs instead. The ls -l command for
each directory in the system should not reveal numbers in the field
for login names.

Avoid login names that a penetrator would be likely to try, such as
‘‘guest’’, ‘‘system’’, ‘‘admin’’, ‘‘unix’’ or the name of the system
itself or of the organisation. (There is more on guest accounts at
the end of this section.) Do not choose long login names. If your
system imposes a limit on the length of login names, it may ignore
part of long login names, and treat two long login names as
identical.

Password The automated package typically asks you for a password for the
new user. If you are administering a system that implements user
and authentication data in /etc/passwd, type an invalid password,
such as ‘‘∗DISABLED∗’’.

X/Open Guide (1990)
Security Guide, Second Edition Page : 81

Administering Users Administrative Procedures

Then, after you end your edit, run a command like passwd to select
a valid password for the new user.3

If your system has password aging, indicate that the new user’s
password is aged. This directs system access utilities such as login
to force the user to choose a new password the first time the user
logs in.4

If your system does not have password aging, it is important that
you choose a password for the new account. Typically, leaving
the password field blank or specifying a null password means that
utilities like login will not ask for a password at all. This state is
not secure. Some systems allow a user account without a
password but prompt the user for a mandatory password on his
first login. Do not use this feature. Select a random password for
the user and privately inform him of the value. If your system
does not support password aging, note the value of the encrypted
password and check after some days that the user has selected a
new password.

User ID Add a unique user ID for the user. The automated package may
select one for you. If you select a value manually, avoid reusing a
previously used but now disabled user ID.

Group ID Add the user to an existing group, or create a new group for the
user (see Section 6.3.5, Adding Groups).

Miscellaneous Field On implementations that support /etc/passwd, use the fifth field
on the line to include the user’s full name, as well as the user’s
number within the organisation or some other unique identifier.
But do not put confidential information in this file, since everyone
can read /etc/passwd. Also ensure that users are aware of this
usage and alert them not to pick passwords that can be guessed
using information in this field.

Home Directory Creating a home directory is a separate step in adding a user. It is
described in detail later in this section. The name of this directory
must appear in the user’s entry in the user database.

Initial Program Choose the initial program that will run when the user
successfully logs in. This is typically /bin/sh, /bin/csh or /bin/ksh. (If
you do not specify a shell, the user gets /bin/sh.) Some systems
provide a menu-oriented interface like /bin/vsh for novice users.

3. The passwd command is not defined in the X/Open Portability Guide, thus its availability and usage may vary
from one system to another.

4. Set the aging interval so that all users must change passwords periodically. Frequent changing of passwords
limits the access of penetrators, even if they manage to guess or steal a password. Furthermore, the knowledge
that passwords are valid only for a limited time may discourage penetrators from trying this type of security
breach. Some systems have techniques that keep users from changing their passwords back to a password they
have used recently.

X/Open Guide (1990)
Page : 82 Security Guide, Second Edition

Administrative Procedures Administering Users

Some systems provide a restricted shell, typically called rsh (see
sh). This shell takes various steps to limit the user’s scope to the
home directory. But a user with access to privileged programs, or
to programs with escapes to other shells, can easily evade these
restrictions. If the initial program is neither sh nor ksh , bear in
mind that /etc/profile will not be executed. Hence, any security
measures contained in there will not be effective for such users.
Some systems allow the user to change his shell with a command.
You might decide to disable this command.

When you give a user an account for the sole purpose of running
an application, you may specify a program within that application
as the user’s shell. If that program is written correctly, this action
strictly limits the user’s options on the computer.

On some systems, information in /etc/passwd can restrict the user
to a protected subsystem (see Section 6.5.5, Protected
Subsystems).

Guest Accounts

Guest accounts are designed for temporary use by persons outside the organisation and
each guest account should not be used by more than one person. Login names such as
‘‘guest’’ should not be used. A guest account that is not specific to a particular guest
undermines personal accountability for use of the computer. The security plan should
provide a way for the appropriate department, such as the sales group, to notify you
when guest accounts are needed. The notification should say how many guest accounts
are needed, for whom each one is required and for how long each is required. The
designated person should be the only user of a guest account. Security policy should
provide for automatic removal of this account at the proper time.

Home Directory

Give each user a separate home directory. This promotes individual accountability, since
users are generally responsible for objects in their own home hierarchies. File sharing
should always be an explicit decision; users should not share files by default.

Place the home directory in the same file system as other users in the same group(s) and
away from system files. Directories superior to the user’s home directory in the
hierarchy should not have write permission, but must have search permission.

The home directory should have the permissions:

d r w x - - - - - - (700)

(The user has the power to widen access to the home directory.) The owner of the
directory should be the user. The group of the directory should be the user’s login group
specified in the user database.

Environment

Most administrators place some files in the user’s home directory. They typically contain
useful standard settings and information on site policies. This technique ensures

X/Open Guide (1990)
Security Guide, Second Edition Page : 83

Administering Users Administrative Procedures

universal knowledge of and compliance with security policy.

The shell runs the .profile script when a user logs in. You should put a suitable .profile in
each user account. This file should start each user session with secure operating settings,
even though the user has the power to change them. Section 3.4.1, Profile Files describes
typical contents of .profile.

You can help users with previous UNIX experience understand your installation by
adding to .profile some lines that show the values of commonly referenced variables. For
example:

echo The terminal type is $ TERM

echo Your user name is $ LOGNAME

echo The path is $ PATH

echo The umask setting is ‘umask‘

echo The maximum file size allowed is ‘ulimit‘

Do not include in .profile an automatic command to enter the mail utility. This requires a
user’s attention immediately after logging on and may confuse new users unfamiliar with
your mail system. However, you may elect to send the user mail as you authorise the
new account. The mail, perhaps a copy of a standard file, typically introduces the system
and outlines policies and procedures. It may contain references to any on-line
instructions.

Putting commands in a user’s .profile gives the user a template for customising the
options to the user’s own needs. It also informs the user about security policy. Putting
commands in a user’s .profile does not ensure security or restrict the user, since typical
users should always be able to edit their own .profile. Settings that are obligatory for all
users should instead go in /etc/profile.

The file /etc/profile, if it exists, contains a shell script that is run by the sh utility when the
user first logs in. (Other shells may not have a comparable script.) You can place site-
specific setups here instead of in each user’s .profile. Commands in /etc/profile are
immune to user changes. In addition, it is easier to maintain a single global profile file as
your policy changes.

For example, a ulimit command in /etc/profile cannot be removed by an affected user.
The shell accepts subsequent ulimit commands, but only to further reduce the legal
maximum file size, not increase it.

Although /etc/profile affects all users whose login shell is sh, you can use the shell case
statement on the output from logname to apply different settings to different users. Most
often, you want different users to have different ulimit settings.

If you use /etc/profile, you should always deny write permission to general users. You
should further protect /etc/profile by using trap (and having a trap as the first action
within the outer trap) to intercept signals sent to the shell from the same user at another
terminal. For example:

trap "trap ’’ 0; exit 1" 0 1 2 3 13 15

Some systems tell the user when and at what terminal they last used the system. This
lets users detect unauthorised uses of their user name. If your system does not do this,
you can devise a substitute by adding to /etc/profile text comparable with the following:

X/Open Guide (1990)
Page : 84 Security Guide, Second Edition

Administrative Procedures Administering Users

User auditing script

#

AUDITSIZE =20

LOGFILE=$HOME/.lastlogin

if test -r $ LOGFILE

then

echo "Last login: ‘tail -1 $ LOGFILE‘"

datum=‘ls -lc $ LOGFILE | tr -d "-"‘

set $datum

if test $7 -lt 10

then

echo "Audit record written: $6 $7 $8\c"

echo " USER: $3"

else

echo "Audit record written: $6 $7 $8\c"

echo " USER: $3"

fi

AUDITLENGTH=‘wc -l < $ LOGFILE

if test $ AUDITLENGTH -ge $ AUDITSIZE

then

AUDITLENGTH=‘expr $ AUDITSIZE / 2‘

tail -$ AUDITLENGTH $LOGFILE >${LOGFILE}2

chmod u+rw,go-rw,a-xs $ LOGFILE

mv ${LOGFILE}2 $LOGFILE

fi

elif test -f $ LOGFILE

then

echo "$ LOGFILE is improperly protected."

exit 1

else

echo "$ LOGNAMEhas never logged in before."

> $LOGFILE

fi

chmod u+rw,go-rw,a-xs $ LOGFILE

echo "‘date‘ USER: $ LOGNAME TTY: ‘tty‘" >>$ LOGFILE

chmod u-w $ LOGFILE

#

End of user auditing script

Now the file .lastlogin provides a history of logins by that user. (This file is placed in a
directory with the user’s login name, as given by LOGNAME, in case several users have
the same HOME directory.) Each user that executes this script will see output in this
form:

Last login: Mon Aug 08 08:08:08 MEZ 1988 USER: Mary TTY: tty08

Audit record written: Aug 08 08:08 USER: Mary

The output shows both the time of the user’s last login and the time at which .lastlogin
was last modified. If a penetrator logs on as the user, and then modifies the user’s
.lastlogin file to remove the record of the penetration, the two dates/times displayed by

X/Open Guide (1990)
Security Guide, Second Edition Page : 85

Administering Users Administrative Procedures

the script will no longer match. Direct all users to study the output of this script each
time they log in. Users should immediately log out and report a possible penetration if:
(1) the dates, times or user names on the two lines are not identical; (2) the user name on
either line is not correct; or (3) the dates/times are not those of the user’s last login.

6.3.2 Disabling an Account

Disabling an account means ensuring that there are no active users. This is typically
done before removing an account and before moving a user’s files to another place in the
file system. You disable the account if time-sharing must continue during your
operation, to be certain your actions do not disturb other users. You need not disable the
account if you instead put the entire system into single-user mode.

To disable an account, follow this sequence:

1. Invalidate the user’s password. For example, edit /etc/passwd, adding to the start
of the encrypted password field a standard legend, such as ∗DISABLED∗.5

2. Invoke the who utility to see if the user is logged in. If so, become the super-user
and use write or other form of communication to ask the user to log out.

3. Verify that the user has no active processes, by typing:

$ ps -fu login_name

If ps shows current jobs, kill them or wait until they terminate before operating on
the user’s account.

4. Unmount all mounted file systems appearing in the user’s hierarchy. (You may
have to take the system into single-user mode to close files, unmount systems and
eliminate current directories in the user file system.)

Re-enabling an account is done by editing the user’s password again, and deleting the
legend ∗DISABLED∗.

6.3.3 Removing an Account

You should remove an account when a user leaves the organisation or ceases to require
access to the computer. Removing inactive accounts reduces ways to penetrate the
system and makes it more likely that operators will understand the use of, and need for,
all accounts that remain.

Before you remove an account, disable it, as described in Section 6.3.2, Disabling an
Account, or put the system into single-user mode. In this way, your actions will not
disturb other users. Then do the following:

1. Make backup copies of the user’s data, or ensure that a current backup has covered
the user’s data.

5. Some installations instead disable an account by specifying a program without user input, such as /bin/date, as
the login shell. This keeps the user from doing anything meaningful with the computer. But changing the
password field has the advantage of giving a penetrator a more ambiguous response.

X/Open Guide (1990)
Page : 86 Security Guide, Second Edition

Administrative Procedures Administering Users

2. Determine whether any of the user’s data might be needed by other users. This
could include any objects in the user’s hierarchy as well as mail messages. Copy or
provide for the retention of these data. This step may be the user’s responsibility.
Make sure that the files will belong to another valid user.

3. Notify other users, especially members of the same group, that you intend to
remove the account.

Users who share files you are about to remove may need to make copies of them.
Users may also have to adjust absolute pathnames and environment variables. The
correct amount of advance notice to give depends on how interdependent users are
and on their workload.

4. The user (or you, after using a command like /bin/su to gain access to the user’s
account) should remove the user’s crontab and at jobs:

$ crontab -r
$ at -l
$ at -r job_number

Although unlikely, the user may still have print jobs in the printer queues. If so,
delete them.

5. Remove all the files and other objects in the user’s hierarchy, using the recursive
form of rm:

rm -rf home_directory

6. Become the super-user, and locate any objects owned by the user but residing in
other users’ hierarchies:

find / -user login_name -exec rm -rf {} \;

Remove them or change their ownership with chown to coincide with the directory
in which they reside.

7. Delete references to the user from the administrative files:

• user database - remove the entire entry that defined the user. Use the same
precautions as you do when adding users (see Section 6.3.1, Adding Users).

• group database - remove all references to the user. If this leaves no authorised
members of one or more groups, delete those groups.

• cron.allow and cron.deny.

• at.allow and at.deny.

• User lists used by mail , and mailing lists.

There should now be no active references to the user in the system. (References may
reappear after you restore backup files from disk or tape; see the note at the end of
Section 6.3.6, Removing Groups.)

If the ls -l command ever prints numbers in place of the owner name, it means you
deleted a user without accounting for the user’s objects stored outside the user’s
hierarchy.

X/Open Guide (1990)
Security Guide, Second Edition Page : 87

Administering Users Administrative Procedures

Delete that object, add the user again or change the object’s ownership with chown .

6.3.4 Moving User Hierarchies

The typical reason for moving a user’s directories is that your strategy for allocating disk
space has changed. For example, a group may begin to fill its assigned disk, so you
would need to move some group members to another disk.6

As the super-user, you can see how much space a user’s hierarchy takes by typing:

du old_home_directory

You can see how much space is available in the new file system by typing:

df new_file_system

If these commands determine that the move is physically impossible, make other plans.
Be sure the new file system has enough room to spare so that normal activity during the
move will not exhaust it.

Before you move hierarchies, disable the account, as described in Section 6.3.2,
Disabling an Account, or put the system into single-user mode. In this way, your
actions will not disturb other users.

Then become the super-user and follow this sequence:

1. Record the permissions that ls -l shows for the home directory. Change its
permissions to

d - - - - - - - - - (000)

denying everyone access to the directory.

2. Copy the old hierarchy to its new location, preserving all modes, owners and
permissions:

cd old_home_directory
find . -depth -print | cpio -pdlma new_home_directory

If you are moving a hierarchy within the same file system, you can simply type:

mv old_home_directory new_home_directory

3. Verify that the new home directory has the same permissions as you previously
recorded for the old home directory. If it does not, change them with chmod .

4. If you moved the hierarchy to a new file system using cpio , remove the hierarchy
from the old file system by typing:

rm -rf old_home_directory

6. Section 3.5.5, Backup and Restore contains precautions for moving hierarchies between installations. On
different installations, an object’s attributes may not be appropriate and its UID and GID may no longer be correct.
The administrator of the target system must correct them after restoring the objects from disk or tape.

X/Open Guide (1990)
Page : 88 Security Guide, Second Edition

Administrative Procedures Administering Users

5. Edit the user database and specify the new location of the home directory. If you
disabled the account, re-enable it after editing with the passwd command, or
equivalent.

6. Notify the user that the move is complete.

6.3.5 Adding Groups

Section 2.2, Groups defines groups and provides an example of a group database using
/etc/group. You should add a group to this database any time a new project, class or
organisation joins the user base. This process is typically automated by your
administrative package. If you add a group to the group database manually, follow these
rules:

• Avoid simultaneous updates to the group database.

• Give every group a unique group name and GID number.

• Do not pick group names beginning with numbers. Utilities like chgrp treat such
names as GIDs instead.

• Preserve the relationship discussed in Section 2.2, Groups between the user database
and the group database. For example, be sure each user’s login group listed in the
user database is a valid group. Do not use group passwords.

6.3.6 Removing Groups

A group is removed by deleting its entry from the group database. Follow the same
guidelines as you do when adding groups.

Groups with no members are candidates for removal, but there may still be objects with
the group’s GID and other references to the group name. To find them, become the
super-user (in order to search the entire file system) and type:

find / -group group_name -print

If there are many references, you may decide not to remove the group but just to disable
it. Do this by removing the list of members. For example, on a system that implements
the group database in /etc/group, to deactivate the group defined by:

stockboys::800:dave,clarence

you replace it with:

stockboys::800:

If the ls -l command ever prints numbers in place of an object’s group name, it means you
deleted a group without accounting for objects with that GID. Delete that object, re-insert
the group or change the object’s group with chgrp .

You typically find references to a removed group on restored files. The backup media
may have been written before you removed the group. It is more convenient to deal with
these references after the files have been restored, rather than to inspect every backup
tape every time you remove a group.

X/Open Guide (1990)
Security Guide, Second Edition Page : 89

Administering Users Administrative Procedures

6.3.7 Auditing Users

You must be constantly aware of the types of activity the computer is being used for, the
mode of use and the typical workload. In this way you are more likely to notice unusual
activity and detect any breach of security.

Many X/Open-compliant systems produce logs that contain useful security information.
These include sulog, /etc/utmp and the logs produced by uucp. System access utilities
like login may record date, time, duration and terminal of each user login in /etc/wtmp.

On many systems, the cron utility starts jobs based on at or crontab . It may log usage in
/usr/lib/cron/log. Some systems provide for logging of hardware faults such as disk
errors. Some installations condense the information in these logs for use in billing users.
You should review the raw data regularly, and sulog in particular. You should
understand every case in which a user needs to become the super-user and be satisfied
that the use of /bin/su was warranted.

Become familiar with the ways you can use ps, who , find and ls to monitor the activities of
users and of file systems.

Monitoring User Logins

You should monitor user logins using who . This utility typically produces one line for
each user of the system; each line starts with the user name. One way to use who is to
pipe its output through sort and look for duplicate user names. Depending on the format
of the output from who , you can devise a script to extract user names, filter out other
information and detect duplicate user names, perhaps with uniq. This script should
produce no output.

If two terminals are logged in under the same user name, either someone is sharing a
user name, which ought not to happen; or there is an inactive terminal or suspended
process which a penetrator could come to control; or there is an imposter presently using
the computer. If you detect that a user has divulged his password, lock his account and
take the actions defined in your security policy for this case (e.g., inform the user and/or
his manager, unlock the account only after a written request).

If there is a log file for failed login attempts, carefully analyse it.

Attitudes

Monitoring use of the computer is an intrinsic part of your job. No user should view this
activity as intrusive. Users have a right to keep sensitive data from you, and a right to
keep you from assuming their identity. However, you have a right to monitor the extent
and form of their computer use, since your ability to detect abnormalities protects their
continued access to the computer.

Post-Crash Analysis

Log files may show the state of the system at the time of a crash. For example, if session
accounting was enabled, the following command shows you who was logged in at the
time of the crash:

$ who -a /etc/wtmp

X/Open Guide (1990)
Page : 90 Security Guide, Second Edition

Administrative Procedures Administering Users

If your system provides a crash dump facility like /etc/crash , you may wish to use it for
further information about the state of the system and the technical cause of the crash.
This may, however, require some technical expertise.

Cleaning Out Old Logs

Accumulating user data that are too detailed, or saving data on-line for too long, lessens
your ability to assure users of ongoing disk space for their work. Log files that have
attained a certain age should be moved to off-line storage such as tape. Do not simply
remove old log files, if tape is available. Some security breaches do not become evident
until long after the penetration event; maintaining old logs off-line can provide proof of a
penetration.

The security policy should determine what logging data should be retained and for how
long. Extrapolate from current statistics on the computer’s use to determine how much
storage you will need for logs.

Charges

Some organisations permit inter-departmental billing for computer use. The data
processing department may assess other departments for the amount that members of
those departments use scarce computing resources, such as processor time, connect time,
disk space, time on shared devices and specific services. If courtesy fails, such charges
may be the only motivation for users to use the computer economically. Whether such
charges are necessary depends on how much the usage load affects your ability to assure
users continuity of service.

X/Open Guide (1990)
Security Guide, Second Edition Page : 91

Machine Security Administrative Procedures

6.4 MACHINE SECURITY

There are two reasons for applying security to the computer and its peripherals: (1) to
effect efficient sharing of the devices, and (2) to prevent unauthorised or unstructured
use of devices, which can breach overall security or deny service to other users for long
periods of time.

X/Open-compliant systems provide software security over the computer’s peripherals
using device special files. A user’s permission to such objects determines the user’s power
to use the peripherals, as described in Section 2.4, Objects and Permissions.

The rest of this section describes the physical and administrative security procedures you
should take concerning the computer and its peripherals.

6.4.1 The Computer

The computer itself should be in a physically secure environment. You should strictly
control access to the computer room, since it may be easy for a person with physical
access to the computer to deny service regardless of their level of knowledge.

The operating system automatically shares the computer among all users. The nice() call
modifies a process’s priority, which controls the operating system’s division of
computing time among processes. You can modify a user’s login shell to call nice()
before invoking the real shell, to assign each user an inherent process priority. This
priority applies to subprocesses created by the user. Teach users how to use nice() to
reduce further the priority of their long or non-interactive jobs.

Occasionally a process malfunctions, requests large amounts of sharable resources (such
as computing time, memory or subprocesses), and cannot be stopped by the user that
started it. On most systems, you can use the ps command to identify such jobs. Confirm
the situation by consulting with the user. Then invoke kill to remove such jobs.

Some systems provide process accounting and the acct() function to switch accounting
on or off. You can use accounting logs to assess each user’s demand on the processor.

6.4.2 The Console

The console is the terminal usually referred to by the device special file /dev/console.
The console prints system diagnostic messages and is the single active terminal during
start-up. In addition, some systems can send security-related logging messages to the
console as well as to a file. This ensures that a penetrator cannot remove evidence of a
penetration, regardless of the extent to which software security has been breached,
without physical access to the console.

On large systems, the console may be a printing terminal located close to the computer
front panel, directly wired to the computer and subject to the same access control as the
computer itself. You should save the console output, especially if it includes security-
related log data. In this case, supply the console with continuous-form paper. Operators
can review the print-out, but instruct them not to detach and remove individual pages.
Do not use the console for routine operations. This makes it harder to scan the printed
log for security events. Treat the printed console output as confidential, since it could
disclose procedures to a penetrator.

X/Open Guide (1990)
Page : 92 Security Guide, Second Edition

Administrative Procedures Machine Security

6.4.3 Other Terminals

Users have access to the terminals at which they log in. Most user terminals are
exclusively controlled by one person. You may designate some terminals as shared.
Sharing is typically governed by physical presence and moderated only by courtesy. You
can review session logs produced by utilities such as login to determine whether some
users are overusing shared terminals.

Processes gain access to terminals using device special files. Special files that represent
unused terminals are typically owned by the super-user. General users should have no
permission to these files. The file /dev/tty always refers to the user’s own (login)
terminal. All users should have read and write permission to this file.

The uucp subsystem typically uses terminal lines to communicate with other computers.

Usually there is a dedicated set of terminal lines for uucp. These lines are directly wired
to the other computers or to telephone modems. The special files that represent these
terminal lines should be owned by the pseudo-user uucp or belong to the uucp group.
The user and group should have ‘‘r w - ’’ permission to the files. General users should
have no permission to these files. General users use privileged programs to gain access
to remote computers.

6.4.4 Tape Drives

Device special files representing tape drives generally give ‘‘r w - ’’ permission to all
users. X/Open-compliant systems generally enforce exclusive use of a drive.

Encourage users to unmount their tapes as soon as they have finished using them. In
larger systems, set aside a tape drive exclusively for backups. The special file
representing this device should belong to the backup group and given the permissions

- - - r w - - - - (060)

which exclude all users outside that group.

6.4.5 Other Shared Devices

Other shared devices follow the same model as tape drives. You can use permissions
and privileged programs to structure the sharing of these devices. Devices such as
plotters may require exclusive ownership. Devices such as optical discs, networks and
external buses may not. The privileged program and the device handler ensure that
general users operate the devices properly. As with tape drives, these programs may
keep logs of device usage. Spooling systems are examples of programs that manage
shared devices.

6.4.6 Discs

On most systems, discs, or partitions of discs, are added to the file system by using a
mount utility. After mounting, users refer to objects on discs by specifying pathnames,
and are subject to access control using permissions.

Device special files achieve raw (non-file-system) access to discs. Special files may gain
access to individual characters or to individual blocks of the disk. A different special file
exists for each device. Sometimes a special file exists for a single partition of a disk.

X/Open Guide (1990)
Security Guide, Second Edition Page : 93

Machine Security Administrative Procedures

Unauthorised access to a disk special file enables access to every file on that disk or
partition.

The only user that needs access to these special files is the super-user. This user also
owns a tape special file, allowing transfers of data between these devices. Therefore, disk
special files should be owned by the super-user and have the permissions

r w - - - - - - - (600)

Transfers between disk and tape should be automated (typically by a shell script) to
minimise error. This script may run automatically when the tape administrator logs in,
preventing any unstructured use of that account.

6.4.7 Disc Space Control

You should try to assure adequate free space on each writable file system for normal
usage.

A file system that runs out of space denies service to users who want to store more data
on it. More importantly, if it runs out of space in the middle of an update, it can lose its
integrity (see Section 6.5.2, File Systems). Furthermore, this event can crash the system,
abruptly ending time-sharing and denying service to all users.

The df utility shows how much space is free. File systems that are small, actively used or
unpredictable (such as /tmp file systems) should be monitored more frequently.

To assess each user’s disk usage, you can use the du utility. For example, the following
command, applied to the parent directory of the user home directories, lists grand totals
of disk usage:

$ du -s user_parent_directory | sort -n

Users can be the owners of objects in other users’ hierarchies.

On some systems, a user can also use chown to give away an object. The above technique
lets you assess the contents of each user’s hierarchy. It is not easy to assess disk usage by
object owner, if users own objects outside their hierarchies.

You can suggest ways for users to share data files or consolidate disk usage. You can
identify objects that can be moved to off-line media using find. For example, the
following command identifies all objects that have not been read or written in the past 30
days:

find / -atime +30 -print

Users should remove or consolidate their own files. Unilateral action by you may
hamper productivity and produce resentment.

Removing old security logs and accounting logs to off-line storage is another way to free
disk space. This is discussed in Section 6.3.7, Auditing Users.

On some X/Open-compliant systems, you can apply resource quotas to users. This
limits the amount of disk space a user can obtain. Proper use of resource quotas can
prevent crashes caused by full discs.

Memory is represented by device special files such as /dev/mem and /dev/kmem. These
files are typically used only by privileged utilities such as ps. No ordinary user or group

X/Open Guide (1990)
Page : 94 Security Guide, Second Edition

Administrative Procedures Machine Security

should ever have any permission to them.

You must shut down time-sharing or the machine itself before making certain
adjustments or maintenance of hardware or software. Certain general rules apply to all
systems. The goal of these rules is to ensure that the system is totally idle before you stop
it.

• Users should be given ample advance notice of the shutdown and all should log
themselves out before you start final shutdown procedures. If possible on your
system, disable new logins as existing users log out.

• Be sure that daemons are removed before you start final shutdown procedures.

• Look and listen to the computer to verify that it seems idle.

• Halt the computer before spinning down any disk drives. On some systems, this
sequence may prevent an interruption during a disk write.

X/Open Guide (1990)
Security Guide, Second Edition Page : 95

Storage Administrative Procedures

6.5 STORAGE

You must control the permissions of directories, and the permissions and contents of
certain files, to keep the computer secure.7

6.5.1 Directories

Section 2.5, Access Rules describes what permissions mean for directories, and contrasts
that with permissions applied to the objects in a directory.

Directories are classified in two ways. The first is based on whether or not the owner has
write permission:

• Static directories have a fixed inventory of files. The files’ sizes may change, but files
are not added to or removed from the directory. For example, the administrative log
files in /usr/adm grow over time but do not change in number or names.

• Dynamic directories have files added to and removed from them. The owner (at
least) requires write permission to the directory in order to do this.

The second way of classifying directories is based on how open they are to general
access:

• Private directories are restricted against access by all users other than the owner.

Section 3.3, Directory and File Security gives information all users should know in
order to protect and analyse their private directories. You should follow these
safeguards in managing the system’s private directories.

• Pass-through directories give search permission to all users.

A pass-through directory gives a user access to objects in or under it, provided the
user knows their names. Users cannot see the directory with ls, because that requires
read permission as well as search permission. A pass-through directory typically
holds subdirectories with different uses and permissions. It offers limited security
through concealment.

• Informational directories give read permission to all users.

Informational directories can be listed by users. Like pass-through directories,
informational directories can group together diverse subdirectories. Informational
directories do not conceal their contents. Typical informational directories include
/lib and /usr/include.

• Public directories let anyone create or remove objects. Temporary directories such as
/tmp and /usr/tmp are typical public directories. Section 3.3.2, Temporary
Directories explains dangers of using public directories.

The different types of directory have the permissions listed in the following table:

7. Vendor documentation typically suggests actual permissions, group and owner, to apply to the directories,
utility programs and data files that the X/Open Portability Guide defines. This varies among X/Open-
compliant systems.

X/Open Guide (1990)
Page : 96 Security Guide, Second Edition

Administrative Procedures Storage

Permissions on Directories
Static Dynamic

Private d r - x - - - - - - (500) d r w x - - - - - - (700)
Pass-through d r - x - - x - - x (511) d r w x - - x - - x (711)
Informational d r - x r - x r - x (555) d r w x r - x r - x (755)
Public not applicable d r w x r w x r w x (777)

The security of file systems can be improved by taking an inventory of all system
directories (those not owned by a particular user). You should be able to classify all
directories as described above. If any directory does not lend itself to classification, move
the files in it to other directories until each directory is a pure example of one of the
directory types. Make each directory as restrictive as is feasible.

6.5.2 File Systems

Each disk or disk pack is typically a separate file system. If you divide discs into
partitions, each partition can be a separate file system. Specifying the file system and
device on which each directory resides provides a number of benefits.

Enable Start-up

All files required for start-up should reside on the same file system. Files here must
install the other file systems.

Protect Data From Changes

Separating frequently modified data from static data reduces the chance of an error or
penetration in one part of the system affecting other parts. If you allocate data to file
systems sensibly, you may find you can mount certain file systems in read-only mode, or
even physically write-lock certain devices, for additional security.

Isolate Vulnerable Directories

Segregate temporary directories, such as /tmp, to a separate file system. Place on a
separate device those directories you cannot prevent users from exhausting, such as
/usr/spool.

Prevent Duplication of Data

Put members of the same group on the same file system. This lets them make links to
each other’s data or to group data without forcing the system to make copies of objects.

Improve Performance

If all the files on a file system are changed only rarely, you can operate that file system
with nearly no free space and lay out the data to minimise fragmentation and increase
speed.

Isolation of Corruptions

Users with different needs, such as very fast access or large quantities of storage, should
be accommodated with minimal impact to other users. A file system can lose its integrity
if it becomes completely full, if power fails or if the computer halts in the middle of an

X/Open Guide (1990)
Security Guide, Second Edition Page : 97

Storage Administrative Procedures

operation. A corrupted file system is one where the directories, objects, block allocation
tables and other attributes are not synchronised. For example, the operating system may
have created an object but not yet have updated any directory to point to it. If there is a
discrepancy between the objects on a disk and the block allocation tables, a block that is
already in use could be used again, destroying the contents of that block.

Most X/Open-compliant systems provide a way to check the integrity of a file system,
such as the fsck utility. The start-up script (for instance, /etc/bcheckrc) should invoke this
program and apply it to all active file systems.

Running with a corrupted file system raises the possibility of random binary data
appearing anywhere in any stored object. This seriously undermines security. Hence,
once corruptions are detected, the offending file system should not be made unavailable
to general users until it has been repaired. Repair may involve restoration from a
backup.

Backup and Restore

Backup and restore operations on file systems are discussed in Section 3.5.5, Backup and
Restore. Vendor documentation may provide helpful details.

6.5.3 Protections on Objects

The following objects must be especially protected from general use.

Kernel File

The file containing the image of the operating system is read into memory whenever the
computer is restarted. This file should not be generally accessible. A penetrator who
modifies the kernel file can disable access-checking or make random changes to the file
that may deny service completely. Furthermore, the penetration may not become evident
until the next restart of the computer.

Utilities such as ps read the kernel file to determine the locations of process data in
varying releases of the operating system. (They typically also read /dev/kmem to get the
actual data their caller requested.) You can achieve this while continuing to protect the
file by giving such utilities the set-user-ID or set-group-ID attribute and the same owner
that owns the kernel file and /dev/kmem.

Most systems have a file, typically called mnttab or fstab, used by the mount utility. It
contains a list of the available file systems, and indicates which are readable and writable.
If mount is executable by general users, then they must be able to read this file. They
must not be able to write it.

/etc/utmp

Some systems implement a file /etc/utmp to hold login names, terminals and login times
for each user currently logged in. If present, this file must be readable by all users. It
must not be writable by general users.

/etc/passwd

On systems that implement user and authentication data in /etc/passwd, the file must be
readable by all users. It must not be writable by general users.

X/Open Guide (1990)
Page : 98 Security Guide, Second Edition

Administrative Procedures Storage

Foreign File Systems

Section 3.5.5, Backup and Restore lists precautions for restoring files from backup media
such as tape which can be summarised as follows. Assume the medium is insecure,
check all directories for special files and privileged programs, and verify the identity of
every program. The same precautions are warranted in mounting foreign file systems.
First, apply a utility like fsck to the foreign file system to be sure it is not technically
corrupted. Create a special directory, owned by the super-user and excluded to all other
users by having the permissions

d r w x - - - - - - (700)

Mount the foreign file system, read-only, at that location, for example, by loading the disk
and typing:

mount /dev/sctfdm1 /securemount -r

Only after making these tests can you unmount the file system and mount it again in its
desired location with the proper permissions.

6.5.4 Contents of Objects

To ensure security, you must control the contents of certain objects, as well as
permissions. All these objects must withhold write permission to general users. They
should also withhold read permission, so that any security flaws will not be evident to a
penetrator.

Privileged Programs

Privileged programs must be controlled. The only utilities that need to have the set-
user-ID attribute are those that intrinsically involve security transitions and special
privileges, such as login or at; and those that use device special files or otherwise
unusable objects, such as ps or uucp. In the latter case, utilities may not have to be
privileged; you may be able to give them sufficient access to objects by setting owner and
group properly.

Privileged programs administer part of the security of the computer at large, and must
have authentication and access checks at least as tight as elsewhere in the system.
Section 4.4, Privileged Programs gives guidelines for writing and maintaining these
programs.

Shells

Shells are inherently insecure because of their ability to invoke other programs. No shell
should be a privileged program. No program that offers an escape by which users can
submit shell commands should be privileged.

Shell Scripts

Shell scripts that run with privileges must be controlled. These include the following:

• /.profile, the login script for the super-user. (This script should also adhere to the
general rules for login scripts, discussed in Section 3.4.1, Profile Files.)

X/Open Guide (1990)
Security Guide, Second Edition Page : 99

Storage Administrative Procedures

• /usr/lib/cron/.proto, the login script for at jobs.

• Start-up scripts, such as /etc/rc, which run during recovery in order to restart time-
sharing.

• cron scripts in the root crontab file. They are all assumed to run with super-user
privilege. Use a command like /bin/su in these scripts to change to the pseudo-user
uucp, backup or other identity, as applicable.

All these scripts should rigorously establish their own environment. For example, they
should define their own search paths, using full pathnames, and set their own umask.

Output from all these scripts should be captured in a log file. Start-up scripts can instead
produce output on the console if the console is physically secure and is a printing
terminal. You can use the tee utility to send a program’s output to both a terminal and a
log file. Review saved output from such scripts periodically, and fully investigate any
failures or anomalies.

Add the following to the start of each privileged shell script to authenticate its user and
report unauthorised uses via mail:

PATH=/bin:/usr/bin:/etc # Search only specific sys directories

export PATH # This applies to all commands

umask 077 # Exclude general access to all

files created

reporter=auditor

LOGNAME=‘realuser‘ # (We define this program in the

next example)

#

Report unauthorised uses of this script

#

if test $? -ne 0

echo "User ID uncertain; program $0 not executed on ‘tty‘ \

at ‘date‘" | mail $reporter

exit 1

elif test $ LOGNAME!= admin1 -a $ LOGNAME!= admin2; then

echo "$ LOGNAMEhas tried to use $0 on ‘tty‘ at ‘date‘" | \

mail $reporter

exit 1

#

You may elect to report authorised uses too

#

else

echo "$ LOGNAMEhas successfully called $0 on ‘tty‘ at ‘date‘" |\

mail $reporter

fi

The above example assumes the existence of a program called realuser , as in the
following example. This program obtains the real (login) user name of the process. It is
comparable with the id utility, which reports a process’s effective user name.

X/Open Guide (1990)
Page : 100 Security Guide, Second Edition

Administrative Procedures Storage

/ ∗ realuser.c

∗
∗ Get the process’s real UID and try to find

∗ the entry in /etc/passwd.

∗/

#include <stdio.h>

#include <pwd.h>

#define PW_NULL ((struct passwd ∗) 0)

main(argc, argv)

int argc;

char ∗argv[];

{

int ruid;

struct passwd ∗pw;

ruid = getuid();

pw = getpwuid(ruid);

if (pw == PW_NULL)

{

fprintf(stderr,

"%s: Can’t find UID %d in passwd file.\n",

argv[0], ruid);

exit(1);

}

printf("%s\n", pw->pw_name);

exit(0);

}

Data Files

A file such as /etc/inittab may tell the init initial process how to create all the
subprocesses, such as login shells, that will exist. This file determines, for instance,
whether a restart of the computer produces time-sharing or single-user operation. Its
contents must be correct to ensure security.

The files cron.allow and cron.deny must have correct contents to ensure security. This
also applies to at.allow and at.deny. In each pair, the allow file lists the users allowed to
use the respective utility, and the deny file lists the users prohibited from using it. It is a
more secure technique to specify the contents of the allow file. This means that users you
overlook cannot use the utility. If both files are missing, only a user with appropriate
authorisation can use the utility. If only the deny file exists and is empty, global usage is
permitted.

System Upgrades

Be sure to authenticate any upgrades (revisions of system software) that you receive.
Systems have been penetrated by counterfeit revisions of system software. Be sure of the
identity of persons claiming to be representatives of your hardware and software
vendors.

X/Open Guide (1990)
Security Guide, Second Edition Page : 101

Storage Administrative Procedures

6.5.5 Protected Subsystems

The file system consists of the root directory, ‘‘/’’ and all objects and subdirectories
within it. This is the root hierarchy. A subsystem is a hierarchy that starts not at ‘‘/’’ but
at some other directory that you specify. For example, each user has a subsystem: the
hierarchy under the user’s home directory. Generally, users are not restricted to their
own hierarchies.

The chroot utility and the chroot () function specify a directory that the process should
regard as the root directory from then on. Then the path ‘‘/’’ no longer refers to the true
root but to the home directory of the specified subsystem. This is a protected subsystem. It
is a potent way of isolating the user from all resources outside the subsystem. For the
duration of the process, the user cannot refer to anything outside the subsystem, even
when running a privileged program or becoming the super-user, because the user has no
grammatical way to refer to those outside objects. Any pathname that starts with ‘‘/’’ is
translated to a path within the subsystem.

A user’s record in the user database can specify chroot as the initial program. This forces
the user’s entire session to take place within a protected subsystem. You can instead
have the login mechanism itself run within a protected subsystem, typically by specifying
‘‘∗’’ as the initial program. Then the subsystem must contain sufficient objects to enable
login.

You can restrict the utilities and the devices that protected subsystem members can use
by not placing copies of the utilities or device special files inside the subsystem.

Always use protected subsystems when a part of the computer has to be opened for
extended periods of time to persons not under control of your organisation. For example,
companies offering time-sharing services often use protected subsystems. Also consider
the use of protected subsystems for guest accounts.

X/Open Guide (1990)
Page : 102 Security Guide, Second Edition

Administrative Procedures Communication

6.6 COMMUNICATION

Modems and network interfaces expose the computer to users not necessarily under
your organisation’s control. Network connections are typically authenticated links to a
well-defined remote computer. This reduces the possibilities of mischief. However,
network data transfers may use a higher speed than telephone transfers, increasing the
amount of data that may be disclosed or lost before you have time to react.

6.6.1 Communication Modes

Communication modes include cases where the computer answers the telephone, where
it initiates a telephone call, or where communication media other than telephones are
used.

Incoming telephone calls are handled in the following way:

• A terminal line may be attached to a modem instead of to a video or printing terminal.
(Section 6.4, Machine Security describes security controls on terminal devices.) The
modem plugs into a telephone outlet and permits the computer to answer incoming
calls. This permits remote use of your computer from any location where there are a
compatible terminal and modem. Such terminal lines have the status of shared
terminals.

In this mode of remote communication, the computer is open to any caller, authorised
or unauthorised. The normal password security scheme is usually sufficient to
prevent unauthorised login, but a determined penetrator can sometimes breach it.

The following measures will reduce a penetrator’s chances of breaching security by
guesswork. Treat telephone numbers that your computer auto-answers as secret. If
possible, change your system’s tables (for example, getty) or the login utility so that the
computer does not advertise its identity, or even which operating system it uses, until
it authenticates the caller. Have a single telephone number to which users call. If
possible, restrict use of this line to requests that the computer call back.

Outgoing telephone calls can also be made using the modem. In these cases, it is under
the control of a process not logged in there, such as a daemon. The device special file (see
Section 6.4, Machine Security) pertaining to the terminal line regulates who can use it.

• The cu (call UNIX) utility lets a user of your computer call out to a remote computer
and use it as though the user’s terminal were directly attached to the other computer.
Section 3.5.4, Remote Sessions lists precautions that make it less likely that a
penetrator of your computer could get information on breaching security of other
computers.

• Most X/Open-compliant systems use a subsystem called uucp (for UNIX-to-UNIX
copy) to transact with remote computers. The uucp subsystem transfers files and mail
messages between computers and lets users execute commands on a remote
computer. It also provides the transport services required by applications such as
bulletin board systems. The uucp subsystem can use telephone lines and modems as
the communication media, or it can use other computer-to-computer communication
technologies.

X/Open Guide (1990)
Security Guide, Second Edition Page : 103

Communication Administrative Procedures

6.6.2 Security Risks

Unless you take steps to secure it, uucp will usually let any remote user read, write or
execute any object on your file system that has the respective permission (including
account and password data); delete certain objects or substitute other objects;
masquerade as another user or the uucp subsystem itself; and disrupt or disable normal
network traffic.

A remote penetrator may scan files like /etc/passwd (for accounts without passwords)
and uucp administration files (to find unencrypted passwords to other systems). The
penetrator may try to alter accounting files to ensure future access, or may try to trick
users into executing bogus programs that will give the penetrator the local user’s power.

To ensure network security, you must:

• Create an account in the user database for a uucp administrator, and a separate
account for each remote system that may log in.

• Specify which parts of the file system are available to local users and to remote
systems.

• Specify which commands each remote computer can execute.

• Maintain restrictive permissions on uucp administrative files, spool files and device
files.

• Monitor network audit and control files.

• Have hardware or firmware that detects and can force a break in a network
connection.

Any time there is a security breach with unknown factors, shut down the network and
telephone access to the computer and inform the network administrator. Open the
computer to external access only when you have identified the cause of the breach.

The rest of this section describes ways to improve the security of the uucp subsystem.
There are two uucp packages in common use: an original uucp, and a newer and more
secure one, called HoneyDanBer.

6.6.3 uucp Accounts

Both the uucp administrator and remote computers are required to log in. Traditionally,
the administrator uses user name uucp, and the remote computer uses nuucp. Both
users are in group uucp.

On systems that support /etc/passwd, the file would typically include the following
entries:

uucp:encrypted:5:5:UUCP Administrator:/usr/lib/uucp:/bin/sh
nuucp:encrypted:6:5:Remote System:/usr/spool/uucppublic:/usr/lib/uucp/uucico

We suggest the following improvements to this traditional approach:

• Give each remote computer a separate account in /etc/passwd. This lets you audit the
frequency and duration of access of each remote computer, and give different remote
computers different resources on your computer. All remote computers can be
members of the uucp group in order to share access to the uucp programs.

X/Open Guide (1990)
Page : 104 Security Guide, Second Edition

Administrative Procedures Communication

• The uucp administrator (pseudo-user ‘‘uucp’’) is a sensitive security role on your
computer. This user resolves network communication problems and audits network
use. The network administrator needs an interactive login shell, such as /bin/sh. As
described in Section 6.1.3, Pseudo-Users, you should establish a separate account for
every person serving as uucp administrator. These accounts are also members of
group uucp.

All network management programs, especially the set-user-ID ones, should be owned
by the uucp group.

Using this method,

$ grep uucp /etc/passwd

might yield:

uucp1:encrypted:51:5:John Doe (UUCP Admin):/usr/lib/uucp:/bin/sh
uucp2:encrypted:52:5:Fred Smith (UUCP Admin):/usr/lib/uucp:/bin/sh
remote1:encrypted:87:5:Remote #1:/usr/spool/uucppublic:/usr/lib/uucp/uucico
remote2:encrypted:88:5:Remote #2:/usr/spool/uucppublic:/usr/lib/uucp/uucico

The login shell for the remote computers must be /usr/lib/uucp/uucico . This daemon
restricts the account to limited activities that you can audit. A traditional alternative to
specifying the login shell uucico directly in /etc/passwd is to invoke uucico from .profile.
This lets you increase the ulimit for some remote computers, enabling the transfer of large
files. In this case, use the trap command of /bin/sh to avoid interruption at any time that
uucico does not have control of the process. Executing uucico from the login shell keeps it
within the same process.

Here is a sample .profile:

trap "trap ’’ 0; exit 1" 0 1 2 3 13 15

PATH=/bin:/usr/bin

export PATH

ulimit 2000

umask 022

exec /usr/lib/uucp/uucico

exit 2

6.6.4 Call-Back

Both uucp subsystems support call-back. A field in the uucp definition of a remote
computer specifies call-back. Whenever the local computer receives a telephone call and
the remote computer successfully identifies itself as a computer to which call-back
applies, the local computer hangs up the telephone and calls the preset telephone
number of the remote computer. This prevents penetration since it authenticates
telephone users of the local computer. However, it can only be applied in one direction;
if both computers specify call-back for contact with each other, an infinite process results.
One computer must accept the call from the other without the authentication that call-
back provides. This called computer must provide true authentication, since any call
could be from a penetrator. But if this is the computer that usually initiates transfer
requests, calls from the other computer will coincide in time with its own requests for
contact with the other computer. This assists in authentication.

X/Open Guide (1990)
Security Guide, Second Edition Page : 105

Communication Administrative Procedures

6.6.5 Original uucp

You specify which remote computers can call your computer, and which parts of the file
system are valid for file transfer by local users and remote systems, by making entries in
/usr/lib/uucp/USERFILE. Each entry is in the format:

[login],[sys] [c] pathname ...

login is the login name of a user (local user or remote computer) defined in
/etc/passwd on the local computer

sys is the name of a remote computer

c if present, specifies call-back

pathname is a directory or file on the local computer

The uucico utility compares the login and sys fields with information pertaining to a
particular use of uucp. Either field may be null. In this case, that field matches any use of
uucp. The uucico utility scans USERFILE from start to end. Therefore, lines with defined
login and sys fields should precede lines with null fields. (Specific entries should precede
generic entries.) A line with a null field applies to all sessions not covered by preceding
lines. An entry with null login and sys fields applies to any session not covered by
previous entries. Such an entry should only occur at the end of USERFILE.

Once uucp finds a matching entry, it restricts file transfers during that use to the one or
more pathnames specified in the same entry, and stops searching USERFILE.

If the pathname is a directory, a transfer can involve any objects in the directory,
including subdirectories (that is, access to the entire hierarchy is permitted). If the
pathname is a file, a transfer can involve the named file. For example, if you specify only
the name of a file, the session is restricted to that single file.

Apply appropriate permissions to any hierarchy before you list it in USERFILE. Do not
specify user hierarchies in USERFILE. They are more easily changed and under less
control.

Inbound Access Control

The uucico login shell starts by obtaining the name of the remote computer and the login
name under which uucico is running (often nuucp). It searches USERFILE for an entry
describing this combination and obeys the restrictions contained in that entry.

If each remote computer has a separate account, the login and sys fields in USERFILE are
both specific to one remote computer.

USERFILE should begin with such specific entries, explicitly specifying both the login and
sys fields. You may elect to follow these fields with one generic entry, omitting both login
and sys fields. This entry applies to any remote sessions not covered by specific entries.
It also applies to any transfers initiated by a local user.

If no entry in USERFILE applies to the current use of uucp, and USERFILE does not contain
a generic entry, then the transfer cannot occur.

X/Open Guide (1990)
Page : 106 Security Guide, Second Edition

Administrative Procedures Communication

Outbound Access Control

If an entry in /usr/lib/uucp/USERFILE specifies a local user, then the pathnames in that
entry restrict the files the user can send to a remote computer. (A line with a null
username restricts all users not named in USERFILE.)

Such entries hinder users without providing any additional security. The user is still free
to use cp to copy any file with read permission into the directory specified in USERFILE,
and transmit the file from that directory.

6.6.6 HoneyDanBer uucp

The HoneyDanBer uucp subsystem follows the same basic protocol as the original
package, but gives you more detailed control over network operations. This makes it
more secure. The HoneyDanBer uucp also separates the spool control files into
directories according to function (errors, connection attempts, session logs, lock files and
archives) and, in some cases, into separate files for each machine.

The /usr/lib/uucp/Permissions file has LOGNAME and VALIDATE options that define the
names of remote computers and require them to use particular accounts to log into your
computer. A typical line in Permissions includes at least these fields:

LOGNAME=local_account VALIDATE=remote_system_name

The Permissions file is crucial to network security. It must not contain errors. Use the
uucheck utility after every edit to Permissions to view the resulting settings in a readable
form. Type this command:

$ /usr/lib/uucp/uucheck -v

This utility also checks whether the directories themselves exist and whether they contain
other files.

An important security feature of the HoneyDanBer uucp is that it can take user-defined
action when an apparent penetration occurs. If a remote computer
not listed in /usr/lib/uucp/Systems calls your computer, and if a
/usr/lib/uucp/remote.unknown file exists and is executable (use the permissions

r - x - - - - - - (500)

and owner uucp), then uucp will not only deny access, but also record the event in the
appropriate log file in /usr/spool/uucp/.Log and execute remote.unknown as a shell
script.

An entry in Permissions can include additional options:

CALLBACK specifies call-back (see Section 6.6.4, Call-Back)

COMMANDS lists the commands the remote user is allowed to execute (see Section 6.6.8,
Remotely Executable Commands)

[NO]READ determines whether or not the remote computer can extract data from the
local computer

REQUEST lets the local computer respond to requests initiated by the remote
computer (for transfers in either direction)

X/Open Guide (1990)
Security Guide, Second Edition Page : 107

Communication Administrative Procedures

SENDFILES lets the local computer respond to requests initiated by a local user (for
transfers in either direction)

[NO]WRITE determines whether or not the remote computer can store data at the local
computer

These options are more readable and give more precise control than the USERFILE file in
the original uucp. The REQUEST and SENDFILES options let you manage remote
computers that tend to exchange large volumes of data when the local computer calls it
(and you are paying for the telephone call).

Specify settings explicitly instead of using default settings. Specify different machines on
different lines of the Permissions file. Then changing one system’s permissions will not
implicitly change those of other systems. Promptly remove obsolete entries from the file.

6.6.7 Remote Logins

Information on how to phone out to remote computers appears in certain files.
Unauthorised disclosure or changes to these files threaten the security of the entire
network. There is a lines file (called L.sys in the original uucp, or Systems in
HoneyDanBer), and a dialcodes file (called L-dialcodes in the original uucp, or Dialcodes
in HoneyDanBer). All files reside in the /usr/lib/uucp directory. Both uucp subsystems
use the same file formats.

Each entry in the lines file contains the telephone number, login and password
information for one remote computer.

Some computers may appear on several lines if there are several ways to reach it. The
local computer tries each method, in the order listed, until a method succeeds.

Although a penetrator who succeeded in contacting a remote computer would get uucico
as a login shell, the penetrator might be able to penetrate the remote computer further by
guessing or stealing passwords for that computer. By using a computer that simulates
the uucp protocol, the penetrator can also masquerade as your computer.

You can increase network security by separating the telephone number from the rest of
the login information. Instead of placing telephone numbers in the lines file, use
symbolic names. Place lines in the dialcodes file to associate each symbol to an actual
telephone number. For example, in place of this entry in the lines file:

remote1 Any ACU 300 5551234 ogin:-@-ogin: uumyname word: xyzzy

you can use a symbolic name for the telephone number:

remote1 Any ACU 300 phone ogin:-@-ogin: uumyname word: xyzzy

Define the name in the dialcodes file:

phone 5551234

6.6.8 Remotely Executable Commands

In the original uucp, you typically specify any commands you want to withhold from
remote users by editing the source of the uuxqt utility. Some advanced varieties of the
original uucp take this data from a file. But even these implementations do not let you
differentiate among remote computers.

X/Open Guide (1990)
Page : 108 Security Guide, Second Edition

Administrative Procedures Communication

In the HoneyDanBer uucp, you use the COMMANDS option in /usr/lib/uucp/Permissions
to allow certain commands to be executed. You can specify full pathnames, single
command names (subject to the applicable search path) or the value ALL. Explicitly
specify COMMANDS for each remote computer. Always use the VALIDATE option in
conjunction with COMMANDS to be sure no commands are available until the remote
computer properly identifies itself. You can use the keyword ALL in conjunction with
some explicit commands. The effect of this is that the specified commands are permitted,
and the appropriate search paths are used for other commands.

6.6.9 Permissions

Vendor documentation specifies permissions, owner and group for uucp files. In the
original uucp, the utilities uucp, uulog, uuname, uustat, uux, uucico , uuclean and uuxqt are
owned by uucp and have the set-user-ID attribute. You should tightly restrict access to
them. The HoneyDanBer uucp has a greater number of files. Each file can carry more
precise permissions. Administrative files reside in the /usr/lib/uucp hierarchy, spool files
are in /usr/spool/uucp and programs are in /usr/bin.

6.6.10 Breach Detection

To detect attempts to breach security, scan all log files using uulog. Look for attempts to
gain access to sensitive files. Failed attempts may mean a remote user is probing your
system.

In the original uucp, the LOGFILE file records both successful and unsuccessful attempts
at system connections, file transfers and remote command execution. The
/usr/spool/uucp/SYSLOG file records successful file transfers. Scan it to determine the
types and sizes of files transferred and the users initiating the transfers. Include LOGFILE
and SYSLOG in the list of security-related log files used in auditing. Protect the
/usr/spool/uucp/SEQF file as tightly as you do LOGFILE and SYSLOG because it provides
the unique sequence stamp used by them. They should be used by uulog and other uucp
utilities only, and not by general users. In the HoneyDanBer uucp subsystem, the
filenames are different and there are additional administrative programs that produce
reports. There is a log file in the /usr/spool/uucp/.Log directory for every authorised
remote computer. The uudemon.cleanup script removes old data from this directory,
placing it in the /usr/spool/uucp/.Old directory. The uustat utility provides readable
information on work that is queued (with the -q option) and communications in progress
(with the -p option).

X/Open Guide (1990)
Security Guide, Second Edition Page : 109

Communication Administrative Procedures

X/Open Guide (1990)
Page : 110 Security Guide, Second Edition

Appendix A

Security-Related Utilities and Files

A.1 SECURITY-RELATED UTILITIES

Utility Description
acctcom display audit information
chgrp change file group owner
chmod change file access permissions
chown change file owner

change root directory to restrict user environmentchroot
system debugger (restrict to super-user only)crash

crontab handle user crontab file
encrypts/decrypts datacrypt
editor: encrypts/decrypts dataed -x
walk file system tree (may be used by security audit)find
file system debugger (restrict to super-user only)fsdb

id display effective and real UID and GID
login allow user to login
logname get login name of owner of current process

output 2-byte salt and 11-byte key using DES algorithmmakekey
mknod create an ordinary, directory or special file
ncheck -i list file name(s) associated with i-node
ncheck -s list set-user-ID and special files
newgrp change GID
passwd change login password
ps display list of active processes

restricted editor: encrypts/decrypts datared
rsh restricted shell

change effective and real UID to that of another usersu
umask set file-creation mask

editor: encrypts/decrypts datavi -x

X/Open Guide (1990)
Security Guide, Second Edition Page : 111

Security-Related Files Security-Related Utilities and Files

A.2 SECURITY-RELATED FILES

Special File Description
system console (should not be writable to others)/dev/console

/dev/kmem kernel memory (should not be accessible)
/dev/mem system memory (should not be accessible)
/dev/sctfd∗ floppy disk special files
/dev/sctmt∗ tape special files
/dev/tty?∗ terminals (should not be writable to others)

File Description
/etc/group group file (passwords encrypted)
/etc/passwd password file (passwords encrypted)
/etc/utmp current status of login activity
/etc/wtmp log of login activity

Library Description
/lib/libc C-language library with crypt
/lib/libp/libc profiling C-language library with crypt

File Description
/usr/adm/∗acct∗ command audit trail
/usr/adm/sulog log of su activity
/usr/adm/wtmp login session audit trail
/usr/lib/uucp/L.cmds controls UUCP remote execution

contains unencrypted UUCP login information/usr/lib/uucp/L.sys
/usr/lib/uucp/Permissions controls UUCP access to filesystems
/usr/lib/uucp/USERFILE controls UUCP access to file system
/usr/spool/uucp/LOGFILE log of UUCP activity
/usr/spool/uucp/SYSLOG log of UUCP file traffic

X/Open Guide (1990)
Page : 112 Security Guide, Second Edition

Security-Related Utilities and Files Security-Related Functions

A.3 SECURITY-RELATED FUNCTIONS

Function Description
chmod () change file access permissions
chown () change file owner and/or group owner

change root directory to restrict user environmentchroot ()
create file with specified access permissionscreat ()
generate an encrypted passwordcrypt ()

cuserid () get login name
encrypt/decrypt dataencrypt ()

fstat () obtain status information for an open file
walk file system tree (may be used by security audit)ftw ()
get group entry from group database for specified GIDgetgrgid ()
get group entry from group database for specified group namegetgrnam ()

getegid () get effective GID of process
geteuid () get effective UID of process
getgid () get real GID of process
getlogin () get login name of current process

display prompt and read password (with echo suppressed)getpass ()
get entry from user database for specified login namegetpwnam ()
get entry from user database for specified UIDgetpwuid ()

getuid () get real UID of process
link () make a new path to an existing file
mkdir () make a directory
mkfifo () make a FIFO special file
setgid () set effective GID (root sets real GID also)
setkey () set the key for subsequent use with encrypt ()
setuid () set effective UID (root sets real UID also)
sigaction () examine and change signal action

specify action to be taken on receipt of a specified signalsignal ()
stat () obtain status information for a file
umask () set file-creation mask
unlink () remove (a path to) a file

X/Open Guide (1990)
Security Guide, Second Edition Page : 113

Security-Related Functions Security-Related Utilities and Files

X/Open Guide (1990)
Page : 114 Security Guide, Second Edition

Index

/bin/sh and other shells: 82
/bin/su: 12, 15, 22, 78
/bin/su (advanced version): 76
/bin/su to lower privilege: 77
/bin/vsh: 82
/dev/console: 92
/dev/mem: 94
/etc/crash: 91
/etc/group: 14, 79, 89
/etc/inittab: 101
/etc/passwd: 12, 75, 98
/etc/rc: 39, 98
/etc/utmp: 98
/tmp: 31
/user/lib/uucp/uucico: 105
/usr/lib/cron/.proto: 100
/usr/lib/uucp/Permissions: 107
/usr/mail: 78
/usr/tm: 31
ability to change attribute: 18
ability to read script: 60
abnormal exit: 58
abnormality: 58
absolute pathname: 37, 87
access: 18, 58
access control: 4
access to file: 52
access to machine: 8
access to source code: 6
access type: 16
account: 81
account disabling: 86
account for guest: 83
account in uucp: 104
account removal: 86
account review: 79
accountability: 3-4, 28, 77-78, 81, 83
acct: 22, 92
acct pseudo-user: 77
accusation: 71
acquiring super-user power: 75
acronym: 29
adaptation of UNIX: 10
add group: 89

add user: 81
additional loss: 1
admin group: 78
administering user: 81
administrative enhancement: 10
administrative flexibility: 59
administrative package: 81
administrative procedure: 75
administrative security: 7
administrative session: 92
administrator: 63
administrator’s goal: 2
advanced /bin/su: 76
advantage of HoneyDanBer: 108
advertising security: 71
aid to experienced UNIX user: 84
air conditioning: 69
algorithm for granting access: 18
alias: 35
allocation strategy: 88
alternate person: 68
alternative computing facility: 66
alternative to security: 66
analyse directory: 33
analyse motivation: 2
analyse return code: 49
anomaly during login: 29
anomaly during super-user login: 76
application of privilege: 48
application of UNIX: 10
application user: 6
apply policy to user: 7
appropriate authorisations: 75
appropriate permission on directory: 31
appropriate privileges: 3, 12, 21
approval of superior: 70, 76
archive: 86
armed attack: 67
assembly language: 8
assess disk usage: 94
assignee: 5
assume identity: 28
assume identity of general user: 78
assumed motivation of penetrator: 2

X/Open Guide (1990)
Security Guide, Second Edition Page : 115

Index

assumption in error: 50
assurance: 3
asynchronous line: 103
at: 45
at.allow and at.deny: 80
attack: 67
attitude: 28, 71, 90
attribute inherited: 15
attribute of subprocess: 15
attributes of home directory: 83
audit: 8
audit log: 72
audit remote operation: 104
auditing: 3, 90
auditing print request: 26
auditing tool: 80
authenticate remote caller: 105
authenticated link: 103
authentication: 4, 28, 60
authentication and logging by script: 60
authentication database: 12
authenticity: 40-41
authorisation file: 58, 80
authorisation in SQL: 61
authorisation re-evaluation: 69
authorised group member: 14
authority: 5
auto-answer: 103
auto-executed file: 35
automated backup/restore: 94
automated penetration: 2, 25, 35, 59
automated user management: 81
automatic input from Personnel: 69
automatic login: 28, 41
automatic script: 35
autonomous printing: 26
auxiliary port: 26
availability: 1, 30, 65
available space on file system: 88
awareness: 64
awareness of rules: 7
background process: 54, 60
backing up security log: 91
backup: 41, 65, 77, 86
backup tape drive: 93
badge: 7
benefit to programmer: 70
billing for computer use: 91
bin pseudo-user: 77

birth date: 28
bluff: 2
boast: 71
bootstrap changes: 29
breach: 72
breach detection: 90
breach detection in uucp: 109
break connection: 105
break lock: 23
broadcast: 25
broken network connection: 104
broken terminal connection: 39
buffering sensitive data: 77
building engineer: 69
bulletin board system: 103
burn bag: 26
bypass search for .exrc: 39
bypass software security: 8
bypass software security check: 21
C language: 60
C1, C2: 10
calamity: 67
call-back: 105
CALLBACK option in Permissions: 107
caller authentication: 103
cancel set-user-ID: 59
capture file: 27, 41
capture output: 45
careful use of resources in daemon: 60
casual theft: 26
cause of breach: 72
ceasing to work: 69
cede ownership: 18
cede privilege: 51
central storage of data: 26
chain of command: 68
chain to another program: 54
change attribute: 18, 21
change attributes: 78
change group: 34
change history: 48
change in login procedure: 29
change in organisation: 69
change owner restricted: 18
change password: 28, 73
change program: 48
change to policy: 70
changes to data: 33
changing owner/group: 17

X/Open Guide (1990)
Page : 116 Security Guide, Second Edition

Index

changing password: 12
changing UID/GID: 15
charges: 91
chdir: 37
check protection of files: 33
checking Permissions: 107
chgrp: 14, 17, 89
child process: 15
chmod: 17, 23, 30, 38, 44, 88
chown: 17, 81, 87
chroot: 102
chroot as initial program: 102
circuitry: 8
class of security rating: 10
classification of directory: 96
clean out log: 91
close file: 54, 59
code review: 80
codebreaking: 26
colon character: 37
combination of security programs: 59
combination password: 29
command chain: 68
command executable by remote user: 108
COMMANDS option in Permissions: 107
comment: 51
common need of access: 14
communicate to user: 3
communication: 7, 68
communication across network: 40
communication mode: 103
communication security: 8
communication with maintainer: 51
compare editing changes: 39
competitor: 66
compliance: 68, 71
components: 1
compression: 26
computer: 92
computer centre: 65
computer room: 65, 69
concurrency: 52
confidence in remote computer: 8
confidential: 1
confidentiality: 7, 30, 65
confuse penetrator: 2
console: 92
consolidate disk usage: 94
consultant: 68

contents of directory: 33
continuing problem: 72
contractor: 68
contractual obligation: 66
control of source code: 48
controlled access protection: 10
convert to number: 29
cooperating users: 10
cooperation: 1, 3, 70, 72
copies of password: 28
copy hierarchy: 88
copy of privileged program: 49
copying object: 44
copying set-user-ID program: 44
correct use of feature: 1
correct use of security feature: 2
corrupted: 1
corrupted file system: 1, 97
corruption of certain objects: 1
costs imposed on user: 71
courtesy: 71
cp: 44
cpio: 41, 88
crash: 72, 94
crash dump: 90
crash of file system: 97
create: 17
creation date: 31
creator UID/GID: 19
cron: 45
cron script: 100
cron.allow and cron.deny: 80
crypt: 26
cu: 103
customer contract: 66
customer representative: 101
daemon: 40, 60, 77
daemon idle before shutdown: 95
damage to equipment: 7
data base: 61
data integrity: 31
data link security: 8
data terminal ready: 25
deadlocks: 54
dedicated backup device: 93
default directory: 36
default permission: 38
default shell: 12, 15, 82
deferred script: 45

X/Open Guide (1990)
Security Guide, Second Edition Page : 117

Index

define job: 68
defining group: 14
degree of network integration: 8
dehumidification: 69
delay: 59
delayed effect: 3
delegate super-user power: 76
delegating administration: 5
deliberate change: 48
deliberate security: 2
denial of service: 30, 53, 65-66
deny access: 88
deny information: 58
deny read access: 32
department: 11
Department of Defense (U.S.): 10
description of job: 68
design review: 48
desk or cabinet: 26
detect breach in uucp: 109
detect lack of privilege: 49
detecting substitution: 31
device access in protected subsystem: 102
device sharing: 93
device special file: 18, 34, 92
df: 88, 94
diagnostic message: 50, 92
diagnostic program: 72
Dialcodes: 108
dictionary: 28
different passwords: 28
difficult password: 28
diminishing return: 65
directory: 18
directory analysis: 33
directory and file security: 30
directory manager: 37
directory operation: 21
directory permission: 19, 96
directory review: 79
disabling an account: 86
disabling group feature: 14
disaster: 7
discipline: 33, 51, 71
discipline penetrator: 2
disclosing password: 78
disclosure: 1, 65, 72, 103
disclosure of super-user password: 75
discretion on methods of phone

access: 103
discretionary security: 10
disgruntled employee: 66
disk: 93
disk quota: 94
disk space: 91, 97
disk space due to normal activity: 88
diskette: 26
disruption: 67
dissatisfaction: 64
dissuading penetration attempt: 3
distrust: 28, 71
division: 10
document security: 26
documentation: 3
DoD: 10
double colon: 37
DTR: 25
du: 88, 94
duplication of data: 97
duration of super-user power: 75
duty of care: 66
dynamic directory: 96
dynamic private directory: 96
earthquake: 67
eavesdropping: 7
edit: 39
edit session interrupted: 39
educate other user: 37
education: 7, 70
educational effort: 70
effective UID/GID: 15
effective vs. real UID: 58
electrical power: 69
electromagnetic emission: 7
electronic mail: 40
emanation security: 7
employee: 66
employee agreement: 30
emulator: 27
enable start-up: 97
encrypt: 12
encryption: 26
enforcement by software: 4
enough room on destination file

system: 88
entire table: 61
environment: 35, 50, 54
environment variable: 32, 87

X/Open Guide (1990)
Page : 118 Security Guide, Second Edition

Index

environmental engineering: 69
equal treatment: 71
errno: 50
erroneous assumption: 50
error in Permissions: 107
error in program execution: 58
error output: 45
escape command: 39
establish identity: 40
establishing security: 64, 79
ex: 39
ex-employee: 66
exact copy of environment: 54
examine environment: 50
example: 71
example of fork: 49
exec: 54
executable code review: 80
execute permission: 16
execute remote command: 103
EXINIT: 35, 39
existing security: 65, 69
expectation: 68
experienced UNIX user: 84
exrc: 39
external event: 72
external penetration: 66
failed penetration attempt: 3
failure: 49
false accusation: 71
fault-detection: 8
favouritism: 71
fcntl: 23, 52, 54, 59
FD_CLOEXEC: 54
field service: 72
field service person: 101
fields in passwd: 12
FIFO special files: 57
file: 16
file access: 21, 52
file access rights: 51
file close: 59
file copy: 44
file creation: 38
file mode creation mask: 51
file removal: 94
file security: 30
file security in SQL: 61
file size limit: 21

file storage integrity: 1
file system: 41, 97
file system crash: 97
file system security: 96
file system table: 98
file without name: 57
file-type object: 18
filed password: 27
filename: 19
files open to anyone: 33
final shutdown procedure: 95
find: 33, 94
fire: 7, 67
fire protection: 69
firmware security: 8
flexibility: 59
flood: 67
foreign computers: 8
foreign file system: 98
fork: 49, 54
form of security: 68
forms of security: 7
fsck: 21, 98
fstab: 98
full disk with static data: 97
full name: 82
full pathname: 76
funding: 64
future planning: 1
generic entry in USERFILE: 106
getgrent: 89
give up privilege: 51
give up privileges: 59
giving user the programmer’s rights: 32
goal of administrator: 2
goal of penetrator: 2
goodwill: 66
government procurement: 10
group: 5, 14, 16, 34, 68, 79, 89
group database: 14, 79, 89
group directory: 34
group identifier (GID): 12
group identity: 14
group membership: 14
group name: 14
group of pseudo-users: 78
group password: 14
group removal: 89
group vs. other permission: 78

X/Open Guide (1990)
Security Guide, Second Edition Page : 119

Index

guessing password: 28
guest account: 83
guideline: 49
hacker: 66
handle error: 58
hard disk: 26
hard-wired terminal: 92
hardware component: 25
hardware security: 8, 92
helper: 60
helpful diagnostic: 50
hierarchy: 30, 94, 102
hierarchy in USERFILE: 106
hierarchy moving: 88
high-speed transfer: 103
hiring: 70
history: 10
hobby: 28
home directory: 30, 81, 83, 102
HoneyDanBer uucp: 107
how to choose password: 29
human user: 5
hypocrisy: 71
hypothetical success: 59
identification of super-user: 75
identify breach: 72
identity: 12, 28
identity of invoker: 60
identity of mail sender: 40
identity of penetrator: 2
ignore attempt to set setuid: 23
ignored line: 29
impact from breach: 72
impact on security: 5
impatience: 66
implicit change of UID/GID: 20
impossible error: 50
impossible move of hierarchy: 88
imposter: 72
imprecision of authorisation: 61
improper program: 70
inaccessible object: 21
inadequate protection: 33
inadvertent breach: 66
inbound access control: 106
incoming call: 103
increased funding: 64
independent confirmation: 76
indexed sequential: 61

indirect privilege: 59
indirect query: 62
inference: 62
informal work environment: 70
information to penetrator: 58
informational directory: 96
inherit attribute: 15
init: 101
initial investment: 65
initial program: 82
initial transition: 79
initial working directory: 12
initialisation: 26
initialisation of editor: 39
initialisation of mail: 40
initiator of remote transfer: 108
install software: 77
install user files: 83
installation setup: 35
instantaneous change: 52
insulating users and data: 12
insurance: 66
integration of network: 8
integrity: 1, 30
integrity of data: 26, 31
integrity of file system: 94, 97
integrity of mail: 40
intelligent terminal: 25
inter-process communication: 19, 60
interactive script: 45
interference from other sessions: 77
interrupted edit session: 39
intra-file-system move: 88
introduction for new user: 84
inventory of objects: 33
inventory of value: 64
investigate remote security: 8
investment of time: 64
invoking process: 51
IPC: 57
IPC object: 19
irreversibility of change: 18
ISAM: 61
isolation: 4, 8, 12, 66
isolation by protected subsystem: 102
job assignment: 11
job description: 68
justify security: 65
kernel file: 98

X/Open Guide (1990)
Page : 120 Security Guide, Second Edition

Index

key employee: 68
keystroke: 54
kill: 18, 21, 92
L-dialcodes: 108
L.sys: 108
laboratory: 65
lack of privilege: 49
LAN: 8
large quantity of disk space: 97
large system: 92
last process slot: 22
law: 30
lawsuit: 73
least privilege: 4, 6, 58, 66, 75
leaving the organisation: 69
legal right: 66
less-secure system: 40
library routine: 32
licence agreement: 30
lifetime of a password: 28
likelihood of obeying rules: 7
limited privilege: 4
line editor: 39
line printer administrators group: 78
link: 52
ln: 44, 97
loan password: 28
loaning a disk: 26
local copy: 26
local-area network: 8
lock record: 52
locked cabinet: 26
lockf: 52
log: 92
log file: 72
log file in uucp: 109
log file reduction: 91
log out: 95
logged in: 12
logging: 49, 58, 80
logging to console: 92
login: 12, 15, 22
login anomaly: 29
login information: 11
login name: 5, 81
login shell: 82
login shell for remote computer: 105
login within protected subsystem: 102
long login name: 81

look before typing: 28
loss of carrier: 25
loss of data: 66
loss of service: 65
lost business: 65
lost software: 64
LP administrator: 5
lp pseudo-user: 77
ls: 14, 30
machine: 8
machine security: 92
mail: 35, 40, 84
mail administrators group: 78
mail authenticity: 40
mail message: 87
mail transfer: 103
mailing list: 87
MAILRC: 35, 40
mailx: 40
maintain integrity: 1
maintainability: 48, 51
malfunction: 48
management: 48
management approval: 68
management awareness: 64
management of attitudes: 28
management support: 3, 70
management training: 70
manual supplied by vendor: 76
masquerade: 2
mechanics of security: 11
media security: 40
memory: 94
memory limit: 21
memory segment: 19
menu-oriented shell: 82
mesg: 25
message: 19, 25
message queue: 57
microcode: 8
mkdir: 19, 21
mkfifo: 57
mknod: 17
mnttab: 98
mode of communication: 103
modem: 93, 103
modifiable privileged program: 23
modified file: 33, 52
modify directory: 19

X/Open Guide (1990)
Security Guide, Second Edition Page : 121

Index

module: 48
monitor changes to data: 33
monitor disk free space: 94
motivate by example: 71
motivation of penetrator: 2
motive of penetrator: 71
mount: 22, 93, 98
mount foreign system: 98
moving file: 44
moving hierarchy: 88
multiple copies of object: 97
multiple groups: 34
multiple logins: 90
multiple pathnames: 19
multiple signal: 56
multiple super-user accounts: 75
multiplication: 65
mv: 19, 44
mysterious breach: 104
name of user: 82
naming system: 41
National Computer Security Center: 10
natural disaster: 7
nature of security violation: 59
NCSC: 10
needs of new user: 68
network administrator: 104
network audit: 104
network communication: 40
network penetration: 28
network security: 8, 103
new hire: 70
new object: 38
new shell: 34
new user: 68, 81
newgrp: 15, 34
nice: 21, 92
non-critical data: 48
non-executable object: 23
non-interactive job: 92
non-monetary factor: 66
notation of permission: 16
notification: 89
notification before removing user: 87
null EXINIT: 39
null field in USERFILE: 106
null password: 82
number in login name: 81
number in place of name: 87, 89

numerical result code: 58
nuucp: 104
object: 16
object creation: 38
object owner/group: 16
object protection: 30, 98
object’s group: 14
object’s value: 1
objects belonging to another user: 33
objects copied into directory: 38
obscure password: 28
obsolete account: 79
obsolete entries in Permissions: 108
obvious login name: 81
occasion for reevaluation: 64
octal notation: 16
off-site storage: 65
office safe: 26
omit password: 82
on-line dictionary: 28
ongoing tasks: 68
open: 17
open directory: 37
open door: 25
OPEN_MAX: 50
operations staff: 70
operator: 5, 28
option: 32
optional IPC: 57
optional security enhancement: 10
order of PATH entries: 37
organisation’s survival: 66
organisational change: 69
organisational number of user: 82
original uucp: 106
other: 16
outbound access control: 106
outside penetration: 66
outsider access via protected

subsystem: 102
overcome resistance: 70
overdependence on key employee: 68
override mask: 17
owner: 16, 31
pack: 26
paging: 21
parametrisation: 50
parent process: 15
partial restoration: 72

X/Open Guide (1990)
Page : 122 Security Guide, Second Edition

Index

partition: 97
pass-through directory: 96
passwd: 12, 29
password: 2, 12, 28, 41, 81
password aging: 82
password change: 73
password disclosure: 78
password failure: 29
password from phrase: 29
password of group: 14
password of super-user: 75
password requirement: 82
password selection technique: 29
PATH sequence: 37
PATH syntax: 37
PATH variable: 35-36
penetration: 107
penetration from outside: 66
penetration spreading: 97
penetrator: 2, 32, 36, 58
perceived benefit: 71
performance: 97
periodic password change: 28
permission: 8, 16, 48, 57
permission from the administrator: 28
permission of home directory: 83
permission on hierarchy for remote

use: 106
permission on new file: 38
Permissions: 107
Permissions file: 108
permissions on uucp file: 109
permitting action: 11
perpetual access to data: 28
personal accountability: 75
personal file: 31
personal information: 28
personal interest: 28
personal printer: 26
personal responsibility: 28, 48
personal system: 26
personnel department: 68
personnel policy: 11
personnel security: 7
phase of program development: 70
physical access to console: 77
physical equipment: 64
physical location: 7
physical security: 7, 25, 65, 69

physical security for tape: 44
PID: 56
pipe: 18
placement of home directory: 83
plan actions as super-user: 76
planning: 68
plant and equipment: 7
plant engineering: 69
plant security: 69
plant security department: 68
plotter: 26
pointer to object: 19
policy: 5
policy change: 70
political motive: 66
portability: 50
post-mortem analysis: 90
potential threat: 63
power: 4
power supply: 69
power-down: 95
powerful program: 58
powers of privileged program: 21
precautions: 58
precautions on privileged program: 23
preparing a backup: 41
presence of object in directory: 19
prevent recurrence of problem: 72
preventing action: 11
previous security state: 64
primary group: 34
print-out from console: 92
printer: 5, 26
printing terminal: 92
priority: 92
privacy: 66
private data: 25
private directory: 96
privilege: 4, 75
privilege in daemon: 60
privileged program: 49, 58, 99
privileged shell script: 99
probability of loss: 65
procedure: 65
process: 15
process as object: 18
process control: 21
process priority: 92
process type: 16

X/Open Guide (1990)
Security Guide, Second Edition Page : 123

Index

process’s group: 14
procurement requirement: 10
profile: 35, 79, 84
program change: 48
program error: 48
program of unknown identity: 76
program option: 32
program that does not need privilege: 51
program user: 58
programmable key: 25
programmed delay: 59
programmed penetration: 2
programmer: 47
programmer education: 70
programmer resistance: 70
programming discipline: 51
programming guideline: 49
programming management: 48
project member: 34
project team: 79
proof: 3
propagation of error: 97
proper program: 70
proprietary data: 65
protect data from change: 97
protect directories and objects: 30
protected subsystem: 83, 102
protecting value: 1
protection on object: 98
ps: 86, 92
pseudo-user: 5, 60, 77, 80
pseudo-user group: 78
public directory: 96
purchasing department: 68
quantify value: 64
query: 61
queue: 57
random penetration: 66
raw disk: 41
re-evaluation of special authorisation: 69
READ option in Permissions: 107
read permission: 16
read permission on directory: 19
read-only data: 52
read-only mounting: 97
real UID/GID: 15
real vs. effective UID: 58
reapply setuid: 23
reboot: 77

rebuild: 72
rebuild from source: 32
reclaim ownership: 18
recompile: 72
record locking: 52
record password: 27
record permission: 88
record relevant event: 3
recovering from lock: 53
reestablish security: 72
reevaluation of security: 64
reference to removed group: 89
regulating entry: 7
relative addressing: 39
relative pathname in backup: 41
relatives: 71
remote command execution: 103
remote communication: 103
remote computer: 8
remote connection: 93
remote connections: 69
remote login: 108
remote printer: 26
remote session: 40
remote.unknown: 107
remotely executable command: 108
remove account: 86
remove old hierarchy: 88
remove set-user-ID: 32
remove setuid: 23
removing group: 89
removing lines from script: 60
repair breach: 72
replacing software: 64
replicating program: 3
REQUEST option in Permissions: 107
requesting system services: 49
required enhancement: 10
requirement of new user: 68
resentment: 71
reserve tape drive: 44
reset machine state: 59
resistance: 70
resistance to security: 70
resource quota: 94
resources used by daemon: 60
responding to security problem: 29
responsibility: 28, 48, 73
restart computer: 77

X/Open Guide (1990)
Page : 124 Security Guide, Second Edition

Index

restitution: 73
restore: 41
restore edit: 39
restore from non-secure medium: 32
restored file: 89
restoring integrity after virus: 3
restoring to different computer: 41
restrict file transfer: 106
restricted access to record: 61
result code: 49, 58
result codes of fork: 49
retention of deleted user’s data: 87
return status: 49, 58
reuse password: 82
revert to login shell: 76
review code: 80
review contents: 33
review design: 48
revised system software: 101
revision: 48
rigid disk: 26
rm: 19
rmdir: 21
role: 69
role-based account: 5
root: 12, 21
root account: 75
routine operations on console: 92
row- or column-restriction: 61
rsh: 82
rules: 2
run-time error: 58
runaway process: 21, 49, 92
running out of space: 97
sabotage: 66
safes: 26
saved set-group-ID: 59
saved set-user-ID: 59
SCCS: 48
screen dump: 25
script: 45, 60
script security: 60
search path: 36, 39, 76
search path to other users: 37
search permission: 19
searching a hierarchy: 33
secrecy: 65
secrecy for .profile: 36
secure environment: 35

secure system: 79
secure terminal: 29, 76
security: 1
security administrator: 5
security attribute: 21
security breach: 72
security by design: 68
security department: 69
security discipline: 33
security for programmers: 47
security form: 7
security implication: 11
security of data link: 8
security of network: 40
security operation: 28
security policy: 2, 7, 40, 68
security strategy: 64
segregate data: 97
self-copying program: 3
selling point: 70
semaphore: 19, 57
send password from file: 41
SENDFILES option in Permissions: 108
sensitive data: 65
sensitive script: 45
separate administrative roles: 6
separate directory: 31
separate home directory: 83
separate password for remote

computer: 104
separate telephone number from login

data: 108
separate users and resources: 4
sequence of PATH entries: 37
sequence stamp used in uucp: 109
sequential file: 61
serial line: 93, 103
service request: 49
session on remote computer: 40
session start procedure: 25
session transcript: 27, 41
set-group-ID: 32, 58
set-user-ID: 44, 49, 58
set-user-ID back to real UID: 59
set-user-ID program: 32
set-user-ID/set-group-ID: 20
set-user-ID/set-group-ID program: 33
setgid: 15
setuid: 3, 15, 51

X/Open Guide (1990)
Security Guide, Second Edition Page : 125

Index

setuid/setgid: 20, 22
share file: 94
share file with subprocess: 54
shared account: 77
shared data: 34
shared device: 93
shared memory: 57
shared memory segment: 19
shared object: 34
shared printer: 26
shared terminal: 92
shared terminal (via modem): 103
sharing files: 87
sharing login name: 5
sharing processor: 92
shell: 82
shell anomaly: 29
shell escape: 39
shell script: 60
shell script running privileged: 99
shell variable: 35
shielding: 7
short absence from terminal: 25
short-term cost: 71
shredder: 26
shut down network: 104
shutdown: 95
signal: 18, 21, 54
signal source: 56
signal to unrelated process: 56
SIG_IGN: 54
similar permission: 31
simultaneity: 52
simultaneous update: 89
single-user mode: 75, 77
site security: 69
site-dependent profile: 35
software feature: 4
software installation: 77
software security: 8
software security over peripherals: 92
someone else’s files: 33
source code control: 48
source of signal: 56
space available on file system: 88
space on disk: 94
special cases of permission: 19
special file: 18, 92
special privilege for programmer: 6

special services: 22
specific disclosure: 66
specific entry in USERFILE: 106
specific identity in search path: 37
specific utilities: 39
specify location of temporary file: 32
speed of disk access: 97
spelling checker: 28
spoofing program: 3
spooler: 77
spooling maintenance: 5
spying: 7
SQL: 61
staff education: 70
standard output: 45
start-up: 92
start-up changes: 29
starting a session: 25
static directory: 96
static file: 52
static private directory: 96
sticky bit: 42
strange messages from login: 29
strategy for allocating disk: 88
strip setuid: 23
structure of daemon: 60
structured programming: 48
structured query language: 61
study new program: 6
studying program: 32
su: 15
subdirectory: 31
subliminal effect: 71
subprocess: 15, 54
subprocess communication with file: 54
subprocess creation: 101
subprocess UID/GID: 20
subsequent privilege: 59
substitution in temporary directory: 31
subsystem: 102
success: 49
sulog: 90
super-user: 3, 12, 75, 94
super-user account: 75
super-user password: 75
super-user shell script: 99
supplementary GIDs: 15, 34
support of management: 3
suspended remote session: 41

X/Open Guide (1990)
Page : 126 Security Guide, Second Edition

Index

swapping: 21
switch to another user: 78
sync: 77
syntax in PATH: 37
SYSLOG: 109
system crash: 72
system diagnostic message: 92
system directories: 97
system programmer: 6
system upgrade: 101
Systems: 107-108
table of file systems: 98
tape: 26, 93
tar: 41, 43
TCSEC: 10
temporary directory: 31, 37, 42, 97
temporary file: 39, 57
terminal: 25, 92
terminal emulator: 27
terminal line: 103
terrorist: 66
test assumption: 50
test suites: 48
testing on non-critical data: 48
theft of data: 66
threat: 66
threat to security: 2
threat to system: 63
time and effort: 1
time delay: 2
time required for breach: 25
time spent: 64
time-sharing service: 102
timesharing: 77
timetable for restoration: 72
tmpdir: 32
total disk usage in hierarchy: 94
trace disclosure of super-user

password: 75
tracing use of features: 4
trade secret: 65
traditional rules: 2
transcript: 27, 41
transfers between disk and tape: 94
transition: 28
transition to secure system: 79
translation table: 29
trap: 84
trick user into typing password: 3

Trojan horse: 3, 29, 39, 76
trust: 66, 71
turn terminal off: 25
type /bin/su: 76
type of access: 16
type of process: 16
type of security violation: 59
types of penetration: 2
typical penetration: 35
UID: 81
UID 0: 12
UID/GID: 12
ulimit: 35
umask: 35, 38, 44, 51
umount: 22
unattended terminal: 25
unauthorised: 72
unauthorised modem user: 103
understand request of super-user: 76
unified security policy: 8
uninterrupted power: 69
unique group: 89
unique user identification: 82
United States Government: 10
universal compliance: 71
universal file access: 21
UNIX history: 10
unknown caller: 107
unlink: 21
unlink directory: 21
unload: 44
unlocking: 53
unmount tape: 93
unmount user file system: 86
unnamed file: 57
unrelated process: 56
unsecured network: 104
unsuccessful penetration: 58
untested program: 76
unusual activity: 72, 90
unusual response to super-user: 76
unusual user behaviour: 72
update: 70
user: 5-6, 12, 79
user administration: 81
user attitude: 71
user authorisation: 58
user base: 89
user complaint: 72

X/Open Guide (1990)
Security Guide, Second Edition Page : 127

Index

user cooperation: 72
user database: 1, 12, 14, 79, 81, 89
user directory: 79
user education: 3, 70
user environment: 79
user files: 83
user hierarchy: 88, 106
user identifier (UID): 12
user interference: 77
user list: 87
user logged in more than once: 90
user mode: 8
user name: 12
user needs for disk: 97
user of privileged program: 58
user responsibility: 25
user-defined penetration response: 107
user-specified initialisation: 39-40
USERFILE: 80, 106
usurpation of privilege: 3
utility: 39
utmp: 90, 98
uucheck: 107
uucico: 105
uucp: 40, 103
uucp account: 104
UUCP administrator: 5
uucp administrator: 104
uucp administrators group: 78
uucp authorisation file: 80
uucp login: 107
uucp pseudo-user: 77
uucp terminal: 93
uuxqt: 108
value: 1, 64
value of system: 63
variable: 54
varying privilege among users: 4
vendor assurance: 8
vendor representative: 101
verification: 3
verify assumption: 51
verify identity: 60
verify identity of set-user-ID program: 32
verify login: 28
verify permission: 88
vi: 39
viability: 66
video terminal: 92

view: 39
virus: 3
visible emission: 7
vsh: 82
vulnerability to threat: 63
vulnerable directory: 97
vulnerable object in unprotected

directory: 32
WAN: 8
war: 67
well-defined file reference: 35
wide-area network: 8
Winchester disk: 26
window: 7
window of vulnerability: 32
windows and doors: 25
working directory: 12, 30-31, 36-37
workload of computer: 90
worm: 3
writable privileged program: 23
write conversation: 25
WRITE option in Permissions: 108
write permission: 16
write permission on directory: 19
write to directory: 23
write-lock device: 97
write-protected directory: 32
written password: 28
written policy: 68

X/Open Guide (1990)
Page : 128 Security Guide, Second Edition

