
DCE 1.2.2 Administration Guide—Core Components

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:

DCE 1.2.2 Administration Guide—Core Components

ISBN 1–85912–118–7

Document Number F208

Published in the U.K. by The Open Group, 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xxix

The Open Group xxix

The Development of Product Standards. xxx

Open Group Publications xxxi

Versions and Issues of Specifications. xxxiii

Corrigenda. xxxiii

Ordering Information xxxiii

This Book xxxiv

Audience xxxiv

Applicability xxxiv

Purpose. xxxiv

Document Usage xxxv

Related Documents. xxxv

Typographic and Keying Conventions. xxxvi

Problem Reporting. xxxvii

Pathnames of Directories and Files in DCE
Documentation.xxxviii

Trademarks.xxxviii

Part 1. The DCE Control Program

Chapter 1. DCE Control Program Introduction. 3

1.1 Flexible, Portable, and Extensible Administration. . . . 4

1.2 DCE Administration Objects 6

DCE 1.2.2 Administration Guide—Core Components i

Contents

1.3 Using the DCE Control Program 6
1.3.1 Starting and Stopping dcecp. 7
1.3.2 Invoking dcecp Operations. 8

1.4 Doing More with dcecp. 11

1.5 When to Use an Interactive Command or Script. 14

1.6 Editing Command Lines 14
1.6.1 Editing the Current Command Line 15
1.6.2 Editing Command Lines with the history

Command. 17

1.7 Using the dcecp Help Facilities. 20

1.8 Customizing dcecp Sessions. 24
1.8.1 Adding Scripts to dcecp Sessions. 24
1.8.2 Adding New Objects to the DCE Control

Program 27

Chapter 2. Using the DCE Control Program Command Language. 29

2.1 Chapter Preview 30

2.2 Variable Substitution 31

2.3 Command Substitution. 32

2.4 Grouping Elements and Controlling Interpretation. . . . 33
2.4.1 Grouping Elements with Braces. 34
2.4.2 Grouping Elements with Double Quotes. . . . 35
2.4.3 Including Special Characters with Backslashes. . . 36

2.5 Documenting Scripts with Comments. 37

2.6 Convenience Variables. 38
2.6.1 Current Principal (User) Name (_u) 39
2.6.2 Current Cell Name (_c) 40
2.6.3 Current Host Name (_h). 40
2.6.4 Most Recent Operation Argument Name (_n). . . 41
2.6.5 Parent of _n (_p). 42
2.6.6 Last dcecp Object Name (_o). 43
2.6.7 Last Operation’s Return Value (_r). 43
2.6.8 DCE Servers to Use (_s(xxx)). 44
2.6.9 Last Security Server Used (_b(sec)). 46
2.6.10 Most Recent Error Code (_e). 47
2.6.11 CDS Confidence Level (_conf). 47

2.7 Measuring and Counting with Expressions. 47

2.8 Operating on Lists. 49

ii DCE 1.2.2 Administration Guide—Core Components

Contents

2.9 Controlling Scripts. 51
2.9.1 Conditionalizing with if Statements 52
2.9.2 Controlling Script Execution with Loops. . . . 52
2.9.3 Terminating Loops with continue and break. . . 55
2.9.4 Testing with Patterns Before Execution with case. . 56

2.10 Creating Commands Dynamically. 58

2.11 Reading Other Files as dcecp Scripts. 59

2.12 Creating New Commands. 60

2.13 String Manipulation. 63
2.13.1 Constructing Strings 64
2.13.2 Parsing Strings. 65
2.13.3 Other String Handling Operations. 66

2.14 Dealing with Errors and Exceptions. 67
2.14.1 Using Global Error Information Variables. . . . 68
2.14.2 Using catch to Trap Errors and Exceptions. . . . 69
2.14.3 Reissuing Complex Errors. 71

2.15 Working with Files. 72
2.15.1 Specifying Filenames. 73
2.15.2 Reading and Writing Files. 73

2.16 Spawning Subprocesses. 75
2.16.1 Running Operating System Commands from a

Script 75

Chapter 3. Writing Scripts and dcecp Objects. 77

3.1 Informal Administration Scripts. 78

3.2 Formal Task Objects 80
3.2.1 A Model for Task Objects. 81
3.2.2 Using the parseargs Procedure. 90
3.2.3 Invoking Task Objects. 92

Part 2. DCE Administration Tasks

Chapter 4. DCE Administration Task Objects. 95

4.1 Using Task Objects to Simplify DCE Administration . . . 96

4.2 Looking Beyond the Tools. 97

Chapter 5. Managing a DCE Cell. 99

5.1 Showing All Configured DCE Servers and DCE Hosts. . . 100

DCE 1.2.2 Administration Guide—Core Components iii

Contents

5.2 Testing Cell Operation. 102

5.3 Backing Up the Security Service Registry and CDS. . . . 103

5.4 Modifying or Extending the Cell Object. 105

Chapter 6. Managing Your Cell Name. 107

6.1 Registering in Multiple Global Directory Services. . . . 107

6.2 Modifying or Extending the cellalias Object. 109

Chapter 7. Managing DCE Hosts. 111

7.1 Listing the DCE Hosts in a Cell. 112

7.2 Showing All Servers Configured for a DCE Host. . . . 113

7.3 Testing Whether a DCE Host is Running. 114

7.4 Starting Configured DCE Processes on a Host. 114

7.5 Stopping DCE Processes Running on a Host. 115

7.6 Configuring a DCE Host in a Cell. 115

7.7 Removing a DCE Host from a Cell. 117

7.8 Modifying or Extending the Host Object 118

Chapter 8. Managing DCE Users. 119

8.1 Creating a New User 120

8.2 Showing User Information. 122

8.3 Deleting a User. 123

8.4 Modifying or Extending the User Object 124

Part 3. DCE Host and Application Administration

Chapter 9. Managing DCE Host Services and Host Data. 127

9.1 DCE Host Services. 128

9.2 Starting and Stopping DCE Host Services. 129

9.3 Managing Host Data 131
9.3.1 Permissions for Accessing Host Data. 131
9.3.2 Modifying Host Cell Name Information 133
9.3.3 Manipulating Data in Other Host Files. 135

9.4 Routing Serviceability Messages 136
9.4.1 Serviceability Message Severity Levels. 137
9.4.2 How to Route Serviceability Messages. 138

iv DCE 1.2.2 Administration Guide—Core Components

Contents

Chapter 10. DCE Application Administration 145

10.1 Controlling Server Operation 146
10.1.1 Common Server Configuration Needs. 147
10.1.2 Configuring Servers 154
10.1.3 Listing and Retrieving Server Configuration

Information 156
10.1.4 Unconfiguring Servers. 157
10.1.5 Starting and Stopping Servers. 158
10.1.6 Disabling and Enabling Services. 158
10.1.7 Extending Server Configurations. 159
10.1.8 Changing Server Configurations. 161
10.1.9 Checking Whether Servers Are Running. . . . 163

10.2 Managing Client/Server Binding Information 163

10.3 Using the Endpoint Map for Easy Application
Development and Administration 165
10.3.1 Automatic Endpoint Map Administration. . . . 166
10.3.2 Restricting Endpoints. 167
10.3.3 Viewing Information in the Endpoint Map. . . . 168

10.4 Managing Server Entries, Groups, and Profiles in CDS. . . 169
10.4.1 Using Unique Server Entry Names to Identify

Individual Servers and Objects. 169
10.4.2 Using Group Entries to Help Balance Server

Workloads. 176
10.4.3 Using Profiles to Direct Client Searches for

Servers 182

10.5 Client Administration 189
10.5.1 Determining the Entry Name. 190
10.5.2 Providing the Entry Name to Clients. 191

Part 4. Cell Directory Service

Chapter 11. Introduction to the DCE Directory Service. 195

11.1 How the DCE Components Use the DCE Directory
Service. 196

11.2 How to Use DCE Directory Services 197

11.3 Directory Services and the Cell Environment. 198

11.4 How Cells Determine Naming Environments. 200
11.4.1 Global Names. 201
11.4.2 Hierarchical Cell Names. 202
11.4.3 Alias Cell Names. 204

DCE 1.2.2 Administration Guide—Core Components v

Contents

11.4.4 Cell-Relative Naming in a Standalone Cell. . . . 205
11.4.5 Cell-Relative Naming in a Hierarchy of Cells. . . 206
11.4.6 Local Filenames 207

11.5 An In-Depth Analysis of DCE Names. 207
11.5.1 CDS Names 207
11.5.2 GDS Names 209
11.5.3 DNS Names 212
11.5.4 Names Outside of the DCE Directory Service. . . 213

Chapter 12. CDS Concepts. 215

12.1 How CDS Works 216

12.2 Replicas and Their Contents. 218
12.2.1 Object Entries. 219
12.2.2 Soft Links. 220
12.2.3 Child Pointers. 221
12.2.4 Summary. 221

12.3 Security in the Cell Directory Environment. 222

12.4 CDS User Interfaces 224

Chapter 13. How CDS Looks Up Names. 225

13.1 Translating from Names to Resources. 225

13.2 How CDS Finds Names. 231
13.2.1 The Solicitation and Advertisement Protocol. . . 232
13.2.2 Lookups 232
13.2.3 The cdscache create Command. 232

Chapter 14. How CDS Updates Data. 235

14.1 Update Propagation. 235

14.2 Skulk Operation. 236

14.3 How Timestamps Help Keep Data Consistent. 237

Chapter 15. Managing the DCE Directory Service. 239

15.1 Using the DCE Control Program 239
15.1.1 CDS Managed Objects. 240
15.1.2 DCE Control Program Operations for CDS. . . . 240
15.1.3 CDS Object Attributes. 242

15.2 Using dcecp to Maintain CDS. 242

Chapter 16. Controlling Access to CDS Names. 244

vi DCE 1.2.2 Administration Guide—Core Components

Contents

16.1 Overview of DCE Authorization for CDS 244

16.2 ACL Types Supported by CDS. 245

16.3 How Permissions Propagate to CDS Directories and Their
Contents 246

16.4 ACL Entry Types Used for Principals. 247

16.5 DCE Permissions Supported by CDS. 250

16.6 Controlling Access to CDS Clerk and Server
Management Operations. 251

16.7 Control Program Commands and Required Permissions. . . 252

16.8 Editing ACLs on CDS Names. 256

16.9 How CDS Servers Gain Access to the Namespace. . . . 257

16.10 Setting Up Access Control in a New Namespace. . . . 258
16.10.1 Adding Members to the Namespace

Authorization Group 258
16.10.2 Creating Additional Authorization Groups. . . . 259
16.10.3 Establishing Maximum Permissions for

Unauthenticated Principals. 259

Chapter 17. Managing Clerks, Servers, and Clearinghouses. 261

17.1 Monitoring Clerk, Server, and Clearinghouse Counters. . . 261
17.1.1 Displaying Clerk Counters. 262
17.1.2 Displaying Server Counters 262
17.1.3 Displaying Clearinghouse Counters. 262

17.2 Monitoring Clerk Communications with Specific
Clearinghouses. 263

17.3 Displaying the Contents of a Clearinghouse. 263

17.4 Forcing the Clearinghouse to Checkpoint to Disk. . . . 264

17.5 Disabling Clerks and Servers. 264
17.5.1 Disabling a Clerk. 264
17.5.2 Disabling a Server. 264

17.6 Restarting Clerks and Servers. 265
17.6.1 Restarting a Clerk. 265
17.6.2 Restarting a Server. 265

17.7 Preserving a Clearinghouse Across a Server System
Upgrade 267

17.8 Backing Up Namespace Information. 267

DCE 1.2.2 Administration Guide—Core Components vii

Contents

17.8.1 Using Replication to Back Up Namespace
Information 268

17.8.2 Using Operating System Backups. 268

Chapter 18. Managing CDS Directories. 271

18.1 Creating Directories. 271
18.1.1 Permissions for Creating a Directory. 272
18.1.2 Entering the directory create Command. . . . 272
18.1.3 Checking the ACL Entries for a New Directory . . 273
18.1.4 Upgrading the Directory Version on the Cell

Root Directory. 274
18.1.5 Upgrading the Directory Version on a Directory. . 274

18.2 Creating a Read-Only Replica. 275
18.2.1 Before You Create a Replica. 276
18.2.2 Permissions for Creating Replicas. 278
18.2.3 Entering the directory create Command. . . . 279

18.3 Deleting a Read-Only Replica. 279
18.3.1 Permissions for Deleting a Replica. 279
18.3.2 Entering the directory delete Command. . . . 280

18.4 Skulking a Directory 280
18.4.1 Permissions for Skulking a Directory. 280
18.4.2 Entering the directory synchronize Command. . . 281
18.4.3 Synchronizing CDS Server Clocks. 282

18.5 Modifying a Directory’s Convergence. 283
18.5.1 Before You Modify a Directory’s Convergence. . . 283
18.5.2 Permissions for Modifying a Directory’s

Convergence 284
18.5.3 Entering the directory modify Command. . . . 284

Chapter 19. Viewing the Structure and Contents of a Namespace. 285

19.1 Viewing the Namespace with the CDS Browser. 285
19.1.1 Displaying the Default Namespace. 286
19.1.2 Expanding and Collapsing Selected Directories. . . 287
19.1.3 Expanding and Collapsing the Entire Cell

Namespace 287
19.1.4 Filtering the Namespace Display. 287
19.1.5 Navigating the Namespace. 288

19.2 Listing the Contents of Directories. 288
19.2.1 Displaying the Attribute Values of CDS Names. . 289
19.2.2 Displaying Clerk and Server Attribute

Information 292

viii DCE 1.2.2 Administration Guide—Core Components

Contents

Chapter 20. Using the CDS Subtree Commands to Restructure CDS Directories. . 293

20.1 Overview of the Merge and Append Procedures. 294

20.2 Merging CDS Directories 295
20.2.1 Appending CDS Directories 298
20.2.2 Modifying ACLs at the Target Location 300

20.3 Handling Errors. 301
20.3.1 Duplicate Names. 301
20.3.2 Unreachable Name Failures. 301
20.3.3 Insufficient Permissions 302

20.4 Merging CDS Directories into a Foreign Cell. 303
20.4.1 Establishing Cross-Cell Authentication. 303
20.4.2 Performing a Merge Operation into a Foreign

Cell 303

20.5 Restoring Merged CDS Directories. 304

Chapter 21. Restructuring a Namespace. 305

21.1 Managing Soft Links 306
21.1.1 Creating a Soft Link 306
21.1.2 Changing a Soft Link’s Destination Name. . . . 308
21.1.3 Changing a Soft Link’s Expiration or Extension

Value 309
21.1.4 Deleting a Soft Link 309

21.2 Modifying a Directory’s Replica Set. 310
21.2.1 Before You Modify a Replica Set. 310
21.2.2 Permissions Required for Modifying a Replica

Set 311
21.2.3 Designating a New Master Replica. 311
21.2.4 Excluding a Replica from a Replica Set. . . . 313

21.3 Deleting Directories. 314
21.3.1 Deleting a Nonreplicated Directory. 315
21.3.2 Deleting a Directory Replica. 316

21.4 Relocating a Clearinghouse. 318
21.4.1 Dissociating a Clearinghouse from Its Host

Server System. 319
21.4.2 Copying the Clearinghouse Database Files to the

Target Server System. 319
21.4.3 Starting the Clearinghouse on the Target Server. . 320

21.5 Deleting a Clearinghouse. 321
21.5.1 Before You Delete a Clearinghouse. 321
21.5.2 Permissions for Deleting a Clearinghouse. . . . 321

DCE 1.2.2 Administration Guide—Core Components ix

Contents

21.5.3 Deleting a Clearinghouse. 322

21.6 Creating and Managing Hierarchical Cells. 322
21.6.1 Creating a Cell Hierarchy. 323

Chapter 22. Managing Intercell Naming. 325

22.1 How the Global Directory Agent Works. 325

22.2 Managing the Global Directory Agent. 329

22.3 Enabling Other Cells to Find Your Cell. 330
22.3.1 Defining a Cell in the Domain Name System. . . 331
22.3.2 Defining a Cell in the Global Directory Service . . 333

Part 5. DCE Distributed Time Service

Chapter 23. Introduction to DCE Distributed Time Service. 337

23.1 DTS Advantages 339
23.1.1 Applications Support. 339
23.1.2 External Time-Provider Support. 340
23.1.3 Manageability. 341
23.1.4 Quantitative Inaccuracy Measurement. 341

23.2 Basic DTS Concepts 342
23.2.1 Time Measurement Factors. 342
23.2.2 Inaccuracy Values. 343
23.2.3 Synchronizing System Clocks. 345
23.2.4 How DTS Adjusts System Clocks. 348
23.2.5 DTS Time Representation. 349

23.3 How DTS Works 352
23.3.1 Clerks. 353
23.3.2 Servers 354

Chapter 24. Planning Your DTS Implementation. 357

24.1 The DTS Planning Team 357

24.2 General Planning Guidelines 358

24.3 Configuring DTS for a LAN 359

24.4 Configuring DTS for an Extended LAN. 360

24.5 Configuring DTS for WANs and WAN Links 360
24.5.1 LANs with WAN Links to Remote Sites 361
24.5.2 LANs Connected by WAN Links. 363
24.5.3 WAN Cells 363

x DCE 1.2.2 Administration Guide—Core Components

Contents

24.6 Planning for External Time-Providers. 365

Chapter 25. Managing the DCE DTS. 367

25.1 Using the DCE Control Program 367
25.1.1 DTS Objects 368
25.1.2 dcecp Operations for DTS. 368
25.1.3 DTS Object Attributes and Counters. 369

25.2 DTS Timestamp Format. 371

25.3 Reconfiguring DTS on Nodes. 372
25.3.1 Stopping an Existing Clerk or Server. 372
25.3.2 Creating a New Clerk or Server. 373
25.3.3 Setting Clerk and Server Attribute Values. . . . 374

25.4 Temporarily Reconfiguring DTS. 374

25.5 Modifying Clerk and Server Attributes. 376
25.5.1 The minservers Attribute. 377
25.5.2 Use of minservers Attribute with Global Servers. . 380
25.5.3 Use of minservers Attribute with Systems on

Point-to-Point Lines 381
25.5.4 The maxinaccuracy Attribute. 381
25.5.5 The syncinterval Attribute. 383
25.5.6 The tolerance Attribute. 384
25.5.7 The localtimeout, globaltimeout, and

queryattempts Attributes 386
25.5.8 The serverentry and serverprincipal Attributes. . . 387

25.6 Management Tasks Specific to Servers. 388
25.6.1 Designating Global and Courier Servers. . . . 388
25.6.2 Matching Server Epochs. 390
25.6.3 Setting the checkinterval Attribute for

Connection to a Time-Provider. 391

25.7 Changing the System Time. 392
25.7.1 Updating the Time Monotonically. 392
25.7.2 Updating the Time Nonmonotonically. 394
25.7.3 Forcing System Synchronization. 395

25.8 Controlling Access to DTS. 395

Chapter 26. Interoperation with Network Time Protocol. 397

26.1 Getting the Time from NTP Time Sources. 398
26.1.1 Getting the Time from Local NTP Time Sources. . 398
26.1.2 Getting the Time from Remote NTP Time

Sources 399

DCE 1.2.2 Administration Guide—Core Components xi

Contents

26.2 Giving the Time to NTP Nodes. 401

26.3 Preventing Loops 403

Part 6. DCE Security Service

Chapter 27. Overview of DCE Security. 409

27.1 DCE Authentication Service Servers and Clients. 410

27.2 The Registry Database. 411

27.3 Physical Security of the Database. 412

27.4 How the Registry Database is Stored. 413

27.5 Replicated Databases. 414

27.6 How Updates Are Handled. 415
27.6.1 Master and Slave Replicas. 415
27.6.2 Handling Database Updates. 417
27.6.3 Propagating Database Changes. 418
27.6.4 Master/Slave Authentication. 419

27.7 The /etc/passwd and /etc/group Files and the Registry. . . 419

27.8 The Local Registry. 419

27.9 Names for Security Objects. 420
27.9.1 Using Names with dcecp Security Commands. . . 421
27.9.2 Using Names with the dcecp acl Command. . . 421

Chapter 28. Using Access Control Lists. 423

28.1 Authorization Overview. 424
28.1.1 ACL Managers 425
28.1.2 ACL Interpretation. 426
28.1.3 Credentials Inherited by Processes. 427

28.2 ACL Entries and Masks. 428
28.2.1 ACL Syntax 428
28.2.2 ACL Entry Types for Principals and Groups. . . 429
28.2.3 Group Permissions and Project Lists. 434
28.2.4 Using Principal and Group ACL Entries. . . . 435
28.2.5 ACL Entry Types for Masks 436
28.2.6 ACL Entry Types for Dissimilar DCE Releases. . . 436
28.2.7 The Checking Sequence for ACL Entries. . . . 437
28.2.8 Denying Access 442

28.3 ACL Management Tasks 442

28.4 Copying ACLs. 443

xii DCE 1.2.2 Administration Guide—Core Components

Contents

28.5 Generating ACLs from Files 444

28.6 Container ACLs. 445
28.6.1 Objects and Containers. 445
28.6.2 Initial ACLs for Objects and Containers. . . . 445
28.6.3 Effect of Masks When Editing ACLs. 449

Chapter 29. Control Programs for Managing the DCE Security Service. . . . 453

29.1 Using the DCE Control Program 454
29.1.1 Security Service Objects. 454
29.1.2 DCE Control Program Operations for the DCE

Security Service 455

29.2 Using the Registry Editor 457
29.2.1 Starting, Stopping, and Getting Help. 458
29.2.2 rgy_edit Commands for Local Registry

Maintenance 459

Chapter 30. Creating and Maintaining Principals, Groups, and Organizations. . . 461

30.1 Principal, Group, and Organization Names. 461
30.1.1 Primary Names 462
30.1.2 Full Names 462
30.1.3 Aliases 462
30.1.4 Name Formats. 463

30.2 Reserved Principals and Accounts. 463

30.3 Object Creation Quotas. 464

30.4 Universal Unique Identifiers and UNIX IDs. 464

30.5 Adding and Maintaining Principals. 465
30.5.1 Adding Principals. 466
30.5.2 Changing Principals 467
30.5.3 Deleting Principals and Aliases 469

30.6 Extended Security Attributes for Principals. 470
30.6.1 DCE Authentication 470
30.6.2 Managing Invalid Login Handling. 476
30.6.3 Managing Password Strength and Password

Generation. 477
30.6.4 Managing Password Expiration. 481

30.7 Adding and Maintaining Groups and Organizations. . . . 482
30.7.1 Project Lists 482
30.7.2 Adding Groups and Organizations. 483
30.7.3 Changing Groups and Organizations. 485
30.7.4 Deleting Groups and Organizations. 486

DCE 1.2.2 Administration Guide—Core Components xiii

Contents

30.8 Maintaining Membership Lists. 487
30.8.1 Effects of Account Creation on Membership

Lists 487
30.8.2 Adding and Deleting Group Members. 487

30.9 Creating and Maintaining Aliases for Principals or Groups. . 488
30.9.1 Creating Aliases 489
30.9.2 Changing Primary Names to Aliases and Vice

Versa 489

Chapter 31. Creating and Maintaining Accounts. 491

31.1 User Accounts. 492

31.2 Server Accounts 492
31.2.1 Passwords for Server Accounts. 493
31.2.2 Steps for Creating Server Accounts. 493

31.3 Machine Accounts. 493

31.4 How Identities Represented by Accounts Are
Authenticated 494
31.4.1 Privilege Attributes 495
31.4.2 Ticket-Granting Tickets and Tickets to Services. . 495
31.4.3 Displaying Privilege Attributes and Tickets. . . . 496
31.4.4 Destroying a Principal’s Tickets 498

31.5 Adding Accounts 498
31.5.1 Setting Ticket Lifetimes 503
31.5.2 Ticket-Granting Ticket Lifetimes and Service

Ticket Lifetimes 504
31.5.3 Adding Accounts Example. 504
31.5.4 Modifying Accounts 505
31.5.5 Deleting Accounts. 506

31.6 Creating, Maintaining, and Deleting Keytab Files. . . . 507
31.6.1 The Keytab File 507
31.6.2 Creating and Maintaining Keys and Keytab Files. . 509
31.6.3 Removing Keytab Files 513
31.6.4 Changing Server and Machine Passwords in the

Keytab File 514
31.6.5 Handling Compromised Server or Machine

Passwords in the Keytab File. 514

31.7 Maintaining the Local Registry. 515
31.7.1 The Registry Capacity Property 516
31.7.2 Setting the Capacity and Lifespan Properties. . . 516
31.7.3 Purging Expired Entries 518

xiv DCE 1.2.2 Administration Guide—Core Components

Contents

Chapter 32. Creating and Using Extended Registry Attributes. 519

32.1 The xattrschema Object. 520

32.2 Creating and Maintaining Attribute Types. 520
32.2.1 Creating Attribute Types. 520
32.2.2 Modifying Attribute Types. 523
32.2.3 Renaming Attribute Types. 524
32.2.4 Deleting Attribute Types 524
32.2.5 Defining the ACL Managers for Attributes. . . . 525
32.2.6 Defining Attribute Type Encoding. 527

32.3 Defining Attribute Trigger Servers. 529
32.3.1 The -trigtype Option 529
32.3.2 The -trigbind Option 530

32.4 Creating and Maintaining Attribute Instances. 533
32.4.1 Attaching Attribute Instances to Objects. . . . 534
32.4.2 Modifying Attribute Instances. 535
32.4.3 Deleting Attribute Instances 536
32.4.4 Using Attribute Sets 537

Chapter 33. Administering a Multicell Environment. 539

33.1 Trust Relationships. 540
33.1.1 Direct Trust Relationships. 540
33.1.2 Transitive Trust Relationships. 541
33.1.3 Establishing Trust Relationships. 542
33.1.4 Constraints on Transitive Trust Relationships. . . 543

33.2 Creating Trust Relationships. 549
33.2.1 Command Options for the registry connect

Command. 549
33.2.2 Creating Cross-Cell Authentication Accounts

Example 551
33.2.3 The Accounts Created by the registry connect

Command. 551

33.3 Modifying Cross-Cell Authentication Accounts. 553

Chapter 34. Viewing Registry Information. 555

34.1 Displaying Account Information. 556

34.2 Displaying Group and Organization Information. 558

34.3 Displaying Principal Information 562

34.4 Displaying xattrschema Information. 563

34.5 Displaying ACL Information 565

DCE 1.2.2 Administration Guide—Core Components xv

Contents

34.6 Displaying keytab Information. 567

Chapter 35. Maintaining Policies and Properties. 569

35.1 Policies. 570
35.1.1 Standard Policy 570
35.1.2 Authentication Policy. 573
35.1.3 Handling Conflicting Policies. 575
35.1.4 The Effects of Changes on Existing Policies. . . 576
35.1.5 Displaying and Setting Standard and

Authentication Policies. 576

35.2 Properties 578
35.2.1 Default Ticket Lifetime Property. 578
35.2.2 Hidden Password Property. 578
35.2.3 Minimum Group ID Property. 579
35.2.4 Minimum Organization ID Property 579
35.2.5 Minimum UNIX ID Property 579
35.2.6 Maximum UNIX ID Property. 580
35.2.7 Minimum Ticket Lifetime Property. 580
35.2.8 Displaying and Setting Properties. 581

Chapter 36. Performing Routine Maintenance. 583

36.1 Adding Accounts 583

36.2 Overriding Entries in the Local Registry. 584
36.2.1 How Overrides Work. 584
36.2.2 The passwd_override File Format. 585
36.2.3 The group_override File Format. 587
36.2.4 Creating Override File Entries. 590
36.2.5 Leaving passwd_override File Fields Blank. . . . 591
36.2.6 Specifying Passwords for a Specific Machine. . . 591
36.2.7 Preventing Login to a Machine. 592
36.2.8 Omitting Users from the Local Password Files. . . 592
36.2.9 Specifying a Home Directory and Login Shell

for a Machine. 593
36.2.10 Overriding a Principal’s Group Affiliation. . . . 593
36.2.11 Applying Overrides to All Members of a Group. . 594
36.2.12 How passwd_override Handles Multiple

Override Entries 594

36.3 Changing the Registry’s Master Key. 595

36.4 Validating the Authenticity of the DCE Security Service. . . 595

36.5 Backing Up and Restoring the Registry Database. . . . 596

xvi DCE 1.2.2 Administration Guide—Core Components

Contents

36.5.1 Procedures for Backing Up the Registry
Database 596

36.5.2 Procedure for Restoring the Registry Database. . . 597

36.6 Setting the _s(sec) Variable. 598

36.7 Ensuring Consistent Local Files. 599

Chapter 37. Handling Network Reconfigurations. 603

37.1 Changing the Master Replica Site. 603

37.2 Removing a Server Machine from the Network. 605

37.3 Handling Network Address Changes. 606
37.3.1 Updating the pe_site File. 606
37.3.2 Handling Simultaneous Address Changes. . . . 606

Chapter 38. Setting Up the Registry. 609

38.1 Planning Sites for DCE Security Service Components. . . 610

38.2 Creating the Master Registry Database. 610
38.2.1 The sec_create_db Command Format. 611
38.2.2 An sec_create_db Run Example. 613
38.2.3 The Results of sec_create_db. 614

38.3 Starting the Master Replica. 617

38.4 Populating the New Registry Database. 617
38.4.1 Setting Policies and Properties. 617
38.4.2 Adding Accounts. 618

38.5 Creating Slave Replicas. 618

38.6 Verifying that the Replicas Are Running. 618

Chapter 39. Importing UNIX Accounts to DCE. 621

39.1 How passwd_import Works. 621
39.1.1 The passwd_import Processing Steps. 622
39.1.2 Registry Entries Created by passwd_import. . . 623

39.2 The passwd_import Command Syntax. 624

39.3 Using passwd_import 625
39.3.1 Using the Identical User Option. 625
39.3.2 Using Check Mode 625
39.3.3 Resolving Conflicts 626
39.3.4 Answering Prompts 626

39.4 Sample passwd_import Session. 627
39.4.1 Invoking passwd_import 629

DCE 1.2.2 Administration Guide—Core Components xvii

Contents

39.4.2 Examining the Group File. 630
39.4.3 Examining the Password File. 631
39.4.4 Adding Members to Groups. 633
39.4.5 Completing Processing. 633

Chapter 40. Troubleshooting Procedures. 635

40.1 Restarting Security Servers. 636

40.2 Restarting the Master Server in Locksmith Mode. . . . 636
40.2.1 Automatic Changes to the Locksmith Account. . . 636
40.2.2 Starting a Security Server in Locksmith Mode. . . 638
40.2.3 Restarting a Security Server in Locksmith Mode. . 638

40.3 Recovering the Master Replica. 639
40.3.1 Determining the Most Current Database. . . . 640
40.3.2 Converting a Slave to a Master. 640

40.4 Recovering Slave Replicas. 641

40.5 Converting a Master to a Slave. 642

40.6 Forcibly Deleting a Slave Replica. 642

40.7 Restoring a Duplicate Master. 643

40.8 Adopting Registry Orphans. 644

Chapter 41. Accessing Registry Objects. 647

41.1 The Registry Database. 647

41.2 Registry Permissions 649
41.2.1 Management, Authentication, and User

Information 650
41.2.2 Permission Required to Create Principals,

Groups, or Organizations. 653
41.2.3 Permissions Required to Delete Principals,

Group, or Organizations 654
41.2.4 Permissions Required to Add Accounts. . . . 654
41.2.5 Permissions Required to Delete Accounts. . . . 658
41.2.6 Permissions Required to Add Members to

Groups 659
41.2.7 Permissions Required to Add Members to

Organizations. 660
41.2.8 Permissions to Delete Members from Groups or

Organizations. 660
41.2.9 Permissions Required to Change a Principal’s,

Group’s, or Organization’s Full Name. 661

xviii DCE 1.2.2 Administration Guide—Core Components

Contents

41.2.10 Permissions Required to Change Management
Information for Principals, Groups, or
Organizations. 661

41.2.11 Permissions Required to Change Management,
Authentication, and User Information (Except
Passwords) for Accounts. 662

41.2.12 Permissions Required to Change Passwords for
Accounts 663

41.2.13 Permissions Required to Change Authentication
and Management Information for Registry
Policies and Properties. 663

41.2.14 Permissions Required to Execute Commands
That Act on Replicas. 664

41.2.15 Permissions Required to Create Extended
Registry Attribute Types 664

41.2.16 Permissions Required to Delete Extended
Registry Attribute Types 665

41.2.17 Permissions Required to View Extended Registry
Attribute Types 665

41.2.18 Permissions Required to Modify Extended
Registry Attribute Types 666

41.2.19 Permission Required to Change ACLs on
Registry Objects 666

41.2.20 Permissions Required by Slave Replicas. . . . 667

41.3 Registry ACL Manager. 667

41.4 Initial Registry ACLs 668

Chapter 42. DCE Audit Service. 671

42.1 Features of the DCE Audit Service. 671

42.2 Components of the DCE Audit Service. 672

42.3 DCE Audit Service Concepts. 672
42.3.1 Audit Clients 673
42.3.2 Code Points 673
42.3.3 Audit Events 673
42.3.4 Event Numbers 674
42.3.5 Event Classes. 674
42.3.6 Filters. 677
42.3.7 Audit Trail File 682

42.4 Administration and Programming in DCE Audit. 682
42.4.1 Programmer Tasks. 683
42.4.2 Administrator Tasks 685

DCE 1.2.2 Administration Guide—Core Components xix

Contents

Chapter 43. DCE Audit Service Administrative Tasks. 689

43.1 Setting DCE Audit Environment Variables. 690

43.2 Starting the Audit Daemon. 690

43.3 Controlling Access to the Audit Daemon. 691
43.3.1 DCE Permissions Supported by the DCE Audit

Service 691
43.3.2 Initial ACL of the Audit Daemon. 691
43.3.3 Giving Permissions to Audit Clients and

Administrators. 692

43.4 Defining Event Classes. 693
43.4.1 Steps in Defining an Event Class. 693
43.4.2 Example Event Class File. 694

43.5 Creating and Maintaining Filters 695
43.5.1 Creating Filters 695
43.5.2 Modifying Filters 696
43.5.3 Deleting Filters 696
43.5.4 Default Filters. 697
43.5.5 Enabling Audit Filters. 698

43.6 Enabling and Disabling the Audit Logging Service. . . . 699

43.7 Modifying and Querying Audit Daemon Attributes. . . . 699

43.8 Controlling and Displaying Audit Trails. 700
43.8.1 Displaying Audit Trail Files 700
43.8.2 Controlling the Audit Trail Size 701
43.8.3 Changing the Audit Trail File Storage Option. . . 702

Chapter 44. Kerberos Interoperability with DCE and Secure Remote Utilities. . 705

44.1 The Secure Remote Utilities. 706
44.1.1 Related Kerberos Terms and Concepts. 706
44.1.2 Components of the Secure Environment. . . . 709
44.1.3 Forwarding Tickets 710
44.1.4 Remote Utility Interoperability. 711
44.1.5 Encrypted Sessions 711

44.2 KDC Interoperability 711
44.2.1 Configuration. 712

44.3 Credential Cache and Keytab File Compatibility. 713

Appendix A. Valid Characters and Naming Rules for CDS. 715

A.1 Metacharacters. 718

A.2 Additional Rules 719

xx DCE 1.2.2 Administration Guide—Core Components

Contents

A.3 Maximum Name Sizes. 721

Appendix B. Object Identifier Files. 723

B.1 Origin of Object Identifiers. 724

B.2 The cds_attributes File. 724

B.3 The cds_globalnames File. 726

B.4 Modifying the Files. 728

B.5 Modifying a CDS Entity’s Attributes 728
B.5.1 Adding a New Attribute 729
B.5.2 Modifying the Value of an Existing Attribute. . . 729
B.5.3 Removing an Attribute. 730

Appendix C. Time-Providers and Time Services. 731

C.1 Criteria for Selecting a Time Source. 731

C.2 Sources of Coordinated Universal Time. 733
C.2.1 Telephone Services 733
C.2.2 Radio Transmissions. 733
C.2.3 Network Time Protocol 734
C.2.4 Satellite 734

C.3 World Time Zone Map. 735

Appendix D. DTS Extended BNF 737

Index Index–1

DCE 1.2.2 Administration Guide—Core Components xxi

Contents

List of Figures

Figure 10–1. Server Binding Information. 164

Figure 10–2. Possible Information in a Server Entry. 171

Figure 10–3. Possible Mappings of a Group. 177

Figure 10–4. Possible Mappings of a Profile. 184

Figure 11–1. Cell and Global Naming Environments. 199

Figure 11–2. Interaction of CDSs, GDAs, and Global Directory Services. . . . 200

Figure 11–3. Sample CDS Namespace Hierarchy. 208

Figure 11–4. RDNs and Distinguished Names. 210

Figure 11–5. Comparison of CDS and GDS Names. 211

Figure 11–6. Sample Portion of the BIND Namespace. 213

Figure 12–1. CDS Clerks and Servers on a LAN. 217

Figure 12–2. A Sample CDS Lookup. 218

Figure 12–3. Components of a CDS Server Node. 222

Figure 13–1. Logical and Physical Views of a Namespace. 226

Figure 13–2. Clearinghouse Object Entries and Clearinghouses. 228

Figure 13–3. A Soft Link and Its Resolution. 229

Figure 13–4. Child Pointers and Directories. 231

Figure 13–5. How the Clerk Finds a Name. 233

Figure 20–1. Example Namespace Hierarchy. 295

Figure 20–2. Example Namespace Before and After the Merge Operation. . . . 298

Figure 20–3. Example Namespace Before and After the Append Operation. . . 300

Figure 21–1. Example Replica Set. 312

Figure 21–2. Example Replica Set After Master Redesignation. 313

Figure 21–3. Example Replica Set After Replica Exclusion. 314

Figure 22–1. How the CDS Clerk Finds a GDA. 326

xxii DCE 1.2.2 Administration Guide—Core Components

Contents

Figure 22–2. How the GDA Helps CDS Find a Name. 327

Figure 23–1. Time and Inaccuracy. 345

Figure 23–2. Computed Time. 347

Figure 23–3. Adjustment of the Clock 348

Figure 23–4. ISO-Compliant Time Format 350

Figure 23–5. ISO-Compliant Time Format Variation. 351

Figure 23–6. Relative Time Format. 352

Figure 24–1. DTS Configuration—LAN. 360

Figure 24–2. DTS Configuration—LAN with WAN Links 362

Figure 24–3. DTS Configuration—WAN Networks. 364

Figure 25–1. DTS Timestamp Format. 371

Figure 25–2. Local Fault. 385

Figure 26–1. Local Time Source. 399

Figure 26–2. Getting the Time from a Remote NTP Time Source (Scenario 1). . 400

Figure 26–3. Getting the Time from a Remote NTP Time Source (Scenario 2). . 401

Figure 26–4. Giving the Time to NTP 403

Figure 26–5. Configuration Before Stratum 2 Node Fails. 404

Figure 26–6. Configuration After Stratum 2 Node Fails. 404

Figure 27–1. Machines, Servers, and the Database. 411

Figure 27–2. Disk Memory and Virtual Memory Copies of the Registry
Database 414

Figure 27–3. The Master Replica Update Process. 416

Figure 27–4. Slave Replica Update Process. 417

Figure 28–1. ACL Managers in Servers. 426

Figure 28–2. Sample ACL Entries 428

Figure 28–3. Order of Checking ACLs and Applying Masks. 440

Figure 28–4. Initial ACLs for Objects Created in Containers. 446

Figure 28–5. Initial ACLs for Containers Created in Containers. 447

Figure 33–1. Transitive Trust Relationships. 541

Figure 33–2. Direct and Transitive Trust Relationships. 544

Figure 33–3. Cell Traversal in Transitive Trust Relationships. 545

Figure 33–4. Limited Direct Trust Peer Traversal in Transitive Trust. 546

DCE 1.2.2 Administration Guide—Core Components xxiii

Contents

Figure 33–5. Transitive Trust Without Direct Trust Peer Traversal. 546

Figure 33–6. Limited Trust Traversal to Cell Ancestors. 547

Figure 33–7. Alternate Trust Traversal to Cell Ancestors. 548

Figure 41–1. The Registry Database Structure. 648

Figure 41–2. Permission Required to Create Principals, Groups, or Organizations. . 653

Figure 41–3. Permissions Required to Delete Principals, Groups, or
Organizations 654

Figure 41–4. Permissions Required to Add an Account and the Account
Principal to the Group and Organization. 655

Figure 41–5. Adding an Account For Which the Principal Is Already a Member
of the Group and Organization. 656

Figure 41–6. Permissions to Add an Account and the Principal to the Group
Only 657

Figure 41–7. Permissions to Add an Account and the Principal to the
Organization Only 658

Figure 41–8. Permissions Required to Delete Accounts. 659

Figure 41–9. Permissions Required to Add Members to Groups. 659

Figure 41–10. Permissions Required to Add Members to Organizations. . . . 660

Figure 41–11. Permissions to Delete Members From Groups or Organizations. . . 660

Figure 41–12. Permissions Required to Change a Principal’s, Group’s, or
Organization’s Full Name 661

Figure 41–13. Permissions Required to Change Management Information For
Principals, Groups, or Organizations 662

Figure 41–14. Permissions Required to Change Management, Authentication, and
User Information (Except Passwords) For Accounts. 662

Figure 41–15. Permissions Required to Change Passwords For Accounts. . . . 663

Figure 41–16. Permissions Required to Change Authentication and Management
Information For Registry Policies and Properties. 663

Figure 41–17. Permissions Required to Execute Commands That Act on
Replicas 664

Figure 41–18. Permissions Required to Create Extended Registry Attribute Types. . 664

Figure 41–19. Permissions Required to Delete Extended Registry Attribute Types. . 665

Figure 41–20. Permissions Required to View Extended Registry Attributes. . . . 665

Figure 41–21. Permissions Required to Modify Extended Registry Attribute Types. . 666

Figure 41–22. Permission Required to Change ACLs on Registry Objects. . . . 666

xxiv DCE 1.2.2 Administration Guide—Core Components

Contents

Figure 42–1. Event Class Number Formats. 677

Figure 42–2. Override Relations Between Filter Types. 682

Figure A–1. Valid Characters in CDS, GDS, and DNS Names. 717

Figure C–1. World Time Zone Map. 735

DCE 1.2.2 Administration Guide—Core Components xxv

Contents

List of Tables

Table 9–1. Serviceability Message Severity Levels. 137

Table 15–1. DCE Control Program Operations for CDS. 241

Table 15–2. dcecp Commands that Control CDS. 242

Table 16–1. ACL Entry Types Used for CDS Principals. 248

Table 16–2. DCE Control Program Commands and Required Permissions. . . 252

Table 19–1. CDS Browser Icons and Their Meaning. 286

Table 20–1. Permissions Required To Create Target Objects. 302

Table 25–1. dcecp Operations for DTS. 368

Table 25–2. Settable DTS Object Attributes. 370

Table 25–3. Unsettable DTS Object Attributes. 370

Table 29–1. DCE Control Program Operations for the DCE Security Service. . . 455

Table 29–2. rgy_edit Commands for Maintaining the Local Registry. 459

Table 30–1. Attribute Options to Create Principals. 466

Table 30–2. DCE Version 1.1/Pre-DCE Version 1.1 Authentication
Interoperation 475

Table 30–3. Attribute Options to Create Groups and Organizations. 484

Table 31–1. Attribute Options to Create Accounts. 499

Table 31–2. The keytab create and keytab add Options. 510

Table 32–1. Options to Create Extended Attributes. 521

Table 32–2. Encoding Types. 528

Table 33–1. Default Attribute Values of Cross-Cell Authorization Principals
and Accounts 552

Table 35–1. Stricter Standard Policies. 575

Table 38–1. Initial Persons, Groups, and Organizations. 614

Table 38–2. Group Memberships Created by sec_create_db. 616

xxvi DCE 1.2.2 Administration Guide—Core Components

Contents

Table 40–1. Locksmith Account Changes Made by the Security Server. . . . 637

Table 40–2. Registry Policy Changes Made by the Security Server. 637

Table 41–1. Permissions for Registry Objects. 649

Table 41–2. ACL managers and Valid Permissions and ACL Entry Types. . . 668

Table 44–1. Credential Cache Files. 713

Table 44–2. Keytab Files 713

Table A–1. Metacharacters and Their Meanings. 718

Table A–2. Summary of CDS, GDS, and DNS Characteristics. 719

Table A–3. Maximum Sizes of Directory Service Names. 722

Table C–1. Time-Provider Selection Criteria 732

DCE 1.2.2 Administration Guide—Core Components xxvii

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

DCE 1.2.2 Administration Guide—Core Components xxix

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xxx DCE 1.2.2 Administration Guide—Core Components

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

DCE 1.2.2 Administration Guide—Core Components xxxi

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides
These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

xxxii DCE 1.2.2 Administration Guide—Core Components

Preface

are intended to communicate the findings to the outside world so as
to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

DCE 1.2.2 Administration Guide—Core Components xxxiii

Preface

This Book

The DCE 1.2.2 Administration Guideprovides concepts and procedures that enable
you to manage the OSF

®
Distributed Computing Environment (DCE). Basic OSF

DCE terms are introduced throughout the guide. A glossary for all of the DCE
documentation is provided in theDCE 1.2.2 Introduction to OSF DCE. The DCE
1.2.2 Introduction to OSF DCEhelps you to gain a high-level understanding of the
DCE technologies and describes the documentation set that supports DCE.

Audience

This guide is written for system and network administrators who have previously
administered a UNIX environment.

Applicability

This revision applies to the OSF DCE Release 1.2.2 offering and related updates. (See
your software license for details.)

Purpose

The purpose of this guide is to help system and network administrators to plan,
configure, and manage DCE. After reading the guide, you will understand what the
system administrator needs to do to plan for DCE. Once you have built the DCE
source code on your system, use this guide to assist you in installing executable files
and configuring DCE. TheDCE 1.2.2 Release Notescontain instructions for installing
and building DCE source code.

xxxiv DCE 1.2.2 Administration Guide—Core Components

Preface

Document Usage

The DCE 1.2.2 Administration Guideconsists of two books, each of which is divided
into parts, as follows:

• The DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1–85912–113–6

— Part 1. Introduction to DCE Administration

— Part 2. Configuring and Starting Up DCE

• The DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1–85912–118–7

— Part 1. The DCE Control Program

— Part 2. DCE Administration Tasks

— Part 3. DCE Host and Application Administration

— Part 4. DCE Cell Directory Service

— Part 5. DCE Distributed Time Service

— Part 6. DCE Security Service

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1–85912–182–9

• DCE 1.2.2 Command Reference
Document Number F212, ISBN 1–85912–138–1

• DCE 1.2.2 Application Development Reference
Document Number F205A, ISBN 1–85912–103–9 (Volume 1)
Document Number F205B, ISBN 1–85912–108–X (Volume 2)
Document Number F205C, ISBN 1–85912–159–4 (Volume 3)

DCE 1.2.2 Administration Guide—Core Components xxxv

Preface

• DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1–85912–187–X

• DCE 1.2.2 Application Development Guide—Core Components
Document Number F203A, ISBN 1–85912–192–6 (Volume 1)
Document Number F203B, ISBN 1–85912–154–3 (Volume 2)

• DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1–85912–197–7

• DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1–85912–123–3 (Volume 1)
Document Number F209B, ISBN 1–85912–128–4 (Volume 2)

• DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1–85912–133–0

• DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1–85912–158–6

• DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1–85912–163–3

• DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1–85912–143–8 (Volume 1)
Document Number F213B, ISBN 1–85912–148–9 (Volume 2)

• DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1–85912–153–5

• DCE 1.2.2 File-Access FVT User’s Guide
Document Number F210, ISBN 1–85912–189–6

• DCE 1.2.2 Release Notes
Document Number F218, ISBN 1–85912–168–3

For a detailed description of OSF DCE documentation, see theDCE 1.2.2 Introduction
to OSF DCE.

Typographic and Keying Conventions

This guide uses the following typographic conventions:

xxxvi DCE 1.2.2 Administration Guide—Core Components

Preface

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which y ou must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl- x> or ^x
The notation<Ctrl- x > or ^x followed by the name of a key indicates
a control character sequence. For example,<Ctrl-C> means that you
hold down the control key while pressing<C>.

<Return> The notation<Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

DCE 1.2.2 Administration Guide—Core Components xxxvii

Preface

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—IntroductionandDCE 1.2.2 Testing Guide.

Trademarks

Motif ®, OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the “X Device”
TM

are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

xxxviii DCE 1.2.2 Administration Guide—Core Components

Preface

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

DCE 1.2.2 Administration Guide—Core Components xxxix

Part 1
The DCE Control Program

Chapter 1
DCE Control Program Introduction

DCE is an integrated set of services that supports the development and execution
of distributed applications between heterogeneous networked computers. Each DCE
environment (called acell) maintains at least the following core DCE services:

• DCE Threads

• DCE Host Services

• DCE Cell Directory Service

• DCE Time Service

• DCE Security Service

With the exception of DCE Threads, all of the core services require administration in
one way or another. Some services, such as CDS and the DCE Security Service, usually
need more managing than, say, the DCE Time Service, which after you have set it up
needs practically no intervention. If your DCE cell consists of just a few computers
and their users, you could probably manage the naming, time, and security needs of
users, programs, and host systems by logging into individual hosts to perform any

DCE 1.2.2 Administration Guide—Core Components 3

The DCE Control Program

necessary administration tasks. But most cells will consist of many, perhaps hundreds
or even thousands, of computers and their users.

Consequently, the core services in such large cells will likely be extensive and complex,
with some services being replicated or even partitioned across multiple heterogeneous
systems. Some services, such as the DCE host services, will exist on every computer in
the cell. Such large-scale operations demand an administrative interface that provides
consistent and uniform access to DCE administration functions, wherever they reside,
from any and every point in the cell. This means that administrative operations must
work consistently and predictably regardless of the platform on which they execute.

The DCE control program (dcecp) fills this need, providing consistent, portable,
extensible, and secure access to nearly all DCE administration functions from any
point in a DCE cell.dcecp implements all of the operations previously performed by
using various component control programs.

dcecp further streamlines administration by providing a number oftask objectsfor
performing complex DCE operations. For example, adding a host to a cell requires
adding a host principal to the registry, adding the principal to various security groups
and organizations, creating an account, placing host information in CDS and probably
setting some ACLs on CDS directories. All of these operations can be accomplished
using a single task object.

1.1 Flexible, Portable, and Extensible Administration

dcecp is built on a portable command language called Tcl (pronounced ‘‘tickle’’),
which stands for Tool Command Language developed by John K. Ousterhout at the
University of California at Berkeley, California. Most computers provide a command
language of some sort to give users a flexible and extensible way to access and use
system capabilities. For instance, many UNIX systems offer shell language interpreters,
and Digital Equipment Corporation’s OpenVMS operating system offers the Digital
Command Language (DCL). But these command languages are not always portable.
Commands and scripts based on one command language might not work in other
command language environments.

Tcl, on the other hand, is a platform-independent command language that runs on
every system where DCE is installed. A Tcl command interpreter and the DCE control
program that uses it are provided as part of the DCE software.

4 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

The availability of both the DCE control program and the DCE control program
language offer important benefits to DCE administrators:

• You can perform all routine DCE operations from within a single administrative
interface.

• Most DCE administrative operations are consistently and uniformly executed
from any DCE platform, allowing administrators to manage just about all DCE
operations from any DCE system in the cell. DCE platforms that are not UNIX
systems might not handle all DCE control program file operations.

• dcecpprovides administrationobjectswith names likeclearinghouse, principal ,
and endpoint. This direct approach makes DCE administration intuitive and
consistent. While for now this has only the appearance of being object oriented,
it is an important step toward a true object-oriented administration interface.

• Task objects(high-level dcecp scripts that perform complex DCE operations)
reduce the training requirements for DCE administrators. One need not be a DCE
guru to perform routine DCE administrative tasks.

• You can adapt the supplied task objects to new uses or write new task objects or
scripts by using thedcecpoperations along with more general commands provided
within Tcl.

• The dcecp language allows the use of variables,if statements, looping functions
and other programming operations that let you boost the power of your operations.
For instance, looping functions let you repeat operations on multiple objects such
as users, servers, or CDS entries.

• Administrators can easily share their tools because scripts can be moved to foreign
platforms without change. For instance, enterprises with multiple cells could use
dcecpscripts to propagate a common cell configuration throughout the enterprise.

The DCE control program is an administrative interface that you can use to manage
most aspects of the DCE core components. You cannot usedcecp to manage every
aspect of DCE. For instance,dcecpcannot control GDS or DFS.

The chapters in Part 1 discuss how you can usedcecp to administer the core services
in your DCE environment. We also discuss how to make your operations do more
by using Tcl constructs on the command line and by writing your own customized
operations as scripts. We do not provide a complete discussion of Tcl or its companion
toolkit (called Tk) for the X11 window system. For in-depth discussions of these

DCE 1.2.2 Administration Guide—Core Components 5

The DCE Control Program

topics, refer toTcl and the Tk Toolkit, John K. Ousterhout, (c)1994, Addison Wesley
Publishing Company.

1.2 DCE Administration Objects

A DCE cell consists of many things that need administration. As examples, CDS
servers (clearinghouses), DTS clocks, and server location information are all entities
in a DCE cell that require administration in one way or another. The DCE control
program treats all of DCE’s administrative entities as individual administration objects.

You operate on an entity by invoking itsobject name with some operation. For
example, to check the time of a DTS clock, you invoke the object’s name (clock)
and the desired operation (show) as in the following:

dcecp> clock show

1994-09-23-10:46:42.016-04:00I-- ---

dcecp>

Each administrative entity in DCE has a corresponding administration object in the
DCE control program. As a few examples, you can manage CDS clearinghouse
operations in a cell by using theclearinghouseobject. Manage application servers and
their configuration information on DCE hosts by using theserverobject. Compare and
manipulate time information using theutc object. Administer users in a DCE cell with
the user task object. These examples represent just a few of thedcecpadministration
objects. All of the objects are listed in thedcecp(8dce)reference page.

1.3 Using the DCE Control Program

This section provides a quick look at how to start and stop the DCE control program
and how to perform operations. Additional information about these topics is contained
in the dcecp reference pages.

6 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

1.3.1 Starting and Stopping dcecp

You can enterdcecp operations directly from your operating system prompt or from
within the DCE control program. If you are performing just one or two simpledcecp
operations, you can invoke them directly at the operating system prompt.

If you will be doing several operations, you can invoke the DCE control program and
then enter operations at thedcecpprompt. This method offers several advantages.

• It is more efficient for multiple operations becausedcecpis initialized once rather
than for each separate operation.

• The program stores operations in a history facility so they can be recalled and
reused.

• You avoid the extra keystrokes needed to precede each operation with thedcecp
command.

The following example shows how to invoke the DCE control program and perform
a directory operation:

% dcecp

dcecp> directory create /.:/hosts/appserver2

dcecp>

When you are through using the DCE control program, use theexit or quit operation
to stop the program and return to the operating system prompt. The following example
illustrates using theexit operation:

dcecp> exit

%

DCE 1.2.2 Administration Guide—Core Components 7

The DCE Control Program

1.3.2 Invoking dcecp Operations

If you are performing a singledcecp operation, you can invoke it directly from the
operating system prompt. Just precede the desired operation with thedcecpcommand
and the-c (command-line operation) flag, as follows:

% dcecp -c directory list /.:/subsys -simplename

HP applications dce sales eng admin accts

% dcecp -c cell show

{secservers

/.../my_cell.goodco.com/subsys/dce/sec/master}

{cdsservers

/.../my_cell.goodco.com/hosts/krypton}

{dtsservers

/.../my_cell.goodco.com/hosts/mars}

{hosts

/.../my_cell.goodco.com/hosts/earth

/.../my_cell.goodco.com/hosts/jupiter

/.../my_cell.goodco.com/hosts/kyrpton

/.../my_cell.goodco.com/hosts/mars

/.../my_cell.goodco.com/hosts/mercury

/.../my_cell.goodco.com/hosts/neptune

/.../my_cell.goodco.com/hosts/pluto

/.../my_cell.goodco.com/hosts/saturn

/.../my_cell.goodco.com/hosts/uranus

/.../my_cell.goodco.com/hosts/venus}

%

You can also enter some limited multiple operations using the ; (semicolon) as a
command separator and enclosing the operations in "" (double quotes). The following
example adds a principal to the registry and then checks that the principal is added:

% dcecp -c "principal create S_Preska ; principal show S_Preska"

{fullname {}}

{uid 28}

{uuid 0000001c-dc77-21cd-b700-0000c08adf56}

{alias no}

8 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

{quota unlimited}

%

Be careful entering multiple operations via thedcecp command with the-c option
because operation results return to thedcecpinterpreter, not to the shell. An operation
like the following returns the results of just the last operation (group list users) to
the shell:

% dcecp -c "group list staff; group list managers; group list users"

/.../ward_cell.osf.org/P_Pestana

/.../ward_cell.osf.org/R_Parsons

/.../ward_cell.osf.org/L_Jones

/.../ward_cell.osf.org/S_Preska

/.../ward_cell.osf.org/N_Long

/.../ward_cell.osf.org/D_Witt

/.../ward_cell.osf.org/C_Pilat

.

.

.

%

This particular problem can be overcome by:

% dcecp -c "puts [group list staff]; puts [group list manager]; puts [group list users]"

.

.

.

%

To invoke adcecp script, omit the-c argument but include the name of the script.
The following example invokes a script that lists the names of all hosts in the cell in
alphabetical order:

% dcecp list_hosts

earth

jupiter

DCE 1.2.2 Administration Guide—Core Components 9

The DCE Control Program

krypton

mars

mercury

neptune

planets

pluto

saturn

uranus

venus

%

When you want to invoke complex or multiple operations, you might want to invoke
operations from withindcecp. The program provides a convenient history facility and
a command-line editing capability that is useful for recalling and reusing previous
operations. The following example operations invokedcecpand add a new user to a
DCE cell:

% dcecp

dcecp> principal create J_Jones

dcecp> group add users -member J_Jones

dcecp> organization add staff -member J_Jones

dcecp> account create J_Jones -group users -organization staff \

>-password change.me -mypwd mxyzptlk

dcecp>

All dcecp object, operation, and option names can be abbreviated to the shortest
unique string when used interactively. These names have been chosen with this in
mind so that unique abbreviations are usually not more than one or two characters.

Avoid using object or command abbreviations within scripts as this limits a script’s
portability. Users defining their own commands could alter the uniqueness of
abbreviations, resulting in ambiguous command names or object names.

10 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

1.4 Doing More with dcecp

The DCE control program accepts commands ranging from simple to complex, with
more complex commands offering greater strength and versatility. Although simple
commands are the easiest to compose, they are also limited, usually to performing one
operation on a single object. So while it is always possible to enter simple commands,
you will probably find that, at times, you want to repeat operations over several or
even many objects, or to perform some operation only under certain conditions. For
instance you might want to add some entry to a CDS directory only if some other
specified entry already exists in CDS.dcecp makes this possible by utilizing Tcl’s
built-in commands that imitate elements commonly found in numerous programming
and shell languages.

The DCE control program contains many C-like constructs that control command
execution. Some examples areif statements for conditional execution, looping
commands such aswhile, for , and foreach used to repeat operations under various
conditions, acasecommand for testing values against various patterns, andproc for
writing your own customized commands.

The DCE control program also includes other syntactic elements such as "" (quotes),
{ } (braces), [] (brackets), and \ (backslash), which it uses to group elements together
and for controlling interpretation of special characters.

Although many features are designed for use in scripts, you will probably find
yourself using some constructs and elements (particularly quotes, braces, brackets, and
backslashes) in interactive operations as well. You will need to decide when it makes
sense to perform operations interactively or to use a script. In general, complexity and
potential for reuse can help you decide.

Now let us look at a couple of simple examples that illustrate some DCE control
program and Tcl basics. Somedcecpoperations can be very straightforward like

dcecp> account modify N_Long -expdate 1996-06-30

dcecp>

This operation lets you change information in the DCE Security Service registry.
Here, we are changing the account expiration date for the principal (N_Long) named
in the command line. While it is relatively simple to execute this operation for one

DCE 1.2.2 Administration Guide—Core Components 11

The DCE Control Program

or two principals, it is more difficult to change the account expiration date for many
principals.

Imagine that your organization employs six temporary workers and the project they are
associated with has been extended for three months. Rather than execute theaccount
modify operation six times, you can use adcecpforeachcommand to loop (repeat)
an action for each item of a list:

dcecp> foreach i {N_Long L_Jones P_Sawyer \

>D_Witt M_Dougherty S_Preska} { \

>account modify $i -expdate 1996-06-30 }

dcecp>

In the example, theforeach looping command has three arguments: a variable, a list,
and the body. The variablei substitutes sequentially for each item in the list (N_Long,
L_Jones, and so on). Theforeach command executes the body (account modify $i
-expdate 1996-06-30) for each item in the list. The$i variable in the body takes on
the value of each principal name in the list, in turn, until all items in the list have
been used. See Section 2.9.2 for more detailed information about looping commands.

This example illustrates several other important syntax rules. The DCE control program
uses { } (braces) to determine where command arguments, such as the script body,
begin and end. For example, theforeach command has three arguments: a variable
name, a list, and a script body. Normally, command arguments are separated by spaces.
To preventdcecp from incorrectly interpreting the spaces between list elements as
argument separators, we use braces to enclose the list and disable special interpretation
of the spaces. Thus, all of the list elements appear as one argument. Similarly, we use
braces to enclose the individual elements in the script body.

Braces also helpdcecp determine whether a command is complete; incomplete
commands will have more opening than closing braces. The lack of a closing brace at
the end of the first line signalsdcecp that more command input is coming, sodcecp
prompts with the secondary prompt (>). Similarly, the opening brace at the end of line
2 signals that you are still not finished entering the command. This lets you wrap lines
without using a \ (backslash) line wrap character. The DCE control program executes
the command when you press<Return> after the closing brace at the end of line 3.
Chapter 2 contains more information about braces.

12 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

Now assume that, instead of six temporary workers, your organization has fifty
temporary workers (all in one group calledtemps) for whom you want to add three-
month account extensions. We’ll still use theforeach command but, rather than write
all fifty principals directly in the list, use thedcecpgroup list tempsoperation to
generate a list for you, as follows:

dcecp> foreach i [group list temps] {

>account modify $i -expdate 1996-06-30 }

dcecp>

In this example, we have put thegroup list temps operation in [](brackets). Called
command substitution, this technique replaces the command inside the brackets with
the results returned by that command. The results of thegroup list temps operation
produces a valid Tcl list that might look like the following:

dcecp> group list temps

N_Long

L_Jones

P_Sawyer

D_Witt

M_Dougherty

S_Preska

.

.

.

J_Jones

Here, we have provided a high-level look at some practical uses ofdcecp. Of course
there is a lot we have not seen, too. In the next chapter we will look more closely
at some of thedcecp operations that you are likely to use for DCE administration.
Remember thatdcecp is based on Tcl, and Tcl has other commands and command
variations we will not discuss. So be sure you have access to the standard Tcl
publications for detailed information on all of the commands.

DCE 1.2.2 Administration Guide—Core Components 13

The DCE Control Program

1.5 When to Use an Interactive Command or Script

There is no absolute dividing line for when you should enter commands interactively
or with a script. In general though, the simpler operations—those that perform one
or maybe two tasks—make the best candidates for interactive use. The following
examples typify interactive operations:

dcecp> directory create /.:/printers

dcecp> account show w_shakespeare

dcecp> server start /.:/hosts/curley/config/srvrconf/BBSserver

The next example is a little more complicated, so at first you might choose to run this
as a script:

foreach i [group list temps] {

account modify $i -expdate 1996-06-30}

Saving a frequently used operation as a script (in a file) has its advantages; it can help
to automate repetitive or complicated tasks and you can keep it around for possible
modification and use in other situations later on. Whichever method you choose, as
you become more comfortable usingdcecpand Tcl, you might find yourself entering
fairly complex operations interactively. For information on how to how to create and
invoke scripts, refer to Section 1.8.

1.6 Editing Command Lines

We have seen some basic ways to enter interactivedcecp commands. But let us say
that now you want to edit the command you are entering or that you want to recall and
modify a command you entered previously. The DCE control program offers several
ways to edit commands. You can edit a current command line by using the command-
line editing facility. You can use thehistory command to recall, edit, and reissue a
previously used command.

14 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

1.6.1 Editing the Current Command Line

You can edit a command line before sending it todcecpby typing control characters or
escape sequences that resembleksh or emacsediting commands. Acontrol character,
shown as<Ctrl- x>, where x is a letter, is entered by holding down<Ctrl> (or
<Control>) and pressing the letter key. For example,<Ctrl-A> is <Ctrl> and <A>,
pressed at the same time. Enter anescape sequenceby pressingEscapefollowed by
one or more characters. In an escape sequence,<Escape>is referred to asESC, as in
<ESC f> for example. Case matters in escape sequences (unlike control characters,
which do not distinguish between upper and lower case);<ESC F> is not the same
as<ESC f>.

You can enter an editing command anywhere on the line, not just at the beginning. In
addition, a return may also be pressed anywhere on the line, not just at the end.

Most editing commands accept a repeat count,n, wheren is a number. Enter a repeat
count by pressing<Escape>, the number, and then the command to execute. For
example,<ESC 4><Ctrl-f> moves forward four characters. Some of the descriptions
that follow are marked with [n] to identify commands that accept a repeat count.

The following control characters are accepted:

<Ctrl-A> Move to the beginning of the line

<Ctrl-B> Move left (backward) [n]

<Ctrl-D> Delete character [n]

<Ctrl-E> Move to end of line

<Ctrl-F> Move right (forward) [n]

<Ctrl-G> Ring the bell

<Ctrl-H> Delete character before cursor (<Backspace>) [n]

<Ctrl-I> Complete filename (<Tab>); see following text

<Ctrl-J> Done with line (<Return>)

<Ctrl-K> Kill to end of line (or column [n])

<Ctrl-L> Redisplay line

<Ctrl-M> Done with line (alternate<Return>)

DCE 1.2.2 Administration Guide—Core Components 15

The DCE Control Program

<Ctrl-N> Get next line from history [n]

<Ctrl-P> Get previous line from history [n]

<Ctrl-R> Search backward (forward if [n]) through history for text; must start line
if text begins with an up arrow

<Ctrl-T> Transpose characters

<Ctrl-V> Insert next character, even if it is an edit command

<Ctrl-W> Wipe to the mark

<Ctrl-X><Ctrl-X>
Exchange current location and mark

<Ctrl-Y> Yank back last killed text

<Ctrl-[> Start an escape sequence

<Ctrl-]> C Move forward to next characterC

<Ctrl-?> Delete character before cursor (<Delete>) [n]

The following escape sequences are accepted:

<ESC><Ctrl-H>
Delete previous word (<Backspace>) [n]

<ESC DEL>
Delete previous word (<Delete>) [n]

<ESC SPC>
Set the mark (<Spacebar>); see<Ctrl-X> <Ctrl-X> and<Ctrl-Y>

<ESC .> Get the last (or [nth]) word from previous line

<ESC ?> Show possible completions; see following text

<ESC <> Move to start of history

<ESC >> Move to end of history

<ESC b> Move backward a word [n]

<ESC d> Delete word under cursor [n]

<ESC f> Move forward a word [n]

<ESC l> Make word lowercase [n]

16 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

<ESC u> Make word uppercase [n]

<ESC y> Yank back last killed text

<ESC w> Make area up to mark yankable

<ESC nn> Set repeat count to the numbernn

In some cases, existing terminal key bindings take precedence over thesedcecpcontrol
keys. In particular, the bindings used forerase, kill , eof, intr , quit , andsusp in your
environment will supercede anydcecpbindings for those same control keys. In most
instances, control keys will not be interpreted by the terminal but will be passed
through todcecp. One of the few exceptions islnext (literal next), which quotes
the next character typed. When you type the control key that is bound tolnext it is
interpreted by the terminal, which will pass the next character typed through todcecp.

The DCE control program also provides filename completion. Suppose the root
directory has the following files in it:

bin vmunix

core vmunix.old

If you type rm /v and then press<Tab>, the command processor completes as much
of the name as possible by addingmunix. Because the example name is not unique,
it beeps. If you press<Escape>followed by the ? (question mark), it displays the
two choices. The command processor completes the filename when you then enter the
period (which makes the name unique) followed by<Tab>, as shown in the following:

rm /v <Tab>munix.<Tab>old

In this example, the constant width font indicates text automatically entered by the
command processor.

1.6.2 Editing Command Lines with the history Command

Sometimes when you are entering interactive commands, you want to recall and reuse
a previously entered command. Let us say you list the objects in a CDS directory and

DCE 1.2.2 Administration Guide—Core Components 17

The DCE Control Program

then you modify one of the objects. Now you want to list the objects again to verify
that your modification took effect. You can use thehistory command to recall, edit,
and reissue a previously used command. The history facility saves only interactive
commands. Commands issued from scripts are not saved and cannot be recalled.

The history command takes various arguments depending on what you want to do.
Entering history with no arguments lists all the commands (calledevents) entered
during the current invocation ofdcecp, as shown:

dcecp> history

1 principal create wardr -fullname {Ward Rosenberry} \

-quota unlimited

2 group add users -member wardr

3 organization add consultants -member wardr

4 account create wardr -mypwd mxyptlk -password qwerty \

-group users -organization consultants

5 history

dcecp>

Each history event is independent of previous events. This means that, if a recalled
command used a variable, its current value may not be the same as when it was first
entered. Thehistory command itself generates a history event, too.

By default, the history list keeps the 20 most recent commands. You can use thehistory
keep command to lengthen or shorten the history list. For example, the following
command lengthens the history list to keep the 50 most recent events:

dcecp> history keep 50

dcecp>

You can specify events in various ways. Positive numbers specify events relative to the
earliest event in the list. Negative numbers specify events relative to the most recent
command. You can also specify an event by typing characters that match all or part
of a previous event.

The history facility lets you reuse previous events in many ways. The following
discussion covers just a few of the history commands you can use.

18 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

• You can execute a previous command without revision by using thehistory redo
command:

dcecp> history

1 directory show /.:/printers

2 object create /.:/printers/ascii_printer1

3 object create /.:/printers/ascii_printer2

4 object create /.:/printers/ascii_printer3

5 history

dcecp> history redo directory

directory show /.:/printers

.

. [output omitted]

.

dcecp>

You can save the most typing by entering just the unique first characters of words
in a history command. For instance, you can enter thehistory redo directory
command from the previous example as

dcecp> hi r d

directory show /.:/printers

.

. [output omitted]

.

dcecp>

Other ways to redo commands include!! , which recalls the most recent command,
and !event numberto recall a specific event.

• You can revise and reexecute a previous command by using thehistory substitute
command. A common use of this command is to correct typing mistakes. The
command syntax is as follows:

history substitute old new[event number]

DCE 1.2.2 Administration Guide—Core Components 19

The DCE Control Program

If you omit theevent number, you’ll redo the most recent command. Replace the
old part of the recalled command withnew information:

dcecp> history

1 directory show /.:/printers

2 object create /.:/printers/ascii_printer1

3 object create /.:/printers/ascii_printer2

4 object create /.:/printers/ascii_printer3

5 directory show /.:/printers

6 history

dcecp> hi s printer3 printer4 -3

object create /.:/printers/ascii_printer4

dcecp>

You can also recall and revise the most recent command by using the^ old^ new
syntax familiar to users of the UNIXcsh shell, as follows:

dcecp> ^4^5

object create /.:/printers/ascii_printer5

dcecp>

1.7 Using the dcecp Help Facilities

• If you want to see a list of objects provided by the DCE control program, enter
help at thedcecpprompt as shown in the following example:

dcecp> help

The general format of all dcecp commands is as follows:

dcecp> <object> <operation> [argument] [options]

In addition to all of the standard tcl commands, dcecp supports

many commands to administer DCE objects. A dcecp object or task

represents a DCE entity. Type ’man dcecp_<command>’ for more

information. All of the following dcecp objects and tasks require

20 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

an operation:

account cdsalias dts log rpcprofile

acl cdscache endpoint name secval

attrlist cdsclient group object server

aud cell host organization user

audevents cellalias hostdata principal utc

audfilter clearinghouse hostvar registry uuid

audtrail clock keytab rpcentry xattrschema

cds directory link rpcgroup

Miscellaneous commands perform specific functions. Type ’man dcecp’

for more information. These commands take no operation:

echo errtext login logout quit resolve shell

To list all dcecp objects: dcecp> help -verbose

To list all operations an object supports: dcecp> <object> help

To list all options for an object operation:

dcecp> <object> help <operation>

For verbose information on a dcecp object:

dcecp> <object> help -verbose

For the manual page of a dcecp object:

dcecp> man dcecp_<object>

dcecp>

• If you just need to know which operations an object supports, use the command

object operations

which returns a list of the actions you can take on an object. The following
example shows how to list the operations available for theprincipal object:

dcecp> principal operations

catalog create delete modify show operations help

dcecp>

You can save typing by abbreviating this command to something likeprin oper .

• Get more detailed help about an object and its operations by using theobjecthelp
command. The following example returns a 1-line description of each operation
supported by theprincipal object:

DCE 1.2.2 Administration Guide—Core Components 21

The DCE Control Program

dcecp> principal help

catalog Returns all the names of principals in the registry.

create Creates a DCE principal.

delete Deletes a principal from the registry.

modify Changes the information about a principal.

rename Renames the specified principal.

show Returns the attributes of a principal.

help Prints a summary of command-line options.

operations

Returns a list of the valid operations for this command.

dcecp>

• Get information about available command options by adding anoperation
argument to theobjecthelp command. The following example returns a 1-line
description of each option supported by theprincipal create operation:

dcecp> principal help create

-alias Indicates the principal name is an alias of the uid.

-attribute Specify principal attributes in an attribute list format.

-fullname Fullname of the principal.

-quota How many registry objects can the principal create.

-uid User Identifier of the new principal.

-uuid Orphaned UUID to be adopted by the principal.

dcecp>

• Get help about an object itself by using anobjecthelp -verbose command.
The following example returns a description of theprincipal object along with
information about how to use the object:

dcecp> principal help -verboseThis object allows manipulation of principal

information stored in the DCE registry. The argument is a list of

either relative or fully-qualified principal names. Specify fixed

22 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

attributes using attribute options or an attribute list. Specify

any extended attributes using an attribute list. Principal

operations connect to a registry thatcan service the request.

Specify a particular registry by setting the _s(sec) convenience

variable to be a cell-relative or global replica name, or the

binding of the host where the replica exists. The completed opera-

tion sets the _b(sec) convenience variable to the name of the

registry contacted.

dcecp>

• Finally, some POSIX style systems will have reference pages fordcecpobjects as
well as a Tcl summary reference page. Eachdcecp object has its own reference
page that describes the object and the operations available to it. The general syntax
for viewing adcecp object reference page is

man object_name

The following example shows how to invoke the reference page for theprincipal
object. Note that you can use theman command from withindcecp.

dcecp> man principal

.

. [output omitted]

.

dcecp>

The Tcl reference page summarizes the Tcl built-in commands. You can view the
Tcl summary reference page on a UNIX style system by entering

dcecp> man Tcl

.

. [output omitted]

.

dcecp>

DCE 1.2.2 Administration Guide—Core Components 23

The DCE Control Program

1.8 Customizing dcecp Sessions

The DCE control program includes a number of commands, objects, and task scripts
for performing most of the day-to-day DCE administration operations. Nevertheless,
as you gain experience using thedcecp interface, you may find you want to add new
commands and capabilities or to customize some existing ones. The following sections
explain how to add scripts and new objects to yourdcecp session. An object is just
a formal implementation of a script that uses thedcecp help system and takes the
form of object operation. Chapters 2 and 3 explain the fundamentals of writingdcecp
scripts and creating new objects.

1.8.1 Adding Scripts to dcecp Sessions

Once you have written a script, you can make it available to one person or to everyone
who is logged into the host by modifying one or more of the following files invoked
whendcecp initializes:

[info library]/init.tcl
This file is read first and contains standard Tcl initialization commands
for the host. This affects all instances ofdcecprunning on a host. The file
contains definitions for the Tclunknown command and theauto_load
facility used for initializing all of thedcecp objects. Administrators
should avoid addingdcecp customizations to this file.

dcelocal/init.dcecp
This file containsdcecp-specific startup information for the host. This
affects all instances ofdcecp running on a host. Thedcecp scripts
implementing operations and tasks are stored in thedcelocal /dcecp
directory. Add customizations in the form of procedures to this file to
make them available to alldcecpusers on the host.

$HOME/.dcecprc
This optional file stores user customizations that affect individualdcecp
users (the owners of the.dcecprcfiles). Each DCE user can maintain a
.dcecprcfile and store private procedures or alias names for operations.
Modified .dcecprc files allow flexible administration in environments
with multiple administrators. For example, different.dcecprc files for
each administrator could usedcecpsourcecommands to call specific

24 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

commands and task scripts that are tailored to particular areas of
administration.

The rest of this section illustrates a simple task script and shows one way to make
the script available for personal use. Our example begins with the control program’s
existingclock object that shows the current time. However, the time is simply a DTS
timestamp from the clock on the local host as in

dcecp> clock show

1994-10-03-10:22:59.991-04:00I-----

dcecp>

Let us say you create a procedure that gets a timestamp from a DTS server but also
displays the name of the DTS server with the time as in the following example which
invokes a user-created procedure calledshow_clock:

dcecp> show_clock

Time on mars is 1994-09-30-15:03:43.979-04:00I-----

dcecp>

You can make this procedure available to one user by including the procedure in the
user’s.dcecprcfile. The following sample.dcecprcfile includes user customizations
consisting of the_dcp_show_clocksprocedure and an alias that lets you invoke
the procedure with the simplershow_clockscommand name. Another procedure
called _dcp_whoami shows the current login identity information. Note the order
of operations in the.dcecprc file. Procedures are defined at the beginning of the file.
Renaming and invoking the procedures must occur after the procedures are defined.

##

Start up commands

##

A simple command to rerun .dcecprc after modifications

proc .d {} {source $HOME/.dcecprc}

Show your current login name and your current cell name.

proc _dcp_whoami {} {

global _c _u

DCE 1.2.2 Administration Guide—Core Components 25

The DCE Control Program

return "You are ’$_u’ logged into ’$_c’."

}

Show the time on all of the dts servers running in your cell.

proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]

foreach n $x {

if {[catch {object show $n/dts-entity}] == 0} {

set index [string last "/" $n]

set y [string range $n [incr index] end]

if {[catch {clock show $n/dts-entity} msg] == 0} {

set i [expr 20 - [string length $y]]

puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]

} else {

set i [expr 20 - [string length $y]]

puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]

}

}

}

}

Give some procs usable names

rename _dcp_whoami whoami

rename _dcp_show_clocks show_clocks

If I am authorized, say so

if {$_u != ""} {

whoami

}

The rename command near the end of the file lets you invoke the_dcp_show_clocks
and _dcp_whoami procedures using the easier command namesshow_clocksand
whoami.

When you startdcecp, the last part of this file invokes the_dcp_whoamiprocedure
if you are logged into DCE. If the_u convenience variable is set, the_dcp_whoami
procedure prints your current login identity as follows:

% dcecp

You are ’ principal_name’ logged into ’ cell_name’.

26 DCE 1.2.2 Administration Guide—Core Components

DCE Control Program Introduction

dcecp>

1.8.2 Adding New Objects to the DCE Control Program

If you have written a script as a formaldcecp object, you can make it available by
including the new object in the same directory where other task objects reside. On
UNIX systems, this is oftendcelocal/dcecp. As a rule, you should add the new object
to each host in the DCE cell. Chapter 3 describes how you can use thedcecphostdata
object to copy scripts or other files to every host in a cell.

When you install a new script, you must run theauto_mkindex utility to make the
new object available to other users on the host. For more information about running
the auto_mkindex utility, see Chapter 3.

DCE 1.2.2 Administration Guide—Core Components 27

Chapter 2
Using the DCE Control Program
Command Language

In Chapter 1, we provided a high-level look at some ways to use the DCE control
program to administer your DCE environment. In this chapter, we will discuss some
syntax rules and some of the more important commands you will need to use in
composing yourdcecp administration commands and task scripts.

The dcecp command language consists of DCE administration commands like
directory create andobject modify, as well as Tcl built-in commands such asif and
foreach. We will not discuss DCE administration commands here. These commands
are discussed in sections that deal with administering the particular DCE component.
Instead, we will focus on using the more generic syntax rules and built-in commands.

The Tool Command Language (Tcl) on whichdcecp is based is a general-purpose
language that is also used for other applications besidesdcecp. Although there are
many ways you can use Tcl for various purposes, we will limit our discussion to those
commands most likely to be used for administering DCE environments. Furthermore,
our command discussions do not describe every aspect of individual commands.
Rather, they suggest why and how you might use a command in the context of

DCE 1.2.2 Administration Guide—Core Components 29

The DCE Control Program

administering a DCE environment. If you are not already familiar with Tcl, you’ll
likely need to have access to the appropriate Tcl documentation, including the Tcl
reference pages, for writing sophisticated commands and task scripts.

2.1 Chapter Preview

This chapter walks you through the basicdcecp syntax and then looks at some
commands that you are likely to use in interactive commands and task scripts. The
discussions will focus on

• Use of variables as an easy way to pass data around in your command or script

• Command substitution as a way to channel the output from one command to the
input of another command

• Grouping elements together so thatdcecp parses commands correctly

• Using lists to sort, find, and reuse information

• Using arithmetic functions in commands and task scripts

• Conditionalizing and controlling your script withif statements and loops

• Executing scripts associated with character patterns by using thecasecommand

• Synthesizing commands by usingeval

• Importing operations withsource

• Creating newdcecpcommands withproc

• Using error and exception information

• Handling strings

• Working with files

• Spawning subprocesses

30 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

2.2 Variable Substitution

Like other programming languages,dcecp provides shorthand ways to express and
use values. Variable substitution is one shorthand method that lets you represent a
value—say, the name of an object in a CDS directory—as a variable.

Use theset command to establish a value for a variable. For readability, a variable
name can consist of any combination of letters, numbers, and _ (underscore) characters.
Use "" (quotes) or \ (backslash) to include spaces in variable names (although this is
not usually recommended) or values. All of the following examples use valid variable
names:

set a $i

set CDS_clearinghouse_name cambridge_ch

set DCE_user_1 "William Rosenberry"

The following example sets variablea to have a value of7. The second use of theset
a command without a value causesdcecp to display the current value of the variable:

dcecp> set a 7

7

dcecp> set a

7

Once you have established a value for a variable using thedcecp setcommand, the
variable can be subsequently used elsewhere in your script or interactive command.
The DCE control program uses the $ (dollar sign) to trigger insertion of the current
value into the command word. A simple example is

dcecp> set a 7

7

dcecp> expr $a+2

9

DCE 1.2.2 Administration Guide—Core Components 31

The DCE Control Program

Here we first set variablea to 7. In line 2, we use theexpr command to add 2 to
the value ofa (7). The dollar sign triggersdcecp to insert the value 7. The last line
shows the return value from theexpr command.

A more relevant example might be

dcecp> set a /.:/sec

/.:/sec

dcecp> object show $a

{RPC_ClassVersion

{01 00}}

{RPC_ObjectUUIDs

{06 3b 23 00 72 e5 e0 1d 8c b4 00 00 c0 8a df 56}}

{RPC_Group

{2f 2e 2e 2e 2f 77 61 72 64 5f 63 65 6c 2e 6f 73 66 2e 6f 72

67 2f 73 75 62 73 79 73 2f 64 63 65 2f 73 65 63 2f 6d 61 73 74

65 72 00}}

{CDS_CTS 1994-05-23-17:21:37.481+00:00I0.000/00-00-c0-8a-df-56}

{CDS_UTS 1994-05-23-17:22:36.607+00:00I0.000/00-00-c0-8a-df-56}

{CDS_Class RPC_Group}

{CDS_ClassVersion 1.0}

dcecp>

Remove (undefine) a variable by using theunset command as in the following
example:

dcecp> unset a

dcecp> set a

Error: cannot read "a": no such variable

dcecp>

2.3 Command Substitution

Command substitution provides a convenient way to express the return value of
one command within another command. This is useful when you want to use the

32 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

return value of one command as input to another command. Use brackets to invoke
command substitution. The following example uses theexpr command, which we’ll
discuss shortly. Generally,expr performs a math function, returning the computed
value expressed by its arguments, as shown:

dcecp> set a 4

4

dcecp> set b [expr $a+2]

6

dcecp> set b

6

dcecp>

A more practical example might use command substitution for a command that returns
a long name or a list. Let us recall an example we saw in Chapter 1. In this example,
the [group list temps] command returns a list to theforeach command that performs
the account modify operation on each element in the list. We’ll look more closely at
the foreach looping command later in this section.

dcecp> foreach i [group list users] {

>account modify $i -change {expdate 1995-12-31}}

dcecp>

Another practical use of command substitution is to set up a test condition for anif
statement. We show an example of this usage in Section 2.9.1.

2.4 Grouping Elements and Controlling Interpretation

Programming languages often use symbols such as braces, quotes, and parentheses to
operate on selected elements as a group rather than individually. Similarly,dcecpuses
"" (double quotes) and {} (braces) to group elements into structures. Double quotes
allow elements that would usually be parsed separately to be grouped and treated as
a single element. Braces are used to group elements into a list so thatdcecp can
correctly parse commands and other data like return values.

DCE 1.2.2 Administration Guide—Core Components 33

The DCE Control Program

Thedcecpcommand elements are separated by whitespace: the space, tab, and newline
characters. The followingdcecpcommand uses space characters to separate its three
elements:

dcecp> directory create /.:/subsys/comm_services

dcecp>

Use either the newline character or the ; (semicolon) to separate commands in a script.
The following two examples, which set and then use a variable, are equivalent:

dcecp> set a /.:/subsys/comm_services

/.:/subsys/comm_services

dcecp> directory create $a

dcecp>

dcecp> set a /.:/subsys/comm_services; directory create $a

dcecp>

The choice to use braces or quotes to group elements together depends on how you
wantdcecpto interpret special characters like $, [, and {. While braces disable special
interpretation of most of these characters, double quotes disable special interpretation
of just a few. The backslash character, discussed in Section 2.4.3, offers another way
to disable interpretation of special characters. When used together, braces, quotes, and
backslashes offer lots of flexibility in composingdcecpcommand strings.

2.4.1 Grouping Elements with Braces

Braces group separate elements to create a new element that consists of everything
between a { (left brace) and its corresponding } (right brace). You can also nest braced
elements. Each of the following example lists contain three elements:

larry moe curly

1 {3 5 7 11 13} {17 19}

red {orange yellow {green blue} indigo} violet

34 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

Braces disable command ([]), variable ($), and backslash substitution. While the most
important use of braces is to ensure adcecp command has the correct number of
arguments, this also provides a convenient way to include special characters in a list.
To see how this works, consider the following example:

dcecp> set a solution

solution

dcecp> puts $a

solution

dcecp> puts {This is a convenient $a}

This is a convenient $a

While theputs command is often used for writing to files, when called with only one
argument it writes the argument tostdout. In our example, the first use ofputs allows
normal interpretation of the variablea. The second use ofputs groups the separate
elements into one argument by disabling special interpretation of space characters and
the dollar sign.

2.4.2 Grouping Elements with Double Quotes

Like braces, double quotes also group elements together. But unlike braces, double
quotes cannot be nested. Furthermore, while braces disable almost all special
characters, double quotes disable just a few—spaces, tabs, newlines and semicolons—
letting you avoid the potentially awkward use of backslashes in a string of text
elements. The most convenient use of double quotes is to allow clean, readable
expansion of variables using the dollar sign trigger. For instance, in the following
example we set a variable (a) to a value that includes spaces:

dcecp> set a "XYZ server for /.:/corp/comm_groups"

XYZ server for /.:/corp/comm_groups

dcecp> puts $a

XYZ server for /.:/corp/comm_groups

dcecp>

DCE 1.2.2 Administration Guide—Core Components 35

The DCE Control Program

Use of double quotes does not disable command, variable, and backslash substitution.
Let us look at a variation of the example used in the Section 2.4.1:

dcecp> set a solution

solution

dcecp> puts $a

solution

dcecp> puts "This is a convenient $a."

This is a convenient solution.

dcecp>

In this example, the use of quotes with the secondputs command gathers five
elements into a single argument forputs by disabling special interpretation of the
space characters. However, the quotes do not affect interpretation of the dollar sign.

2.4.3 Including Special Characters with Backslashes

We already know thatdcecprelies on certain special characters such as spaces, braces,
quotes, or dollar signs to control its interpretation of elements. Sometimes, you might
want to include one special character in a string, temporarily suspending its special
interpretation. The backslash provides a form of substitution that suppresses special
interpretation of the character immediately following the backslash.

Use the backslash to insert a nonprinting space character in a string of elements. For
instance, each of the followingdcecp lists have three elements:

a b\ c d

a b \{

The elements in the first example area, b c, and d. The elements in the second
example area, b, and{. A more practical example could use the backslash to include
quotes in error messages as shown in the following code fragment:

36 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

if {[llength $a] < 2} {

error "Unable to parse \"$element_list\"."

}

The following list shows the special characters that you can include in a string of
elements by using the backslash character:

\b Backspace

\t Tab

\e Escape

\n Newline

\r Carriage-return

\{ Left brace

\} Right brace

\[Open bracket

\] Close bracket

\$ Dollar sign

\ (space) Space (" ")

\; Semi-colon

\" Double quote

\\ Backslash

\(newline) Nothing

\ddd Octal value

2.5 Documenting Scripts with Comments

When you are writing scripts, you might want to include some comment lines to
remind yourself and others what the script is doing. Use the # (number sign) to insert
comments. The DCE control program suppresses interpretation between a number

DCE 1.2.2 Administration Guide—Core Components 37

The DCE Control Program

sign and the next newline. You must place the number sign in a position wheredcecp
expects the first character of a command. Both of the following examples are valid:

set a 5

sets a to 5

set a 5 ;# sets a to 5

The following example is not valid because the number sign is not positioned where
dcecp expects the first character of a command:

set a 5 # sets a to 5

A common use of comments is to document procedures in scripts as in the following
sample script fragment:

#

_dcp_cleanup_user_create - This function undoes changes

after a failure in one of the user create functions as

though the operation never occurred.

#

proc _dcp_cleanup_user_create {account_name args} {

2.6 Convenience Variables

The DCE control program remembers what you enter as well as command output,
and stores certain pieces of that information in convenience variables for reuse in
subsequent commands. Using these variables in your interactive commands can reduce
typing and help eliminate typing mistakes.

Convenience variables apply only todcecpcommands likedirectory , principal , acl,
account, and so on. They do not apply to Tcl commands likefor or eval, or UNIX
commands likemv or grep. As an example, the convenience variable_n holds the
name (the argument) used in the followingprincipal create operation. Theprincipal
show operation retrieves the name by using the$_n variable.

38 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> principal create D_Kalivas

dcecp> principal show $_n -all

{fullname {}}

{uid 17}

{uuid 00000011-d957-21cd-8d00-0000c08adf56}

{alias no}

{quota unlimited}

dcecp>

While this simple explanation demonstrates the general operation of convenience
variables, it understates their usefulness. Most of the convenience variables are
intended to aid interactive use, but some can be used in scripts as well, adding
flexibility because the information they contain is not hardcoded in the script.
Moreover, as you gain experience with the DCE control program, you will likely
find these variables to be indispensible administrative tools.

The DCE control program provides several convenience variables that substitute for
previously entered information or command output. All of the convenience variables
begin with an _ (underscore) to leave 1-character variable names free for other uses.

The following sections describe the convenience variables. Their order of presentation
generally keeps similar or related variables together.

2.6.1 Current Principal (User) Name (_u)

The_u convenience variable holds the current simple principal name. The DCE control
program sets this variable from the login context inherited from the parent process.
You can change its value by performing anotherlogin operation. Setting it usingset
generates an error.

dcecp> puts $_u

cell_admin

dcecp>

A practical use of this variable could be in scripts that test for a certain DCE identity
before proceeding. On finding an incorrect identity, scripts could prompt for the
necessary identity information and perform adce_loginoperation.

DCE 1.2.2 Administration Guide—Core Components 39

The DCE Control Program

See the cell name variable description in Section 2.6.2 for information about
composing fully qualified principal names.

2.6.2 Current Cell Name (_c)

The _c convenience variable holds the name of the cell in which the principal is
registered. The DCE control program sets this variable from the login context inherited
from the parent process. You can change its value by performing anotherlogin
operation. Setting it usingset generates an error.

dcecp> puts $_c

/.../my_cell.goodco.com

dcecp>

This variable is generally useful in environments where administrators deal with
multiple cells. For example, you could use the_c variable as a building block in
constructing the current context’s fully qualified principal name for use in scripts.
Join the cell name and user name variables together with a / (slash) as shown in the
following example:

dcecp> puts $_c/$_u

/.../my_cell.goodco.com/cell_admin

dcecp>

2.6.3 Current Host Name (_h)

The_h convenience variable holds the DCE name of the current host. The DCE control
program sets this variable whendcecp is invoked. Setting it usingset generates an
error.

dcecp> puts $_h

hosts/planets

40 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp>

The _h variable is useful for returning the name of the host to an interactive user.
You can also use it with the_c variable, as shown, to construct names such as a host
principal name in a script:

dcecp> puts $_c/$_h/self

/.../my_cell.goodco.com/hosts/planets/self

dcecp>

2.6.4 Most Recent Operation Argument Name (_n)

The _n variable holds the name or names used as an argument to the most recent
control program operation. Mostdcecp objects take a name or a list of names as an
argument. Those that do not use names as an argument include the miscellaneous
dcecp commandsdcecp_initInterp, login, logout, errtext , quit , resolve, andshell.

The name is usually the third argument in adcecpoperation, as shown in the following
directory operation:

dcecp> directory create /.:/sales/printers/text_printers

dcecp>

Once set, you can use$_n in subsequent operations in place of the name argument. For
example, you could modify a directory attribute for the/.:/sales/printers/text_printers
directory created in the preceding example, as follows:

dcecp> directory mod $_n -change {CDS_Convergence low}

dcecp>

The_n variable can also hold a list of names, as when you perform a directory service
operation on more than one name. For instance, you could create several directories
and then decide to modify an attribute:

DCE 1.2.2 Administration Guide—Core Components 41

The DCE Control Program

dcecp> directory create {

>/.:/sales/printers/text_printers

>/.:/sales/printers/graphics_printers

>/.:/sales/printers/colorgraphics_printers }

dcecp>

A subsequent directory service operation can simply use the_n variable in place of
the name or list of names:

dcecp> directory modify $_n -change {CDS_convergence high}

dcecp>

2.6.5 Parent of _n (_p)

The _p variable holds the parent of the name stored in_n. The _n variable holds the
name or list of names used in the argument to the most recent operation (see Section
2.6.4). The_p variable holds the name or list of names that are hierarchically above
the name in_n (closer to the cell root).

One use of the_p variable is in traversing up a CDS hierarchy of directories. Another
use is showing theaccess control list(ACL) of a parent object. The following
operations view the ACLs of a server configuration object and of its parent object
(/.:/hosts/krypton/config/srvrconf):

dcecp> acl show /.:/hosts/krypton/config/srvrconf/video_clip

{appl_admin cdfrwx}

{unauthenticated r}

{any_other r}

dcecp>

dcecp> puts $_p

/.:/hosts/krypton/config/srvrconf

dcecp>

dcecp> acl show $_p

{appl_admin criI}

{unauthenticated r}

42 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

{any_other r}

dcecp>

2.6.6 Last dcecp Object Name (_o)

The _o variable holds the name of thedcecpobject used in the most recent operation.
The following example uses the_o variable to avoid retypingaccount:

dcecp> account show j_wanders

{acctvalid yes}

{client yes}

.

. [output omitted]

.

{home /}

.

. [output omitted]

.

{shell {}}

{stdtgtauth yes}

dcecp> $_o modify j_wanders -home /.:/fs/corporate_services/users/j_wanders

dcecp>

2.6.7 Last Operation’s Return Value (_r)

The _r variable holds the return value of the most recent operation. Manydcecp
commands return multiple lines of output which are in the form of a list.

The following example shows one use of the_r convenience variable. Thedts
show command returns multiple lines as a list. Theattrlist getvalues operation (see
the attrlist(8dce) reference page) searches through the returned list for the string
toofewserversand returns its associated value.

DCE 1.2.2 Administration Guide—Core Components 43

The DCE Control Program

dcecp> dts show -counters

{creationtime 1994-09-16-07:50:13.067-04:00I-- ---}

{nointersections 0}

{nointersections 0}

{diffepochs 0}

{toofewservers 1}

{providertimeouts 82}

{badprotocols 0}

{badtimerep 0}

{noglobals 81}

{noresponses 0}

{abrupts 0}

{epochchanges 0}

{syserrors 0}

{syncs 1574}

{updates 0}

{enables 1}

{disables 0}

{nomemories 0}

{providerfailures 0}

{badlocalservers 0}

{badservers 0}

dcecp> attrlist getvalues $_r -type toofewservers

1

dcecp>

2.6.8 DCE Servers to Use (_s(xxx))

The _s(xxx) variables hold the names of the DCE servers to use for the next DCE
operation. The DCE control program provides four of these variables. Because the
variables are not set bydcecp, users must set these variables if they want to use them.
The variables are as follows:

_s(sec) This variable holds the name of the security server you want to use
for the next registry operation. If you set this to specify a read-only
replica and the operation (such asprincipal create) requires a master
replica,dcecpignores the variable and tries to bind to the master registry.
Registry operations that use the_s(sec)variable includeprincipal ,
group, organization, registry, account, andxattrschema.

44 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

DCE control program operations use the_s(sec)variable in conjunction
with the _b(sec) variable, which holds the name of the most recent
registry used. Aregistry operation uses the following order to select a
security server:

1. Use the server passed as a name argument to theregistry operation.

2. If the operation lacks a name argument, use the server named in
the _s(sec)variable.

3. If the_s(sec)variable has not been set, use the server named in the
_b(sec)variable.

4. If the_b(sec) variable has not been set (that is, this is the first
registry operation sincedcecpwas initialized), the service provides
an arbitrary server that is suitable for the operation.

_s(cds) This variable holds the name of the CDS server you want to use for the
next directory service operation. When set, CDS operations attempt to
use the specified server. The operation fails if the attempt is unsuccessful
such as when the server is unavailable for some reason. To overcome
such a failure, you mustunset this variable or make the server available.

It makes sense to use the_s(cds)variable when all of your application
needs can be satisfied by the clearinghouse named in the variable.
Consider not using the_s(cds)variable when name lookups in CDS
are likely to traverse directories in several clearinghouses. In this case,
you’ll get lookup errors because the_s(cds)variable limits the lookup
operation to using just the named clearinghouse.

_s(dts) This variable holds the name of the DTS server you want to use for the
next time service operation. When set, DTS operations attempt to use
the specified server. The operation fails if the attempt is unsuccessful
such as when the server is unavailable for some reason. To overcome
such a failure, you mustunset this variable or make the server available.

One use of this variable is to restrict DTS operations to a single DTS
server for monitoring purposes. Normally, time service operations can
use any available DTS server.

_s(aud) This variable holds the name of the audit daemon you want to use for
the audit operation. By default, audit operations affect the local host’s
audit daemon. You can operate on a remote host’s audit daemon by
specifying its name as the value of the_s(aud)variable, as follows:

DCE 1.2.2 Administration Guide—Core Components 45

The DCE Control Program

dcecp> set _s(aud) /.:/hosts/planets/audit-server

/.:/hosts/planets/audit-server

dcecp>

When_s(aud) is set, audit operations attempts to use the specified audit
daemon. The operation fails if the attempt is unsuccessful such as when
the specified audit daemon is unavailable for some reason. To overcome
such a failure, you mustunset this variable or make the audit daemon
available.

You can specify a DCE server or audit daemon as any of the following:

• A DCE name. An example of a global registry name is/.../my_cell.goodco.com/
subsys/dce/sec/oddball. An example of a cell-relative CDS clearinghouse name
is /.:/Paris_CH.

• The string binding for the host where the server resides. String bindings can
represent security servers, DTS servers, and audit daemons. They cannot represent
CDS servers. An example of a string binding is{ncacn_ip_tcp 110.15.22.131}.
The DCE control program resolves the binding to the appropriate service on the
host.

• The name of the cell. For a remote cell, specify a global cell name, for example/
.../my_cell.goodco.com. For the local cell you can specify the root as/.: . These
operations use an arbitrary server that is suitable for the operation.

2.6.9 Last Security Server Used (_b(sec))

The _b(sec)convenience variable holds the name of the security server used for the
most recentregistry operation. The DCE control program sets this variable based on
previous registry operations. Consequently, users can view, but not set, this variable.

One reason to read the value of this variable is to check which registry performed the
most recent operation as shown in the following example:

dcecp> puts $_b(sec)

/.../my_cell.goodco.com/subsys/dce/sec/oddball

dcecp>

46 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

Registry operations use the value of the_b(sec)variable in conjunction with the value
of the _s(sec)variable to determine which security server to use. Refer to Section
2.6.8 for information about the_s(sec)variable and how these values work together
for registry operations.

2.6.10 Most Recent Error Code (_e)

The _e convenience variable holds the last DCE error code encountered. If the DCE
control program can determine what the error code is, this variable is set. If an actual
error code is unknown, the variable is set to-1 (negative one).

2.6.11 CDS Confidence Level (_conf)

The _conf convenience variable indicates the confidence you have in the local CDS
daemon to fulfill requests. It alters the behavior of most commands that operate on a
CDS object. A confidence level can below, medium, andhigh.

2.7 Measuring and Counting with Expressions

The expr command offers flexible ways to express and use arithmetic functions in
your scripts. Expressions are useful for things like comparing numeric information
such as the number of elements in a list, setting thresholds for monitoring purposes,
incrementing counters that control your script’s execution, and producing statistical
information.

A simpledcecpexpression is a combination of an operator like+ (add) or* (multiply)
and some operands. Theexpr command takes one argument—the expression—so
parentheses or braces may be needed if your expression has spaces. Use parentheses
to control grouping in expressions. Expressions can also be nested. All of the following
are valid expressions:

dcecp> expr {2 + 3}

5

DCE 1.2.2 Administration Guide—Core Components 47

The DCE Control Program

dcecp> expr 2+3

5

dcecp> set x 24

24

dcecp> expr ($x-8)*2

32

dcecp> expr $x-(8*2)

8

dcecp> expr $x-8*2

8

dcecp>

Be careful using variables in expressions; variables like$x must be numeric strings
like 24, not nonnumeric strings like 4*6.

The DCE control program normally treats numbers as decimal integers, but can read
numbers in octal and hexadecimal formats too. Precede a number with 0 (zero) for octal
interpretation, as in 0477. Precede a number with 0x for hexadecimal interpretation,
as in 0x9FF. You can also represent numbers in floating-point format by using any of
the forms specified by the ANSI C standard (with the exception of the f, F, l, and L
suffixes).

The DCE control program also supports numerous mathematical functions in
expressions such as cos, exp, log, tan, sin, and others, by invoking the C math library
functions of the same name.

Here is a partial list of operators you can use with theexpr command. The list order
also denotes precedence. This means, for instance, thatexpr multiplies before adding
(2+2*4 equals 10).

- unary minus

~ bitwise NOT

! logical NOT

* multiply

/ divide

% remainder

+ add

48 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

- subtract

<< left shift

>> right shift

< Boolean less than

<= Boolean less than or equal

> Boolean greater than

>= Boolean greater than or equal

== Boolean equal

!= not equal

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

a ?b : c if-then-else (as in C).

2.8 Operating on Lists

Lists provide convenient ways to operate on collections of things such as sets of
principals, group members, or other objects. Lists are collections of objects entered
by you or returned from commands. We have already seen lists in previous examples
in this chapter; they are any number of elements separated by spaces, tabs, or newlines.
Usually, a list is enclosed in braces.

All of the following are examples of lists:

{n_long l_jones p_sawyer d_witt m_dougherty s_preska}

{{/.:/hosts} {/.:/subsys}}

DCE 1.2.2 Administration Guide—Core Components 49

The DCE Control Program

The DCE control program relies on lists to group elements so they can be correctly
parsed by thedcecp command interpreter. For example, the set command takes two
arguments:

set varName value

The following set command cannot be correctly parsed becausedcecpdetects a third
argument:

dcecp> set a John Hunter

Error: wrong # args: should be "set varName ?newValue?"

dcecp>

Use braces, quotes, or backslashes to create a valid list, as follows:

dcecp> set a {John Hunter}

John Hunter

dcecp> set a "John Hunter"

John Hunter

dcecp> set a John\ Hunter

John Hunter

dcecp>

The commands that operate on lists provide convenient ways to evaluate, select, and
act on individual elements or groups of elements in a list. The DCE control program
provides a comprehensive set of commands that let you create, modify, search, sort,
and convert to and from lists.

For example, the following script returns the last element in a list. Thellength
command returns the number of elements in the list. Our list has four elements so
llength returns4. The DCE control program numbers the elements from left to right
starting with0 (zero) so our list with three elements has elements numbered0, 1, 2,
and3. The value of variablec is set to the number of the last element in the list (3).
Finally the lindex command returns element 2 (f).

50 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> set a {a b {c d e} f}

a b {c d e} f

dcecp> set b [llength $a]

4

dcecp> set c [expr $b-1]

3

dcecp> lindex $a $c

f

dcecp>

The DCE control program provides numerous commands for working with lists. You
can join lists together using theconcat command. Uselinsert to add elements to an
existing list. Extract a range of elements by usinglrange, replace elements in a list
with lreplace, and sort list elements in alphabetical (dictionary) order by usinglsort.
The DCE control program also includes anattrlist object (seeattrlist(8dce) for use
in manipulating list elements.

Here is an example that lists all child directories in a tree in alphabetic order. The_r
variable is adcecp convenience variable that holds the output of the last command.
In this case,_r holds the list of directories returned by thedirectory list -simple
command.

dcecp> directory list -simple /.:

hosts subsys cell-profile fs lan-profile planets_ch sec sec-v1

dcecp> lsort $_r

cell-profile fs hosts lan-profile planets_ch sec sec-v1 subsys

dcecp>

2.9 Controlling Scripts

The DCE control program provides several commands for controlling your script’s
execution. Commands such asif , while, for , foreach, andcaseexecute parts of scripts
under various conditions. Thebreak and continue commands can stop execution of
part or all of a command script.

DCE 1.2.2 Administration Guide—Core Components 51

The DCE Control Program

2.9.1 Conditionalizing with if Statements

Sometimes, you’ll want part of your script to execute only under certain conditions.
Use anif statement to detect a condition and conditionally perform some operation.
The syntax for anif statement is

if test true_bodyelsefalse_body

Let us say you are writing a script that searches through a list of attributes for a
particular attribute. Anif statement could take particular actions depending on whether
an attribute exists. The following example script fragment returns an error message if
the account name does not exist in thelist_of_group_entriesvariable:

set list_of_group_entries [group list $group -simplename]

if { [lsearch $list_of_group_entries $account_name] == -1} {

group add $group -member $account_name

} else {

error "Group \"$group\" already has an entry \

for \"$account_name\"."

}

2.9.2 Controlling Script Execution with Loops

Programming languages use loops to repeat operations as long as specified conditions
exist. The DCE control program offers three kinds of loops:foreach, while, and for .
The type of loop you use depends on the way conditions are specified.

2.9.2.1 Theforeach Loop

When you want to perform a given operation on each element in a list, use theforeach
command. Remember that a list is a colletion of objects, or things enetered by you or
returned from a command.

52 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

The syntax is

foreach variable_name list body

The foreach command consists of a list, a script body, and a variable that represents
each element of the list, in turn. The command runs the script body on the element
represented by the variable and then sets the variable to be the next element in the
list.

The following sampleforeach command could be part of a script that manages hosts
in a DCE cell. This script fragment removes the host principal name from the registry
if a failure occurs while configuring the host in the cell. Theforeach command looks
at each principal name in the cell. If thestring commands find the host name listed
in the output fromprincipal catalog, the script deletes the principal name from the
registry.

foreach princ [principal catalog -simplename] {

if {[string match $host_name [string range $princ 0 \

[expr [string length $host_name] - 1]]] == 1} {

principal delete $princ

}

}

Keep in mind that loops return their results to the interpreter, not tostdout. You
need to take extra steps to send the results tostdout. The next example uses aputs
command to send the results of theforeach loop to stdout:

foreach i [group list subsys/dce/dts-servers] {

puts [principal show $i]

}

You can alsoappend all the results together into a variable in a script, or you can use
lappend to append the results as separate list elements, as follows:

DCE 1.2.2 Administration Guide—Core Components 53

The DCE Control Program

foreach i [group list subsys/dce/dts-servers] {

append result [principal show $i]

}

return $result

2.9.2.2 Thewhile Loop

Thewhile loop behaves like thewhile loop in C. It takes two arguments: an expression
and a script (called thebody). When the expression evaluates to nonzero, thewhile
command executes the body and then reevaluates the expression, continuing the loop
until the expression evaluates to 0. The syntax for awhile loop is

while expression body

The following example procedure uses awhile loop to search through each element
in a list for a pattern. As long as the list size contains more than zero elements ($size
> 0), the procedure continues looping.

proc _dcp_list_find {search_list pattern} {

set found_items ""

set size [llength $search_list]

while { $size > 0 } {

set size [expr $size - 1]

set index [lsearch $search_list $pattern]

if { $index == -1 } {

return $found_items

}

lappend found_items [lindex $search_list $index]

set search_list [lreplace $search_list $index $index]

}

}

54 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

2.9.2.3 Thefor Loop

The for loop also behaves just like its C counterpart. Althoughfor is more complex
than its siblingwhile, for keeps all of the loop control information together, making
it easier to see what is going on. Thefor command syntax is

for initial_expression test reinit script_body

To usefor , set an initial expression and then test for that condition before executing
the script body. After executing the script body, thefor command reinitializes the
initial expression and again tests for the new value, repeating the loop until the test
becomes false.

The following example shows afor loop that performs an operation a specified number
of times and stops. In this example, we create 50 guest principal names in the registry.

dcecp> for {set i 0} {$i < 50} {incr i} {

>principal create guest$i

>}

dcecp>

2.9.3 Terminating Loops with continue and break

The continue andbreak commands terminate loops started with thewhile, for , and
foreach commands.

Use thecontinue command to terminate the current iteration of a loop. For instance,
your loop can test for, and selectively ignore, particular elements in a list while
continuing to operate on the rest of the elements. Use thebreak command to
immediately terminate loop execution.

The following example script fragment is aforeach command loop that includes
continue and break commands. Theforeach command looks through all the DTS
servers in a cell until it finds one that is a time-provider. (A time-provider is a special
DTS server that receives time from an external time source.) If the first server in the

DCE 1.2.2 Administration Guide—Core Components 55

The DCE Control Program

list (created by thedts catalog operation) returns output from adts showoperation,
the continue command invokes the next lines in the script which search the output
for the {provider yes} attribute and value. If theprovider attribute (examined by the
attrlist getval operation) isyes, the script sets theserver variable to be the name of
that DTS server, and thebreak command terminates the entireforeach loop.

foreach s [dts catalog] {

if {[catch {dts show $s} dts_sh_out] != 0} {

continue

}

set p [attrlist getval $dts_sh_out -type provider]

if {[string match $p "yes"] == 1} {

set provider "yes"

set server $s

break

}

set provider "no"

}

2.9.4 Testing with Patterns Before Execution with case

Some commands return a list such as a list of objects in a directory or a list of servers
running on a host system. You can use thecasecommand to test a list or string for
specific patterns such as the name of a particular object or server. On detecting a
specified pattern, thecasecommand then executes a script associated with the pattern
detected. The syntax for thecasecommand is

casestring in pattern {script} pattern {script}

The casecommand looks instring for pattern and executes {script}. The word in
may be omitted. The following example illustrates how thecasecommand works:

dcecp> set x {one ten twenty}

one ten twenty

56 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> foreach el $x {case $el in one {puts script1} two {puts script2}}

script1

dcecp>

The casecommand first checks in$x for the patternone. On finding this pattern, the
associated script echoesscript 1 on the display. When it finds no more matches, the
casecommand ends.

For a more practical example, say you run adcecpcommand that lists all the servers
on a particular system. You could search the list for particular server names and
execute a script that appends each name to a particular file, as follows:

case $x in server1 {lappend filename1} server2 {lappend filename2}

If your list of patterns is lengthy and likely to break across lines, you can prevent
newlines from being interpreted as separators by enclosing the entire list of target
patterns and scripts in braces. This has the additional benefit of preventing variable
and command substitutions in the braced list.

Patterns can include wildcard characters. A ? (question mark) in a search pattern
matches any single character in the target pattern. For instance,?at matchesbat and
hat. An * (asterisk) in a pattern matches any string in the target pattern. For instance,
*at matches bothbat and "three cornered hat" (note the use of quotes to disable
spaces as separators).

You might want a way to execute some default script when no pattern matches are
found. Thecasecommand has a special pattern calleddefault whose corresponding
script executes when no pattern match is found. You should place the default pattern
as the last position in the list:

case $x in {

a {puts "script for case a"}

b {puts "script for case b"}

default {puts "run this script if no matches are found"}

}

DCE 1.2.2 Administration Guide—Core Components 57

The DCE Control Program

2.10 Creating Commands Dynamically

The eval command lets you create scripts as you go along by chaining smaller scripts
together. This technique could be useful in a script that records administrator responses
to various questions and then constructs a specialized script based on those responses.
The syntax is

eval arg ... arg

The following example uses variables to hold options and their values for anaccount
create operation. Theeval command ensures that the variables expand and execute
properly.

dcecp> set mpwd {-mypwd mxyzptlk}

-mypwd mxyzptlk

dcecp> set pwd {-password change.me}

-password change.me

dcecp> set org {-organization guests}

-organization guests

dcecp> set grp {-group guest}

-group guest

dcecp> eval account create guest1 $mpwd $pwd $org $grp

dcecp>

Be careful when using variables to constructeval commands. Aneval command such
as the following can sometimes cause problems within scripts becausedcecpparses it
twice. First,dcecpparses theeval command and its arguments. Then it again parses
the eval arguments when they are executed as scripts.

dcecp> eval $a $b $c

dcecp>

You can avoid some parsing problems by placing braces around the arguments as in
this example:

58 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> eval {$a $b $c}

dcecp>

To make certaindcecp parses youreval command correctly, you can invoke the
dcecplist command to generate a valid list structure:

dcecp> eval [list $a $b $c]

dcecp>

2.11 Reading Other Files as dcecp Scripts

Thesourcecommand reads the contents of other files, executing them asdcecpscripts.
This capability lets you construct higher level scripts by plugging lower level functions
together—like building blocks. Because you re-use your scripts rather than duplicate
them with potential variations, scripts are more consistent and easy to develop and
maintain. The command syntax is

source filename

The return value fromsource is the return value from the last command infilename.

As a practical example, imagine we have one script that lists entries in CDS subtrees,
another script that deletes subtrees, and another script that moves subtrees. One
common function needed by all these scripts might be to list every child directory
under the root of the subtree. You could write a script that lists every child and name
it something likechildren_list.dcp. (The .dcp extension is adcecp convention for
naming script files.) When any of your scripts need to list all the child directories,
simply use thesourcecommand:

source children_list.dcp

Terminate asource command by using thereturn command. Thereturn command
provides a way for commands likesource and proc to exit in a controlled manner,
even when expected or unexpected error conditions occur. Rather than allow error

DCE 1.2.2 Administration Guide—Core Components 59

The DCE Control Program

conditions to cause the whole script to exit and fail, thereturn command manages
error information and allows the script to continue executing. We discuss the use of
return with other error-handling techniques in Section 2.14.

2.12 Creating New Commands

The DCE control program provides a powerful and comprehensive set of commands
for controlling and monitoring DCE operations. But the exact uses to which DCE is put
by end users is unpredictable. Consequently, it is quite likely that some administrators
will need additional commands to meet very specific needs. Theproc command offers
an easy way to create additional commands that look and behave just like built-in
commands such asset, list, and while. But unlike built-in commands, which are
written in C, commands created withproc are written using scripts, as follows:

dcecp> proc div {x y} {expr $x/$y}

dcecp>

The proc command takes three arguments: the procedure name, a list of names of
procedure arguments, and thedcecpscript that forms the body of the new procedure.
Our new procedurediv requires two arguments. For example:

dcecp> div 12 4

3

dcecp>

By default, proc assumes all variables are local variables. That is, their names and
values are set only within the procedure and they expire when the procedure completes.
The following command produces an error because variablesx and y have not been
set within the procedure:

dcecp> set x 15

15

dcecp> set y 3

3

60 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> proc div {} {expr $x/$y}

dcecp> div

Error: cannot read "x": no such variable

You can import global variables (variables defined outside the procedure) by using the
global command:

dcecp> set x 15

dcecp> set y 3

dcecp> proc div {} {

>global x y

>expr $x/$y

>}

dcecp> div

5

dcecp>

Once you import a global variable, it persists for the duration of the procedure. Your
procedure can change the value of the variable by usingunsetandset. The new value
will be available for use inside and outside of your procedure, as shown.

You can use thereturn command to make your procedure return immediately. The
value of the argument toreturn becomes the procedure’s return value.

proc find {a} { <some pattern

matching script that looks for a specific CDS entry> if {a != b} {

return 1 } return 0 }

You can design procedures to take either no arguments or variable numbers of
arguments. For instance, a procedure with no arguments could simply perform some
straightforward operation as in the following example:

proc _do_create_group {} {

global rpcgroupname

rpcgroup create $rpcgroupname

DCE 1.2.2 Administration Guide—Core Components 61

The DCE Control Program

}

You can also specify a default value for an argument by using a nested list structure in
the argument list. In the following example, the first argument,attr, must be supplied.
The second argument,value, defaults tounset if no argument is supplied.

proc _attr_show {attr {value "unset"}} {

puts "$attr is $value"

}

Procedures can call other procedures. The current procedure can import variables from
any calling procedure by using theupvar command, as shown:

upvar level otherVar1 myVar1 otherVar2 myVar2

A level argument of1 gets the variable context of the parent procedure. An argument
of 2 gets the variable context of parent’s parent procedure. You can also specify levels
relative to the global context by preceding thelevel argument with#. A level of #0
gets global variables. Alevel of #1 gets variables from a procedure invoked from the
global level.

The otherVar argument names the variable you want to import. You need to include
the myVar argument to rename the variable for use in the current procedure. The
following example renames the imported variable tocargs:

upvar 1 local_args cargs

Procedures can also execute scripts under the context of parent procedures by using the
uplevel command. This command offers a convenient way to manage your procedure’s
context. For instance, rather than import and manipulate numerous variables from a
parent procedure, useuplevel to connect to them all at once. The syntax is

uplevel level arg arg arg

62 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

The uplevel command is similar toeval; it concatenates arguments and executes them
as scripts but, unlikeeval, uplevel executes the script in the context specified bylevel
rather than the current context. Thelevel argument works the same inuplevel as it
does inupvar . Use the parent’s context with alevel argument of1. Use the context
of a first-level procedure with alevel argument of#1.

If a proc command specifies a command name that is already in effect, the new
procedure replaces the existing procedure with the same name. Except in unusual
cases, you should avoid naming new commands so that they replace existing built-in
commands.

You can rename or delete Tcl commands by using therenamecommand. For instance,
you could temporarily renamelist to list.old and then useproc to create another
command calledlist. When you are through using the manufacturedlist command,
you could renamelist old to list, restoring the original function oflist as in the
following:

rename list list.old

proc list {} {

<some list operation>

}

rename list.old list

Delete a command by omitting the second argument to therename command. The
following example deletes thelist command:

rename list

2.13 String Manipulation

Many DCE administrative operations return information of some sort. For instance,
the principal show operation returns information about a principal. Usually this
information is in the form of a list, as in the following example:

DCE 1.2.2 Administration Guide—Core Components 63

The DCE Control Program

dcecp> principal show R_Parsons

{fullname {}}

{uid 15}

{uuid 0000000f-d6f9-21cd-8d00-0000c08adf56}

{alias no}

{quota unlimited}

{groups users}

dcecp>

Although it is fairly easy for an administrator to scan a list and extract the necessary
information from it, scripts operate differently. When scripts search for specific
information, they usually ignore the notion of lists, operating instead on the collection
of characters (called astring) that makes up a list. The DCE control program provides
a set of commands to operate on strings, letting you construct, parse, compare, extract
values from, and modify strings.

2.13.1 Constructing Strings

Often, scripts need to construct strings for use in other commands or for displaying
on the screen for users. The DCE control program provides aformat command that
you use to construct strings for use by your script.

The format command substitutes variables where needed. The following example
constructs the variable_dcp_host_entriesby using theformat command to prepend
the cell name string (thestring type is indicated by%s) to the string/hosts. The cell
name is contained in the_c convenience variable.

dcecp> set _dcp_host_entries [format "%s/hosts" $_c]

/.../my_cell.goodco.com/hosts

dcecp>

The format command can also convert arguments between differing forms including
decimal, octal, hexadecimal, floating-point, and scientific notation. You can also
specify to print or omit signs for signed numbers, right or left justify output, and
pad with spaces or zeroes. The following examples convert the integer 8 to its octal
equivalent. The second example shifts the output nine character spaces to the right.

64 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp> format %1o 8

10

dcecp> format %9o 8

10

dcecp>

2.13.2 Parsing Strings

The DCE control program includes ascan command that parses strings and then
converts and stores relevant parts of strings in variables. This capability is useful, for
instance, when converting information returned by a previous command into data that
can be input to another command. The syntax for thescancommand is as follows:

scan "string" " format" [varname[varname]...]

You can specify thestring literally or by using a variable. Theformat section controls
parsing, ignoring blanks and tab characters you might have included in theformat
section for readability. This section consists of one or more conversion specifiers
delimited by % (percent sign). Conversion specifiers define which parts ofstring get
converted and stored, as well as the type of conversion.

The following example parses the string contained in the variable_dcp_temp for a
valid floating-point number and stores it in the variable_dcp_temp2:

if { [scan $_dcp_temp "%f" _dcp_temp2] != 1 } {

error "Variable \"$_dcp_temp\" is not a \

valid floating-point number"

}

DCE 1.2.2 Administration Guide—Core Components 65

The DCE Control Program

2.13.3 Other String Handling Operations

You can specify one character or a range of characters in a string by usingstring
index andstring range. These commands would be useful for extracting information
from a string of predictable length.

The string index command has one argument that is the position of one character
(counting from left to right beginning with 0 (zero) to be extracted from the string. The
string range command includes two arguments that are the positions of the leftmost
and rightmost characters to be included in the range. The following example illustrates
one use of thestring range command:

dcecp> string range {The quick brown fox} 4 9

quick

dcecp>

You can determine whether one string is lexicographically (alphabetically) greater
than, less than, or equal to another string by usingstring compare. Generally, this
operation performs a byte comparison of ASCII codes that make up the string.

Count the number of characters in a string using thestring length command. Here is
an example:

dcecp> string length "The quick brown fox"

19

dcecp>

Convert characters between uppercase and lowercase by using thestring toupper and
string tolower commands. Here is an example:

dcecp> string toupper "The quick brown fox"

THE QUICK BROWN FOX

dcecp>

66 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

Trim specific characters from a string by using thestring trim command. Remove
the leftmost or rightmost characters from a string by using thestring trimleft and
string trimright commands.

You can perform pattern-matching operations in any of several ways. Invoke ‘‘glob’’
style pattern matching with thestring match command. This mimics the glob pattern
matching capabilities available incsh, returning1 for a match and0 for no match.
More flexible regular expression pattern matching (like that found inegrep) can be
performed usingregexp command. You can extend this operation to perform regular
expression substitution by using theregsub command.

The following example illustrates the use of theregsub command. The first argument
specifies the search pattern. The second argument is the string to search. The third
argument specifies the replacement pattern. The last argument is a variable into which
regsub places the new string. The command returns0 if no substitution occurs and1
if substitution does occur.

dcecp> regsub brown "The quick brown fox" blue color

1

dcecp> puts $color

The quick blue fox

2.14 Dealing with Errors and Exceptions

The dcecp interpreter includes error facilities that return error information when
something goes wrong with adcecp script. Error information tells users what went
wrong so that they can avoid making the same mistake in the future. Many things can
causedcecperrors. For instance, a command might not receive the correct number of
arguments, a command might have a typographic error of some kind, or the object of
an operation (such as a CDS directory) might be unavailable for some reason.

Here, we discuss three ways of dealing with errors and exceptions:

• Using global error information variables

• Catching exceptions

• Reissuing complex errors

DCE 1.2.2 Administration Guide—Core Components 67

The DCE Control Program

2.14.1 Using Global Error Information Variables

Whendcecp encounters an error it prints a descriptive message, such as:

Error: wrong # args: should be "set varName ?newValue?"

In some cases, error messages may be insufficient for determining exactly where a
problem occurred. Sodcecp stores additional error information in a global variable
callederrorInfo . Your script can access and print this information to help you find the
error. Generally, it traces the commands that were executing when the error occurred.

The following example shows the kind of information that can be stored inerrorInfo .
Reading backwards, you can determine that the error occurred near line 4 of the script
body in theparseargsprocedure called from the_dcp_create_userprocedure of a
user operation.

dcecp> puts $errorInfo

Unknown option "group"

while executing

"

invoked from within

"

("while" body line 4)

invoked from within

"

(procedure "parseargs" line 60)

invoked from within

"

(procedure "_dcp_create_user" line 64)

invoked from within

"

invoked from within

"

invoked from within

"

(procedure "user" line 24)

"

68 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

dcecp>

In addition, dcecp may store another kind of error information in another global
variable callederrorCode. This variable contains a list like the following that can
identify other classes of errors.

UNIX, ENOENT, "insufficient arguments for filename"

The DCE control program sets theerrorCode variable to NONE if an error produces
no useful error information.

2.14.2 Using catch to Trap Errors and Exceptions

Occasionally, you might want to trap some kinds of errors rather than let them
terminate an active command. Thecatch command lets you trap and ignore errors
so your script can continue processing. Let us say your script wants to rename a
command if it exists. However, it is possible that the command name might not exist
when you execute therename command.

dcecp> rename move move.old

Error: cannot rename "move": command does not exist

dcecp>

Usecatch to invoke therename command as a script.

dcecp> catch {ren move move.old}

1

dcecp>

The catch command treats its argument as a script and executes it, returning a0 on
successful execution. If an error occurs, it is caught by thecatch command which
returns a1 .

DCE 1.2.2 Administration Guide—Core Components 69

The DCE Control Program

You can add a second argument to thecatch command. This argument is a variable
that catch modifies to hold the script’s return value (on successful completion) or the
error message. The syntax for thecatch command is

catch commandvarName

One use ofcatch in scripts is to invoke other procedures. You can read the
following script fragment as follows: ‘‘If the_dcp_create_groupprocedure returns
unsuccessfully (!= 0) then perform the_dcp_cleanup_user_createprocedure and
display the error stored in themsg variable.’’

if {[catch {_dcp_create_group $group group_created} msg] != 0 } {

_dcp_cleanup_user_create $element -principal

error $msg

}

Exceptions are a special class of error generated by thebreak, continue, andreturn
commands. You use thebreak and continue commands to terminate loops such as
while, for , and foreach, and you use thereturn command to terminate aproc or
source command.

Resulting exceptions can be hard to handle in procedures where loops exist inside (as
part of) a more comprehensive command. For instance, a user-written procedure that
searches for specific object types in CDS might invokeforeach as part of a looping
activity to test for the occurrence of particular attributes.

If you use thebreak, continue, or return commands to manage loop execution or
to manage some other nested command (likecase or if , for example), the parent
command will not be ready to catch the exception. The parent command will abort
and issue an error message as usual. However, the error is associated with the parent
command and is difficult to track to the looping command where it actually occurred.

If it is necessary to use acontinue, break , or return command to terminate a
command that has been called by another command, consider usingcatch to invoke
the nested command which, in turn, calls thecontinue, break, or return command

70 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

to recover from errors or exceptions. Used this way, thecatch command keeps the
exception within the looping or nested procedure where it is easier to track down.

foreach s [server catalog] {

if {[catch {server show $s} srv_sh_out] != 0} {

continue

}

2.14.3 Reissuing Complex Errors

The proc command lets you create procedures or commands that perform very
precise operations. For instance, a user-written procedure called_dcp_get_serversthat
retrieves and filters information about running servers could includenestedcommands
or procedures that perform various subtasks such as looping through server information
looking for certain strings. While use of nested commands or procedures lets you
develop comprehensive procedures or commands, they can also produce errors that
are difficult to pinpoint if errors are not passed along properly.

Complex scripts can use theerror command to reissue errors that have been triggered
by some previously executing part of the script. The following script fragment simply
prints out a hard-coded error message. This use also lets you custom tailor messages
to precisely explain error conditions.

set dts_cat_out [_dcp_dts_catalog]

if {[llength $dts_cat_out] == 0} {

error "Unable to find any DTS servers"

}

The next script fragment does more, usingcatch to store any error information returned
from the _dcp_create_groupprocedure in themsg variable. On failure (!= 0), the
script invokes a cleanup procedure that undoes whatever was done, and then prints
out the message stored in themsg variable.

DCE 1.2.2 Administration Guide—Core Components 71

The DCE Control Program

if {[catch {_dcp_create_group $group group_created} msg] != 0 } {

_dcp_cleanup_user_create $element -principal

error $msg

}

This discussion has provided some fairly simple error handling techniques. Note,
though, that error handling can be complicated, especially in more complex situations.
We encourage you to read more about error handling in other publications that cover
more general use of Tcl.

2.15 Working with Files

The DCE control program has several commands for use in reading from and writing
to files. Files are useful for things like storing the output ofdcecpoperations for later
reference. Here are several useful examples of file manipulation:

• You could run aserver catalog operation across all of the hosts in a cell and
store the results from each host in a host-specific file. Later, you could compare
the files to produce a report of server configurations.

• You could detect inactive accounts by running adcecp script that shows the last
time each account was logged into, storing this information in a file for later
evaluation.

• You could also modify DCE files that are not manipulated easily by using the
dcecp hostdataobject. For example, you could write a function that added a new
attribute to thecds_attributes file.

DCE as provided by OSF currently supports file operations only for UNIX systems or
for systems that support POSIX system calls. However, some vendor DCE versions
may support file operations on other systems.

72 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

2.15.1 Specifying Filenames

Specify filenames using customary UNIX rules. For instance,/opt/dcelocal/dcecp/
server_snap.dcecprefers to a file namedserver_snap.dcecpin a directory called/
opt/dcelocal/dcecp. You can also refer to files by using relative filenames, for example
~dce_admin/scripts/server_snap.dcecpand ~/admin/server_snap.dcecp. You can
print the current working directory by using thepwd command and set the current
working directory by using thecd command. The following command sets the current
directory to be~dce_admin/scripts:

dcecp> cd ~dce_admin/scripts

dcecp>

You can view a list of files in a directory by using theglob command. This command
returns a list of filenames that match pattern arguments to the command. Here is an
example:

dcecp> glob *

help local_lib.dcp

dcecp>

You can view lots of other information about files by using thefile command with
various options. Thefile commands can help select a file based on its age, its size, or
its permissions (whether it is executable, or readable, or writable by the current user).

2.15.2 Reading and Writing Files

Thedcecpcommands for reading and writing to files look and act like their C language
counterpartsfopen, fclose , and so on.

Open a file for reading and writing using theopen command. The second argument
to theopencommand (shown in the following example as+r) specifies the file access
mode. You can open files for reading, or writing, or both and you can specify whether
to replace existing files or to add to them with new information. You can also set the

DCE 1.2.2 Administration Guide—Core Components 73

The DCE Control Program

initial access position to the beginning or the end of a file. The default access mode
is read-only (the file must already exist).

dcecp> open server_snap.dcecp +r

file5

dcecp>

The open command assigns a file identifier to each file when it is opened. Use the
file identifier to refer to files in subsequent commands.

Once a file is opened, you can add lines to a file by using theputs command. Normally,
dcecpwaits until it has accumulated sufficient data before writing this information to
a file. If you wantdcecp to immediately write the information to a file, use theflush
command. Usegets to read the next line from a file or useread to read a number of
bytes or all of the bytes in a file. The following example writes a list of all principals
in a file namedprins:

dcecp> open prins w+

file8

dcecp> puts file8 [principal catalog]

dcecp> close file8

dcecp>

Sometimes, you do not want to start reading or writing at the first line of a file. The
DCE control program provides several commands that set the access position so you
do not have to advance through every line in the file. These commands will produce
an error if you use them for devices like terminals or other sequential devices that do
not support random access. Use theseekcommand to set the access point in a file.
Specify the offset as a number of bytes from the origin, which can be the beginning
or end of the file or the current position. Use a negative number to move toward the
beginning of the file, as in the following example which moves back 16 bytes from
the current access position.

dcecp> seek file5 -16 current

dcecp>

74 DCE 1.2.2 Administration Guide—Core Components

Using the DCE Control Program Command Language

You can determine the current access position by using thetell command. Save the
return value in a variable so you can go back to that position in the file later on.

Finally, you can close a file by using theclosecommand, as follows:

dcecp> close file5

dcecp>

2.16 Spawning Subprocesses

Using subprocesses to execute commands offers several convenient solutions to some
complex scripting or special administrative needs. Subprocesses can provide

• Access to operating system commands

• A way to establish synchronous, orderly execution

• Methods for streamlining complex or sophisticated scripts

2.16.1 Running Operating System Commands from a Script

Although the DCE control program is versatile, there are times when you may want
your script to use operating system commands to accomplish some simple (or even
not-so-simple) operation. Theexeccommand provides a way for scripts to perform
external commands by forking a subprocess in which the command executes. The
following example uses theexeccommand to retrieve the local host name which is
then established as ahostnamevariable and subsequently used in the script.

dcecp> set hostname [exec hostname]

myhost

dcecp> directory list /.:/hosts/$hostname -simple

cds-clerk cds-server dts-entity profile self

dcecp>

DCE 1.2.2 Administration Guide—Core Components 75

The DCE Control Program

The exec command normally returns the results of the operation performed in the
subprocess. However, you can use UNIX redirection symbols (<, <<, and >) to redirect
standard input or standard output. You can also use the | (vertical bar) to pipe the output
through filters such asnroff , sort, or grep.

When used alone, theexec command is synchronous, meaning that the external
command completes before the script continues executing. But when a subprocess
will take a long time to complete, for instance when you synchronize directories
in a CDS cell, you can use theexec command with an & (ampersand) to push a
subprocess into the background. The following example uses theexec command to
send previously collected output to a printer. This lets your script continue without
having to wait for theprint command to complete.

dcecp> exec lpr output.log &

dcecp>

76 DCE 1.2.2 Administration Guide—Core Components

Chapter 3
Writing Scripts and dcecp Objects

The DCE control program supplies a number ofobjects that offer administrative
access to each manageable component in a DCE cell. For instance, theprincipal
object lets administrators manage principal information in the DCE Security Service
registry database. Similarly, therpcgroup object lets administrators manage group
information in CDS.

Some DCE operations affect multiple components as when several operations must
be performed to add a new user to a DCE cell. To meet this need, the DCE control
program providestask objectswhich let administrators operate on multiple components
with a single operation. For instance, theuser task object performs several operations
that include creating principal information in the registry, adding the principal to an
organization and to relevant groups, creating a CDS directory for the user, and so on.
Task objects look and behave just like otherdcecp objects, implementing the same
help system used by otherdcecp objects. However, task objects are written using
the dcecp language instead of the C programming language. This makes it easy for
administrators to extend or customize existing scripts.

While the DCE control program provides task objects to handle some multicomponent
operations, variations in cell configurations and differences in the ways administrators

DCE 1.2.2 Administration Guide—Core Components 77

The DCE Control Program

manage their cells make it impractical for the supplied DCE task objects to satisfy
all the needs of every DCE cell. For instance, some cells may use DFS or GDS
components, or a cell may implement a cell directory naming scheme that differs from
the standard OSF DCE implementation. Alternatively, some DCE implementations
could have specialized administrative components, such as services or repositories,
that need distinctdcecpobjects for managing them.

To accommodate a cell’s specific needs, the DCE control program language lets
administrators create their own scripts. Administrators can also extend or modify
existing task objects or they can create new task objects to manage specialized
components in a DCE cell. This chapter provides information for extending,
modifying, or creating the following kinds of dcecp scripts:

• Informal administration scripts

• Formal task objects

3.1 Informal Administration Scripts

Informal administration scripts let administrators store multiple operations in a file
and replay them whenever necessary. Informal scripts are useful for operations that
take only one or two arguments or that just perform simple tasks. Furthermore, the
script’s precise behavior and output can be custom tailored to the needs of its author.
While informal scripts can be shared among administrators in a cell, they are typically
included just in the author’s.dcecprcfile.

Scripts generally consist of one or more procedures created with theproc command.
This lets you invoke the scripted operation by simply typing the procedure’s name at
the dcecpprompt.

The following simple script prints information about your current cell and login
identity:

Show your current login name and your current cell name.

proc _dcp_whoami {} {

global _c _u

puts stdout "You are ’$_u’ logged into ’$_c’."

78 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

}

This script can be included in your.dcecprcfile either directly or by using thesource
command and keeping the actual script in an external file. The second method lets other
administrators include your same script by simply pointing to it withsourcecommands
in their .dcecprcfiles. This method also keeps your.dcecprcfile uncluttered, making
it easier for others to understand what is going on. Alternatively, you can place the
script or a pointer in theinit.dcecp file. Changes to this file are available to all users
on a host. For more information about theinit.dcecp file and the.dcecprc file, see
Section 1.8 of Chapter 1. The following is an example of thesource command in a
.dcecprc file:

source /usr/users/wardr/dcecp/local_lib.dcp

The .dcp filename extension is a convention for naming files used by the DCE
control program. Another convention precedes procedure names with_dcp, as in
_dcp_whoami. Many dcecpprocedures adhere to this convention to distinguish their
names from user-created procedures that do not need to use this convention. If you
find procedure names like_dcp_whoamihard to remember or type, you can rename
them. For instance, you could rename the procedure towhoami by using therename
command in the.dcecprcfile, as follows:

rename _dcp_whoami whoami

Restartdcecpto pick up any changes. Now you can enterwhoami at the DCE control
program prompt, as follows:

dcecp> whoami

You are ’cell_admin’ logged into ’/.../my_cell.goodco.com’.

dcecp>

By chaining operations together, you can create scripts that do more. For example,
the following script lists all the hosts in a DCE cell. Then it checks whether each host
has an object entry in CDS for a dts-entity. (This would indicate that a DTS server is
available on the host.) For each host with an object entry for a dts-entity, the script
does aclock showoperation which returns the time on that host. The script prints the

DCE 1.2.2 Administration Guide—Core Components 79

The DCE Control Program

information on the display, formatting it for readability, and continues looping through
all the hosts in the cell until all host entries have been checked.

Make the_dcp_show_clocksprocedure available to yourdcecp session in the same
way as the simpler script described previously.

Show the time on all of the dts servers running in your cell.

proc _dcp_show_clocks {} {

set x [directory list /.:/hosts]

foreach n $x {

if {[catch {object show $n/dts-entity}] == 0} {

set index [string last "/" $n]

set y [string range $n [incr index] end]

if {[catch {clock show $n/dts-entity} msg] == 0} {

set i [expr 20 - [string length $y]]

puts [format "Time on $y is %${i}s %s" " " \

[clock show $n/dts-entity]]

} else {

set i [expr 20 - [string length $y]]

puts [format "Time on $y is %${i}s %s" " " \

"Server not responding."]

}

}

}

}

3.2 Formal Task Objects

Some DCE environments might have special administration needs that are not strictly
addressed by the standard DCE control program objects. While you could write and
distribute informal scripts to meet this administration need, you would likely need
to document their operation in some way. More importantly, though, a complicated
operation might require the use of numerous options to precisely control the script’s
behavior. Rather than invent your own mechanisms to provide help information and
handle complicated argument parsing operations, you could rely on the existing help

80 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

system and theparseargsfacility utilized by other formal task objects supplied with
dcecp. This approach makes your script consistent with otherdcecpobjects.

Formal task objects build on the idea of the informal scripts presented previously with
some important additions:

• An argument table at the beginning of the script defines operations as separate
procedures within the script. An argument table can also define available options.
A parseargsprocedure is called to parse the arguments and options passed to the
script when it is invoked.

• Help information for each operation is placed in the argument tables in the
script. Other script users can get this information by using standarddcecp help
operations.

• Extensive error control is included because you cannnot predict or control the
conditions in which the script executes.

The rest of this section shows the general structures and conventions used in a formal
task object. To aid our explanation, we use thedcecp usertask object supplied with
the DCE control program.

3.2.1 A Model for Task Objects

This section examines the parts of theuser task object that should be emulated in
other task objects that you create for use with the DCE control program. Adhering to
the basic model ensures that your task object will look and behave consistently with
other parts ofdcecp.

For efficiency and readability, the example does not include all of the procedures
contained in theuser task object. Furthermore, we have omitted some repetitive parts
of the included procedures, replacing the omitted parts with vertical ellipses in the
code examples. The entireuser task object is contained indcelocal/dcecp.

Name your object after the entity on which it operates rather than as a verb such
as "show" or "modify." DCE control program objects are named for the DCE entity
on which they operate. Primitive objects likerpcentry andprincipal objects operate
on single manageable DCE entities. Task objects operate at a higher level, generally
invoking several primitive objects to achieve their goal. The authors of the user task
object contrived a higher-level entity—auser—as a manageable object.

DCE 1.2.2 Administration Guide—Core Components 81

The DCE Control Program

The user object begins with the top levelproc command and its argument table that
defines the procedures and operations provided by theuser object. Use this syntax to
define separate procedures in this argument table:

verb command function_callprocedure_name" helptext_string"

The call to theparseargsprocedure (defined in a separate file calledparseargs.dcp)
returns the name of the internal procedure that is to be called along with its arguments.
The parseargsprocedure is explained in Section 3.2.2.

proc user - This procedure is the front end for the user task

scripts. All argument checking for the provided switches is done

in the individual functions.

#

proc user { args } {

set arg_table {

{create command function_call _dcp_create_user

"Create a DCE user" }

{delete command function_call _dcp_delete_user

"Delete a DCE user"}

{show command function_call _dcp_show_user

"Show the attributes of a DCE user"}

{help help help_list

"Print summary of command-line options and abort"}

{operations operations operation_list

"Return valid operations for command."}}

set verbose_prose

"This object allows the manipulation of a DCE user. A user is

represented as a principal and account with membership in a group and

organization as well as having a directory in the CDS namespace. A

user may be created, deleted or have attribute information returned.

The argument is a list of either relative or fully qualified principal

names. All fixed attributes of the principal and account object may be

specified when creating a user. The -force option to the create verb

allows the group or organization for that user to be created if

necessary. The user is provided a directory in the CDS namespace, with

the appropriate ACLs. Access to create a user requires the correct ACLs

82 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

on principal, group and organization directories within the registry

and the clearinghouse andusers directory in the CDS namespace."

set local_args $args

parseargs $arg_table local_args -found_one

if { [info local help_prose] > 0 } { return $help_prose }

if { [info local function_call] > 0 } {

return [$function_call local_args]

} else {

error "\"user\" object requires a verb to form a command."

}

}

The next part of the script examines a procedure that takes many options or attributes
as input: the_dcp_create_userprocedure. While this procedure relies on numerous
lower-level procedures to do the actual work of creating a user, the example begins
by showing just one of the lower-level procedures,_dcp_create_principal_entry.

Then the script continues with the_dcp_create_userprocedure. Notice that the name
of this procedure (and all lower-level procedures) begins with an underscore. That is
because the Tclinfo command is frequently used to return the names of all procedures.
This convention distinguishes these internal procedure names from procedures like
user, which are documented procedures. Furthermore, the_dcp part of the name
distinguishesdcecpprocedures from other Tcl procedures on a host.

The _dcp_create_userprocedure has an argument table defining its available options.
This argument table differs from the script’s initial argument table in that it lacks the
command keyword and thefunction_call variable that define separate procedures in
the script.

Next it initializes variables entered either as options or as attributes in a list.
A process_attribute_list procedure (at the end of the example) actually parses
attributes that have been passed as a list. Then it does the work of creating the
user information in the registry and in CDS. Near the end, the cleanup procedure
_dcp_cleanup_user_createcan undo a failed user create operation.

.

. [several low-level procedures omitted]

.

DCE 1.2.2 Administration Guide—Core Components 83

The DCE Control Program

#

This procedure creates a principal in the current registry _s(sec)

if that principal does not yet exist.

#

proc _dcp_create_principal_entry { principal_name princ_args} {

set list_of_principals [principal catalog]

if { [lsearch $list_of_principals $principal_name] == -1} {

if { [llength $princ_args] != 0 } {

principal create $principal_name -attribute $princ_args

} else

} else {

error "Principal \"$principal_name\" already exists."

}

}

#

proc _dcp_create_user - This procedure actually creates a DCE user.

Several steps are performed. If the principal does not exist

a new one is created. If the groups do not exist and a -force switch

is set, then two new groups will be added. The user will be added

to the groups. The account will then be created. An entry in the

CDS namespace will then be created with the appropriate ACLs.

#

proc _dcp_create_user { local_args } {

set arg_table {

{-alias string alias

"Add principal named as an alias of specified uid."}

{-attribute string attribute_list

"Provide attributes in an attribute list format."}

{-client string client

"Can the account principal be a client."}

{-description string descr

"A general description of the account."}

{-dupkey string dupkey

"Can the accounts’ principal have duplicate keys."}

{-expdate string expdate

"When does the account expire."}

.

. [repetitive elements omitted]

.

{-uid integer uid

84 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

"User Identifier of the principal to be added."}}

#

Initializing some variables.

#

upvar 1 local_args cargs

set local_args $cargs

set account_args ""

set princ_args ""

set group_args ""

set force 0

parseargs $arg_table local_args -no_leftovers

if { [info local help_prose] > 0 } { return }

if { [llength $local_args] > 1 } {

error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 0 } { error "No user name."

} else { set account_name $local_args }

#

If parseargs returned attributes in a list instead of options,

create an attribute list. Then call process_attribute_list to

parse the list.

#

if { [info local attribute_list] > 0} {

set pile_of_attributes "alias client descr dupkey expdate\

forwadabletkt fullname force group home organization maxtktlife\

maxtktrenew mypwd password postdatedtkt proxiabletkt pwdvalid \

renewabletkt server quota shell stdgtauth"

process_attribute_list attribute_list $pile_of_attributes

}

#

If user entered attributes as options rather than in a list,

check for attribute options.

#

if { [info local group] > 0} {

set account_args [format "%s {%s %s}" $account_args group $group]

} else { error "No group name specified." }

if { [info local organization] > 0} {

set account_args [format "%s {%s %s}" $account_args organiz \

$organization]

} else { error "No organization name specified." }

if { [info local password] > 0} {

DCE 1.2.2 Administration Guide—Core Components 85

The DCE Control Program

set account_args [format "%s {%s %s}" $account_args password \

$password]

} else { error "No password specified." }

if { [info local mypwd] > 0 } {

set account_args [format "%s {%s %s}" $account_args mypwd $mypwd]

} else { error "No admin password specified." }

#

principal and group operations both use the principal’s fullname

#

if { [info local fullname] > 0 } {

set princ_args [format "%s {%s {%s}}" $princ_args fullname \

$fullname]

set group_args [format "%s {%s {%s}}" $group_args fullname \

$fullname]

}

if { [info local uid] > 0 } {

set princ_args [format "%s {%s %s}" $princ_args uid $uid]

}

.

. [repetitive elements omitted]

.

if { [info local stdtgtauth] > 0 } {

set account_args [format "%s {%s %s}" $account_args stdtgtauth\

$stdtgtauth]

}

#

set variables if entered as attributes in an attribute list

#

set account_name [lindex $account_name 0]

set group_created 0

set org_created 0

set group_arg ""

set org_arg ""

#

do the work - create principal, do group and organization

operations, create the account, and create directory in CDS

#

foreach element $account_name {

set clup_user "_dcp_cleanup_user_create $element -principal"

_dcp_create_principal_entry $element $princ_args

86 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

if { $force == 1 } {

if {[catch {_dcp_create_group $group group_created} \

msg] != 0 } {

_dcp_cleanup_user_create $element -principal

error $msg

}

if { $group_created == 1 } {

set group_arg "-group group"

}

if {[catch {_dcp_create_org $organization org_created} \

msg] != 0 } {

set clup_user [concat $clup_user $group_arg]

eval $clup_user

error $msg

}

if { $org_created == 1 } {

set org_arg "-org organization"

}

}

set clup_user [concat $clup_user $group_arg $org_arg]

if {[catch {_dcp_add_group_entry $group $element} msg] != 0} {

eval $clup_user

error $msg

}

if {[catch {_dcp_add_org_entry $organization $element}

msg] != 0 } { eval $clup_user

error $msg

}

if {[catch {_dcp_add_account_entry $element $account_args} \

msg] != 0} {

eval $clup_user

error $msg

}

if {[catch {_dcp_add_namespace_entry $element} msg] != 0} {

eval $clup_user

error $msg

}

}

set _n $account_name

return

DCE 1.2.2 Administration Guide—Core Components 87

The DCE Control Program

}

#

_dcp_cleanup_user_create - This function undoes changes after a

failure in one of the user create functions as though the operation

never occurred

#

proc _dcp_cleanup_user_create {account_name args} {

if { [lsearch $args -principal] != -1 } {

principal delete $account_name

}

if { [lsearch $args -group] != -1 } {

upvar 1 group clean_group

group delete $clean_group

}

if { [lsearch $args -org] != -1 } {

upvar 1 organization clean_org

organization delete $clean_org

}

}

#

process_attribute_list - Takes an attribute_list and parses out the

appropriate attributes contained in the

pile_of_attributes variable

#

proc process_attribute_list {attribute_list pile_of_attributes} {

foreach element $pile_of_attributes

{ upvar 1 $element _dcp_$element }

upvar 1 attribute_list _dcp_attribute_list

set _dcp_attribute_list [check_list_list $_dcp_attribute_list]

foreach element $_dcp_attribute_list {

if { [llength $element] != 2 } {

error "Incorrect attribute list element

}

set attribute_name [lindex $element 0]

set attribute_value [lindex $element 1]

set _dcp_attr_name [info vars _dcp_$attribute_name*]

if {[llength $_dcp_attr_name] > 1} {

error

"Ambiguous attribute "\$attribute_name\" could be: $_dcp_attr_name."

}

88 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

set [set _dcp_attr_name] $attribute_value

}

}

proc check_list_list {attribute_list} {

set not_list_list 0

set i 1

foreach element $attribute_list {

if {[llength $element] != 2 && [llength $attribute_list] < 3} {

if {$i == 1} {

return [format "{%s}" $attribute_list]

}

}

incr i

}

return $attribute_list

}

The next procedure we discuss in theuser task object is one that takes a single optional
argument and returns lots of output information: the_dcp_show_userprocedure. This
procedure returns the results ofprincipal show, andaccount showoperations.

#

#_dcp_show_user - This procedure shows the principal and account

attribute lists for a specified user.

#

proc _dcp_show_user {local_args} {

upvar 1 local_args cargs

set local_args $cargs

parseargs "" local_args -no_leftovers

if { [info local help_prose] > 0 } { return }

if { [llength $local_args] > 1 } {

error "Unrecognized argument [lindex $local_args 1]."

} elseif { [llength $local_args] == 0 } { error "No user name."

} else { set account_name $local_args }

Take the first element of the account_name in order to

eliminate list nesting.

set account_name [lindex $account_name 0]

set _dcp_principals [principal catalog -simplename]

DCE 1.2.2 Administration Guide—Core Components 89

The DCE Control Program

Show each account that has been requested.

foreach element $account_name {

if { [lsearch $_dcp_principals $element] == -1 } {

error "User \"$element\" does not exist."

} else {

set _dcp_user_attributes [principal show $element]

}

set _dcp_accounts [account catalog -simplename]

if { [lsearch $_dcp_accounts $element] == -1 } {

error "User \"$element\" does not exist."

} else {

set _dcp_user_attributes [format "%s\n%s" \

$_dcp_user_attributes [account show $element -all]]

}

}

return $_dcp_user_attributes

}

3.2.2 Using the parseargs Procedure

Task objects and scripts that take arguments or options can call theparseargs
procedure to parse arguments passed along with the object or script invocation. The
parseargs procedure is a script in a separate file that provides a convenient and
reusable method for argument parsing within adcecp script. The basic syntax is

parseargsparse_optionslocal_argsargs

The procedure relies on arguments passed to it by the calling script. Theparseargs
procedure requires the following inputs:

parse_options
The argument table (arg_table) describing the parsing options. The
parse_optionsargument can consist of five elements, as in the script’s
top-level argument table, or four elements as in lower-level argument
tables for called procedures within a script. The two syntaxes for
parse_optionsare

90 DCE 1.2.2 Administration Guide—Core Components

Writing Scripts and dcecp Objects

verb command variable command_name" help string"

or

-options type variable" help string"

verb Provides top-level parsing. Typically an operation contains
an object and a verb. The verb portion generally calls
another procedure.

command A keyword indicating that the procedure being defined is
a verb of an object.

variable The name of the variable that holds the value of the option.
When parsing verbs, the variable is namedfunction call .
When parsing options, the variable is named for the option
being parsed. For example, if the option name is-alias,
the variable is namedalias.

command_name
The procedure name to store in the variable.

help string The string that describes the use of the verb or option.

-options The actual string value of the option to be parsed such as
-attribute or -mypwd.

type The type of variable to be associated with-option.
Acceptable types areinteger, string, float, boolean,
command, andhelp.

local_args The arguments to be parsed. Theparseargsprocedure extracts all of the
recognized entries into a list and resetslocal_argswith the values that
were not parsed (or not parsable). For instance, a top-level command like
user create includes options that are parsed later when the procedure
implementing thecreate operation is invoked within the script.

args One of two flags:

-found_one Tells the parser to return when one procedure argument
has been found. Inuser create , for example, the parser
would return after onecreate command had been found
and processed.

DCE 1.2.2 Administration Guide—Core Components 91

The DCE Control Program

-no_leftovers
Looks for extra options and generates an error if one is
found.

3.2.3 Invoking Task Objects

Once your task object is written (and tested), you need to make it available for use. If
your script is intended just for your personal use, you can include it in your.dcecprc
file and invoke it as described in Section 3.1.

Formal task objects require a few steps to make them behave like otherdcecpobjects.

1. Log in asroot and copy the finished script into thedcelocal/dcecpdirectory and
set the file permissions to executable.

2. Start dcecp and run theauto_mkindex utility. This creates information that
informs the DCE control program about all available objects. With root privileges,
run the following command in the directory where the task objects reside. On
UNIX systems, this is often thedcelocal/dcecpdirectory.

% dcecp

dcecp> auto_mkindex /opt/dcelocal/dcecp *.dcp

dcecp>

3. To include the new task object name in thedcecp help screen, edit the file/
opt/dcelocal/dcecp/help.dcp. This file is displayed in response to thedcecp help
operation.

You need to make this file available on each DCE host where the script will be
executed. Generally this means copying the file to each host’s/opt/dcelocal/dcecp
directory and then running theauto_mkindex utility on the files in the directory. You
might want to place the object name in the/opt/dcelocal/dcecp/help.dcpfile as well.

As a convenience, you could write a script that uses the DCE control program’s
hostdata object to create the file on each host. The script could then run the
auto_mkindex utility using the hostdata object’s postprocessor attribute. Chapter
9 contains information on using thedcecp hostdataobject.

92 DCE 1.2.2 Administration Guide—Core Components

Part 2
DCE Administration Tasks

Chapter 4
DCE Administration Task Objects

This part of theDCE 1.2.2 Administration Guide—Core Componentsdiscusses the
purpose and use of DCE administration task objects provided with DCE. Generally,
these specialdcecp objects perform routine high-level administration tasks by
combining several lower-level operations.

Often, a single task object uses or affects multiple DCE services. For example, one
of the task objects, thehost object, can configure a host computer into a DCE cell.
This task adds specific kinds of information to the DCE Security Service, the Cell
Directory Service, and the DCE host daemon services. Because a single invocation of
the host object can perform multiple steps, it shields DCE administrators from some
of the lower-level administration details that would otherwise have to be attended to
by using several lower-leveldcecp administration objects.

While we discuss the task objects at a high level, you will need to keep in mind that
there is often more going on that we are not describing in detail. In these cases, we
will point out where to go in this guide for more detailed information. Usually you will
be directed to the corresponding lower-level discussion in the relevant component’s
part of this guide.

DCE 1.2.2 Administration Guide—Core Components 95

DCE Administration Tasks

4.1 Using Task Objects to Simplify DCE
Administration

Individual DCE control program objects operate on very specific pieces of information
in DCE. For example, thegroup object operates solely on security groups in the DCE
Security Service registry database. Thegroup object enables administrators to create
and delete security groups, add and remove members from security groups, rename
the groups, and so on. Such precise control is necessary because it allows you to
custom tailor DCE to meet very specific needs or circumstances.

While such control might be necessary when configuring a new cell or fixing some
access control problem, it can overwhelm routine DCE administration tasks. As an
example, let us look at the minimum steps needed to add a new user to a DCE cell:

1. Use theprincipal object to create a principal name for the user.

2. Use thegroup object to add the principal to a security group.

3. Use theorganization object to add the principal to a security organization.

4. Use theaccount object to create an account for the principal.

5. Use thedirectory object to create a directory for the principal in CDS.

6. Use theacl object to give the principal access to the CDS directory.

Performing these six steps probably would not pose any problems in a small cell with
15 or 20 users. But consider a cell with more, perhaps a hundred or maybe even a
thousand or more users, and the need to automate this and other administration tasks
becomes evident.

To meet this administration need, the DCE control program includes several
administrationtask objectsfor performing some routine DCE administration tasks.
Here, we’re using the termtaskto mean doing something that requires multiple steps,
such as when adding a user consists of performing six lower-level operations.

One of the task objects is theuser object that you can use to add and remove user
information in your DCE environment. For instance, a single invocation of theuser
object can perform all six of the previously mentioned steps needed to correctly add a
new user to your DCE environment. You can also use this same task object to delete
the user from your environment.

96 DCE 1.2.2 Administration Guide—Core Components

DCE Administration Task Objects

The task objects are implemented asdcecpscripts by using the DCE control program
language, which means that you can extend the scripts or change their behavior
according to your needs. For instance, the default implementation of theuser task
object does not operate on any GDS or DFS information. If your DCE environment
includes these extended services, you might want to add some GDS or DFS operations
to the script. Part 1 of this guide explains how to use the DCE control program language
to write and modify adcecp task object.

4.2 Looking Beyond the Tools

Although you use the task objects to perform various administrative operations, your
most important focus is on the elements or entities that you’re managing. Each of four
task objects provided with DCE enables you to manage a specific element or entity
in your DCE cell. The elements are as follows:

A DCE cell You can test whether a cell is running, show general information about
available services in a cell, and back up security and CDS information
by using thecell task object.

Cell name You can create and manage cell alias names, which are needed for
registering a cell in multiple global directory services. These operations
use thecellalias task object.

DCE hosts You can configure and remove DCE hosts in a cell, show information
about hosts in a cell, and start and stop DCE processes on hosts in a
cell by using thehost task object.

DCE users You can add and remove users and show information about users in a
DCE cell with theuser task object.

The remaining chapters in this part discusses how to manage these DCE elements by
using the default implementations of the fourdcecp task objects provided with DCE.

DCE 1.2.2 Administration Guide—Core Components 97

Chapter 5
Managing a DCE Cell

From a cell administrator’s point of view, a DCE cell consists of a set of networked
services that supports the execution of distributed applications. This simple statement,
however, does not really say anything about what services are currently available in
your cell. In fact, the exact number of DCE servers and their locations differs from
cell to cell. Even in the same cell, host and network outages and reconfigurations
affect service availability.

Although you could use various service-relateddcecp objects to test whether and
where services are available in a cell, it would be cumbersome. Instead, the DCE
control program provides acell task object that conveniently lists configured DCE
servers and tests whether services are available. It can also back up critical data
maintained by the DCE Security Service and CDS.

DCE 1.2.2 Administration Guide—Core Components 99

DCE Administration Tasks

5.1 Showing All Configured DCE Servers and DCE
Hosts

Some DCE cells may be relatively stable, with few DCE hosts or DCE servers being
added or removed. Other cells can be quite dynamic, with hosts and DCE servers
being added, removed, or moved weekly or even daily. In this environment, tracking
the locations of DCE resources can be difficult, so thecell task object has ashow
operation that scans various databases in the cell returning the names of configured
DCE servers and DCE hosts.

One use of acell show command could be to track performance problems. For
example, maybe many new hosts and users have been added, but the number or
location of CDS or security servers has not grown accordingly. Or perhaps you’ve
just been hired to administer a new cell and you want to see what your cell consists
of.

To show configured DCE servers and hosts in a cell, enter acell showoperation. The
command returns a list of servers grouped by type, along with a list of DCE hosts, as
follows:

secservers Each value is the name of a security server.

cdsservers Each value is the name of a machine running a CDS server. The name
is the simple name found under/.:/hosts. A clearinghouse must be
configured on that machine.

dtsservers Each value is the name of a DTS server in the cell.

hosts Each value is the name of a host in the cell, including machines
mentioned previously as servers. This is simply the return value of a
directory list /.:/hosts operation.

The following example shows the names of all the configured DCE servers and hosts
in the local cell:

dcecp> cell show

{secservers

/.../my_cell.goodco.com/subsys/dce/sec/earth}

{cdsservers

/.../my_cell.goodco.com/hosts/earth}

100 DCE 1.2.2 Administration Guide—Core Components

Managing a DCE Cell

{dtsservers

/.../my_cell.goodco.com/hosts/krypton}

{hosts

/.../my_cell.goodco.com/hosts/earth

/.../my_cell.goodco.com/hosts/jupiter

/.../my_cell.goodco.com/hosts/krypton

/.../my_cell.goodco.com/hosts/mars

/.../my_cell.goodco.com/hosts/mercury

/.../my_cell.goodco.com/hosts/neptune

/.../my_cell.goodco.com/hosts/pluto

/.../my_cell.goodco.com/hosts/saturn

/.../my_cell.goodco.com/hosts/uranus

/.../my_cell.goodco.com/hosts/venus}

dcecp>

If you have the necessary permission, you can show the configured DCE servers and
hosts in another cell by including that cell’s name as an argument as shown in the
following example:

dcecp> cell show /.../their_cell.goodco.com

{secservers

/.../their_cell.goodco.com/subsys/dce/sec/gold}

{cdsserver

/.../their_cell.goodco.com/gold}

{dtsservers

/.../their_cell.goodco.com/hosts/silver/dts-entity}

{hosts

/.../their_cell.goodco.com/hosts/brass

/.../their_cell.goodco.com/hosts/bronze

/.../their_cell.goodco.com/hosts/copper

/.../their_cell.goodco.com/hosts/gold

/.../their_cell.goodco.com/hosts/iron

/.../their_cell.goodco.com/hosts/mercury

/.../their_cell.goodco.com/hosts/silver

/.../their_cell.goodco.com/hosts/steel

/.../their_cell.goodco.com/hosts/tin}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 101

DCE Administration Tasks

5.2 Testing Cell Operation

When client-server communication problems occur, it is easy to suspect that one or
more DCE services is not operating in the cell. You can easily test whether a cell’s
DCE services are running by invoking acell ping operation.

If called with no option, thecell ping operation performs aserver ping operation on
the master security server, on the CDS server that has a master clearinghouse, and all
the DTS servers in the cell. Use the-replicas option to test CDS and security service
replicas as well as the masters. The-clients option tests every DCE host in the cell
by looping though the/.:/hosts directory in CDS and performing ahost ping, with
each host name as an argument.

In case of failure, the operation generates an error and returns a list of servers or hosts
that could not be contacted. For any successes, the operation returns the message
DCE Services Available. For successes with the-clients option, the message isDCE
Clients Available.

The following example pings the names of all the configured master DCE servers in
the local cell:

dcecp> cell ping

DCE services available

dcecp>

The following example pings the names of all the configured DCE hosts in the local
cell. Depending on the size of a cell and timeout values set, this command can take
a long time (from several to many minutes) to complete.

dcecp> cell ping -clients

DCE clients available

dcecp>

If you have the necessary permission, you can ping the configured DCE servers and
hosts in another cell by including that cell’s name as an argument as shown in the
following example:

102 DCE 1.2.2 Administration Guide—Core Components

Managing a DCE Cell

dcecp> cell ping /.../their_cell.goodco.com

DCE services available

dcecp>

5.3 Backing Up the Security Service Registry and
CDS

As organizations increasingly depend on DCE cells for their day-to-day operations,
they cannot afford to lose the cell’s directory and security data. Organizations generally
rely on regular backup schemes to prevent the loss of this and other critical data.
But backing up these DCE databases by using traditional backup methods can cause
security holes in your cell if the archives are not properly protected.

Fortunately, DCE includes features that let you back up these essential databases to
destinations of your choosing. Once you’ve begun using the DCE mechanism to back
up CDS and security data, you can redirect your traditional backup program to ignore
these DCE databases.

The cell backup operation backs up the master security database and each
clearinghouse with master replicas in the cell. This operation requires that adced
program is running on each of the server hosts being backed up.

Prepare a cell for regular backup operations by setting up an Extended Registry
Attribute (ERA) that can specify a backup destination (typically a tape archive). Then
add the new attribute to the principals for the master DCE Security Service registry
database and all CDS clearinghouses with master replicas that you want to back up.
To do this, follow these steps:

1. Put the DCE daemon into partial service mode by sending thedced process the
correct signal:

kill -SIGUSR1 pid_of_dced

#

2. Invokedcecp with the -local option:

DCE 1.2.2 Administration Guide—Core Components 103

DCE Administration Tasks

% dcecp -local

dcecp>

3. Modify ACLs on the localhostdata and srvrconf objects to allow thesubsys/
dce/dced-admingroup access by using the followingdcecp acloperations:

dcecp> acl modify hostdata -add {group subsys/dce/dced-admin -riI} -local

dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -riI} -local

dcecp> acl modify srvrconf -add {group subsys/dce/dced-admin -d-rwx} -io -local

dcecp>

4. Put the DCE daemon back into full service mode with the following command:

% kill -SIGUSR1 pid_of_dced

%

5. Create an ERA as a string that specifies a backup destination. Name the ERA/
.:/sec/xattrschema/bckp_destand the typeprintstring . Select the ACL manager
namedprincipal and set its four permission bits tor (read), m (manage), r
(read), andD (Delete) as shown in the following command:

dcecp> xattrschema create /.:/sec/xattrschema/bckp_dest \

> -encoding printstring -aclmgr {principal r m r D}

dcecp>

6. Add the new ERA (bckp_dest) to the principaldce-rgy (the DCE Security Service
registry database). Set the value to be thetar filename or the device that is the
backup destination:

dcecp> principal modify dce-rgy -add {bckp_dest tarfilename_or_device}

dcecp>

104 DCE 1.2.2 Administration Guide—Core Components

Managing a DCE Cell

7. Add the new ERA (bckp_dest) to the principal/.:/hosts/hostname/cds-server(the
CDS server). Set the value to be thetar filename or the device that is the backup
destination:

dcecp> principal modify /.:/hosts/hostname/cds-server \

> -add {bckp_dest tarfilename_or_device}

dcecp>

Now, whenever you want to back up your registry database or CDS database, just
invoke acell backup operation as follows:

dcecp> cell backup

dcecp>

You can back up another cell by including the cell name as an argument to thecell
backup operation. Note that you need the necessary permissions in the remote cell.
(Refer to thecell(8dce)reference page for the required privileges.)

5.4 Modifying or Extending the Cell Object

The cell task object is implemented as a script so that administrators can modify or
extend it on a per-site basis. Here are a few examples of possible modifications or
extensions you can make:

• Add a way to show GDS or DFS server information.

• Add options to thecell showoperation to omit listing all the hosts in a cell or to
show only certain DCE servers.

• Add a command to configure a new cell. Such a command could perform the
lower-level operations currently performed by theCONFIGURE selection in the
DCE Installation and Configuration main menu of thedce_configprogram.

Part 1 of this guide discusses ways to create newdcecp objects or modify existing
objects written with thedcecp language.

DCE 1.2.2 Administration Guide—Core Components 105

Chapter 6
Managing Your Cell Name

Although cell names tend to be stable, at times you may want to create and display
alternative names for cells. Cell aliases can be managed by thecellalias task object.
You can create multiple aliases for a single cell, but only one percellalias command.

When you create an alias, thecellalias task object forms a new principal (to represent
the cell alias) in the registry, verifies the registry to make sure the cell’s Security
replicas are current, creates an alias name in CDS and updates each CDS replica. The
cellalias task object also performs ahostdata operation on each host in the cell for
which you are creating the alias. All dced objects, as well as thedcelocal/dce_cf.db
and dcelocal/etc/security/pe_sitefiles, are updated to reflect the new alias name. If
your cell contains many hosts, this action can take a long time to complete.

6.1 Registering in Multiple Global Directory Services

You can make your cell resources available to users or applications in other DCE
cells by registering your cell in a global directory service such as DNS (Domain Name
System) or GDS (an X.500 global directory service). Once your cell is registered, users

DCE 1.2.2 Administration Guide—Core Components 107

DCE Administration Tasks

in remote cells can access your cell’s resources (provided they have the necessary
permissions) by using global names. The following example shows a global DNS
name identifying an ASCII line printer in a cell managed by the fictitious Goodco
company:

/.../sales.goodco.com/subsys/bldg6/resources/floor2/printer_ascii

But let us say you also want to register your cell in GDS so that foreign cells that
have access to only an X.500 global directory service can access your cell’s resources.
Now, your cell needs a second X.500-style name and, for this, you must establish an
alias such as the following:

/.../C=us/O=goodco/OU=sales

Use acellalias createoperation to create a second name for your cell. This operation
creates a new cell principal in the registry service and performs aregistry verify
operation to ensure that all the replicas are up-to-date. Next, it creates a cell alias
name in CDS by using thecdsaliasobject. Finally, it performs ahostdata operation
on each host in the cell, updating eachdcelocal /dce_cf.db file and dcelocal/etc/
security/pe_sitefile with the cell alias name. This last step can take a long time to
complete in a cell with many hosts.

The following creates the cell alias name/.../C=us/O=goodco/OU=sales:

dcecp> cellalias create /.../C=us/O=goodco/OU=sales

dcecp>

Once you have completed this operation, you can register your cell name with the
authority responsible for the particular global service.

108 DCE 1.2.2 Administration Guide—Core Components

Managing Your Cell Name

6.2 Modifying or Extending the cellalias Object

The cellalias task object is implemented as a script so that administrators can modify
or extend it on a per-site basis. Here are a few examples of possible modifications or
extensions you can make:

• Extend the script to create hierarchical cells. Chapter 21 describes the procedure
to create a hierarchy of cells.

• Add a -verboseoption to display the results of each step as it completes.

Part 1 of this guide discusses ways to create newdcecp objects or modify existing
objects written with thedcecp language.

DCE 1.2.2 Administration Guide—Core Components 109

Chapter 7
Managing DCE Hosts

Larger DCE cells can contain many host computers, with some running both DCE
servers and application servers while others act only as client systems. Still other
hosts might run application servers but also act as clients to their resident users. Such
flexibility in DCE host configurations can make it difficult to control or track what is
running or available on each host in a cell. Thehost task object represents DCE and
application processes associated with hosts, letting administrators more easily manage
DCE server and application processes on machines.

You can use thehost task object to show information about processes on local and
remote hosts in a cell, and start and stop DCE processes on hosts throughout a cell.
You can also configure local DCE hosts in a cell and remove (unconfigure) remote
DCE hosts from a cell. Online help for this object is available using thehost help
andhost operationscommands indcecp.

All of the host object operations performed on a remote host excepthost catalog
requiredced to be running on the remote host.

DCE 1.2.2 Administration Guide—Core Components 111

DCE Administration Tasks

7.1 Listing the DCE Hosts in a Cell

You can determine the number and names of DCE hosts configured in your DCE cell
by using thehost catalogoperation. This operation might be useful for determining
whether a specific host has already been configured into your cell. The host does
not have to be running for this operation to work because thehost catalogoperation
actually performs adirectory list /.:/hosts operation and does not interact with the
host. This method relies on the convention that hosts register their names in the/.:/
hostsdirectory. If your hosts register in some other directory, you need to modify the
host catalogoperation in thehost task object. You can read more about the purpose
and use of CDS directories in Chapter 18.

The host catalogoperation resembles thecell showoperation except that it does not
separately list DCE servers. The following example operation lists all DCE hosts that
have been configured in the cell:

dcecp> host catalog

/.../my_cell.goodco.com/hosts/bigbox

/.../my_cell.goodco.com/hosts/drifter

/.../my_cell.goodco.com/hosts/duh

/.../my_cell.goodco.com/hosts/heater

/.../my_cell.goodco.com/hosts/pc1

/.../my_cell.goodco.com/hosts/pc2

/.../my_cell.goodco.com/hosts/pc3

/.../my_cell.goodco.com/hosts/peewee

/.../my_cell.goodco.com/hosts/xoltar

/.../my_cell.goodco.com/hosts/xray

/.../my_cell.goodco.com/hosts/zoof

dcecp>

You can omit the cell name by using the-simplename option as in the following
example:

dcecp> host catalog -simplename

hosts/bigbox

hosts/drifter

hosts/duh

112 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Hosts

hosts/heater

hosts/pc1

hosts/pc2

hosts/pc3

hosts/peewee

hosts/xoltar

hosts/xray

hosts/zoof

dcecp>

7.2 Showing All Servers Configured for a DCE Host

In larger cells, in which DCE servers and application servers reside on multiple hosts,
you will likely want to see what servers are configured to run on particular hosts from
time to time. The DCE control program’shost showoperation reads a DCE host’s
server configuration and execution information and returns a list of configured servers
on that host. The list contains each server’s simple name and indicates whether it is
running. The list also indicates whether a security server is a master or replica and
whether a DTS entity is a clerk or server.

This operation relies on theserver object (and consequently on the DCE host daemon)
to show information about configured servers. You can read more about controlling
server operation in Chapter 10.

The following example shows the servers configured to run on DCE hostxoltar :

dcecp> host show /.:/hosts/xoltar

video_clip running

dts-entity running clerk

dcecp>

DCE 1.2.2 Administration Guide—Core Components 113

DCE Administration Tasks

7.3 Testing Whether a DCE Host is Running

Because DCE communications often involve several steps before clients communicate
with their servers, communication failures can be difficult to diagnose. For instance, a
server may not be running on a host or the DCE services may not be currently running,
even though the host has been configured into the cell. You can use aserver ping
operation to test whether a server process is running but, if this fails, you might need
a way to see if the DCE host is even accessible through the network. The DCE control
program’shost ping operation tests whether a host’s DCE services are accessible on
the network, returning a1 if it is and a0 if it is not accessible.

The host ping operation tests for the presence of the remote host’s DCE daemon
(dced). You can read more about the purpose and use ofdced in Chapter 9.

The following example tests whetherdced on hostduh is accessible on the network:

dcecp> host ping /.:/hosts/duh

1

dcecp>

7.4 Starting Configured DCE Processes on a Host

Each host’s DCE daemon (dced) can maintain configuration information for servers set
to run on that particular host. This information is established using an application’s
installation script or by using theserver object directly. While theserver object
provides its ownstart operation that can start individual servers on a host, you must
explicitly name each server. Thehost start operation lets you start all configured
DCE servers and clients and all configured application servers on a host with a single
command.

To operate on a remote host, its DCE daemon must be running. Remotehost start
operations also require at least one CDS server and one security server to be running
in the cell. Thehost start operation operates on DCE servers and clients and on
application servers that are configured by using theserver object.

114 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Hosts

Application servers must be configured with thestarton attribute set toboot or
explicit. You can read more about configuring application servers in Chapter 10.

The following example starts all configured servers on hostbigbox:

dcecp> host start /.:/hosts/bigbox

dcecp>

7.5 Stopping DCE Processes Running on a Host

Like thehost start operation discussed in the previous section, thehost stopoperation
is more encompassing than aserver stopoperation. It lets you stop all DCE processes
on a host with a single command rather than issue a separateserver stopoperation for
each server. This operation stops application servers, then DCE processes and finally,
when stopping DCE processes on the local machine, stopsdced. You can read more
about controlling servers in Chapter 10.

To operate on a remote host, its DCE daemon must be running. Remotehost stop
operations also require at least one CDS server and one security server to be running
in the cell. Thehost stop operation operates on DCE servers and clients and on
application servers that have been configured by using theserver object.

The following example stops all DCE processes and application servers on host
bigbox:

dcecp> host stop /.:/hosts/bigbox

dcecp>

7.6 Configuring a DCE Host in a Cell

Once DCE Version 1.1 software has been installed on a host, you can configure the
local host as a DCE client machine by using ahost configureoperation. You must have

DCE 1.2.2 Administration Guide—Core Components 115

DCE Administration Tasks

root or system administrator privileges on the local host to execute ahost configure
operation.

You can read more about requirements for DCE server and client systems in theDCE
1.2.2 Administration Guide—Introduction.

Note that you cannot configure DCE servers such as a DCE Security Service registry
or a CDS server by using ahost configureoperation. Instead, use the DCE Installation
and Configuration program to configure DCE servers in your cell.

Before configuring a DCE client system, be sure the DCE software has been installed
on the host. For information about installing DCE, refer to your DCE installation
instructions or theDCE 1.2.2 Administration Guide—Introduction.

To configure a DCE client system, perform the following steps:

1. Log into a privileged account (root or system administrator) on the host to be
configured.

2. Start the DCE control program and perform ahost configure -client operation.
Include an argument specifying the cell-relative name of the local host being
configured. The operation adds this name to CDS. Use required options to specify
the host names where the master security server and a CDS server are running.
Other required options are-administrator , which specifies the principal name of
the person configuring the host (usually the cell administrator), and-password
followed by the administrator’s password.

The following example shows configuring hostptarmigan as a DCE client
system. The cell’s security server is on hosteagleand the CDS server is on host
owl. The administrator’s principal name iscell_admin and the administrator’s
password is−dce-.

dcecp> host configure /.:/hosts/ptarmigan -client -secmaster eagle \

>-cds owl -administrator cell_admin -password -dce-

dcecp>

116 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Hosts

7.7 Removing a DCE Host from a Cell

Occasionally, you might want to remove a DCE host from a cell. For instance,
your organization is replacing some older systems that are being sold to another
organization.

Removing or unconfiguring a DCE host is more than just erasing DCE information
from the host’s disk because CDS and the DCE Security Service both maintain host-
specific information that needs to be removed as well. Thehost unconfigureoperation
deletes all objects, directories, and links from the/.:/hosts/hostnameCDS directory
including the directory itself. It also deletes all principal names beginning withhosts/
hostname/ which, in turn, removes all accounts with the same name. Finally, it
removes all local configuration files and stops all running DCE processes ending with
the DCE daemon (dced).

The host unconfigure operation operates only on remote hosts. You cannot perform
this operation on a local host because it removes the DCE Security Service
registry information needed to complete the operation. Also note that you need cell
administrator privileges to perform ahost unconfigureoperation.

To remove a remote DCE host from a cell, use ahost unconfigureoperation providing
the host name of the host to be unconfigured. The following example removes host
calypso from the cell:

dcecp> host unconfigure /.:/hosts/calypso

dcecp>

If you have cell administrator privileges in a foreign cell, you can remove a
remote DCE host from that cell by supplying a global DCE name of the host to
be unconfigured. The following example removes hostgobo from foreign cell /.../
their_cell.goodco.com:

dcecp> host unconfigure /.../their_cell.goodco.com/hosts/gobo

dcecp>

DCE 1.2.2 Administration Guide—Core Components 117

DCE Administration Tasks

7.8 Modifying or Extending the Host Object

The host task object is implemented as a script so that administrators can modify or
extend it on a per-site basis. For example, administrators might want to add GDS and
DFS information to the object. You could also add calls to specialized commands to
start or stop application servers. For instance aprinter stop operation could be useful.

Part 1 of this guide discusses ways to create newdcecp objects or modify existing
objects written with thedcecp language.

118 DCE 1.2.2 Administration Guide—Core Components

Chapter 8
Managing DCE Users

One of the most frequent DCE administration tasks is likely to be managing users
in your DCE environment. Corporate reorganizations, changing business needs, and
fluctuating economics all exert pressures causing users to come and go or to move
between various groups or organizations.

DCE users represent a big part of what DCE is designed to support; the DCE services
authenticate and admit some while denying access to those who are unauthorized.
Indeed, users have complex management requirements; their information is spread
among multiple services that help validate and control their activities. User information
includes principal names, group and organization information, account information,
and information in CDS.

The DCE control program includes separate administration objects for managing each
piece of user information in a DCE cell. While these separate objects might be very
useful for making minor adjustments to certain user information, their constant use
for repetitive tasks such as adding and removing users from a cell would prove quite
tedious. A simpler method relies on theuser task object that you can use to more
easily create, delete, and show user information in a DCE cell. Online help for this
object is available using theuser help anduser operationscommands indcecp.

DCE 1.2.2 Administration Guide—Core Components 119

DCE Administration Tasks

8.1 Creating a New User

Eachuser in a DCE environment is a person with a unique identity (principal name).
Each principal is a member of at least one security group and organization and has
an account in the DCE Security Service registry database. Although it is not required,
each principal can also have a directory in CDS.

When you create a user with theuser task object, you perform several lower-level
operations:

1. Theuser createoperation creates a new principal name and adds the principal to
a security group and organization. If the security group or organization does not
exist when you invoke the operation, you can force their creation by using the
-force option. The principal attributes assume default values, but you can specify
other attributes if necessary. All of the attributes are listed in theuser(8dce)
reference page.

Typically, a security group’s name is included in access control lists (ACLs) that
regulate user access to various server and data objects in the DCE environment.
A security organization maintains policies that are applied to all the principals
that are members of that organization. Policies control things like the lifespan
of accounts, whether or when account passwords expire, or whether passwords
can contain nonalphanumeric characters. You can read more about administering
principals, groups, and organizations in Chapter 30.

2. The user create operation creates an account for the principal and creates the
user’s password. The account attributes assume default values but you can specify
other attributes if necessary. All of the attributes are listed in theuser(8dce)
reference page.

A principal’s account contains information about the principal such as group and
organization names, account creation and expiration information, and information
about tickets (which identify principals to resources in a DCE environment). You
can read more about administering accounts in Chapter 31.

3. Finally, theuser createoperation adds a directory called/.:/users/principalname
to CDS. This directory can store user-specific application location information.
The operation also adds an ACL entry to the default ACL which gives the user
rwtci permissions on the directory. These permissions allow users to insert objects
and links, but they cannot delete the directory or administer replication on the
directory. Furthermore, users cannot create additional directories unless you give
themw (write) access to the clearinghouse. You can read more about the purpose

120 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Users

and use of CDS directories in Chapter 18. You can read more about ACLs and
CDS directories in Chapter 16.

You generally need numerous permissions to create new users in your DCE cell, so
you should log into the cell administrator’s account (or a similar privileged account).
The user(8dce)reference page lists the required permissions.

To create a new user in a DCE cell, invoke auser createoperation. The following
example creates a principal nameP_Pestanaand an account with the same name.
The create operation requires your password to prevent someone else from using
an unattended session to create an unauthorized account. You must also provide
the -password option to specify a password for the user. The required-group and
-organization options add principalP_Pestanato the named group and organization.
The optional-fullname option creates a fullname to help other human users recognize
the principal.

dcecp> user create P_Pestana -fullname {Patricia Pestana} \

>-mypwd mxyzptlk -password change.me -group users \

>-organization managers

dcecp>

You can create multiple users by specifying a list of user names as an argument to the
user createoperation. This method poses some limitations, however. All created users
will have the same initial password, group name, and organization name. Furthermore,
you cannot specify theuid attribute since this is unique for each user. The following
example creates several users with a passwordchange.me, a group name ofusers,
and an organization namedstaff:

dcecp> user create {R_Lee B_Joy N_Lynn D_Dee} -mypwd mxyzptlk \

>-password change.me -group users -organization staff

dcecp>

DCE 1.2.2 Administration Guide—Core Components 121

DCE Administration Tasks

8.2 Showing User Information

Sometimes you might want to view the attributes for a user. For instance, you might
want to see the expiration date for one or more accounts or view the fullname of a
principal.

The user showcommand returns the attributes associated with users that are included
as arguments to the command. The attributes include principal attributes and ERAs,
and account attributes and policies. The information is returned as if the following
commands were run in the following order:

• principal show

• account show -all

The following command displays the principal and account attributes associated with
userP_Pestana:

dcecp> user show P_Pestana

{fullname {Pat Pestana}}

{uid 5139}

{uuid 00001413-ad4f-21cd-8c00-0000c08adf56}

{alias no}

{quota unlimited}

{groups users}

{acctvalid yes}

{client yes}

{created /.../my_cell.goodco.com/cell_admin \

1994-08-01-16:41:32.000+00:00I-----}

{description {}}

{dupkey no}

{expdate none}

{forwardabletkt yes}

{goodsince 1994-08-01-16:41:32.000+00:00I-----}

{group users}

{home /}

{lastchange /.../my_cell.goodco.com/cell_admin \

1994-08-01-16:41:32.000+00:00I-----}

122 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Users

{organization managers}

{postdatedtkt no}

{proxiabletkt no}

{pwdvalid yes}

{renewabletkt yes}

{server yes}

{shell {}}

{stdtgtauth yes}

nopolicy

dcecp>

You can show information about multiple users by specifying a list of user names as
an argument to theuser createoperation.

8.3 Deleting a User

When users leave your organization, you might need to delete the user from the cell.
Use theuser deletecommand to do this. This operation removes the principal name
from the registry which, in turn, deletes the account and removes the principal from
any groups and organizations. The operation also deletes the/.:/users/principalname
directory and any contents from CDS.

You need numerous permissions, such as those generally associated with cell
administrator, to delete a user. See theuser(8dce)reference page.

The following example operation removes userP_Pestanafrom the cell:

dcecp> user delete P_Pestana

dcecp>

You can remove multiple users from your cell by specifying a list of user names as
an argument to theuser deleteoperation, as follows:

DCE 1.2.2 Administration Guide—Core Components 123

DCE Administration Tasks

dcecp> user delete {W_Rosenberry J_Hunter P_Pestana}

dcecp>

If you have permissions in a foreign cell, you can remove one or more users from that
cell by specifying the global principal name of the users to be deleted. For example:

dcecp> user delete /.../their_cell.goodco.com/J_Jones

dcecp>

8.4 Modifying or Extending the User Object

The user task object is implemented as a script so that administrators can modify or
extend it on a per-site basis. For example, administrators might want to add GDS and
DFS information to the object. Other possible modifications include the following:

• Changing the location of the CDS directory created for users, or removing it
completely.

• Changing the default ACLs placed on the various objects.

• Adding an option to give users write access to the clearinghouse where the master
replica of the/.:/users/usernamedirectory resides. This allows users to create
their own subdirectories. The option could add individual principal names to the
clearinghouse ACL. An easier method could add principals to a group that has
write access to the clearinghouse.

• Setting certain attributes or policies on all newly created principals and accounts
to match the site’s policies. For example, you could set principals to have a
pwd_val_type ERA and set accounts to generate random passwords.

• Setting up site-specific defaults for passwords (to be changed by the user later),
groups, organizations, principal directories, and so on.

• Supporting auser modify command. Such a command could change group or
organization information or some other attributes associated with users.

Part 1 of this guide discusses ways to create newdcecp objects or modify existing
objects written with thedcecp language.

124 DCE 1.2.2 Administration Guide—Core Components

Part 3
DCE Host and Application
Administration

Chapter 9
Managing DCE Host Services and
Host Data

Some services like DTS, CDS, and the DCE Security Service registry, which produce
or maintain cell-wide information, are centralized. Although the services they provide
are available throughout a cell, the servers themselves typically reside on just a few
selected hosts in a cell.

Other DCE services are pervasive; that is, they reside on every host in a DCE cell.
The DCE software that runs on every DCE host provides essential services that enable
local client and server programs to interact with remote client and server programs in
a reliable and secure way. Consequently, each host in a DCE cell has administrative
aspects which are discussed in the first part of this chapter.

Each DCE host maintains local data that is essential to host operation in a DCE
environment. Occasionally, you may find it necessary to modify parts of this data as
your cell configuration changes, or as you add DCE capabilities or DCE applications.
The second part of this chapter discusses how to use the DCE control program to gain
remote, authenticated access to this data.

DCE 1.2.2 Administration Guide—Core Components 127

DCE Host and Application Administration

When DCE operations do not succeed for some reason, you want to inform the right
people about what happened. DCE’s serviceability messaging facility lets you route
error messages based on the severity level of the message. The last part of this chapter
explains how to manage this facility.

9.1 DCE Host Services

Some DCE host services such as the runtime libraries are inert and require no
administration once DCE has been configured on a host. But other services are active
programs. One such active service is theendpoint mapperwhich acts as a lookup
service on a host. The endpoint mapper lists server communication ports (called
endpoints) in the host’sendpoint map. Remote clients looking for particular servers
query the endpoint mapper which returns information contained in the endpoint map.
The endpoint mapper, along with other active services, are contained in a single
program called theDCE host daemonor dced. Typically, once a host has been
configured with DCE software, the host booting process starts thedcedprocess along
with other daemons or processes. Occasionally however, you may need to manually
start or restart this daemon.

The dced program comprises a set of DCE host services that satisfies many needs of
DCE client and server applications on a host system:

• The endpoint mapper service acts as a directory of servers running on a host.
Clients can acquire a registered server’s communication endpoint by looking in
the host endpoint map.

• A security validation service manages DCE security on the local host.

• A server configuration and execution service lets administrators remotely set
servers’ starting and stopping conditions, explicitly start and stop individual
servers, and monitor running servers’ states.

• A key management service lets administrators manage server passwords remotely.

• A hostdata service lets administrators remotely manage data stored in files on a
host. Administrators will find this most useful for remotely managing a host’s cell
name and cell alias information.

• An attribute schema capability lets administrators add new attributes to server
configuration information.

128 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

Normally, any system that hosts a DCE server (such as a DCE cell directory server)
or that runs a DCE-based application server or client that uses authentication, must
also run thedced process.

It is clear that if thedced process failed for some reason, it would take all of its
component services down along with it, leaving the host unable to respond to client
requests. Similarly, a failure of one of the component services (for example the key
management service) might be caused by thedced process unexpectedly exiting for
some reason. This relationship betweendced and its component services is worth
remembering if problems occur.

9.2 Starting and Stopping DCE Host Services

Although the dced process generally starts as part of the host booting process,
sometimes you may need to start the process manually.

Before starting dced, any underlying network services on which client/server
communication depends must be available; on most UNIX systems, for example,
network interfaces and routing services must be enabled. Once these transport-layer
services are established, you can startdced. After dcedstarts, RPC-based servers can
start.

The endpoint mapper listens on privileged or reserved communication ports (well-
known endpoints) for client requests for service. Consequently,dced must be started
as a privileged user.

Part ofdced (the endpoint map) contains information that clients use to locate servers
on a host system. Thedced process maintains a copy of this information in a
database file nameddcelocal/var/dced/Ep.db so it will not be lost if you stop and
then restartdced for some reason. Another database file calleddcelocal /var/dced/
Srvrexec.db maintains information about servers (such as each server’s process ID)
that are currently running on the host. The information in both of these databases
becomes obsolete when a system reboots because most servers get different endpoints
and different process IDs each time they start.

You can configuredced to start each time a host boots. In some cases, thedcelocal/
etc/rc.dcefile is linked to or copied to/etc/rc.dce. This way,dced is invoked when
other daemons are started. Thedcelocal/etc/rc.dcefile is also responsible for deleting

DCE 1.2.2 Administration Guide—Core Components 129

DCE Host and Application Administration

the Srvrexec.db and Ep.db database files before startingdced. If your system does
not automatically delete these files, you will have to manually delete them before
startingdced.

While you normally do not need to startdced in a shell, if you ever need to do so,
log in asroot and enter the following command:

dcelocal/bin/dced

By default,dced listens on one endpoint for each transport that is supported by the
host on which it is running. That is, if a host supports both TCP/IP and UDP/IP
transports,dced will listen on one TCP and one UDP socket for client requests. An
optionalprotseqargument lets you limit the transports thatdced uses to the ones you
specify. Intended as a debugging capability, this feature should be used with care;
if you limit transports, clients will not be able to locate servers over the excluded
transports, and servers will not be able to register themselves in the endpoint map by
using the excluded transports. For information about the optionalprotseqargument,
see thedced(8dce)reference page.

If the DCE daemon stops or exits unexpectedly, you can restart it. The restarteddced
process doesnot lose any previously registered server bindings. It simply loads the
information from theEp.db andSrvrexec.dbfiles. As a rule, stopping and restarting
dced is not recommended because it also stops the security validation service.

Although you should run the host services on all hosts where DCE client or server
applications run, there are some situations where you can avoid running them:

• DCE clients that do not perform authentication

• DCE servers that do not perform authentication and that do not use the endpoint
mapper or other active DCE host services

Once you’ve started the DCE host services, you can perform all DCE host and server
administration tasks by using the DCE control program,dcecp. The control program
offers secure, remote access to host and server administrative functions, which means
you can manage all of your DCE hosts without having to log into each host. Part 1
of this book explained how to usedcecp in interactive mode as well as how to write
dcecp scripts to manage DCE activities. You should be acquainted with those basics
before performing administrative tasks explained in this chapter or elsewhere in this
document.

130 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

9.3 Managing Host Data

Each host in a DCE cell maintains local data that is essential for operating in a DCE
environment. For instance, each host’s DCE identity relies on certain data items that
specify the host’s host name, cell name, and any cell aliases. Currently, these data
items are stored in a local file calleddcelocal/dce_cf.db. These and other data items
can be modified remotely using the DCE control program’shostdata object.

The hostdata object has a much broader application, too; administrators will find it
extremely useful for accessing general data and files on remote hosts using secure and
platform-independent methods. The last part of this chapter examines this powerful
access method.

9.3.1 Permissions for Accessing Host Data

Access control lists (ACLs) prevent unauthorized principals from creating, changing,
or deleting hostdata information. Two types of ACLs protect hostdata information.
One type of ACL protects the container in which the hostdata items reside. A second
type protects each individual hostdata item.

This section shows how to manage ACLs that protect hostdata information. For
detailed information about setting and using ACL protections, see Chapter 28.

9.3.1.1 Permissions for the Hostdata Container

In DCE, the hostdata items reside in acontainer which is really a backing storage
mechanism maintained bydced. On UNIX systems this is usually a file calleddcelocal
/var/dced/Hostdata.db. The file is owned by root and its access viadced is protected
by an ACL. These ACL permissions control who can access the data in the container.
Each DCE host has one hostdata Container ACL with the following name:

/.../cellname/hosts/hostname/config/hostdata

The hostdata Container ACL has the following permissions:

DCE 1.2.2 Administration Guide—Core Components 131

DCE Host and Application Administration

c (control) Modify the Container ACL.

r (read) Read the list of hostdata items in the container.

i (insert) Create new hostdata items.

I (Insert) Although theI permission is present, it does not apply to hostdata items.
The permission applies to server control facilities, which are explained
in Chapter 10.

Use thedcecpaclobject to view or modify ACLs. For example, use the following
operation to view the ACL for the hostdata container object on hostsilver:

dcecp> acl show /.:/hosts/silver/config/hostdata

{user hosts/silver/self criI}

{unauthenticated r}

{any_other r}

dcecp>

9.3.1.2 Permissions for the Hostdata Items

Each of the following host identity data items is protected by an ACL:

/.../cellname/hosts/hostname/config/hostdata/host_name

/.../cellname/hosts/hostname/config/hostdata/cell_name

/.../cellname/hosts/hostname/config/hostdata/cell_aliases

/.../cellname/hosts/hostname/config/hostdata/post_processors

Each ACL can have the following permissions:

c (control) Modify the ACL

d (delete) Delete the item

p (purge) Delete the backing storage for an item

r (read) Read an item’s data

w (write) Modify an item’s data

132 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

Use theacl object to view or modify ACLs. For example, use the following operation
to view the ACL for thecell_aliaseshostdata item on hostsilver:

dcecp> acl show /.:/hosts/silver/config/hostdata/cell_aliases

{unauthenticated ---r-}

{user hosts/silver/self cdprw}

{any_other ---r-}

dcecp>

9.3.2 Modifying Host Cell Name Information

Using the hostdata object, you can add, change, and remove data items on DCE
hosts. While administrators will find this useful for modifying a host’s cell name or
cell alias information, they can also operate on other data that is accessible on a host.

Each DCE host maintains a protected local copy of the cell name and cell aliases
of the cell in which the host is registered. Hosts keep this information in a local file
called dcelocal/dce_cf.db which is owned byroot. A host uses this information for
authentication purposes—as part of its host identity information.

Although host cell name information tends to be fairly stable, there are circumstances
where it is necessary to change this information:

• When a host moves to a different cell

• When a host’s cell name changes or the cell name acquires an alias

When either of these situations occurs, however, it is usually not enough to just
update the cell name information on the host. Cell name information must also be
updated in CDS and in the DCE Security Service registry as well. For these purposes,
dcecpprovides thehost andcellalias task objects which update cell name information
wherever it needs to be changed.

When a host moves to a different cell, you should usually perform ahost unconfigure
operation to remove the host from one cell. Then run ahost configure operation to
establish the host in the new cell. For details on using thehost task object, refer to
Chapter 7.

DCE 1.2.2 Administration Guide—Core Components 133

DCE Host and Application Administration

When a host’s cell name changes or the cell name acquires an alias, you should
perform acellalias operation which updates cell information in CDS, in the DCE
Security Service registry, and in thedce_cf.dbfile of every affected host in the cell.
For details on using thecellalias task object, refer to Chapter 6.

Sometimes however, the higher-leveldcecp task objects do not offer enough control
such as you might need when fixing a corrupted file somewhere or when configuring
a host by hand for some reason. In these cases, you can use thehostdata object to
change cell name information on individual hosts.

Note though, that this use of thehostdata object is intended mostly to be a
troubleshooting operation to be relied on when a host’s cell information is out of
synchronization with other cell information stored in the DCE registry or stored in
CDS. This situation might be a common occurrence in cells with many hosts.

To update the cell name or cell alias name information on a host, use thehostdata
object. The following example catalogs thehostdata objects in the cell named/.../
my_cell.goodco.com. Then it shows the contents of thecell_nameobject on host
silver. Finally, it modifies the cell name to be/.../my_cell.goodco.comon hostsilver.

dcecp> hostdata cat

/.../my_cell.goodco.com/bronze/config/hostdata/dce_cf.db

/.../my_cell.goodco.com/bronze/config/hostdata/cell_name

/.../my_cell.goodco.com/bronze/config/hostdata/host_name

/.../my_cell.goodco.com/bronze/config/hostdata/cell_aliases

/.../my_cell.goodco.com/bronze/config/hostdata/post_processors

dcecp> hostdata show cell_name

{uuid 00174f6c-6eca-1d6a-bf90-0000c09ce054}

{annotation {Name of cell}}

{storage cell_name}

{data {/.../old_cell.goodco.com}}

dcecp> hostdata modify \

>/.../my_cell.goodco.com/hosts/bronze/config/hostdata/cell_name \

>-data {/.../my_cell.goodco.com}}

dcecp>

134 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

9.3.3 Manipulating Data in Other Host Files

While thehostdataobject is useful for changing cell name and cell alias information,
it has a broader use too; you can use it to add, change, and remove data from any file
that is accessible on a DCE host.

One useful example is adding a new CDS attribute. Every DCE host has its own CDS
attributes file (cds_attributes) where it stores object IDs for each CDS attribute. You
could use the local host’s editor to add the attribute and then copy the new file to each
host. But this method requires you to log into each host. A simpler method would be
to use thehostdata object to add the new attribute to the CDS attributes file. Place
the operation within aforeach loop that reexecutes it for each host in the cell.

1. Make the CDS attributes file accessible as an object of thehostdata object. First,
use thehostdata object to create a CDS entry representing the CDS attributes
file. Set the storage attribute to be the host filename of the CDS attributes file.
The following example assumes the CDS attributes file is in the default location,
and that the file exists:

dcecp> hostdata create /.:/hosts/silver/config/hostdata/cds_attr \

>-storage /opt/dcelocal/etc/cds_attributes -entry

dcecp>

2. The hostdata object modifies data in files by replacing all the data in the file
with new data that you specify. The following example shows one way to do this.
First, retrieve and store all the lines asdcecp list elements in a variable. Then
create a new variable by using theattrlist command to add the new line as a list
element to the variable. Finally, copy the new variable back to the file.

dcecp> set val [attrlist getvalues [hostdata show \

>/.:/hosts/silver/config/hostdata/cds_attr] -type hostdata/data]

dcecp> set newval [attrlist add $val -member {NEW_ATTR 1.2.3.4}]

dcecp> hostdata modify /.:/hosts/silver/config/hostdata/cds_attr -data $newval

dcecp>

DCE 1.2.2 Administration Guide—Core Components 135

DCE Host and Application Administration

9.4 Routing Serviceability Messages

The DCE serviceability mechanism is designed to be used mainly for server
informational and error messaging—that is, for messages that are of interest to those
who are concerned with server maintenance and administration (in the broadest sense
of these terms). The essential idea of the mechanism is that all server events that
are significant for maintaining or restoring normal operation should be reported in
messages that are made to be self-documenting. As a result (assuming that all events
have been correctly identified and reported), users and administrators will always be
able to learn what action they should take in a given situation.

Note: User-prompted, interactive, client-generated messaging is handled through the
standard DCE messaging interface.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their own server messaging, and it is made available as an API for
use by DCE application programmers who wish to standardize their applications’
server messaging. (The serviceability API is described in theDCE 1.2.2 Application
Development Guide—Core Components.)

Messaging uses XPG4 (X/Open Portability Guide) message catalogs to hold message
texts, but it adds an additional layer to the XPG4 functionality. The message catalogs
and other required data (and documentation) files are generated by a utility called
sams (symbols and message strings). Its input is a text file that establishes some
organizational information about the program that is to use the messages, followed by
a series of specifications of the messages themselves. The serviceability mechanism
allows system administrators to control the routing of these messages. Specifically,
you can define message routings based on the severity levels (FATAL , ERROR, and
so on) defined for the messages.

The following sections describe how to control the routing of serviceability messages.
First, you are provided with an overview of serviceability messaging in the DCE. Then
the text describes how you can use message severity levels to control routing. Finally,
it describes the different ways in which you can specify routing for serviceability
messages.

136 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

9.4.1 Serviceability Message Severity Levels

Serviceability messages are categorized by theirseverity level, which provides
important information about the situation that causes the program to issue the
message. Every message’s severity is defined in the text of the message itself (for
example,NOTICE indicates that a message is an informational notice), and system
administrators can route messages differently on the basis of their severity levels.

The following table lists the possible severity levels and provides an explanation for
each.

Table 9–1. Serviceability Message Severity Levels

Name Meaning

FATAL Fatal error exit: An unrecoverable error (such as
database corruption) has occurred and will probably
require manual intervention to be corrected. The
program usually terminates immediately after such an
error.

ERROR Error detected: An unexpected event that is
nonterminal (such as a timeout), or is correctable by
human intervention, has occurred. The program will
continue operation, although some functions or
services may no longer be available. This severity
level may also be used to indicate that a particular
request or action could not be completed.

WARNING Correctable error: An error occurred that was
automatically corrected (for example, a configuration
file was not found, and default values were used
instead). This severity level may also be used to
indicate a condition thatmaybe an error if the effects
are undesirable (for example, removing all files as a
side effect of removing a nonempty directory). This
severity level may also be used to indicate a condition
that, if not corrected, will eventually result in an error
(for example, a printer is running low on paper).

DCE 1.2.2 Administration Guide—Core Components 137

DCE Host and Application Administration

Name Meaning

NOTICE Informational notice: A significant routine major
event has occurred; for example, a server has started.

NOTICE_VERBOSE Verbose information notice: A significant routine
event has occurred; for example, a directory entry was
removed.

9.4.2 How to Route Serviceability Messages

Serviceability messages can be written to any of the normal output destinations. You
can specify routing for serviceability messages in any of the following four ways:

• Through thedcecp log object, if the server supports the remote serviceability
interface

• By the contents of a routing file

• By the contents of an environment variable

• By command-line flags (usually-w), if supported by the server

Note: Each of the methods accepts the string syntax form for serviceability routing
specifications. In addition,dcecp allows you to use Tcl (Tool Command
Language) syntax, which is easier to use when writing scripts.

Routinga message actually consists of specifying two things:

• How the message should be processed (that is, the form in which it should be put)

• Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes specifying
a certain destination implies that the message must be put into a certain form. This
fact allows certain combinations to be abbreviated.

The ways to route serviceability messages are described separately in the following
sections.

138 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

9.4.2.1 Using thedcecp logObject

The dcecp log object represents the current state of routing for DCE serviceability
messages for a given server. Thelog object supports both serviceability routing and
debug routing.

The log object exports a number of operations. The following operations are useful
for serviceability message routing:

• The log list operation returns a list of the components registered by the server.
The -comp option allows you to also return a list of the subcomponents for one
or more named components.

• The log showoperation returns a list describing the current serviceability routing
specifications for a server.

• The log modify operation sets message routing specifications for one or more
specified servers.

For a complete description of thedcecp logobject and the syntax for its supported
operations, refer to thelog(8dce)reference page.

The remainder of this section describes only thelog modify operation and how to use
it to establish routings for serviceability messages. Remember that routing is always
set on a per-server basis and is recorded in thelog object for each server.

The syntax for thelog modify operation is

log modify {string_binding_to_server| RPC_server_namespace_entry} \

{-changeserviceability_routing_specifications}

You can specify multiple target servers as a space-separated list. Specify each
server by supplying either the RPC string binding that describes the server’s
network location (string_binding_to_server) or a namespace entry of the server
(RPC_server_namespace_entry). When specifying multiple servers, you can mix the
forms in the same list.

A serviceability_routing_specificationis a space-separated list of serviceability routing
elements. No spaces are allowed within the specification of an individual routing

DCE 1.2.2 Administration Guide—Core Components 139

DCE Host and Application Administration

element. Each routing element is a substring consisting of four fields containing
portable character set (PCS) data, as follows (shown in string syntax form):

severity:output_form:destination[:application-defined]

where:

severity A message severity level:FATAL , ERROR, WARNING , NOTICE , or
NOTICE_VERBOSE.

output_form Specifies how messages of the associated severity level should be
processed, and must be one of the following:

BINFILE Write these messages as binary log entries

TEXTFILE Write these messages as human-readable text

FILE Equivalent toTEXTFILE

DISCARD Do not record these messages

STDOUT Write these messages as human-readable text to standard
output

STDERR Write these messages as human-readable text to standard
error

Files written asBINFILE s can be read and manipulated with a set
of log file APIs, which are described in theDCE 1.2.2 Application
Development Guide—Directory Services.

The BINFILE , TEXTFILE , andFILE output_formspecifiers may be
followed by a 2-number specifier of the form

.gens.count

where:

gens Is an integer that specifies the number of files (that is,
generations) that should be kept

count Is an integer specifying how many entries (that is,
messages) should be written to each file

140 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

The multiple files are named by appending a. (dot) to the simple
specified name, followed by the current generation number. When the
number of entries in a file reaches the maximum specified bycount, the
file is closed, the generation number is incremented, and the next file is
opened.

When the maximum number of files have been created and filled, the
generation number is reset to1, and a new file with that number is
created and written to (thus overwriting the already existing file with
the same name), and so on. Thus the files wrap around to their beginning,
and the total number of log files never exceedsgens, although messages
continue to be written as long as the program continues writing them.

destination Specifies where the message should be sent, and is a pathname. You
can leave this field blank if theoutput_formspecified isDISCARD,
STDOUT, or STDERR. The field can also contain a%ld string in the
filename which, when the file is written, will be replaced by the process
ID of the program that wrote the message(s). Filenames maynot contain
: (colon), ; (semicolons), % (percent sign), or the space character.

application-defined
Is used for application-specific information. Standard DCE programs
ignore it.

9.4.2.1.1 String Syntax

The string syntax for a serviceability routing specification is

severity:output_form:destination[:application-defined][; . . .]

Note that you can define multiple routing specifications as a semi-colon separated list.

For example, this specification

FATAL:TEXTFILE:/dev/console;STDOUT:

ERROR:TEXTFILE.5.100:/tmp/errors

EXIT:DISCARD:

*:FILE:/tmp/svc-log

DCE 1.2.2 Administration Guide—Core Components 141

DCE Host and Application Administration

NOTICE:BINFILE:/tmp/log%ld

WARNING:STDOUT:

instructs the serviceability mechanism to do the following:

• Send fatal error messages to the console and to standard output

• Send other error messages to a log-rolled file

• Discard normal exit reports

• Write all messages to a log file

• Send informational messages to a temporary binary log

• Send warnings to standard output

9.4.2.1.2 Tcl Syntax

The Tcl syntax for a serviceability routing specification is

{severity output_form destination application-defined}

where severity, output_form, destination, and application-definedare specified as
previously described. In Tcl syntax, multiple routing specifications take the following
form:

{ {specification} {specification} {specification} }

For example, the sample specification shown previously for string format would be
expressed in Tcl syntax as follows:

{FATAL { {TEXTFILE /dev/console} STDOUT} }

{ERROR TEXTFILE.5.100 /tmp/errors}

{EXIT DISCARD}

{* FILE /tmp/svc-log}

{NOTICE BINFILE /tmp/log%ld }

{WARNING STDOUT {} }

142 DCE 1.2.2 Administration Guide—Core Components

Managing DCE Host Services and Host Data

9.4.2.2 Using a Routing File

If a file called dce-local-path/var/svc/routing exists, the contents of the file (if in
the proper format) will be used to determine the routing of messages written by the
serviceability mechanism.

The default location of the serviceability routing file is normally/opt/dcelocal/var/svc/
routing . However, you can specify a different location for the file by setting the value
of the environment variableDCE_SVC_ROUTING_FILE to the complete desired
pathname.

The routing file contains lines that specify the routing desired for the various kinds
of messages (based on message severity level). Each line consists of three fields as
follows:

severity:output_form:destination[:application-defined][; . . .]

You can supply multiple routings by specifying additionaloutput_form:destination
pairs as a semicolon-separated list.

In the routing file, blank lines beginning with the# character are treated as comments.

9.4.2.3 Using Environment Variables

Serviceability message routing can also be specified by the contents of certain
environment variables. If you use environment variables, the routings you specify
will override any conflicting routings specified by a routing file.

The routings are specified (on the basis of severity level) by putting the desired routing
instructions in the following environment variables:

• SVC_FATAL

• SVC_ERROR

• SVC_WARNING

• SVC_NOTICE

DCE 1.2.2 Administration Guide—Core Components 143

DCE Host and Application Administration

• SVC_NOTICE_VERBOSE

• SVC_BRIEF

Each variable should contain a single string in the following format:

severity:output_form:destination[:application-defined][; . . .]

You can supply multiple routings by specifying additionaloutput_form:destination
pairs as a semicolon-separated list.

144 DCE 1.2.2 Administration Guide—Core Components

Chapter 10
DCE Application Administration

As DCE evolves, commonly needed functions are being included in the DCE
infrastructure. As an example, DCE includes server control capabilities that can
manage server operation and help servers exit in a controlled and efficient manner.
Application developers can rely on these capabilities rather than implement special
mechanisms to handle them independently in every server.

Moving commonly needed functions out of applications and into the DCE
infrastructure provides important benefits. Applications can be smaller and easier to
develop and maintain. Even more important, because applications are not encumbered
with lots of special code, they are easier to reconfigure and reconnect with different
kinds of clients. This adaptability is critical as organizations strive to keep up with
changing business needs.

DCE applications have always had administrative aspects. Often, programs include the
necessary functions to manage their own administrative needs, but this approach can be
awkward and somewhat inflexible for administrators. Now, virtually all administrative
functions are available to programmers and administrators alike throughdcecp. This
does not mean programmers no longer need to deal with these issues. We expect

DCE 1.2.2 Administration Guide—Core Components 145

DCE Host and Application Administration

some programmers to provide scripts written withdcecp that configure client and
server programs to start and stop under specified conditions.

Although this approach offers a convenient and consistent way to administer
applications, it also creates an area where programming and administrative concerns
overlap. Our discussions in this chapter will include this area of overlap, noting
circumstances where administrative action might be needed.

10.1 Controlling Server Operation

The conventional notion of a DCE application server assumes that a server is running,
waiting for client requests to service. While this is an effective model for some
general server operations, it does not offer the flexibility needed by DCE applications.
Commercial environments will likely have many kinds of servers. Some may need to
be constantly available, while others may be needed only at certain times of the day.
Still others may be needed on an infrequent or unpredictable basis.

An application programmer or administrator could solve these kinds of problems by
writing a script or application that monitors server operation, automatically starting
or restarting servers when necessary. Such solutions frequently rely on host utilities
like startup and shutdown programs or schedulers likecron. However, this often
requires administrators to log into separate system administration accounts on each
host. Moreover, this approach places more burden on developers and administrators to
device independent server control mechanisms which may not be portable, especially
in heterogeneous environments.

DCE solves some of these problems by providing a server control facility that offers a
variety of ways to control DCE application servers. The server control facility is part
of the DCE daemon (dced) so servers can rely on it whereverdced runs. Additionally,
the facility’s administration functions are accessible viadcecp, so administrators can
use consistent (portable) methods to manage servers from any host wheredcecp is
available. Furthermore, access to the server control facility is authenticated, preventing
unauthorized or accidental tampering of server control information.

The following sections show some common configuration needs and describe ways
to configure and unconfigure servers, how to start and stop servers, and how to view
server information.

146 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

10.1.1 Common Server Configuration Needs

Before you configure a server, you might need to perform some preliminary steps.
If a server uses DCE authentication and authorization, its principal name must be
registered with the DCE Security Service or run under the DCE identity of the parent
process. For details on creating server accounts, see Chapter 31.

10.1.1.1 Naming Server Configuration Information

Server configuration information is accessible using a name of the form:/.../cellname/
hosts/hostname/config/srvrconf/servername. If you have the necessary permissions,
you can use the global name to access the configuration database on a remote host
(even a host in another cell). The following example shows configuration information
for the video_clip server on hostkrypton in remote cell/.../their_cell.goodco.com:

dcecp> server show /.../their_cell.goodco.com/hosts/krypton/config/srvrconf/video_clip

{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}

{program {vclip}}

{arguments {-catalog}}

.

. (Output Omitted)

.

dcecp>

The next example shows configuration information for thevideo_clip server on host
silver in the local cell:

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip

{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}

{program {vclip}}

{arguments {-catalog}}

.

. (Output Omitted)

.

dcecp>

DCE 1.2.2 Administration Guide—Core Components 147

DCE Host and Application Administration

Use the simple name to show configuration information for thevideo_clip server on
the local host:

dcecp> server show video_clip

{uuid 2fa417e8-bb4c-11cd-831b-0000c08adf56}

{program {vclip}}

{arguments {-catalog}}

.

. (Output Omitted)

.

dcecp>

10.1.1.2 Server Configuration Information

Each DCE has a database that can store configuration information for servers on that
host. Use the DCE control programserver object to store, modify, or remove server
configuration information in the server configuration database on the host system.

You need to specify some or all of the following information when managing server
configuration:

uuid An identifier for the particular server configuration object.

program The name (including the pathname) that invokes the server program.

directory The name of the program’s working directory. Once a server is running,
it might need a place to store its output or temporary files.

arguments Command-line arguments used to start the server.

entryname The name of an RPC entry to which the server exports its binding.

keytabs A list of one or more UUIDs of related keytab objects (files) where the
server stores its keys. This information is needed for servers that use
DCE authentication or authorization.

principals A list of one or more principal names for the server that are registered
in the DCE Security Service. This information is needed for servers that
use DCE authentication or authorization.

148 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

services Identifies the services offered by the server. Each service attribute
consists of an attribute list with the following elements:

annotation A human-readable string describing the service.

ifname The interface name of this service (specified in the
interface definition file).

interface The interface identifier(UUID and version number) of
this service (specified in the interface definition file).

binding A list of string bindings identifying this service.

entryname The name of an RPC entry to which the server exports its
binding for this service.

flags A list of keywords to identify flags for this server. Only
the disabled flag is currently supported.

objects A list of object UUIDs supported by this service.

uid A POSIX UID that the server is started with.

starton Specifies server starting conditions. The value is a list of one or more
of the following:

auto The server starts whenever a request for its service is
received by the DCE daemon.

explicit The server starts (or stops) whenever an administrator
performs aserver start or server stop operation that
directly names the server.

boot The server starts whenever the host system starts.

failure The server starts whenever it has exited with a
unsuccessful exit status.

10.1.1.3 Permissions for Accessing Server Control Facilities

An ACL prevents unauthorized principals from creating, reading, changing, or deleting
information maintained by the server control facilities.

The server control facility maintains two kinds of server control information. Server
configuration information (namedsrvrconf in DCE) consists of the information needed

DCE 1.2.2 Administration Guide—Core Components 149

DCE Host and Application Administration

to start servers. Server execution information (namedsrvrexec in DCE) consists of
information needed to control or stop servers when they are running.

Server configuration information is protected by two types of ACLs. One ACL protects
the container in which the server control information resides. A second ACL type
protects each individual server’s configuration information.

Similarly, server execution information is protected by two types of ACLs. One ACL
protects the container in which the server execution information resides. A second
ACL type protects each running server’s execution information.

This section shows how to manage ACLs that protect server control information. For
detailed information about setting and using ACL protections, see Chapter 28.

10.1.1.3.1 Permissions for the Server Configuration Container

The server configuration information resides in acontainer. The container, a backing
storage mechanism implemented as a file on UNIX systems, is owned by root and is
also protected by an ACL. These ACL permissions control who can access information
in the container. Each DCE host has one server configuration Container ACL with the
following name:

/.../cellname/hosts/hostname/config/srvrconf

The server configuration Container ACL has the following permissions:

c (control) Modify the Container ACL.

r (read) Read configuration information in the container.

i (insert) Create new configuration information.

I (Insert) Create new configuration information for a server that runs as a
privileged user (for example, as root on a POSIX system). Such
operations also require thei permission.

Use thedcecp aclobject to view or modify ACLs. For example, use the following
operation to view the ACL for the server configuration container object on hostsilver:

150 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

dcecp> acl show /.:/hosts/silver/config/srvrconf

{user appl_admin criI}

{unauthenticated r}

{any_other r}

dcecp>

Because/.:/hosts/silver/config/srvrconfis a container, it also has an Initial Container
ACL and an Initial Object ACL. You can operate on these initial ACLs by using the
-ic and-io options toacl operations. Note, however, that because you cannot currently
create child containers under/.:/hosts/hostname/config/srvrconf , the Initial Container
ACL has no effect.

10.1.1.3.2 Permissions for Accessing Server Configuration Information

Each server’s configuration information is protected by its own ACL. These ACLs can
prevent unauthorized principals from creating, reading, changing, or deleting server
configuration information, and from starting, stopping, enabling, and disabling servers.

Each ACL is named for the server configuration information it protects and has a
name like the following:

/.../cellname/hosts/hostname/config/srvrconf/server_name

This ACL has the following permissions:

c (control) Modify the ACL.

d (delete) Delete the server configuration information.

f (flag) Start the server with custom flags.

r (read) Read the server configuration information.

w (write) Modify the server configuration information.

x (execute) Start the server.

Use theacl object to view or modify ACLs. For example, use the following operation
to view the ACL for thevideo_clip server on hostsilver:

DCE 1.2.2 Administration Guide—Core Components 151

DCE Host and Application Administration

dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip

{user appl_admin cdfrwx}

{unauthenticated r}

{any_other r}

dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the-io option to acl operations. The
following example shows the Initial Object ACL for thevideo_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrconf/video_clip -io

{unauthenticated r}

{any_other r}

dcecp>

10.1.1.3.3 Permissions for the Server Execution Container

When servers are started, the DCE daemon copies server configuration information
into the server execution database. Thedced process also adds more information
about the running server such as a UUID, the server’s communication endpoints and
its process name and ID. The execution information controls the running server; for
instance, the process ID is used to stop a server. When a server exits, the DCE daemon
removes its server execution information.

The server execution information resides in acontainer. The container, a backing
storage mechanism implemented as a file on UNIX systems, is owned by root and
its access throughdced is protected by an ACL. These ACL permissions control who
can access information in the container. Each DCE host has one server execution
Container ACL with the following name:

/.../cellname/hosts/hostname/config/srvrexec

The server execution Container ACL has the following permissions:

c (control) Modify the Container ACL.

r (read) Read execution information in the container.

152 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

i (insert) Create new execution information.

I (Insert) Create new execution information for a server that runs as a privileged
user (for example, as root). Such operations also require thei permission.

Use theacl object to view or modify ACLs. For example, use this operation to view
the ACL for the server execution container object on hostsilver:

dcecp> acl show /.:/hosts/silver/config/srvrexec

{user appl_admin criI}

{unauthenticated r}

{any_other r}

dcecp>

Because/.:/hosts/silver/config/srvrexecis a container, it also has an Initial Container
ACL and an Initial Object ACL. You can operate on these initial ACLs by using
the -ic and -io options toacl operations. Note that the Initial Container ACL has no
effect because currently, child containers do not exist under/.:/hosts/hostname/config/
srvrexec.

10.1.1.3.4 Permissions for Accessing Server Execution Information

Each server’s configuration information is protected by its own ACL. These ACLs can
prevent unauthorized principals from creating, changing, reading, or deleting server
configuration information, and from starting, stopping, enabling, and disabling servers.

Each ACL is named for the server execution information it protects and has a name
like the following:

/.../cellname/hosts/hostname/config/srvrexec/server_name

This ACL has the following permissions:

c (control) Modify the ACL

r (read) Read the server execution information

w (write) Modify the server execution information

DCE 1.2.2 Administration Guide—Core Components 153

DCE Host and Application Administration

s (stop) Stop the server.

As an example, use the following operation to view the ACL for the server execution
information for thevideo_clip server on hostsilver:

dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip

{user appl_admin crws}

{unauthenticated r}

{any_other r}

dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the-io option to acl operations. The
following example shows the Initial Object ACL for thevideo_clip server:

dcecp> acl show /.:/hosts/silver/config/srvrexec/video_clip -io

{unauthenticated r}

{any_other r}

dcecp>

10.1.2 Configuring Servers

Use theserver createoperation to make an application server accessible to the server
control facility. Configuring a server means creating the information needed to start
and control the server. Typically this includes a server’s starting command line and
arguments, along with other information needed to start DCE applications.

Some servers need to be available whenever a host system is running. For instance,
you might want a server that provides information on host activity to start at the host
boot time and run until the host shuts down. Other kinds of services might be needed
or only for brief periods. The server control facility has an administrative interface
that lets you specify some conditions for starting and stopping servers:

• Explicit : You can set a server so that you can explicitly start it whenever you
want.

154 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

• Boot: You can set a server to start at boot time.

• Automatic: You can set a server to start on demand; that is, it starts whenever a
client request for its services is received at the host system.

• Failure: You can set a server to start automatically if it exits unexpectedly.

The following example creates an entry for a fictitious video clip server named
video_clip on the local host. For a remote host or a host in another cell, use the
cell-relative or the global name. The program namevclip invokes the server that is
located in the/usr/local/bin working directory. The server has a catalog mode that was
set by specifying-catalogas the argument. The server uses the DCE Security Service,
so the server has a principal nameVclip_Srv_1. The -entryname option specifies the
entry name in the Cell Directory Service (CDS) where the server stores its binding
information. The-starton option sets the server to start whendcedreceives an explicit
server start operation that names thevideo_clip server. Thefailure attribute further
specifies to restart the server if it exits with a status that is not successful. The-
servicesoption has annotation information to help administrators identify servers when
this information is returned withserver showoperations. Theinterface attribute is
needed because the DCE daemon copies this information into the host endpoint map
when the server starts.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \

>-program {/usr/local/bin/vclip} \

>-directory {/tmp} -arguments {-catalog} \

>-principal {Vclip_Srv_1} \

>-entryname {/.:/subsys/applications/video_clip_1} \

>-starton {explicit failure} \

>-services {{annotation {Video Clip Catalog and Server}} \

> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}

dcecp>

The next example configures the same server to start whenever the host system boots.
The only difference from the preceding example is that the- starton option has a
value ofboot.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \

> -program {/usr/local/bin/vclip} \

DCE 1.2.2 Administration Guide—Core Components 155

DCE Host and Application Administration

> -directory {/tmp} -arguments {-catalog} \

> -principal {Vclip_Srv_1} \

> -entryname {/.:/subsys/applications/video_clip_1} \

> -starton {boot} \

> -services {{annotation {Video Clip Catalog and Server}} \

> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}

dcecp>

The final configuration example sets thevideo_clip server to start whenever a client
request for its services is received at the host system. The-starton option value is
auto. Section 10.1.4 discusses the steps for disabling and enabling services.

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \

> -program {/usr/local/bin/vclip} \

> -directory {/tmp} -arguments {-catalog} \

> -principal {Vclip_Srv_1} \

> -entryname {/.:/subsys/applications/video_clip_1} \

> -starton {auto} \

> -services {{annotation {Video Clip Catalog and Server}} \

> {interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}}}

dcecp>

10.1.3 Listing and Retrieving Server Configuration Information

When you want to see a list of the names of servers configured on a particular host,
use aserver catalogoperation, as shown. This operation does not show every server
available on a host, just those that have configuration information stored in the server
configuration database.

dcecp> server catalog /.:/hosts/silver

/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip

dcecp>

List the names of all the configured servers in a DCE cell by using aforeach command
to repeat theserver catalogoperation for each host in a cell:

156 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

foreach h [directory list /.:/hosts]{

echo [server catalog $h]

}

If you are unsure of the configuration information established for a server, you can
view it using aserver showoperation, as shown. Use the-executing option to view
information about a running server.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip

{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

{program {/usr/local/bin/vclip}}

{arguments {-catalog}}

{prerequisites {}}

{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}

{services {{annotation "Video Clip Catalog and Server"}}

{principals {Vclip_Srv_1}}

{starton {explicit failure}}

{uid 1441}

{gid 1000}

{dir {/tmp}}

dcecp>

10.1.4 Unconfiguring Servers

You can remove server configuration information from a host’s configuration database
by using aserver deleteoperation. You would perform this operation, for instance,
when a server moves to a different host. Aserver deleteoperation does not stop a
server that is currently running.

The following example removes thevideo_clip server’s configuration information
from the configuration database on hostsilver:

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip

dcecp>

DCE 1.2.2 Administration Guide—Core Components 157

DCE Host and Application Administration

10.1.5 Starting and Stopping Servers

Once a server has been appropriately configured, you can use aserver start or server
stop operation to start or stop the server remotely. For example, the followingserver
start operation starts the servervideo_clip on hostsilver in the local cell:

dcecp> server start /.:/hosts/silver/config/srvrconf/video_clip

eb814e2a-0099-11ca-8678-02608c2ea96e

dcecp>

The next example stops the servervideo_clip on the local hostsilver in the local cell:

dcecp> server stop video_clip

dcecp>

10.1.6 Disabling and Enabling Services

You can prevent clients from using a service offered by a server—even when the
server is running—by setting its services to disabled. When set to disabled, server
endpoint information is not returned to requesting clients, thereby preventing clients
from finding servers. Instead, clients receive a server status ofendpoint not registered.
Clients that previously acquired the server endpoint can still communicate with the
server, however.

When a server provides multiple interfaces, you can disable any one or more of its
interfaces by specifying their interface identifiers. The following example disables one
service of thevideo_clip server:

dcecp> server disable /.:/hosts/silver/config/srvrexec/video_clip \

> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

dcecp>

The next example enables thevidsrv service of thevideo_clip server after it has been
disabled. This operation allows clients to acquire a server’s endpoint.

158 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

dcecp> server enable /.:/hosts/silver/config/srvrexec/video_clip \

> -interface {d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

dcecp>

10.1.7 Extending Server Configurations

Some servers may require configuration information that is not supported by the set of
attributes provided with your DCE software. You can add arbitrary information to your
server configuration information by creating additionalextended registry attributes
ERAs with thexattrschema object.

For example, say you have a server that needs an attribute that specifies an object
family. You create such an attribute by using thexattrschema object. The following
example creates an ERA calledsrvrconf/objfamily . The operation specifies the
permissions needed to query, update, test, and delete the ERA, and it specifies the
ACL manager that supports the permissions.

dcecp> xattrschema create \

> /.:/hosts/silver/config/xattrschema/srvrconf/objfamily \

> -attribute {{annotation {object family}} {encoding uuid} \

> {aclmgr {srvrconf r w r d}}}

dcecp>

Once you have created a new attribute, use aserver modify operation, as explained in
Section 10.1.8, to insert the necessary data. More information about ERAs is provided
in Chapter 32.

You can review the attributes associated with an ERA by using anxattrschema show
operation as shown in the following example:

dcecp> xattrschema show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily

{aclmgr {srvrconf {{query r} {update w} {test r} {delete d}}}}

{annotation {object family}}

{applydefs no}

{encoding uuid}

DCE 1.2.2 Administration Guide—Core Components 159

DCE Host and Application Administration

{intercell reject}

{multivalued yes}

{reserved no}

{scope {}}

{trigbind {}}

{trigtype none}

{unique no}

{uuid 1bef2222-e687-11cd-b74a-0000c08adf56}

dcecp>

ERAs in server configuration information are protected by two levels of ACLs. One
ACL type protects the container in which the ERA resides. The second ACL type
protects the individual ERA.

The ERA Container ACL is named as follows:

/.../cellname/hosts/hostname/config/xattrschema

The ERA Container ACL has the following permissions:

c (control) Modify the Container ACL.

r (read) Read the ERA in the container.

i (insert) Create new ERA information.

I (Insert) Although theI permission is present, it does not apply to ERA items.
The permission applies to server control facilities, which are explained
in Section 10.1.1.3.

Use thedcecp acl object to view or modify the Container ACL. For example, the
following operation views the ERA Container ACL on hostsilver:

dcecp> acl show /.:/hosts/silver/config/xattrschema

{user appl_admin criI}

{unauthenticated r}

{any_other r}

dcecp>

160 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

The ACL for an individual ERA is named as follows:

/.../cellname/hosts/hostname/config/xattrschema/ERA_name

ACLs on individual ERAs can prevent unauthorized principals from creating, reading,
changing, or deleting ERA information. The following example shows permissions
established for thesrvrconf/objfamily ERA. In this example, thec permission has no
effect because it was not assigned when the ERA was created with thexattrschema
create operation. All users can query and test the ERA. Only the user named
appl_admin can also update and delete the ERA.

dcecp> acl show /.:/hosts/silver/config/xattrschema/srvrconf/objfamily

{user appl_admin crwd}

{unauthenticated cr}

{any_other cr}

dcecp>

This ACL takes its default values from the container’s Initial Object ACL. You can
operate on the Initial Object ACL by using the-io option to acl operations. The
following example shows the Initial Object ACL for thexattrschema container on
hostsilver:

dcecp> acl show /.:/hosts/silver/config/xattrschema -io

{unauthenticated cr}

{any_other cr}

dcecp>

10.1.8 Changing Server Configurations

Sometimes you might want to change a server’s configuration information. For
instance, you want to change the-starton attribute from boot to explicit so that
you can control the server manually.

DCE 1.2.2 Administration Guide—Core Components 161

DCE Host and Application Administration

To change the normal server configuration attributes, you must first delete all of the
existing attributes and then create new ones. Avoid losing the current information by
first using aserver showoperation to display it on your screen.

The steps are illustrated in the following example which uses aserver showoperation
to capture the current server configuration information. Theserver deleteoperation
removes the configuration information, and aserver createoperation inserts the new
−starton attribute along with the remaining server configuration information.

dcecp> server show /.:/hosts/silver/config/srvrconf/video_clip

{uuid d860322b-d499-11cd-9dfb-0000c08adf56 1.0}

{program {/usr/local/bin/vclip}}

{arguments {-catalog}}

{prerequisites {}}

{keytabs {683cf29a-e456-11cd-8f04-0000c08adf56}}

{services {{annotation "Video Clip Catalog and Server"}}

{principals {Vclip_Srv_1}}

{starton {boot}}

{uid 1441}

{gid 1000}

{dir {/tmp}}

dcecp> server delete /.:/hosts/silver/config/srvrconf/video_clip

dcecp> server create /.:/hosts/silver/config/srvrconf/video_clip \

> -program /usr/local/bin/vclip \

> -directory /tmp \

> -arguments {-catalog} \

> -principal Vclip_Srv_1 \

> -entryname /.:/subsys/applications/video_clip_1 \

> -starton {explicit} \

-services {{annotation "Video Clip Catalog and Server"}}

dcecp>

You can directly change ERA information by using aserver modify operation. The
following example changes a server’s ERA calledsrvrconf/objfamily to contain
new values. This operation assumes the ERA has already been created using an
xattrschema createoperation described in Section 10.1.17.

162 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

dcecp> server modify /.:/hosts/silver/config/srvrconf/video_clip \

> -change {srvrconf/objfamily {c09dcc40-e4f4-11cd-bd59-0000c08adf56}}

dcecp>

10.1.9 Checking Whether Servers Are Running

You can check whether a particular server is running by performing aserver ping
operation. This might be a convenient test when some client users report they cannot
communicate with a server. Theserver ping operation communicates with the named
server to test its presence, returning a1 is a server is listening and a0 if it is not
listening. The argument to the server ping operation is theentryname of the server, not
the name of thesrvrconf object. The following example tests whether thevideo_clip
server is running:

dcecp> server ping /.:/subsys/applications/video_clip_1

1

dcecp>

10.2 Managing Client/Server Binding Information

In a DCE environment, clients and their servers frequently reside on different hosts
in a network, so clients need a way to find servers.

Clients need three pieces of information to communicate with a server:

• The host name (or network address) of the host where the server is running

• The name of the network transport the server is using

• The communication port (endpoint) the server is using for client communications

Of course, an application programmer could simply hardcode a server’s location
information (also calledbinding information)into the client side of the application
where it is immediately available for use. However, this approach requires that a
programmer have advance knowledge of precise network details such as host names
and available port numbers. Furthermore, servers with hardcoded binding information

DCE 1.2.2 Administration Guide—Core Components 163

DCE Host and Application Administration

do not easily adapt to configuration changes. If you move a server to a different host,
you need to recompile all of the clients with the server’s new host name. So DCE
provides more flexible ways for clients to obtain server bindings.

The standard way for clients to find servers is by using CDS and the server host’s
endpoint map. Figure 10-1 provides a high-level example of this method, showing
how a fictitious dictionary client application on hostlarry finds a dictionary server
on hostcurly .

Figure 10–1. Server Binding Information

CDS Server

Server Entry

1

2

DCE Host
Services

3
4

5

Dict Server

Spell Server

Stat Server

BBS Server

Services
DCE Host

Host: moe

Server Entry

Host: curly

Host: larry

Application Servers
Application Client

Dict Client

Dict Server 1015

Spell Server 1014

Stat Server 1013

BBS Server 1012

Server_Name Endpoint

Endpoint Map

Host: curly

Server: Dict Server

Transport: TCP/IP

1. When the dictionary server starts up, DCE host software assigns the server a
communications port (endpoint), which clients will use to communicate with this
server. Here, the endpoint is TCP/IP port 1015. The DCE host software also places
the server identification information along with the current endpoint in the host’s
endpoint map.

164 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

2. The dictionary server then advertises its availability to clients by placing
(exporting) its host name (usually it is the host address) and the transport it
uses to a server entry in CDS.

3. When the dictionary client makes a call to a remote procedure provided by the
server, the DCE software on the client queries the CDS server to find the dictionary
server’s host name and the transport.

4. The client system’s host software then queries the endpoint map on hostcurly to
find the dictionary server’s endpoint (port 1015).

5. Equipped with all the necessary binding information, the host services on host
larry transmit the remote procedure call directly to port 1015 on hostcurly .

Although we have omitted some details in this high-level example, the figure still
shows the major binding activities performed by clients and servers. That is, servers
place their binding information in CDS and in the host endpoint map where clients
look for it. There are other ways for clients to find servers and there are variations
on the mechanism we have described. But these alternatives are generally controlled
by the applications themselves rather than through conventional DCE administration
facilities like dcecp.

This section discussed one basic client/server binding mechanism. The following
sections examine the roles played by the endpoint map and by CDS. We will also
discuss specific administration tasks for managing binding information in endpoint
maps and in CDS.

10.3 Using the Endpoint Map for Easy Application
Development and Administration

Remote clients can find a server by using the server host’s endpoint map to determine
the server’s communication endpoint. But how do remote clients know where to find
the endpoint map itself? They know because the endpoint map is always accessible at
a well-knownendpoint (that is, it is always the same endpoint) on each host so clients
can easily find it.

When hosts support multiple transports, the endpoint maplistenson one port for each
transport. In the IP address family (both TCP and UDP), the endpoint map process
listens on port 135. In the Domain Domain Sockets (DDS) address family, it listens

DCE 1.2.2 Administration Guide—Core Components 165

DCE Host and Application Administration

on port 12. In the DECnet NSP address family, it listens on port 69. A complete list
of the protocol sequences and well-known endpoints used by the endpoint mapper
service can be found in the header file/opt/dcelocal/share/include/dce/ep.idl.

Note that not all hosts support all transports. DCE software tries to ensure that at least
one transport is shared between a client and a server.

While well-known endpoints provide convenient access to some critical servers, for
most servers they are impractical. That’s because some address families have a limited
number of endpoints and well-known endpoints can be assigned only by a central
administrative authority. So most servers usedynamic endpoints. When a server starts
up, the RPC runtime library gets an available endpoint from the operating system and
registers it in the host endpoint map.

Because a server can be assigned a different endpoint each time it starts, the endpoint
information is stored in the endpoint map rather than CDS, which is a repository for
more stable information; namely, the server’s host address and the transports it uses.
As long as the server stays on the same machine, host and transport information need
not be updated, which tends to reduce bottlenecks at CDS.

This scheme makes application development and administration easier because it
reduces the need to manage endpoints. Servers need not worry about passing dynamic
endpoints to clients. Furthermore, unless a server moves to a new host, or removes or
adds a transport, it does not even have to update the information in CDS.

10.3.1 Automatic Endpoint Map Administration

Each server that uses the endpoint map stores a set of information in the endpoint
map when it starts up. The information includes universal unique identifiers (UUIDs)
for objects and interfaces offered by the server, an annotation string, and other fields.

The endpoint map resides on disk indcelocal /var/dced/Ep.db and dcelocal /var/
dced/Srvrexec.db. After a system reboot, DCE-based servers restart and reregister
with the endpoint mapper service, so the database files need to be deleted before the
DCE daemon starts. This happens automatically on most systems.

166 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

DCE-based servers normally need to register with the endpoint mapper service on
startup and unregister on termination. If any servers exit without unregistering, the
endpoint map may contain stale entries.

DCE provides server control facilities that help servers unregister and avoid leaving
stale entries in the endpoint map. Servers that do not use these facilities (older servers,
for example) are more likely to leave stale entries if they exit unexpectedly. So
periodically, the DCE daemon (dced) purges stale entries by scanning the endpoint
map, pinging each server that is registered, and deleting entries for servers that do not
respond.

The background process of removing stale entries is not intended to be highly
responsive. It is not intended to replace the need for servers to unregister themselves
from the endpoint map when they no longer service RPCs. Rather, this processing is
intended only to clean up after a server failure.

While the behavior of the pinging/purging mechanism is implementation dependent,
in a typical implementation the database is scanned (that is, servers are pinged and
stale entries removed) only infrequently; for example, a few times an hour. Once a
ping to a server fails, the server is pinged several times over a shorter interval; for
example, every 5 minutes. If the server continues to not respond, thedced process
determines that its entry is stale and removes it from the database. Ultimately, the rate
at which stale server entries are detected and purged depends on the number of stale
entries in the database; the more stale entries, the longer it takes to detect and purge
the stale entries.

10.3.2 Restricting Endpoints

You can restrict the assignment of endpoints (ports) for DCE servers and clients to a
specific set. This is useful if your environment has applications other than DCE that
are designed to use certain endpoints, and you do not want to be concerned about
DCE servers or clients monopolizing them.

The facility is activated by setting theRPC_RESTRICTED_PORTS environment
variable with the list of endpoints to which dynamic assignment should be restricted
before starting a client or server application.RPC_RESTRICTED_PORTS governs
only the dynamic assignment of server ports by the RPC runtime. It does not affect
well-known endpoints.

DCE 1.2.2 Administration Guide—Core Components 167

DCE Host and Application Administration

The following example restricts servers to using TCP/IP endpoints ranging from 5000
to 5110, and 5500 to 5521. It restricts UDP/IP endpoints to the range of 6500 to 7000.

% set RPC_RESTRICTED_PORTS \

ncacn_ip_tcp[5000-5110,5500-5521]:ncadg_ip_udp[6500-7000]

%

To use RPC_RESTRICTED_PORTS for DCE servers such as CDS, set the
environment variable each time before starting your cell.

Note that this facility does not add any security to RPC and is not intended as a
security feature. It merely facilitates configuring a network firewall to allow incoming
calls to DCE servers.

10.3.3 Viewing Information in the Endpoint Map

For the most part, the endpoint map on each host takes care of itself, purging stale
entries when necessary and removing the endpoint information each time the host
reboots. So there is really no administration needed for the endpoint map.

However, when client/server communication problems arise, the information stored
in the endpoint map might be useful to administrators, particularly for determining
whether servers are supplying the correct endpoint information to clients. In this case,
you can use theendpoint object to view endpoint map information. Besides its use
in troubleshooting, you can also use theendpoint object for other specialized server
operations such as adding new object UUIDs to existing mappings.

Endpoints are not protected by ACLs. This means anyone who can rundcecpcan use
an endpoint showoperation on their host to view endpoint information on any other
host in the cell. Other endpoint operations, such as creating or deleting endpoints,
can be performed only by users who are logged into the local host. No other special
privileges, such as system administrator or root privileges, are needed for local access
to endpoint information.

You can view information stored in a host’s endpoint map database by using an
endpoint showoperation. The following example shows the endpoint map information

168 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

for the video_clip server on a remote hostmegazoid. Omit thehostnameargument
to operate on the local endpoint map.

dcecp> endpoint show /.:/hosts/megazoid \

> -interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}

{{object 99ff4fb8-c042-11cd-91cd-0000c08adf56}

{interface {2fa417e8-bb4c-11cd-831b-0000c08adf56 1.0}}

{binding {ncacn_ip_tcp 130.105.1.227 1028}}

{annotation {Text Development Utilities}}}

dcecp>

You can view all of the endpoints in an endpoint map by not using any options with
the endpoint showoperation.

10.4 Managing Server Entries, Groups, and Profiles in
CDS

An endpoint map acts as a directory of servers on a host. Similarly, CDS acts as a
directory of servers in the cell. In the first part of this chapter, we gave a high-level
look at how applications can use CDS to store relatively stable binding information
such as a server’s name, its host address, and the transports over which the server is
available. In this section, we will show how to use CDS facilities for organizing your
servers and other distributed objects in meaningful ways.

Many of the operations discussed in the following sections operate on CDS directories
that are protected by ACLs against unauthorized access. For detailed information about
ACLs and CDS see Chapter 16.

10.4.1 Using Unique Server Entry Names to Identify Individual
Servers and Objects

We know that servers store their binding information in CDS where clients can find
it. But so far, we have been treating CDS like a black box. If a DCE cell consisted of
just a few servers or objects and a handful of users, CDS could be as simple as a data

DCE 1.2.2 Administration Guide—Core Components 169

DCE Host and Application Administration

file accessible to both servers and clients. Finding unique names for objects would
probably not pose a big problem. And you could probably even devise some effective
scheme for protecting objects from unauthorized use. But DCE cells can include many
hundreds or even thousands of objects. Large cells will likely contain many similar or
even identical servers that need convenient and effective ways to offer their services
to clients.

DCE CDS answers this need by providing a hierarchical (tree-structured) name system
that servers use to store binding information. CDS acts much like a hierarchical file
system of directories that stores names and other information instead of files. You can
build on its hierarchical structure, imposing directory names that can correspond to
your company’s organizational structure.

Servers have CDS names like/.:/admin/finance/payroll/check_writer. When this
check_writer server exports its server entry name to CDS, CDS stores it in a
directory named/.:/admin/finance/payroll. Consequently, clients will not confuse this
check_writer with anothercheck_writer named /.:/admin/finance/accts_payable/
check_writer. Thus, unique server entry names fill a critical administration need,
providing a way to access and control individual servers.

Part 4 of this book provides more information about CDS and the structure and uses
of CDS names. For our current purposes, it is enough to know how and why CDS
directory names help make potentially identical server entries unique.

While servers themselves often manage exporting and removing their names and
binding information from CDS, sometimes administrators need to manually add,
change, or remove binding information. For instance, when a server host machine
crashes unexpectedly and stays offline for a long time, its resident servers cannot
remove their entry names and binding information from CDS. Clients can waste time
looking for these phantom servers. The DCE control program provides therpcentry
object that you can use to manage server entry names and their binding information
in CDS.

Before we get to the actual management tasks, let us examine a server entry to see
exactly what it is we’ll be managing. Figure 10-2 shows possible information in a
server entry.

170 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

Figure 10–2. Possible Information in a Server Entry

Interface UUID/version pair 1
with binding information 1

Interface UUID/version pair 1
with binding information 2

Interface UUID/version pair 1
with binding information 3

Interface UUID/version pair 2
with binding information 1

Interface UUID/version pair 2
with binding information 3

Object UUID 2

Object UUID 3

Object UUID 4

Object UUID 1

One Server Entry

Bindings

Objects

The top part of Figure 10-2 contains bindings. Each binding consists of an interface
identifier and a binding. The interface identifier identifies an interface offered by the
server, and its binding information indicates the host address and network transport
to use to access that interface. The following example of a binding (shown indcecp
syntax) indicates the server is on the host with internet address 120.101.13.157 and is
available using the User Datagram Protocol (UDP):

DCE 1.2.2 Administration Guide—Core Components 171

DCE Host and Application Administration

{nacdg_ip_udg 120.101.13.157}

When an interface identifier is available over several transports, the server entry
contains bindings (one binding for each transport). Servers can offer more than one
interface. Multiple interfaces can be available through a single endpoint. That is,
different interfaces can have the same bindings.

The lower part of the figure contains object UUIDs. Object UUIDs offer additional
information to clients; they identify specific objects or resources managed by the
server. For instance, one print server offers printers on floor 2 while another print
server offers printers on floor 1. In this case, object UUIDs let clients select printers
on the appropriate floor. In other words, object UUIDs help clients distinguish from
among otherwise identical services.

Although application servers can manage their own server entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or change
information in a server entry. There are four methods for managing server entries in
CDS:

• Server entry names can be hardcoded into an application. You can change server
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

• Server entry names can be stored as theentryname attribute of the server’s
configuration information (using theserver object) where it is accessible to the
application. This is more convenient than recompiling but, more importantly, this
method places the server’s entry name in a standard (platform independent) place
where administrators can see it too. You might need to restart an application to
use this method, however.

• Server entry names can be passed to an application through environment variables
or arguments. While these are effective methods and they are more convenient
than recompiling, they are not platform independent. This means you might need
different approaches on different operating systems.

• Server entry names can be directly managed in CDS by using the DCE control
program’srpcentry object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use therpcentry object to manually manage server
entries in CDS.

172 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

10.4.1.1 Creating a Server Entry in CDS

Often, servers will create their own entries in CDS either when they initialize or when
they are configured after installation. But sometimes, you might want to create a server
entry manually. When you create a server entry, it is empty; it does not contain any
interface or binding information.

One reason to create an empty server entry is to establish ownership of the entry.
Server entries are owned by the creator. If a server creates an entry, the server can
also delete the entry later. You can preempt such a circumstance by creating the entry
yourself. Later, the server exports its bindings to the existing server entry (provided
that the ACL allows this).

Use anrpcentry create operation to create an empty server entry as in the following,
which creates one named/.:/subsys/applications/bbs_server. The CDS directory/.:/
subsys/applicationsmust already exist for this operation to succeed.

dcecp> rpcentry create /.:/subsys/applications/bbs_server

dcecp>

10.4.1.2 Deleting a Server Entry from CDS

Because server entries generally contain stable server binding information, they tend
to stay around rather than be deleted. Even when a server goes away for a short time,
say, overnight, it might not be practical to remove its entry. But when a server goes
away for a long time, you can avoid the client expense of trying to use the phantom
server by removing the server’s entry from CDS.

Use anrpcentry delete operation to remove a server entry from CDS as shown in the
following example:

dcecp> rpcentry delete /.:/subsys/applications/bbs_server

dcecp>

DCE 1.2.2 Administration Guide—Core Components 173

DCE Host and Application Administration

10.4.1.3 Exporting Binding Information to a Server Entry in CDS

Servers usually export their own binding information to CDS when they initialize or
when they are configured after installation. But sometimes, binding information may
have been removed for some reason or by accident and you want to restore it. Or
another transport has been added and you want to export the binding for the new
transport.

You can manually export server binding information to a server entry by using an
rpcentry export operation. If the entry does not already exist, therpcentry export
operation creates it provided the directory already exists and you have the necessary
permissions.

The following example illustrates exporting a server’s binding information to a server
entry named/.:/subsys/applications/bbs_server. The object UUID identifies the data
file resource used bybbs_server.

dcecp> rpcentry export /.:/subsys/applications/bbs_server \

> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0} \

> -binding {ncacn_ip_tcp 130.105.1.227} \

> -object {76030c42-98d5-11cd-88bc-0000c08adf56}

dcecp>

10.4.1.4 Importing Binding Information from a Server Entry in
CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But occasionally,
an administrator might want to import a binding. For instance, a client might lack
access to CDS but it could still communicate with the server if you supplied it with
a valid binding.

Use anrpcentry import operation to return a server’s binding information, as follows:

174 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

dcecp> rpcentry import /.:/subsys/applications/bbs_server \

> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0}

{ncacn_ip_tcp 130.105.1.227}

dcecp>

10.4.1.5 Viewing Information in a Server Entry

When clients are having difficulty communicating with servers, you might want to
see what binding information is contained in a server entry as a troubleshooting step.
Or say you are adding object UUIDs to server entries and you wonder whether a
server entry has been overlooked. You can use anrpcentry show operation to view
the information in a server entry as illustrated in the following example. The returned
information includes the interface identifier, two bindings over which the server can
be reached, and an object UUID of a resource maintained by the server.

dcecp> rpcentry show /.:/subsys/applications/bbs_server

{458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0

{ncadg_ip_udp 130.105.1.227}

{ncacn_ip_tcp 130.105.1.227}}

{76030c42-98d5-11cd-88bc-0000c08adf56}

dcecp>

10.4.1.6 Removing Binding Information from a Server Entry in
CDS

Occasionally, you might want to remove binding information from a server entry. If
a server host crashes, its servers cannot remove their server entries from CDS. To
prevent clients from trying to communicate with these phantom servers, you should
unexport the bindings from CDS manually. Unlike theendpoint deleteoperation, this
operation does not remove the entry name from CDS.

Use anrpcentry unexport operation to remove server binding information as shown
in the following example. Notice that the object UUID is not removed from the server
entry unless you specify it as an option to theunexport operation.

DCE 1.2.2 Administration Guide—Core Components 175

DCE Host and Application Administration

dcecp> rpcentry unexport /.:/subsys/applications/bbs_server \

> -interface {458ffcbe-98c1-11cd-bd93-0000c08adf56 1.0}

dcecp>

dcecp> rpcentry show /.:/subsys/applications/bbs_server

{76030c42-98d5-11cd-88bc-0000c08adf56}

dcecp>

10.4.2 Using Group Entries to Help Balance Server Workloads

When a client queries CDS for a server binding, the request includes the name of the
entry to look in for the binding. When only one server offers the client’s requested
service, CDS will return the same binding for every client request for this service.
While this model works fine for limited client requests, it can cause service bottlenecks
when many client requests converge on one server. Applications can avoid bottlenecks
by providing multiple servers to service large numbers of client requests. Server entry
names alone do not provide a convenient way to distribute client requests evenly among
multiple servers because you’d have to explicitly direct each client to a particular
server. So CDS providesgroup entriesas a convenient mechanism for distributing the
client load across multiple servers.

A CDS group entry gathers related servers together under a common group name.
Group entries contain members that are generally pointers to server entries, but
members can point to other group entries, too. When a client requests a binding from
a group entry, CDS returns, at random, one of the pointers contained in the group
entry. If the entry picked at random is another group entry, CDS does not return that.
Instead CDS goes to that group and picks another random member, continuing until a
server entry is returned. This model requires that any group member can service the
client request. Figure 10-3 shows how a group entry contains members that point to
other groups and to server entries.

176 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

Figure 10–3. Possible Mappings of a Group

Binding information
Interface identifiers
Object UUIDs

Member name

Group A:

Member name

Member name

Group B:
Server entry 3:

Server entry 4:

Server entry 1:

Server entry 2:

Server entry 5:

 = Member of Group A

Key:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

 Member name

 Member name

Now, let us see how group entries help balance a workload. Consider an organization
with 12 identical laser printers equally spread among three departments. The following
group entry examples show how each group entry name returns any one of the four
printers assigned to its own department:

Group entry name:

/.:/admin/finance/accts_payable_printers

/.:/admin/finance/accts_payable/laser_10

/.:/admin/finance/accts_payable/laser_11

DCE 1.2.2 Administration Guide—Core Components 177

DCE Host and Application Administration

/.:/admin/finance/accts_payable/laser_12

/.:/admin/finance/accts_payable/laser_13

Group entry name:

/.:/admin/finance/accts_receivable_printers

/.:/admin/finance/accts_receivable/laser_10

/.:/admin/finance/accts_receivable/laser_11

/.:/admin/finance/accts_receivable/laser_12

/.:/admin/finance/accts_receivable/laser_13

Group entry name:

/.:/admin/finance/payroll_printers

/.:/admin/finance/payroll/laser_10

/.:/admin/finance/payroll/laser_11

/.:/admin/finance/payroll/laser_12

/.:/admin/finance/payroll/laser_13

You could temporarily make one department’s printers available to another group by
adding its group name to the group entry of the other group as shown in the next
group entry example:

Group entry name:

/.:/admin/finance/accts_payable_printers

/.:/admin/finance/accts_payable/laser_10

/.:/admin/finance/accts_payable/laser_11

/.:/admin/finance/accts_payable/laser_12

/.:/admin/finance/accts_payable/laser_13

/.:/admin/finance/accts_receivable_printers

The configuration in the preceding example means the clients in accounts payable
can use the printers in accounts receivable 20% of the time. You could offer a higher
percentage of use by adding server entry names rather than the group name. The next
group entry example shows a situation where the clients in accounts payable can use
the printers in accounts receivable 50% of the time. However, do not try to increase
the percentage of use by including a group name multiple times because you’ll get an
error.

Group entry name:

/.:/admin/finance/accts_payable_printers

178 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

/.:/admin/finance/accts_payable/laser_10

/.:/admin/finance/accts_payable/laser_11

/.:/admin/finance/accts_payable/laser_12

/.:/admin/finance/accts_payable/laser_13

/.:/admin/finance/accts_receivable/laser_10

/.:/admin/finance/accts_receivable/laser_11

/.:/admin/finance/accts_receivable/laser_12

/.:/admin/finance/accts_receivable/laser_13

Although application servers can manage their own group entries in CDS, you may
find it more convenient (and more straightforward) to manually add, remove, or change
server information in a group entry. Like managing server entries, there are several
methods for managing group entries in CDS:

• Group entry names can be hardcoded into an application. You can change group
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

• Group entry names can be passed to an application through environment variables
or arguments. These are more convenient methods than recompiling, but you might
need to restart an application to use either method.

• Group entry names can be directly managed in CDS by using the DCE control
program’srpcgroup object. This manual method does not require recompiling or
restarting applications.

The next sections discuss how to use therpcgroup object to manually manage group
entries in CDS.

10.4.2.1 Creating a New Group Entry in CDS

You can create an empty group entry in CDS by using anrpcgroup create operation.
While group creation is frequently performed by applications that first use a group
entry, creating an entry yourself establishes you as the owner of the entry. As the
owner, you have ultimate control over who can export and manage information in the
entry.

To create an empty group entry in CDS, use anrpcgroup create operation as in the
following example:

DCE 1.2.2 Administration Guide—Core Components 179

DCE Host and Application Administration

dcecp> rpcgroup create /.:/subsys/applications/admin_bbs_servers

dcecp>

10.4.2.2 Adding a Member to a Group Entry in CDS

You can use anrpcgroup add operation to add a member to a group entry. If the group
entry does not exist, the operation creates the group entry and adds the member. The
member can be a server entry or another group entry. Note that no operations check
whether the members you add actually exist. This lets you configure the namespace
even before servers are up and running.

To add a member to the/.:/subsys/applications/admin_bbs_serversgroup entry in
CDS, use anrpcgroup add operation as in the following example:

dcecp> rpcgroup add /.:/subsys/applications/admin_bbs_servers \

> -member /.:/subsys/applications/bbs_server4

dcecp>

10.4.2.3 Viewing the Members of a Group Entry

You can list the members of a group entry by using anrpcgroup list operation. This
is useful for troubleshooting or for just seeing how servers are distributed in group
entries.

To list the members of a group entry in CDS, use anrpcgroup list operation, as
shown in the following example, which lists the members of the group/.:/subsys/
applications/admin_bbs_servers:

dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers

/.../my_cell.goodco.com/subsys/applications/bbs_server3

/.../my_cell.goodco.com/subsys/applications/bbs_server4

dcecp>

180 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

10.4.2.4 Importing Binding Information from a Group Entry in
CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But occasionally,
an administrator might want to import a binding. In the case where a client lacks
access to CDS, it could still communicate with the server if you supplied the client
with a valid binding.

You can use anrpcgroup import operation to return a server’s binding information.
You must specify an interface by using the-interface option as shown in the following
example:

dcecp> rpcgroup import /.:/subsys/applications/admin_bbs_servers \

> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}

{ncacn_ip_tcp 130.105.1.227}

dcecp>

You can use other options such as-version and - object to further specify a binding.
Use the-max option to limit the number of bindings returned.

10.4.2.5 Removing Members from a Group Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one group entry into
another.

Use anrpcgroup remove operation to remove one or more members from a group.
The following example removesbbs_server3from the group/.:/subsys/applications/
admin_bbs_servers:

dcecp> rpcgroup remove /.:/subsys/applications/admin_bbs_servers \

>-member /.../my_cell.goodco.com/subsys/applications/bbs_server3

dcecp> rpcgroup list /.:/subsys/applications/admin_bbs_servers

/.../my_cell.goodco.com/subsys/applications/bbs_server4

DCE 1.2.2 Administration Guide—Core Components 181

DCE Host and Application Administration

/.../my_cell.goodco.com/subsys/applications/bbs_server5

/.../my_cell.goodco.com/subsys/applications/bbs_server6

dcecp>

10.4.2.6 Deleting a Group Entry from CDS

Organization changes or server redeployments can make some groups obsolete. When
you want to remove a group entry from CDS, use anrpcgroup delete operation.
The following example illustrates removing an obsolete group entry called/.:/subsys/
admin/temporaries/wp_servicesfrom CDS:

dcecp> rpcgroup delete /.:/subsys/admin/temporaries/wp_services

dcecp>

10.4.3 Using Profiles to Direct Client Searches for Servers

Group entries offer clients a random choice from among multiple available services.
Although a group entry can help in load balancing and resource allocation, its random
nature resists fine tuning. Furthermore, it does not offer a way to prioritize servers for
use by particular clients.

Profiles offer a complementary way to organize servers because you can prioritize the
search order of the profile members. (These were calledelementsin previous DCE
versions.) Members identify servers by providing the following information:

• Interface identifier

This field is the key to the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

• Member name

The entry name of one of the following kinds of directory service entries:

— A server entry for a server offering the requested RPC interface

— A group corresponding to the requested RPC interface

182 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

— A profile

• Priority value

The priority value (0 is the highest priority; 7 is the lowest priority) is designated
by the creator of a profile member to help determine the search order to select
among like-priority members at random.

• Annotation string

The annotation string enables you to identify the purpose of the profile member.
The annotation can be any textual information; for example, an interface name
associated wit h the interface identifier or a description of a service or resource
associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Profiles are flexible; they contain members that can point to server entries, groups,
and to other profiles. Profiles can also contain a special member called adefault
profile member. This optional member should point to a default profile, usually a
comprehensive backup profile that can serve the needs of most users in an organization.
Figure 10-4 shows some possible mappings of a profile.

DCE 1.2.2 Administration Guide—Core Components 183

DCE Host and Application Administration

Figure 10–4. Possible Mappings of a Profile

Profile A:

Default profile

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

element:
Binding information
Interface identifiers
Object UUIDs

= Member in element

Key:

Profile A of

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

annotation
priority
member name
Interface version

 Profile element:

Interface version
member name
priority
annotation

Interface UUID

annotation
priority
member name
Interface version
Interface UUID

 Profile element:

Interface UUID

 Profile element:

 Member name

 Member name

Server entry:Server entry:

Group:

Server entry:

Default profile:

Server entry:

 Binding information
 Interface identifiers
 Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

Server entry:

Server entry:

Server entry:

To get an idea of how profiles can work, let us build on our printer example from
the preceding discussion on group entries. The following profile entry example shows
one way to use profiles to prioritize resources based on proximity to clients.

In the figure, three users have personalized printer profiles that return server entries
for printers nearest to them first. For example, userJohn is closest tolaser_20O so
the profile priority1 returns that binding first.John is furthest fromlaser_23, so the
profile priority 4 returns that binding last.

184 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

Profile entry name:

/.:/admin/finance/accts_receivable_printers/johns_profile

/.:/admin/finance/accts_receivable/laser_20 1

/.:/admin/finance/accts_receivable/laser_21 2

/.:/admin/finance/accts_receivable/laser_22 3

/.:/admin/finance/accts_receivable/laser_23 4

Profile entry name:

/.:/admin/finance/accts_receivable_printers/pats_profile

/.:/admin/finance/accts_receivable/laser_20 3

/.:/admin/finance/accts_receivable/laser_21 4

/.:/admin/finance/accts_receivable/laser_22 2

/.:/admin/finance/accts_receivable/laser_23 1

Profile entry name:

/.:/admin/finance/accts_receivable_printers/wills_profile

/.:/admin/finance/accts_receivable/laser_20 2

/.:/admin/finance/accts_receivable/laser_21 1

/.:/admin/finance/accts_receivable/laser_22 3

/.:/admin/finance/accts_receivable/laser_23 4

To conclude this example, let us say that your department’s server is being overused
by another department. You could further limit its use by lowering the server’s priority
value in the foreign department’s profile that points to your server.

Just as application servers can manage their own profile entries in CDS, they can also
manage their own profile entries. However, you may find it more convenient (and more
straightforward) to manually add, remove, or change server information in a profile
entry. Like managing server entries and group entries, there are several methods for
managing profile entries in CDS:

• Profile entry names can be hardcoded into an application. You can change profile
entry information in the source code, but you need to recompile and rerun the
application before the entry names take effect.

• Profile entry names can be passed to an application through environment variables
or arguments. These methods are more convenient than recompiling, but you might
need to restart an application to use either method.

DCE 1.2.2 Administration Guide—Core Components 185

DCE Host and Application Administration

• Profile entry names can be directly managed in CDS by using the DCE control
program’srpcprofile object. This manual method does not require recompiling
or restarting applications.

The next sections discuss how to use therpcprofile object to manually manage profile
entries in CDS.

10.4.3.1 Creating a New Profile

You can create an empty profile entry in CDS by using arpcprofile create operation.
While profile creation is frequently performed by applications that first use a profile
entry, creating an entry yourself establishes you as the owner of the entry. As the
owner, you have ultimate control over who can export and manage information in the
entry.

To create an empty profile entry in CDS, use anrpcprofile create operation as in the
following example:

dcecp> rpcprofile create /.:/subsys/applications/admin_group_profile

dcecp>

10.4.3.2 Adding a Profile Member

You can use anrpcprofile add operation to add a member to a profile entry. If the
profile entry does not exist, the operation creates the profile entry and adds the member.
The member can be a server entry or another profile entry.

To add a member to the/.:/subsys/applications/wards_profileprofile entry in CDS,
use anrpcprofile add operation as in the following example which adds the server
entry /.:/subsys/applications/bbs_server3with a priority of 2:

dcecp> rpcprofile add /.:/subsys/applications/wards_profile \

> -member /.:/subsys/applications/bbs_server3 \

186 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0} \

> -priority 2

dcecp>

10.4.3.3 Viewing the Members of a Profile Entry

You can simply list the members of a profile entry by using anrpcprofile list operation.
This is useful for troubleshooting or for just seeing how servers are distributed in
profile entries.

To list the members of a profile entry in CDS, use anrpcprofile list operation as in
the following example which lists the members of the profile/.:/subsys/applications/
admin_group_profile:

dcecp> rpcprofile list /.:/subsys/applications/wards_profile

/.../my_cell.goodco.com/subsys/applications/admin_bbs_servers

/.../my_cell.goodco.com/subsys/applications/bbs_server

dcecp>

You can view the complete information stored with a profile entry by using an
rpcprofile show operation. This shows the priority and the interface UUIDs associated
with a member. The following example shows all of the information contained in the
profile named/.:/cell-profile :

dcecp> rpcprofile show /.:/cell-profile

{{d46113d0-a848-11cb-b863-08001e046aa5 2.0} /.../cell.co.com/sec 0 rs_bind}

{{0d7c1e50-113a-11ca-b71f-08001e01dc6c 1.0} /.../cell.co.com/sec-v1 0 secidmap}

{{8f73de50-768c-11ca-bffc-08001e039431 1.0} /.../cell.co.com/sec 0 krb5rpc}

{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.0} /.../cell.co.com/sec 0 rpriv}

{{b1e338f8-9533-11c9-a34a-08001e019c1e 1.1} /.../cell.co.com/sec 0 rpriv}

{{6f264242-b9f8-11c9-ad31-08002b0dc035 1.0} /.../cell.co.com/lan-profile 0 LAN}

{{4d37f2dd-ed43-0000-02c0-37cf2e000001 4.0} /.../cell.co.com/fs 0 fs}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 187

DCE Host and Application Administration

10.4.3.4 Importing Binding Information from a Profile Entry in
CDS

Application client programs can automatically import server binding information from
CDS and use it in their quest to find and communicate with a server. But occasionally,
an administrator might want to import a binding. In the case where a client lacks
access to CDS, it could still communicate with the server if you supplied the client
with a valid binding.

You can use anrpcprofile import operation to return a server’s binding information.
You must specify an interface by using the-interface option as shown in the following
example:

dcecp> rpcprofile import /.:/subsys/applications/wards_profile \

> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}

{ncacn_ip_tcp 130.105.1.202}

{ncacn_ip_tcp 130.105.1.227}

dcecp>

You can use other options such as-version and - object to further specify a binding.
Use the -max option to limit the number of bindings returned, as shown in the
following example:

dcecp> rpcprofile import /.:/subsys/applications/wards_profile

\

> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0} \

> -max1

{ncacn_ip_tcp 130.105.1.202}

dcecp>

10.4.3.5 Removing Members from a Profile Entry in CDS

Over time, organizational changes can require you to redeploy servers in your DCE
cell. You might, for instance, want to move server entries from one profile entry into
another.

188 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

Use an rpcprofile remove operation to remove one or more members from a
profile. In the following example, therpcprofile remove operation removes member
/.:/subsys/applications/admin_bbs_serversfrom the profile/.:/subsys/applications/
wards_profile:

dcecp> rpcprofile remove /.:/subsys/applications/wards_profile \

> -member /.:/subsys/applications/admin_bbs_servers \

> -interface {458ffcbe-98c1-11cd-88bc-0000c08adf56 1.0}

dcecp>

10.4.3.6 Deleting a Profile Entry from CDS

Organization changes or server redeployments can make some profiles obsolete. When
you want to remove a profile entry from CDS, use anrpcprofile delete operation.
The following example illustrates removing an obsolete profile entry called/.:/subsys/
admin/temporaries/74232_profilefrom CDS:

dcecp> rpcprofile delete /.:/subsys/admin/temporaries/74232_profile

dcecp>

10.5 Client Administration

So far, this chapter has focused on server administration issues. We’ve seen how
to control some server operations, and how to store server binding information in
CDS and in the host endpoint map where clients can find it. This section discusses
the administration needs of application clients. Although client administration is very
simple— there are just two related operations—it is an essential step in getting clients
and servers working together.

We know that CDS is a hierarchical system of directories that stores server binding
information in the form of server entries. We also know that CDS offers group entries
and profile entries as a way to direct clients to appropriate servers. But how do clients
know where to begin looking for a server?

DCE 1.2.2 Administration Guide—Core Components 189

DCE Host and Application Administration

As we discussed earlier in this chapter, servers register interfaces and their bindings
in CDS. Each interface-binding combination is registered under a server entry name.
When a client makes a remote procedure call, it passes a server entry name (or a group
or profile entry name) to CDS along with the UUID of an interface that offers the
remote procedure. CDS uses the server entry name (or group or profile entry name) as
a starting point in the search for a binding that contains an interface UUID and version
matching that passed by the client. This method presumes the client has previously
acquired the server entry name (or group or profile name) used by the server.

Getting clients to use an appropriate server entry name is a 2-step process:

1. Determine what entry name a client should use.

2. Pass the name to the client program.

Note that a client uses whatever name you supply. The client program cannot
distinguish whether the name is a server entry name or group entry name or profile
entry name. To the client, all of these names look and behave the same.

10.5.1 Determining the Entry Name

You need to know the entry name exported by a server so you can provide it to client
programs when you configure them. Here, we are just calling this name an entry name,
but it can be a server entry name or group entry name or profile entry name. Your
application documentation should help you decide which kind of entry to use.

If you are installing and configuring the server and client parts of an application, make
a note of the server’s entry name when you configure the server.

If you are not installing or configuring the server (for instance, the server was
previously installed), you might need to do some detective work to determine the
name to use. There are several places you can look.

If a server uses the server control facility described earlier in this chapter, you can
probably use aserver showoperation to reveal its entry name. Of course, this means
you need to know the server’s object name on the host where the server resides. You
can see all of the server object names on a host by using aserver catalogoperation.
The following example lists all the server objects configured on hostsilver. Theserver
show operation reveals the entry name used by theinfo_server program.

190 DCE 1.2.2 Administration Guide—Core Components

DCE Application Administration

dcecp> server catalog /.:/hosts/silver

/.../my_cell.goodco.com/hosts/silver/config/srvrconf/video_clip

/.../my_cell.goodco.com/hosts/silver/config/srvrconf/info_server

dcecp> server show /.:/hosts/silver/config/srvrconf/info_server

{uuid 6d5e7184-71b7-11cd-a205-08000925634b}

{program {/usr/local/bin/infosrv}}

{arguments {-brief}}

{prerequisites {}}

{keytabs {}}

{entryname {/.:/subsys/applications/info_server_1}}

{services {}}

{principals {}}

{starton {explicit failure}}

{uid 1423}

{gid 1000}

{dir {/tmp}}

dcecp>

If a server starts from a boot program or script of some kind, look in the program or
script for the name or names (sometimes servers use multiple names when they export
multiple interfaces). The name might be supplied as an argument to the command that
starts the server, as in the following example:

infosrv /.:/finance/operations/infoserv

When the server side does not easily reveal its entry name, try to determine what entry
other client programs are using. Client programs frequently start from a boot program
or script of some kind, and entry names are generally provided as arguments to the
command to start the client. These commands often follow the same model shown in
the previous example of the server startup command.

10.5.2 Providing the Entry Name to Clients

Sometimes, very simple clients can have the server entry name encoded within them
so you do not have to pass any entry name. But more often, you need to supply an
entry name to a client program when it starts. This approach is more flexible than

DCE 1.2.2 Administration Guide—Core Components 191

DCE Host and Application Administration

hardcoding an entry name because it offers an easy way to use a different entry name
should the need arise.

The client configuration documentation should include instructions on how to pass the
name to the client. One method uses a script or batch file that contains the command
to start the client along with arguments that include the appropriate server entry name.
The following example shows a server entry name passed as a command argument in
a shell script that starts the client:

Shell Script to start the InfoClient application

infoclient /.:/finance/operations/InfoServ_profile

Alternatively, the server entry name can be stored in an environment variable (called
RPC_DEFAULT_ENTRY on UNIX systems). The following example shows a shell
script that defines this variable and then invokes the client:

#! /bin/sh

Shell Script to start the InfoClient application

export RPC_DEFAULT_ENTRY=/.:/finance/operations/InfoServ_profile

infoclient

192 DCE 1.2.2 Administration Guide—Core Components

Part 4
Cell Directory Service

Chapter 11
Introduction to the DCE Directory
Service

Distributed processing involves the interaction of multiple systems to do work that is
done on one system in a traditional computing environment. One challenge resulting
from this network-wide working environment is the need for a universally consistent
way to identify and locate people and resources anywhere in the network.

The DCE Directory Service makes it possible to contact people and to use resources
such as disks, print queues, and servers anywhere in the network without knowing their
physical location. The directory service is much like a telephone directory assistance
service that provides a phone number when given a person’s name. Given the unique
name of a person, server, or resource, it can return the network address and other
information associated with that name.

The DCE Directory Service stores addresses and other relevant information
as attributes of the name. For example, attributes can contain the name of an
organizational unit, such as European Sales; a location, such as the first floor of
Building A; or a telephone number. Users can search for a name by supplying one
or more of its attributes. For example, given the search criteria ofJohn Smith and

DCE 1.2.2 Administration Guide—Core Components 195

Cell Directory Service

Chicago, the directory service could produce a list of telephone numbers for users in
Chicago named John Smith.

Note: Search capabilities are currently limited to the global part of the DCE
Directory Service environment.

11.1 How the DCE Components Use the DCE
Directory Service

The DCE Directory Service is a fundamental service that applications can rely on and
use to their advantage. This section describes how other DCE components use the
DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development and use
of distributed applications that follow a client/server model. In the RPC model,clients
are programs that make remote procedure calls, andserversare programs that carry
out the procedures. The DCE RPC software stores information in the directory service
about the addresses of RPC servers and the interfaces they support.

When an RPC client wants to make a call to a particular server, it can query the
directory service for the information necessary to contact that server. If the client
wants to access a specific resource that is named in the directory service, it can query
for that specific name. If a client application knows the type of service that it wants,
such as C compilers, printers, or employee information, but does not know the address
of a specific server, it can also use the directory service to find that information.

The DCE Security Service, which verifies the identity of users when they log in, uses
the directory service to store the addresses of its authentication servers.

The Distributed File Service (DFS) provides a location service for filesets (logical
groups of files) so that users can access remote files as if they are on the local system.
DFS uses the DCE Directory Service to find out how to contact its fileset location
servers.

The Distributed Time Service (DTS) is responsible for synchronizing system clocks
in the network. Synchronized clocks are important to any distributed application that
needs to keep track of the order in which events occur across multiple systems. DTS
uses the DCE Directory Service to find out how to locate its time servers.

196 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

11.2 How to Use DCE Directory Services

Other than DCE administrators, the people who use directory services normally do
so indirectly, through an application interface. An application can interact with the
directory service on behalf of users who create a name for a resource and subsequently
refer to it by that name. The following examples, both real and hypothetical, explain
some of the ways that users can use the directory service:

• A user invokes a spell-checking application on a new document. The application
contains DCE RPC client code on the user’s local system. The RPC client contacts
the directory service for information on an available spell-checking server. The
directory service returns the address of the server, the protocol type it uses
to communicate, and a universal unique identifier (UUID) that represents an
interface. Using this information, the RPC client makes a remote call to the server
and the server checks the spelling in the user’s document. The user is unaware
that use of the spell checker involved a call to the directory service and interaction
with a remote server.

• A user logging into a system enters a name and password. The directory service
helps the login program locate an authentication server, which verifies the user’s
identity in an authentication database.

• A user enters a file specification. The directory service provides the address of a
DFS fileset location database, which contains the network address of a server that
allows the user to access the file.

• A user enters the name of a computer conference or electronic bulletin board and
the directory service provides an address, allowing the application to connect to
the conference service.

• By entering a name or some information about a printer’s capabilities, a user can
learn the printer’s network address. For example, the user may want to find the
address of the closest and fastest available color printer.

• A user needs information from an employee in the marketing department. The
user remembers that the employee’s last name is Wong, but cannot remember the
first name. By entering the last name and department name in an employee locator
application, the user can check the directory service for information on all Wongs
in the marketing department and find out how to contact the employee.

• A user enters a report in a problem-tracking database. Although the database was
recently moved to a new node, the user is not aware of the change because the
database is always referred to by its name only. The directory service stores the

DCE 1.2.2 Administration Guide—Core Components 197

Cell Directory Service

current network address and provides it to the problem-tracking application and
any other application that requests it.

The remainder of this chapter explains how the DCE Directory Service environment
works with regard to cells. It introduces the main directory service components: the
Cell Directory Service (CDS), the Global Directory Service (GDS), and the Global
Directory Agent (GDA), which is a gateway between the local and global naming
environments. The chapter also discusses DCE support for the Domain Name System
(DNS), which is a global name service that is not a part of the DCE technology
offering.

11.3 Directory Services and the Cell Environment

This section introduces the following main components of the DCE naming
environment and explains their relationship to the cell:

• CDS

• GDS

• DNS

• GDA

CDS is a high-performance distributed service that provides a consistent, location-
independent method for naming and using resources inside a cell (intracell). CDS can
also be used for communication between cells (intercell) when cells are connected
into a hierarchy.

GDS supports the global naming environment inside cells (intracell) and outside of
cells (intercell). GDS is an implementation of a directory service standard known as
X.500. This standard is specified by the International Organization for Standardization
(ISO) 9594 and the International Telegraph and Telephone Consultative Committee
(CCITT) X.500 series. Because it is based on a worldwide standard, GDS offers the
opportunity for a universally interoperable global directory.

Figure 11-1 represents a hypothetical configuration of two cells that each use GDS
to access names in the other cell. Names that are stored directly in GDS also are
accessible from each cell. CDS is the directory service within each cell. The same

198 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

organization administers both cells, which are configured based on geographic location
and network topology.

Figure 11–1. Cell and Global Naming Environments

GDS

Cell 2

CDS

Cell 1

CDS

DNS is a widely used existing global name service for which DCE offers support.
Many networks currently use DNS primarily as a name service for Internet host
names. Although DNS is not a part of the DCE technology offering, the directory
service contains support for cells to interoperate through DNS.

The GDA is the DCE component that makes cell interoperation possible. The GDA
enables CDS to access a name in another cell through one of the global naming
environments (GDS or DNS), or through the CDS of the parent cell, if the cell is part
of a hierarchical cell configuration. The GDA is an independent process that can exist
on a system separate from a CDS server, although by default the DCE configuration
script configures the GDA on the same machine as a CDS server. CDS needs to be
able to contact at least one GDA to participate in the global naming environment.

Figure 11-2 shows how the GDA helps CDS access names outside of a cell. When
CDS determines that a name is not in its own cell, it passes the name to a GDA,
which searches the appropriate naming environment (CDS, GDS, or DNS) for more

DCE 1.2.2 Administration Guide—Core Components 199

Cell Directory Service

information about the name. The GDA returns information that enables the original
CDS server to contact the CDS server in whose cell the name resides. The GDA can
help CDS find names in a cell that is registered in DNS (Scenario A), a cell that is
registered in GDS (Scenario B), or a cell that is registered in the originating cell’s
parent cell (not shown). The GDA decides which name service to use based on the
syntax of the name. Section 11.5 describes name syntaxes in detail.

Figure 11–2. Interaction of CDSs, GDAs, and Global Directory Services

55
CDS

Scenar io A

CDS

DNS

GDA

2 3

41

Scenar io B

1 4

32

GDA

CDS

GDS

CDS

The GDA helps CDS resolve names
A. in another cell that is registered in DNS
B. in another cell that is registered in GDS

11.4 How Cells Determine Naming Environments

In addition to delineating security and administrative boundaries for users and
resources, cells determine the boundaries for sets of names. Because different naming
components operate in a cell and outside of a cell, naming conventions in the cell and
global environments differ as well. The DCE naming environment supports two kinds
of names:global names andcell-relative, or local, names. The following subsections

200 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

introduce the concept of global and local names. Section 11.5 describes CDS, GDS,
and DNS names in detail.

11.4.1 Global Names

All entries in the DCE Directory Service have a global name that is universally
meaningful and usable from anywhere in the DCE naming environment. The prefix/
... indicates that a name is global. A global name can refer to an object within a cell
(named in CDS) or an object outside of a cell (named in GDS).

The following example shows the global name for an entry created in GDS. The name
represents user Ellie Bloggs, who works in the administrative organization unit of the
Widget organization, a British corporation.

/.../C=GB/O=Widget/OU=Admin/CN=Ellie Bloggs

The GDS name syntax consists of a global prefix/... and a set of elements, called
relative distinguished names (RDNs). Each RDN consists of one or more pairs of parts
separated by an= (equal sign) character. The items that are separated by an equal sign
are multiple attribute value assertions (AVAs). See theDCE 1.2.2 GDS Administration
Guide and Referencefor more information about AVAs. The first part of a pair is
an abbreviation that indicates a type of information. Some common abbreviations are
Country (C), Organization (O), Organization Unit (OU), and Common Name (CN).
The second part of the pair is a value. (See Section 11.5.2 for more information on
GDS names.)

The following example shows a global name for a price database server named in CDS.
The server is used by the Portland sales branch of XYZ Company, an organization in
the United States.

Cell name CDS name

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

DCE 1.2.2 Administration Guide—Core Components 201

Cell Directory Service

As the example illustrates, global names for entries that are created in CDS look
slightly different from pure GDS-style names. The first portion of the name,/.../
C=US/O=XYZ/OU=Portland, is a global cell name that exists in GDS. The remaining
portion, /subsys/PriceMax/price_server1, is a CDS name.

The cell name exists because cells must have names to be accessible in the global
naming environment. The GDA looks up the cell name in the process of helping
CDS in one cell find a name in another cell. Cell names are established during initial
configuration of the DCE components. Before configuring a cell that will participate
in standard intercell communication (that is, via the DNS or GDS global directory
services), the DCE administrator must obtain a unique cell name from either of the
global naming environments, depending on whether the cell needs to be accessed
through GDS or DNS.

The next example shows the global name of a host at ABC Corporation. The global
name of the company’s cell,/.../abc.com, exists in DNS.

Cell name

/.../abc.com/hosts/mysystem

CDS name

11.4.2 Hierarchical Cell Names

In a hierarchy of cells, the names of one or more cells, calledchild cells, are registered
in a cell’s CDS; this cell is called theparent cell. The cell at the top of the hierarchy
must be registered in a global directory service (GDS or DNS), but the cells underneath
do not need to be since they use CDS to communicate. A child has one and only one
parent at any given time, while a parent can have more than one child.

The GDA is the communications gateway between the CDS namespaces of cells in
a hierarchy, as it is between CDS and the global directory services. When the GDA
receives a request for information about a cell, and the cell is a child cell, the GDA
returns information about the CDS in the parent cell. The CDS of the parent cell
provides the pointers to the child cell.

A child cell’s name begins with the parent’s global cell name; that is, the name of the
cell beginning at the global root/... prefix. (This name is also known as the parent

202 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

cell’s fully qualified name.) It ends with the specific child cell name. The parent’s
global name can contain CDS syntax as well as GDS or DNS syntax, depending on
where the parent cell is located in the hierarchy.

The following example shows the global cell names of two child cells:

DCE 1.2.2 Administration Guide—Core Components 203

Cell Directory Service

Global Cell Name for Sales1

-- -- -- -- -- -- -- -- -- -- -- --^-- -- -- -- -- -- -- -- -- -- -- -- ---

/

Parent Global Cell Name Child Cell

-- -- -- -- -- -- --^-- -- -- -- -- -- -- -- -- -- -- -- -- --^---

/ \ / \

| || |

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Sales1

Global Cell Name for Marketing

_______________________^____________________________

/

Parent Global Cell Name Child Cell

-- -- -- -- -- -- --^-- -- -- -- -- -- -- -- -- -- -- -- -- ---^---

/ \ / \

| || |

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Marketing

The global cell name for each child includes

• The parent’s global name,/.../C=US/O=XYZ/OU=Portland

• The child’s unique CDS name,/Sales1or /Marketing

If a DCE administrator is establishing a hierarchy of cells during initial cell
configuration, he or she must obtain a unique GDS or DNS cell name for the cell at
the top of the hierarchy from the GDS or DNS global directory service authorities. All
of the cells beneath this cell share this name. TheDCE 1.2.2 Administration Guide—
Introductionprovides details on how to obtain GDS and DNS cell names.

If a DCE administrator establishes a hierarchy of cells after the cells have been
configured, the global names of the child cells change to point to the parent’s cell
name. Chapter 21 of this guide provides details on how to establish a hierarchy of
cells.

11.4.3 Alias Cell Names

You can give a cell more than one global name by creating analias name for the
cell. In this case, the cell has aprimary name, which is the name that DCE services
return for the cell when queried, and one or more cell aliases that the DCE services

204 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

recognize in addition to the primary name. For example, if your cell is registered in
the DNS global directory service, and you want to register it in GDS as well, you
obtain a GDS name for the cell and set it up as a cell alias. The DNS name remains
the primary name.

Chapter 6 of this guide explains how to use thedcecp cellaliastask object to manage
your cell names. Chapter 21 of this guide explains how to create a hierarchical cell.

11.4.4 Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local, name
that is meaningful and usable only from within the local cell where that entry exists.
The local name is a shortened form of a global name, and thus is a more convenient
way to refer to resources within a user’s own cell. Local names have the following
characteristics:

• They do not include a global cell name.

• They begin with the/.: prefix.

Local names do not include a global cell name because the/.: prefix indicates that the
name being referred to is within the local cell. When CDS encounters a/.: prefix on a
name, it automatically replaces the prefix with the local cell’s name, forming the global
name. CDS can handle both global and local names, but it is more convenient to use
the local name when referring to a name in the local cell. For example, these names
are equally valid when used within the cell named/.../C=US/O=XYZ/OU=Portland:

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

/.:/subsys/PriceMax/price_server1

The naming conventions required for the interaction of local and global directory
services may at first seem confusing. In an environment where references to names
outside of the local cell are necessary, the following simple guidelines can help make
the conventions easy to remember and use:

• Know your cell name.

• Know whether a name that you are referring to is in your cell.

DCE 1.2.2 Administration Guide—Core Components 205

Cell Directory Service

• When using a name that is within your cell, you can omit the cell name and
include the/.: prefix.

• When using a name that is outside of your cell, enter its global syntax, including
the /... prefix and the cell name.

• When someone asks for the name of a resource in your cell, give its global name,
including the/... prefix.

• When storing a name in persistent storage (for example, in a shell script), use its
global name, including the/... prefix. Local names (that is, names with a/.: prefix)
are intended only for interactive use and should not be stored. (If a local name
is referenced from within a foreign cell, the/.: prefix is resolved to the name of
the foreign cell and the resulting name lookup either fails or produces the wrong
name.)

11.4.5 Cell-Relative Naming in a Hierarchy of Cells

In a hierarchy of cells, cell-relative names and local names may not be the same. A
parent cell can reference a name in a child cell by using cell-relative naming (/.:).
Consequently, you can no longer determine whether a cell is in your local cell by
merely looking at its name. In the following example, the child cell (eng) is named
relative to its parent cell:

/.:/eng

This type of naming allows you to access names in a child cell (for example,/.:/eng/
hosts/admin) from the parent cell, without having to specify the global name of the
cell.

Note: When referencing names in a child cell from a parent cell, you should be
mindful that your status is that of a foreign user. Therefore, the child cell may
have access controls imposed on it that will deny you access to its namespace.

206 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

11.4.6 Local Filenames

When referring to pathnames of files in the local cell, you can shorten a local name
even further by using the/: prefix. This prefix translates to the root of the cell file
system. The default name of the file system root is/.:/fs, which is one level down
from the root of the cell namespace. So, for example, the following are all valid ways
to refer to the same file from within the/.../widget.comcell:

/.../widget.com/fs/smith/myfile

/.:/fs/smith/myfile

/:/smith/myfile

(See theDCE 1.2.2 DFS Administration Guide and Referencefor more information
on local file system abbreviations.)

11.5 An In-Depth Analysis of DCE Names

The rest of this chapter describes in depth the different kinds of names that make
up the DCE namespace. Appendix A and theDCE 1.2.2 GDS Administration Guide
and Referencecontain further details about valid characters and naming conventions
in CDS, GDS, and DNS names.

11.5.1 CDS Names

Every cell contains at least one server that is running a CDS server. A CDS server
stores and maintains names and handles requests to create, modify, and look up
data. The total collection of names shared by CDS servers in a cell is called a
cell namespace. The cell namespace administrator can organize CDS names into a
hierarchical structure of directories. CDS directories, which are conceptually similar
to the directories in your operating system’s file system, are a logical way to group
names for ease of management and use.

In a cell namespace, any directory that has a directory beneath it is considered the
parent of the directory beneath it. Any directory that has a directory above it is

DCE 1.2.2 Administration Guide—Core Components 207

Cell Directory Service

considered achild of the directory above it. The top level of the cell namespace is
called thecell root. You can refer to the cell root either by the global name of the cell
or by the short-form/.: prefix.

Figure 11-3 shows a simple cell namespace hierarchy, starting at the cell root. The
cell root (/.:) is the parent of the directories named/.:/hosts and /.:/subsys. The /.:/
subsysdirectory is a child of the cell root directory and the parent of the/.:/subsys/
dce directory.

Figure 11–3. Sample CDS Namespace Hierarchy

/.:

hosts subsys

dce

The complete specification of a CDS name, going left to right from the cell root to
the entry being named, is called thefull name. Each element within a full name is
separated by a / (slash) and is called asimple name. For example, suppose the/.:/
hostsdirectory shown in Figure 11-3 contains an entry for a host whose simple name
is bargle. The CDS full name of that entry is/.:/hosts/bargle. Multiple consecutive
slashes are turned into a single slash in a full name.

Multiple directory levels enable flexibility in distributing, controlling access to, and
managing many names. A directory hierarchy also reduces the probability of duplicate
names. For example, the names/.:/subsys/Hypermax/printQ/server1and /.:/subsys/
ABC/spell/server1are unique.

208 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

11.5.2 GDS Names

The operation of GDS is similar to that of CDS, but some important differences
exist in the structure of names and the ways they can be looked up. Like CDS,
GDS has a server process that provides access to and management of names. This
process is called a Directory System Agent (DSA). The combined knowledge of all
DSAs that participate in the same global directory service implementation is called
the Directory Information Base (DIB). This collective knowledge is viewed as a single
global directory consisting of many entries.

Information exists in the global directory in the form of a rooted hierarchy that is
called a directory information tree (DIT). The DIT is similar to a CDS namespace.
However, unlike a namespace, which has no inherent rules regarding structure and
content, the GDS hierarchy is influenced by a set of rules that is called aschema.
Every X.500 DSA must define a standard schema to which all of the entries in its
portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does make general
recommendations that are based largely on existing X.400 standards for electronic
mail. For example, countries and organizations should be named close to the root
of the DIT; people, applications, and devices should be named further down in the
hierarchy. GDS supplies a default schema that complies with these recommendations.

Every GDS entry has a distinguished name, which uniquely and unambiguously
identifies that entry. The distinguished name consists of a sequence of valid relative
distinguished names (RDNs). Each RDN consists of one or more assertions of the type
and value of an attribute at a particular position in the DIT. Attribute types indicate
the nature of the information that is stored in the attribute value. A pair consisting of
an attribute type and value is known as an attribute value assertion (AVA). RDNs can
have multiple AVAs. For example, the distinguished name

/C=us/O=osf/OU=branch1/CN=nollman,OU=doc-team

consists of four RDNs. The final RDN consists of two AVAs that are separated by a
comma.

Figure 11-4 illustrates the concepts of RDNs and distinguished names and how they
relate to the DIT. The figure shows the following:

DCE 1.2.2 Administration Guide—Core Components 209

Cell Directory Service

• A DIT consisting of a hierarchy of schema-defined attribute types

• RDNs that result from assertions of an attribute type and value

• Distinguished names that result from a concatenation of the RDNs

Figure 11–4. RDNs and Distinguished Names

Relative Distinguished Name

Distinguished
Value

Schema−Defined
Attribute Type

Distinguished NameDIT

=

=

=

=

US

ABC

Sales

Smith

OU

C

O

CN

/.../

/.../

/.../

C = US

C = US/O = ABC

C = US/O = ABC/OU = Sales

/.../C=US/O=ABC/OU=Sales/CN=Smith

The shaded boxes in the DIT represent the entries that are named in the column
labeled relative distinguished name. The schema dictates that countries are named
directly below the root, followed by organizations, organization units, and names of
users. Each attribute value that makes up an RDN (and thus a distinguished name) is
called adistinguished value.

As the rightmost column in the figure illustrates, the distinguished name of the entry
at each level of the DIT is a concatenation of RDNs from the root of the global
directory to that entry’s level. The lowest entry in the hierarchy,/.../C=US/O=ABC/
OU=Sales/CN=Smith, represents the name of a user, John Smith, who works in the
sales division of ABC Company, an organization in the United States. The abbreviated
attribute type labels stand for Country (C), Organization (O), Organization Unit (OU),
and Common Name (CN).

210 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

Note that the figure shows the global DCE convention for distinguished names. Each
distinguished name starts with the representation of the global root (/...). Attribute types
and values are separated by equal signs, and RDNs are separated by slashes. These
conventions for specifying names are not followed by all X.500 implementations. In
addition, these conventions are only used at the GDS adminstration interface level.
Internally, distinguished names are specified in other ways.

The structure of GDS names points out another important difference between GDS
and CDS. A CDS name is distinct from its attributes; that is, it consists of a string of
directory names ending with the simple name of the entry. In contrast, a GDS name
consists solely of a series of attribute types and their values.

Figure 11-5 illustrates this difference in the construction of CDS and GDS names.
The CDS full name/.:/Admin/Personnel/Employee_DBis the complete directory
specification of an entry with the simple nameEmployee_DB. Attributes and their
values are not a part of the CDS full name. The GDS distinguished name/.../C=US/
O=ABC/OU=Sales is a concatenation of attribute types and values, one from each
level of a DIT schema.

Figure 11–5. Comparison of CDS and GDS Names

Employee_DB

Attribute
value

Attribute
name

CDS full name:

Personnel

Admin

OU Sales

GDS distinguished name:

C=US

O=ABC

/.:

C=US/O=ABC/OU=Sales/.:/Admin/Personnel/Employee_DB

/...

/.../

DCE 1.2.2 Administration Guide—Core Components 211

Cell Directory Service

GDS supports the ability to search for names by supplying the values of one or more
attributes. This results in what is calleddescriptive naming; in a sense, users can
describe the name they are looking for. Although the search capability is valuable, it
can be expensive and time consuming, so GDS allows users to restrict the scope of a
search. Support for the search operation is limited to the GDS environment.

11.5.3 DNS Names

The DCE naming environment supports the version of DNS that is based on Internet
Request for Comments (RFC) 1034 and RFC 1035. Many networks currently use DNS
primarily as a name service for host names. The most commonly used implementation
of DNS is the Berkeley Internet Naming Domain (BIND). The BIND namespace is a
hierarchical tree with its topmost levels under the control of the Network Information
Center (NIC). (See theDCE 1.2.2 Administration Guide—Introductionfor information
on how to contact the NIC Domain Registrar to register a domain name.)

The names directly under the root of the BIND namespace include 2-letter codes
for countries, such asus and gb, as defined in ISO Standard 3166, ‘‘Codes for
the Representation of Names of Countries.’’ Other names one level below the root
include several generic administrative categories, such ascom (commercial),edu
(educational),gov (government), andorg (other organizations). The owners of these
names can grant permission to companies and organizations to create new subordinate
names. Figure 11-6 shows a sample portion of the BIND namespace. (The double
quotes indicate that the root of the namespace has a null name and is not addressable.)
Note that, like CDS names, DNS names are not typed; that is, they do not consist of
pairs of attribute types and values.

212 DCE 1.2.2 Administration Guide—Core Components

Introduction to the DCE Directory Service

Figure 11–6. Sample Portion of the BIND Namespace

com edu gov org

mit usc

gb

" "

A DNS name consists of a string of hierarchical names that are separated by. (dots) and
arranged right to left from the root of the namespace. For example, the nameai.mit.edu
represents the branch of the namespace owned by the Massachusetts Institute of
Technology artificial intelligence department. Note that the order of elements in the
name is the reverse of the order for CDS and GDS names.

To use a DNS cell name as part of a global DCE name, specify the DNS name
intact between two slashes. For example, a cell whose DNS name isai.mit.edu might
contain a directory whose CDS name is/.:/profiles. Users should enter/.../ai.mit.edu/
profiles to refer to the directory by its global name.

11.5.4 Names Outside of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some services
connect into the cell namespace by means of specialized CDS entries calledjunctions.
A junction entry contains binding information that enables a client to connect to a
server outside of the directory service.

DCE 1.2.2 Administration Guide—Core Components 213

Cell Directory Service

For example, the security service keeps a database of principals (users and servers)
and information about them, such as their passwords. The default name of the security
service junction is/.:/sec.

The following example illustrates the parts of a global DCE principal name:

/.../C=US/O=ABC/OU=west/sec/principals/mozart

Cell name
Security Service

name
CDS
name

The cell name,/.../C=US/O=ABC/OU=west, is a GDS name. Thesecportion is the
junction entry in CDS, andprincipals/mozart is a principal name that is stored in
the security service database.

Another service that uses junctions is DFS. The DFS fileset location service keeps a
database that maps DFS filesets to the servers where they reside. The junction to this
database has a default name of/.:/fs. The following example illustrates the parts of a
global DCE filename:

/.../ai.mit.edu/fs/users/mozart/myfile

Cell name Filename
CDS
name

The global name contains a DNS cell name,/.../ai.mit.edu . The fs portion is the file
system junction entry in CDS, and/users/mozart/myfile is the name of a file.

Thus, the DCE namespace is a connected tree of many kinds of names from many
different sources. The GDA component of the directory service provides connections
out of the cell and to other cells through a global namespace, such as GDS or DNS.
In a similar manner, junctions enable connections downward from the cell namespace
to other services.

214 DCE 1.2.2 Administration Guide—Core Components

Chapter 12
CDS Concepts

The Cell Directory Service (CDS) is a high-performance distributed service that
provides a consistent, location-independent method for naming and using resources
inside a cell. CDS offers the ability to replicate CDS names; that is, to store copies
of them on more than one node. CDS automatically keeps multiple copies consistent.
Names also can be distributed among several nodes so that no one node has to store
all of them. This feature is particularly valuable in large cells.

The ability to replicate and distribute information has many benefits, including the
following:

• Availability—Because you can store the same name in more than one place, data
is likely to be available even in the event of a system or network failure.

• Efficiency—CDS finds names efficiently because you can store them close to
where they are used most often. Furthermore, once CDS finds a name, it can
connect to the same name immediately on all subsequent lookups.

• Load Sharing—Because names are in more than one place, several systems can
share the load of looking them up.

DCE 1.2.2 Administration Guide—Core Components 215

Cell Directory Service

• Expandability—New names are easily accommodated as the network grows and
more applications use CDS.

12.1 How CDS Works

Operation of the CDS involves several major participants:

• Client applications

• Servers

• Clerks

• Clearinghouses

CDS uses a client/server model. An application that depends on CDS to store and
retrieve information for it is a client of CDS. Client applications create names for
resources on behalf of their users. Through a client application, a user can supply
other information for CDS to store as attributes of a name. Then, when a client
application user refers to the resource by its CDS name, CDS retrieves data from the
attributes for use by the client application.

A system running CDS server software is a CDS server. A CDS server stores and
maintains CDS names and handles requests to create, modify, or look up data.

A component called theclerk is the interface between client applications and CDS
servers. Every DCE node must run a CDS clerk. The clerk receives a request from a
client application, sends the request to a server, and returns the resulting information
to the client. This process is called alookup. The clerk is also the interface through
which client applications create and modify names. One clerk can work on behalf of
many client applications.

The clerk caches, or saves, the results of lookups so that it does not have to repeatedly
go to a server for the same information. The cache is written to disk periodically so that
the information can survive a system reboot or the restart of an application. When you
stop the CDS advertiser, the cache is written to disk. Caching improves performance
and reduces network traffic.

216 DCE 1.2.2 Administration Guide—Core Components

CDS Concepts

Figure 12-1 shows a sample configuration of CDS clerks and servers on a 9-node
local area network (LAN). Every node is a clerk, and CDS servers run on two selected
nodes.

Figure 12–1. CDS Clerks and Servers on a LAN

ClerkClerk ClerkClerkServerClerk

Clerk Server Clerk ClerkClerk Clerk ClerkClerk ServerClerk

ServerClerk Clerk

Server

Server

Every CDS server has a database called aclearinghousein which it stores names and
other CDS data. The clearinghouse is where a CDS server adds, modifies, deletes, and
retrieves data on behalf of client applications. Although more than one clearinghouse
can exist at a server node, it is not recommended as a normal configuration.

Figure 12-2 shows the interaction between a CDS client, clerk, server, and
clearinghouse during a simple lookup. It illustrates the following CDS lookup steps:

1. The client application on Node 1 sends a lookup request to the local clerk.

2. The clerk checks its cache and, not finding the name there, contacts the server on
Node 2.

3. The server checks to see if the name is in its clearinghouse.

4. The name exists in the clearinghouse, so the server gets the requested information.

5. The server returns the information to the clerk on Node 1.

6. The clerk passes the requested data to the client application. The clerk also caches
the information so that it does not have to contact a server the next time a client
requests a lookup of that same name.

DCE 1.2.2 Administration Guide—Core Components 217

Cell Directory Service

Figure 12–2. A Sample CDS Lookup

Cache

Node 1

Node 2

Request path

Response path

1

2

3

4

5

6

Clearinghouse

CDS
clerk

Client
application

CDS
server

12.2 Replicas and Their Contents

Directories are the units by which you distribute and replicate names throughout the
cell’s namespace. Each physical copy of a directory, including the original, is called
a replica. When you create a replica of a directory, you replicate all of the entries in
it as well.

Replicas are stored in clearinghouses. You can think of a clearinghouse as the
collection of directory replicas at a particular server. After you create a directory
in one clearinghouse, you can create replicas of it in other clearinghouses to increase
availability for looking up information. CDS periodically ensures that the contents of
all replicas of a directory remain consistent.

218 DCE 1.2.2 Administration Guide—Core Components

CDS Concepts

Two types of replicas can exist:

• Master

• Read-only

A replica’s type affects the processing that can be done on it and the way CDS updates
it. The type of replica that CDS uses when it looks up or changes data is invisible to
users. However, it helps to understand how the two types differ.

The master replica is the first instance of a specific directory in the cell’s namespace.
After you make copies of the directory, you can designate a different replica as the
master, if necessary. However, only one master replica of each directory can exist at
a time. (See Chapter 21 for complete information on how to redesignate the master
replica of a directory.)

The master replica is the only directly modifiable replica of a directory. CDS can
create, change, and delete information in a master replica. Because it is modifiable,
the master replica incurs more overhead than read-only replicas, which CDS keeps
up-to-date periodically with changes made to the master replica.

A read-only replica is a copy of a directory that is available only for looking up
information. CDS does not create, modify, or delete names in read-only replicas; it
simply updates them with changes made to the master replica.

Replicas can contain three kinds of entries:

• Object entries

• Soft links

• Child pointers

12.2.1 Object Entries

An object is any real resource—like a disk, application, or node—that is given a CDS
name. When an object name is created, client applications and the CDS software
supply attributes to be stored with the name. An attribute, consisting of an attribute
name and value(s), describes a particular operational property of an object. The name
and its attributes make up theobject entry. When a client application requests a lookup
of the name, CDS returns the value of the relevant attribute or attributes.

DCE 1.2.2 Administration Guide—Core Components 219

Cell Directory Service

Object entries are typically created and managed through a client application interface.
For example, the DCE control program and the name service interface (NSI) of the
RPC runtime let users create entries that represent RPC servers, groups, and profiles.
These are special kinds of entries that enable an RPC application to locate and select
servers. (See theDCE 1.2.2 Application Development Guidefor details on how RPC
uses CDS for this purpose.)

You can also create object entries through the DCE control program (dcecp). (See
Part 1 of this document and theDCE 1.2.2 Command Referencefor information on
the commands that allow you to create and manage object entries by usingdcecp.)

Every object can have a defined class, which is an optional attribute of the object
entry. DCE components that use the directory service can define their own object
classes and supply class-specific attributes for the directory service to store on their
behalf. Class-specific attributes have meaning only to the particular class of objects
with which they are associated.

The clearinghouse object entry represents a special class of object that is predefined by
CDS. A clearinghouse object entry serves as a pointer to the location of a clearinghouse
in the network. CDS needs this pointer so that it can look up and update data in a
clearinghouse.

When you create a clearinghouse, CDS creates its clearinghouse object entry
automatically. The clearinghouse object entry acquires the same name as the
clearinghouse. The clearinghouse object entry is like any other object entry in that
it describes an actual resource, but it is different because it is solely for internal use
by CDS. Clearinghouses can only be created in the cell root directory. Therefore, all
clearinghouse object entries are stored in the cell root directory. CDS itself updates
and manages clearinghouse object entries when necessary. They do not require any
external management except in rare problem-solving situations. (See your vendor for
help in these situations.)

12.2.2 Soft Links

A soft link is a pointer that provides an alternate name for an object entry, directory,
or other soft link in the cell’s namespace. You can do minor restructuring of a cell’s
namespace by creating soft links that point from an existing name to a new name.

220 DCE 1.2.2 Administration Guide—Core Components

CDS Concepts

Soft links also can be a way to give something multiple names so that different kinds
of users can refer to a name in a way that makes the most sense to them.

Soft links can be permanent, or they can expire after a period of time that you specify.
If the name that a soft link points to is deleted, CDS deletes the soft link automatically
when it expires.

CDS managers should use soft links carefully. They should not use soft links to
completely redesign the cell’s namespace or to provide shortcuts for users who do not
want to use the full name of an object entry. Overuse of soft links makes CDS names
more difficult to keep track of and manage.

12.2.3 Child Pointers

A child pointerprovides the following kinds of connections for cells:

• Between a directory to another directory immediately beneath it in a cell’s
namespace

• Between a parent and its child cell

Users and applications do not create child pointers; CDS creates a child pointer
automatically when someone creates a new directory. The child pointer is created
in the directory that is the parent of (one level above) the directory to which it points.
CDS uses child pointers to locate directory replicas when it is trying to find a name.
Child pointers do not require management except in rare problem-solving situations.

12.2.4 Summary

To summarize, a cell consists of a complete set of names that are shared and managed
by one or more CDS servers in a cell. A name can designate a directory, object
entry, soft link, or child pointer. The logical representation of a cell’s namespace
is a hierarchical structure of directories and the names they contain. Every physical
instance of a directory is called areplica. Names are physically stored in replicas,
and replicas are stored in clearinghouses. Any node that contains a clearinghouse and
runs CDS server software is aCDS server.

DCE 1.2.2 Administration Guide—Core Components 221

Cell Directory Service

Figure 12-3 shows the components of a CDS server node. Every server manages at
least one clearinghouse containing directory replicas. A replica can contain object
entries, soft links, and child pointers. The figure shows only one replica and one of
each type of entry that is possible in a replica. Normally, a clearinghouse contains
many replicas, and a replica contains many entries.

Figure 12–3. Components of a CDS Server Node

Replica

Child pointer

Clearinghouse

CDS server node

Object entry Soft link

12.3 Security in the Cell Directory Environment

In a secure DCE cell operation, a server does not complete a user’s request unless
the user’s identity has been verified through the DCE Authentication Service. So, for
example, a CDS server allows a user to create a new directory only if that user’s
identity has been verified. The process of verifying that users are who they say they
are is calledauthentication. The proof is in the form of a user name, or principal
name, coupled with a special kind of password.

222 DCE 1.2.2 Administration Guide—Core Components

CDS Concepts

CDS servers themselves must be authenticated principals for two reasons:

• To prove to clients that they are trustworthy

• To prove to each other that they have the permission to modify and manage the
data that they share

The principal name of a CDS server is automatically selected by the configuration
program and is placed in a group that contains the names of all CDS servers in the
cell. The group is stored as an entry in the DCE Security Service database. After initial
contact with a CDS server, the clerk confirms through the DCE Security Service that
the server is a valid member of the server group.

Authentication is not an end in itself, but is instead a step in the process of
authorization. Once the identity of a principal has been verified, the software must next
determine whether that principal has the permissions that are required to perform a
requested action. This is calledauthorization. Therefore, to create a new directory, the
user in the previous example must not only be authenticated, but have the appropriate
permissions as well.

Servers need to be authenticated to each other because they share and modify replicated
data. For example, suppose server A and server B both store a replica of the same
directory. Associated with each directory is a list of all the servers authorized to
maintain that directory. When a user modifies an entry in the replica at server B,
server B must notify server A of the change. Server A does not accept the update
unless server B is an authenticated principal and is one of the principals authorized
to modify that directory.

The CDS permissions are read, write, insert, delete, test, control, and administer. Each
has a slightly different meaning depending on the kind of name it is associated with,
but, in general, their meanings are as follows:

• Read permission lets users view data.

• Write permission lets users add or change data.

• Insert permission lets users create entries in a directory.

• Delete permission lets users delete entries.

• Test permission lets users test whether an attribute of a name has a specific value
without being able to see any values—that is, without having read permission
to the name. The main advantage of this permission is that it gives application

DCE 1.2.2 Administration Guide—Core Components 223

Cell Directory Service

programmers a more efficient way to check for a value: rather than reading a
whole set of values, the application can test for a particular value.

• Control permission lets users manage the access control list (ACL) of an entry.

• Administer permission lets users manage directory replication.

Note that it is possible to define a special ACL for users who cannot be authenticated or
who deliberately request unauthenticated operations. In such a case, the user’s identity
is not verified, and the ACL entry for unauthenticated users determines whether the
user has the permissions to perform the requested action. (See Part 6 of this guide for
details on creating ACLs for unauthenticated users.)

12.4 CDS User Interfaces

CDS has severalentities that can be managed via user interfaces that are provided
in DCE. A CDS entity is any individually manageable piece of the CDS software.
CDS directories, soft links, and object entries are the most common entities that
you manage with the DCE user interfaces. Some object entries, though, are normally
managed through the client application that creates them.

The DCE control program provides many commands for managing CDS entities.
Chapter 15 of this guide contains information about these commands.

CDS also comes with one other user interface called the browser.

The browser is a tool for viewing the content and structure of a namespace. It runs on
workstations with windowing software that is based on the OSF/Motif® graphical user
interface. Using a mouse to manipulate pull-down menus, you can view the directory
structure of a namespace, view child directories of a particular directory, view the
object entries and soft links in a directory, and set a filter to display only object
entries of a particular class. (For users who do not have windowing software, similar
functions are available withdcecp.)

In addition todcecp and the browser, other DCE user interfaces allow access to and
management of CDS names. For example, users can control access to CDS directories
and their contents by using an ACL editor such as thedcecp acl object, which is
supplied with the DCE Security Service. RPC application programmers can create
server entries, groups, and configuration profiles in the cell’s namespace withdcecp.

224 DCE 1.2.2 Administration Guide—Core Components

Chapter 13
How CDS Looks Up Names

This chapter illustrates the relationship between a name and the physical resource that
it describes, and explains how CDS handles requests to look up names. Understanding
these concepts can help you to plan for the location of clearinghouses and directories
in your cell namespace. It can also help you to isolate the source of a problem if you
encounter lookup errors or failures. Note that the figures in this chapter do not reflect
the actual structure of a typical DCE cell namespace. For simplicity, the figures show
fewer directories and directory levels.

13.1 Translating from Names to Resources

Just as directory names in a logical namespace hierarchy translate to physical replicas
in clearinghouses, CDS names translate to physical resources that are used either
internally by CDS or by client applications. The attributes of a name are what make
the translation possible. This section describes the relationship between CDS names
and the physical resources that they describe.

DCE 1.2.2 Administration Guide—Core Components 225

Cell Directory Service

Figure 13-1 shows three directories and their contents in a logical namespace, and how
replicas of those directories are physically implemented in two clearinghouses. The
clearinghouses themselves have CDS names:/.:/Paris_CH on Node 1 and/.:/NY_CH
on Node 2. The_CH suffix is a recommended convention for naming clearinghouses.
The /.:/Paris_CH clearinghouse contains replicas of the root directory and the/.:/
subsys/PrintQ directory. The/.:/NY_CH clearinghouse contains replicas of the root
directory and the/.:/subsysdirectory. Recommended practice is to create at least two
replicas of every directory. Therefore, the/.:/subsysand/.:/subsys/PrintQ directories
each need to be replicated in at least one other clearinghouse somewhere in the cell.

Figure 13–1. Logical and Physical Views of a Namespace

/.:/subsys

/.:/subsys/PrintQ

/.:

/.:/NY_CH

/.:/subsys

/.:/subsys/Print1
/.:/subsys/PrintQ

/.:/subsys/PrintQ/server1
/.:/subsys/PrintQ/server2

/.:/Paris_CH

= Replica
= Object entry
= Child pointer
= Soft link

LEGEND:

/.:/NY_CH

Node 1 Node 2

/.:/Paris_CH

/.:

/.:/subsys/PrintQ

/.:

/.:/subsys

To discover the physical location of a resource, CDS looks up an attribute that is
associated with its name. Figures 13-2 through 13-4 illustrate the connection between

226 DCE 1.2.2 Administration Guide—Core Components

How CDS Looks Up Names

the various kinds of CDS names and the resources that they describe. The figures are
based on the namespace in Figure 13-1. All of the names in Figures 13-2 through 13-4
are in the same cell namespace, as evidenced by the use of the/.: prefix to represent
the cell root. (See Chapter 22 for information about name resolution across multiple
cells.)

Figure 13-2 shows the relationship between two clearinghouse object entries and the
clearinghouses that they describe. A clearinghouse object entry differs from other
kinds of object entries in that it is created, used, and maintained by the CDS software
instead of by a client application. However, it is like any other object entry in that
it describes a physical resource in the network: the clearinghouse. CDS creates the
object entry automatically when you create and name the clearinghouse.

Figure 13-2 shows two clearinghouse object entries:/.:/Paris_CH, which points to
the clearinghouse that is named/.:/Paris_CH on Node 1, and/.:/NY_CH, which
points to the clearinghouse that is named/.:/NY_CH on Node 2. Each clearinghouse
object entry has an attribute calledCDS_CHLastAddress attribute, whoseTower
subattribute contains RPC binding information that CDS uses to contact the node
where the clearinghouse resides. (See Appendix B for a list of CDS attributes and
their descriptions.)

DCE 1.2.2 Administration Guide—Core Components 227

Cell Directory Service

Figure 13–2. Clearinghouse Object Entries and Clearinghouses

Node 1 Node 2

/.:

/.:/NY_CH
/.:/Paris_CH

= Replica
= Object entry

LEGEND:

/.:

/.:/Paris_CH

/.:/NY_CH

/.:/Paris_CH

/.:

/.:/Paris_CH

/.:/NY_CH

/.:/NY_CH

Figure 13-3 shows the relationship between a soft link, the object entry it points to,
and the resource that the object entry describes. The soft link,/.:/subsys/Print1, has an
attribute calledCDS_LinkTarget, which contains the name that the link points to: an
object entry that is named/.:/subsys/PrintQ/server1. The object entry describes a print
server machine that is used by an application calledPrintQ . The replica containing the
/.:/subsys/PrintQ/server1object entry exists in the/.:/Paris_CH clearinghouse. The
object entry has an attribute calledCDS_Towers, whoseTower subattribute contains
RPC binding information that enables thePrintQ application to contact the print
server machine.

228 DCE 1.2.2 Administration Guide—Core Components

How CDS Looks Up Names

Figure 13–3. A Soft Link and Its Resolution

/.:/subsys/PrintQ/server1

/.:/subsys

/.:/subsys/PrintQ

/.:/subsys/Print1

/.:/Paris_CH

/.:/subsys/PrintQ/server1

Node 1

/.:/NY_CH

/.:/subsys/Print1

/.:/subsys

/.:/subsys/PrintQ

/.:/subsys/PrintQ/server1

Node 2

/.:/.:
= Replica
= Object entry
= Soft link

LEGEND:

Figure 13-4 shows the relationship between directories and their associated child
pointers. It illustrates that, although a child pointer has the same name as its associated
directory, the child pointer is a separate entry in the namespace and resides in the
parent of the directory to which it refers.

DCE 1.2.2 Administration Guide—Core Components 229

Cell Directory Service

In the case of hierarchical cells, the directory resides in the child cell and the child
pointer, which has the same name as the associated directory and resides in the parent
cell.

The root replicas in both clearinghouses contain a child pointer for the/.:/subsys(:)
directory. The/.:/subsyschild pointer has an attribute calledCDS_Replicaswhich
contains the name and address of the/.:/NY_CH clearinghouse, where a replica of
the /.:/subsysdirectory exists.

In the /.:/NY_CH clearinghouse, the replica of the/.:/subsys directory contains a
child pointer for the/.:/subsys/PrintQdirectory. The child pointer’s XSCDS_Replicas
attribute contains the name and address of the/.:/Paris_CH clearinghouse, where a
replica of the/.:/subsys/PrintQ directory exists.

When a directory has multiple replicas, as is normally the case, theCDS_Replicas
attribute lists all of the clearinghouses containing a replica of the directory. You can
use thedcecp directory showcommand with the-replica and- clearinghouseoptions
to display this attribute.

230 DCE 1.2.2 Administration Guide—Core Components

How CDS Looks Up Names

Figure 13–4. Child Pointers and Directories

/.:/NY_CH

Node 1 Node 2

/.:/subsys

/.:/Paris_CH

/.:

/.:/subsys/PrintQ
/.:/subsys

/.:/subsys

/.:

/.:/subsys/PrintQ

/.:/subsys

/.:/subsys/PrintQ

/.:

/.:/subsys

/.:/subsys/PrintQ

= Replica
= Child pointer

LEGEND:

13.2 How CDS Finds Names

As Figures 13-1 through 13-4 illustrate, CDS finds information about the physical
location of a resource by looking up one or more attributes that are associated with
its name. First, though, the clerk must know how to find the name. If a name does
not yet exist in the clerk’s cache, the clerk must know of at least one CDS server to
contact in search of the name.

DCE 1.2.2 Administration Guide—Core Components 231

Cell Directory Service

The clerk can learn about CDS servers and their locations in any of three ways:

• Through the solicitation and advertisement protocol

• During a regular lookup

• By response to thecdscache createcommand

13.2.1 The Solicitation and Advertisement Protocol

Clerks and servers on the same LAN communicate by using the solicitation and
advertisement protocol. A server broadcasts messages at regular intervals to advertise
its existence to clerks on its LAN. The advertisement message contains data about the
cell that the server belongs to, the server’s network address, and the clearinghouse it
manages. Clerks learn about servers by listening for these advertisements on the LAN.
A clerk also sends out solicitation messages that request advertisements at startup.

13.2.2 Lookups

During a lookup, if a clearinghouse does not contain a name that the clerk is searching
for, the server managing that clearinghouse gives the clerk as much data as it can about
where else to search for the name. If a clearinghouse contains replicas that are part
of the full name being looked up, but not the replica containing the target simple
name, it returns data from a relevant child pointer in the replica it does have. The
data helps the clerk find the next child directory in the path toward the target simple
name. The child pointer’sCDS_Replicasattribute contains this data, in the form of
clearinghouse names and binding information.

13.2.3 The cdscache create Command

A DCE administrator can run thedcecpcdscache createcommand to create knowledge
in the clerk’s cache about a server. This command is useful when the server and clerk
are separated by a wide area network (WAN), and the clerk therefore cannot learn
about the server from advertisements on a LAN.

232 DCE 1.2.2 Administration Guide—Core Components

How CDS Looks Up Names

Figure 13-5 is an example of how the clerk works downward from the root of the
cell namespace to locate an object entry. The object entry,/.:/Sales/Spell, describes a
spell-checking server at a company’s London sales headquarters.

Figure 13–5. How the Clerk Finds a Name

Node A

?

?

Success!

Client

Clerk

1

Server

Server

Node B

Node C

/.:/Bristol_CH

/.:

/.:/London_CH

/.:/Sales

/.:/Sales

/.:/Sales is in
/.:/London_CH

5

3

4

2

6

/.:/Sales/Spell

LEGEND

= Request path
= Response path

= Child pointer

= Replica
= Object entry

/.:/Sales/Spell ?

As shown in Figure 13-5, the clerk locates the desired object entry by performing the
following steps:

DCE 1.2.2 Administration Guide—Core Components 233

Cell Directory Service

1. On Node A, a spell-checking application requests the network address of the/.:/
Sales/Spellserver. The clerk does not have that name in its cache, and the only
clearinghouse it knows about so far is the/.:/Bristol_CH clearinghouse on Node
B.

2. The clerk contacts the server on Node B with the lookup request.

3. The /.:/Bristol_CH clearinghouse does not contain the target object entry, but it
does contain a replica of the root directory. From the/.:/Saleschild pointer in the
root, the clerk can learn how to contact clearinghouses that have a replica of the
/.:/Salesdirectory. The server on Node B returns this data to the clerk, informing
it that a replica of/.:/Salesis in the /.:/London_CH clearinghouse on Node C.

4. The clerk contacts the server on Node C with the lookup request.

5. The /.:/Salesreplica in the clearinghouse on Node C contains the/.:/Sales/Spell
object entry, so the server passes the address of the spell-checking server to the
clerk.

6. The clerk returns the information to the client application, which can now make
a remote call to the spell-checking server.

Long lookups, as illustrated in Figure 13-5, do not normally happen often after a clerk
establishes its cache and becomes more knowledgeable about clearinghouses and their
contents. However, the figure illustrates the resources and connections that could be
involved in an initial lookup. The figure also illustrates the importance of maintaining
connectivity between parent and child directories in the namespace. If somewhere the
directory path is broken or a clearinghouse is unreachable, a clerk may not be able to
find a name.

234 DCE 1.2.2 Administration Guide—Core Components

Chapter 14
How CDS Updates Data

Once names exist in the namespace, users who have the appropriate access can make
changes to the data associated with the names. Any addition, modification, or deletion
of CDS data initially happens in only one replica: the master replica. This chapter
introduces the main methods by which CDS keeps other replicas consistent:update
propagationand theskulk operation. It also describes two timestamps that help to
ensure consistency in CDS data. By understanding the concepts in this chapter, you
can more effectively plan the content and replication of directories and the organization
of hierarchical cells in your namespace.

14.1 Update Propagation

An update propagation is an immediate attempt to apply one change to all replicas of
the directory in which the change was just made. Its main benefit is that it delivers
each change in an efficient and timely way.

Unlike a skulk operation, however, update propagation does not guarantee that the
change gets made in all replicas. If a particular replica is not available, the update

DCE 1.2.2 Administration Guide—Core Components 235

Cell Directory Service

propagation does not fail; the change simply does not get made in that replica. The
skulk operation ensures that, when the replica is available again, it becomes consistent
with the other replicas in its set.

You can tune the degree of persistence that CDS uses in attempting an update
propagation—or prevent propagation altogether—by adjusting a directory attribute
called CDS_Convergence. Convergence also affects the frequency of skulks on
a directory. (See Chapter 18 for details on viewing and changing a directory’s
convergence.)

14.2 Skulk Operation

The skulk operation is a periodic distribution of a collection of updates. Its main
functions are to ensure that replicas receive changes that may not have reached them
during an update propagation and to remove outdated information from the namespace.

For hierarchical cells, the skulk updates the child pointers in the parent cell and the
up pointersin the child cell (which point to the parent) so they reflect the updated
information.

Skulk maintenance functions include the following:

• Removing soft links that have expired. You can specify an expiration time when
you create a soft link.

• Maintaining child pointers, which includes removing pointers to directories that
were deleted.

• Removing information about deleted replicas.

CDS skulks each directory individually. During a skulk, CDS collects all changes that
were made to the master replica since the last successful skulk and then disseminates
the changes to all read-only replicas of the directory. All replicas must be available
for a skulk to be considered successful. If CDS cannot contact a replica, it continues
making changes in the replicas that it can contact, while generating an event to notify
you of the replica or replicas it could not update. CDS then periodically reattempts
the skulk until it completes successfully.

A skulk can begin in one of three ways:

236 DCE 1.2.2 Administration Guide—Core Components

How CDS Updates Data

• A CDS manager can enter a command to start an immediate skulk on a directory.

• CDS starts a skulk as an indirect result of other namespace management activities,
which include the following:

— Adding or removing a replica

— Creating or deleting a directory

— Redesigning replica types

— Adding or deleting a child cell name in a parent cell

All of these activities produce changes in the structure of the namespace, so
an immediate skulk ensures that the new structure is reflected throughout the
namespace as quickly as possible.

• The CDS server initiates skulks automatically at a routine interval called the
background skulk time.

The background skulk time interval guarantees a maximum lapse of time between
skulks of a directory, regardless of other factors, such as namespace management
activities and user-initiated skulks. A CDS server periodically checks each master
replica in its clearinghouse and initiates a skulk if changes were made in a
directory since the last successful skulk of that directory.

14.3 How Timestamps Help Keep Data Consistent

CDS uses several timestamps to help ensure the consistency and accuracy of data.
The following two timestamps exist for every entry:

• Creation Timestamp (CTS)

• Update Timestamp (UTS)

CDS assigns a CTS to everything that is in a cell namespace: clearinghouses,
directories, object entries, soft links, and child pointers. The CTS is a unique value
reflecting the date, time, and location where a clearinghouse, directory, or entry in a
directory was created. It consists of two parts: a time portion and the system identifier
of the node on which the name was created. The two parts guarantee uniqueness
among timestamps that are generated on different nodes.

DCE 1.2.2 Administration Guide—Core Components 237

Cell Directory Service

During propagation of a new name or a changed name to each replica of the directory
where it was created, every CDS server checks the validity of the CTS before accepting
the new name.

The UTS reflects the most recent change that was made to any of the attributes of a
clearinghouse, directory, object entry, soft link, or child pointer. When a CDS server
receives an update to an existing entry in a directory, it checks the validity of the UTS
before accepting the update.

Directories and replicas have several other timestamps that CDS uses when
determining whether to skulk a directory or make a change in a directory. (See the
directory(8dce) reference page for information about other timestamp attributes used
by CDS.)

238 DCE 1.2.2 Administration Guide—Core Components

Chapter 15
Managing the DCE Directory Service

The DCE control program (dcecp) provides most of the commands you need to
manage CDS. This chapter describes the CDS entities that the DCE control program
permits you to manage and summarizes the available commands for managing these
entities.

For detailed descriptions ofdcecp commands, see thedcecp(8dce)reference page.

15.1 Using the DCE Control Program

Chapter 1 of this guide introduced you todcecp and its command syntax, so this
chapter does not repeat that information. Instead, this chapter describes commands
that dcecp supplies specifically for managing CDS.

DCE 1.2.2 Administration Guide—Core Components 239

Cell Directory Service

15.1.1 CDS Managed Objects

DCE control program commands operate on the following objects representing CDS
entities:

directory This object represents a CDS directory. The directory can be a parent
or child directory, or a master or read-only replica of the parent or child
directory. In addition to child directories, a CDS directory can contain
soft links and object entries for other CDS resources.

link This object represents a soft link in a CDS directory. A soft link is a
pointer to (alternate name for) a child directory, object entry, or other
soft link.

object This object represents an object entry, which is the name of a CDS
resource that appears in the cell namespace. Some object entries name
resources that CDS clients can access (for example, a disk, machine, or
application). Others name resources solely for internal use by CDS (for
example, servers and clearinghouses).

clearinghouse
This object represents a CDS clearinghouse. A clearinghouse is a
database that is located on a CDS server machine for use by servers.

cdscache This object represents a CDS cache. A CDS cache is a collection of
information about servers, clearinghouses, and other CDS resources that
a CDS clerk establishes on the local system for its reference.

cdsalias This object represents an alias name of a DCE cell as known to CDS.
This object can be used to establish a hierarchical relationship between
two DCE cells.

cds This object represents a CDS server.

cdsclient This object represents a CDS client.

15.1.2 DCE Control Program Operations for CDS

Table 15-1 lits the operations thatdcecp performs on CDS objects.

240 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE Directory Service

Table 15–1. DCE Control Program Operations for CDS

Operation Definition

add Adds a child directory to a parent in the cell namespace.

catalog Displays a list of a DCE cell’s alias names or
clearinghouses.

create Creates an object in the cell namespace. The object type
can be a directory, object entry, soft link, clearinghouse,
CDS cache, or CDS cell alias.

delete Deletes an object in the cell namespace. The object type
can be a directory, object entry, soft link, clearinghouse,
or CDS cell alias.

disable Removes the knowledge of a clearinghouse from the
server running on the local machine or disables a CDS
server or CDS client.

discard Completely removes the cache information held by a CDS
client.

dump Displays an in-core dump of a CDS cache.

help Displays a help message for a CDS object type, describing
the operations that it performs or operations that can be
performed on it. The object type can be a directory, object
entry, soft link, clearinghouse, or CDS cache.

initiate Begins a specific operation on the specified clearinghouse.

list Displays the names of all of the CDS objects contained in
a directory.

merge Copies the contents of a directory into another directory.

modify Modifies the attribute information for a CDS object type.
The object type can be a directory, object entry, or soft
link.

operations Displays the operations that a CDS object type can
perform or can have performed on it. The object type can
be a directory, object entry, soft link, or clearinghouse.

ping Checks if all or selected servers are running in a DCE cell.

DCE 1.2.2 Administration Guide—Core Components 241

Cell Directory Service

Operation Definition

remove Removes a child directory from a parent in the cell
namespace.

repair Begins diagnostic operations on the specified
clearinghouse.

show Displays the attribute information for a CDS object type.
The object type can be a directory, object entry, soft link,
or clearinghouse.

synchronize Tells a child or parent directory to synchronize with its
replicas (perform a skulk).

15.1.3 CDS Object Attributes

Every CDS object has attributes, which are pieces or sets of data associated with the
object. Attributes can reflect or affect the operational behavior of the object. Some
attributes are created and modified only by CDS; you can modify others as needed
for your environment. For a complete list of the attributes of a particular CDS object,
refer to the appropriate reference page. Also, you can use thedcecpshowoperation
for most objects to display the names and values of all attributes or specific attributes
of the objects.

15.2 Using dcecp to Maintain CDS

You can usedcecp, for certain CDS maintenance tasks. Thedcecp commands to do
this are listed in Table 15-2.

Table 15–2. dcecp Commands that Control CDS

Commands Definitions

cdsclient disable Stops the execution of a CDS clerk.

cds disable Stops the execution of a CDS server.

242 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE Directory Service

Commands Definitions

set _conf Permits you to set the confidence level of CDS clerk
calls.

directory modify Reconstructs a directory’s replica set by designating a
new master replica.

put $_conf Permits you to see the current confidence level of
CDS clerk calls.

directory show Displays the information needed for creating a cell
entry in DNS or GDS.

cdsclient show Displays the attributes of a CDS clerk.

cds show Displays the attributes of a CDS server.

DCE 1.2.2 Administration Guide—Core Components 243

Chapter 16
Controlling Access to CDS Names

This chapter presents information on the following CDS authorization topics:

• Overview of DCE authorization for CDS

• DCE authorization components supported by CDS

• DCE permissions supported by CDS

• Controlling access to CDS clerk and server management operations

• Control program commands and required permissions

• Editing ACLs on CDS names

• How CDS servers gain access to the namespace

• Setting up access control in a new namespace

16.1 Overview of DCE Authorization for CDS

CDS authorization allows you to control user access to the following CDS components:

DCE 1.2.2 Administration Guide—Core Components 244

Controlling Access to CDS Names

• Names that are stored in the namespace, including clearinghouses, directories,
object entries, soft links, and child pointers

• Execution of privileged CDS clerk and server commands

You control access to a name in the namespace by creating an ACL. An ACL contains
individual ACL entries that specify the permissions you grant a user (principal) to the
name with which the ACL is associated. The ACL entries that you create determine
collectively which principals can use the name and what management operations they
are allowed to perform on it.

CDS ACL management software, incorporated into all CDS clerks and servers,
performs access checking for incoming CDS requests. When a principal requests
an operation on a CDS name, ACL management software on a server that stores the
name examines the ACL entries associated with the name. The software then grants
or denies the operation, based on the permissions granted to the requesting principal
in the ACL entries. Similarly, when a principal requests a privileged operation on a
CDS clerk or server, ACL management software on that system examines the ACL
entries that are associated with the principal name that represents the clerk or server.
The software then grants or denies the operation, based on the permissions granted to
the requesting principal in the ACL entries.

The DCE control program (dcecp) provides commands that add, modify, copy, delete,
and display ACLs that are associated with CDS names, clerks, and servers. See
the DCE 1.2.2 Command Referencefor detailed information on the commands. The
remainder of this chapter describes DCE authorization as it applies specifically to CDS.
Before you try to create or modify permissions to CDS names, clerks, or servers, read
Part 6 of this guide for complete information on the DCE authorization mechanism.

16.2 ACL Types Supported by CDS

CDS supports the following DCE ACL types:

• Object ACL—You can use the object ACL type to grant permissions to any
CDS name (that is, object entries, soft links, child pointers, clearinghouses, and
directories), as well as to CDS clerks and servers. When associated with a CDS
directory, the permissions you grant with the object ACL type apply only to the
directory itself, not to the directory’s contents or to any child directories.

DCE 1.2.2 Administration Guide—Core Components 245

Cell Directory Service

• Initial object creation ACL—The initial object creation ACL type applies only to
CDS directory names. Use this ACL type to grant permissions specifically to a
directory’s future contents, including soft links, application-defined object entries,
child pointers, and clearinghouse object entries. The permissions you grant by
using the initial object creation ACL type apply only to the future contents of the
directory, not to the directory itself. The permissions are inherited only by names
that are created in the directoryafter you create the ACL entry; permissions are
not propagated to names that already exist in the directory.

To edit an initial object creation ACL, you use the-io option of thedcecpacl
modify command.

• Initial container creation ACL—The initial container creation ACL type applies
only to CDS directory names. Use this ACL type to grant permissions to a
directory that automatically propagate (the default) to all child directories that
you may later create under that directory. The permissions you grant by using
the initial container creation ACL type are inherited only by the child directories
that you createafter you create the ACL entry; permissions are not propagated to
child directories that already exist.

To edit an initial container creation ACL, you use the-ic option of thedcecpacl
modify command.

16.3 How Permissions Propagate to CDS Directories
and Their Contents

By creating all three ACL types (object ACL, initial object creation ACL, and initial
container creation ACL) for a directory, you can grant access not only to the directory
itself but also to the directory’s future contents and all child directories (and their
contents) that may later be created.

Note: Permissions do not propagate from parent cells to child cells. You must set
permissions for each child cell individually.

For example, suppose you just created a new directory named/.:/sales. If you create
an ACL entry of the Object ACL type that grants userSmith read permission to the
/.:/salesdirectory,Smith can do the following:

• Read the attributes associated with the/.:/salesdirectory

246 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

• Display the names stored in the/.:/salesdirectory

If you create a second ACL entry of the initial object creation ACL type that grants
userSmith read permission to the/.:/salesdirectory,Smith can do the following:

• Read the attributes associated with the/.:/salesdirectory

• Display the names stored in the/.:/salesdirectory

• Read the attributes associated with all the names that you may later create in
the /.:/salesdirectory, unless prohibited by explicit ACL modification after their
creation

If you create a third ACL entry of the initial container creation ACL type that
also grants userSmith read permission to the/.:/salesdirectory, Smith can do the
following:

• Read the attributes associated with the/.:/salesdirectory

• Display the names stored in the/.:/salesdirectory

• Read the attributes associated with all the names that you may later create in the
/.:/salesdirectory

• Perform all of the three preceding operations on all child directories that may
later be created under the/.:/salesdirectory

(See Part 6 of this guide for complete information on default ACLs.)

16.4 ACL Entry Types Used for Principals

You use ACL entry types to specify the category of principal for which the ACL entry
is created. These ACL entry types are described in Table 16-1.

DCE 1.2.2 Administration Guide—Core Components 247

Cell Directory Service

Table 16–1. ACL Entry Types Used for CDS Principals

Entry Type Purpose

user Specifies an ACL entry for an individual
principal whose credentials were authenticated
within the local cell.

group Specifies an ACL entry for an authorization
group whose members have been authenticated
within the local cell.

other_obj Specifies an ACL entry for authenticated
principals in the local cell who are not
individual users named by an ACL entry of the
type user or members of a group named by an
ACL entry of the type orgroup.

foreign_user Specifies an ACL entry for an authenticated
principal in a foreign cell.

foreign_group Specifies an ACL entry for an authorization
group whose members were authenticated in a
foreign cell.

foreign_other Specifies an ACL entry for authenticated
principals in a foreign cell who are not
individual users named by an ACL entry of the
type foreign_user or members of a group
named by an ACL entry of the type
foreign_group.

any_other Specifies an ACL entry for an authenticated
principal who is not otherwise covered by any
of the preceding ACL entry types.

mask_obj Specifies an ACL entry containing a mask that
is substituted for the permissions of any
principals, whose credentials are either
authenticated or unauthenticated.

unauthenticated Specifies an ACL entry for principals who
cannot pass authentication procedures.

248 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

Entry Type Purpose

user_delegate Specifies an ACL entry for an intermediary that
acts for an authenticated principal in the local
cell.

group_delegate Specifies an ACL entry for an intermediary that
acts for the authenticated principals who are
members of an authorization group in the local
cell.

other_delegate Specifies an ACL entry for an intermediary that
acts for authenticated principals in the local cell
who are not individual users named by an ACL
entry of the typeuser_delegateor who are not
members of a group named by an ACL entry of
the typegroup_delegate.

foreign_user_delegate Specifies an ACL entry for an intermediary that
acts for an authenticated principal in a foreign
cell.

foreign_group_delegate Specifies an ACL entry for an intermediary that
acts for the members of an authorization group
in a foreign cell.

foreign_other_delegate Specifies an ACL entry for an intermediary that
acts for authenticated principals in a foreign
cell who are not individual users named by an
ACL entry of the typeforeign_user_delegate
or members of a group named by an ACL entry
of the typeforeign_group_delegate.

any_other_delegate Specifies an ACL entry for an intermediary that
acts for authenticated principals in the local cell
or in a foreign cell who are not named by an
ACL entry of any other type for intermediaries
of authenticated principals or groups.

DCE 1.2.2 Administration Guide—Core Components 249

Cell Directory Service

16.5 DCE Permissions Supported by CDS

CDS supports the following DCE permissions: read (r), write (w), insert (i), delete
(d), test (t), control (c), and administer (a). Each permission has a slightly different
meaning, depending on the kind of CDS name with which it is associated. In general,
the permissions are defined as follows:

• Read permission—Allows a principal to look up a name and view the attribute
values that are associated with it.

• Write permission—Allows a principal to change the modifiable attributes that are
associated with a name, except its ACLs.

• Insert permission—Allows a principal to create new names in a directory (for use
with directory entries only).

• Delete permission—Allows a principal to delete a name from the namespace.

• Test permission—Allows a principal to test whether an attribute of a name has
a particular value without being able to actually see any of the values; that is,
without having read permission to the name.

Test permission provides application programs with a more efficient way to verify
a CDS attribute value. Rather than reading an entire set of values, an application
can test for the presence of a particular value.

• Control permission—Allows a principal to modify the ACL entries that are
associated with a name. (Note that read permission is also necessary for modifying
a CDS entry’s ACLs; otherwise,dcecp and acl_edit will not be able to bind to
the entry.) Control permission is automatically granted to the creator of a CDS
entry.

• Administer permission—Allows a principal to issue CDS commands that control
the replication of directories. Administer permission is for use with directory
entries only.

A principal needs some permission to a name before it can try to perform management
operations on the name. Otherwise, CDS does not recognize the name when the
principal tries the management operation and returns an error stating that the name
does not exist. If the principal has some permissions, but not those required to perform
the operation, CDS returns an error explaining that the principal had insufficient rights
to perform the operation.

250 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

The creator of a name is automatically granted all permissions that are appropriate for
the type of name that is created. For example, a principal that is creating an object
entry is granted read, write, delete, test, and control permissions to the object entry. A
principal that is creating a directory is granted read, write, insert, delete, test, control,
and administer permissions to the directory.

Note: Unlike the security mechanisms that are enforced by most other file systems,
CDS does not require a principal to have access to all intermediate elements
in the pathname (full name) of a name in order to perform an operation on
the name. For example, consider an object entryobject1 stored in the/.:/sales
directory. In CDS, you can grant a principal access to the object entry/.:/
sales/object1without necessarily granting the principal access to either the/
.:/salesdirectory or the cell root directory (/.:).

16.6 Controlling Access to CDS Clerk and Server
Management Operations

CDS authorization allows you to control the use of CDS commands that involve local
management operations on CDS clerks and servers. Principal names for each clerk
and server are stored in the security namespace. An object entry that contains the
binding information for each clerk and server is stored in the CDS namespace in the/
.:/hostssubdirectory. Servers are represented as/.:/hosts/hostname/cds-server. Clerks
are represented as/.:/hosts/ hostname/cds-clerk.

Each clerk and server maintains a separate ACL that contains entries specifying the
principals allowed to perform these operations. Unlike the ACLs that are associated
with names in the namespace, the ACLs that are associated with clerks and servers
exist exclusively to provide local control of the use of these commands.

Whenever a new clerk or server is initialized, an ACL is created on the clerk or server
system. An initial ACL entry is also created, granting the machine principal and
the namespace authorization group (subsys/dce/cds-admin) read, write, and control
permissions to the clerk or server process on that system. All other principals, both
authenticated and unauthenticated, are granted read permission. The creation of this
ACL entry ensures that, immediately after its creation, any user logged into the
system as the machine principal is permitted to execute privileged clerk or server
CDS commands.

DCE 1.2.2 Administration Guide—Core Components 251

Cell Directory Service

Note: Use of the machine principal for this purpose is provided as a convenience and
assumes that the account itself (user name and password) is already moderately
secure. Namespace administrators may prefer to modify this scheme and
grant permission to particular clerks and servers on behalf of other individual
principals or authorization groups.

To edit an ACL that is associated with a CDS clerk or server, you use thedcecpacl
modify command with the-changeoption. For example, to change the permissions
for the usermichaelsin the ACL that is associated with the CDS clerk on nodeorion,
enter the following command:

dcecp> acl modify /.:/hosts/orion/cds-clerk -change {user michaels rw}

dcecp>

Keep in mind that clerks and servers are also represented by entries in the namespace.
To edit an ACL that is associated with the namespace entry for a CDS clerk or server,
you must include the-entry option, as well as the-changeoption, in theacl modify
command line. For detailed instructions on how to modify an ACL on the CDS entry
for a DCE resource, see Section 16.8.

16.7 Control Program Commands and Required
Permissions

Table 16-2 lists all thedcecp commands that operate on CDS objects and the
permissions that a principal must have to execute the commands.

Table 16–2. DCE Control Program Commands and Required Permissions

Commands Required Permissions

cds disable Delete, write, and create permissions on the
namespace entry of the server.

cds show Read permission on the namespace entry of the
server.

252 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

Commands Required Permissions

cdsalias catalog Read permission to the cell’s root directory whose
alias you want to list.

cdsalias connect auth_info permission on the the local cell’s root
directory. Also, the CDS server principal on the
machine containing the master replica of the local
cell’s root directory needs insert permission on the
parent cell’s root directory.

cdsalias create auth_info permission on the root directory of the
cell.

cdsalias delete auth_info permission on the root directory of the
cell.

cdscache create Write permission to the clerk that is to create the
server entry in the local CDS cache.

cdscache delete Write permission to the clerk that will be deleted
from the server entry in the local CDS cache.

cdscache discard Superuser (root) privileges on the clerk system
where the CDS cache resides. No CDS
permissions are required.

cdscache dump Superuser (root) privileges on the clerk system
where the CDS cache resides. No CDS
permissions are required.

cdscache show Read permission to the clerk that is designated to
retrieve either the server (-server option) or
clearinghouse (-clearinghouseoption) information
from the CDS cache.

cdsclient disable Delete, write, and create permissions on the
namespace entry of the clerk.

cdsclient show Read permission on the namespace entry.

clearinghouse catalog No special privileges are needed.

DCE 1.2.2 Administration Guide—Core Components 253

Cell Directory Service

Commands Required Permissions

clearinghouse create Write permission to the server on which you
intend to create the clearinghouse, and Admin
permission to the cell root directory. Also, the
server principal needs read, write, and Admin
permissions to the cell root directory.

clearinghouse delete Write and delete permissions to the clearinghouse
to be deleted, and Admin permission to all
directories that store replicas in the clearinghouse.
Also, the server principal needs delete permission
to the associated clearinghouse object entry, and
Admin permission to all directories that store
replicas in the clearinghouse.

clearinghouse disable Write permission to the CDS server on which the
clearinghouse resides.

clearinghouse initiate Write permission on the clearinghouse server and
Admin permission on the cell root directory. The
server principal needs read, write, and Admin
permission on the cell root directory.

clearinghouse repair Write permission to the clearinghouse server and
Admin permission to the cell root directory. The
server principal needs read, write, and Admin
permission to the cell root directory.

clearinghouse show Read permission to the clearinghouse whose
attributes you want to list.

clearinghouse verify Write permission to the clearinghouse server and
Admin permission to the cell root directory. The
server principal needs read, write, and Admin
permission to the cell root directory.

directory add Insert permission to the parent directory where the
child pointer (-member option) is to be placed.

254 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

Commands Required Permissions

directory create Insert and read permissions to the parent
directory, and write permission to the
clearinghouse that stores the master replica of the
new directory. Also, the server principal needs
read and insert permissions to the parent directory
of the new directory.

directory delete Delete permission to the directory and write
permission to the clearinghouse that stores the
master replica of the directory. The server
principal (hosts/hostname/cds-server) needs
Admin permission to the parent directory delete
permission to the child pointer that points to the
directory you intend to delete.

directory list Read permission to the directory whose contents
you want to list.

directory merge Read permission to the source and destination
directories, and insert permission to the
destination directory.

directory modify Write permission to the directory for which you
want to add (-add option), change (-change
option), or remove (-remove option) the attribute
or attribute value.

directory remove Delete permission to the child pointer (-member
option) or Admin permission to the parent
directory.

directory show Read permission to the directory whose attributes
you want to list. For a replica of a directory
(-replica option)—Read permission to the
directory of which the replica is a member. For a
child directory (-member option)—Read
permission to the child directory.

directory synchronize Admin, write, insert, and delete permission to the
directory. Also, the server principal needs admin,
read, and write permissions to the directory.

DCE 1.2.2 Administration Guide—Core Components 255

Cell Directory Service

Commands Required Permissions

link create Insert permission to the directory in which you
intend to create the link.

link delete Delete permission to the link entry, or Admin
permission to the directory that stores the link
entry to be deleted.

link modify Write permission to the link whose attributes are
to be modified.

link show Read permission to the link whose attributes are
to be listed.

object create Insert permission to the parent directory that is to
store the object entry.

object delete Delete permission to the object entry, or
administer permission to the parent directory that
stores the object entry.

object modify Write permission to the object entry for which
you want to add (-add option), change (-change
option), or remove (-remove option) the attribute
or attribute value.

object show Read permission to the object entry whose
attributes you want to list.

16.8 Editing ACLs on CDS Names

To edit an ACL that is associated with an entry in the CDS namespace for a child
directory, clearinghouse, soft link, or some other CDS object, specify the-entry
option to anydcecpacl command. The-entry option is especially useful in case
of an ambiguous pathname. In some cases, a pathname can resolve to a leaf object
in the DCE Directory Serviceand to an object in some other DCE component that
supports ACLs. In these cases, you must use the-entry option to edit the leaf object
in CDS. You do not need to specify this option to edit ACLs that are associated with
actual clearinghouses or directories.

256 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

For example, to edit the permissions in the Object ACL that is associated with a
CDS entry for a clearinghouse named/.:/Paris1_CH, you would enter the following
command:

dcecp> acl modify /.:/Paris1_CH -entry -change {unauthenticated -}

dcecp>

To edit the permissions in the Object ACL that is associated with the/.:/Paris1_CH
clearinghouse itself, you would enter the following command:

dcecp> acl modify /.:/Paris1_CH -change {unauthenticated -}

dcecp>

Another example is the soft link/.../eng_printer. The target of this soft link is/.../
boston.com/print_server. To edit the soft link leaf entry that is in the CDS namespace,
enter the following command:

dcecp> acl modify /.../eng_printer -change -entry \

>{group subsys/dce/cds-admin rwdtc}

dcecp>

16.9 How CDS Servers Gain Access to the Namespace

CDS servers require permission to the cell root directory and to lower-level directories
to successfully execute the following CDS commands:

• clearinghouse create

• directory create (For directories and replicas)

• directory delete (For directories and replicas)

• directory synchronize

To automate the process of granting all CDS servers the permissions that they require,
the CDS cell configuration process creates an authorization group for CDS servers

DCE 1.2.2 Administration Guide—Core Components 257

Cell Directory Service

under the fixed namesubsys/dce/cds-servers. The principal name of the initial server
in the cell is added to this group as part of the configuration process. Immediately
after the group is created, the configuration process grants full permissions (r , w, i,
d, t, c, a) to the cell root directory of the new namespace on behalf of the group.
ACL entries of the object ACL and initial container creation ACL types are created by
specifying subsys/dce/cds-serversas the principal in each ACL entry. This ensures
that the group has full access to all future directories and their contents.

Thereafter, whenever a new server is configured in the cell, the server configuration
process automatically adds the principal name of the new server to the group. Through
this process, all CDS servers in the cell receive adequate permissions to all directories
in the namespace.

16.10 Setting Up Access Control in a New Namespace

You should plan a consistent access control policy and be ready to implement the policy
as soon as you configure your first CDS server andbeforeyou create or populate any
new directories. Among the tasks you can perform are the following:

• Adding members to the namespace authorization group

• Creating additional authorization groups

• Establishing maximum permissions for unauthenticated principals

16.10.1 Adding Members to the Namespace Authorization Group

To facilitate managing and troubleshooting your namespace, the cell configuration
process creates a namespace authorization group under the fixed namesubsys/dce/
cds-admin. The configuration process then grants the group full access to the cell
root directory. This access propagates to the entire namespace as it evolves.

Immediately after its creation, the authorization group contains only the name that the
initial namespace administrator specified during the cell configuration process. You can
use thedcecpgroup addcommand to add the principal names of other individuals
in your organization who you want to administer and troubleshoot the namespace.
Because this group possesses full access to the entire namespace, its members can

258 DCE 1.2.2 Administration Guide—Core Components

Controlling Access to CDS Names

intervene, whenever necessary, to solve problems for namespace users with fewer
permissions. By removing a user’s principal name from the group, the user described
by that principal loses the access assigned to the group.

(See Part 6 of this guide for complete information on how to add and delete group
members.)

16.10.2 Creating Additional Authorization Groups

Authorization groups can provide a convenient and flexible way to control access to
your namespace. You can combine users according to organization, work type, security
status, and so on, and then grant each group a specific set of permissions to specific
directories or other names in the namespace.

To delegate authority locally, you can create an authorization group for each of the
functional directories that you plan to create in your namespace. For example, you
could create an authorization group namedsubsys/dce/sales-adminand include, as
members, the individuals who are responsible for managing the/.:/sales directory.
Each local authorization group could have full access to the contents of the directory
for which it is responsible.

16.10.3 Establishing Maximum Permissions for Unauthenticated
Principals

If you want to apply a namespace-wide set of maximum permissions for all
unauthenticated principals, you should do so immediatelyafter you configure your
first CDS server andbefore you create and populate any directories below the cell
root. By creating an unauthenticated ACL entry and anany_other entry for the cell
root by using the object ACL and initial container creation ACL types, you can
take advantage of automatic propagation of the unauthenticated entry to the entire
namespace as it evolves.

DCE 1.2.2 Administration Guide—Core Components 259

Chapter 17
Managing Clerks, Servers, and
Clearinghouses

CDS clerks, servers, and clearinghouses are initially created and started as part of the
CDS clerk and server configuration. Thereafter, clerk and server processes are created
and started with a series of commands that are executed either manually or by the
startup scripts on the systems where they are running. These CDS entities are largely
self-regulating and, apart from routine monitoring, require only minor management
intervention.

This chapter explains how to monitor CDS clerks, servers, and clearinghouses and
perform other management tasks, such as backing up namespace information.

17.1 Monitoring Clerk, Server, and Clearinghouse
Counters

Every clerk, server, and clearinghouse maintains a set of attributes calledcounters
to keep track of the read, write, and other operations that it performed, or that were

DCE 1.2.2 Administration Guide—Core Components 261

Cell Directory Service

performed on it, since it was last started up. You can monitor these counters to
determine the type and volume of the CDS traffic that is being generated on your
network.

Clerk, server, and clearinghouse counters are fully described in theDCE 1.2.2
Command Reference.

17.1.1 Displaying Clerk Counters

Use thedcecp cdsclient showcommand to display current counter values for a clerk.
For example, to display the current values of all attributes that are associated with a
clerk, you enter the following command:

dcecp> cdsclient show /.:/hosts/<hostname>/cds-clerk

17.1.2 Displaying Server Counters

Use thedcecp cds showcommand to display the current counter values for a server.
For example, to display the current values of all the attributes that are associated with
a server, you enter the following command:

dcecp> cds show

17.1.3 Displaying Clearinghouse Counters

Use thedcecp clearinghouse showcommand with the-counters option to display
the current counter values for a specified clearinghouse. For example, the following
command displays the current values of all attributes that are associated with the
remote clearinghouse/.:/Paris1_CH:

262 DCE 1.2.2 Administration Guide—Core Components

Managing Clerks, Servers, and Clearinghouses

dcecp> clearinghouse show /.:/Paris1_CH -counters

17.2 Monitoring Clerk Communications with Specific
Clearinghouses

Every CDS clerk maintains a separate set of clearinghouse counters to keep track of
read, write, and other operations that it directs to each of the clearinghouses with
which it communicates. These records collectively represent the cached clearinghouse
entity for a particular clerk.

You can monitor a clerk’s cached clearinghouse counters so that you can look at
the distribution of the clerk’s transactions to each of the clearinghouses that it uses
and find out where a clerk’s requests are most often directed. To do this, you use
the dcecpcdscache showcommand with the-clearinghouseoption. For example, to
display the cached clearinghouse counters that are maintained by the local clerk for
the /.:/NY1_CH clearinghouse, you enter the following command:

dcecp> cdscache show /.:/NY1_CH -clearinghouse

17.3 Displaying the Contents of a Clearinghouse

Use thedcecp clearinghouse showcommand to display the directory names of all
the directories that are stored in a particular clearinghouse. For example, to display
the names of the directories that are stored in the clearinghouse/.:/Chicago2_CH,
you enter the following command:

dcecp> clearinghouse show /.:/Chicago2_CH

(See Chapter 19 for more examples of displaying clearinghouse information.)

DCE 1.2.2 Administration Guide—Core Components 263

Cell Directory Service

17.4 Forcing the Clearinghouse to Checkpoint to Disk

Under normal operations, the server will periodically checkpoint the clearinghouse
from memory to disk. However, you can perform this task immediately by having write
permission to the server and entering thedcecp clearinghouse initiatecommand with
the checkpoint option. For example, to checkpoint the clearinghouse/.:/Boston3_CH
from memory to disk, you enter the following command:

dcecp> clearinghouse initiate /.:/Boston3_CH -checkpoint

17.5 Disabling Clerks and Servers

You may occasionally have to disable the clerk or server that is running on a particular
system when you need to perform diagnostic or troubleshooting work that requires
active clerk or server processes to be suspended. Usually, you can use thedce_config
procedure to start and stop DCE daemons. You can disable CDS clerks and servers
by using thedcecpcommands,cdsclient disableandcds disable.

17.5.1 Disabling a Clerk

To disable the clerk that is on the local node, enter the following command:

dcecp>cdsclient disable /.:/hosts/<hostname>/cds-clerk

17.5.2 Disabling a Server

To disable the server that is on the local node, enter the following command:

dcecp>cds disable /.:/hosts/<hostname>/cds-server

264 DCE 1.2.2 Administration Guide—Core Components

Managing Clerks, Servers, and Clearinghouses

17.6 Restarting Clerks and Servers

CDS clerk and server processes are created and started automatically by startup scripts
that execute whenever the host system is rebooted. Sometimes, however, you may need
to run these scripts yourself if a clerk or server fails to start automatically upon reboot,
or if you want to restart a clerk or server that you disabled to perform a backup or do
diagnostic work on the host system.

17.6.1 Restarting a Clerk

To restart a clerk, follow these steps:

1. Log into the clerk system as superuser (root).

2. Enter the following command to see if thedced process is already running:

ps -e

3. If thedcedprocess appears on the list of active processes, proceed to step 4. If the
dced process does not appear on the list of active processes, enter the following
command to start the process:

dced

4. Enter the following command to start thecdsadvprocess:

cdsadv

17.6.2 Restarting a Server

To restart a server, follow these steps:

DCE 1.2.2 Administration Guide—Core Components 265

Cell Directory Service

1. Log into the server system as superuser (root).

2. Enter the following command to see if thedced process is already running:

ps -e

3. If thedcedprocess appears on the list of active processes, proceed to step 4. If the
dced process does not appear on the list of active processes, enter the following
command to start the process:

dced

4. Enter the following command to see if thecdsadvprocess is already running:

ps -e

5. If the cdsadv process appears on the list of active processes, proceed to step 6.
If the cdsadv process does not appear on the list of active processes, enter the
following command to start the process:

cdsadv

6. Enter the following command to restart the server:

cdsd

When the server process starts, it starts all clearinghouses on the system.

266 DCE 1.2.2 Administration Guide—Core Components

Managing Clerks, Servers, and Clearinghouses

17.7 Preserving a Clearinghouse Across a Server
System Upgrade

If you plan to upgrade the operating system software on a CDS server system, and
you want to preserve the clearinghouse (or clearinghouses) on the system, follow this
procedure:

1. Make sure that you disable the clerk and server.

2. Before you perform the system upgrade, back up the following CDS files:

• cds_attributes

• cds_files

• *_ch.checkpointnnnnnnnn

• *_ch.tlognnnnnnnn

• *_ch.version

• cds_cache.nnnnnnnn

• cds_cache.version

• cds_cache.wan

(See theDCE 1.2.2 Administration Guide—Introductionand the DCE 1.2.2
Porting and Testing Guidefor the full pathnames of all CDS files.)

3. Perform the system upgrade.

4. Restore all the files that you backed up in step 2.

5. Follow the procedure described in Section 17.6 for restarting a server. When the
server process starts, it automatically locates the appropriate restored files and
starts all clearinghouses on the system.

17.8 Backing Up Namespace Information

Because updates and skulks of directories can occur asynchronously, and because of
the distributed nature of a namespace, you cannot always depend on traditional backup
methods to preserve CDS data.

DCE 1.2.2 Administration Guide—Core Components 267

Cell Directory Service

The rest of this chapter tells when to use the following backup mechanisms:

• Directory replication

• Operating system backups

17.8.1 Using Replication to Back Up Namespace Information

Directory replication is always the most reliable way to back up the information that
is in your namespace. When you create a new replica of a directory at a clearinghouse,
you are not only distributing the information but also creating an up-to-date, real-time
backup of the information. If a replica in one clearinghouse becomes unavailable, users
can look up the information they need in another replica of the directory in some other
clearinghouse. The more replicas of a directory you create, the more likely users will
always be able to find the information that is contained in the directory somewhere in
the namespace.

If an entire clearinghouse is corrupted, you can restore it by creating a new
clearinghouse and then creating new replicas of the directories that were stored there.
(See Chapter 18 for complete information on how to create a replica.)

17.8.2 Using Operating System Backups

Because a namespace is a distributed database to which modifications are synchronized
at variable intervals, any traditional backup of a particular server system always
contains old and incomplete information. If you frequently create, modify, or delete
names, restoring an out-of-date backup can cause recently created names to disappear,
recent modifications to be reversed, or recently deleted names to reappear in the
namespace. The degree to which a traditional backup reflects the current condition of
a clearinghouse depends entirely on the following conditions:

• How recently the backup was created

• What modifications were made since that time

• Whether the backup included the clearinghouse files in the directorydcelocal/var/
directory/cds

268 DCE 1.2.2 Administration Guide—Core Components

Managing Clerks, Servers, and Clearinghouses

If you decide to use operating system backups, you only need to back up the server
systems whose clearinghouses store master replicas of directories. To ensure that you
back up your namespace completely, check for the following:

• The servers on these systems are disabled by using thedcecp cds disable
command.

• The files in the root directorydcelocal /var/directory/cds are included in the
backup.

If your namespace is small enough to be maintained in one clearinghouse, you can
reliably use traditional operating system backups to save and restore the clearinghouse
data. If only one clearinghouse exists, only one replica (the master replica) of each
directory exists. This eliminates the need to account for the discrepancies that may
exist among multiple directory replicas. Remember that the more frequently you back
up clearinghouse data, the more up-to-date that information will be if you need to
restore it.

DCE 1.2.2 Administration Guide—Core Components 269

Chapter 18
Managing CDS Directories

If you manage a namespace in a small, slow-growth network of 25 nodes or less,
you can maintain all your names in the root directory and may not need to create
additional directories. However, if you manage a namespace in a network of more
than 25 nodes, you should consider creating at least one additional level of directories
under the root.

This chapter explains how to create directory hierarchies in the cell namespace and
describes tasks related to managing directories, such as

• Creating and deleting directory replicas

• Skulking a directory

• Modifying a directory’s convergence

18.1 Creating Directories

By creating directories, you make it possible to replicate and manage groups of object
entries according to where, how often, or by whom they are used. Grouping related

DCE 1.2.2 Administration Guide—Core Components 271

Cell Directory Service

object entries into separate directories also makes it easier to control access because
it allows you to take advantage of default ACL entry propagation.

CDS cell configuration creates an initial hierarchy of directories under the root so that
DCE components can fix locations within the namespace where they can create and
catalog their object entries. Among the directories created by cell configuration is the
subsysdirectory, beneath which independent software vendors (ISVs) can create their
own directories to store the object entries that are used by their distributed applications.

Alternatively, ISVs and other users of the namespace may prefer to create a hierarchy
of directories of their own design under the root to store their information.

(See theDCE 1.2.2 Administration Guide—Introductionfor more information on the
initial hierarchy that is established by cell configuration.)

18.1.1 Permissions for Creating a Directory

To create a directory, you need the following permissions:

• Insert permission to the parent of the new directory.

• Write permission to the clearinghouse that stores the master replica of the new
directory.

• The server principal for the server system where you enter the DCE control
program’s (dcecp) directory create command must have read and insert
permissions to the parent directory of the new directory.

If the server is included in the server authorization groupsubsys/dce/cds-servers,
these permissions should already be in place. If in doubt, use thedcecpacl
show command on the parent directory to verify that the server principal has the
appropriate permissions. (See theacl(8dce)reference page for more information
on arguments to theacl showcommand.)

18.1.2 Entering the directory create Command

Use thedirectory create command to create a new directory (master replica) with
the name that you specify. When you use this command, CDS, by default, stores the

272 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

master replica of the new directory in the same clearinghouse that stores the master
replica of the new directory’s parent directory.

For example, to create a directory named/.:/salesand store the master replica of the
new directory in the root directory’s initial clearinghouse, you enter the following
command:

dcecp> directory create /.:/sales

dcecp>

Note: For the directory creation to succeed, the master replica of the new directory’s
parent directory must be available when you enter the command.

You can use thedirectory create command’s-clearinghouseoption to store the master
replica of a new directory in a different clearinghouse than the parent directory’s
clearinghouse. For example, to place the new directory created in the previous
example into another clearinghouse (/.:/Chicago1_CH), you would enter the following
command:

dcecp> directory create /.:/sales -clearinghouse /.:/Chicago1_CH

dcecp>

(See thedirectory(8dce) reference page for complete information on arguments and
options to thedirectory create command.)

18.1.3 Checking the ACL Entries for a New Directory

After you create a directory, you want to verify that the users and applications for
whom the directory was created have the appropriate permissions. To do this, use the
acl showcommand on the directory to see the associated ACL entries. For example:

dcecp> acl show /.:/sales

{unauthenticated r--t-}

{group subsys/dce/cds-admin rwdtc}

DCE 1.2.2 Administration Guide—Core Components 273

Cell Directory Service

{group subsys/dce/cds-server rwdtc}

{any_other r--t-}

dcecp>

(See theacl(8dce)reference page for complete information on theacl showcommand.)

If the required permissions were not inherited from the new directory’s parent
directory, use theacl modify command to create the necessary ACL entries. For
example:

dcecp> acl modify /.:/sales -add {user cell_admin rwdtcia}

dcecp>

(See theacl(8dce) reference page for complete information on the arguments and
options for theacl modify command.)

18.1.4 Upgrading the Directory Version on the Cell Root Directory

Upgrading the directory version on the cell root directory has special significance.
This procedure implies that all CDS servers in the cell have been upgraded to the
latest version, given that a cell root directory is replicated in all CDS servers in the
cell. After you have set theCDS_UpgradeTo attribute on the cell root directory,
the server software soon recognizes this and sets theCDS_UpgradeToattribute on
all directories in the cell. Eventually, theCDS_DirectoryVersion attribute on all the
affected directories in the cell will be upgraded to the new value.

18.1.5 Upgrading the Directory Version on a Directory

To use new features in a given release of CDS, you may need to explicitly update the
directory version of a directory. This typically occurs when the servers replicating the
directory all have been upgraded to the latest version of software, as older versions
will not recognize the new features.

To upgrade the directory version, you need write permission to the directory and you
must use the following commands:

274 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

dcecp> directory modify directory-name-add {CDS_UpgradeTo<v.n>} \

>-single

dcecp> directory synchronize directory-name

Eventually, all clearinghouses that contain a replica of this directory will detect the
presence of theCDS_UpgradeTo attribute and upgrade theCDS_ReplicaVersion
attribute on the appropriate replica. You can also use the following command on all
clearinghouses that are replicating the directory:

dcecp> clearinghouse verifyclearinghouse-name

This command forces the server background thread to run, thereby freeing
you to perform other tasks until the job finishes. After you have verified all
affected clearinghouses, you will need to perform another skulk of the directory
to finally set theCSA_DirectoryVersion attribute to the appropriate value. The
CDS_DirectoryVersionattribute is not upgraded until all of theCDS_ReplicaVersion
attribute values of all replicas contain the new value.

18.2 Creating a Read-Only Replica

From time to time, you will want to create read-only replicas of directories. You create
read-only replicas of a directory for the following purposes:

• To distribute the information that is contained in the directory throughout your
network, and to make the information more accessible to users and applications
at other locations.

• To improve response time, especially in a namespace where users are dispersed
over long distances. You should create read-only replicas in clearinghouses that
are located near the user groups and applications that most frequently use the
information that is contained in the directory.

• To preserve a backup of the information that is contained in the master replica
of the directory. Maintaining multiple replicas ensures that the temporary loss of
an individual replica does not cause an interruption in service and that the loss of
a replica can be easily recovered. Even directories that store information used at
only one particular site should be replicated in at least one other clearinghouse,
preferably on a server at another location, so that a local failure at one site does

DCE 1.2.2 Administration Guide—Core Components 275

Cell Directory Service

not cause both replicas to be unreachable at the same time. (See Chapter 17 for
more information on using directory replication as a means of backing up CDS
information.)

Read-only replicas of directories are safe from alteration by users. Users can look up
information in a read-only replica, but they are not permitted to create new information
or modify existing information.

You create read-only replicas with the-replica option of the directory create
command. You should create the replicas in clearinghouses whose users need to access
the directory but do not need, or are not permitted, to update its contents.

18.2.1 Before You Create a Replica

Before you try to create a replica, verify that the clearinghouse containing the master
replica of the directory you intend to replicate is running and reachable. To verify that
this condition is satisfied, follow these steps:

1. For the directory that you intend to replicate, use thedirectory show command
to display the directories attribute values and look at theCDS_Replicasattribute.
The value of this attribute shows the names of the clearinghouses that currently
store a replica of the directory. For example:

dcecp> directory show /.:/sales{RPC_ClassVersion {01 00}}

{CDS_CTS 1994-08-12-09:52:30.396-04:00I0.000/00-00-c0-f7-de-56}

{CDS_UTS 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}

{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}

{CDS_Replicas

{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}

{CH_Name /.../Chicago1/Chicago1_CH}

{Replica_Type Master}

{Tower {ncacn_ip_tcp 130.105.5.16}}

{Tower {ncadg_ip_udp 130.105.5.16}}}}

{CDS_AllUpTo

1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}

276 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

{CDS_Convergence medium}

{CDS_ParentPointer

{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}

{Timeout

{expiration 1994-08-12-09:52:30.396}

{extension +1-00:00:00.000I0.000}}

{myname /.../Chicago1/sales}}}

{CDS_DirectoryVersion 3.0}

{CDS_ReplicaState on}

{CDS_ReplicaType Master}

{CDS_LastSkulk

1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}

{CDS_LastUpdate

1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}

{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}

{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}

{CDS_ReplicaVersion 3.0}

dcecp>

2. With this information, use thedirectory show command with the-clearinghouse
and-replica options to verify that you can get a response from the clearinghouse
that stores the master replica. For example:

dcecp> directory show /.:/sales -replica -clearinghouse

/.:/Chicago1_CH{RPC_ClassVersion {01 00}}

{CDS_CTS 1994-08-12-09:52:30.396-04:00I0.000/00-00-c0-f7-de-56}

{CDS_UTS 1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}

{CDS_ObjectUUID a37d84d0-b5dc-11cd-8ffe-0000c0f7de56}

{CDS_Replicas

{{CH_UUID ce7ed810-b5db-11cd-8ffe-0000c0f7de56}

{CH_Name /.../Chicago1/Chicago1_CH}

{Replica_Type Master}

{Tower {ncacn_ip_tcp 130.105.5.16}}

{Tower {ncadg_ip_udp 130.105.5.16}}}}

{CDS_AllUpTo

1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}

{CDS_Convergence medium}

DCE 1.2.2 Administration Guide—Core Components 277

Cell Directory Service

{CDS_ParentPointer

{{Parent_UUID d034bc25-b5db-11cd-8ffe-0000c0f7de56}

{Timeout

{expiration 1994-08-12-09:52:30.396}

{extension +1-00:00:00.000I0.000}}

{myname /.../Chicago1/sales}}}

{CDS_DirectoryVersion 3.0}

{CDS_ReplicaState on}

{CDS_ReplicaType Master}

{CDS_LastSkulk

1994-08-12-09:52:31.566-04:00I0.000/00-00-c0-f7-de-56}

{CDS_LastUpdate

1994-08-12-09:52:31.506-04:00I0.000/00-00-c0-f7-de-56}

{CDS_RingPointer ce7ed810-b5db-11cd-8ffe-0000c0f7de56}

{CDS_Epoch a3df2a50-b5dc-11cd-8ffe-0000c0f7de56}

{CDS_ReplicaVersion 3.0}

dcecp>

The directory show command with the-clearinghouse and -replica options
displays all the attribute values for the directory and its replica role.

Note: If any read-only replicas in the directory’s existing replica set are unavailable,
the replication cannot complete. The normal skulking process completes
the replication as soon as all replicas in the directory’s replica set become
available.

18.2.2 Permissions for Creating Replicas

To create a replica, you need the following permissions:

• Administer permission to the directory that you intend to replicate

• Write permission to the clearinghouse that stores the new replica

• For the replica creation to succeed, the server principal for the server system where
you enter thedirectory create command with the-replica and _clearinghouse
options must have read, write, and administer permissions to the directory that
you intend to replicate.

278 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

If the server is included in the server authorization groupsubsys/dce/cds-servers,
these permissions should already be in place. If in doubt, use theacl check
command to verify that the server principal has the appropriate permissions. (See
the acl(8dce) reference page for complete information on using theacl check
command.)

18.2.3 Entering the directory create Command

Use thedirectory create command with the-replica and -clearinghouseoptions to
create a replica of a directory and store it in the clearinghouse that you specify. For
example, the following command creates a replica of the/.:/mfg directory and stores
the replica in a clearinghouse that is named/.:/Paris1_CH:

dcecp> directory create /.:/mfg -replica -clearinghouse /.:/Paris1_CH

dcecp>

18.3 Deleting a Read-Only Replica

Sometimes you may need to delete a read-only replica when the information that
it contains is no longer needed by the local users of the clearinghouse in which the
replica is stored. You may also need to delete a read-only replica to prepare for deleting
the directory of which the replica is a member, or before permanently removing the
clearinghouse in which the replica is stored.

18.3.1 Permissions for Deleting a Replica

To delete a replica, you must have the following permissions:

• Administer permission to the directory whose replica you want to delete

• Write permission to the clearinghouse from which you are deleting the replica

DCE 1.2.2 Administration Guide—Core Components 279

Cell Directory Service

18.3.2 Entering the directory delete Command

Use thedirectory delete command with the-replica and -clearinghouse options
to delete a replica from the clearinghouse that you specify. For example, the
following command deletes a replica of the/.:/engdirectory from the/.:/Chicago2_CH
clearinghouse:

dcecp> directory delete /.:/eng -replica -clearinghouse /.:/Chicago2_CH

dcecp>

Note: You can delete a directory’s master replica only by deleting the directory
itself (by using thedirectory delete command). (See Chapter 21 for complete
information on how to delete a master replica.)

18.4 Skulking a Directory

The skulk operation is a periodic distribution of recent modifications that were made
to the namespace. CDS skulks every directory at regular intervals according to the
value assigned to the directory’sCDS_Convergenceattribute. To ensure that updates
are distributed to all replicas of a directory as soon as possible, you can initiate a skulk
of the directory by using thedirectory synchronize command rather than waiting for
the next scheduled skulk to distribute the new information. You can use this command
to perform the following tasks:

• Distribute crucial updates that were made to a directory’s contents or replica set
when you do not want to wait for the next skulk

• Skulk directories that store replicas on servers that were inoperative for an
extended period and were just brought back online

18.4.1 Permissions for Skulking a Directory

To skulk a directory, you must have the following permissions:

• Administer, write, insert, or delete permission to the directory.

280 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

• The server principal for the server system where you enter thedirectory
synchronize command needs read, write, and administer permissions to the
directory that you intend to skulk.

If the server is included in the server authorization groupsubsys/dce/cds-servers,
these permissions should already be in place. If in doubt, use theacl show
command to verify that the server principal has the appropriate permissions. (See
the acl(8dce)reference page for complete information on theacl showcommand
arguments.)

18.4.2 Entering the directory synchronize Command

Use thedirectory synchronize command to initiate an immediate skulk on a directory.

After you enter the command,dcecp temporarily suspends thedcecp>prompt while
the skulk is in progress. Skulks of directories with large replica sets may take some
time to execute. If the prompt returns with no error messages, the skulk is successful.
If error messages are displayed before the prompt returns, the skulk failed.

For a skulk to succeed, every replica in the directory’s replica set must be reachable.
Skulks may sometimes fail, especially on directories with large replica sets, or when
the servers that store replicas of the directory are located over great distances where
network connectivity is not always reliable.

Skulk failure does not make CDS unusable. Although the skulking process is unable to
update information in a replica that it cannot contact, it always updates information in
the replicas that it can reach. Temporarily, some replicas contain the latest information
and some do not. When a skulk fails, CDS automatically repeats the skulking process,
at an interval based on the directory’s convergence value, until all replicas in the set
are updated with the latest changes. When all replicas contain identical information,
CDS considers the skulk successful.

If skulks of a particular directory continue to fail, you can determine the cause by
reviewing the log of CDS events on the server that stores the master replica of the
directory. For example, the following command initiates a skulk on the/.:/admin
directory:

DCE 1.2.2 Administration Guide—Core Components 281

Cell Directory Service

dcecp> directory synchronize /.:/admin

dcecp>

18.4.3 Synchronizing CDS Server Clocks

After performing a skulk operation on a directory, you may receive the message

Server clocks are not synchronized

indicating that the server clocks are not synchronized. If so, you should first check to
see whether the system clocks on the server systems are indeed synchronized. If they
are and you still receive the message, then perhaps the system clock on an individual
server was mistakenly set to a future time and subsequently restored. This causes a
problem for CDS because there may be timestamps stored in a clearinghouse that are
invalid (any timestamp greater than 5 minutes in the future from the current time).

If this is the case, you should adjust the system clock to the current time and then
enter the following command:

dcecp> clearinghouse repair <clearinghouse-nametimestamps

This command will disable the clearinghouse, analyze and repair bad timestamps,
checkpoint the clearinghouse to disk, and reenable the clearinghouse. To use the
command, you need write permission to the server on which the clearinghouse
resides. Also, you should execute this command on all clearinghouses that replicate
the directory (and its objects) that needs to be repaired.

After executing theclearinghouse repaircommand, you should be able to skulk the
directory successfully.

282 DCE 1.2.2 Administration Guide—Core Components

Managing CDS Directories

18.5 Modifying a Directory’s Convergence

The value assigned to a directory’sCDS_Convergenceattribute determines how
frequently the server that stores the master replica of the directory initiates a skulk of
the directory’s replica set. A directory’s convergence can be set to a value ofhigh,
medium, or low.

A directory that is set to a convergence value ofhigh is skulked at least once every 12
hours. If an update is made to the directory, the server that stores the master replica
immediately attempts to propagate the new information to the entire replica set. If this
update propagation fails, the server schedules a skulk of the directory to begin within
the hour. If this initial skulk fails, additional skulks are initiated at 1-hour intervals
until the skulk succeeds.

A directory that is set to a convergence value ofmedium is skulked at least once
every 12 hours. If an update is made to the directory, the server that stores the master
replica immediately attempts to propagate the new information to the entire replica
set. If the propagation fails, the server waits for the next skulk to synchronize the
replica set.

A directory that is set to a convergence value oflow is skulked at least once every 24
hours. The server on which a low-convergence directory resides makes no immediate
attempt to propagate updates and waits for the next skulk to synchronize the replica
set.

Every newly created directory inherits the convergence value of its parent directory.
When you create a namespace, the root directory is automatically assigned a
convergence value ofmedium. Unless you change this value, or the convergence
values of any lower-level directories after you create them, all directories that you
create under the root also have a convergence value ofmedium. For most directories,
you never need to modify this value. However, you may occasionally find it useful to
set a directory’s convergence tohigh or low.

18.5.1 Before You Modify a Directory’s Convergence

Before you modify a directory’s convergence, you want to verify the current
convergence value of the directory. To do this, use thedirectory show command

DCE 1.2.2 Administration Guide—Core Components 283

Cell Directory Service

to display the directory’s attribute values and look at theCDS_Convergenceattribute
value.

18.5.2 Permissions for Modifying a Directory’s Convergence

To modify a directory’s convergence, you must have write permission to the directory.

18.5.3 Entering the directory modify Command

Use thedirectory modify command with the-change option to assign a value of
high, medium, or low to a directory’sCDS_Convergenceattribute. For example, the
following command sets the convergence value of the/.:/sales/usdirectory tohigh:

dcecp> directory modify /.:/sales/us -change {CDS_Convergence high}

dcecp>

284 DCE 1.2.2 Administration Guide—Core Components

Chapter 19
Viewing the Structure and Contents of
a Namespace

When you need to view the structure and contents of the cell namespace, you can
use one or more programs provided by CDS. The CDS browser (cdsbrowser) allows
you to display namespace information in a windowing environment, while the DCE
control program (dcecp) displays information through its command line interface.
This chapter explains how to use the CDS browser anddcecp to display namespace
information.

19.1 Viewing the Namespace with the CDS Browser

The CDS browser is a tool for viewing the content and structure of a namespace,
which runs on workstations with the OSF/Motif graphical user interface or compatible
software. The program can display an overall directory structure as well as show the
contents of directories, enabling you to monitor growth in the size and number of
directories in a namespace. You also can customize the CDS browser so that it displays
only a specific class of object names.

DCE 1.2.2 Administration Guide—Core Components 285

Cell Directory Service

To start the CDS browser, enter the following command at your system prompt:

$ cdsbrowser

To end a CDS browser session and return to your system prompt, choose Quit from
the File pull-down menu. (See thecdsbrowser(8cds)reference page for a complete
description of thecdsbrowsercommand.)

19.1.1 Displaying the Default Namespace

The CDS browser lets you view the default namespace for your system. You can see
only the entries in the namespace to which you have read permission. Directories
to which you do not have read permission do not appear. When you use the CDS
browser, it sets the confidence level of clerk calls to low.

When you start the CDS browser, an icon representing the root directory is the first
item to be displayed in the window. Directories, soft links, and object entries all have
distinct icons associated with them. Table 19-1 shows the CDS browser icons and
what they represent.

Table 19–1. CDS Browser Icons and Their Meaning

Object entryDirectory

Clearinghouse object entry Soft link

Icon Entry Type Icon Entry Type

To expand (open) the root directory, double-click on it. Double-click on the expanded
directory to collapse (close) it. When you expand a directory, you see all of the soft
links and object entries that it contains. Object entries can represent clearinghouses or
any resource for which a client application creates entries in the namespace. Note that

286 DCE 1.2.2 Administration Guide—Core Components

Viewing the Structure and Contents of a Namespace

object entries representing clearinghouses are shown with a different icon than are
ordinary object entries. All entries, such as object entries, soft links, and directories,
are shown indented from their parent directories.

19.1.2 Expanding and Collapsing Selected Directories

By double-clicking on single directories, you can continue expanding a particular
directory pathname one level at a time. Other methods are available to expand all
directories at once or to expand selected groups of directories.

To expand or collapse a group of directories, select them and double-click on them.
Note that, because double-clicking has a toggle effect, you can expand or collapse
groups of directories only one level at a time. If you double-click multiple directory
levels at one time, the result may be the opposite of what you expect.

To expand or collapse selected directories level by level, click on the first directory
that you want to select, then continue selecting directories by shift-clicking (pressing
<Shift> and clicking) on them. When you select the last directory, press<Shift>
and double-click, instead of single-clicking, on it. This selects the last directory and
expands or collapses all of the directories that you selected.

19.1.3 Expanding and Collapsing the Entire Cell Namespace

To expand all directories on all levels at once, choose the Expand All option from the
File menu. Likewise, choose Collapse All from the File menu to close an expanded
namespace.

Note: Use Expand All with care if you have a large namespace. The larger a
namespace, the longer it takes to display its entire contents.

19.1.4 Filtering the Namespace Display

Using the Filters menu, you can selectively display object entries of a particular class.
For example, if you are interested in seeing the entries for clearinghouse objects only,

DCE 1.2.2 Administration Guide—Core Components 287

Cell Directory Service

choose the classCDS_Clearinghousefrom the Filters menu. For any directory that
you expand after choosing a filter, you see only names of objects whose class matches
the filter.

Note that soft links are still displayed because they are not object entries and only
object entries can be filtered out. To reset the filter so that you can again view all
object entries, choose the* (asterisk) from the Filters menu.

19.1.5 Navigating the Namespace

Once you begin expanding the namespace, it can exceed the boundaries of your CDS
browser window, even if you enlarge the window. You can use the horizontal and
vertical scroll bars and stepping arrows to scroll through the namespace.

Dragging the slider up and down the vertical scroll bar on the right side of the display
window produces an index window. The index window shows the name where the
slider is currently positioned in the namespace. When the index window contains the
name that you want to view, release the mouse button to position that name at the top
of the CDS browser window.

In displays that are larger than the length of the window, scrolling through directory
levels can produce a reference line toward the top of the window. The line orients
you by showing the full directory pathname from the current name to the root. It also
indicates that you have scrolled past other parts of the namespace that are no longer
displayed.

19.2 Listing the Contents of Directories

The DCE control program (dcecp) provides adirectory list command that allows
you to display a list of the descendants of a directory within the cell namespace. A
directory’s descendants are all the child pointers, clearinghouses, object entries, and
soft links existing in it.

To use thedirectory list command, you must have read permission to the CDS names
that you want to display.

288 DCE 1.2.2 Administration Guide—Core Components

Viewing the Structure and Contents of a Namespace

For a complete listing of a directory’s contents, you enter thedirectory list command
with the name of the directory or directories whose contents you wish to view. For
example:

dcecp> directory list /.:/eng

/.../eng_cell.osf.org/hosts/eng/aud-acl \

/.../eng_cell.osf.org/hosts/eng/aud-svc \

/.../eng_cell.osf.org/hosts/eng/cds-clerk \

/.../eng_cell.osf.org/hosts/eng/cds-server \

/.../eng_cell.osf.org/hosts/eng/dts-entity \

/.../eng_cell.osf.org/hosts/eng/profile \

/.../eng_cell.osf.org/hosts/eng/self \

/.../eng_cell.osf.org/hosts/eng/CDS_CTS \

/.../eng_cell.osf.org/hosts/eng/CDS_UTS \

dcecp>

By default, thedirectory list command displays the full names of the objects (the
object names preceeded by/.../ pathname)contained in the directory. To list only the
RDNs of the objects, enter thedirectory list command with the-simplenameoption.

To display the names of a particular kind of directory descendant only, you include
the appropriate option of thedirectory list command. For example, you enter the
following command to display the names of all the soft links that are stored in the/
.:/eng directory:

dcecp> directory list /.:/eng/ -links

/.../eng_cell.osf.org/hosts/eng/CDS_CTS \

/.../eng_cell.osf.org/hosts/eng/CDS_UTS

dcecp>

19.2.1 Displaying the Attribute Values of CDS Names

To display any or all of the current values of the attributes associated with the names
in a namespace (except for clerks or servers), use thedcecpshowoperation.

DCE 1.2.2 Administration Guide—Core Components 289

Cell Directory Service

The basic syntax of theshow operation is as follows:

object-typeshowobject-name

where object-type is the type of CDS object about which you want to display
information, andobject-nameis a complete directory specification terminating with a
simple name (that is, the full CDS name) of the object you are inquiring about.

To use theshowoperation, you must have read permission to the name that you want
to display.

In the following example, theshow operation displays the current values of the
CDS_CHDirectories attribute associated with the/.:/Chicago2_CH clearinghouse.
The display returned by the operation shows two values for the attribute, each value
having two parts. The parts of the attribute value are UUID of Directory and Name of
Directory. Theshow operation displays the values separately. For each value, it first
lists the attribute name on a line ending with a colon, then the parts of the value.

dcecp> clearinghouse show /.:/Chicago2_CH

{RPC_ClassVersion

{01 00}}

{CDS_CTS 1994-01-24-07:12:51.966-05:00I0.000/00-00-c0-f7-de-56}

{CDS_UTS 1994-02-03-07:17:35.794-05:00I0.000/00-00-c0-f7-de-56}

{CDS_ObjectUUID 0094e40e-bb43-1d43-9e0a-0000c0f7de56}

{CDS_AllUpTo 1994-02-03-09:17:06.393-05:00I0.000/00-00-c0-f7-de-56}

{CDS_DirectoryVersion 3.0}

{CDS_CHName /.../Chicago2/Chicago2_CH}

{CDS_CHLastAddress

{Tower ncacn_ip_tcp:130.105.5.16[]}}

{CDS_CHLastAddress

{Tower ncadg_ip_udp:130.105.5.16[]}}

{CDS_CHState on}

{CDS_CHDirectories

{dir_uuid 00595ca5-bb46-1d43-9e0a-0000c0f7de56}

{directory /.../Chicago2}}

{CDS_CHDirectories

{dir_uuid 00888574-bb53-1d43-9e0a-0000c0f7de56}

290 DCE 1.2.2 Administration Guide—Core Components

Viewing the Structure and Contents of a Namespace

{directory /.../Chicago2/subsys}}

{CDS_CHDirectories

{dir_uuid 0069ff14-bb55-1d43-9e0a-0000c0f7de56}

{directory /.../Chicago2/subsys/dce}}

{CDS_CHDirectories

{dir_uuid 0023cc38-bb56-1d43-9e0a-0000c0f7de56}

{directory /.../Chicago2/subsys/dce/sec}}

{CDS_CHDirectories

{dir_uuid 0026d57c-bb57-1d43-9e0a-0000c0f7de56}

{directory /.../Chicago2/hosts}}

{CDS_ReplicaVersion 3.0}

{CDS_NSCellname /.../Chicago2}

dcecp>

In the following example, theshow operation displays all of the object entries that
are stored in the/.:/salesdirectory:

dcecp> object show /.:/sales

{CDS_CTS 1994-06-23-15:56:44.734+00:00I0.000/08-00-2b-0f-59-bf}

{CDS_UTS 1994-08-08-22:23:54.226+00:00I0.000/08-00-2b-0f-59-bf}

{CDS_ClassVersion 1.0}

dcecp>

The following command displays all of the soft links stored in the/.:/mfg directory:

dcecp> link show /.:/mfg

{CDS_CTS 1994-06-23-15:56:44.734+00:00I0.000/08-00-2b-0f-59-bf}

{CDS_UTS 1994-08-08-22:23:54.226+00:00I0.000/08-00-2b-0f-59-bf}

{CDS_LinkTarget = /.../abc/mfg/robotics_controller1}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 291

Cell Directory Service

19.2.2 Displaying Clerk and Server Attribute Information

To show the values of the attributes associated with clerk and server entries in the
cell namespace, usedcecp commandscds and cdsclient. The basic syntax for each
command is:

cds showcds-server-name

cdsclient showcds-client-name

To use these commands, you must have read permission to the CDS name that you
want to display.

You are not permitted to use wildcard characters in the simple names of clerks and
servers on theshow operation line.

In the following example, theshow operation displays the current values of all
attributes that are associated with the local clerk:

dcecp>cdsclient show /.:/hosts/hostname/cds-clerk

The returned display is as follows:

{Creation_Time 1996-08-01-15:39:06.052+00:00I-- ---}

{Protocol_Errors 0}

{Authentication_Failures 0}

{Read_Operations 1088}

{Cache_Hits 928}

{Cache_Bypasses 157}

{Write_Operations 68}

{Miscellaneous_Operations 94}

292 DCE 1.2.2 Administration Guide—Core Components

Chapter 20
Using the CDS Subtree Commands to
Restructure CDS Directories

Sometimes, because of corporate restructuring or for other reasons, you need to
combine or rearrange various directories or subtrees of directories in your CDS
namespace.

For example, suppose the engineering group in your organization,/.:/eng, is combined
with the research and development group,/.:/rnd , and that the two groups begin to
share a common set of applications and other network resources. You can reflect this
organizational change in your namespace hierarchy by merging the contents of these
directories.

Similarly, if the engineering group becomes subordinate to the research and
development group, you can reflect this change by creating an empty directory named
/.:/rnd/eng and then merging the contents of the/.:/eng directory into /.:/rnd/eng,
effectively appending/.:/eng below /.:/rnd .

DCE 1.2.2 Administration Guide—Core Components 293

Cell Directory Service

20.1 Overview of the Merge and Append Procedures

To merge or append CDS directories, you use the DCE control program (dcecp)
directory merge command. The basic steps for both procedures are as follows:

1. At your system prompt, enterdcecp to invoke the DCE control program.

2. Merge or append one existing directory with another existing directory. To do
this, use thedirectory merge command to combine the directory’s information
about its descendants (object entries, soft links, and child directories) with another
directory’s information or to append the information below an existing bottom-
level directory.

3. Delete the source directory or subtree (and its contents) that you merged in step
2 from its old location in the hierarchy by using thedirectory delete command.
Replace the deleted directory information with a single soft link of the same name
to redirect lookups of the information at the new location by using thelink create
command.

Note: The presence of clearinghouses, duplicate names, or unreachable names in a
merged directory requires special handling. Themergeandappendoperations
described in the following sections assume that no duplicate names exist in
the source and target directory or subtree, and that the clearinghouses that
store the master replicas of affected directories are enabled and reachable at
the time the operations are initiated.

The examplemerge andappend operations described in this section are based on an
example namespace, shown in the following figure.

294 DCE 1.2.2 Administration Guide—Core Components

Using the CDS Subtree Commands to Restructure CDS Directories

Figure 20–1. Example Namespace Hierarchy

ZK−5697A−GE

/.:

/rnd/eng

link2obj2link1obj1

The example namespace consists of two directories under the root:/.:/eng and/.:/rnd .
The source directory (/.:/eng) contains two entries:/.:/eng/obj1 and/.:/eng/link1. The
target directory (/.:/rnd) also contains two entries:/.:/rnd/obj2 and /.:/rnd/link2 .

20.2 Merging CDS Directories

The following procedure merges the source directory/.:/eng into the target directory
/.:/rnd :

1. Perform a skulk on the/.:/eng directory before merging it with the/.:/rnd
directory. This synchronization of the source directory’s replicas can prevent errors
that cause the merge operation to fail.

dcecp> directory synchronize /.:/eng

dcecp>

2. Run thedirectory merge command to merge the/.:/eng and /.:/rnd directories:

dcecp> directory merge /.:/eng -into /.:/rnd

dcecp>

DCE 1.2.2 Administration Guide—Core Components 295

Cell Directory Service

Note that thedirectory merge command merges only the immediate contents
of the source directory named in the command-line argument (that is, the object
entries, soft links, and child directories in these directories).

To copy the descendants of any child directories of a directory to a target location,
you must use the-tree option of the command. For example, if the/.:/engdirectory
in the previous example included the child directoriesdev andqa, and you wanted
to merge the contents of these directories into the target directory/.:/rnd , you
would enter the following command line:

dcecp> directory merge /.:/eng -into /.:/rnd -tree

dcecp>

By default, thedirectory merge command places all object entries, soft links,
and child directories in the target directory’s master clearinghouse. You can,
however, place child directories in another clearinghouse. To do this, you use
the -clearinghouse option of the command to specify the name of the other
clearinghouse.

Note that you are allowed to specify only one alternate clearinghouse in the
-clearinghouseoption. If you wish to place child directories in different alternate
clearinghouses, you must issue separatedirectory merge commands for each
clearinghouse, or you must issue a singledirectory merge command to place all
the child directories in one clearinghouse, then relocate the directories after the
merge operation.

Note: The CDS objects created by thedirectory merge command retain all of
the writable attribute values and some of the read-only attribute values of
the source objects. However, these objects do not inherit the ACLs of the
source objects. If the merged object is a directory, thedirectory merge
command gives it the default ACLs of the initial container. If the merged
object is any other CDS object type, thedirectory merge command gives
it the default ACLs of the initial object.

If the directory merge command encounters problems with the merge operation,
it behaves in one of two ways. If you include the-nocheckoption, the command
does not check for errors before performing the operation. It proceeds immediately
to perform the operation, and, if it encounters an error, stops. If you omit
the -nocheck option, the command checks for certain error conditions before

296 DCE 1.2.2 Administration Guide—Core Components

Using the CDS Subtree Commands to Restructure CDS Directories

starting the merge. If it finds errors, it displays messages for the errors and stops;
otherwise, it proceeds with the merge.

Error messages returned by thedirectory merge command identify the CDS
entity causing the problem and provide a brief description of the problem. You
should fix any problems that the command encounters, before running it again.
(See Section 20.3 for more information on the types of errors that can occur
during a merge operation.)

3. After the merge operation, the/.:/eng directory (and its contents) still exists at the
source location. Run the following commands to delete the/.:/eng directory from
its original location and create a soft link named/.:/eng in place of the deleted
directory. The soft link will redirect lookups of theobj1 and link1 object entries
to their new locations in the/.:/rnd directory.

It is recommended that you perform a skulk on a source directory before deleting
it. This synchronization of the directory’s replicas can prevent errors that cause
the delete operation to fail.

The sequence of commands to synchronize and delete the/.:/eng directory and
then create soft links for the former contents are as follows:

dcecp> directory synchronize /.:/eng

dcecp> directory delete /.:/eng -tree

dcecp> link create /.:/eng -to /.:/rnd

dcecp>

The directory delete command invoked with the-tree option deletes a directory
and all the object entries, soft links, and child directories beneath that directory.
If you use the thedirectory delete command without the-tree option, all of the
directories to be deleted must be empty, or errors will occur.

Figure 20-2 shows the structure of the example namespace before and after the
merge operation in our example.

DCE 1.2.2 Administration Guide—Core Components 297

Cell Directory Service

Figure 20–2. Example Namespace Before and After the Merge Operation

Before Merge After Merge

/.:/.:

/rnd/eng/rnd/eng

obj1link1 obj2 link2obj1 link1 obj1 link2link1 obj2

20.2.1 Appending CDS Directories

The following procedure appends the source directory/.:/eng to the /.:/rnd directory
(that is, copies the/.:/eng directory into the empty target directory/eng under the/.:/
rnd directory):

1. Run thedirectory create command to create a new empty directory named/.:/
rnd/eng into which the contents of the source directory/.:/eng can be placed:

dcecp> directory create /.:/rnd/eng

dcecp>

By default, thedirectory create command creates new directories in the same
clearinghouse as the parent directory. If you wish to create a directory in another
clearinghouse, you must use the-clearinghouseoption of the command to specify
the other clearinghouse.

2. Perform a skulk on the/.:/engdirectory before appending it to the/.:/rnd directory.
This synchronization of the source directory’s replicas can prevent errors that
cause the append operation to fail:

dcecp> directory synchronize /.:/eng

dcecp>

298 DCE 1.2.2 Administration Guide—Core Components

Using the CDS Subtree Commands to Restructure CDS Directories

3. Run thedirectory merge command to append the source directory/.:/eng to the
/.:/rnd directory (or merge it into the new/.:/rnd/eng directory):

dcecp> directory merge /.:/eng -into /.:/rnd/eng

dcecp>

If the source directory contains any child directories whose contents you want to
copy over, you must specify the-tree option in thedirectory merge command
line. Additionally, you need to specify the-clearinghouseoption if you wish to
place the child directory and its contents in a different clearinghouse from the/
.:/rnd/eng directory.

If the merge operation is not successful, you can delete any partially merged
information at the target location and run the command again. Be sure, though, to
delete any duplicate names and to make certain that connectivity to the affected
clearinghouses can be maintained.

Note: The CDS objects created by thedirectory merge command retain all of
the writable attribute values and some of the read-only attribute values of
the source objects. However, these objects do not inherit the ACLs of the
source objects. The ACLs on the target objects are either those that are
inherited from the initial container (the parent directory into which the
objects are merged) or the initial object.

4. After the append operation, the/.:/eng directory (and its contents) still exists at
the source location. You need to delete the/.:/eng directory from its original
location and create a soft link named/.:/eng in place of the deleted directory. The
soft link will redirect lookups of theobj1 and link1 object entries to their new
locations in the/.:/rnd/eng directory.

It is recommended that you perform a skulk on a source directory before deleting
it. This synchronization of the directory’s replicas can prevent errors that cause
the delete operation to fail.

The sequence ofdcecp commands for removing the/.:/eng directory from the
source location is the following:

dcecp> directory synchronize /.:/eng

dcecp> directory delete /.:/eng

DCE 1.2.2 Administration Guide—Core Components 299

Cell Directory Service

dcecp> link create /.:/eng -to /.:/rnd/eng

dcecp>

Figure 20-3 shows the structure of our example namespace before and after the
append operation.

Figure 20–3. Example Namespace Before and After the Append Operation

ZK−5699A−GE

Before Append After Append

/.:/.:

/rnd/eng/rnd/eng

obj1link1 obj2 link2obj1 link1 obj2 link2

obj1 link1

/eng

20.2.2 Modifying ACLs at the Target Location

To preserve the access by principals to the merged information in the target directories,
the ACLs on the newly created objects at the target location need to match those of
the objects in the source directories. Because thedirectory merge command does not
recreate the source ACLs on the CDS objects at the new location, you may need to
modify the target ACLs after the merge operation. To modify these ACLs, use the
dcecp acl replaceor acl modify command, depending on whether you want to replace
an entire ACL or just modify ACL entries.

300 DCE 1.2.2 Administration Guide—Core Components

Using the CDS Subtree Commands to Restructure CDS Directories

20.3 Handling Errors

Most of the errors that thedirectory merge command encounters during its operations
are caused by the following:

• Duplicate names that are detected during the merge

• Names in the source subtree whose master clearinghouses were not reachable
when the command was executing

• Entries not created in the target location due to insufficient permissions

The following subsections explain how to recover from these errors.

20.3.1 Duplicate Names

If the full name of a CDS object entry or soft link is identical to a full name of an
object entry or soft link at the target location, thedirectory merge command lists
these duplicate names and stops. Duplicate names are not merged to avoid overwriting
and destroying the identical names in the target directory.

If duplicate names exist, you need to decide which names you want to preserve: the
names in the source subtree or the names in the target subtree. Once you have made
your decision, proceed in the following manner:

1. Use thedcecpcreateoperations to recreate (under a new name) any duplicate
object entry or soft link as a new object entry or soft link in the source or target
subtree. Then delete the duplicate name.

2. When you are certain that connectivity to the affected clearinghouses can be
maintained, rerun thedirectory merge command to merge the contents of the
source and target directories.

20.3.2 Unreachable Name Failures

Sometimes, the clearinghouse that stores the master replica of a directory you are trying
to merge is disabled or unreachable when you enter thedirectory merge command.

DCE 1.2.2 Administration Guide—Core Components 301

Cell Directory Service

When this happens, the command cannot create the directory and the entries it contains
at the new target location.

When unable to merge a name for this reason, thedirectory merge command displays
an error message specifying the name that could not be created and terminates.

20.3.3 Insufficient Permissions

The directory merge command cannot create CDS objects at a target location
if it lacks the appropriate permissions. If the command returns error messages
indicating insufficient permissions, you need to examine the ACLs for the target
clearinghouse, directories, and object entries to see the current permissions and change
the inappropriate ones.

Table 20-1 shows the permissions required to create directories and other CDS object
entries at the target.

Table 20–1. Permissions Required To Create Target Objects

Objects Required Permissions

directory Write permission to the clearinghouse that is to store
the master replica of the new directory. Insert and
read permissions to the parent of the new directory.
Insert and read permissions to the initial container for
the new directory. The server principal also needs
read and insert permissions to the parent directory of
the new directory.

other CDS object Insert and read permissions to the directory where it
is to be created. Insert and read permissions to the
initial object for its object type.

302 DCE 1.2.2 Administration Guide—Core Components

Using the CDS Subtree Commands to Restructure CDS Directories

20.4 Merging CDS Directories into a Foreign Cell

You can also use thedirectory merge command to merge CDS directories into the
namespace of a foreign cell. In general, the procedure you follow is the same as the
procedure you use to merge directories or subtrees in the same namespace. There are,
however, some additional considerations to keep in mind:

• You need to establish cross-cell authentication in advance.

• You need to merge the entire directory hierarchy in the source and target cells.

Also, you need to modify the ACLs of the newly created target objects as when you
merge directories in the same namespace.

20.4.1 Establishing Cross-Cell Authentication

If you want users and applications in the source cell to be able to continue accessing
their merged information in the target cell conveniently, make sure that an agreement
of cross-cell authentication exists between the source cell and foreign (target) cell.
Otherwise, principals from the source cell requesting newly merged information
will not be permitted to communicate with the target cell. See Part 6 for complete
information on how to set up cross-cell authentication.

20.4.2 Performing a Merge Operation into a Foreign Cell

To merge CDS data into the namespace of a foreign cell, follow these steps:

1. While logged into a privileged account (cell_admin or a member ofcds-admin
group) on the target machine in the foreign cell, run thedirectory merge
command to merge the contents of the source cell’s directory with an existing
directory.

2. If you intend to continue accessing the merged information from the source cell,
delete the uppermost directory in the source subtree and replace the deleted
information with a single soft link of the same name as that directory. This
redirects lookups of the information to its new location in the foreign cell.

DCE 1.2.2 Administration Guide—Core Components 303

Cell Directory Service

20.5 Restoring Merged CDS Directories

You can use thedcecp link deleteanddirectory merge commands to restore deleted
directories and their contents to your namespace.

First run the link delete command to remove the soft links in the former source
location, then use thedirectory merge command to append the copy of the directory
back under its former parent directory.

If the directory has slave replicas, use thedirectory create command to create a new
replica of the directory in each of the clearinghouses from which the directory was
deleted.

Remember that thedirectory merge command affects only directories and their
contents. It does not copy clearinghouses or their associated clearinghouse object
entries and therefore cannot be used to restore clearinghouses or to account
for discrepancies in information among individual replicas resident on different
clearinghouses. Furthermore, the directory information in a particular location may
have changed since the time of the original merge operation.

304 DCE 1.2.2 Administration Guide—Core Components

Chapter 21
Restructuring a Namespace

Over time, you may need to restructure or rename certain elements of your namespace.
For example, you may want to create soft links to provide users with one or more
alternate names for an existing namespace entry. You may need to reconfigure a
directory’s replica set to modify the locations and replica types of particular replicas, or
exclude a replica from the set. Occasionally, you may want to delete certain directories
when the information that they contain is no longer needed by users. You may also
need to relocate a clearinghouse or delete a clearinghouse from a server system to
perform diagnostic or troubleshooting work on the system, or to prepare for removing
the system from your network. Finally, you may want to create a hierarchy of cells,
add a cell to an existing hierarchy, or change the structure of a cell hierarchy.

This chapter explains how to perform the following namespace restructuring tasks:

• Managing soft links

• Modifying a directory’s replica set

• Deleting a directory

• Relocating a clearinghouse

• Deleting a clearinghouse

DCE 1.2.2 Administration Guide—Core Components 305

Cell Directory Service

• Creating and managing a hierarchy of cells

21.1 Managing Soft Links

A soft link is an alternate name, or alias, with which you can refer to another existing
name in a namespace. Soft links allow users and client applications to refer to a
particular directory, object entry, or soft link by more than one name.

In general, you should create soft links to assign alternate names to particular network
resources, or to make minor changes to the original names of directories in your
namespace hierarchy. You should avoid using soft links to completely redesign your
namespace.

21.1.1 Creating a Soft Link

Use the DCE control program (dcecp) link create command to create a soft link. In
addition to the name for the new soft link, you must specify the soft link’s destination
name, or existing name to which the new soft link points, with the-to option. You
can specify any name in the local cell namespace or in any foreign cell namespace,
as the destination name, including another soft link.

To create a soft link, you must have insert permission to the directory in which you
intend to create the soft link.

Note: If you create a soft link that points to another soft link, make sure you do not
create a soft link loop. A soft link loop occurs when you specify a destination
name that eventually points back to the new soft link’s own link name. The
clerk detects this error.

All soft links that you create with thelink create command are permanent and never
expire unless you use the command’s-timeout option to specify an expiration date
and time value for theCDS_LinkTimeout attribute of the soft link.

Enter the expiration date and time value in the format

306 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

yyyy-mm-dd-hh:mm:ss

For example, the following value indicates that, if the soft link still exists (that is, has
not been deleted manually) on August 25, 1994, at 4:00 p.m., CDS will automatically
delete it the next time the directory in which it is stored is skulked:

CDS_LinkTimeout=(1994-08-25-16:00:00)

If you use the-timeout option to specify an expiration value for a soft link’s
CDS_LinkTimeout attribute, you can also specify an extension value, which is a
period of time to be added to the expiration date and time that are already assigned.
Enter the extension value in the formatddd-hh:mm:ss. For example, a value of030-
00:00:00 indicates that, if the destination name of the soft link still exists when the
assigned expiration date and time are reached, CDS allows another 30 days to pass
before it again checks, during a skulk, for the existence of the destination name. If,
at that time, the destination name cannot be found, CDS deletes the soft link.

The following command creates a permanent soft link named/.:/sales/asiathat points
to a directory named/.:/sales/eur:

dcecp> link create /.:/sales/asia -to /.:/sales/eur

dcecp>

The following command creates a soft link named/.:/mfg/robo1 that points to an
object entry named/.:/mfg/robotics_controller01 and sets its expiration date and
time:

dcecp> link create /.:/mfg/robo1 -to /.:/mfg/robotics_controller01 \

> -timeout 1994-12-12-09:00:00

dcecp>

In the preceding command, the expiration date and time placed in the
CDS_LinkTimeout attribute value indicates that CDS will delete the soft
link /.:/mfg/robo1 on the next skulk after December 12, 1994, at 9:00 a.m.

DCE 1.2.2 Administration Guide—Core Components 307

Cell Directory Service

The following command creates a soft link that is named/.:/admin/linka that points
to an object entry named/.:/sales/discount_stats:

dcecp> link create /.:/admin/linka -to /.:/sales/discount_stats -timeout \

> {1994-01-11-12:00:00 090-00:00:00}

dcecp>

In the preceding command, the expiration time placed in theCDS_LinkTimeout
attribute value indicates that CDS will check that the destination name/.:/sales/
discount_statsstill exists on the next skulk after January 11, 1994, at 12:00 p.m.
If the destination name does not exist, CDS deletes the soft link. If the destination
name still exists, the soft link remains in effect for another 90 days, as specified by
the extension time specified for theCDS_LinkTimeout attribute value090-00:00:00.
When the 90-day extension period expires, CDS repeats the check at 90-day intervals
until the destination name is deleted.

21.1.2 Changing a Soft Link’s Destination Name

Use the dcecp link modify command to specify a new value for a soft link’s
CDS_LinkTarget attribute and redirect the soft link from its current destination name
to some other name in the namespace.

To change a soft link’s destination name, you must have write permission to the soft
link. For example, the following command redirects a soft link that is named/.:/
admin/work_disk from its current destination name to the new destination name/.:/
admin/work_disk03:

dcecp> link modify /.:/admin/work_disk -change {CDS_LinkTarget \

> /.:/admin/work_disk03}

dcecp>

308 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

21.1.3 Changing a Soft Link’s Expiration or Extension Value

Use thedcecplink modify command to specify a new value for the expiration and
extension values that are stored in a soft link’sCDS_LinkTimeout attribute. Even if
you want to modify only one of the values, you must specify values for both expiration
and extension in your command. You specify a new value in the same format that you
used to establish the original value. The expiration value has the formatyyyy-mm-dd-
hh:mm:ss, and an extension value has the formatddd-hh:mm:ss.

To change a soft link’s expiration or extension value, you must have write permission
to the soft link.

The following command sets the expiration value of a soft link that is named/.:/eng/
link01 to December 31, 1994, at 12:00 p.m. In this example, no extension is currently
assigned to the soft link.

dcecp> link modify /.:/eng/link01 -change {CDS_LinkTimeout \

> (1994-12-31-12:00:00 000-00:00:00}

dcecp>

The following command changes the expiration value of a soft link that is named/
.:/eng/link01 to December 31, 1994, at 12:00 p.m. and sets the soft link’s extension
value to 90 days:

dcecp> link modify /.:/eng/link01 -change {CDS_LinkTimeout \

> 1994-12-31-12:00:00 090-00:00:00}

dcecp>

21.1.4 Deleting a Soft Link

If you find that a permanent soft link has outlasted its original purpose, or if you
prefer not to wait until a soft link’s assigned expiration and extension times have been
reached, you can delete the soft link from the namespace yourself.

Use thelink delete command to delete the soft link of the name that you specify.

DCE 1.2.2 Administration Guide—Core Components 309

Cell Directory Service

To delete a soft link, you must have delete permission to the soft link, or administer
permission to the directory that stores the soft link.

For example, the following command deletes a soft link that is named/.:/dist/
pointer_1:

dcecp> link delete /.:/dist/pointer_1

dcecp>

21.2 Modifying a Directory’s Replica Set

A directory’s replica set always contains a master replica; it can also contain other
read-only replicas. The values that are stored in theCDS_Replicasattribute that is
associated with a directory contain information that describes the directory’s replica
set, including how many replicas exist, their replica types, and the name of the
clearinghouse where each of the replicas is stored. You can use thedcescp directory
modify command to overwrite the current values that are stored in the directory’s
CDS_Replicasattribute and to perform either or both of the following tasks in a
single command:

• Designate a new master replica in a directory’s replica set.

• Exclude a replica from a directory’s replica set.

Note: As part of thedirectory modify command, CDS initiates an immediate skulk
on the directory to distribute modifications to all members of the replica set
as soon as possible.

21.2.1 Before You Modify a Replica Set

Before you modify a directory’s replica set, you need to know how many replicas
exist, their replica types, and the name of the clearinghouse where each of the replicas
is stored. The command that you use to modify a directory’s replica set does not
allow you to accidentally leave a replica out of the new set. You must explicitly list
all existing replicas that are in the set. You can include or exclude any replica from

310 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

the new set, but you must account for all replicas. Only one of the replicas that you
include in the new set can be designated as the master replica.

To display the names of all of a directory’s replicas, use thedcecp directory show
command. This command queries the directory’sCDS_Replicasattribute to gather
this information. (See Chapter 18 for information on how to use thedcecp directory
show command.)

21.2.2 Permissions Required for Modifying a Replica Set

The permissions for modifying a directory’s replica set are as follows:

• You must have administer permission to the directory. Also, the server principal
needs administer, read, and write permissions to the directory.

• When designating a new master replica, you also need write permission to the
clearinghouse that stores the current master replica. The server principal needs
write permission to the clearinghouse that stores the read-only replica that you
intend to designate as the new master replica.

The server principal on the server where the new master replica will be located
needs administer, read, and write permissions to the directory.

When you know which replicas to include and exclude and have changed permissions
that need to be changed, issue thedirectory modify command to modify a directory’s
replica set. Instructions for your two options—designating a new master replica, and
excluding an existing read-only replica—are given in the sections that follow.

21.2.3 Designating a New Master Replica

Sometimes, for configuration management reasons, you may want to designate a
different replica as a directory’s master replica.

For example, you can specify a new master replica when

• A server system whose clearinghouse contains one or more master replicas will be
down for an extended period of time or removed permanently from the network.

DCE 1.2.2 Administration Guide—Core Components 311

Cell Directory Service

• A clearinghouse that stores one or more master replicas will be deleted from the
namespace.

• You want to locate a master replica closer to where the majority of updates to the
directory originate.

To designate a new master replica, use thedcecp directory modify command.

Figure 21-1 illustrates an example replica set. This replica set of the/.:/eng directory
consists of three replicas: the master replica, which is stored in clearinghouse/.:/
NY1_CH, a read-only replica stored in clearinghouse/.:/NY2_CH, and a read-only
replica stored in clearinghouse/.:/Chicago1_CH.

Figure 21–1. Example Replica Set

Read−only

/.:/Chicago1_CH

Read−only

/.:/NY2_CH

Master

/.:/NY1_CH

The following command designates the read-only replica that is stored in clearinghouse
/.:/Chicago1_CH as the directory’s new master replica, designates the former master
replica (stored in clearinghouse/.:/NY1_CH) as a read-only replica, and leaves the
read-only replica stored in clearinghouse/.:/NY2_CH as it is:

dcecp> directory modify /.:/eng -master /.:/Chicago_1_CH \

>-readonly {/.:/NY1_CH /.:/NY2_CH}

dcecp>

Figure 21-2 shows the result of the preceding command.

312 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

Figure 21–2. Example Replica Set After Master Redesignation

/.:/Chicago1_CH

Read−only

/.:/NY2_CH

Master

/.:/NY1_CH

Read−only

21.2.4 Excluding a Replica from a Replica Set

You can temporarily exclude a replica from its replica set when the clearinghouse in
which the replica is stored unexpectedly becomes unavailable. This makes it possible
for CDS to complete skulks of the directory during the time the excluded replica is
unavailable.

To exclude a replica from a replica set, you use thedcecp directory modify command
with the exclude argument to rebuild a directory’s replica set, excluding the replica
that you specify. Remember that you must account for all existing replicas in the
command.

In the following example, the replica set of the/.:/eng directory consists of three
replicas: the master replica, which is stored in clearinghouse/.:/Chicago1_CH, and
the read-only replicas that are stored in clearinghouses/.:/NY1_CH and/.:/NY2_CH.

In this case, the/.:/NY1_CH clearinghouse is cut off from the network because of
accidental damage to the network transmission lines. Connectivity to the clearinghouse
will not be restored for several days. During this period, skulks of the/.:/eng
directory will fail unless you temporarily exclude the read-only replica that is stored
in clearinghouse/.:/NY1_CH.

To make it possible for skulks of the/.:/eng directory to succeed during the repair
period, enter the following command to overwrite the current values of the/.:/eng
directory’s CDS_Replicasattribute with new values that include only the replicas
that are stored in the/.:/NY2_CH and /.:/Chicago1_CH clearinghouses:

DCE 1.2.2 Administration Guide—Core Components 313

Cell Directory Service

dcecp> directory modify/.:/eng -master /.:/Chicago1_CH \

>-readonly /.:/NY2_CH -exclude /.:/NY1_CH

dcecp>

Figure 21-3 shows the result of the preceding command.

Figure 21–3. Example Replica Set After Replica Exclusion

/.:/Chicago1_CH

Read−only

/.:/NY2_CH

Master

/.:/NY1_CH

Read−only
excluded

When connectivity with the/.:/NY1_CH clearinghouse is reestablished, enter the
following command to reintroduce the read-only replica that is stored in clearinghouse
/.:/NY1_CH to the replica set:

dcecp> directory modify /.:/eng -master /.:/Chicago1_CH \

>-readonly {/.:/NY1_CH /.:/NY2_CH}

dcecp>

Note: Always reintroduce excluded replicas to their replica sets as soon as possible
after the clearinghouse in which they reside again becomes available.

21.3 Deleting Directories

You may sometimes want to delete a directory from your namespace when the
information that it contains is no longer needed by users. You must take two
considerations into account when deleting a directory:

• Does the directory contain child directories or the entries for any other CDS
object? Before a directory can be deleted, it must be empty.

• Are there any replicas of the directory? They must each be deleted separately.

314 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

Both of these considerations are discussed in following sections.

To delete a directory, you must have the following permissions:

• Delete permission to the directory.

• Write permission to the clearinghouse that stores the master replica of the
directory.

• The server principal for the server from which you enter thedirectory delete
command needs administer permission to the parent directory or delete permission
to the child pointer that points to the directory you intend to delete.

If the server is included in the server authorization groupsubsys/dce/cds-servers,
these permissions should already be in place. If in doubt, use theacl showof the
dcecputility and verify that the server principal has the appropriate permissions.
(See theacl(8dce) reference page for complete information on theacl show
command.)

21.3.1 Deleting a Nonreplicated Directory

To delete a directory that has no replicas, use thedcecp directory deletecommand.
For example, to delete the directory/.:/sales, all of its immediate contents, and the
contents of any of its child directories, you would enter the following:

dcecp> directory delete /.:/sales -tree

dcecp>

Note: Be careful when using the-tree option of thedirectory delete command. The
command does not ask you to confirm that you want to delete the directory
that you specify in the command line; it proceeds immediately with the delete
operation. This can result in the loss of directories that you want to keep.

Remember that you can change the behavior ofdcecp commands through
scripts. In the case of thedirectory delete command, you could write a
script that prompted for a confirmation of the delete operation whenever the
command was run with its-tree option. See Part 1 of this guide for a discussion
of writing scripts.

DCE 1.2.2 Administration Guide—Core Components 315

Cell Directory Service

A way to guard against the inadvertent deletion of directories and their entries is
to view the contents before you run thedirectory delete command. To display the
contents of a CDS directory by entry type, use thedirectory list command with the
-object, -link , and-directory options.

The following is an example in which a directory named/.:/sales is deleted. The
directory has one object entry and one soft link:

dcecp> directory list /.:/sales -simplename

work_disk link1

dcecp> directory list /.:/sales -simplename -object

work_disk

dcecp> directory list /.:/sales -simplename -link

link1

dcecp> directory delete /.:/sales -tree

dcecp> directory show /.:/sales

Error: Requested entry does not exist

dcecp>

If a directory to be deleted is not empty, thedirectory delete command will fail. To
recover from this kind of failure, you must remove all the entries in the directory
and its child directories, then run thedirectory delete command again. Use thelink
deleteand object deletecommands to delete the soft links and object entries in any
directories. Then run thedirectory delete command to delete the directories.

21.3.2 Deleting a Directory Replica

If a directory is replicated, all the replicas have to be deleted individually. Then the
directory can be deleted using the commands described in the previous section.

To display a list of all replicas of a directory, use thedcecp directory showcommand.
Look at the CDS_Replicas attribute of the directory in the list. Each replica’s
CDS_Replicasattribute has several subattributes. Look at theCH_Name subattribute
for each replica to get the name of the clearinghouse where it is located. For example:

316 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

dcecp> directory show /.:/sales

{RPC_ClassVersion {01 00}}

{CDS_CTS 1994-05-06-11:41:05.314-05:00I0.000/08-00-09-25-13-52}

{CDS_UTS 1994-06-21-03:06:08.842-05:00I0.000/08-00-09-25-13-52}

{CDS_ObjectUUID 5f97a584-bf9b-11cd-9362-080009251352}

{CDS_Replicas

{{CH_UUID de3401e6-bb98-11cd-aac5-080009251352}

{CH_Name /.../absolut_cell/absolut_ch}

{Replica_Type Master}

{Tower {ncacn_ip_tcp 130.105.5.93}}

{Tower {ncadg_ip_udp 130.105.5.93}}}}

{CDS_AllUpTo 23854-01-29-19:45:44.841-05:00I0.000/08-00-09-25-13-52}

{CDS_Convergence medium}

{CDS_ParentPointer

{{Parent_UUID df13b228-bb98-11cd-aac5-080009251352}

{Timeout

{expiration 1994-08-24-19:30:30.827}

{extension +1-00:00:00.000I0.000}}

{myname /.../absolut_cell/sales}}}

{CDS_DirectoryVersion 3.0}

{CDS_ReplicaState on}

{CDS_ReplicaType Master}

{CDS_LastSkulk 1994-01-29-19:45:44.841-05:00I0.000/08-00-09-25-13-52}

{CDS_LastUpdate 1994-06-21-03:06:08.842-05:00I0.000/08-00-09-25-13-52}

{CDS_Epoch 60ac0730-bf9b-11cd-9362-080009251352}

{CDS_ReplicaVersion 3.0}

dcecp>

The name of the directory and the name of the clearinghouse can be used to uniquely
identify each replica. Use these names in a series ofdirectory delete commands to
remove the replicas. The name of each replica is the argument to the command, and
the name of the clearinghouse should be used as the value of the-clearinghouse
option. The-replica option should also appear in the command line to indicate that
the directory to be deleted is a replica. A sample command line is the following:

dcecp> directory delete /.:/sales -replica -clearinghouse /.:/NY1_CH

dcecp>

DCE 1.2.2 Administration Guide—Core Components 317

Cell Directory Service

Note: The directory delete command does not require that directory replicas are
empty in order to operate on them. It will delete the replicas, all their contents,
and their child directories immediately, without prompting for confirmation
of the operation.

You may want to write adcecpscript that looks at theCDS_Replicasattribute, finds
all the replicas and deletes them with one command. See Part 1 of this guide for a
discussion of writing scripts.

21.4 Relocating a Clearinghouse

Note: This section describes the procedure that you use to temporarily relocate a
clearinghouse from one CDS server system to another. Note that the procedure
cannot be used to configure additional CDS server systems. (See theDCE 1.2.2
Administration Guide—Introductionfor information on how to configure CDS
servers and CDS clerks.)

Occasionally, you may need to relocate a clearinghouse from the server system where
it currently resides to another server system. For example, you may want to move a
clearinghouse when

• You need to temporarily disconnect the host server system from the network for
repair or for other reasons.

• You no longer want the current host system to function as a CDS server.

• You want to move the clearinghouse to a server system that is physically closer on
the network to the user groups and applications that use the information contained
in the clearinghouse.

To relocate a clearinghouse, follow these steps:

1. Disassociate the clearinghouse from the server where it is currently running.

2. Copy the clearinghouse database files from their current location (source server
system) to their new location (target server system).

3. Create a new clearinghouse on the target server system by using the same name
that was used on the source server system from which you copied the database
files.

318 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

21.4.1 Dissociating a Clearinghouse from Its Host Server System

Whenever a CDS server starts, one of the tasks the server software performs is to
start its clearinghouse (or clearinghouses). The server performs this task automatically
by examining a list of the clearinghouses that are resident on the system. Before you
relocate a clearinghouse, use thedcecp clearinghouse disablecommand to update
the clearinghouse files and ensure that the files are consistent before you copy them
to the target server.

The clearinghouse disablecommand also removes, from the source server’s internal
memory, knowledge of the clearinghouse that you specify. This ensures that the
relocated clearinghouse is not automatically started at the source server during server
restarts.

To use theclearinghouse disablecommand, you must have write permission to the
server on which the clearinghouse resides.

The following example command removes knowledge of clearinghouse/.:/
Chicago2_CH from the memory of its host server:

dcecp> clearinghouse disable /.:/Chicago2_CH

dcecp>

21.4.2 Copying the Clearinghouse Database Files to the Target
Server System

After you disable the clearinghouse and remove knowledge of the clearinghouse from
the host server, you must copy the clearinghouse database files to a specific location
on the new host server system.

A clearinghouse database consists of the following three files:

• clearinghouse-name.checkpoint nnnnnnnn

• clearinghouse-name.tlog nnnnnnnn

• clearinghouse-name.version

DCE 1.2.2 Administration Guide—Core Components 319

Cell Directory Service

wherennnnnnnnrepresents an 8-digit number.

You should verify the existence of these files before you attempt to copy them to
the new host system. (See theDCE 1.2.2 Administration Guide—Introductionand the
DCE 1.2.2 Porting and Testing Guidefor the full pathnames of all CDS files.)

Note: You may sometimes find two.checkpointnnnnnnnnfiles in the directory.
This can happen as a result of a system crash or other interruption during the
clearinghouse’s most recent checkpoint operation. If you do find two files,
copy both of them to the target server system. The server software that is on
that system automatically reconciles any problem that may exist as soon as
the clearinghouse is enabled at the target server.

To move the database files to the new CDS server, use theftp utility or a similar
network file transfer utility. Copy the three database files from the existing server host
to the new CDS server host. The directory where the files reside on the old and new
CDS server isdcelocal/var/directory/cds.

21.4.3 Starting the Clearinghouse on the Target Server

After copying the clearinghouse database files to the appropriate location on the target
server system, use theclearinghouse createcommand to start the clearinghouse
at the new location. Make sure that you specify the same clearinghouse name that
was used at its original (source) location. After you enter the command, the server
detects the clearinghouse files, adds knowledge of them to its memory, then starts the
clearinghouse.

To use the clearinghouse create command for the purpose of relocating a
clearinghouse, you must have write permission to the server on which you intend to
relocate the clearinghouse.

In the preceding example, the database files for clearinghouse/.:/Chicago2_CHwere
successfully copied to a server system namedorion. The following command, which
is issued onorion, relocates the clearinghouse named/.:/Chicago2_CHon that server:

dcecp> clearinghouse create /.:/Chicago2_CH

dcecp>

320 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

21.5 Deleting a Clearinghouse

You may need to delete a clearinghouse from the server system on which it resides
when

• The system is scheduled for reallocation or removal from your network.

• You no longer want the system to function as a CDS server.

21.5.1 Before You Delete a Clearinghouse

Before you attempt to delete a clearinghouse, make sure of the following:

• The clearinghouse is known to the server.

• The clearinghouse does not store a master replica.

When you clear a clearinghouse, the server on which the clearinghouse was running
no longer has information about the clearinghouse in its internal memory. If you
subsequently try to delete the clearinghouse, CDS will not find it and will return a
message that it does not exist. Before you can delete a cleared clearinghouse, you
must recreate it using theclearinghouse createcommand.

CDS does not allow you to delete a clearinghouse that contains a directory’s master
replica. Before you delete such a clearinghouse, you must designate another replica in
that directory’s replica set as the master replica. If no other replicas of the directory
exist, create a read-only replica at another clearinghouse and then designate it as the
directory’s new master replica before you delete the original master replica from the
clearinghouse. (See Section 21.2 for instructions on modifying a directory’s replica
set.)

21.5.2 Permissions for Deleting a Clearinghouse

The following permissions are required for deleting a clearinghouse:

• You need write and delete permissions to the clearinghouse, and administer
permission to all of the directories that store replicas in the clearinghouse.

DCE 1.2.2 Administration Guide—Core Components 321

Cell Directory Service

• The server principal needs delete permission to the associated clearinghouse
object entry, and administer permission to all directories that store replicas in
the clearinghouse.

21.5.3 Deleting a Clearinghouse

Use theclearinghouse deletecommand to delete a clearinghouse. The command also
deletes the clearinghouse’s associated clearinghouse object entry, and all read-only
replicas from the clearinghouse.

Clearinghouse deletion can take some time to complete. CDS deletes a clearinghouse
only after successfully completing a skulk of all directories that stored read-only
replicas in the clearinghouse.

The following example command deletes the/.:/Paris2_CH clearinghouse:

dcecp> clearinghouse delete /.:/Paris2_CH

dcecp>

21.6 Creating and Managing Hierarchical Cells

You can use CDS to connect independent cells into ahierarchical cellconfiguration.
In this configuration, one cell’s CDS acts as a higher-level directory service to connect
other independent cells. The cell whose CDS acts as the higher-level directory service
is known as aparent cell, while the cells connected through the parent’s CDS are
known aschild cells. The cell at the top of the hierarchy must be registered in a
global directory service, such as GDS or DNS, but the cells underneath it do not need
to be in order to communicate with each other.

The next sections describe how to create a cell hierarchy, how to add cells to an
existing hierarchy, and the implications of changing a cell’s primary name when it is
part of a hierarchical cell configuration.

Note: In order to create hierarchical cells or cell name aliases, you need to use CDS
4.0 directories.

322 DCE 1.2.2 Administration Guide—Core Components

Restructuring a Namespace

21.6.1 Creating a Cell Hierarchy

The top-level cell in a hierarchical cell configuration must be registered in a global
directory service, either GDS or DNS. If you are creating a hierarchical cell
configuration, you need to have one cell registered in a global namespace and use
it as the topmost cell in the hierarchy. All cells underneath this cell in the hierarchy
will share this cell’s GDS or DNS name.

To register a cell in a global directory service, perform the following steps:

1. Establish a GDS or DNS name for the cell, as described in theDCE 1.2.2
Administration Guide—Introduction.

2. Run the DCE configuration program to configure the cell, as described in the
DCE 1.2.2 Administration Guide—Introduction.

3. Define the cell in the GDS or DNS namespace, as described in Chapter 22 of this
guide.

Once you have established one cell in a global namespace, you can add one or more
child cells to the CDS namespace of this cell, then add one or more cells to those
children’s CDS namespaces, and so on, depending upon how many levels you plan
for your hierarchy. The following sections describe how to add an existing (already
configured) cell to a hierarchy.

DCE 1.2.2 Administration Guide—Core Components 323

Chapter 22
Managing Intercell Naming

To find names outside of the local cell, CDS clerks must have a way to locate
directory servers in other cells. The Global Directory Agent (GDA) enables intercell
communications by serving as a connection to other cells through the global naming
environment. This chapter describes how the GDA works and how to manage it. The
chapter also describes how to define the local cell in either of the global naming
environments (GDS or DNS), which is a step that is necessary to make the local cell
accessible to other cells.

22.1 How the Global Directory Agent Works

The GDA is an intermediary between CDS clerks in the local cell and CDS servers in
other cells. A CDS clerk treats the GDA like any other name server, passing it name
lookup requests. However, the GDA provides the clerk with only one specific service;
it looks up a cell name in the GDS or DNS namespace and returns the results to the
clerk. The clerk then uses those results to contact a CDS server in the foreign cell.

DCE 1.2.2 Administration Guide—Core Components 325

Cell Directory Service

A GDA must exist inside any cell that wants to communicate with other cells. It can
be on the same system as a CDS server, or it can exist independently on another
system. You can configure more than one GDA in a cell for increased availability and
reliability. Like a CDS server, a GDA is a principal and must authenticate itself to
clerks.

CDS finds a GDA by reading address information that is stored in the
CDS_GDAPointers attribute associated with the cell root directory. Whenever
a GDA process starts, it creates a new entry or updates an existing entry in the
CDS_GDAPointers attribute. The entry contains the address of the host on which
the GDA is currently running. If multiple GDAs exist in a cell, they each create and
maintain their own address information in theCDS_GDAPointersattribute.

When a CDS server receives a request for a name that is not in the local cell, the
server examines theCDS_GDAPointersattribute of the cell root directory to find the
location of one or more GDAs. Figure 22-1 shows how a CDS clerk and CDS server
interact to find a GDA.

Figure 22–1. How the CDS Clerk Finds a GDA

Client

CDS clerk

Node A

CDS server

GDA

1

2

3

4

Node B

Node C

?

?

= Request path

= Response path

LEGEND

GDA is at
Node C

The following steps summarize the GDA search that is illustrated in the preceding
figure:

1. On Node A, a client application passes a global name, beginning with the/...
prefix, to the CDS clerk.

326 DCE 1.2.2 Administration Guide—Core Components

Managing Intercell Naming

2. The clerk passes the lookup request to a CDS server that it knows about on Node
B.

3. The server’s clearinghouse contains a replica of the cell root directory, so the
server reads theCDS_GDAPointersattribute and returns the address of Node C,
where a GDA is running.

4. The clerk passes the lookup request to the GDA.

Figure 22-2 shows how CDS and a GDA interact to find a name in a foreign cell that
is defined in DNS. Suppose the name is/.../widget.com/printsrv1, which represents
a print server in the foreign cell.

Figure 22–2. How the GDA Helps CDS Find a Name

5

6

LEGEND

Success!

widget.com
cell root is
at Node E

CDS clerk

GDA

CDS server

DNS server

1

2

3

4

7

8

9

Node B

Node C Node D

Node E

Client

Node A

CDS server

10
?

?

?

= Request path

= Response path

GDA is at
Node C

The following steps summarize the name search that is illustrated in the preceding
figure:

DCE 1.2.2 Administration Guide—Core Components 327

Cell Directory Service

1. The client application passes the name/.../widget.com/printsrv1 to the CDS
clerk.

2. The clerk passes a lookup request to a CDS server that it knows about on Node
B.

3. The server’s clearinghouse contains a replica of the cell root directory, so the
server looks up theCDS_GDAPointersattribute and returns the address of Node
C, where a GDA is running.

4. The clerk passes the lookup request to the GDA.

5. The GDA recognizes that the name is a DNS-style name, so it assumes that the
second component is a cell name that is defined in DNS. It passes that portion of
the name (widget.com) to DNS. For simplicity, the figure shows only one DNS
server; more than one DNS server can actually be involved in resolving a global
cell name.

Note: Although this example concerns the lookup of a DNS-style name, the
sequence and execution of operations is nearly identical for a GDS name
or a hierarchical cell name. If the GDA recognizes that a name is a GDS-
style name, it passes the name to a GDS server, rather than to a DNS
server. If the GDA recognizes that a name is a hierarchical cell name, it
passes it to the CDS server of the topmost cell in the hierarchy, which is
registered in one of the global namespaces. The CDS server in this cell
walks down the cell hierarchy to locate the name.

6. DNS looks up and returns to the GDA information that is associated with the
widget.com cell entry. The information includes the addresses of servers that
maintain replicas of the root directory of the/.../widget.comcell namespace.

7. The GDA passes the information about the foreign cell to the clerk.

8. The clerk contacts the CDS server on Node E in the foreign cell, passing it a
lookup request.

9. The Node E server’s clearinghouse contains a replica of the root directory, so
the server looks up the entry forprintsrv1 in the root and passes the requested
information to the clerk on Node A. For simplicity, this example shows the clerk
contacting only one server in the foreign cell. While resolving a full name, the
clerk may actually receive referrals to several servers in the foreign cell.

10. The clerk passes the information to the client application that requested it.

328 DCE 1.2.2 Administration Guide—Core Components

Managing Intercell Naming

Note that both of the previous examples (Figures 22-1 and 22-2) represent initial
lookups. The CDS clerk caches the locations of GDAs once it discovers them. The
clerk also caches the addresses of servers in foreign cells that it learns about, enabling
it to contact the foreign servers directly on subsequent requests for names in the same
cell.

Note also that a GDA knows its own cell name and can therefore avoid contacting
a global directory service to look up names in its own cell. Furthermore, the GDA
can recognize whether a cell name conforms to the GDS or DNS naming syntax, and
it uses that knowledge to route a lookup request to the appropriate global directory
service.

22.2 Managing the Global Directory Agent

Use the DCE configuration program to configure the GDA; the GDA requires little
management once it is configured. (See theDCE 1.2.2 Administration Guide—
Introduction for details on configuring the GDA.)

The GDA is typically started and stopped automatically by scripts that execute as part
of normal system startup and shutdown procedures. Sometimes, however, you may
want to use commands to stop and restart a GDA. Once you have configured GDA
with the DCE configuration program, you can use these steps to start and stop GDA.

The GDA runs as a process calledgdad. To start thegdad process, follow these steps:

1. Make sure that a CDS server is already running somewhere within the cell.

2. Log into the system as superuser (root).

3. Enter the following command to see if thedced process is already running:

ps

If the dcedprocess appears on the list of active processes, proceed to step 5. If the
dced process does not appear on the list of active processes, enter the following
command to start the process:

DCE 1.2.2 Administration Guide—Core Components 329

Cell Directory Service

dced

4. Enter the following command to start thecdsadvprocess:

cdsadv

5. Enter the following command to start thegdad process:

gdad

To stop the GDA, enter the following command, wherepid is the process identifier of
the gdad process:

kill pid

22.3 Enabling Other Cells to Find Your Cell

The GDA is the mechanism that allows CDS clerks in your local cell to find other cells.
To make your cell accessible to others, you must create an entry for it in one of the
currently supported global naming environments. Before you do this, obtain a unique
cell name from the appropriate naming authority. (See theDCE 1.2.2 Administration
Guide—Introductionfor details.)

After you configure a cell, name it, and initialize the cell namespace, you can use the
dcecp directory showcommand to obtain the data you need to create or modify the
cell entry in DNS or GDS. The data in a cell entry is what the GDA passes to CDS
after looking up a cell name. CDS, in turn, uses the information to contact servers in
the cell. The following subsections describe how to define and maintain a cell entry
in DNS or GDS. These sections assume a basic familiarity with DNS and GDS; for
details, see the appropriate documentation for each global name service.

330 DCE 1.2.2 Administration Guide—Core Components

Managing Intercell Naming

You can also define and maintain a cell entry in the CDS namespace of another cell;
this type of definition exists in a hierarchical cell configuration. Section 21.6 in this
guide describes how to define a cell in the CDS namespace of another cell.

22.3.1 Defining a Cell in the Domain Name System

Names in DNS are associated with one or more data structures calledresource
records. The resource records are stored in a data file whose name and location
are implementation specific. To create a cell entry, you must edit the data file and
create two resource records for each CDS server that maintains a replica of the cell
namespace root.

The first resource record, whose type can be AFSDB or MX, contains the host name
of the system where the CDS server resides. You can use MX as an alternative to
using AFSDB. The second record, of type TXT, contains the following information
about the replica of the root directory that the server maintains:

• The UUID of the cell namespace, in hexadecimal notation

• The type of the replica (master or read-only)

• The global CDS name of the clearinghouse where the replica resides

• The UUID of the clearinghouse, in hexadecimal notation

• The DNS name of the host where the clearinghouse resides

The following example shows a set of AFSDB resource records for a cell that is
namedcs.tech.edu, in which two replicas of the root directory exist. Note that only
the first resource record contains the cell name; the second, third, and fourth records are
assumed to be associated with the same cell because they do not contain a cell name.
The TTL heading stands for time-to-live, which is a value, in seconds, after which
the data is no longer considered valid in a DNS cache. (The value shown specifies a
default value of 1 week.) TheIN class indicates that the protocol is Internet, and the
subtype of2 indicates that a name server exists on the host named in the record.

;First Replica:

;Name TTL Class Type Subtype Host

cs.tech.edu 604800 IN AFSDB 2 fox.cs.tech.edu

DCE 1.2.2 Administration Guide—Core Components 331

Cell Directory Service

;Name TTL Class Type Rdata

604800 IN TXT (1 ;version

fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid

Master ;Replica1 type

/.../cs.tech.edu/cs1_ch ;ch name

fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid

fox.cs.tech.edu) ;host

;Second Replica:

604800 IN AFSDB 2 rox.cs.tech.edu

604800 IN TXT (1 ;version

fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid

Read-only ;Replica2 type

/.../cs.tech.edu/cs2_ch ;ch name

fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid

rox.cs.tech.edu) ;host

You can use MX as an alternative to using AFSDB. The following example shows a
set of MX resource records for the same cell,cs.tech.edu, in which two replicas of
the root directory exist.

;First Replica:

;Name TTL Class Type Preference Exchange

cs.tech.edu. 604800 IN MX 1 fox.cs.tech.edu.

;Name TTL Class Type Rdata

604800 IN TXT (1 ;version

fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid

Master ;Replica1 type

/.../cs.tech.edu/cs1_ch ;ch name

fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid

fox.cs.tech.edu) ;host

;Second Replica:

604800 IN MX 2 rox.cs.tech.edu.

604800 IN TXT (1 ;version

fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid

Read-only ;Replica2 type

/.../cs.tech.edu/cs2_ch ;ch name

fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid

rox.cs.tech.edu) ;host

332 DCE 1.2.2 Administration Guide—Core Components

Managing Intercell Naming

After you configure a cell, you can use thedcecp directory showcommand to display
the information that is required to construct resource records like those shown in the
previous example. The following is an exampledirectory show command that displays
output for a cell named/.../cs.tech.edu.

dcecp> directory show /.../cs.tech.edu

To create a new resource record in the DNS namespace, use the information from the
directory show command and place the properly-formatted data into the DNS data
file.

22.3.2 Defining a Cell in the Global Directory Service

In GDS, cell information is contained in two attributes:CDS-Cell andCDS-Replica.
You can cause an existing GDS name to become a cell entry by adding these two
attributes to the name. If the name you want to use for the cell does not yet exist,
you must create it and then add the attributes. The GDS administration program uses
numbered screens calledmasksto accept user input. Use the object administration
masks to create a cell entry. (See theDCE 1.2.2 GDS Administration Guide and
Referencefor details.)

After you configure a cell, you can use thedcecp directory showcommand to obtain
the data that you need to supply when you are creating theCDS-Cell and CDS-
Replica attributes. The following is an exampledirectory show command and the
resulting GDS-formatted output for a cell that is named/.../C=US/O=ABC/OU=Sales:

dcecp> directory show /.../C=US/O=ABC/OU=Sales

{RPC_ClassVersion {01 00}}

{CDS_CTS 1996-04-18-20:11:02.385764100/08-00-09-85-01-22}

{CDS_UTS 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}

{CDS_ObjectUUID 68f0755c-9956-11cf-9da3-080009850122}

{CDS_Replicas

{{CH_UUID 59eb61fc-9956-11cf-9da3-080009850122}

DCE 1.2.2 Administration Guide—Core Components 333

Cell Directory Service

{CH_Name /.../c=us/o=abc/ou=sales/dcegecko_ch}

{Replica_Type Master}

{Tower {ncadg_ip_udp 15.22.50.148}}

{Tower {ncacn_ip_tcp 15.22.50.148}}}}

{CDS_AllUpTo 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}

{CDS_Convergence medium}

{CDS_ParentPointer

{{Parent_UUID 5a824f54-9956-11cf-9da3-080009850122}

{Timeout

{expiration 1996-08-02-14:01:36.251}

{extension +1-00:00:00.000I0.000}}

{myname /.../c=us/o=abc/subsys}}}

{CDS_DirectoryVersion 3.0}

{CDS_ReplicaState on}

{CDS_ReplicaType Master}

{CDS_LastSkulk 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}

{CDS_LastUpdate 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}

{CDS_Epoch 68fdf042-9956-11cf-9da3-080009850122}

{CDS_ReplicaVersion 3.0}

dcecp>

To create a new resource record in GDS, use the information from thedirectory show
command to fill in the fields of Mask 21 (CDS-Cell) and Mask 22 (CDS-Replica) in
the GDS administration program.

334 DCE 1.2.2 Administration Guide—Core Components

Part 5
DCE Distributed Time Service

Chapter 23
Introduction to DCE Distributed Time
Service

This chapter gives a conceptual overview of the DCE Distributed Time Service
(DTS). Some basic time and clock concepts, DTS time representation, and basic DTS
operation are also presented.

DTS is a software-based service that provides precise, fault-tolerant clock
synchronization for systems in local area networks (LANs) and wide area networks
(WANs). The clock synchronization that is provided by DTS enables distributed
computing applications to determine event sequencing, duration, and scheduling.

DTS consists of software components on a group of cooperating systems; it conforms
to the client/server model that is used in DCE. In the DTS implementation, each server
supplies the time to many client systems and applications through intermediaries called
clerks. Clerks reside on their client systems. (Note that, throughout this part of this
guide, the termentity is used to refer to either the server process or the clerk process
when they have the same functions.)

DCE 1.2.2 Administration Guide—Core Components 337

DCE Distributed Time Service

Most DCE nodes have a DTS clerk that adjusts the clock on its client system; clerks
use remote procedure calls (RPCs) to obtain time values from one or several servers
in the network. The nodes that do not have DTS clerks have DTS servers; in addition
to providing time values to clerks, servers also adjust the system clocks on their
host systems. Servers are also able to obtain reference time values from sources of
standardized time that are outside of the network.

Because no device can measure the exact time at a particular instant, DTS expresses
the time as an interval that contains the correct time. In the DTS model, clerks obtain
time intervals from several servers and compute the intersection where the intervals
overlap. Clerks then adjust the system clocks of their client systems to the midpoint of
the computed intersection. When clerks receive a time interval that does not intersect
with the majority, the clerks declare the nonintersecting value to be faulty. Clerks
ignore faulty values when computing new times, thereby ensuring that defective server
clocks do not affect clients.

DTS also permits the importation of time values from outside sources, such as
the U.S. National Institute for Standards and Technology (NIST). DTS uses the
UTC (Coordinated Universal Time) standard that has largely replaced Greenwich
Mean Time (GMT) as a reference. Many standards bodies disseminate UTC by
radio, telephone, and satellite; commercial devices (time-providers) are available to
receive and interpret these signals. DTS offers a Time-Provider Interface (TPI) that
describes how a time-provider process can pass UTC time values to a DTS server and
propagate them in the network. The TPI also permits other distributed time services
to interoperate with DTS.

DTS provides many other valuable services for computer networks that run distributed
applications. The major features and benefits of DTS are the following:

• Correctness—DTS maximizes the probability that a client will receive the correct
time. DTS uses UTC as a base reference and defines any time interval containing
UTC as correct.

• Quantitative Time Measurement—DTS uses specific measurement and
manufacturer’s specifications to determine the quality of the times that are
reported by servers.

• Fault Tolerance—DTS reports faulty servers and does not use their time values
during clock synchronizations.

• Management Capability—The DCE control program (dcecp)enables you to
control and monitor the software.

338 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

• Application Programming Interface (API)—DTS provides an interface that allows
applications to obtain, compare, and calculate UTC time values.

• Local Time Translation—When displaying time values, DTS translates the UTC
times that it uses internally into local time values.

• Monotonicity—DTS normally provides unidirectional clock adjustment. You can
use the DCE control program, though, for nonmonotonic clock adjustment.

• Automatic Configuration—DTS entities use RPC profiles (search tables) to obtain
the locations of servers in a local area or cell.

• Efficiency—Complexity is placed in the servers; network overhead is minimal.

23.1 DTS Advantages

DTS offers all the features that are normally provided by a time service, but it also
has several features that enhance network performance. The following subsections
describe these DTS features:

• Applications support

• External time-provider support

• Manageability

• Quantitative inaccuracy measurement

23.1.1 Applications Support

Operating systems and distributed applications require synchronized time
measurements to coordinate their processes. DTS synchronizes the system clocks in
a network with each other and, in the presence of an external time-provider, to the
UTC time standard. Any distributed application that reads the system clock, which is
the majority of applications, needs DTS. As the number of distributed applications
and systems in a network increases, DTS becomes increasingly vital to process
coordination.

There are several types of existing applications that use the synchronized time DTS
provides to system clocks. These applications must reference synchronized system

DCE 1.2.2 Administration Guide—Core Components 339

DCE Distributed Time Service

clocks in order to coordinate the events that occur throughout the network. Applications
use synchronized clocks for the following functions:

• Event Measurement—Applications can read the system clock to start and stop
timers and to measure the elapsed time between events.

• Event Reporting—Applications can read the clock when an event occurs and
append a timestamp to the event report.

• Event Scheduling—Applications can read the system clock and add a relative time
to determine the occurrence of a future event.

• Event Sequencing—Applications can determine the order of events by reading the
event report timestamps that are derived from the synchronized system clock.

For new applications, DTS provides an API. This API provides routines that new
applications can use to obtain and manipulate binary timestamps. The DTS API
supports ANSI C language constructs. (See theDCE 1.2.2 Application Development
Guide—Core Componentsfor further information on the DTS API.)

23.1.2 External Time-Provider Support

For most networks, it is desirable to synchronize the system clocks with the UTC
time standard. Many commercial devices are available for obtaining the UTC time that
is provided by standards organizations; these devices receive signals by short-wave
radio, satellite, and telephone. If your network or cell is larger than a single LAN, it
is recommended that you use at least one external time-provider in combination with
the DTS software. (See Appendix C for a list of suppliers of time-provider hardware.
Sample time-provider programs are available online indcelocal/usr/examples/dts.)

DTS servers can synchronize with time-providers by means of the TPI, which is
described in theDCE 1.2.2 Application Development Guide—Core Components. The
TPI specifies the communications between the DTS server process and the time-
provider process.

When a DTS server attempts to synchronize, it uses the TPI to check for a time-
provider process. If one is available, the server synchronizes only with the time-
provider. If no time-provider is present, the server synchronizes with other servers in
the network.

340 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

By using a time-provider with a DTS server, you can ensure that the server is closely
synchronized with UTC. When other servers request a time from the server with the
time-provider (the TP server), the TP server’s precise time is propagated throughout
the network. (See Section 23.2 for further information about time-providers and the
server synchronization process.)

23.1.3 Manageability

The DTS synchronization functions run as background processes; little or no input is
required from system managers to synchronize system clocks after DTS is initially
configured. DTS is also fault tolerant. It prevents malfunctioning clocks from providing
the wrong time to other clocks in the network. Occasionally, however, system managers
may need to perform the following functions:

• Identify system clock problems

• Adjust system clocks

• Change DTS attributes due to varying network conditions

• Modify system configurations when the network topology changes

DTS provides a full-featured management interface that allows system managers to
adjust system clocks, change the values of the DTS management parameters, and add
or subtract servers from the network.

To aid in solving problems with system clocks, DTS provides event reporting that
notifies system operators and managers in the rare event that a system clock is
inaccurate or fails to synchronize.

23.1.4 Quantitative Inaccuracy Measurement

Unlike other network time services, DTS uses manufacturers’ specifications and direct
observation to determine the inaccuracy of system clocks relative to UTC. DTS
appends an inaccuracy measurement to each time value that it uses internally. This
measurement takes into account cumulative clock error, communications delays, and
processing delays. DTS uses combined time and inaccuracy measurements from one

DCE 1.2.2 Administration Guide—Core Components 341

DCE Distributed Time Service

or several sources to calculate the most accurate new clock settings for client systems.
(See Section 23.2.3 for further information about the DTS synchronization process.)

23.2 Basic DTS Concepts

The following subsections describe system clock and network characteristics, DTS
synchronization concepts, DTS clock adjustment, and DTS time representations.
System managers need to read these subsections to gain a basic understanding of
DTS concepts before progressing to Chapter 25.

23.2.1 Time Measurement Factors

The following subsections describe the factors that affect time measurement and
explain how DTS handles them.

23.2.1.1 Clock Error

All system clocks have common properties that contribute to clock error and interfere
with the synchronization process. System clock error tends to increase over time; the
rate of change of error is known asdrift. If each system clock in a network started at
the same time and ran at the same rate, the clocks would remain synchronized. Because
each system clock drifts at a different rate, however, the system clocks throughout a
network become desynchronized.

The difference between any two clock readings is known as theskewbetween the
clocks. The clocks that are used in many computer systems have a specified maximum
drift of a few seconds per day. If uncorrected for several days, the skew between
networked system clocks can inhibit the performance of distributed applications.

The DTS server or clerk on each node tracks the drift of its client’s system clock
and periodically synchronizes with other DTS nodes to reduce the skew between its
client’s time value and those of the other DTS nodes. The DTS server or clerk adjusts
the system clock on its client node as the final step in this repeating synchronization
process.

342 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

23.2.1.2 Communications and Processing Uncertainties

Communications delays also inhibit the synchronization process, especially when two
systems communicate over a WAN or low-speed link. DTS can adjust for the known
processing delays that are required to send and receive messages between systems.
Due to the varying quality of communications links, however, the time that is required
to send, receive, and acknowledge messages varies from one message to the next.
These delays cannot be known exactly because transit over the network and the time
required to read an incoming timestamp both vary.

Rather than using estimates of communications and processing delays, DTS records
all known error factors that accompany a time measurement sent over the network.
This measurement enables DTS to determine the relative quality of a time source
regardless of its geographic location or changing conditions on communications links.

23.2.2 Inaccuracy Values

In order to synchronize system clocks to the most accurate settings, DTS needs a way
to determine the accuracy of time sources relative to each other and to UTC. This
section describes how DTS determines the relative accuracy of any time source that
is available in the network.

DTS uses an inaccuracy value, or tolerance, to determine the relative precision of
time values that it obtains from system clocks and external time-providers. This DTS
feature effectively transforms each time value into an interval, or range, rather than a
point on a continuum.

Inaccuracy values are determined by the following three factors:

• Drift—When reading a clock, DTS calculates the amount of time that the clock
may have drifted since DTS previously read the clock. Drift is the largest
component of most inaccuracy values.

• Communications Delay—The inaccuracy also contains the uncertain portions of
the communications delays between systems. Although DTS compensates for
processing delays, it cannot predict or directly measure the varying delays that
occur on network links. The inaccuracy values that a clerk or server obtains from
co-located systems on a LAN tend to be much lower than those obtained from
servers outside the LAN.

DCE 1.2.2 Administration Guide—Core Components 343

DCE Distributed Time Service

• Leap Seconds—UTC time is measured by atomic clocks, which are extremely
stable. The standard, however, keeps time based on the earth’s position. Due to
the slowing of the earth’s rotation, it occasionally becomes necessary to advance
UTC time by 1 second. These events are known asleap seconds. Leap seconds
may occur in the final second of any month, and normally occur about once
every 18 months. At the end of each month, DTS accounts for leap seconds by
increasing all inaccuracy measurements by 1 second. DTS later adjusts the clocks
to remove the extra second of inaccuracy if an external time-provider determines
that a leap second did not actually occur.

Without DTS to correct it, a system clock’s inaccuracy is always increasing. For
example, suppose that a clock starts with a UTC time of 0:00:00.00 (midnight) and
zero inaccuracy. Due to drift, when the clock next shows a time of 0:00:00.00, the
inaccuracy is 8 seconds. UTC time may be 23:59:52.00 or 0:00:08.00, but is probably
somewhere in between. Therefore, the system time is an interval that contains UTC
time and is bounded by the inaccuracy, as shown in Figure 23-1. Using the DTS
format for displaying time, the combined time and inaccuracy interval is expressed as
follows:

1993-08-03-00:00:00.000I08.000.

344 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

Figure 23–1. Time and Inaccuracy

(Midnight)

Key:

= Coordinated Universal Time (UTC)

ZK−1996A−GE

30 35 40 45 50 55 5 10 15 20 25 30

−8 +8

00:00

Boundary of
inaccuracy

Hardware
clock time

00:00:00.00
Boundary of
inaccuracy

23.2.3 Synchronizing System Clocks

To maintain uniform system times, DTS servers and clerks periodically synchronize
the clocks in all network systems. The DTS entity that is on each system performs these
synchronizations by requesting that servers send their combined clock and inaccuracy
values (time intervals) to the originating system. The entity then uses the values that
are sent by the servers to compute a new system time.

DTS servers and clerks have slightly different synchronization procedures. Before
attempting to synchronize with other systems, DTS servers always check that an
external time-provider is present on the server system. A given server requests times
from other servers if no time-provider is available. When no time-provider is available
and a server synchronizes with its peer servers, the server uses its own system time
as one of the input values when it computes a new system time.

DCE 1.2.2 Administration Guide—Core Components 345

DCE Distributed Time Service

Most network systems run the DTS clerk process. Clerks cannot have time-providers,
and they do not use the system time of their client systems to compute new times.
When a clerk is synchronizing its client system’s clock, the clerk uses only the time
values that it obtains from servers to compute a new system time.

When a DTS clerk requests time intervals from several servers, it uses them to calculate
a new time that is correct (that is, contains UTC) and that minimizes inaccuracy.
When the servers respond and the DTS clerk calculates network communications
uncertainties and drift for each of the time values, the clerk has a set of intervals (t1
throught4 in Figure 23-2). Since each interval contains UTC, the intersection is the
smallest interval the clerk can choose that also contains UTC. This intersection is the
computed time. The DTS entity uses the computed time interval to adjust the clock
on the system that receives the server values.

In addition to eliminating large inaccuracy values during synchronization, DTS also
discards intervals that are received from faulty clocks (t2 in the figure). DTS detects
and rejects clock intervals that do not intersect with the majority of the intervals.
When DTS detects a faulty interval, it notifies the system manager by displaying an
event message, identifying the server that sent the faulty value.

A server that has a high-drift clock or is far away in the network submits its time
to the DTS entity (t1 in the figure), but the large time interval is ignored since more
accurate times are available. Note that, in Figure 23-2, the endpoints of correct time
(t1) are further from the computed time midpoint than those of the interval that is
declared faulty (t2).

346 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

Figure 23–2. Computed Time

Time

CT

Intersection of
correct intervals
(computed time)

UTC

t1

t2

t3

t4

During the synchronization process, servers with the greatest accuracy have the most
influence in determining new system times throughout the network. In the previous
figure, the server that submitted time valuet3 has the smallest correct interval and is
therefore the closest to the computed time. Server systems with external time-providers
are usually the servers with the most accurate times. Beyond TP servers, those servers
with the highest quality clocks and best communications links tend to influence the
time on other systems to the greatest degree.

The synchronization process also reduces the skew between systems. The computed
time interval is often smaller than the interval that is supplied by any single clock.
Note that the computed time in the previous figure is a smaller interval than any
of the source intervals. As the synchronization procedure is constantly repeated on
each network system, the skew between systems is reduced and they are more closely
synchronized. However, if a time-provider is absent from the network, the clocks may
collectively drift away from UTC.

DCE 1.2.2 Administration Guide—Core Components 347

DCE Distributed Time Service

23.2.4 How DTS Adjusts System Clocks

Many system clocks are based on an oscillator and operate with a combination of
hardware and software. The hardware for each clock contains a timer that sends
interrupts to the operating system at fixed intervals; each interrupt is a single tick. A
software register that contains the current value of the time is incremented by a fixed
amount (for example, 10 milliseconds) at each tick. DTS adjusts the rate of the clock
by changing only the incremental value that is added to the software register. It does
not directly affect the ticks of the hardware clock.

DTS adjusts system clocks at the rate of 100 to 1; that is, it requires 100 time units to
adjust 1 time unit of error. For example, it takes 1 minute and 40 seconds to correct
a 1-second error. This rate of adjustment exceeds the normal rate of drift so that
synchronization is carried out without further significant interference from the clock.

Figure 23-3 illustrates how DTS changes the increment to the software register. The top
line represents a 10-millisecond increment to the normal clock at every 10-millisecond
tick. The middle line illustrates the adjustment to a fast clock; DTS slows the clock
by incrementing the register by 9.9 milliseconds instead of 10 milliseconds at each
tick. The bottom line illustrates the adjustment to a slow clock; DTS speeds it up by
incrementing the register by 10.1 milliseconds instead of the usual 10 milliseconds at
each tick.

Figure 23–3. Adjustment of the Clock

NORMAL CLOCK
T T T T T T T T

T T T T T T T T

T T T T T T T T

10 20 30 40 50 60 70 80

10.5 20.4 30.3 40.2 50.1 60 70 80

9.5 19.6 29.7 39.8 49.9 60 70 80

ADJUSTMENT TO A
FAST CLOCK

ADJUSTMENT TO A
SLOW CLOCK

ZK−2323A−GE

T = Hardware tick

It is occasionally preferable to set the system clock immediately, rather than adjusting
it gradually. DTS provides this option for the following situations:

• During system startup when you want to set the initial system time

348 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

• If it has been a long time since the last synchronization, and you decide that the
skews between system clocks are too large to wait for a gradual adjustment

• When a network has had catastrophic hardware problems, causing a large number
of the clocks to become faulty

• When the time interval for a given clock does not intersect with the intervals of
other clocks, and the error exceeds a predetermined tolerance

23.2.5 DTS Time Representation

UTC is the international time standard that has largely replaced GMT. The standard
is administrated by the International Time Bureau (BIH) and is in widespread use.
For all its internal processes, DTS uses opaque binary timestamps that represent UTC.
You cannot read or disassemble a DTS binary timestamp. The DTS API allows other
applications to convert or manipulate the timestamps, but they cannot be displayed.
DTS also translates the binary timestamps into ASCII text for display on a client
system.

23.2.5.1 Absolute Time

An absolute time is a point on a time scale. For DTS, absolute times reference the
UTC time scale. Absolute time measurements are derived from system clocks or
external time-providers. When DTS reads a system clock time, the time is recorded in
an opaque binary timestamp that also includes the inaccuracy and other information.
When you use the DCE control program (dcecp) clock showcommand to display an
absolute time, it is converted to ASCII text, as shown in the following display:

1993-11-21-13:30:25.78523-04:00I010.0825

DTS displays all times in an ISO-compliant format. The International Organization for
Standardization (ISO) format that generated the previous display example is detailed
as shown in Figure 23-4.

DCE 1.2.2 Administration Guide—Core Components 349

DCE Distributed Time Service

Figure 23–4. ISO-Compliant Time Format

CCYY−MM−DD−hh:mm:ss.fff[+|−]hh:mmIsss.fff

 Inaccuracy
 component

 TDF
 component

 Calendar date and time
 component

Century

Year

Month

Day

hour

minute

second

fraction

fractions

seconds

designator
Inaccuracy

minutes

hours

+|− TDF

In the format example shown in the preceding figure, the relative time preceded by the
+ (plus sign) or− (minus sign) indicates the hours and minutes that the calendar date
and inaccuracy are offset from UTC. The presence of one of these characters in the
string also indicates that the calendar date and time are the local time of the system,
not UTC. The delineator I indicates the beginning of the inaccuracy component that
is associated with the time. You can express the DTS time that you want to display
in several ways. The DTS time in BNF format is defined in Appendix D.

Although thedcecpclock showcommand displays all times in the previous format
(see Figure 23-4), the interface also accepts the following variations to the ISO format
on input, as shown in Figure 23-5.

350 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

Figure 23–5. ISO-Compliant Time Format Variation

CCYY−MM−DDThh:mm:ss,fff[+|−]hh:mm ss,fff+−

 Inaccuracy
 component

 TDF
 component

 Calendar date and time
 component

fractions

seconds

Inaccuracy
designator

minutes

hours

+|− TDF

Century

Year

Month

Day

Time
designator

hour

minute

second

fraction

In the preceding example, the delineator T separates the calendar date from the time,
a , (comma) separates seconds from fractional seconds, and the ± (plus or minus sign)
indicates the beginning of the inaccuracy component.

DTS offers a translation feature that changes UTC-based absolute times to your local
time whenever the time is displayed. The local time displayed is derived from UTC
plus a Time Differential Factor (TDF), which can have a positive or negative value.
In the previous example, the string [+/−] hh: mm denotes the TDF. When installing
a system, you select a time-zone rule for the system, which determines the TDF and
any seasonal changes to the TDF. After the initial startup, all subsequent output times
reflect the local time. If an absolute time is displayed by your system, and it does not
contain TDF information, it is a UTC time.

The following section describes relative time, which is derived from absolute time.

23.2.5.2 Relative Time

A relative time is a discrete time interval that is usually added to or subtracted from
another time. The TDF that is associated with absolute times is an example of a relative
time. Relative times are normally used as input for commands or system routines.

Figure 23-6 shows the format for relative time.

DCE 1.2.2 Administration Guide—Core Components 351

DCE Distributed Time Service

Figure 23–6. Relative Time Format

DD−hh:mm:ss.fffIss.fff

designator
Inaccuracy

 Relative date and time
 component

 Inaccuracy
 component

seconds

fractions
Days

hours

minutes

seconds

fractions

[−]

The simple relative times that you specify with DTS-relateddcecpcommands do not
use the calendar date nor inaccuracy fields because these fields are associated with
absolute times. Positive relative times are not signed, but negative relative times are
preceded with a− (minus sign).

The following example shows a relative time used in a typical DTS-relateddcecp
command:

21-08:30:25.000

Simple relative times are often subtracted from or added to other relative or absolute
times. For example, if you say, ‘‘I will meet you in an hour,’’ you add a relative time
of +01:00 to the present absolute time. In the case where you add or subtract a relative
time and an absolute time, note that the inaccuracy of the input absolute time is carried
over to the resulting absolute time. For example, 1993-11-30-00:30:25.000I00.030
minus 00-00:15:25.000 equals 1993-11-30-00:15:00.000I00.030.

23.3 How DTS Works

DTS has two major software components:

• Clerks

• Servers

352 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

The following subsections describe each of these components and tell you how they
interact to provide time to client applications and to synchronize system clocks.

23.3.1 Clerks

Any system that is not a DTS server is a DTS clerk. Most network systems run clerk
software. Clerks maintain server lists and perform the synchronization functions for
DTS client systems.

In order to build server lists and synchronize with the servers on the list, clerks need
to be able to locate servers automatically. They discover servers by using remote
procedure call (RPC) profiles. Recall that profiles are search tables that contain the
following types of entries:

• Server Entries—The CDS names of individual resource providers.

• Service Group Entries—A group of resource providers identified by a single CDS
name.

• Profile Entries—The names of other configuration profiles. These entries allow
hierarchical nesting of profiles.

Each DTS clerk node contains up to three profiles. When it attempts to locate servers,
a clerk first performs an RPC lookup of the entries in a base profile called thenode
initial profile. The clerk then looks for the LAN profile entry. If the LAN profile entry
is not found, the clerk searches for the default profile entry; the default profile may
contain the LAN profile entry. When the clerk locates the LAN profile, it reads the
server entries to build a list of local servers. This process is repeated at set intervals.

If a clerk does not obtain enough server entries as dictated by the DTS management
attribute minservers, it attempts to locate additional servers, usually those outside
the LAN. To locate these servers, a clerk locates the cell profile, which has a well-
known CDS name. The cell profile contains global server entries; that is, servers that
are normally found outside the LAN. (See Section 23.3.2 for further information on
servers.)

After building a server list with enough entries, a clerk can directly request time values
from several of the servers on the list. The clerk then receives these time values and
uses them to compute a new system time for its client system.

DCE 1.2.2 Administration Guide—Core Components 353

DCE Distributed Time Service

23.3.2 Servers

Servers provide many of the communications and synchronization functions for DTS.
Like clerks, they import information about other servers from LAN and cell profiles.
Servers, however, also export bindings to their own CDS namespace entries and export
their names to the LAN and cell profiles. (See the following subsections on the server
subtypes for further information on how servers are configured and located.)

External time-providers can be connected to servers, which propagate the precise time
intervals they obtain from the time-providers throughout the network.

Before one server can obtain time values from another, the servers must have the same
epoch number. Epochs divide the DTS implementation into logically separate areas.
Servers only synchronize with other servers that have the same epoch number. All
servers have the same epoch number when they are created. Infrequently, you may
wish to change a server’s epoch number, using the management interface, to isolate
it from the network in order to correct a problem.

23.3.2.1 The Local Server Set

Local servers reside on the same LAN and maintain their clocks by synchronizing with
each other. Due to the high throughput on this type of network, the skews between
the local servers on a LAN are normally maintained at under 200 milliseconds. If at
least one of the servers in the local set synchronizes with an accurate time-provider,
inaccuracies at each server may be less.

When a server is first initialized, it exports its binding to its entry in the namespace and
adds its name entry to the LAN profile. Every server is automatically entered in the
LAN profile for the related portion of the network. Local servers also import bindings
from the LAN profile to build lists of servers with which they can synchronize.

Local servers perform time interval computations, adjust their clocks, and provide time
values to each other for synchronization purposes. Each server attempts to synchronize
with every other server in the local set at periodic intervals. At longer intervals, clerks
request time values from the local servers. Clerks, however, need only to request
intervals from the number of servers determined by theminservers attribute, which
is usually a subset of all the local servers.

354 DCE 1.2.2 Administration Guide—Core Components

Introduction to DCE Distributed Time Service

23.3.2.2 The Global Server Set

Local servers are available only to the servers and clerks that are in a single LAN, but
global servers are available throughout a cell. Any server can be configured as either a
local or a global server (See the DCE control programdts configure command). The
number of global servers is usually small, but global servers have several important
functions that enable DTS to synchronize every node in the network. Global servers
are necessary in the following situations:

• When a network has multiple LANs or an extended LAN

• When systems that are not on LANs have access to LANs through point-to-point
links

• When clerks or local servers cannot access the required number of local servers
determined by theminservers attribute

You can reconfigure a local server as a global server by using thedcecp dts configure
command with the-global option. Configuring a server as a global server causes the
server to export its binding to its entry in the namespace and its name to the cell
profile.

Local servers and clerks request time values from global servers when they cannot
obtain the number of local server responses that are mandated by theminservers
attribute. Certain local servers also regularly request the time from global servers. See
the following subsection.

23.3.2.3 Couriers

Local servers calledcouriers request time values from one randomly selected global
server at every synchronization. When DTS starts up, it automatically sets the server’s
courierrole attribute value tobackup. You can change the server’s courier role by
manually changing this attribute value. To do this, you use thedcecp dts modify
command with the-change option. If a server is connected to an external time-
provider, you want to reconfigure it as a courier.

Couriers maintain lists of global servers whose bindings they import from the cell
profile. At every synchronization, couriers use the responses of all local servers and

DCE 1.2.2 Administration Guide—Core Components 355

DCE Distributed Time Service

one global server when synchronizing their own clocks. Couriers provide network-
wide synchronization through the following procedure:

1. Couriers request time values from at least one global server in a remote area and
request the balance of values from local servers up to the number determined by
the minservers attribute.

2. Couriers use the global server times and local server times to synchronize the
clocks that are in their respective systems.

3. Couriers relay newly computed clock times to other servers and clerks on the
LAN during future synchronizations.

For a network containing multiple LANs or point-to-point links, one server on each
LAN or segment needs to be configured as a courier. This configuration ensures that
various portions of the network remain synchronized and are not isolated from each
other.

Using the management interface, you can also designate one or more servers to be
backup couriers. These local servers temporarily assume courier functions in the event
that no courier servers are available on the LAN. In such a case, the backup courier
with the lowest ordered Universal Unique Identifier (UUID) regularly synchronizes
with global servers until a courier is again available.

If a courier cannot find any global server, then it uses local servers and increments its
no global server detectedcount.

356 DCE 1.2.2 Administration Guide—Core Components

Chapter 24
Planning Your DTS Implementation

This chapter describes how to plan your DCE DTS implementation, including
personnel selection for the planning process and planning for DTS on a LAN,
an extended LAN, or a WAN. DTS installation is described in theDCE 1.2.2
Administration Guide—Introduction, so installation considerations are only included
in this chapter by reference. It is important to note, however, that many of the planning
considerations for DTS are tied to the overall planning of DCE, especially the CDS
and Security components. (See theDCE 1.2.2 Administration Guide—Introductionfor
background information on the interdependencies among the DCE components.)

24.1 The DTS Planning Team

Two main categories of personnel interact with the DTS software: system managers
and applications programmers. Programmers do not usually need to be involved in
the planning stages of the DTS implementation. If you are writing a program to
import a source of UTC time into the service, however, you may wish to locate the
time-provider at the server that is closest to the programmer. Close proximity to the

DCE 1.2.2 Administration Guide—Core Components 357

DCE Distributed Time Service

time-provider helps the programmer when testing the software application with the
time-provider hardware.

System managers or network architects usually plan the DTS implementation. They
decide which nodes are servers and which are clerks, and they decide how the DTS
implementation grows with the network. DTS is scalable for large networks so that
expanding an implementation to include new nodes is relatively simple.

System managers also install the software and maintain DTS. As the network grows,
system managers ensure that the service is running with acceptable accuracy and install
new servers, time-providers, and clerks.

24.2 General Planning Guidelines

Consider the following questions as you plan your DTS implementation:

• Is your cell a single LAN, an extended LAN, a WAN, or a combination of LANs
and WANs?

• What is the current or proposed network topology (component placement)?

• How many servers will be required? Where will they be located?

• Will global servers be required? Where will they be located?

• Will you need to configure any couriers if you are using global servers?

• Will you use an external time-provider to obtain UTC?

The following sections will help you answer these questions.

Although there are many network configurations that affect DTS planning, several
general rules apply regardless of your network configuration or the number of nodes
in the network. These guidelines are summarized as follows:

• DTS must be installed with the other DCE components.

• Locate DTS servers on the same nodes as the servers for the other DCE
components wherever possible.

• Each cell should have a minimum of three DTS servers; preferably four servers
to provide redundancy.

358 DCE 1.2.2 Administration Guide—Core Components

Planning Your DTS Implementation

• Each LAN should have at least one server.

• Locate the servers at the sites with the greatest number of nodes.

Although other factors must be considered when you plan your network, these factors
depend on network topology and configuration. The following sections present some
typical cell arrangements to aid you in implementing DTS on your own network.

24.3 Configuring DTS for a LAN

If your nodes are in a single LAN, regardless of the number of nodes, planning
your DTS implementation is relatively simple. To detect faulty time servers, configure
at least three systems as servers. If you want to provide redundancy for your DTS
implementation, plan to install four or more servers in the network. That way, if one
of the servers fails, DTS can still synchronize with reliable results.

To ensure the reliability of your DTS implementation, make sure that the network
connections between server nodes are stable. If you plan to add WAN links to your
LAN, do not move the servers to the remote nodes, since WAN links are usually less
reliable than the LAN.

If you have a single LAN, the location of the servers on the LAN is not critical. You
can locate one of the servers on a readily accessible node to aid in troubleshooting, but
there are no other recommended server locations. Neither global servers nor couriers
are required.

If you are planning to use one or more time-providers, locate them at easily accessible
systems to ease startup and maintenance. If your network only requires synchronized
clocks, but does not need to closely follow a time standard such as UTC, you may not
require a time-provider. If you do not use a time-provider, we recommend that you
use the DCE control program (dcecp) clock set command to manually set the time
approximately once each week.

Figure 24-1 shows a simplified LAN configuration. Your LAN may be much larger,
but the figure should resemble a portion of your network.

DCE 1.2.2 Administration Guide—Core Components 359

DCE Distributed Time Service

Figure 24–1. DTS Configuration—LAN

ClerkServerClerkServer

TP
(Time−Provider)

ClerkClerkClerkServerClerk

ClerkServerClerkServer

TP

ClerkClerkClerkServerClerk

ClerkServerClerkServer

ClerkClerkClerkServerClerk ClerkClerkClerkServerClerk

Server Clerk Server Clerk

TP

24.4 Configuring DTS for an Extended LAN

If your network consists of several LAN segments that are connected by bridges, your
network is considered to be an extended LAN. Planning for extended LANs is similar
to planning for a single LAN; treat each segment of the extended LAN as though it
were a separate LAN. The following guidelines are recommended:

• Create three servers in each segment.

• Use thedts configure command to configure one server on each segment as a
global server.

• Use thedts modify command to configure one server on each segment as a
courier.

• If you are using time-providers, connect them to the global servers.

24.5 Configuring DTS for WANs and WAN Links

Because there are many variations of WAN configurations, especially in combination
with LANs and extended LANs, it is impossible to describe every case where a WAN
link can be used to disseminate time. This section does not give recommendations
for every case involving a WAN link, but it describes how you can set up your DTS
implementation by using several generic configurations as examples.

360 DCE 1.2.2 Administration Guide—Core Components

Planning Your DTS Implementation

Due to the variable delay inherent in any WAN link, it is difficult to maintain a
consistent skew between clocks on opposite sides of the link. DTS synchronizes clocks
across WAN interfaces, but larger inaccuracies occur between the clocks to account
for the worst case transmission delay during each synchronization.

A reliable and robust DTS installation is important any time WAN links are part
of a cell. Because WANs are less reliable than LANs, plan for some redundancy in
any DTS installation that involves WAN links. Try to place servers so that there will
always be three or more available, even if one of the WAN links goes down.

The following subsections give recommendations for three basic WAN configurations:

• A LAN or extended LAN with WAN links to remote nodes

• LANs that are connected by WAN links

• An all-WAN cell with a central host or cluster

Your cell may not exactly match any of the configurations, but you can plan your cell
by following the recommendations for each example.

24.5.1 LANs with WAN Links to Remote Sites

Figure 24-2 shows a LAN that incorporates several remote nodes by using WAN links.

DCE 1.2.2 Administration Guide—Core Components 361

DCE Distributed Time Service

Figure 24–2. DTS Configuration—LAN with WAN Links

ClerkServer

Clerk

Global/
Courier
Server

Global/
Courier
Server

Clerk

ClerkClerk

Modem

Modem Modem

Modem

(Time−Provider)
TP

ServerServer Clerk

Clerk

In this configuration, follow the basic recommendations for a single LAN, but also
adhere to these rules:

• Configure servers at remote sites as global and courier servers.

• The LAN should have a minimum of three servers.

• If you are using a single time-provider, locate it at one of the global servers on
the LAN, rather than at a remote server.

The network configuration that results from the preceding rules concentrates the servers
on the LAN, so clock skews are kept to a minimum and the service is not dependent on
remote nodes that may be physically inaccessible to the system manager. Each remote
clerk node synchronizes with the global servers to satisfy theminservers attribute
setting.

362 DCE 1.2.2 Administration Guide—Core Components

Planning Your DTS Implementation

24.5.2 LANs Connected by WAN Links

The rules outlined for extended LANs that use bridges also apply to LANs that are
connected by WAN links. Each LAN in such a network is a separate entity, so several
DTS servers must be configured on all of the LANs. Configure each LAN according
to the following guidelines:

• Configure at least three DTS servers on each LAN.

• Configure at least one server on each LAN as a courier.

• Configure at least one global server on each LAN.

• If you are using time-providers, install them at the global servers.

These recommendations lead to higher DTS efficiency and availability despite the
irregular delays that are associated with WAN links.

24.5.3 WAN Cells

Figure 24-3 shows a geographically distributed cell that does not have any LANs.
DTS delivers higher clock skews in an all-WAN environment than in an all-LAN
environment, but it still provides synchronization that is adequate for most distributed
applications. In such a network, clock skews are typically less than 5 seconds, but
they may be as much as 30 seconds if satellite links are used.

DCE 1.2.2 Administration Guide—Core Components 363

DCE Distributed Time Service

Figure 24–3. DTS Configuration—WAN Networks

Clerk

Clerk

M
U
X

TP

M
U
X

Modem

Modem

Site 1

(Time−Provider)

Site 2
Global/
Courier
Server

ClerkModem

Modem Clerk

Site 3

Site 4

Global
Server

Global
Server

Many of the same recommendations for a LAN with WAN links also apply to the
network that does not have any LANs. Keep the following considerations in mind
when planning your all-WAN network:

• The network should have at least three servers, preferably four or more.

• Every server should be configured as a global server.

• Couriers are not required; however, you can configure any or all of the servers
as couriers. Theminserversattribute will force each global server to synchronize
with at least two others.

• You can place the servers anywhere in the network, but place at least one at the
central site; choose the most active remote nodes that are connected by the most
reliable links for the rest of the servers.

• If you are using time-providers, which are recommended for this type of network,
connect one to a global server node at the central site.

364 DCE 1.2.2 Administration Guide—Core Components

Planning Your DTS Implementation

In a geographically distributed WAN network, also consider ease of access to the
nodes by system managers or service personnel. If you locate a server at one of two
nodes where traffic patterns and link reliability are equal, locate the server at the node
that is convenient to your central site or management facility.

24.6 Planning for External Time-Providers

To closely synchronize your systems with UTC, you can place one or more time-
providers in your network. Time-providers have many forms; they can be radio
receivers, software/modem combinations, or satellite receivers. (See theDCE 1.2.2
Application Development Guide—Core Componentsfor additional information about
the Time-Provider Interface that you can use to integrate these devices in your network.
See Appendix C of this guide for a list of time sources.)

If you plan to use time-providers in your network, you can use one of the sample time-
provider programs that are supplied with the DTS software indcelocal/usr/examples/
dts. If you plan to use a time-provider that does not have a sample program available,
or you have special requirements, you can write a time-provider program to match
the time-provider interface. After you select your time-provider device and program,
plan where to install the device in your network.

It is relatively simple to locate time-providers to your best advantage. To do so, observe
the following guidelines:

• Always locate a time-provider at a server; if possible, locate the time-provider at
a server that is routinely accessed by the majority of servers in your network.

• Regardless of your network configuration, place the time-providers where they
will have the highest availability and use.

• If you have several segments to your network, and if you are using global servers
to maintain synchronization across the network, locate the time-providers on the
global server systems.

Note: You cannot configure a server connected to a time-provider as a courier. A
server connected to a time-provider never assumes the courier role because the
server process only solicits time values from the time-provider. (See Chapter
23 for additional information about courier servers.)

DCE 1.2.2 Administration Guide—Core Components 365

Chapter 25
Managing the DCE DTS

This chapter describes management tasks that you perform for the DCE DTS. The
DCE control program (dcecp) has commands that you can use for performing these
tasks. The chapter contains brief descriptions of these commands. Detailed descriptions
of the commands appear in theDCE 1.2.2 Command Reference.

Prior to the creation ofdcecp, the DTS control program (dtscp) was used to manage
DTS. You can still use this control program, but all of its operations have been
incorporated intodcecp. Again, you can refer to theDCE 1.2.2 Command Reference
for detailed descriptions ofdtscp commands for manging DTS.

25.1 Using the DCE Control Program

Since detailed information aboutdcecp and its command syntax appears in Chapter
1 of this guide, this chapter does not repeat the information. It describes only the
commands thatdcecpprovides specifically for managing DTS.

DCE 1.2.2 Administration Guide—Core Components 367

DCE Distributed Time Service

The dcecp commands for DTS perform various operations on objects representing
components of the service. For example, thedts stop command stops the server or
clerk on the local node. The following subsections describe the DTS objects thatdcecp
operates on and the types of operations that the control program can perform on these
objects.

25.1.1 DTS Objects

The DCE control program has functions that operate on the following DTS objects:

• dts

This object represents either of the following:

— A local or global server that supplies the time to client applications and
systems in a distributed computing environment.

— An intermediary program that plays the role of a clerk on a client system.
DTS clerks obtain the time from a DTS server and adjust the clock.

• clock

This object represents the local system’s clock and the time that the clock tells.

25.1.2 dcecp Operations for DTS

Table 25-1 summarizes the operations performed bydcecpcommands on DTS objects.

Table 25–1. dcecp Operations for DTS

Operation Description

activate Changes the state of the clerk or server process from
inactive to active and causes the object to synchronize
its time.

catalog Returns a list of DTS servers in the specified cell.

compare Compares the time reported by the local clerk with that
of a specified server.

368 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

Operation Description

configure Configures a server as a global or local server.

deactivate Changes the state of a clerk or server process from
active to inactive and causes the object to stop
synchronizing its time.

help Displays a list of operations that can be performed on
the clerk, server, or clock, or a verbose description of
the specified object.

modify Modifies the attribute information for a clerk or server.

operations Displays a short list of the operations that can be
performed on the clerk, server, or clock.

set Sets the clock gradually or immediately to the time
specified by the argument (in DTS-style timestamp
format).

show For a clerk or server, displays information about
attributes or counters. For a clock, displays the clock’s
time in the DTS-style timestamp format.

stop Stops the clerk or server process.

synchronize Tells dtsd to gradually or immediately synchronize (the
-abruptly option) with the DTS servers.

25.1.3 DTS Object Attributes and Counters

DTS clerk and server objects have attributes and counters, which are pieces or sets
of data that reflect or affect their operational behavior. Some DTS clerk and server
attributes are used internally by the DTS daemon and you are allowed only to view the
values (with thedcecpdts showcommand). Others contain values that you can reset
according to the needs of your environment (with thedcecp dts modifycommand).
Counters are used internally by the DTS daemon and contain values that you can only
view.

Table 25-2 lists the server and clerk attributes that you can set. Table 25-3 lists the
server and clerk attributes that you cannot set.

DCE 1.2.2 Administration Guide—Core Components 369

DCE Distributed Time Service

For detailed descriptions of both the DTS server and clerk attributes and counters, see
the dts_intro(8dts) reference page.

Table 25–2. Settable DTS Object Attributes

Servers Clerks

checkinterval —

courierrole —

epoch —

globaltimeout globaltimeout

localtimeout localtimeout

maxinaccuracy maxinaccuracy

minservers minservers

queryattempts queryattempts

serverentry —

servergroup —

serverprincipal —

syncinterval syncinterval

tolerance tolerance

Table 25–3. Unsettable DTS Object Attributes

Servers Clerks

actcourierrole —

autotdfchange autotdfchange

clockadjrate clockadjrate

clockresolution clockresolution

globalservers globalservers

lastsync —

370 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

Servers Clerks

localservers localservers

maxdriftrate maxdriftrate

nexttdfchange nexttdfchange

provider —

status —

tdf tdf

timerep timerep

type type

uuid uuid

version version

25.2 DTS Timestamp Format

All responses todcecpcommands contain a timestamp that conforms to the input and
output format shown in Figure 25-1.

Figure 25–1. DTS Timestamp Format

CCYY−MM−DD−hh:mm:ss.fff[+|−]hh:mmIsss.fff

 Inaccuracy
 component

 TDF
 component

 Calendar date and time
 component

Century

Year

Month

Day

hour

minute

second

fraction

fractions

seconds

designator
Inaccuracy

minutes

hours

+|− TDF

DCE 1.2.2 Administration Guide—Core Components 371

DCE Distributed Time Service

The following example shows a typical DTS time display:

1994-03-16-14:29:47.52000-05:00I000.003

The timestamp uses the DTS format that is explained in Chapter 23. In this example,
the year is 1994, the day is March 16, and the time is 14 hours, 29 minutes, and 47.52
seconds. A negative TDF of 5 hours and an inaccuracy of 3 milliseconds are included
in the timestamp.

25.3 Reconfiguring DTS on Nodes

DTS is initially configured during the overall DCE configuration procedure for a
node (see theDCE 1.2.2 Administration Guide—Introduction). The DCE configuration
procedure automatically creates and activates DTS servers and DTS clerks on
designated nodes. You can, however, reconfigure DTS on a node at any time. If you
choose to do this, you must perform the following steps:

1. Stop the clerk or server process (DTS daemon) that is currently executing on the
node.

2. Run thedce_configscript to restart the DTS daemon on the node as a clerk or
server.

3. Set any clerk or server attribute values as needed.

The following subsections provide detailed instructions for performing each of the
reconfiguration steps just listed.

25.3.1 Stopping an Existing Clerk or Server

To stop the existing DTS clerk or DTS server on a node, use thedcecpdts stop
command. Execution of this command first deactivates the clerk or server (that is,
disables the function by which the clerk or server synchronizes the system clock),
then stops the process. You enter thedts stop command as follows:

372 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

dcecp> dts stop

dcecp>

The dts stop command calls thedcecp dts deactivatecommand to deactivate the
clerk or server process. This is the command that you should use whenever you want
to deactivate a clerk or server process, but not stop it. You enter thedts deactivate
command as follows:

dcecp> dts deactivate

dcecp>

25.3.2 Creating a New Clerk or Server

To create a new clerk or server on the node, use the functions of thedce_configscript
that configure additional DTS clerks and servers (see theDCE 1.2.2 Administration
Guide—Introduction). The dce_configfunctions for configuring additional clerks and
servers restart the DCE daemon (dtsd) as either a clerk or server.

Just as during initial DTS configuration, if you are creating a server, you must tell
the dce_configscript the type of server that it is to create: global or local. Before
you choose the server type, you should consider the role that the server will play in
propagating the network time.

Local servers can have a noncourier role (t he value of thecourierrole attribute is
set to noncourier). A noncourier server does not participate in time propagation.
Local servers can also have a courier role (the value of thecourierrole attribute is
set tocourier) or a backup courier role (the value of thecourierrole attribute is set
to backup). Courier servers have primary responsibility for synchronizing the clocks
between the nodes in a segment of the network. Backup couriers are secondary links,
which propagate the time when no courier server is available. When you create a local
server, the courier role is automatically set tobackup.

Global servers must play thenoncourier role. They cannot be designated as couriers
or backup couriers.

Section 25.6.1 provides more information about server courier roles and instructions
for changing the courier role after you create a server.

DCE 1.2.2 Administration Guide—Core Components 373

DCE Distributed Time Service

25.3.3 Setting Clerk and Server Attribute Values

Once you have created a new clerk or server on a node, you will want to set certain
of the entity’s attribute values.

If you reconfigure a node to be a server, you need to match the epoch (theepoch
attribute value) of the newly created server to the epoch that is shared by the preexisting
servers in the network segment. You want to do this so that the new server can
synchronize immediately with these servers. Instructions for changing server epoch
numbers are given in Section 25.6.2.

You may also want to check the rest of the attributes that apply only to servers to
see that they complement the value settings of the attributes for preexisting servers.
For instance, if the server has an external time-provider, you may want to check the
checkinterval attribute. This attribute specifies the amount of time that the server
waits before synchronizing with the other servers on the LAN.

If you have changed your mind about a server’s courier role since you created the
server, you can modify thecourierrole attribute value.

If you created a clerk, you may want to check the new clerk’s attribute values against
those of the preexisting clerks and servers in the network.

General instructions for modifying the attributes of DTS clerks and DTS servers are
covered in Section 25.5.

25.4 Temporarily Reconfiguring DTS

From time to time, a situation or problem may arise in your network that requires you
to temporarily reconfigure DTS on one or more nodes. Perhaps a node in the LAN
is having problems and you need to have another node take over the clerk or server
role of the problem node. Rather than adding an unnecessary server or clerk to the
network, you canconvertthe clerk or server so that it plays the needed role.

If you convert a clerk or server, the change is only temporary. When DCE is stopped
and restarted on a node, the node will revert to its initial DTS configuration. A node
that was initially configured as a DTS server will become a server; a node that was

374 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

initially configured as a DTS clerk will become a clerk. In order to permanently change
the DTS configuration on a node, you must run thedce_configscript as discussed in
Section 25.3.

To temporarily convert a clerk to a server, or vice versa, perform these steps:

1. Stop the clerk or server process that is currently executing on the node by using
the dcecpdts stopcommand:

dcecp> dts stop

dcecp>

After you stop the clerk or server, quitdcecp.

2. Restart the DTS daemon on the node as a clerk or server by executing thedtsd
command with the appropriate option (the-c option for a clerk or the-s option
for a server). For example, to create a local server, enter the following command:

dtsd -s

The example command creates a local server that is a backup courier (the server’s
courierrole attribute value is set tobackup by default). If desired, you can
designate another courier role for the server in thedtsd command line by using the
command’s-k option. Other than a backup courier, the local server created in the
example can be a courier (courier) or cannot have any courier role (noncourier).

In the following example, the local server is given the role of a courier:

dtsd -s -k courier

To create a global server, you enter thedtsd command with the-g option:

dtsd -s -g

Note: If you are reconfiguring a node that previously ran a DTS clerk so that
it runs a DTS server, you need to perform extra steps. You must create a

DCE 1.2.2 Administration Guide—Core Components 375

DCE Distributed Time Service

principal account for the new server in the DCE Security Service registry,
and you must add the server’s name to the existing DTS server group (dts-
entity). Otherwise, DTS clerks will not be able to find the newly created
server. For instructions on creating a principal account, see Chapter 31 of
this guide. For instructions on adding a principal name to a group, refer
to Chapter 30.

3. Set any clerk or server attribute values as needed by using the DCE control
program’sdts modify command. The following section provides instructions for
modifying DTS clerk and server attributes.

25.5 Modifying Clerk and Server Attributes

Many management tasks involve modifying the attributes of DTS clerks and DTS
servers. The DCE control program has several commands for displaying and changing
the attributes of these entities.

To display the attribute values of a DTS clerk or DTS server, you use thedts show
command. (Thedts showcommand can also be used to view the values of DTS entity
counters; however, you cannot modify counter values.

For example, to display the attributes values for all the clients and servers on the local
node, enter the following command:

dcecp> dts show

{checkinterval +0-01:30:00.000I-- ---}

{epoch 0}

{tolerance +0-00:10:00.000I-- ---}

{tdf -0-05:00:00.000I-- ---}

{maxinaccuracy +0-00:00:00.100I-- ---}

{minservers 3}

{queryattempts 3}

{localtimeout +0-00:00:05.000I-- ---}

{globaltimeout +0-00:00:15.000I-- ---}

{syncinterval +0-00:02:00.000I-- ---}

{type server}

{courierrole backup}

376 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

{actcourierrole courier}

{clockadjrate 10000000 nsec/sec}

{maxdriftrate 1000000 nsec/sec}

{clockresolution 10000000 nsec}

{version V1.0.1}

{timerep V1.0.0}

{provider no}

{autotdfchange no}

{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}

{serverprincipal hosts/gumby/self}

{serverentry hosts/gumby/dts-entity}

{servergroup subsys/dce/dts-servers}

{status enabled}

{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}

dcecp>

The example display shows the attribute values for the single server located on the
local node. The attributes that thedts showcommand displays for a clerk are different.
Also, there will be more attributes displayed for a server (see Tables 25-2 and 25-3).

If you wish to modify the attributes for a DTS clerk or server, you can use
the dcecpdts modify command. Several examples of this command appear in the
following subsections, which describe the settable attributes for clerks and servers.
These subsections also offer suggestions for various attribute settings, depending on
your network configuration.

25.5.1 The minservers Attribute

The minservers attribute specifies how many servers must supply time values to the
system before DTS can synchronize the local clock.

The default and minimum recommended value for theminserversattribute is3; your
system requires values from three servers in order to compute a reliable new time.
Depending on whether it is a server or clerk, the system has different requirements of
the other systems in the network:

• A clerk requires values from three servers.

DCE 1.2.2 Administration Guide—Core Components 377

DCE Distributed Time Service

• A server requires values from two other servers. Each server uses its own clock
value when computing a new time.

To reset theminservers attribute value, enter thedts modify command with the
-changeoption to set the desired value. The command accepts values from1 to 10.
For example, to increase the required number of servers to4, issue the following
command:

dcecp> dts modify -change {minservers 4}

dcecp>

Although no direct relationship exists between thelocalservers attribute, which
specifies the number of local servers in a LAN, and theminservers attribute, the
minserversattribute value is usually a subset of all the local servers. To see the current
values of both or either of these attributes, you can use thedts showcommand. Wait
until the DTS nodes on your LAN are running for at least 10 minutes before you
issue the command. That way, thedts showcommand is sure to show all of the local
servers in your node’s synchronization list. Thedts show command can be entered
either with options (- attributes or -all) or without them, as follows:

dcecp> dts show

{checkinterval +0-01:30:00.000I-- ---}

{epoch 0}

{tolerance +0-00:10:00.000I-- ---}

{tdf -0-05:00:00.000I-- ---}

{maxinaccuracy +0-00:00:00.100I-- ---}

{minservers 4}

{queryattempts 3}

{localtimeout +0-00:00:05.000I-- ---}

{globaltimeout +0-00:00:15.000I-- ---}

{syncinterval +0-00:02:00.000I-- ---}

{type server}

{courierrole backup}

{actcourierrole courier}

{clockadjrate 10000000 nsec/sec}

{maxdriftrate 1000000 nsec/sec}

{clockresolution 10000000 nsec}

378 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

{version V1.0.1}

{timerep V1.0.0}

{provider no}

{autotdfchange no}

{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}

{serverprincipal hosts/gumby/self}

{serverentry hosts/gumby/dts-entity}

{servergroup subsys/dce/dts-servers}

{status enabled}

{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}

dcecp>

In the previous example, theminserversattribute value is set to4. This setting provides
redundancy; in the case where there are no global servers in the network, the system
synchronizes even if a local server becomes unavailable.

Whenever the system cannot contact the number of servers specified by theminservers
attribute setting, the system increments thetoofewserverscounter, logs the event, and
displays the event messageToo Few Servers Detected. Information included in the
event message shows the number of servers that are currently available and the number
required. If you see this event message displayed, check whether any of the servers
have failed, test the communications links to ensure that the system has not been
isolated from the servers, or add servers to the network.

You can use theminservers attribute in other ways, depending on your network
configuration. Consider the following cases:

• If you have only a few systems in your network and you want to synchronize
the nodes regardless of server drift, lower theminservers attribute value to1 or
2. Although the resulting synchronized time is a less reliable measure of UTC,
you increase the likelihood that the systems will synchronize. If the setting is
less than3, however, the system cannot identify faulty servers. Subsequent server
clock drift causes divergence from UTC.

• To increase fault tolerance and ensure that the systems compute reliable times, set
the minservers attribute value to3 (the default setting) or higher. The systems
can then identify faulty servers and compute the narrowest overlapping interval
for the time values that they receive. Remember, however, that your system will
not synchronize until there are at least three servers available.

DCE 1.2.2 Administration Guide—Core Components 379

DCE Distributed Time Service

The number of nodes in your network and the types of applications that you use
determine whether guaranteed synchronization or reliable times and fault tolerance
are more important.

25.5.2 Use of minservers Attribute with Global Servers

If your network consists of more than a single LAN, it should have a set of global
servers. You can create global servers by advertising local servers to the cell profile.
(See Section 25.6.1.1 for further information.)

The presence of global servers in your network can influence the value that you choose
for theminserversattribute. If the number of local servers available to a clerk or server
is less than theminserversattribute setting, the clerk or server automatically searches
the cell profile for a global server name. The clerk or server then requests time values
from the global and local servers.

You can check to see whether global servers exist by entering thedts showcommand
and viewing theglobalserversattribute value. Thedts showcommand can be entered
with options (-attributes or -all) or without any options, as follows:

dcecp> dts show

{checkinterval +0-01:30:00.000I-- ---}

{epoch 0}

{tolerance +0-00:10:00.000I-- ---}

{tdf -0-05:00:00.000I-- ---}

{maxinaccuracy +0-00:00:00.100I-- ---}

{minservers 3}

{queryattempts 3}

{localtimeout +0-00:00:05.000I-- ---}

{globaltimeout +0-00:00:15.000I-- ---}

{syncinterval +0-00:02:00.000I-- ---}

{type server}

{courierrole backup}

{actcourierrole courier}

{clockadjrate 10000000 nsec/sec}

{maxdriftrate 1000000 nsec/sec}

{clockresolution 10000000 nsec}

380 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

{version V1.0.1}

{timerep V1.0.0}

{provider no}

{autotdfchange no}

{nexttdfchange 1994-10-30-06:00:00.000+00:00I0.000}

{serverprincipal hosts/gumby/self}

{serverentry hosts/gumby/dts-entity}

{servergroup subsys/dce/dts-servers}

{status enabled}

{uuid 000013ed-000b-0000-b8ef-03a4fcdf00a4}

dcecp>

The dts showdisplays the name, node ID, and node name for all of the global servers
known by the local node.

25.5.3 Use of minservers Attribute with Systems on Point-to-Point
Lines

If you are using DTS on a system that connects to a LAN through a point-to-point
WAN link, the solitary system never has more than one local server available. The
recommendedminservers attribute setting for such a system is3. If the system is
configured as a clerk, it does not have any local servers and must query three global
servers to synchronize. If the system is configured as a server, it must query two global
servers to synchronize.

25.5.4 The maxinaccuracy Attribute

The maxinaccuracyattribute specifies the greatest allowable bound on your system’s
inaccuracy before DTS causes the system to synchronize. When the system exceeds
the bound determined by themaxinaccuracyattribute setting, DTS forces the system
to synchronize until the inaccuracy is reduced to a level that is at or below the setting.
Use themaxinaccuracy attribute setting as a trigger for synchronization. You can
vary the setting to vary the tolerance of intersystem synchronizations, but be aware
that, as the setting becomes lower, network overhead rises. The default setting is 0.10
seconds (100 milliseconds).

DCE 1.2.2 Administration Guide—Core Components 381

DCE Distributed Time Service

The effects of themaxinaccuracy attribute setting on the system’s synchronization
behavior are the following:

1. The system’s clock value accumulates more inaccuracy than themaxinaccuracy
attribute value and DTS initiates a synchronization.

2. DTS computes a new time value.

3. DTS adjusts the system clock.

4. If the new clock setting still exceeds themaxinaccuracy attribute value, or if
clock drift later causes the inaccuracy to reach the value, the cycle is repeated.

Note that, if synchronization repeatedly fails to achieve an inaccuracy that is less than
the maxinaccuracy attribute value, the system can be continuously synchronizing.
(See Section 25.5.5 for information on how thesyncinterval attribute prevents this
loop.)

The defaultmaxinaccuracy attribute value is designed to keep the system accurate
enough for most applications without being intrusive to network communications or
system processing. If your network includes one or more time-providers that ensure
extremely low inaccuracy, you can lower themaxinaccuracy attribute value. Raise
the value in the following cases:

• If a time-provider is not used in the network

• If a system is part of a WAN-only network configuration

• If the applications that call DTS do not require the level of precision achieved by
the default setting

The following example shows how to change themaxinaccuracy attribute value to
0.2 seconds:

dcecp> dts modify -change {maxinaccuracy 00-00:00:00.200}

dcecp>

382 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

25.5.5 The syncinterval Attribute

The syncinterval attribute prevents your system from synchronizing more often than
the specified interval. This attribute prevents themaxinaccuracyattribute from causing
continuous synchronizations. As mentioned in Section 25.5.4, themaxinaccuracy
attribute triggers system synchronization as long as the system’s inaccuracy is above
a specified value. Thesyncinterval attribute prevents synchronization from occurring
more frequently than the specified interval value. (Thesyncinterval attribute value is
randomized to prevent several systems from synchronizing simultaneously and is an
average rather than an exact value.)

The maxinaccuracy and syncinterval attributes are interdependent; system
synchronization occurs automatically whenboth of the following conditions are met:

• The inaccuracy of its clock equals or exceeds themaxinaccuracyattribute value.

• The time since the last synchronization equals or exceeds thesyncinterval
attribute value (slightly randomized).

Note that, if the system reaches thesyncinterval attribute setting but has not yet
reached themaxinaccuracy attribute setting, the system does not synchronize.

The defaultsyncinterval attribute value is 2 minutes for servers and 10 minutes for
clerks. If you are trying to minimize the skew between systems, you can lower the
syncinterval attribute value. For example, if you want a clerk to synchronize every 5
minutes if its inaccuracy reaches 100 milliseconds, enter the following command:

dcecp> dts modify -change {syncinterval 00-00:05:00.0000}

dcecp>

The syncinterval attribute does not prevent theclock synchronize command from
working. You can synchronize a system at any time by entering this command.
The syncinterval attribute only affects automatic synchronizations triggered by the
maxinaccuracy attribute. (See theclock(8dce)reference page for more information.)

DCE 1.2.2 Administration Guide—Core Components 383

DCE Distributed Time Service

25.5.6 The tolerance Attribute

The tolerance attribute determines how DTS reacts if the system clock becomes
faulty. A faulty clock is a rare condition, but some causes of faulty clocks include the
following:

• Defects in the clock hardware, including clock drift that is greater than the
manufacturer’s specifications.

• Malfunctioning time-providers.

• Hardware clock ticks are lost by the operating system.

• The system memory containing the clock value is corrupted.

During the synchronization process, DTS detects that a system’s clock is faulty if
the clock value and its inaccuracy fail to intersect with those of the servers used for
synchronization. This process is shown in Figure 25-2, where valuet2 is faulty.

384 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

Figure 25–2. Local Fault

Time

CT

Intersection of
correct intervals
(computed time)

UTC

t1

t2

t3

t4

If DTS detects a faulty system clock during synchronization, the severity of the fault
and the system’stoleranceattribute setting determine how DTS reacts. When the fault
is detected, DTS performs one of the following operations:

• If the faulty time interval that is supplied by the clock is within the bounds of the
error tolerance, DTS increases the inaccuracy of the value supplied by the clock
and adjusts the clock gradually.

• If the faulty time interval that is supplied by the clock is outside the bounds of
the error tolerance, DTS immediately sets the clock to the new computed time.

Before you change the defaulttolerance setting (5 minutes), determine the
requirements of the applications that use the system time. Some distributed
applications, such as the CDS server, require that systems have no more than 5
minutes of inaccuracy. Larger error tolerances may prevent such applications from
properly sequencing CDS namespace entries. For these applications, you will want
to set thetolerance attribute value to 5 minutes or less.

DCE 1.2.2 Administration Guide—Core Components 385

DCE Distributed Time Service

Some applications may require DTS to adjust the system clock gradually and
monotonically (forward). You can increase thetolerance attribute setting for these
applications to ensure that the clock is abruptly set only in the event of a catastrophic
error. If you could set thetolerance attribute value to infinity, you could guarantee
that the clock is never set abruptly. This setting is not available, but you can enter any
setting less than 10675199-00:00:00.000 (approximately 29,227.5 years).

The following example shows how to set thetolerance attribute value to 3 minutes:

dcecp> dts modify -change {tolerance 00-00:03:00.000}

dcecp>

25.5.7 The localtimeout, globaltimeout, and queryattempts
Attributes

When a system queries a server, it waits for a response for the period that is specified by
the localtimeout or globaltimeout attribute. Thelocaltimeout attribute setting applies
when the system attempts to contact a local server; theglobaltimeout attribute setting
applies when the system attempts to contact a global server.

Thequeryattempts attribute determines how many times DTS resets the timeout timer
before the system quits trying to contact a given server. Once the timeout setting has
elapsed the number of times that is determined by thequeryattempts attribute, the
system quits querying the server. If the system is querying a global server, DTS then
generates aServer Not Respondingevent report and removes the server from the
system’s list of global servers. If a response from the global or local server is required
in order to meet theminservers attribute setting, DTS generates aToo Few Servers
event report, and the system does not synchronize.

The default setting for thequeryattempts attribute is3. The following example shows
how to set thequeryattempts attribute value to4:

dcecp> dts modify -change {queryattempts 4}

dcecp>

386 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

The default setting for thelocaltimeout attribute is 5 seconds, and the default setting
for the globaltimeout attribute is 15 seconds. The global setting is larger to account
for the communications delay on WAN links that are often used to access the global
set. It is unlikely that you will have to change thelocaltimeout attribute setting.
The globaltimeout attribute setting, however, may need to be changed due to the
variations in WAN topologies and transmission quality. In the following example, the
globaltimeout setting is changed to 20 seconds:

dcecp> dts modify -change {globaltimeout 00-00:00:20.000}

dcecp>

If you continually receiveServer Not Respondingevent reports for a global server,
increase theglobaltimeout setting. If you increase the setting and the event reports
continue, there may be a problem with the communications link to the server.

25.5.8 The serverentry and serverprincipal Attributes

During the initial configuration of DCE and DTS, one DTS entry name is created for
use with CDS, and one DTS name is created for use with the registry service. If you
subsequently wish to change the name of a server, you can do this by changing two
of the server’s attributes: theserverentry attribute andserverprincipal attribute. The
default settings for thesedcecp attributes are the same as the default settings for the
names that are created during the initial DCE configuration;they are the recommended
settings. This section describes additional considerations for the settings of these
attributes. If you decide to change the settings of theserverentry andserverprincipal
attribute values, be sure that the new values are appropriate. If not, you will experience
trouble with DTS.

The serverentry attribute specifies the CDS entry name where bindings for the server
are exported. If you change the setting of this attribute, the entry is also modified
in the namespace. The following is an example command that sets theserverentry
attribute value:

dcecp> dts modify -change {serverentry /.:/hosts/cyclops/dts_ref_node}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 387

DCE Distributed Time Service

Theserverprincipal attribute specifies the principal name of the server that is used for
authentication. If you change the name by usingdcecp, you must create a matching
principal name and account in the security service registry. When you do this, you
must add the new principal name to the existing DTS server group (dts-servers). The
machine principal must be a member of this authorization group. See Chapter 31 of
this guide for further information on creating a new principal account and Chapter 30
for information on adding a principal name to an existing server group.

The following example command sets theserverprincipal attribute:

dcecp> dts modify -change {serverprincipal /.:/hosts/ajax/dts_machine}

dcecp>

25.6 Management Tasks Specific to Servers

Managing DTS servers involves some special tasks. These tasks include the following:

• Setting a server’s epoch

• Assigning the courier role to a server

• Designating a server as a global server

• Setting the attributes for a connection to a time-provider

The following subsections describe these server-specific tasks.

25.6.1 Designating Global and Courier Servers

If your network has WAN links or is an extended LAN, you may need to use global and
courier servers to synchronize the nodes in separate network segments. To synchronize
nodes across a network, you assign global roles to some servers and courier roles to
selected local servers. (See Chapter 23 for advice on planning the location of global and
local courier servers.) To assign server roles, follow the instructions in the following
subsections.

388 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

25.6.1.1 Advertising Global Servers

To assign a server to the global set of servers, you must advertise the server with the
dcecpdts configurecommand. Advertising the server simultaneously adds binding
information to the server’s CDS name and also adds the server’s entry to the cell
profile. Since CDS and the cell profile are available to every node in your network,
DTS can perform a lookup in the cell profile to obtain the locations of nodes that it
cannot reach on the LAN.

The following command example shows how to advertise a server as a global server,
thereby registering it with CDS and entering it in the cell profile:

dcecp> dts configure -global

dcecp>

The -global option designates that a server should be configured as a global server
rather than as a local server.

To remove a server’s designation as a global server, use thedts configure command,
as follows:

dcecp> dts configure -notglobal

dcecp>

This command unadvertises the global server, removing its entry from the cell profile
and its binding information from its CDS name.

25.6.1.2 Assigning the Courier Role to Servers

Courier servers play an important role in maintaining synchronization between the
systems in separate parts of your network. A courier server requests a time value from
at least one global server at every synchronization. This procedure enables a courier
server to propagate times from remote systems to a LAN or local area, thereby keeping
the LAN in synchronization with all the other parts of the network.

DCE 1.2.2 Administration Guide—Core Components 389

DCE Distributed Time Service

There are three courier roles that you can assign to a server (thecourierrole attribute),
as follows:

• backup

• courier

• noncourier

The default courier role for a global or local server at its creation isbackup.

Use thecourier setting for thecourierrole attribute to designate a server as the
primary link to other portions of your network. Use thebackup setting to designate
a server as a secondary link to other areas of the network. A backup courier is only
effective if no other courier is available on the LAN.

Note that there are no significant processing or overhead penalties associated with the
backup courier role; you can designate one of the servers on a LAN as a courier, and
designate all the other servers on the LAN as backup couriers. If you have configured
several servers as backup couriers and the courier becomes unavailable, the backup
courier with the lowest-ordered UUID becomes the effective courier.

To assign the courier role to a server, enter the followingdcecp command:

dcecp> dts modify -change {courierrole courier}

dcecp>

To assign the backup courier role to a server, enter the following command:

dcecp> dts modify -change {courierrole backup}

dcecp>

25.6.2 Matching Server Epochs

At startup, a server’s epoch number must match those of the other servers with which
it synchronizes. When synchronizing, a server disregards clock values that are from
servers whose epoch numbers do not match its own.

390 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

When DTS servers are initially enabled, the epoch number for each server is 0, so you
need not change the epoch numbers at initial installation. Later, if you add a server to
an existing network, or change a clerk to a server, ensure that the new server and the
preexisting servers have matching epoch numbers. Enter the DCE control program’s
dts showcommand to find out the epoch number of the server. For example:

dts show /.:/hosts/orion/dts-server

Examine the attributes list that the command returns for the server’sepoch attribute
value. If the epoch of the server that you just created matches those of the other
servers, the new server can synchronize immediately. If the epochs do not match,
however, and you do not change the epoch of the new server, the new server ignores
the preexisting servers. The following example shows how to change a server’s epoch
number after you enable the server:

dcecp> clock set -abruptly -epoch 0

dcecp>

Once you know that a server is starting up with the proper epoch number,do not
change the epoch unless serious system or network problems corrupt all of the server
clock values. In the unlikely event that the majority of the server clocks become
faulty, use thedts show and clock set commands to isolate problem servers so that
you can perform troubleshooting and maintenance without affecting the rest of the
DTS application.

25.6.3 Setting the checkinterval Attribute for Connection to a
Time-Provider

If a server is connected to a time-provider, set itscheckinterval attribute. DTS uses
the checkinterval attribute to periodically check all the servers on a LAN to make
sure that they remain synchronized with the time-provider. When the amount of time
specified by thecheckinterval attribute setting has elapsed, the server with the time-
provider (the TP server) performs the following procedure:

1. The TP server requests time values from all the other servers on the LAN.

DCE 1.2.2 Administration Guide—Core Components 391

DCE Distributed Time Service

2. The TP server starts the synchronization process.

3. The TP server identifies the server time intervals that do not intersect with its
own.

4. The TP server issues event messages for each faulty server it detects.

In the previous sequence, note that the TP server does not actually set the system clock
after it starts the synchronization process. The TP server merely runs the process to
detect faulty servers. The DTS software assumes that the time value at the TP server
is the most accurate available, so the TP server does not use the values it collects
from other servers to change its clock. Instead, the TP server functions as a reference
timekeeper for the other servers.

You can set the check interval to a lower value for a more rapid notification of faulty
servers, but be aware that lower settings can increase the load on network resources.
The following example shows how to set thecheckinterval attribute value:

dcecp> dts modify /.:/hosts -change {checkinterval 00-00:00:30.0000]

dcecp>

25.7 Changing the System Time

There are three ways you can change the system’s time by usingdcecp commands.
The following subsections describe reasons for changing the system time, and then
show examples of the commands that you can use to modify the time and change the
system clock.

25.7.1 Updating the Time Monotonically

If your network does not use time-providers, and the network systems have been
running for some time, you may want to update the time on several systems to
match UTC or another external reference. When time-providers are absent from your
network, the systems remain closely synchronized, but their clocks may drift away
from accepted time standards such as UTC.

392 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

Use thedcecpclock setcommand when you want to modify the time on a server
system to make it more accurate. The DTS synchronization process ensures that the
new time you supply with the command is propagated to the other network systems.
In order to update the system clock to a new time, the new time and inaccuracy you
specify for a system must form a smaller interval than the current system interval.

In order to use theclock set command effectively, you must have temporary access
to a trusted time reference. Such references can include the time signals that many
standards organizations disseminate by radio or telephone. You can also use a clock
that you have recently verified as accurate. (See Appendix C for suppliers of UTC
time.)

Because it is a manually entered command that is used to modify an absolute time, the
clock setcommand is not useful for small inaccuracy settings. The minimum reliable
inaccuracy that you can achieve with the command is approximately 1 second. Human
error and processing delays combine to make lower settings unreliable. For example,
you enter the command and new time and then begin monitoring the reference. When
you perceive that the reference has reached the desired time, you press<Return> to
initiate the command. Your perception of the reference mark and your pressing of
<Return> do not exactly coincide. Furthermore, once the command is initiated, DTS
takes time to interpret and execute the command.

The following example shows how to monotonically update the time on a server
system; that is, how to reset the clock and eventually propagate the adjustment
throughout the network:

dcecp> clock set 1994-10-07-09:30:15.00I01.00

dcecp>

If your systems require synchronization that is closer than 1 second to a standard such
as UTC, consider purchasing one of the time-providers listed in Appendix C. All of
the time-providers that are described in the listing compensate for transmission and
processing delays, and can provide time references that are accurate to the millisecond
level.

DCE 1.2.2 Administration Guide—Core Components 393

DCE Distributed Time Service

25.7.2 Updating the Time Nonmonotonically

Use theclock set command with the-abruptly option when you want to abruptly
set the time for a server system. Theclock set command with the-abruptly option
immediately (nonmonotonically) changes the system clock setting to the specified
time, rather than gradually (monotonically) adjusting the time.

Note: Exercise caution when changing the system time abruptly. The abrupt
adjustment of the time is appropriate at system startup or when the system
clock is faulty and you identify and correct the problem. Changing the system
time to a setting that falls outside the time intervals of the system’s known
servers causes DTS to declare the system faulty at the next synchronization.

Because theclock set command is usually used to correct gross clock errors, it is
likely that the time you specify for a given system will appear faulty to the system’s
known servers if the system and servers have the same epoch number. Youcanprevent
the systems whose times you are changing from being declared faulty. Use theclock
set command’s-epoch option along with the-abruptly option to set the new time
to isolate it from the other systems. You can then change the time and epoch for the
other systems until all the systems once again share the same epoch. This process is
useful in the rare case when the majority of servers in the network are faulty.

In order to use theclock set command effectively, you must have temporary access
to an accurate time reference. Such references can include the time signals that many
standards organizations disseminate by radio or telephone. You can also use a clock
that you have recently verified as accurate. (See Appendix C for a list of time reference
sources.)

Because it is a manually entered command that is used to modify an absolute time, the
clock setcommand is not useful for small inaccuracy settings. The minimum reliable
inaccuracy that you can achieve with the command is approximately 1 second. Human
error and processing delays combine to make lower settings unreliable. For example,
you enter the command and new time and then begin monitoring the reference. When
you perceive that the reference has reached the desired time, you press<Return> to
initiate the command. Your perception of the reference mark and your pressing of
<Return> do not exactly coincide. Furthermore, once the command is initiated, DTS
takes time to interpret and execute the command.

The following example shows how to change both the time and epoch for a system:

394 DCE 1.2.2 Administration Guide—Core Components

Managing the DCE DTS

dcecp> clock set 1993-10-07-09:30:15.0000I01.0000 -abruptly -epoch 1

dcecp>

25.7.3 Forcing System Synchronization

Once you create and enable DTS on all the systems that are in your network, they
synchronize without any further intervention. There are situations, however, when you
may want to force a system to synchronize immediately rather than waiting for the
amount of time that is specified by thesyncinterval and maxinaccuracy attributes.
As an example, you may want to synchronize a system with a TP server that you have
just added to the network.

To forcibly synchronize the clock on a system, you use thedts synchronizecommand.
If you enter thedts synchronize command without the-abruptly option, the time
is adjusted gradually. If you enter thedts synchronizecommand with the-abruptly
option, the time is immediately adjusted. In the situation posed by our example, you
might want to use the command with the-abruptly option to have the narrow time
interval contributed by the time-provider quickly propagated throughout the network:

dcecp> dts synchronize -abruptly

dcecp>

25.8 Controlling Access to DTS

You can assign privileges that control access to DTS objects by using DCE
Authorization Service access control lists (ACLs).

The DTS principal that represents the server on a given system is the primary access
control object for DTS. This principal has controlled access by human users and clerk
or server processes. The default name that you can use for the DTS object in any
dcecp command is/.:hosts/ hostname/dts-entity.

The ACL for the DTS server can contain any type of ACL entry that is valid for a
principal (human or process) or authorization group to which this principal belongs.

DCE 1.2.2 Administration Guide—Core Components 395

DCE Distributed Time Service

See Chapter 28 of this guide for a discussion of the DCE ACLs facility and descriptions
of ACL types and their entries.

To display the ACL entries in the DTS server principal’s ACL, you can use the
dcecpacl showcommand. For example:

dcecp> acl show /.:/hosts/Detroit2/dts-entity

{unauthenticated r--}

{user hosts/Detroit2/self rwc}

{group subsys/dce/dts-admin rwc}

{any_other r--}

dcecp>

To modify any of the entries in the DTS server principal’s ACL, you can use theacl
modify command. Instructions for using this command appear in Chapter 28.

396 DCE 1.2.2 Administration Guide—Core Components

Chapter 26
Interoperation with Network Time
Protocol

Network Time Protocol (NTP) is an Internet-recommended standard. The NTP
synchronization subnetwork is represented by a tree-structured graph with nodes
representing time servers and edges representing the transmission paths between them.
The root nodes of the tree are designated primary servers that synchronize to a
radio broadcast or calibrated atomic clock. Remaining nodes are designated secondary
servers that synchronize to other servers (primary and secondary).

The number of subnetwork hops between a particular server and a primary server
determines the stratum of that server; that is, the smaller the number of hops, the
lower the stratum. A lower-stratum server always has a higher accuracy than a higher-
stratum server. All servers have identical functionality and can operate simultaneously
as clients of the next lower stratum and servers for the next higher stratum.

Servers, both primary and secondary, typically run NTP with several other servers at
the same or lower stratum. A selection algorithm attempts to select the most accurate
and reliable server or set of servers from which to actually synchronize the local clock.

DCE 1.2.2 Administration Guide—Core Components 397

DCE Distributed Time Service

NTP and DTS both can be used in large computer networks that have embedded local
nets (that is, those connected by routers, gateways, and bridges) and use both broadcast
and point-to-point transmission media. DTS and NTP can run simultaneously on the
same LAN.

The following sections describe how to give time to and get time from local and
remote NTP time sources, and how to prevent loops.

26.1 Getting the Time from NTP Time Sources

DTS provides two sample time-provider programs:

• dts_ntp_provider.c—Takes the time from an NTP server as it would from a radio
receiver. The user specifies the name of the NTP server and the inaccuracy.

• dts_null_provider.c—Used on a DTS server whose clock is already synchronized
by an external agent, such as NTP. It sets the inaccuracy, but it prevents DTS from
setting the time. The user sets the inaccuracy based on local experience with NTP.
The null provider may be useful for sites that already have a radio clock that is
managed by NTP. Make the node with the radio clock a DTS server and use the
null time-provider.

26.1.1 Getting the Time from Local NTP Time Sources

Run the DTS server on a node that is running an NTP clock driver with a clock and
the null time-provider. Specify the inaccuracy in a manner that is consistent with the
time source; for instance, a radio clock. Other DTS servers will take the time from
this source. In this case, since the system is connected to a time source, it is an NTP
Stratum 1 server.

Observe the rules and advisories that follow:

• Rule—If this is the only local time source (radio clock) in the subnetwork, ensure
that no other DTS node gives the time to NTP. If, however, there are other local
time sources, this restriction does not apply.

• Rule—Do not run the null time-provider if there is no local time source.

398 DCE 1.2.2 Administration Guide—Core Components

Interoperation with Network Time Protocol

• Advisory—Use a very small poll rate, about 1 second.

• Advisory—Since NTP makes theadjtime() system call, be aware that the local
node will occasionally have an unspecified inaccuracy.

Figure 26-1 shows how a DTS server/client with a local time source takes time from
an NTP Stratum 1 server.

Figure 26–1. Local Time Source

NTP
server client server

NTP
client

stratum 3 stratum 2

DTS DTS

server

stratum 1

NTP
server

DTSdts_null_provider.c

26.1.2 Getting the Time from Remote NTP Time Sources

Run the DTS server with the NTP time-provider (dts_ntp_provider.c) on a node with
access to an NTP server. Specify the inaccuracy in a manner that is consistent with
local NTP experience.

Observe the following advisories:

• Advisory—If links to remote sources are distant, consider having one of the
subnetwork nodes run the NTP locally.

• Advisory—Note that the NTP time-provider does not accept time from an NTP
node at Stratum 8 or higher.

• Advisory—The NTP node needs to be as close to Stratum 1 as possible.

Figures 26-2 and 26-3 both show a DTS server getting the time from a remote NTP
time source, which is a Stratum 3 server. However, in Figure 26-2 (Scenario 1), all

DCE 1.2.2 Administration Guide—Core Components 399

DCE Distributed Time Service

of the advisories in this section are followed; in Figure 26-3 (Scenario 2), the first
advisory, running NTP locally on one of the subnetwork nodes if the link to a remote
source is distant, is ignored.

Figure 26–2. Getting the Time from a Remote NTP Time Source (Scenario 1)

local

DECdts DECdts
client

NTP server

server

local

stratum 4

client

NTP server

server

stratum 3

remote
NTP server

serverserver

dts_ntp_provider.c

DTS

DTS DTS

400 DCE 1.2.2 Administration Guide—Core Components

Interoperation with Network Time Protocol

Figure 26–3. Getting the Time from a Remote NTP Time Source (Scenario 2)

server

clientserver

stratum 3

NTP node
remote

dts_ntp_provider.c

DTS

DTS DTS

26.2 Giving the Time to NTP Nodes

Any DTS server or clerk that runs thentpd daemon or thexntpd daemon with the-s
option and a special configuration file (ntp.conf) can be configured as an NTP server.

For systems running thentpd daemon, thentp.conf configuration file must contain
the following line:

peer /dev/null DTSS 8 -5 local

In addition, add-s to thentpd entry in the file/sbin/init.d/ntpd or, for systems with
rc.local, modify the line that startsntpd accordingly.

For systems running thexntpd daemon, thentp.conf configuration file must contain
the following line:

DCE 1.2.2 Administration Guide—Core Components 401

DCE Distributed Time Service

peer 127.127.1.8

In addition, add-s to the xntpd entry in the file/sbin/init.d/xntpd or, for systems
with rc.local, modify the line that startsxntpd accordingly.

In this configuration, NTPneversets the clock. NTP can, however, give the time to
other NTP clients. Donot allow loops between DTS and NTP to form. If NTP gives
the time to DTS, then DTS gives the time back to thesameset of NTP servers,
unexpected results can occur.

The NTP configuration file is set up to ensure that an NTP server that obtains the
time from DTS is a Stratum 8 node. In addition,dts_ntp_provider is prohibited from
accepting time from a node at Stratum 8 or higher.

A DTS (server) node can give time to an NTP node if the following rules and advisories
are observed:

• Rule—Thentp.conf file must declare this node at Stratum 8.

• Advisory—Multiple nodes in the set can be runningntpd -s or xntpd-s.

• Advisory—If any DTS-managed system has a local time source, that system
should be used as an NTP-s server.

• Advisory—Although this operation can occur on either a DTS server or a DTS
client node, a DTS server is preferred.

Note: If null providers are used, the rules in Section 26.1.1 must also be followed,
since null providers running on NTP nodes can bypass the stratum check.

Figure 26-4 shows two DTS server nodes runningntpd-s and providing time to an
NTP subnetwork. Thentp.conf file defines these servers at Stratum 8.

402 DCE 1.2.2 Administration Guide—Core Components

Interoperation with Network Time Protocol

Figure 26–4. Giving the Time to NTP

NTP
client

server

stratum 8

server
NTP −s

client

server

stratum 9

NTP
server

stratum 8

server
NTP −s

stratum 10

DTS DTS

DTS

26.3 Preventing Loops

Do not allow loops, such as NTP! DTS! NTP, to form.

Run the null time-provider (dts_null_provider.c) only if you have a local time source.
If you do not have a local time source, you can run the null time-provider, but donot
disseminate NTP time anywhere in the local set.

Figure 26-5 shows a configuration that isnot recommended. This configuration works
only as long as the remote NTP Stratum 2 node does not fail.

DCE 1.2.2 Administration Guide—Core Components 403

DCE Distributed Time Service

Figure 26–5. Configuration Before Stratum 2 Node Fails

stratum 8 stratum 3

ntpd −s

stratum 2

remote
NTP server

dts_ntp_provider.cDTS
server

DTS
server

NTP
server

If the remote NTP Stratum 2 node fails, the Stratum 3 node starts accepting time from
the Stratum 8 node. Once this occurs, the Stratum 3 node drops to Stratum 9 and the
Stratum 4 node drops to Stratum 10, as shown in Figure 26-6.

Figure 26–6. Configuration After Stratum 2 Node Fails

stratum 8 stratum 9

ntpd −s

dts_ntp_provider.c

3 1

2

DTS
server

DTS
server

NTP
server

404 DCE 1.2.2 Administration Guide—Core Components

Interoperation with Network Time Protocol

The scenario in Figure 26-6 shows the creation of a loop:

1. From the node that is labeled Stratum 8, proceed to the NTP node that is labeled
Stratum 9.

2. From the NTP node that is labeled Stratum 9, continue to the node that is labeled
Stratum 10.

3. DTS then feeds the time back to the node that is labeled Stratum 8, creating a
loop.

If this occurs, time in the NTP and DTS subnetwork can drift from UTC.

DCE 1.2.2 Administration Guide—Core Components 405

Part 6
DCE Security Service

Chapter 27
Overview of DCE Security

This chapter provides a brief introduction to the DCE Security Service. The DCE
Security Service consists of the following services:

• Registry service—Maintains the registry database, which is a replicated database
of principals, groups, organizations, accounts, and administrative policies.

• Authentication service—Handles user authentication or the process of verifying
that principals are correctly identified. The authentication service also issues
tickets that a principal uses to access remote services. The ticket contains data
that is presented by the principal requesting the service to the principal providing
the service.

• Privilege service—Supplies the user’s privilege attributes, which are used to ensure
that a principal has the rights to perform requested operations.

In addition, the DCE Security Service provides the following:

• Access control list (ACL) facility—Establishes and grants access rights to an
object based on the object’s access permissions.

DCE 1.2.2 Administration Guide—Core Components 409

DCE Security Service

• Extended registry attribute (ERA) facility—Provides tools to extend the registry
database schema to define additional attributes and tools to attach those attributes
to registry objects.

The DCE host daemon (dced) acts as the security client.

The DCE Registry, Authentication, and Privilege Services are implemented as a single
daemon: the security server (secd).

27.1 DCE Authentication Service Servers and Clients

The authentication service consists of the registry database, security servers, and
security clients. A security client communicates with a security server (dcelocal/bin/
secd) to request information and operations. The security servers access the registry
database to perform queries and updates and to validate user logins. To gain access
to the registry database, the authentication service must talk to the registry service.
Figure 27-1 is a simplified representation of the relationship between security clients,
servers, and the registry database.

410 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

Figure 27–1. Machines, Servers, and the Database

machine
running a
security client

machine
running a
security client dceloca l/bin/secd

Security Service Clients
Request Database Operations

The Server Accesses
the Database

Registry
Database

27.2 The Registry Database

The registry database contains the following information:

• Principals—Principals are the users of the system. Principals can be interactive
principals (human users) or noninteractive (servers, machines, and cells).
Principals can be associated with access permissions.

• Groups—Groups are collections of principals that are identified by a group name.
Groups can be associated with access permissions.

• Organizations—Organizations are collections of principals; these principals are
identified by an organization name. Organizations define the policies associated
with the principals in the registry. Organizations cannot be associated with access
permissions.

DCE 1.2.2 Administration Guide—Core Components 411

DCE Security Service

• Accounts—Accounts contain the passwords and accounting information that allow
principals authenticated access to objects within the cell. (Authenticated access
can also occur between principals in different cells, as described in the following
text.)

• Policies and Properties—Policies and properties regulate such things as password
length and format and certain authentication requirements.

• Thereplist object—This object is used to manage replicas of the registry database.

• The xattrschema object—This object is the extended registry schema created
with the ERA facility.

(See Chapter 41 for a detailed description of the structure of the registry database and
the types of information it contains.)

The collection of objects controlled by a registry database is an entity known as a
cell. Authenticated communications are possible between cells only if those cells have
special accounts in the registry database at the cell they wish to communicate with.
These special accounts set up cross-cell authentication, which gives principals from
one cell authenticated access to another cell. (See Chapter 33 for information about
establishing accounts for cross-cell authentication.)

27.3 Physical Security of the Database

The DCE Security Service provides safeguards for network security, protecting
information that is transmitted across the network by guaranteeing the identities of
principals who engage in cross-machine communications. The security server and the
database that it serves, however, reside on a local machine. The registry database is
only as secure as the security provided by the machine on which it resides. In addition
to ensuring that sensitive data can be accessed on the local machine only by root, you
need to provide physical security for the machine on which the security server resides.
This can include situating the machine in a locked room, keeping a log of when and
by whom the machine is accessed, and any other methods that may be appropriate to
your needs.

(See theDCE 1.2.2 Application Development Guide—Core Componentsfor a more
detailed discussion of authentication.)

412 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

27.4 How the Registry Database is Stored

Each security server maintains a working copy of the registry database in virtual
memory and a permanent copy on disk. All reads and updates operate on the copy
that is in virtual memory. The servers use the copy that is on disk to initialize the
copy in virtual memory when they start up. An atomic update log is used to guarantee
the database state in the event of server failure.

Figure 27-2 shows the server and the disk and virtual memory copies of the registry
database.

DCE 1.2.2 Administration Guide—Core Components 413

DCE Security Service

Figure 27–2. Disk Memory and Virtual Memory Copies of the Registry Database

Security
Server

Registry
Database

Registry
Database

Virtual Memory

Disk Storage

Each security server periodically saves its entire database from virtual memory to disk.
The database is stored indcelocal/var/security/rgy_data.

27.5 Replicated Databases

The registry database can be replicated within its cell. Each instance of a security
server in a cell maintains a working copy of the database. Throughout this guide, the

414 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

combination of a security server and its data (the registry database) is referred to as
a replica. Typically, you create several replicas in a cell to enhance performance and
reliability.

The task of keeping the cell’s replicas consistent is handled automatically by the
security servers. Any changes that you make are automatically reflected in all replicas,
as described in the following section.

27.6 How Updates Are Handled

Updates are made to only one database, and the changes are propagated to all others.
While propagations are pending, all replicas are accessible even if they are not
completely up-to-date. In other words, even replicas to which the changes were not
yet applied are available. This replication mechanism ensures that all replicas remain
available for login validation and for read operations even when changes are in the
process of being propagated.

27.6.1 Master and Slave Replicas

Only one replica in a cell, themaster replica, accepts updates to its database from
clients. Other replicas, calledslave replicas, accept only reads from clients. The master
replica propagates any updates to the slave replicas. For example, either a master or
a slave replica can provide account information to a client program such as/bin/
login. However, if you are adding an account or changing password information,
those updates can be handled only by the master replica.

The process of updating the database differs slightly between the master replica and
slave replicas. Figures 27-3 and 27-4 illustrate the master and slave update processes.
The processes are described in the sections that follow the figures.

DCE 1.2.2 Administration Guide—Core Components 415

DCE Security Service

Figure 27–3. The Master Replica Update Process

Registry
Database

Disk Memory

Log File

Replica List

Master
Security
Server

Propagation
 Queue
Update 1,
1/17/89, 8:45

Update 2,
1/17/89, 9:30
 .
 .
 .

Replica List
machine A update 1
machine B update 1
 .
 .
 .

Update 1
Update 2
 .
 .
 .

Registry
Database

The server applies the
update to the database
in virtual memory and
to its propagation
queue. Periodically, the
server writes the data-
base in virtual memory
to disk.

The server stores a copy of
each update in the log file.
This file is used in the event of
a server restart to apply all out-
standing updates to the disk
copy of the database and to re–
create the progagation queue.

Database Update

The master replica uses its
propagation queue to propa-
gate updates to slave replicas.
When the master replica re-
starts, it restores the progaga-
tion queue from the log file.

For each replica in the cell,
the replica list contains the
replica’s network address
and ID, cell–relative name,
and the sequence number
of the replica’s last update.

Log File

416 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

Figure 27–4. Slave Replica Update Process

Registry
Database

Disk Memory

Log File

Replica List

Slave
Security
Server

Replica List
machine A update 1
machine B update 1
 .
 .
 .

Update 1
Update 2
 .
 .
 .

Registry
Database

The server applies
the update to virtual
memory. Periodically,
the server writes the
database in virtual
memory to disk.

The server stores a copy of
each update in the log file.
This file is used in the event of
a server restart to apply all out-
standing updates to the disk
copy of the database.

Database Update

For each replica in the
cell, the replica list con-
tains the replica’s net-
work address, network
ID, and cell–relative
name.

Log File

27.6.2 Handling Database Updates

When a master or slave replica receives updates, it applies the updates to its database
in virtual memory, and saves a copy of each update in a log file that is stored on disk.
Updates accumulate in the log file in sequenced numerical order. If a server restarts
unexpectedly, the log file ensures that no updates are lost.

DCE 1.2.2 Administration Guide—Core Components 417

DCE Security Service

Periodically, the replica writes the database in virtual memory to disk, thus bringing
the disk copy up-to-date. Then, if the replica is a slave, it clears the log file of all
updates. If the replica is the master, it clears the log file of all updates that have been
propagated to the slave replicas. Updates that have not been propagated to the slaves
are retained and used to reconstruct the propagation queue, if necessary.

Only the master replica maintains a propagation queue, which is used to hold changes
to be propagated to the slave replicas, as described in Section 27.6.3. When the master
replica receives an update, it adds it to the propagation queue in addition to its virtual
memory database and its log file. Each update in a propagation queue is identified by
a sequence number and a timestamp. The sequence number is used internally to track
the propagation of updates to slave replicas. The timestamp is provided to show users
the date and time of updates.

When a master or slave replica restarts, it initializes its database in virtual memory
and then applies any outstanding updates in the log file to its database. If the replica is
the master replica, it also recreates the propagation queue from the log file so that any
outstanding slave updates can be propagated. This mechanism ensures that no updates
are lost when a server is shut down.

27.6.3 Propagating Database Changes

To propagate updates to the slave replicas, the master replica first updates its copy
of the database by using the process described in Section 27.6.2. Then, the master
replica attempts to propagate the update to each slave replica on its replica list. The
replica list contains each slave replica’s ID and network address. It also contains the
sequence number of the last update that was made to the slave. The master replica
always propagates in sequenced numerical order. By examining the sequence number
that is associated with a replica in its replica list, and the sequence numbers of the
updates that are in its propagation queue, the master can determine which of the
updates on its propagation queue must be propagated to which slave. This mechanism
helps ensure that the unavailability of a single slave replica does not interfere with
updates to the rest of the slave replicas.

If the propagation of an update does not succeed on the first attempt, the master replica
tries periodically until it succeeds. When the update succeeds, the master updates the
sequence number that is associated with the updated replica on its replica list. When

418 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

an update is propagated to all the slave replicas, the master removes the update from
its propagation queue.

27.6.4 Master/Slave Authentication

Like all DCE objects, the master and slave replicas must authenticate to each other.
To do this, the master carries the identity ofdce-rgy, one of the principals that is
created when the database is created. Slaves carry the identity of the host machine
on which they exist. Note that this identity must have the rights to the/.:/sec/replist
object described in Chapter 41.

27.7 The /etc/passwd and /etc/group Files and the
Registry

You should maintain standard versions of the/etc/passwdand/etc/group files on local
machines to ensure compatibility with UNIX programs. To keep the/etc/passwdand/
etc/groupfiles consistent with the registry database, use thepasswd_exportcommand.
It is advisable to runpasswd_exporton a regular basis, preferably usingcron. (See
Chapter 36 for details onpasswd_export.)

Note: Unlike standard UNIX behavior, the/etc/passwdand /etc/group files are not
used for local login if a security server is unavailable. Instead, the local registry
(described in the following section) is used. The/etc/passwdand /etc/group
file are maintainedonly for compatibility with UNIX programs that require
their existence.

27.8 The Local Registry

The local registry, which resides in thedcelocal/var/security directory on each local
machine, contains information about the machine’s most recent users and the date and
time that they last logged in. If a security server is not available for network login, the
authentication service attempts to obtain the information that is required for a local
login from the local registry.

DCE 1.2.2 Administration Guide—Core Components 419

DCE Security Service

When a security server is running on the network, the authentication service
automatically creates a local registry the first time anyone logs into DCE from the
machine. Thereafter, it updates the local registry each time anyone logs into DCE
from the machine. You can edit the local registry by using thergy_edit command
with the -l flag. Note thatdcecpdoes not access the local registry.

27.9 Names for Security Objects

Because the security namespace is rooted in the Cell Directory Service (CDS)
namespace, security objects have CDS pathnames, which take the following form:

/.../cellname/mount_point/object_name

where:

cellname Is the name of the cell in which the object resides.

mount_point Is the name under which the DCE Security Service is registered in CDS.

object_nameIs the name of the registry object assigned when the object is created.
If the object resides in a directory,object_nameconsists of the names
of the object itself and any directories that must be traversed to access
the object. Note that registry objects generally reside in the principal,
group, or organization directory in the registry database. See Chapter 41
for a more complete description of the registry database structure.

For example, the full pathname for the principalbach, which resides in the cell
dresden.com, uses thesec(security) mount point and is in theprincipal directory as
follows:

/.../dresden.com/sec/principal/bach

As another example, assume the groupeast-west resides in sales, which is a
subdirectory of thegroup directory in the registry database in thedresden.comcell.
The full pathname foreast-westis as follows:

/.../dresden.com/sec/group/sales/east-west

420 DCE 1.2.2 Administration Guide—Core Components

Overview of DCE Security

27.9.1 Using Names with dcecp Security Commands

For all the dcecp commands that are used to manage the DCE Security Service,
exceptdcecp acl, you supply only an object name to identify the object you want to
manipulate. The object names are stored in the registry database. You are not required
to enter a cell name (the local cell is assumed) or mount point (the name registered
for the DCE Security Service is assumed).

27.9.2 Using Names with the dcecp acl Command

Unlike otherdcecp security commands, thedcecp acl command works with ACLs
that can be maintained by DCE services other than security. Like any generic tool
that operates on objects that can exist in different namespaces,dcecp aclrequires the
object’s fully qualified CDS pathname instead of justobject_name.

For example, to use thedcecp aclcommand to change the ACL that is associated with
principal bach’s registry account, you must enter the following fully qualified name:

/.../dresden.com/sec/principal/bach

or

/.:/sec/principal/bach

Note also that, to usedcecp aclto manipulate the ACL that is on the principal directory
of the registry database, and thus control who can add or delete principals, you must
enter the following fully qualified name:

/.../dresden.com/sec/principal

In a hierarchical cell, one name can represent a directory and a principal. For example
assume that a principal name is stored in Cell A’s registry to represent a cell with
which Cell A engages in cross-cell authentication. The name for the cell in the registry
is

/.:/sec/principal/vienna.com

This cell name can also represent the name of a directory, such as

DCE 1.2.2 Administration Guide—Core Components 421

DCE Security Service

/.:/sec/principal/vienna.com/violinists_cell

For these cases, thedcecp acl command provides an option that identifies whether
you are entering a directory name or a principal name.

422 DCE 1.2.2 Administration Guide—Core Components

Chapter 28
Using Access Control Lists

You can control access to DCE objects by using the ACL authorization mechanism.
ACLs are associated with files, directories, CDS entries, and registry objects. They
can be implemented also by arbitrary applications to control access to their internal
data objects. Each ACL consists of multiple ACL entries that define who is authorized
to do what to the object, specifically

• Who can access the object

• What kinds of access those principals or groups have to the object

• What kind of access is allowed to unauthenticated users

This chapter

• Provides an overview of ACLs.

• Describes the form and purpose of ACL entries and masks, including the sequence
in which entries are checked to derive permissions.

• Describes how to use the DCE control program (dcecp)to display, create, modify,
and delete ACL entries; to use masks; to copy ACLs; and to edit different types
of ACLs.

DCE 1.2.2 Administration Guide—Core Components 423

DCE Security Service

For detailed information on how a specific DCE component implements the ACL
authorization mechanism, see the appropriate part of this guide.

Note: In the discussions of DCE authorization in this chapter and the chapters that
follow, the termuser is analogous to principal. A principal can be a human
user, server, or a machine.

28.1 Authorization Overview

An ACL contains a list of entries that specify the principals who can access an object
and the operations that those principals can perform. The principals can be named
explicitly or be members of a group that is identified in the ACL entry. The ACL
is associated with the object it protects. The operations a principal can perform are
specified by permissions.

DCE permissions can be set for the following:

• Owner, group, and other

• Specific individual principals in the local cell and in foreign cells

• Specific individual groups in the local cell and in foreign cells

• Any other principals in a specific foreign cell for whom individual permissions
have not been set

• Any principals in any cell who have been authenticated by the DCE Authentication
Service

• Delegate users, servers, or groups, in local or foreign cells

• Unauthorized users

ACLs also provide a masking capability and a method for integrating protections from
DCE versions that are different from the current version.

File systems are frequently designed to provide access permissions for file system
objects, such as files and directories. ACLs in DCE are more extensive. In DCE,
many objects can have ACLs and be assigned permissions. DCE ACLs control access
to objects managed by DCE components, like the Distributed File Service, the DCE
Security Service, and the DCE Directory Service.

424 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

ACLs for the security service (the component that controls accounts) can, for example,
authorize certain principals to change all of the information associated with an account,
authorize other principals to change only a subset of the information associated with
accounts, and restrict other principals from changing any of the information associated
with accounts.

DCE can support particular sets of permissions that correspond to particular types
of objects. For example, for containers there can be an insert permission that other
objects, such as principals, do not need. This extensive usage of ACLs is in contrast
to that of POSIX systems, for example, where only file system objects are protected
by permission bits, with a standard set of permissions (read, write, and execute) being
used. The DCE control program has a command,acl permissions, that shows the
permissions specific to the ACL associated with the named object.

28.1.1 ACL Managers

An ACL manager is that portion of a server that handles ACLs. One ACL manager
can support several different types of ACLs. From a more abstract point of view,
each ACL type is supported by a corresponding ACL manager type. Informally, ACL
manager types are sometimes called ACL managers. Figure 28-1 shows ACL managers
in servers.

The client side allows you to connect to any server exporting the ACL interface so that
one program can manipulate all ACLs. The DCE control program uses this feature.

DCE 1.2.2 Administration Guide—Core Components 425

DCE Security Service

Figure 28–1. ACL Managers in Servers

Generic

Server

Server

ACL Client

dcecp

ACL Library

ACL
Manager

ACL
Manager

Server
data

data
ACL

Server
data

ACL
data

ACL

Protocol

ACL

Protocol

In addition to the standard DCE components, ACLs can control access to any object
for which an ACL manager has been implemented. ACLs can be associated with user-
written applications to protect access to the use of the application itself, the files in
the application, and even fields in those files.

All of the elements of ACLs described in this chapter are available to ACL managers;
however, each manager may implement all or only a subset of the elements. For
information on how ACLs are used by specific DCE components, consult the
appropriate section in this guide.

28.1.2 ACL Interpretation

Part of the information associated with an account is a principal and a set of groups.
(The groups are called aproject list in this context, in honor of its Multics origin.)
Together, the principal and project list are called theprivilege attributes(or client-side
access control information) associated with the account.

426 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

The principal and each of the groups is represented by both a string name and
a UUID. The privilege attribute UUIDs are contained in the credentials that are
used in authenticated remote procedure calls (RPCs). Servers grant access based
upon the contents of credentials received in RPCs. Although servers typically reject
unauthenticated RPCs, any server can support a policy of accepting them. In that case,
the server’s ACL manager must support theunauthenticatedmask ACL entry type so
that the server can further restrict the access granted to such unauthenticated clients.

When a principal requests access to a DCE object associated with an ACL, the object’s
ACL manager compares the UUIDs of the principal and any groups of which the
principal is a member (the principal’s privilege attributes) with the UUIDs of the
principals and groups listed in the ACL entry. It does this simply by reading through
the list of ACL entries. The manager grants the access permissions in the first ACL
entry (or entries in the case of groups) it finds that match any of the principal’s
privilege attributes. If the permissions in the matching entry allow the requested mode
of access, the principal gains access; if not, access is denied.

28.1.3 Credentials Inherited by Processes

Processes created or spawned by a principal inherit the principal’s credentials. For
example, if you log in, are authenticated, and start an application, the application
you start inherits your authenticated credentials and runs as though it were you. The
application’s permissions for any given object are the same as your permissions.
Processes spawned by the application carry your identity and pass it down to processes
they start.

Note: Changing thesetuid permission bit changes only the local operating system
identity under which an executable file runs, not the network identity.

Some servers are written to run as separate authenticated principals. For these servers,
the system administrator creates an account in the registry database. After you start
these servers, the server process authenticates with the registry, receives its credentials,
and runs under its own identity, not yours.

DCE 1.2.2 Administration Guide—Core Components 427

DCE Security Service

28.2 ACL Entries and Masks

ACL entries are of several differentACL entry types, each type being for a particular
purpose. All ACL entries are represented in a uniform list syntax.

28.2.1 ACL Syntax

The DCE control program uses the command syntax that is supported by the Tcl
language. Within Tcl, the list that represents an ACL entry contains either two or
three elements, depending on the ACL entry type, and is in the following form:

{type [key] permissions}

The three sample ACL entries in Figure 28-2 are in the format that Tcl accepts for
input.

Figure 28–2. Sample ACL Entries

ACL Permissions

Key
 identifying the
specific principal

Type
Entry

{user bach rwxid}

Entry
Type

ACL

identifying the

{any-other r-xid}

Permissions

{group composers rwxid}

ACL
Entry
Type

Key

Permissions

specific group

The first sample ACL entry sets permissions for a principal in the local cell, named
bach. The ACL entry type isuser , the key isbach, and the permissions arerwxid .
The entry components are separated by the space character.

The second sample ACL entry sets permissions for a group in the local cell, named
composers. The ACL entry type isgroup, the key iscomposers,and the permissions
are rwxid .

428 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

The third sample ACL entry sets permissions for all other principals in the local cell
or foreign cells (unless they match a more specific entry). The ACL entry type isany-
other, there is no key, and the permissions arer-xid . Not all types of ACL entries
require a key.

On output, the Tcl format for ACL permissions contains either a permission character
or a - (dash) for each possible permission. Two examples are

{user mozart crwx---}

{user brahms -- -- ---}

For input, the output format is acceptable, or you can use a relaxed form that omits
the dashes. For input, the same examples can be shortened to

{user mozart crwx}

{user brahms -}

The single dash is retained to show that userbrahms is denied all permissions.

28.2.2 ACL Entry Types for Principals and Groups

ACL entry types let you define entries for the following:

• Principals and groups

— Principals and groups in the local cell

— Principals and groups in foreign cells

— Delegate entries

— All principals in the local cell for whom individual ACL entries have not been
created.

— All principals in the local and all foreign cells whose privilege attributes do
not match any of the other ACL entries

• Masks used for authenticated and unauthenticated users

DCE 1.2.2 Administration Guide—Core Components 429

DCE Security Service

• As-yet-undefined entry types that can be copied and displayed (if not interpreted)
by dissimilar DCE releases

If any principal or group is not authenticated, the permissions in the entry are
further constrained by theunauthenticated mask (described later in this chapter).
All entries for authenticated principals, exceptuser_obj and other_obj entries, are
further constrained by themask_obj mask (also described later in this chapter).

The following list shows the entry types for principals and groups, their meaning, and
their entry format. All ACLs have a default cell defined in them, as referred to in the
table. It is changeable, and serves to define the cell for various data types.

This list uses the following syntax variables:

principal_name
The name of a principal in the registry database

group_name The name of a group defined in the registry database

cell The global pathname of a cell in the format/.../name.

permissions The permissions made available by the object’s ACL manager.

The principal and group ACL entry types are as follows:

user_obj Establishes permissions for the object’s real or effective user. An
example is the owner of a file. The entry format is

{user_obj permissions}

group_obj Establishes permissions for members of the object’s real or effective
group. An example is the group of a file. The entry format is

{group_obj permissions}

other_obj Establishes permissions for all other principals in the default cell, unless
they are specifically named in ACLs of entry typeuser, are members
of a group named in an ACL with an entry type ofgroup, or match
the principal indicated by theuser_obj or group_obj entry. The entry
format is

430 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

{other_obj permissions}

user Establishes permissions for a specific principal in the default cell of the
ACL. This ACL entry type requires a key that is a principal name. The
entry format is

{user principal_namepermissions}

group Establishes permissions for members of a specific group in the default
cell. This ACL entry type requires a key that is a group name. The entry
format is

{group group_namepermissions}

foreign_user
Establishes permissions for a specific principal in a foreign cell, one
other than the default cell of the ACL. You must identify the principal
by supplying a principal name and cell name as a key. The entry format
is

{foreign_usercell_name/principal_name\permissions}

foreign_group
Establishes permissions for a specific group in a foreign cell, one other
than the default cell of the ACL. You must identify the group by
supplying a group name and a cell name as a key. The entry format
is

{foreign_groupcell_name/group_namepermissions}

DCE 1.2.2 Administration Guide—Core Components 431

DCE Security Service

foreign_other
Establishes permissions for other principals in a specific foreign cell, one
other than the default cell of the ACL, that are not specifically named
in ACL entries of entry typeforeign_user or are members of a group
named in an ACL entry of typeforeign_group. You must identify the
foreign cell by supplying a cell name as a key. The entry format is

{foreign_othercell_namepermissions}

any_other Establishes permissions for all other principals in local or foreign cells
unless they match a more specific entry in the ACL. The entry format is

{any_other permissions}

user_obj_delegate
Establishes permissions for an intermediary acting for the object’s real
or effective user. The entry format is

{user_obj_delegatepermissions}

group_obj_delegate
Establishes permissions for an intermediary acting for members of the
object’s real or effective group. The entry format is

{group_obj_delegatepermissions}

other_obj_delegate
Establishes permissions for an intermediary acting for all other principals
in the default cell, unless they are specifically named in ACLs of entry
typeuser, are members of a group named in an ACL with an entry type
of group, or match the principal indicated by theuser_objor group_obj
entry. The entry format is

432 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

{other_obj_delegatepermissions}

user_delegate
Establishes permissions for an intermediary acting for a specific
principal in the default cell of the ACL. This ACL entry type requires
a key that is a principal name. The entry format is

{user_delegateprincipal_namepermissions}

group_delegate
Establishes permissions for an intermediary acting for members of a
specific group in the default cell. This ACL entry type requires a key
that is a group name. The entry format is

{group_delegategroup_namepermissions}

foreign_user_delegate
Establishes permissions for an intermediary acting for a specific
principal in a foreign cell, one other than the default cell of the ACL.
You must identify the principal by supplying a principal name and cell
name as a key. The entry format is

{foreign_user_delegatecell_name/principal_name\permissions}

foreign_group_delegate
Establishes permissions for an intermediary acting for a specific group
in a foreign cell, one other than the default cell of the ACL. You must
identify the group by supplying a group name and a cell name as a key.
The entry format is

DCE 1.2.2 Administration Guide—Core Components 433

DCE Security Service

{foreign_group_delegatecell_name/group_name\permissions}

foreign_other_delegate
Establishes permissions for an intermediary acting for other principals
in a specific foreign cell, one other than the default cell of the ACL, that
are not specifically named in ACL entries of entry typeforeign_user or
are members of a group named in an ACL entry of typeforeign_group.
You must identify the foreign cell by supplying a cell name as a key.
The entry format is

{foreign_other_delegatecell_namepermissions}

any_other_delegate
Establishes permissions for an intermediary acting for all other principals
in local or foreign cells unless they match a more specific entry in the
ACL. The entry format is

{any_other_delegatepermissions}

28.2.3 Group Permissions and Project Lists

Principals accrue group permissions from their project list, a list of all the groups of
which a principal or alias is a member. When a principal tries to access an object, the
principal has the access rights that accrue from the logical OR of permissions granted
to every group with an entry in the ACL and in which the principal is a member.
Note that the principal accrues rights only from the name or alias with which the
principal logged in, not both names and aliases. (See Chapter 30 for more information
on aliases and project lists.)

For example, suppose an ACL contains the following entries:

434 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

{user_obj crwxid-}

{group_obj crwx---}

{other_obj -r-- ---}

{group composers crwx---}

{user bach crwx---}

{user mozart crwx---}

{group performers --w-idt}

User cole is a member of the groupcomposersand the groupperformers. Because
cole accrues permissions from both groups, his access permissions arecrwxidt . (The
security service provides a method to prevent a group from being included in a project
list, thus preventing the group’s permissions from being accrued as part of the project
list. See Chapter 30 for more information.)

28.2.4 Using Principal and Group ACL Entries

When a security mechanism applies ACLs, the ACL entries are chosen in a particular
order. The most specific ones are chosen before the less specific.

In using the ACL entry types for principals and groups, think of theuser_obj,
group_obj, and other_obj types as being similar to the POSIX file permissions of
user, group and other. Use theuser and group types to specify permissions for a
specific principal or group.

Theuser_obj, group_obj, other_obj, user, andgroup entry types apply to principals
and groups in the default cell of the ACL. To set permissions for specific principals
and groups in a foreign cell, use theforeign_user and foreign_group entries. These
entries set permissions in a foreign cell in the same way thatuser andgroup entries
do in the default cell. Useforeign_other to set permissions for others in the foreign
cell, in the same way thatother_obj does for others in the default cell.

Theany_other entry type sets permissions for all local and foreign principals to which
the other entry types do not apply. If any of the other types of entries are set for a
local or foreign principal either explicitly or implicitly, theany_other entry will not
be applied. This is because once the manager finds a match between a principal and
an entry, it stops examining the ACL list and applies the found entry (or in the case of
groups, entries). All other ACL entry types, except for mask types (described below),
are examined by the ACL manager to see if a match exists before the ACL manager

DCE 1.2.2 Administration Guide—Core Components 435

DCE Security Service

examines theany_other entry type. See Section 28.2.7 for details of the order of ACL
checking.

28.2.5 ACL Entry Types for Masks

Masks in ACL entries establish maximum permissions that can be granted to a
principal. There are two masks: themask_obj maskand theunauthenticated mask.
Only permissions given in an ACL entry and the mask are granted. For example, if the
ACL entry specifiesrwx permissions and the mask specifies only thex permission,
the permissions are ANDed with the mask, and only thex permission is granted.

The mask_obj mask, if it exists, applies to all entry types exceptuser_obj and
other_obj. The unauthenticated mask is applied to all unauthenticated principals.
As the ACL manager derives the permissions from the ACL entries, it filters each one
through themask_obj mask (if one exists), and finally through theunauthenticated
mask. The manager grants only those permissions that are in the first matching entry,
the mask_obj mask, and theunauthenticated mask.

Note: If you do not create anunauthenticatedmask, unauthenticated principals are
denied all access to objects. If a user is unauthenticated because that user has
no DCE credentials, then the only entry that the user matches is theany_other
entry type, which is then masked by theunauthenticated mask. This means
that, for such unauthenticated users to have any access to an object, the object’s
ACL must contain anany_other type entry and anunauthenticated mask
entry.

An example of mask usage follows. For a particular object, there are a great number
of ACL entries specifyingrw access to that object. You need to restrict the access
to read-only, temporarily, but do not want to change all the ACL entries. Simply
creating amask_obj mask ofr , and then removing it when you are done, provides
the temporary restriction.

28.2.6 ACL Entry Types for Dissimilar DCE Releases

The extendedentry type provides a generic format for ACL entries that allows future
DCE releases to implement new ACL entry types. Because the new types are packaged

436 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

in the generic format of theextendedentry, earlier DCE releases can copy, display,
and print the new entry types even if they cannot interpret their meaning.

Section 28.4 tells how to copy extended entries. Note that extended entries cannot be
modified; however, they can be deleted.

An extendedACL entry has the following form:

{extended uuid.ndr.ndr.ndr.ndr.number_of_bytes.data permissions}

where:

uuid A UUID that identifies the entry type of the extended ACL entry.
(This UUID can identify one of the ACL entry types described in this
document or an as-yet-undefined ACL entry type.)

ndr.ndr.ndr.ndr
A network data representation (NDR) format label (in hexadecimal
format and separated by dots) that identifies the encoding of data.

number_of_bytes
A decimal number that specifies the total number of bytes indata. It is
followed by a dot.

data The ACL data in hexadecimal format. (Each byte of ACL data is
two hexadecimal digits.) The ACL data includes all of the ACL entry
specification except the permissions. The ACL data is not interpreted;
it is assumed that the ACL manager to which the data is being passed
can understand that data.

permissions The permissions to be granted by the entry.

28.2.7 The Checking Sequence for ACL Entries

An ACL manager reads through a list of ACL entries to find the particular entry that
applies to an individual who is trying to perform a particular operation. The ACL
manager first looks for a match between the privilege attributes of the principal or
process desiring access and the privilege attributes listed in the ACL. When the ACL
manager finds a match, it examines the permissions in the matching ACL entry and

DCE 1.2.2 Administration Guide—Core Components 437

DCE Security Service

applies themask_obj mask to it (unless it is an entry of typeuser_obj or other_obj)
if a mask_obj mask exists. Finally, the ACL manager applies theunauthenticated
mask (if it exists) if the principal is not authenticated. If the permissions that result
grant the requested access, the manager grants it to the principal. If not, access is
denied.

Because an ACL manager stops checking the ACL entries when it finds a match, it is
important to understand the order in which the ACLs are checked. Figure 28-3 shows
the order of checking and the masks applied. ACL managers check entries in the
following order, with the exception that the initiator principal is not checked against
..._delegateentries. Delegate principals are checked against all entries.

1. First, the ACL manager checks the user ACL entries, in the following order:

• user_obj

• user_obj_delegate

• user

• user_delegate

• foreign_user

• foreign_user_delegate

The ACL manager stops all entry checking at the first matching user entry it finds
and applies the permissions in the entry. The user entries are checked in order as
shown in the previous list from most specific to least specific.

2. If the ACL manager does not find a match in the user entries, it checksall of the
following group entries:

• group_obj

• group_obj_delegate

• group

• group_delegate

• foreign_group

• foreign_group_delegate

If any group ACL entries match the principal’s project list, and the logical OR
of permissions from these entries grants access, then access is granted and no
further checking is performed.

438 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

Because principals accrue permissions from all groups listed in the ACL of which
they are a member (and for which they are in the project list),all the groups are
checked andall the principal’s group permissions are logically ORed. The order
of group entry checking is not important. See Section 28.2.3 for more information
on project lists.

3. If the ACL manager does not find a match between the principal requesting
permission and a member of a group in the group entries, it checks theother_obj
and other_obj_delegateentries. If the ACL manager finds a match, it stops
checking ACL entries.

4. If the ACL manager does not find a match between the principal requesting
permission and theother_obj or other_obj_delegate entries, it checks the
foreign_other and foreign_other_delegateentries. If the ACL manager finds
a match, it stops checking ACL entries.

5. If the ACL manager does not find a match between the principal requesting
permission and theforeign_other or foreign_other_delegateentries, it checks
the any_other andany_other_delegateentries. If it does not find a match in the
any_other or any_other_delegateentries, it denies all access to the object.

The final permission is the intersection of the permission of the initiator principal and
of each delegate.

Figure 28-3 shows these steps as they apply to the ACL entries. The two columns
distinguish between ACL entries that are not masked bymask_obj and those that are
masked by it.

DCE 1.2.2 Administration Guide—Core Components 439

DCE Security Service

Figure 28–3. Order of Checking ACLs and Applying Masks

apply the masks.

user_obj
user_obj_delegate

other_obj
other_obj_delegate

Masked through mask_obj

mask_obj

unauthenticated

group_delegate

group_obj
group_obj_delegate
group

foreign_group
foreign_group_delegate

user
user_delegate
foreign_user
foreign_user_delegate

foreign_other
foreign_other_delegate
any_other
any_other_delegate

checking immediately, and

If no match was found in

mask_obj

step 1, check all the group
entries, logically ORing
the acquired permissions.

Match credentials against

mask_obj to the
permissions gained from
entries in the right column.
Apply unauthenticated
mask to all permissions.

Match credentials against

If a match is found in the

Access ACL Entries. If a
match is found, then stop

Access ACL Entries. If a
match is found, then stop
checking immediately, and
apply the masks.

group entries, then ignore
steps 3 through 5 and apply
the masks.

Step 1:

Step 2:

Steps 3 through 5:

Masks:
Apply

Not masked through

440 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

28.2.7.1 Themask_obj Mask and ACL Checking

Before the ACL manager grants any permissions derived from checking the ACL
entries, it filters the entry permissions through themask_obj mask. Only those
permissions named in the ACL entry and in the mask are granted. For example,
if an ACL entry grantsrwx permissions and themask_obj entry specifies onlyr and
w permission, onlyr and w are granted. Thex permission named in the ACL entry
is ignored.

28.2.7.2 The Unauthenticated Mask and ACL Checking

If an ACL manager receives an access request from an unauthenticated principal,
it checks the ACL entries and applies themask_obj mask, if available, as
described previously. It then filters the resulting permissions through the mask for
unauthenticated principals (entry type ofunauthenticated). Only those permissions
specified in theunauthenticated mask, in the ACL entry, and in themask_obj mask
(if it exists) are granted.

28.2.7.3 The Effect of the Checking Order on Granting
Permissions

You can think of the order in which the ACL entries are checked as going from most
specific to least specific. For example, assume an ACL contains the following entries:

{user mahler r}

{group composers rwx}

If the principal namedmahler, who is a member of the groupcomposers, requests
execute (x) access, it is denied. This happens because the order of checking specifies
that all user entries (user_obj, user, and foreign_user) are checked before all group
(group_obj, group, and foreign_group) entries. Therefore, the first match found
by the ACL manager is the match between usermahler and the ACL entry for
user mahler. Once a matching user entry is found, checking stops and the found

DCE 1.2.2 Administration Guide—Core Components 441

DCE Security Service

permissions are applied. In this case, checking stops before thegroup entry, the entry
with the more liberal permissions.

28.2.8 Denying Access

When you create an ACL entry for a principal or group, you grant only the permissions
you specify in the ACL entry. To deny a principal all access to an object, create an
ACL entry that contains a dash in place of the permissions. For example, to deny all
access to usermozart, the entry would be

{user mozart -}

If you choose to deny access to a specific principal or group, select the most
specific entry type available. Generally for principals this is an entry type ofuser
or foreign_user; for groups, it is an entry type ofgroup or foreign_group. Note that,
if the principal is the object’s owner or a member of the object’s group, you must use
the user_obj or group_obj entry types to ensure that access is denied.

To deny access to all unauthenticated users, do not create theunauthenticated
mask. If this mask is not created (ACL entry type ofunauthenticated), only
authenticated principals can access the object. The same behavior is achieved by
creating anunauthenticated mask with no permissions (or a dash in place of the
permissions). This method also has the additional advantage of illustrating graphically
that unauthenticated users have no access rights.

28.3 ACL Management Tasks

ACL management involves creating, modifying, and deleting the entries for the ACLs
on DCE entities. You can use the DCE control program to do all of these tasks. The
control program’sacl command perform the following operations on ACLs:

• Create and modify ACL entries for DCE objects in the local cell and foreign cells.
(Note that when objects are created they are associated with initial ACL entries.
See Section 28.5 for more information.)

• Display the permissions implemented for an object by the object’s ACL manager.

442 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

• Create and modify masks used to restrict allowable permissions.

Note: Standard UNIX tools that display and manipulate UNIX modes have an effect
only on the ACLs established for the file system.

For a detailed description of the DCE control program’sacl command, see the
acl(8dce)reference page.

28.4 Copying ACLs

To copy an ACL from one DCE object to another, use the DCE control programacl
replace command with the-acl option as shown here:

dcecp> acl replace /.:/hosts/hermes -acl [acl show /.:/hosts/cyclops]

dcecp>

The example command replaces the ACL for the hosthermes with the ACL for
the hostcyclops whose name is specified in theacl show command invoked by the
-acl option. Note how the-acl show command in the-acl option is enclosed in []
(brackets). This is required when the-acl option value is a command invocation.

If you are copying between cells, use theacl replacecommand’s-cell option, as well
as its-acl option. For example:

dcecp> acl replace /.:/hosts/hermes -acl [acl show /.:/hosts/cyclops] \

>-cell [acl show /.:/hosts/cyclops -cell]

dcecp>

To copy anextendedentry type from the domain of one ACL manager to the domain
of another ACL manager, use the output of thedcecp acl showcommand as the input
to anacl replacecommand. To copyextendedentries this way, both ACL managers
must support theextendedentry type.

DCE 1.2.2 Administration Guide—Core Components 443

DCE Security Service

28.5 Generating ACLs from Files

A convenient way to create an ACL is to create and edit a text file so that it contains
the desired ACL entries, and then generate the ACL from it by using anacl replace
command.

For example, assume the filestd_acl contains the following entries:

mask_obj:crwxid-

user_obj:crwxid-

group_obj:crwx---

other_obj:-r-- ---

user:lizt:crwx---

group:composers:-r-- ---

user:bach:crwx---

user:mozart:crwx---

The following acl replace command adds the entries instd_acl to an ACL named/
.../dresden.com/my_filesystem/opus:

dcecp> acl replace /.../dresden.com/my_filesystem/opus -acl [cat std_acl]

dcecp>

The acl replace command overwrites all ACL entries with the ones from the file
std_acl. Regardless of what they were before, the ACLs foropus now look like this:

mask_obj:crwxid-

user_obj:crwxid-

user:lizt:crwx---

user:bach:crwx---

user:mozart:crwx---

group_obj:crwx---

group:composers:-r-- ---

other_obj:-r-- ---

444 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

28.6 Container ACLs

The object ACL controls access to the object itself. A container object has, in addition
to its object ACL, an initial container ACL and an initial object ACL. These two ACLs
are not used for access control as such, but instead for cloning initial ACLs for objects
or containers created within the initial container. The initial container ACLs and the
initial object ACLs can be edited in the same way as the usual ACL by using the-ic
and - io options to thedcecp aclcommand.

28.6.1 Objects and Containers

The type of ACL used for an object depends on whether the object is a simple object
or a container. Containers are objects that hold other objects. The objects they hold
can themselves be either simple objects or container objects. Simple objects do not
hold other objects. Although any DCE component can have objects and containers, the
simplest and most common illustration is the file system. In the file system, there are
files and directories. The files are simple objects, and the directories are containers.
The directories can hold simple objects (files) and other containers (subdirectories).

The object ACL is associated with simple and container objects. The initial container
and initial object ACLs are associated only with container objects.

28.6.2 Initial ACLs for Objects and Containers

Initial ACL entries and the ACL that contains them are applied automatically when
an object is created. The entries can be modified at any time with the DCE control
program. The types of DCE ACLs used as Initial ACLs for containers and objects are
as follows:

• The initial container ACL determines the default ACL for containers created within
a container. For example, the file system Initial Container ACL for a directory
specifies the default ACL for subdirectories created within that directory.

• The initial object ACL determines the default for objects created within a
container. For example, the file system initial object ACL for a directory specifies
the default ACL for files created within that directory.

DCE 1.2.2 Administration Guide—Core Components 445

DCE Security Service

28.6.2.1 Default ACLs for Objects

When a simple object is created in a container, it inherits the container’s initial object
ACL as its object ACL. Figure 28-4 illustrates how the default ACL is assigned to
simple objects created in containers.

Figure 28–4. Initial ACLs for Objects Created in Containers

Container

Object ACL

Object ACL

Initial Container
ACL

Initial Object
ACL

A

Object Created
 in Container A

An object created
in Container A
receives
Container A’s
Initial Object ACL
as its Object
ACL.

28.6.2.2 Default ACLs for Containers

When a container is created within a container (a subdirectory within a directory, for
example), it inherits the parent container’s

• Initial container ACL as its object ACL and as its Initial Container ACL

• Initial object ACL as its initial object ACL

For example, if you create a file namedreport in the directorymarketing, the
system assignsreport the initial object ACL of the directorymarketing. If you
create a subdirectory inmarketing, the system assigns the new subdirectory the Initial
Container ACL ofmarketing . New subdirectories also receive a set of initial ACLs
that match the parent directory’s initial ACLs. In this example, the new subdirectory

446 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

also receivesmarketing’s initial ACLs as its own ACLs. Figure 28-5 illustrates how
the default ACLs are assigned to objects created in containers.

Figure 28–5. Initial ACLs for Containers Created in Containers

Container

Object ACL

Initial Container
ACL

Initial Object
ACL

Object ACL

Initial Container
ACL

Initial Object
ACL

A

Container Created
in Container A

A container created
in Container A
receives Container A’s
Initial Container ACL as its
Object ACL
and its Initial Container
ACL.

A container created in
Container A receives
Container A’s Initial
Object ACL as its
Initial Object ACL.

28.6.2.3 Default Container ACL Example

The following example shows how ACLs are initially assigned to containers created
within containers.

Assume Container A has the following ACLs:

Object ACL

{user_obj crwxid}

{group_obj crwxid}

{other_obj r}

Initial container ACL

DCE 1.2.2 Administration Guide—Core Components 447

DCE Security Service

{user_obj crwxid}

{group_obj rw}

{other_obj r}

Initial object ACL

{user_obj crwxid}

{group_obj r}

{other_obj r}

When Container B is created in Container A, it has the following default ACLs:

Object ACL (container A’s Initial Container ACL)

{user_obj crwxid}

{group_obj rw}

{other_obj r}

Initial container ACL (container A’s initial container ACL)

{user_obj crwxid}

{group_obj rw}

{other_obj r}

Initial object ACL (container A’s initial object ACL)

{user_obj crwxid}

{group_obj r}

{other_obj r}

448 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

28.6.3 Effect of Masks When Editing ACLs

If the user specifies a newmask_obj ACL entry, thenacl modify uses it. Otherwise,
the acl modify command recalculates the mask, using the algorithm shown in the
following paragraph, unless the user has specified one of the-mask calc, -mask
nocalc, or - purge options. Therefore the mask can change, granting more or fewer
permissions, on everyacl modify command.

Here is the algorithm that theacl modify command uses when calculating the mask:

1. Retrieve the existing ACL of the file.

2. Perform all requests to remove entries and to reduce the permissions of existing
entries.

3. Calculate the union of the actual permissions of all remaining entries.

4. Determine which permissions differ between the actual and effective rights. (This
is the logical XOR of the results of steps 3 and 4.)

5. Perform all requests to add new entries to the ACL and all requests to increase
the permissions of existing entries.

6. Calculate the union of these newly granted permissions and the old effective
permissions (from step 4). This is the candidate new mask value.

7. If there are any permissions in the candidate new mask that are also in the
permissions that differ between the original actual and effective rights (from step
5), applying the candidate new mask would unexpectedly grant some new right
that the user did not intend. Unless the user specified one of the options-mask
calc, -mask nocalc, or -purge, this condition is an error, and the ACL is not
modified. Otherwise, the candidate new mask is applied as the new mask.

For the vast majority of ACL operations, such automatic recalculation is safe. In
certain rare cases, the recalculation of the mask can grant additional rights that the
user did not expect; for instance, a permission granted to an entry that the user did
not specify and that was not among the entry’s previous effective rights.

The following example shows the way mask recalculation works, as well as the effect
of the options.

Observe that the ACL contains an entry grantingrwx permission to some user, but
the mask allows an effective permission ofr-x . Adding a newrwx ACL entry and

DCE 1.2.2 Administration Guide—Core Components 449

DCE Security Service

recalculating the mask (according to step 6) torwx is unsafe because the first user’s
effective access rights are unexpectedly changed fromr-x to rwx . If the acl modify
command detects such an unsafe condition, its default action is to issue an error
message and not change the ACL.

The initial state, showing the permissions and the effective permissions, is

dcecp> acl show /.:/concertos

{user vivaldi rwx effective r-x}

{mask_obj r-x}

dcecp>

Adding a user as shown results in an error because the mask recalculation would give
vivaldi an effective permission ofrwx :

dcecp> acl modify /.:/concertos -add {user telemann rwx}

Error: Unintended permissions not granted.

dcecp>

Explicit use of the-mask calc option allows the recalculated mask to be applied in
spite of the new permission granted tovivaldi . The mask is set to the union of the
permissions granted to the file group class entries on the ACL. This option can result
in the inadvertent granting of extra permissions.

dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask calc

dcecp> acl show /.:/concertos

{user vivaldi rwx effective rwx}

{user telemann rwx effective rwx}

{mask_obj rwx}

dcecp>

Using the-mask nocalcoption explicitly retains ther-x mask, resulting in reduced
effective permissions fortelemann. The ACL is modified exactly as specified by the
user, and no mask calculation or purging of permissions occurs.

450 DCE 1.2.2 Administration Guide—Core Components

Using Access Control Lists

dcecp> acl modify /.:/concertos -add {user telemann rwx} -mask nocalc

dcecp> acl show /.:/concertos

{user vivaldi rwx effective r-x}

{user telemann rwx effective r-x}

{mask_obj r-x}

dcecp>

Using the-purge option replaces the actual permissions with the effective permissions
in all entries. More precisely, if the command detects an unsafe condition, then the
condition intersects the current value of the mask with all of the existing, unmodified
entries in the file group class, replacing all ACL entries (exceptuser_obj, other_obj,
mask_obj andunauthenticated)with their effective permissions.

dcecp> acl modify /.:/concertos -add {user telemann rwx} -purge

dcecp> acl show /.:/concertos

{user vivaldi rwx effective r-x}

{user telemann rwx effective rwx}

{mask_obj rwx}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 451

Chapter 29
Control Programs for Managing the
DCE Security Service

You can perform most of the management tasks for the DCE Security Service by
using the DCE control program (dcecp). However, some of the components of this
service require you to use other control programs provided in DCE.

This chapter provides information about the commands that the DCE control program
offers for DCE Security Service management. The chapter also describes the
commands that the registry editor program (rgy_edit) provides for maintaining local
registries.

Control programs that you use for security-related management tasks from time to
time, such aspassword_exportand sec_create_db, are not covered in this chapter.
These programs are described in subsequent chapters of this guide along with the
instructions for performing the tasks.

DCE 1.2.2 Administration Guide—Core Components 453

DCE Security Service

29.1 Using the DCE Control Program

Since detailed information about the DCE control program and its command syntax
appears in Part 1 of this guide, this chapter does not repeat the information. It describes
only the commands that the DCE control program provides specifically for managing
the DCE Security Service.

The DCE control program creates and maintains principals, groups, organizations,
and accounts for the DCE Security Service’s network-wide registry (registry service
component). The control program also operates on the keytab files that protect the
passwords for security servers on the local node (authentication service component).
Additionally, it maintains the ACLs that protect DCE resources (privilege service
component). The DCE control program commands for managing the DCE Security
Service operate on these security and DCE-wide resources through various objects
that it defines. For example, the control program’sacl check command displays the
permissions that the ACL for a DCE Security Service object grants to the invoking
principal.

The following subsections describe the DCE Security Service objects that the DCE
control program operates on and the types of operations that the control program can
perform on these objects.

29.1.1 Security Service Objects

The DCE control program has functions that operate on the following security service
components:

principal This object represents registry principals. These principals can be human
users of the network, servers on the network, machines on the network,
or cells with which the local cell will engage in cross-cell authentication.

group This object represents registry groups. Groups are collections of
principals for which you can assign access rights to objects.

organization
This object represents registry organizations. Organizations are
collections of principals to whom you can assign policies that expand
your areas of administrative control.

454 DCE 1.2.2 Administration Guide—Core Components

Control Programs for Managing the DCE Security Service

account This object represents the accounts that are established in the registry
for principals.

registry This object represents the registry, or the DCE Security Service’s
database of account information, in a DCE cell. The registry copy
operated on can be either the master replica or a slave replica.

xattrschema
This object operates on the schemas, or the definitions, for extended
registry attributes (ERAs) that you specify for DCE Security Service
components and data maintained by the host daemon (dced) on the
local host.

acl This object represents the ACLs for all of the DCE entities that can be
protected by the ACL facility of the DCE Security Service.

keytab This object represents the files that store the keys, or passwords, for
authenticated server principals in the DCE Security Service.

29.1.2 DCE Control Program Operations for the DCE Security
Service

Table 29-1 lists the operations thatdcecpperforms on DCE Security Service objects.

Specific instructions for using DCE control program commands to create and maintain
principals, groups, organizations, and accounts are given in Chapters 30 and 31 of this
guide.

Table 29–1. DCE Control Program Operations for the DCE Security Service

Operation Description

add Adds a principal to a group or organization to a registry
replica.

catalog Displays the names of all the principals, groups, and
organizations in a registry replica. For the registry itself,
displays the master and slave replicas existing in a DCE
cell.

DCE 1.2.2 Administration Guide—Core Components 455

DCE Security Service

Operation Description

check Displays the permissions that a DCE ACL currently grants
to a security principal.

checkpoint Resets the registry checkpoint interval.

create Creates a new principal, group, organization, or account in
a registry replica. Also, creates a new entry for an ERA
schema.

delete Deletes a principal, group, organization, or account from a
registry replica. For the registry itself, deletes a slave
replica. For an ERA schema, deletes entries. For a DCE
ACL, removes ACL entries.

designate Changes which registry replica is the master.

destroy Destroys the specified replica and its copy of the registry
database.

disable Disables the master replica of the registry for updates.

dump Displays information on each replica of the registry
existing in a cell.

enable Enables the master replica of the registry for updates.

generate Generates a random password for an existing registry
account.

help Displays help information about a principal, group,
organization, account, ERA schema, or DCE ACL in a
registry replica, or about the registry replica itself.

list Displays the names of the principals belonging to a group
or organization in a registry replica.

modify Modifies the attribute information in a registry replica for a
principal, group, account, ERA schema entry, DCE ACL
entry, or for the registry itself. For an organization, also
modifies the policy information.

operations Displays the operations that can be performed by or on a
principal, group, organization, account, ERA schema, DCE
ACL, or registry replica.

456 DCE 1.2.2 Administration Guide—Core Components

Control Programs for Managing the DCE Security Service

Operation Description

permissions Displays the permissions granted by a ACL on a protected
DCE component.

remove Removes one or more principals from a group or
organization in a registry replica.

rename Changes the name of a principal, group, organization, or
ERA schema in a registry replica.

replace Replaces the entire ACL on a DCE component or the
address of a registry replica.

show Displays information about the attributes of a principal,
group, ERA schema entries, or DCE ACL entries. Also
displays information about the policies for an organization,
account, or registry replica.

stop Stops a security server process.

synchronize Instructs the slave replica of the registry to update its
contents from the master replica.

verify Checks if all of the registry’s replicas are up-to-date.

29.2 Using the Registry Editor

Although you can use the DCE control program to maintain the network-wide registry,
you can only use the registry editor to maintain the local registries located on the hosts
in a cell.

The following subsections explain how to start, stop, and get help for the registry editor
and describe the commands to use for local registry maintenance. Specific instructions
for using the registry editor to maintain the local registry are given in Chapters 30
and 31.

For detailed descriptions of all of the registry editor commands, see thergy_edit(8sec)
reference page.

DCE 1.2.2 Administration Guide—Core Components 457

DCE Security Service

29.2.1 Starting, Stopping, and Getting Help

The registry editor runs in two modes: interactive and command line. In interactive
mode, the control program prompts you for the information that it needs. In command-
line mode, you enter all of the information that the control program needs on the
command line. In command-line mode, you can perform only one operation at a
time; however, you may find command-line mode useful for creating shell scripts that
execute a sequence of registry editor commands. Most of the examples in this guide
are in interactive mode. (See thergy_edit(8sec)reference page for information on
how to invoke and use the registry editor in command-line mode.)

To start the registry editor in interactive mode, enter the following command:

$ dceshared/bin/rgy_edit

The registry editor responds by displaying the name of the current registry site and
the rgy_edit=> prompt, as follows:

Current site is:

registry server at /.../bayre.com/subsys/dce/sec/oddball

rgy_edit=>

If the name service is unable to provide the name, the output is shortened. For example,
instead of

registry server at /.../bayre.com/subsys/dce/sec/oddball

the display would be

registry server at /.../bayre.com

To exit from argy_edit command, pressReturn at the command prompt. For example,
to exit from theadd command to add principals, pressReturn at theAdd Principal=>
Enter name: prompt.

458 DCE 1.2.2 Administration Guide—Core Components

Control Programs for Managing the DCE Security Service

To exit from the registry editor, enter theq[uit] command at thergy_edit prompt:

rgy_edit=> q

$

The rgy_edit help command displays help information. If you enterhelp or h, the
registry editor displays a list of all commands and available topics. For example:

rgy_edit=> help

29.2.2 rgy_edit Commands for Local Registry Maintenance

To view or to perform any maintenance tasks on the local registry, you must first
access it. To access the local registry, invoke the registry editor with the-l option:

$ rgy_edit -l

rgy_edit=>

At the rgy_edit prompt, enter the name of the command for the particular operation
you wish to perform. Table 29-2 lists the available commands.

Table 29–2. rgy_edit Commands for Maintaining the Local Registry

Command Function

del[ete] Deletes the entries for principals, groups, or organizations.

prop[erties] Displays or changes local registry properties.

p[urge] Deletes expired entries for principals, groups, or
organizations.

v[iew] Displays the entries for principals, groups, or
organizations.

DCE 1.2.2 Administration Guide—Core Components 459

DCE Security Service

For detailed descriptions of all of the registry editor commands, see thergy_edit(8sec)
reference page.

460 DCE 1.2.2 Administration Guide—Core Components

Chapter 30
Creating and Maintaining Principals,
Groups, and Organizations

This chapter explains how to usedcecp to create and maintain principals, groups,
and organizations. It begins with a discussion of the names that are assigned to
principals, groups, and organizations and of the Universal Unique Identifiers (UUIDs)
used internally by the DCE Security Service to identify registry objects.

30.1 Principal, Group, and Organization Names

You must assign a name to each principal, group, and organization in the registry.
Although a principal, a group, and an organization can have the same name, no
two principals, groups, or organizations can have the same name. For example, two
principals cannot be namedsmith, but a principal can be namedsmith, a group can
be namedsmith, and an organization can be namedsmith.

You can assign up to three types of names: primary, full, and aliases.

DCE 1.2.2 Administration Guide—Core Components 461

DCE Security Service

30.1.1 Primary Names

Primary names are assigned to principals, groups, and organizations. A registry
object’s primary name is the name that is used by most system utilities when a
human-readable string is needed. When you add a principal, group, or organization to
the registry database, you must supply a primary name. The primary name is a key
field that you can use as input to theprincipal show command to query the registry
database.

30.1.2 Full Names

Full names can be assigned optionally to principals, groups, and organizations. An
object’s full name is for information purposes. It typically describes or expands a
primary name to allow easy recognition by users. For example, a principal could have
a primary name ofjsbach and a full name ofJohann S. Bach. An organization could
have the primary namemoco and the full nameMotet Composers.

A full name is a data field only. You cannot use it to query the registry database. You
can create the principal’s, group’s, or organization’s full name when you create the
principal, group, and organization itself.

30.1.3 Aliases

An alias is an optional alternate name for a primary name. Aliases can be assigned
to principals and groups, but not to organizations. Aliases and the primary name for
which they are an alternate share the same UUID and UNIX ID. (UUIDs and UNIX
IDs are described in Section 30.4.) An alias is a key field that you can use to query
the registry database.

Because you can create one account for each primary name and each alias, aliases
give you the flexibility to establish several accounts for the same principal. For
example, assume that for the primary namemahler you create three aliases:gustav,
gus, and gm. You can then create four accounts for the principalmahler: one for
the primary name and one for each of the name’s aliases. The accounts can use
different home directories and passwords and can be associated with different groups
and organizations.

462 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

Because principals accrue only the rights that are associated with the primary name
or the alias that they log in with, these multiple accounts for the same person
accommodate different access patterns. For example,mahler may be a member of the
composersgroup andgustav can be a member of themusic_admin group, which is
a group of system administrators. The principalmahler logs in asmahler to perform
day-to-day tasks and asgustav to perform administrative duties. To help prevent
accidental damage to the system, it is a good idea to set up accounts so that users can
log into an account with the least privileges necessary to perform their tasks.

For groups, aliases are useful if you want to associate two group names with the same
UNIX number.

See Section 30.9 for information on creating aliases.

30.1.4 Name Formats

Names in the registry can contain any characters or digits, except the @ (at sign) and
the : (colon) character. Avoid using spaces, {} (curly braces), or "" (quotes) in a name,
dcecp might not parse the name correctly.

The maximum number of characters allowed in a name is 1024.

30.2 Reserved Principals and Accounts

Some principals and accounts are reserved for use by various system operations. You
cannot delete reserved principals. You can modify, but not directly delete reserved
accounts. Note, however, that you may delete reserved accounts indirectly by deleting
the group or organization that is specified in the account. (See Chapter 31 for details.)

A list of reserved principals and accounts follows. In the listcell_nameis the name
of your cell.

• Reserved Principals:

— dce-ptgt

— krbtgt/ cell_name

DCE 1.2.2 Administration Guide—Core Components 463

DCE Security Service

— dce-rgy

• Reserved Accounts:

— dce-ptgt none none

— krbtgt/ cell_namenone none

— dce-rgy none none

30.3 Object Creation Quotas

You can assign an object creation quota to each principal. This assignment allows
you to control the number of registry objects that can be created by the principal. If
you allow users to create their own groups, for example, you can use this quota to
limit the total number of groups they can create. The default for the object creation
quota isunlimited , meaning that no limits are placed on the number of objects the
principal can create. A value of 0 (zero) prohibits the principal from creating any
registry objects.

Each time a principal creates a registry object, the principal’s object creation quota is
decremented by 1. When the object creation quota reaches 0, the principal is prohibited
from creating registry objects unless you reset the object creation quota to a number
other than 0 by using thedcecp principal modify command. Note that, when an
object that is created by a principal is deleted, the principal’s object creation quota is
not incremented.

Use thedcecp principal show command to view principals’ current object creation
quotas. This command displays the total number of objects that the principal is allowed
to create at the current time; that is, the original quota minus the number of objects
created by the principal.

30.4 Universal Unique Identifiers and UNIX IDs

The DCE Security Service automatically associates a principal’s, group’s, or
organization’s primary name with a UUID. UUIDs identify objects, which is a
function performed by UNIX numbers (UNIX IDs) in UNIX systems. (The registry

464 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

database also contains UNIX numbers, but they are used solely for compatibility
with UNIX programs.)

Normally, you do not have to be aware of UUIDs. They are created and maintained
automatically. However, be aware that, although the DCE Security Service prints
names and you can access objects by name, it identifies all objects internally by
UUID. If you delete a principal from the registry, you also delete the principal’s
UUID. Any objects (files, programs) that are owned by the principal are associated
with an orphaned UUID; that is, a UUID with no corresponding name. This means that
the object is now owned by a deleted principal. If no other principals were previously
given access to the object, the object cannot be accessed.

To solve this problem, use thedcecp principal createcommand with the-uuid option
to associate the UUID with a name and thus adopt the orphaned object. UUIDs are
assigned automatically when the object is created by using the DCE control program’s
principal create command. Therefore, you cannot simply add a new user and acquire
a previously used UUID. You must execute thedcecp principal createcommand with
the -uuid option for this purpose.

UNIX numbers in the registry must fall within the range of numbers you set as
a registry property. When you supply a UNIX number in the command line for
creating or modifying an account, you should avoid numbers under 100 since these
are generally reserved for system accounts.

30.5 Adding and Maintaining Principals

Use thedcecp principal createcommand to create principals. A principal must exist
before you can create an account for the principal. When you use thedcecp principal
create command, you must supply the principal’s primary name as an argument. In
addition, you can supply the attribute options summarized in Table 30-1.

DCE 1.2.2 Administration Guide—Core Components 465

DCE Security Service

Table 30–1. Attribute Options to Create Principals

Option Meaning

-fullname namestring An optional name that is used to more fully describe
a primary name. To include spaces, enclose the full
name in braces. The default is blank.

-uidinteger The required UNIX ID that is associated with the
principal. You can enter this number explicitly or
allow it to be generated automatically. If you enter it,
the number you enter cannot exceed the maximum
allowable UNIX number (themaxuid attribute) set
with the registry modify command; however, you can
enter a number lower than the low UNIX number (the
minuid attribute) set for principals with theregistry
modify command. If you allow the number to be
assigned automatically, it falls in the range defined by
the low UNIX number and maximum UNIX number.

-quota quota The number of registry objects that can be created by
the principal, known as the principal’s objectcreation
quota. To allow a principal to create an unlimited
number of registry objects, enter the text string
unlimited to set no quota. To prevent a principal from
creating any registry objects, enter a 0. Thequota
argument defaults tounlimited .

Note: In addition to these standard principal attributes, you can also attach
ERA instances to principals to control such aspects of DCE security as
preauthentication, password strength and password generation, and handling
of invalid logins. See Section 30.6 for information on these well-known ERAs.
See Chapter 32 for information on ERAs in general.

30.5.1 Adding Principals

To add principals to the registry, use theprincipal create command. For example, the
following sample command creates a principal with a primary name ofmahler and a
full name ofgustav mahler:

466 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

dcecp> principal create mahler -fullname {gustav mahler} -quota 5

dcecp>

In the example, the UNIX number defaults to one that is generated automatically.
Notice that, because the full name (gustav mahler) assigned to the principal contains
a space, it is enclosed in braces.

Note that you can create multiple principals with oneprincipal create command. To
do so, enclose the principal names in braces, separated by spaces. For example, to
create the principalsbach , britten , mahler, andsatie, you could enter the following:

dcecp> principal create {bach britten mahler satie}

dcecp>

If you create multiple principals, you must allow the principal’s UNIX ID to default
to the system assigned ID. This is because, if you include an attribute option in the
command line, that attribute value is assigned to each principal. For example, the
following sample command creates the principalsbach, britten , mahler and assigns
each an object creation quota of 5.

dcecp> principal create {bach britten mahler satie} -quota 5

dcecp>

30.5.2 Changing Principals

You can change a principal’s primary name and other information related to the
principal. Additionally, you can change a primary name to an alias and an alias to a
primary name. If you change a primary name to an alias and do not make an alias the
primary name, operations that return names choose one of the aliases at random.

DCE 1.2.2 Administration Guide—Core Components 467

DCE Security Service

30.5.2.1 Changing Primary Names

Use thedcecp principal rename command to change a primary name. Enter the
command in the following form:

principal rename old_name-tonew_name

where:

old_name Is the primary name of the principal to be changed.

new_name Is the new primary name of the principal.

The following example shows theprincipal rename command used to change a full
name frommahlar to mahler:

dcecp> principal rename mahlar -to mahler

dcecp>

Note that, if you change a primary name, that change is reflected in the membership
lists of all the groups and organizations in which the principal is a member.

In the unusual case where you are changing a host’s principal name while the host is
logged into a DCE cell, the existing host credentials will become invalid unless you
perform extra steps to update the host credentials with the new principal name.

Host credentials are managed by thesecvalprocess, which performs security client
functions on a DCE host. Normally, just after the host starts, thesecval process
logs the host into the DCE cell, getting the host credentials and storing them on
the host. Deactivate and reactivate thesecvalprocess to update these credentials after
changing the principal name. The following illustrates these operations on remote host
persephone:

dcecp> secval deactivate /.:/hosts/persephone/config/secval

dcecp> secval activate /.:/hosts/persephone/config/secval

dcecp>

468 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

30.5.2.2 Changing Principal Information

Use thedcecp principal modify command to change any principal information except
the UNIX ID and user ID. The following example shows theprincipal modify
command used to change principalmahler’s object creation quota to 10.

dcecp> principal modify mahlar -quota 10

dcecp>

30.5.3 Deleting Principals and Aliases

If you delete a principal or an alias, the system automatically deletes any accounts for
that principal or alias. For example, if you delete the principalmahler, the mahler
composers classicaccount is also deleted. If you delete the principal aliasgustav,
you also delete thegustav music_admin classicaccount. If you delete the group alias
music_admin, you also delete thegustav music_admin classicaccount. Be aware
that deleting a principal or a principal’s alias could orphan the objects that are owned
by the principal/UUID.

The following example shows theprincipal delete command used to delete the
principal namedmahler:

dcecp> principal delete mahler

dcecp>

You can delete multiple principals or aliases with oneprincipal delete command. To
do so, enclose the principal names in braces, separated by spaces. For example, to
delete the principalsbach , britten , andmahler, you would enter the following:

dcecp> principal delete {bach britten mahler}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 469

DCE Security Service

30.6 Extended Security Attributes for Principals

You can attach ERA instances to principals to manage several aspects of DCE login
and password security. ERAs are available to control

• The level of authentication security required for principal login requests

• Handling of invalid logins

• Strength of principals’ passwords as well as generation of passwords for principals

• Handling of login attempts by principals with expired passwords

These ERAs are introduced and explained in the following sections. See Chapter 32
for information on how to usedcecp to attach these ERAs to principals.

30.6.1 DCE Authentication

Authentication addresses certain security deficiencies in the Kerberos V5
authentication protocols, used as the basis for the DCE authentication protocol in
versions previous to DCE Version 1.1. These deficiencies result from

• The security server responding to client login requests without verifying that the
user knows the password

• The use of user passwords, which are notoriously weak, to encrypt plaintext data
that is then sent across the network

These practices are subject to attacks in which the attacker obtains network
transmissions and proceeds to attack them offline to elicit user’s passwords. These
kinds of attacks, if successful, can compromise the security of a DCE cell (and of all
other cells in a trust relationship with that cell).

DCE authentication reduces the likelihood of such attacks succeeding by providing
for

• Preauthentication of principals making login requests (that is, by having the DCE
Security Service verify the identity of the requestor before responding to the
request)

• The use of strong keys to encrypt all network transmissions involving validation
between security clients and servers

470 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

Four levels of authentication are available, ranging from most to least secure, and
representing decreasingly strict preauthentication protocols. By attaching an instance
of the pre_auth_reqERA (described in the following section) to the principal,
administrators can control the minimum level of preauthentication that the security
server will accept when authenticating the principal.

The preauthentication protocols are

• The public keyprotocol, which provides the highest level of security. A principal
that does not have this level of security at login may not be able to use certain
applications that do use public key authentication.

By default, public key login is disabled. To enable public key authentication, see
the next section of this chapter.

• The third-party protocol, which provides a high level of security. No lesser level
of preauthentication should be specified for any principal unless a reason is
compelling enough to do so. (See the comment oncell_admin in the next bulleted
item.) DCE Version 1.1 clients always construct authentication requests with this
protocol, except in cases where they are unable to because the machine session key,
which is required to construct third-party requests, is unavailable (for example, at
cell startup or when thesecvalprocess is down).

• The timestampsprotocol, which provides an intermediate level of security.
Timestamps preauthentication should be specified only for principals (such as cell
administrators and noninteractive principals) who must be able to operate when
the client is unable to construct a third-party authentication request as previously
described.

In these cases, the client constructs and forwards a timestamps login request.

In particular, the cell administratormusthave timestamps login capability, since
cell_admin must be able to log in to set up the initial machine key during initial
configuration of the cell.

• The DCE Version 1.0 (Kerberos V5) protocol, which is used to authenticate pre-
DCE Version 1.1 clients only, and provides no preauthentication security.

30.6.1.1 Enabling the Public Key Authentication Protocol

By default, the public key login authentication is disabled. To enable it and to configure
it for users, follow these steps:

DCE 1.2.2 Administration Guide—Core Components 471

DCE Security Service

1. Make sure the public key software is installed on the master DCE Security server
and on the replica servers. Public key software is available for DCE Versions
1.2.2 and later.

2. Initialize the cell’s public key environment. If the cell is migrating from DCE 1.1
to DCE 1.2.2, follow stepsa andb. Otherwise, follow stepb.

a. Enable the public key on the master:

dcecp> registry modify -version secd.dce.1.2.2

dcecp>

The master will propagate the version information to each replica that has
the public key software installed. Any replica that does not have the public
key software installed will be shut down automatically.

b. As thecell_admin, request that an initial key-pair (public and private keys)
be generated for the account of the local cell’skrbtgt principal:

dcecp> account modify krbtgt/cell-namepkgenprivkeyvalue\

>mypwdpwd

dcecp>

The registry will generate a key-pair and store them. The public key portion
of the pair will be stored in theDCEPKAuthentication ERA attached to the
krbtgt principal for the cell. The private key portion will be stored in the
registry under existing password-protection encryption.

Note that you can also use this command to modify an existing key-pair of
the local cell’skrbtgt principal.

3. On the cell administrator workstation, configure the user’s public key account:

dcecp> account create name \>-group none \

>mypwdcell-admin-password

>-organization none \

>passworduser-password\

>-pkmechanism file \

472 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

>-pkkeycipherusage {{generatekey default} {newpassphrasestring}} \

>-pksignatureusage {{generatekey default} {newpassphrasestring}}

The command does the following to the public key account:

• Indicates that the private key information should be stored in a file.

• Randomly generates a new public key-pair, which has an attached new
password phrase that you supply for encryption purposes. The public key
portion of the key-pair is stored in the ERA, and the private key portion is
stored in a file.

• Randomly generates a new signed key-pair, which has an attached new
password phrase that you supply. Again, the public key portion is stored
in the ERA and the private key is stored in a file.

4. Move the public key mechanism file from the cell administrator workstation to the
user’s workstation and change the ownership to the user. Provide the new password
phrase to the user but strongly encourage the user to change the password phrase
so no one else knows it. To change a password phrase, the user can invoke the
dcecp account modifycommand.

By default, only the cell administrator can create or modify a public key account.
However, a cell administrator can modify the ACL managers for the public key ERAs,
thereby allowing users to change their own key-pairs. To modify the ACL managers:

dcecp> xattrschema modify /.:/sec/xattrschema/DCEPKAuthentication \

>-aclmgr {principal {query r} {update u} {test r} {delete m}}

dcecp> xattrschema modify /.:/sec/xattrschema/DCEPKKeyEncipherment \

>-aclmgr {principal {query r} {update u} {test r} {delete m}}

30.6.1.2 Managing User Authentication

You manage preauthentication for a given principal by attaching an instance of the
pre_auth_reqERA to the principal and specifying a value to indicatethe lowest level
protocol the DCE Security Service should accept for the principal, as follows:

0 (NONE) Specifies that the DCE Security Service should accept, from
this principal, login requests that use any of the four protocols (including

DCE 1.2.2 Administration Guide—Core Components 473

DCE Security Service

the pre-DCE Version 1.1 protocol.) This is the least secure level and is
provided only to enable DCE Version 1.1 servers to accept login requests
from pre-DCE Version 1.1 clients. It is most vulnerable to the type of
attack previously described.

Warning: Failing to attach an instance of thepre_auth_reqERA to a
principal is equivalent to specifying0 (NONE).

1 (PADATA-ENC-TIMESTAMPS) Specifies that the DCE Security
Service should accept, from this principal, login requests using the
timestamp, third-party, or public key protocol. The timestamp protocol
protects against attackers masquerading as security clients and attacking
replies from the DCE Authentication Service. The protocol is still
vulnerable to attacks by processes capable of monitoring the network.

2 (PADATA-ENC-THIRD-PARTY) Specifies that the only login requests
the DCE Security Service will accept from this principal are those
using the third-party or public key protocol. This protocol offers a
high level of DCE preauthentication and provides protection against
the attacks previously described. With third-party preauthentication, all
authentication data sent over the network is encrypted with a strong
random key known only to the local machine principal and the DCE
Security Service.

3 (PADATA-ENC-PUBLIC-KEY) Specifies that the only login requests
the DCE Security Service will accept from this principal are those
using the public key protocol. This is the highest level of DCE
preauthentication.

When the authentication service receives a login request for a principal, it always
attempts to respond using the same protocol as the request, unless thepre_auth_req
ERA value for that principal forbids it to do so. Table 30-2 provides a matrix describing
the actions taken by the authentication service under the various combinations of login
(authentication) request type andpre_auth_reqERA value.

For complete information on the details of DCE authentication (including the operation
of the preauthentication protocols), see theDCE 1.2.2 Application Development
Guide—Core Components.

The following is an example of adcecpcommand to modify a principal and attach a
pre_auth_reqERA specifying third-party preauthentication:

474 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

dcecp> principal modify smitty -attribute {pre_auth_req 2}

dcecp>

For further information on how to usedcecpto attach ERAs to principals, see Chapter
32.

30.6.1.3 Public Key Interoperability Between DCE Versions

Table 30-2 describes how login requests are handled between different versions of
DCE that are in a single cell.

Table 30–2. DCE Version 1.1/Pre-DCE Version 1.1 Authentication Interoperation

Login Request
Type

Pre-1.1 Server
Response

Versions 1.1 and 1.2 Server
Response

DCE Version 1.0

From any client. No preauthentication.
Returns DCE Version
1.0
(unpreauthenticated)
response.

Preauthentication. Checks for
pre_auth_reqERA instance: If no
ERA exists, or existing ERA has
value= 0 (NONE), returns DCE
Version 1.0 (unpreauthenticated)
response. Otherwise, rejects login
request.

TIMESTAMPS

From DCE
Version 1.1 and
greater clients.

No preauthentication.

Ignores
preauthentication data
in request and returns
pre-DCE Version 1.1
(unpreauthenticated)
response.

Preauthentication. Checks for
pre_auth_reqERA instance: If no
ERA exists, or existing ERA has
value= 0 (NONE) or value= 1
(PADATA-ENC-TIMESTAMPS),
returns DCE Version 1.1
TIMESTAMPS response. If existing
ERA hasvalue=2
(PADATA-ENC-THIRD-PARTY),
rejects login request.

THIRD-PARTY

DCE 1.2.2 Administration Guide—Core Components 475

DCE Security Service

Login Request
Type

Pre-1.1 Server
Response

Versions 1.1 and 1.2 Server
Response

From DCE
Version 1.1 and
greater clients.

No preauthentication.

Ignores
preauthentication data
in request and returns
pre-DCE Version 1.1
(unpreauthenticated)
response.

Preauthentication.
Returns DCE Version 1.1
THIRD-PARTY response.

PUBLIC KEY

From DCE
Version 1.2
clients.

No preauthentication.

Ignores
preauthentication data
in request and returns
pre-DCE Version 1.1
(unpreauthenticated)
response.

1.1 Server Response: No
preauthentication.
Ignores preauthentication data in
request and returns pre-DCE Version
1.1 (unpreauthenticated) response.
1.2 Server Response:
Preauthentication.
Returns DCE Version 1.2
PUBLIC-KEY response.

30.6.2 Managing Invalid Login Handling

When you specify a preauthentication level of2 (PADATA-ENC-THIRD-PARTY)
for a principal, the security server is able to detect and track invalid login attempts for
that principal. This makes it possible for administrators to limit the possible impact
of password guessing attacks by

• Setting a limit to the number of successive invalid login attempts before the
principal’s account is disabled. (A successful login resets the counter.)

• Specifying the period of time the principal’s account will be disabled once that
limit is reached.

You do this by attaching instances of two ERAs (max_invalid_attemptsand
disable_time_interval) to the principal. Specify values for these ERAs as follows:

476 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

max_invalid_attempts
Specifies an integer indicating the number of successive invalid login
attempts the security server should accept before marking the principal’s
account as disabled.

disable_time_interval
Specifies an integer indicating the number of seconds the principal’s
account should be disabled from login attempts.

The following is an example of adcecp command to create a principal and attach
max_invalid_attemptsanddisable_time_intervalERAs:

dcecp> principal create smitty -attribute {{max_invalid_attempts 7} \

>{disable_time_interval 60}}

dcecp>

Note: At DCE Version 1.1, the invalid login handling functionality accurately tracks
login activity in a cell with one master and no replicas, but does not keep
accurate counts in replicated cells. This is because

• Login attempts in a replicated cell are randomly assigned to either a master or
replica.

• There is at present no mechanism for replicas to communicate to the the master
and, therefore, no way for the master to maintain an accurate count.

For further information on how to usedcecpto attach ERAs to principals, see Chapter
32.

30.6.3 Managing Password Strength and Password Generation

The DCE password format policy described in Chapter 35 enables you to control the
following characteristics of user passwords:

• Minimum password length

• Whether a password can be all spaces

• Whether a password can consist of alphanumeric characters only

DCE 1.2.2 Administration Guide—Core Components 477

DCE Security Service

You can extend these password strength policies in your cell by creating a password
management server to perform customized password checking and generation. DCE
provides an example password validation/generation server,pwd_strengthd(8sec),
which you can use as the basis for a password management server that suits your
cell’s requirements. DCE also provides a Password Management API that application
developers can use to acquire information about the principal’s password management
policy, and to request generated passwords from the password management server. See
the DCE 1.2.2 Application Development Guide—Core Componentsfor information on
the Password Management API.

Having created this server, you can then constrain a principal’s password to be
validated by this server when it is created and whenever it is changed. You do this by
attaching instances of thepwd_val_typeandpwd_mgmt_bindingERAs to the principal
as follows:

pwd_val_type
Specifies password creation options for the principal as follows:

0 (NONE) Specifies that the principal’s password is
subject only to DCE standard policy. (See Chapter 35
for a description of DCE standard policy.) Specifying0
(NONE) is equivalent to not attaching an ERA instance
to the principal.

1 (USER_SELECT) Specifies that the principal must
supply password text as input to the password
management server specified in thepwd_mgmt_binding
ERA.

2 (USER_CAN_SELECT) Specifies that the principal can
either supply password text or specify that the password
management server specified in thepwd_mgmt_binding
ERA generate a password.

3 (GENERATION_REQUIRED) Specifies that
the password management server specified in the
pwd_mgmt_bindingERA should generate a password for
the principal.

pwd_mgmt_binding
Specifies a binding to your cell’s password management server.

478 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

The following is an example of adcecp command to create a principal and attach
pwd_val_typeandpwd_mgmt_bindingERAs:

dcecp> principal create smitty -attribute {{pwd_val_type 2} \

>{pwd_mgmt_binding \

>{dce /.:/pwd_strength pktprivacy secret name} \

>{/.:/pwd_mgmt/pwd_strength}}}

dcecp>

For further information on how to usedcecpto attach ERAs to principals, see Chapter
32. For information on requesting generated passwords when changing a password,
see Section 30.6.3.2.

For information on configuring a password management server, see the following
section and theDCE 1.2.2 Administration Guide—Introduction.

30.6.3.1 Managing a Password Management Server

Part 2 of theDCE 1.2.2 Administration Guide—Introductionexplains how to use
dce_config to configure a password management server. This section provides
additional notes on password management server management.

• To protect password security, and to optimize performance, the password
management server should run on the same machine as the master DCE security
server.

• The default pathname for the password management server is$DCELOCAL/bin/
pwd_strengthd. You can change this pathname by using thePWD_MGMT_SVR
environment variable inconfig.env.

• While dce_config supports configuration of only one password management
server in a cell, it is possible to manually configure additional servers. Principal
pwd_mgmt_bindingERAs can then be set to point to the appropriate server for
each principal.

• To replace the sample password management server with another version, follow
this procedure:

1. Kill pwd_strengthd.

DCE 1.2.2 Administration Guide—Core Components 479

DCE Security Service

2. Rename$DCELOCAL/bin/pwd_strengthd .

3. Copy the new server into$DCELOCAL/bin/pwd_strengthd .

4. Startpwd_strengthd.

Do not unconfigure and reconfigurepwd_strengthd. If you do so,secdwill be
unable to communicate with it untilsecdis restarted or the previous server’s keys
expire.

• The log file for the sample password management server resides in$DCELOCAL/
var/security/pwd_strengthd.log. This location is built into the server code and
is not configurable.

30.6.3.2 Generating Passwords by Usingdcecp

If a pwd_val_type ERA having the values2 (USER_CAN_SELECT) or 3
(GENERATION_REQUIRED) exists for a principal, that principal can (or will be
required to) request a generated password when he changes passwords. If you are the
principal smitty, the following sequence ofdcecp commands can be used to do this:

dcecp> set p [account generate smitty]

newgenpwd

dcecp>

This command requests a generated password from the password management server,
places the new password in thep variable, and prints it to the screen (newgenpwd).
(Be sure to remember the new password.) Next, pass the value stored inp as the value
of new password in anaccount modify or account createcommand:

dcecp> account modify smitty -password $p -mypwd -dce-

dcecp>

Warning: Never execute the followingdcecpcommand, since the password will be
changed in the account, but the user will not see the new password:

480 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

dcecp> account modify smitty -password [account gen smitty] \

>-mypwd -dce-

dcecp>

30.6.4 Managing Password Expiration

By default, the DCE Security Service disables logins for principals whose passwords
have expired. There may be cases where you would prefer this not to happen; for
instance, you probably don’t wantcell_admin to be locked out of the cell because of
an expired password.

You can manage password expiration checking for a given principal by attaching
an instance of thepasswd_overrideERA to the principal and specifying one of the
following values:

0 (NONE) Specifies that password expiration checking for the principal
should not be overridden (that is, the principal should not be permitted
to log in with an expired password.) Specifying0 (NONE) is equivalent
to not attaching an ERA instance to the principal.

1 (OVERRIDE) Specifies that password expiration checking for the
principal should be overridden (that is, the principal should be permitted
to log in with an expired password.)

The following is an example of adcecpcommand to create a principal and attach the
passwd_overrideERA:

dcecp> principal create smitty -attribute {passwd_override 1}

dcecp>

For further information on how to usedcecpto attach ERAs to principals, see Chapter
32.

DCE 1.2.2 Administration Guide—Core Components 481

DCE Security Service

30.7 Adding and Maintaining Groups and
Organizations

A group or organization must have been added to the registry before it can be used in
an account. When you add groups by using thedcecp group createcommand, you
can set a project list inclusion property that controls whether individual groups are
included in project lists. (Project lists do not apply to organizations.)

30.7.1 Project Lists

A principal’s project list is a list of all the groups in which a principal or alias is
a member. When a principal tries to access an object, the principal has the access
rights that accrue from membership in every group that is named in the object’s ACL.
(See Chapter 28 for a description of ACLs.) For example, assume the ACL for file X
contains two entries: one permits group A write access and one permits group B read
access. Then, any principal who is a member of both groups A and B can read and
write to file X.

30.7.1.1 Project Lists and Rights

Principals accrue project list access rights only from the groups that are associated
with the name or alias with which they log in. They do not accrue rights from their
names and all of their aliases. For example, assume that a principal namedgustav
is a member of groups A and B. Under the aliasgus, gustav is also a member of
groups C and D. When the principal logs in asgustav, the principal accrues access
rights from groups A and B only. When the principal logs in with the aliasgus, the
principal accrues access rights from groups C and D only.

To display the groups in which a principal (or its alias) is a member, use theprincipal
show command described in Chapter 34.

482 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

30.7.1.2 Prohibiting Inclusion on Project Lists

If a group is prohibited from inclusion in a project list, its rights are not accrued.
For example, assume again that file X’s ACL includes two entries: one that permits
group A read access to file X and one that permits group B write access to file X.
Assume that the project list inclusion property is set to disallow group B from project
lists. A principal who is a member of both groups A and B who tries to access file X
is allowed only read permissions, not write permissions. If the project list inclusion
property allows group B to be on project lists, a member of groups A and B receives
both read and write access.

You may decide to prohibit some groups from inclusion on the list. You may, for
example, want to prohibit any reserved groups with access rights similar to root from
inclusion on any project lists.

30.7.2 Adding Groups and Organizations

Use thedcecp group createcommand to add groups and thedcecp organization
create command to add organizations. When you add a group or organization, you
must specify the group’s or organization’s primary name. In addition, you can supply
the attribute options listed in Table 30-3.

Note that, when you use thedcecp group createcommand anddcecp organization
create command, you can create multiple groups or organizations with one command
in the same way that you can create multiple principals. See Section 30.5.1 for details.

DCE 1.2.2 Administration Guide—Core Components 483

DCE Security Service

Table 30–3. Attribute Options to Create Groups and Organizations

Information Meaning

-gid The required UNIX ID that is associated with the group
or organization. You can enter this number explicitly or
allow it to be generated automatically. The number that is
entered cannot exceed the maximum allowable UNIX
number (themaxuid attribute) set with thedcecp registry
modify command; however, you can enter a number
lower than the low UNIX number (theminuid attribute)
set for groups or organizations with theregistry modify
command. If you allow the number to be assigned
automatically, it falls in the range defined by the low
UNIX number and the maximum UNIX number.

-fullnamestring An optional name that is used to more fully describe a
primary name. To include spaces, enclose the full name in
braces. The default is blank.

-inprojlist value For groups only, whether the group can be on project
lists. The default isyes.

30.7.2.1 Adding a Group

The following example shows how to add a group namedsymphoniststo theregistry:

dcecp> group create symphonists

dcecp>

In the example, the group UNIX ID is generated automatically, no full name is
supplied, and the group is included on project lists.

30.7.2.2 Adding an Organization

The following example shows how to add an organization namedclassicto the registry:

484 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

dcecp> organization create classic

dcecp>

In the example, the organization UNIX ID is generated automatically and no full name
is supplied.

30.7.3 Changing Groups and Organizations

For groups and organizations, you can change the primary name and full name. In
addition, for groups you can change whether or not the group can appear in project
lists, and for organizations you can change policy. (See Chapter 35 for details on
changing organization policy.)

Use thedcecp group modify command to modify change groups. The following
example shows the use of this command with the- inprojlist option to change the
groupsymphonist’s project list inclusion property fromyes (include on project lists)
to no (prohibit from project lists).

dcecp> group modify symphonists -inprojlist no

dcecp>

Use thedcecp group renamecommand to change a group’s primary name or the
dcecp organization renamecommand to change an organization’s primary name.
These commands have the following form:

group rename old_nametonew_nameorganization renameold_name \

tonew_name

where:

old_name Is the primary name of the group or organization to be changed.

new_name Is the new primary name of the group or organization.

The following example shows thegroup renamecommand used to change a primary
name fromsymphoniststo symphonists7:

DCE 1.2.2 Administration Guide—Core Components 485

DCE Security Service

dcecp> group rename symphonists -to symphonists7

dcecp>

Note that, if you change a primary name, that change is reflected in the membership
lists of all the groups and organizations in which the group or organization is listed
as a member.

30.7.4 Deleting Groups and Organizations

If you delete a group or organization, you also automatically delete any accounts that
use the group or organization. For example, if you delete the groupsymphonists,
you also automatically delete the accountsvivaldi symphonists baroqueandmozart
symphonists classic.

Use thedcecp group deleteto delete groups and thedcecp organization delete
command to delete organizations. The following example shows thegroup delete
command being used to delete the groupsymphonists:

dcecp> group delete symphonists

dcecp>

The next example shows theorganization deletecommand being used to delete the
organizationclassic:

dcecp> organization delete classic

dcecp>

Note that you can delete multiple groups or organizations with a singlegroup delete
or organization delete command by including the names to delete in braces and
separated by spaces just as you would to delete multiple principals.

486 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

30.8 Maintaining Membership Lists

Each group or organization has a membership list, which lists the principals that are
members of the group or organization. Members of a group can be principals from the
local or foreign cells. Members of an organization must be from the local cell only.
Use thedcecp group addcommand to add members to the membership list and the
dcecp group removecommand to remove members from the list.

If you delete a member from a group or organization, any accounts for the deleted
member that are associated with the group or organization are also deleted. For
example, if you delete the principalmahler from the groupsymphonists, the account
mahler symphonists classicis also deleted.

Note that the deleting of a principal from a group or organization can affect the
principal’s rights to objects. This change takes effect only when the principal’s ticket-
granting ticket is renewed. See Chapter 31 for more information on ticket renewals.

30.8.1 Effects of Account Creation on Membership Lists

When you create accounts, the principal for whom the account is created must be a
member of the group or organization that is named in the account. For example, if
you create the accountmahler symphonists classic, the principalmahler must be a
member of thesymphonistsgroup and theclassicorganization.

30.8.2 Adding and Deleting Group Members

The following example shows the use of thedcecp group add command with the
-member option to addmahler to the groupsymphonistsand deletestrauss from
the groupsymphonists:

dcecp> group add symphonists -member mahler

dcecp> group remove symphonists -member strauss

dcecp>

DCE 1.2.2 Administration Guide—Core Components 487

DCE Security Service

Note that you can add a member of a foreign cell to a local group by supplying the
principal’s fully qualified name. Members of an organization must be from the local
cell only.

You can add and remove mutiple members with onegroup add or group remove
command. To do so, enclose the member names in quotes, separated by spaces. For
example, to add the principalsbach, britten , andmahler to the groupsymphonists,
you would enter the following:

dcecp> group add symphonists -member {bach britten mahler}

dcecp>

In the unusual case where you are changing a host’s group name information while
the host is logged into a DCE cell, the existing host credentials will become invalid
unless you perform extra steps to update the host credentials with the new group name
information.

Host credentials are managed by thesecvalprocess, which performs security client
functions on a DCE host. Normally, just after the host starts, thesecvalprocess logs
the host into the DCE cell, getting the host credentials and storing them on the host.
Deactivate and reactivate thesecvalprocess to update these credentials after changing
the group name information. The following example illustrates these operations on
remote hostpersephone:

dcecp> secval deactivate /.:/hosts/persephone/config/secval

dcecp> secval activate /.:/hosts/persephone/config/secval

dcecp>

30.9 Creating and Maintaining Aliases for Principals
or Groups

Use thedcecp principal createcommand to create an maintain aliases for principals
and groups. Organizations cannot be given aliases.

488 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Principals, Groups, and Organizations

30.9.1 Creating Aliases

To create an alias for a principal, enter thedcecp principal createcommand in the
following form:

principal createname- uidunix_ID-alias yes

where:

name Is the alias name for the principal or group.

unix_ID Is the UNIX ID that is associated with the principal for which you are
creating the alias.

-alias Indicates thatnameis an alias.

To create an alias for a group, enter thedcecp group createcommand in the following
form:

group createname-gidgroup_ID-alias yes

where:

name Is the alias name for the principal or group.

group_ID Is the UNIX ID that is associated with the group for which you are
creating the alias.

-alias Indicates thatnameis an alias.

30.9.2 Changing Primary Names to Aliases and Vice Versa

To change an alias to a primary name or a primary name to an alias, use thedcecp
principal modify command for a principal or thedcecp group modify command for
a group. These commands have the following form:

principal modify name-alias{yes|no}

group modify name-alias{yes|no}

where:

DCE 1.2.2 Administration Guide—Core Components 489

DCE Security Service

name Is the primary name to be changed to an alias or the alias to be changed
to a primary name.

-alias Specifying-alias yeschanges the primary name identified bynameto
an alias; specifying-alias no changes the alias identified bynameto the
primary name.

A principal or group can have only one primary name at a time. Before you change
an alias to a primary name, first change the primary name to an alias.

490 DCE 1.2.2 Administration Guide—Core Components

Chapter 31
Creating and Maintaining Accounts

All principals have two identities: a network identity that provides the ability to access
DCE objects on machines across the network, and a local identity that provides the
ability to access objects on the local machine. The two identities exist in tandem, but
independently of each other. A principal’s network identity is defined by an account
in the network registry. A principal’s local identity is defined by local data, such as
entries in the/etc/passwdand /etc/group files that are stored on the local machine.
If the passwd_exportcommand is used to update the/etc/passwdand /etc/group
files with data that is stored in the local registry, local identity data is derived from
information that is stored in the network registry.

Registry accounts define a network identity by associating a principal with a group,
an organization, and related account information, such as the password that is used
to authenticate a principal’s identity. You must create a registry account for any
principal that engages in communications across the network, regardless of whether the
communications are authenticated. The principals for which you must create registry
accounts are as follows:

• Each human user who accesses objects across the network; this probably includes
all human users unless you are specifically restricting a user to the local machine.

DCE 1.2.2 Administration Guide—Core Components 491

DCE Security Service

• Each server that accesses objects across the network and runs under its own
identity, not the identity of the principal who started it.

• Each machine in the network.

• Any cell with which you engage in authenticated cross-cell communications.
(Accounts for cross-cell authentication are special types of accounts that are
described in Chapter 33.

This chapter describes

• Each type of account and how to create and maintain it

• How accounts are authenticated and how to display privilege attributes and tickets

• How to create and maintain the keytab file that stores keys for server principals

• How to maintain the local registry

31.1 User Accounts

User accounts are associated with the user’s password and information that is used
when the user logs into DCE. Account information includes such things as the
principal’s home directory and login shell, and authentication policy, which defines
parameters that help control a principal’s access to DCE. Use thedcecp account create
command to create accounts for human users, thedcecp account modifycommand
to modify them, and thedcecp account deletecommand to delete them.

31.2 Server Accounts

Servers, which can also be calledapplications, that engage in communications across
the network can run under their own network identity or the network identity of
the principal who started them. To run under their own identity, servers must be
programmed to perform a login and authenticate that identity. Therefore, you must
use thedcecp account createcommand to create registry accounts for these servers.

492 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

31.2.1 Passwords for Server Accounts

During login, all principals (human, server, and machine) must pass their password
to the DCE Authentication Service, which uses these passwords to generate
authentication keys. The most common method for human users is to simply enter
their password. A different method must be provided for server principals. The
recommended method, which is based on APIs that are supplied with DCE, is to
store server keys in a locally protected key table. The default implementation of the
DCE-supplied API stores the key table in a keytab file on the server’s local machine
and protects the file so that only a principal’s local identity can read or write the file.

You can access the keytab files remotely. On the local machine, store the keytab files
in a partition of the machine’s disk that is not exported by any file system.

Except for servers running as root or under the identity of the local machine, a separate
keytab file needs to be used for each server. During login, the server can access this file
to obtain its key, pass its key to the authentication service, log in, and be authenticated.

Use thedcecp keytab addcommand to add keys for servers to the keytab file and
the dcecp keytab removecommand to delete server keys.

31.2.2 Steps for Creating Server Accounts

To create an account for a server, first run thedcecp account createcommand to
create the account and then run thedcecp keytab addcommand to add an entry
to the keytab file. The server’s password in the registry and the server’s key in the
keytab file must match. You can ensure that these passwords are the same by manually
entering the same passwords in both commands, or you can specify that thekeytab
add command should reset the server’s registry password at the same time that it sets
the server’s password in the keytab file.

31.3 Machine Accounts

All machines must also have accounts in the registry. Machine accounts, like server
accounts, are created by first running theaccount create command to create the
account and then running thekeytab add command to add the server’s password to

DCE 1.2.2 Administration Guide—Core Components 493

DCE Security Service

the keytab file. Like server accounts, the password for a machine account in the registry
and in the keytab file must match. Principal names in machine accounts must be the
same as the machine’s name in the cell namespace. (See theDCE 1.2.2 Administration
Guide—Introductionfor more information on names in the cell namespace.)

31.4 How Identities Represented by Accounts Are
Authenticated

When principals log into the DCE, the security client uses the password they supply
(or that is supplied for them in the case of a server or machine principal) to derive the
principal’s authentication key. A copy of the principal’s authentication key exists also
in the registry database, having been stored there when the principal’s account was
created (or when the password was changed.) It is thus available to the authentication
service.

This key is used by the authentication service to authenticate the principal (that is, to
guarantee the principal’s identity) as follows:

1. The security client does the following:

a. Queries the user for the password and uses it to derive the principal’s
authentication key

b. Prepares a login request, part of which is encrypted using the authentication
key

c. Forwards the request to the authentication service

2. The authentication service does the following:

a. Receives the login request

b. Obtains the registry’s copy of the principal’s authentication key

c. Attempts to decrypt the login request with this key

If the decryption succeeds, the keys are the same; the principal is therefore
authenticated and the login is successful.

If the decryption fails, then the password supplied by the principal and used by the
security client to derive its version of the principal’s authentication key is invalid (that

494 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

is, different from the password used to derive the registry’s copy of the principal’s
authentication key), and login is denied.

This is a very general introductory description; see theDCE 1.2.2 Application
Development Guide—Core Componentsfor a detailed discussion of principal
authentication.

31.4.1 Privilege Attributes

After a principal is authenticated, the DCE Security Service helps obtain the principal’s
privilege attributes. Privilege attributes consist of UUIDs that represent the principal’s
network identity, the groups in which the principal is a member, and any extended
attributes associated with the principal. They are used when principals request access to
objects to determine their rights to those objects. Privilege attributes that are provided
by the DCE Security Service are authenticated. Authenticated privileges are accepted
by network services. Unauthenticated privilege attributes may not be accepted. This
means that the kinds of access to DCE objects that principals are allowed can differ,
depending on whether or not a principal’s privilege attributes are authenticated. (DCE
ACLs, which are used to control access to DCE objects based on a principal’s privilege
attributes, are described in Chapter 28.)

31.4.2 Ticket-Granting Tickets and Tickets to Services

A ticket-granting ticket allows a principal to request and receive tickets to DCE
services, such as to a Distributed File System server, to read a file. The tickets that
let principals access DCE services are calledservice tickets.

Both ticket-granting tickets and service tickets have lifetimes that are determined by the
settings for individual accounts and registry policies and properties. When a principal’s
ticket-granting ticket expires, the principal is no longer considered an authenticated
user. An unauthenticated principal’s access to objects other than those on the local
machine is severely curtailed, and the principal’s ability to use DCE services becomes
extremely limited. To remedy this, the principal must reauthenticate by running the
kinit command (see thekinit(8sec) reference page) or by logging out and logging in
again to DCE.

DCE 1.2.2 Administration Guide—Core Components 495

DCE Security Service

The principal’s service tickets are renewed automatically by the authentication service,
requiring no action on the principal’s part. Note, however, that the lifetime allocated to
a service ticket can never exceed the time remaining on the principal’sticket-granting
ticket (TGT).

31.4.3 Displaying Privilege Attributes and Tickets

DCE cell administrators can use theklist command to display a principal’s current
tickets and privilege attributes. Theklist command displays three types of information:
privilege attributes, expiration information, and service ticket information. DCE users
can also runklist to display their current and expired tickets. Theklist command is
described on theklist(8sec) reference page.

31.4.3.1 The First Part of theklist Display—Privilege Attributes

The klist command displays a principal’s privilege attributes. This display first lists
the fully qualified principal name, followed by the UUIDs and names of the cell, the
principal name (without the cell name and DCE global identifier), and all the groups
of which the principals is a member. A sample of this section of theklist display
follows:

DCE Identity Information:

Global Principal: /.../dresden.com/music/mozart

Cell: 5ad96550-80c4-11ca-b26c-08001e039431 /.../dresden.com

Principal: 00000066-80c5-11ca-b600-08001e039431 music/mozart

Group: 00000003-80c4-11ca-b201-08001e039431 composers

31.4.3.2 The Second Part of the klist Display—Expiration Dates
and Times

The second part of theklist display shows the dates and time that the principal’s
ticket-granting ticket, account, and password expire:

496 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

• The first line shows the date and time the ticket-granting ticket expires. Before
this happens, the principal should reinitialize it by runningkinit or logging in
again to DCE.

• The second line shows when the principal’s account expires. If the account expires,
the principal will be unable to log into DCE. To remedy this, DCE administrators
must change the principal’s account expiration date in the registry.

• The third line shows the date the principal’s password expires. Before this happens,
the principal should change the password by usingdcecp. If the password expires,
the principal will be unable to log into DCE. To remedy this, DCE administrators
must change the principal’s password in the registry.

A sample of the second part of theklist display follows:

Identity Info Expires: 91/10/03:12:07:18

Account Expires: 91/12/31:12:00:00

Passwd Expires: 91/10/31:12:00:00

31.4.3.3 The Third Part of theklist Display—Tickets

The third and final part of theklist display shows the principal’s ticket information
and the name of the principal’s ticket cache. The first three tickets labeledServer in
the following display are the tickets used after the principal logged in and obtained
privilege attributes. The display for all principals has these entries.

The remaining tickets labeledClient show the principal’s ticket-granting ticket and
service tickets. In the listing for each ticket after the wordClient, the display shows
the name of the privilege server, a server that grants privilege attributes after the
principal’s identity has been authenticated by the DCE Security Service. The name of
the server to which the principal has tickets is shown after theServer entry, and the
dates and times these tickets are valid are shown on the following line. For example,
in the following sample display, the last line shows that the principal has a ticket to
the server namedfile_server . The lifetime of this ticket is from 1:24 and 2 seconds
p.m. on 10/2/91 to 12:07 and 18 seconds p.m. on 10/3/91. (The time is shown in
24-hour format.)

DCE 1.2.2 Administration Guide—Core Components 497

DCE Security Service

Kerberos Ticket Information:

Ticket cache: /tmp/dcecred_17a80000

Default principal: music/mozart@dresden.com

Server: krbtgt/dresden@dresden.com

valid 91/10/02:12:07:18 to 91/10/03:12:07:18

Server:dce/rgy@dresden.com

valid 91/10/02:12:07:20 to 91/10/03:12:07:18

Server:dce/ptgt@dresden.com

valid 91/10/02:12:07:49 to 91/10/03:12:07:18

Client:dce/ptgt@dresden Server:krbtgt/dresden@dresden.com

valid 91/10/02:12:07:50 to 91/10/03:12:07:18

Client:dce/ptgt@dresden.com Server:dce/rgy@dresden.com

valid 91/10/02:12:07:53 to 91/10/03:12:07:18

Client:dce/ptgt@dresden.com Server:file_server@dresden.com

valid 91/10/02:13:24:02 to 91/10/03:12:07:18

31.4.4 Destroying a Principal’s Tickets

Use thekdestroy command to invalidate the tickets that a principal has acquired.
When the principal logs out, the principal’s tickets are not destroyed; they remain
valid until they expire. DCE users may want to usekdestroy just before they log
out to ensure that no valid tickets remain. However, if the principal has the kernel-
resident ticket cache, the principal’s tickets are destroyed when the principal’s last
process terminates. This means that it is generally not necessary to runkdestroy at
logout.

The kdestroy command is described on thekdestroy(8sec)reference page.

31.5 Adding Accounts

Use thedcecp account createcommand to add accounts to the registry. Information
that is associated with accounts falls roughly into the following two categories:

• User information similar to that typically found in the/etc/passwdfile.

• Authentication policy that lets you control the account’s access to the
network. Authentication policy establishes account and password validity,

498 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

account expiration policy, and ticket expiration policy. The tighter you control
authentication policy, the more secure your cell is, but the more processing
overhead you can accrue.

Both types of information are supplied as attributes in standarddcecp attribute lists
or as attribute options.

Note that authentication policy can also be set for the registry. If the registry policy
differs from the policy that you enter for an account, the stricter policy applies. (See
Chapter 35 for more information on contradictory policy.)

Table 31-1 lists the attribute options used to create accounts. Note that the options
described in this table can also be supplied without the dashes in attribute lists.

Table 31–1. Attribute Options to Create Accounts

Option Meaning

-acctvalid {yes|no} A flag that determines account validity. If you set this
flag to no, the account is invalid and the account
principal cannot log into the account. The default isyes.

-client {yes|no} A flag that indicates whether or not the account is for a
principal that can act as a client. If you set this flag to
yes, the principal is able to log into the account and
acquire tickets for authentication. The default isyes.

-descriptionstring A text string in portable character set (PCS) format that
is typically used to describe the use of the account. No
default.

-dupkey {yes|no} A flag that determines if tickets issued to the account’s
principal can have duplicate keys. The default isno .

- expdate The date (in ISO timestamp format
YY-MM-DD-hh:mm:ss) on which the account expires. To
renew a account after it expires, change the date. The
default isnone, meaning the account never expires.

DCE 1.2.2 Administration Guide—Core Components 499

DCE Security Service

Option Meaning

-forwardabletkt
{yes|no}

A flag determining whether a new ticket-granting ticket
with a network address that differs from the present
TGT’s network address can be issued to the account’s
principal. (The-proxiabletkt attribute performs the same
function for service tickets.) The default isyes.

-goodsincedate The date and time (in ISO timestamp format
YY-MM-DD-hh:mm:ss) that the account was last known
to be in an uncompromised state. Any tickets granted
before this date are invalid. Control over this date is
especially useful if you know that an account’s password
was compromised. Changing the password can prevent
the unauthorized principal from accessing the system
again by using that password, but does not prevent the
principal from accessing the system components for
which tickets were obtained fraudulently before the
password was changed. To eliminate the principal’s
access to the system, the tickets must be canceled. Set
the -goodsinceattribute to the date and time the
compromised password was changed to invalidate all
tickets issued before that time and eliminate the
unauthorized principal’s system access. When the
account is created, the-goodsinceattribute is set to the
current date.

-groupgroup_name The name of the group that is associated with the
account. This attribute must be supplied to create an
account; there is no default.

-homedir_name The directory in which the principal is placed at login.
No default.

-organization
org_name

The name of the organization that is associated with the
account. This attribute must be supplied to create an
account; there is no default.

-passwordpassword The required password for the account in plaintext. The
system encrypts the password you supply. No default.

500 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

Option Meaning

-postdatedtkt
{yes|no}

A flag that determines whether or not tickets with a start
time in the future can be issued to the account’s
principal. The default isno.

-proxiabletkt {yes|no} A flag determines whether or not a new ticket with a
different network address than the present ticket can be
issued to the account’s principal. (The-forwardabletkt
attribute option performs the same function for
ticket-granting tickets.) The default isno.

-pwdvalid {yes|no} A flag that determines whether the current password is
valid. If this flag is set tono, the account password has
expired and the principal will be prompted to change it
the next time that the principal logs into the account.
The default isyes.

-renewabletkt
{yes|no}

The Kerberos V5 renewable ticket feature is not
currently used by DCE; any use of the renewable ticket
attribute is unsupported at the present time.

-server {yes|no} A flag that indicates whether or not the account is for a
principal that can act as a server. If the account is for a
server that engages in authenticated communications, set
this flag toyes. The default isyes.

- shellpath_to_shell The shell that is executed when a principal logs in.

-stdtgtauth {yes|no} A flag that determines whether or not tickets issued to
the account’s principal can use the ticket-granting-ticket
authentication mechanism. The default isyes.

-usertouser {yes|no} For server principals, a flag that determines whether or
not the server must use user-to-user authentication. The
value is eitheryes (must use authentication based on
user-to-user protocol) orno (uses authentication based
on server-key ticket protocol). The default isno.

DCE 1.2.2 Administration Guide—Core Components 501

DCE Security Service

Option Meaning

-maxtktlife hours The maximum ticket lifetime. This is the maximum
amount of time in hours that a ticket can be valid. When
a client requests a ticket to a server, the lifetime granted
to the ticket takes into account themaxtktlife attribute
value for both the server and the client. In other words,
the lifetime cannot exceed the shorter of the server’s or
client’s maximum ticket lifetime.

If you do not specify amaxtktlifetime attribute value
for an account, themaxtktlifetime attribute value
defined for the registry authorization policy is used. (See
Chapter 35.)

-maxtktrenewhours The maximum ticket renewable. This is the amount of
time in hours before a principal’s ticket-granting ticket
expires and that principal must log into the system again
to reauthenticate and obtain another ticket-granting ticket.

The lifetime of the principal’s service tickets can never
exceed the lifetime of the principal’s ticket-granting
ticket. The shorter you make maximum certificate
renewable, the greater the security of the system.
However, since principals must log in again to renew
their ticket-granting ticket, the time should take into
consideration user convenience and the level of security
required.

If you do not specify amaxtktrenew attribute value for
an account, themaxtktrenew attribute value defined for
the registry authorization policy is used. (See Chapter
35.) Renewable ticket functionality is not currently used
by DCE RPC when refreshing service tickets. However,
it is supported by the DCE Security Server and is useful
for Kerberos V5 applications that use the DCE Security
Server as a KDC.

Note: The maximum ticket lifetime and maximum ticket renewable can be set as
registry properties for the registry as a whole with thedcecp registry modify
command. When they are set with thedcecp account createor account
modify commands, they apply only to a specific account.

502 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

31.5.1 Setting Ticket Lifetimes

You should be aware of two other options set by thedcecp registry modify command:
default ticket lifetimes and minimum ticket lifetime.

• Minimum Ticket Lifetime—The shortest possible lifetime that can be assigned to
a ticket. Note that the actual effective value of minimum ticket lifetime is affected
by default certificate lifetime.

• Default Ticket Lifetime—The lifetime granted for tickets, unless the principal
specifically requests a different lifetime. Although a principal can request a specific
lifetime for a ticket, the majority accept the default lifetime. (If a principal requests
a ticket lifetime of 0 (zero), the default lifetime is assigned to the ticket.)

Note that the actual effective value of the default ticket lifetime is affected by the
maximum certificate lifetime.

The actual lifetimes assigned to tickets depends on rules enforced by the DCE Security
Service regarding the settings of the maximum ticket lifetime, default ticket lifetime,
and minimum ticket lifetime. These rules are as follows:

• The maximum ticket lifetime can never be larger than the renewable ticket lifetime
(in other words,max_life = min (max_life, renewable_life))or less than 60
seconds. If the maximum ticket lifetime is larger than the renewable ticket lifetime,
then the renewable ticket lifetime is used as the maximum ticket lifetime. For
example, suppose an account is set to 15 hours. If you set the renewable ticket
lifetime to 20 hours, the effective maximum ticket lifetime is not 20, but 15 hours.

• The default ticket lifetime can never be larger than the maximum ticket lifetime (in
other words,default_life = min (default_life, max_life)) or less than 60 seconds.
If the default ticket lifetime is larger than the maximum ticket lifetime, then
the maximum ticket lifetime is used as the default ticket lifetime. For example,
suppose registry policy specifies a default ticket lifetime of 25 hours. If you set
the registry’s maximum ticket lifetime to 15 hours, the registry’s effective default
certificate lifetime is not 25, but 15 hours.

• The minimum ticket lifetime can never be larger than the default certificate lifetime
(in other words,min_life = min (min_life, default_life)) or less than 60 seconds.
If the minimum ticket lifetime is larger than the default certificate lifetime, then
the default ticket lifetime is used as the minimum ticket lifetime. For example,
suppose registry policy specifies a default ticket lifetime of 10 hours. If you set an
account’s minimum ticket lifetime to 15 hours, the account’s effective minimum
ticket lifetime is not 15, but 10 hours.

DCE 1.2.2 Administration Guide—Core Components 503

DCE Security Service

Although dcecp lets you enter values contrary to the rules and displays these values
when you view the account’s policies (with theaccount showcommand), the values
used are the ones described in the rules, not the ones you entered.

Note: To be exact, clocks in the network must be synchronized for the times that
are associated with registry data.

31.5.2 Ticket-Granting Ticket Lifetimes and Service Ticket
Lifetimes

The authentication service never grants a principal a service ticket with a lifetime
that exceeds the time remaining in the principal’s ticket-granting ticket lifetime. For
example, if 2 hours remain in the life of a principal’s ticket-granting ticket and the
principal requests or accepts a default of 4 hours for a service ticket’s lifetime, only
the 2-hour lifetime is granted.

If the renewable ticket flag (therenewabletkt attribute) is set on for a principal’s
account, the lifetime of the principal’s ticket-granting ticket also affects the renewal of
service tickets. No service ticket is renewed with a lifetime that exceeds the remaining
lifetime of the principal’s ticket-granting ticket. Service tickets are normally renewed
for the lifetime that is allocated to the original ticket. If the original time exceeds the
lifetime of the ticket-granting ticket, the ticket is renewed only for the time remaining
to the ticket-granting ticket.

31.5.3 Adding Accounts Example

Use thedcecp account createcommand to create accounts. When you use theaccount
create command, you must supply the name of the principal for which the account
is being created and the group and organization with which the account is associated.
In addition, you must supply your password with the-mypwd option to verify your
identity. If you do not enter your password,dcecpwill prompt you. All other attributes
can be allowed to default. Note that if you are prompted for the password, the password
you type is not displayed on the screen.

504 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

Because you are required to enter your password, you must run theaccount create
command in interactive mode. You cannot run it in command-line mode where your
password cannot be prevented from displaying on the screen.

The following example shows thedcecp account createcommand used to create an
account for the principalmahler, which is associated with the groupsymphonists
and the organizationclassic. All other account attributes are allowed to default.

dcecp> account create mahler -group symphonists -organization classic \

>-password passwd -mypwd cellpwd

dcecp>

Note that you may create multiple accounts with oneaccount createcommand. To
do so, enclose the names of the principals for whom the accounts are being created in
braces, separated by spaces. For example, to create accounts for the principalsbach,
britten , andmahler, you could enter the following:

dcecp> account create {bach britten mahler} -group symphonists \

>-organization classic -password music -mypwd cellpwd

dcecp>

When you create multiple accounts each account is assigned the same attributes.
This means that, in the example, the accounts forbach , britten , and mahler are
all associated with thesymphonistsgroup andclassicorganization, and they are all
assigned the passwordmusic. You may find it useful to create multiple accounts this
way for principals that all belong to the same group and organization. Notify users
whose accounts were created this way to change their passwords immediately.

31.5.4 Modifying Accounts

The dcecp account modifycommand with the allows you to modify accounts. You
can modify any of the account attributes.

When you modify accounts, you must supply your password with the-mypwd option
to verify your identity. Note that if prompted for the password, the password you type

DCE 1.2.2 Administration Guide—Core Components 505

DCE Security Service

is not displayed on the screen. If you do not enter a password, you are prompted for it.
Because you are required to enter your password, you must run theaccount modify
command in interactive mode. You cannot run it in command-line mode where your
password cannot be prevented from displaying on the screen.

The following example shows how to use theaccount modify command to specify a
new home directory formahler’s account:

dcecp> account modify mahler -home /.../music/fs/users/mahler/concert \

>-mypwd cellpwd

dcecp>

Note that you can also use the-changeoption with account modify to supply the
changes in an attribute list. The-add and-remove options are not supported with the
account modify command because each account attribute must be present and must
have a value.

31.5.5 Deleting Accounts

The following example illustrates the use of thedcecp account deletecommand to
delete the account for the principalmahler:

dcecp> account delete mahler

dcecp>

If you delete a group or organization, you will also automatically delete any accounts
that are associated with that group or organization.

You can delete multiple accounts with oneaccount deletecommand. To do so enclose
the names of the account principals in braces, separated by spaces. For example, to
delete accounts forbach, britten , andmahler, you would enter

506 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

dcecp> account delete {bach britten mahler}

dcecp>

31.6 Creating, Maintaining, and Deleting Keytab Files

The followingdcecpcommands allow you to create, maintain, and delete keytab files:

keytab create
Creates keytab files and all their key entries.

keytab delete
Deletes keytab files and all their key entries.

keytab add Adds key entries to keytab files.

keytab remove
Removes key entries from keytab files.

The following subsections describe how to manage keytab files.

31.6.1 The Keytab File

Keytab files are stored on the same machine as the servers whose keys they contain.
You can access them remotely and locally usingdcecp. For remote access,dcecp
usesdced interfaces. The-local option to thedcecp keytabcommand allows you to
access the local keytab files without usingdced.

Becausedced provides remote access to the keytab files, the files are defined asdced
objects, and those objects are stored in thedced-controlled portion of the namespace
under thekeytab directory. Thedcedkeytab object consists of a UUID to identify the
object, an optional annotation, and the name of the file that actually stores the server
keys on the local machine. This object is usually a file.

Note that actual server keys are not stored in the keytab object, but in the file stored
on the local machine.

The pathname of thedced keytab object is

DCE 1.2.2 Administration Guide—Core Components 507

DCE Security Service

/.:/hosts/hostname/config/keytab/keytab_name

where:

hostname Is the name of the host on which thedced process resides.

keytab_nameIs the name of the keytab file.

The pathname to the local keytab file is

/opt/dcelocal/keytab_path_name

where:

keytab_path_name
Is the path name to the keytab file on the local node.

31.6.1.1 Protecting Keytab Files

The local keytab files must be adequately protected, and they must not be available
on the network. As they are used in the default DCE implementation, the keytab
files contain principal keys, which are the basis of DCE security. If these keys are
compromised, network security can also be compromised. The calls that access the
keytab file userpc_c_protect_level_pkt_privacy . This protection level performs a
Data Encryption Standard (DES) encryption on the data being passed. Thedcecp
keytab -noprivacy option allows you to specify that your site’s default protection
level should be used instead.

Create a separate individual keytab file for each server principal that runs on each
local node. Servers that share the same keytab file can access each other’s keys and
thus impersonate each other. Protect the keytab files so that they are readable only by
root. If you do this, the servers must be started by root in order to read their keytab
files and obtain their key during login.

When you create or change server keys, you can name a different keytab file for each
server that runs on the local node. Protect the file so that it is readable only by the
server whose key it contains. Then set thesetuid bit for the server file to the server’s
identity so that the server can access the keytab file and obtain its key.

508 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

31.6.1.2 Server and Machine Key Version Numbers

When keys are added to the keytab file, each is assigned a version number that ranges
from 1 to 255. Whenever server or machine keys change (automatically or explicitly),
the key’s version number is incremented. Version numbers allow two or more keys
to exist for any given server or machine. When keys are changed, any servers or
machines that are still using tickets granted under the older unchanged version of the
key run without interruption until the ticket expires naturally. When the ticket expires,
the server or machine reauthenticates and obtains the new key.

If you use the-registry option to thekeytab add command, old keys are automatically
deleted, if possible. If you do not use this option, you should occasionally list the
contents of the keytab file by using thekeytab list command, and use thekeytab
deletecommand to delete any old versions that are obsolete.

Note: Take care when you are deleting keys from the keytab file. When principal
keys are changed, tickets can exist that are based on the key that you deleted.
If you delete a key from the keytab file, any active tickets that are based on the
deleted key will not be accepted by servers, and clients holding those tickets
will get authentication failures.

31.6.2 Creating and Maintaining Keys and Keytab Files

Two commands allow you to create key entries:

keytab create
Creates keytab files, the keytab file entries, and thedced keytab
object.

keytab add Adds key entries to existing keytab files.

When you run both commands, you supply the name of the keytab file to either create
or modify.

Table 31-2 lists the other options you can supply to thekeytab create and add
commands.

DCE 1.2.2 Administration Guide—Core Components 509

DCE Security Service

Table 31–2. The keytab create and keytab add Options

Option Meaning

-local Accesses the keytab file without usingdced.

-entry Creates only thedced configuration information, not the actual
key table.

-noprivacy Specifies that the protection level used should be the default
protection level for your site instead of
rpc_c_protect_level_pkt_privacy .

-member name The name of the principal (server or machine) whose key you
are creating or changing. You can supply multiple names in a
list. If you supply a list, all principals named in the list are
assigned the same key.

-key key The plain text key to the account. This option cannot be used
with the -random option.

-random Generates a random key. If you use this option, you must also
use the-registry option to add the randomly generated key to
the server’s or machine’s account in the registry. This option
cannot be used with the-key option.

-registry Updates the principal’s key in the registry to match the key you
enter (or generate automatically) for the key in the keytab file.
Use it to ensure that the principal’s key in the registry and the
keytab file are synchronized when you change a principal’s key
in the keytab file.

This option is required when you use the- random option.
Using this option may require you to run thedcecp login
command to ensure your network identity is appropriate for
modifying the registry database.

-version number Specifies a version number for the key. It is required if you do
not use the- registry option.

510 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

-storagelocal_file_name The pathname of the local file to be created. This option is used
only for thekeytab createcommand. When you add entries to
an existing keytab file, you identify the file by itsdced object
name.

-data keys The server principal name and keys in the format
principal_name key_type{version} {key_value}

31.6.2.1 Creating a Keytab File

Use the keytab create command to create keytab files, entries in the files, and
the correspondingdced object. When you use this command, you must supply the
pathname of thedced object to be created as an argument, thestorage option to
specify the keytab’s local, thedata option to specify the name of the server principal
and the keys, and any of the appropriate options listed in Table 31-2.

This data option is in the form

principal_namekey_type{version} {key_value}

where:

principal_name
Is the name of the server principal for which the keytab file is being
created.

key_type Is a code that specifies whether the key is stored in plain text or in DES
encrypted format:

• des indicates DES encryption.

• plain indicates plain text.

version Is the key’s version number. If you supply no version number, the key
is assigned a number of1.

key_value Unless you specified the-random option to randomly generate keys,
you must supply a key value. Ifkey_typeis plain, you supply the key
in plain text. If key_typeis des, you must supply a DES encrypted key.

DCE 1.2.2 Administration Guide—Core Components 511

DCE Security Service

The following sample command performs these tasks:

• Creates thedced keytab object/.:/hosts/music/config/keytab/svr4_key

• Creates the keytab file named/opt/dcelocal/keys/svr4_keyin the keys directory
on the local machine namedmusic

• Creates an plain text key entry in the file for principalmahler and assigns it a
version number of3.

dcecp> keytab create /.:/hosts/music/config/keytab/svr4_key -attr \

>{{storage /opt/dcelocal/keys/svr4_key} \

>{data {mahler plain 3 mon#Repos}}}

dcecp>

31.6.2.2 Adding Entries to a Keytab File

Use thekeytab add command to add entries to an existing keytab file. When you use
this command, you must supply the name of the keytab file’sdced object and any of
the options described in Table 31-2.

The following command adds a key to the keytab file namedkfile_3 for the server
principal svr_3. The key is generated automatically, and the registry is updated to be
synchronized with the keytab file.

dcecp> keytab add /.:/hosts/foo/config/keytab/kfile_3 \

>-member svr_3 -random -registry

dcecp>

31.6.2.3 Removing Entries from Keytab Files

You can remove entries from a keytab file by using thedcecp keytab remove
command. When you use this command, you must supply the name of the keytab
file’s dced object.

512 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

When you use thekeytab removecommand, you must supply the name of the keytab
file and the name of the principal (or a list of principals) for which to delete keys.

You can also supply the-version option to specify the version number of the key or
keys to be deleted and the-type option to specify the type of keys to be deleted (plain
for plain text keys ordes for DES encrypted keys). If you use the-version or -type
options, only keys of the specified version or type will be deleted.

The following command removes all DES keys for the principalsvr_2 in the keytab
file /.:/hosts/foo/config/keytab/kfile_3:

dcecp> keytab remove /.:/hosts/foo/config/keytab/kfile_3 \

>-members svr_2 -type des

dcecp>

31.6.3 Removing Keytab Files

You can remove local and keytab files and their associateddced objects by using the
dcecp keytab deletecommand.

To delete the local keytab file and thedced object, supply the local filename to the
command. You can delete multiple keytab files with one command by enclosing the
names in braces and separating them with spaces. For example, the following deletes
the keytab files and thedced objects/.:/hosts/foo/config/keytab/kfile_2and /.:/hosts/
foo/config/keytab/kfile_3.

dcecp> keytab delete {/.:/hosts/foo/config/keytab/kfile_2 \

>/.:/hosts/foo/config/keytab/kfile_3}

dcecp>

To delete only thedced object, use the-entry option.

For example, the following command removes thedced object named/.:/hosts/foo/
config/keytab/kfile_3, but leaves the local file/opt/dcelocal/keys/kfile_3untouched.

DCE 1.2.2 Administration Guide—Core Components 513

DCE Security Service

dcecp> keytab delete -entry /.:/hosts/foo/config/keytab/kfile_3

dcecp>

31.6.4 Changing Server and Machine Passwords in the Keytab File

Passwords for all principals must be changed when they expire. Human principals can
use their platform’schpasscommand to change their password. Thedced security
validation service automatically changes the machine’s password as necessary by
assigning a randomly generated password. This daemon is supplied with DCE and
runs on each local machine that engages in network access. Generally, you can assume
that servers or applications created by other vendors also automatically change their
password as required by randomly generating passwords. However, if a server that
runs under its own identity does not automatically update its password, you must do it
manually by using thedcecpkeytab addcommand, as described in Section 31.6.2.2.

Note: Servers that run under the identity of a human principal should not
automatically update their own passwords. When such a server updates its
password, it also updates the password of the human principal under whose
identity it runs. The human principal must then supply this randomly generated
password to log into the system and to reauthenticate. Since the human
principal can never know the randomly generated password, the principal
cannot log into the system and cannot reauthenticate.

31.6.5 Handling Compromised Server or Machine Passwords in the
Keytab File

If a server’s or machine’s password is compromised, you must change it in the registry
and in the server’s local keytab file by performing the following steps:

1. Use thekeytab removecommand to delete the compromised password.

2. Use thekeytab add command to create a new password for the server or machine.

3. If you do not use theregistry option of thekeytab add command to update
the server’s or machine’s registry account simultaneously with the server’s or
machine’s keytab file, run theaccount modify command to change the server’s
or machine’s password in the registry to the match the one in the keytab file.

514 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

31.7 Maintaining the Local Registry

The local registry allows login from that machine if a network registry is not available.
The local registry is created automatically the first time that a human or nonhuman
user performs a DCE login from the local machine if the network registry server is
running. As users log into the machine, their account information is automatically
added to the local registry.

The following files make up the local registry database:

dcelocal/var/security/lrgy_data
Contains account information entries.

dcelocal/var/security/lrgy_tgts
Contains ticket-granting ticket entries.

dcelocal/var/security/lrgy_lock
Used by the security server to lock the registry for read/write operations.

You must use the security commandrgy_edit to maintain the local registry. The
following subcommands are available:

view To view all entries in the local registry.

deleteprincipal_name
To delete the principal specified byprincipal_namefrom the registry.

properties To set and view properties for the local registry.

help To obtain help information on the local registry.

In addition to the subcommands in the preceding list, thergy_edit command provides
one additional subcommand,purge, and an additional registry property, called the
registry capacity, to restrict the number of entries that are in the local registry.

The remainder of this section describes thepurge subcommand and the registry
capacity property. See thergy_edit(8sec)reference page information on the use of
the other subcommands.

DCE 1.2.2 Administration Guide—Core Components 515

DCE Security Service

31.7.1 The Registry Capacity Property

The rgy_edit properties command lets you set a limit on the number of entries that
the local registry can contain. For example, assume that the registry capacity is set
to 10 and that the registry contains 10 entries. If a new user logs in from the local
machine, an entry is created for that user. This new entry overwrites the oldest of the
original 10 entries. As users log in from the machine for the first time, their newly
created registry entry overwrites the oldest entry.

31.7.2 Setting the Capacity and Lifespan Properties

You can set a limit on the number of entries that the local registry can contain. This
limit is defined by theCapacity attribute of the local registry object. Setting the value
of this attribute to a moderate number of entries can keep the local registry from
growing too large.

For example, assume that theCapacity attribute value for the local registry on a
machine is set to10 and that the local registry contains 10 entries. If a new user logs
in from the local machine, an entry is created for that user. This new entry overwrites
the oldest of the 10 entries currently existing in the local registry. As users log in from
the machine for the first time, their newly created registry entry overwrites the oldest
entry.

To set theCapacity attribute value for the local registry, use thergy_edt properties
command.

Note that, when you first enter the command, it displays the current registry capacity
and lifespan. In addition, it shows the number of account entries that are in the local
registry and the number of TGT entries. There is one TGT entry, which contains the
account’s credentials, for each account entry.

$

rgy_edit -l

rgy_edit=> properties

Local Registry Properties:

Capacity: 25 entries

516 DCE 1.2.2 Administration Guide—Core Components

Creating and Maintaining Accounts

Contains: 6 account entries

Contains: 6 tgt entries

Lifespan: 3w

Do you wish to make changes [y/n]? (n) y

Enter local registry capacity: (25) 50

Enter acct lifespan in days or ’forever’: (3w) 12w

In the preceding example,12w specifies a 12-week lifespan. When you enter the
lifespan, you can enter:

• forever—To designate that the entry will never expire. The entry can be
overwritten if it exceeds the registry capacity, however. Entering0 (zero) at the
Enter acct lifespan in days or ’forever’: (3w) prompt has the same effect as
enteringforever.

• a decimal number—To specify the number of measurement units (weeks,
days, hours, minutes, seconds). This number is generally accompanied by a
measurement unit, as described next. If you enter only a number without an
accompanying measurement unit, the measurement unit defaults to days.

• w, d, h, m, or s—To specify the measurement units:

— w for weeks

— d for days

— h for hours

— m for minutes

— s for seconds

You can use any combination of the measurement units with their accompanying
numbers. For example, to set the lifespan to 12 weeks, 8 hours, and 30 seconds, enter
the following command:

Enter acct lifespan in days or ’forever’: (3w) 12w8h30s

If you end a string of numbers and measurement units with a number only, the number
with no measurement unit defaults to seconds. For example, if you enter the following,
the lifespan is assumed to be 12 weeks and 30 seconds:

DCE 1.2.2 Administration Guide—Core Components 517

DCE Security Service

Enter acct lifespan in days or ’forever’: (3w) 12w30

31.7.3 Purging Expired Entries

Thergy_edit purge subcommand deletes expired entries from the local registry. When
the rgy_edt purge command is run, the command deletes all entries whose lifespan
attribute value indicates are are expired.

In the preceding example, we reset the local registry’s lifespan attribute value to12w.
With the lifespan set to12w , the following rgy_edt purge command deletes all local
registry entries (account and TGT) that are older than 12 weeks.

rgy_edit=> purge

1 account entries purged

1 TGT entries purged

518 DCE 1.2.2 Administration Guide—Core Components

Chapter 32
Creating and Using Extended Registry
Attributes

The registry stores specific information about principals, groups, organizations, and
accounts. This is the information that you create when you usedcecp commands to
create principals, groups, organizations, and accounts. The kind of information that can
be stored in the registry database is defined in the registry schema, which is essentially
a catalog of the kinds of data stored in the database. There is a schema entry definition
for each type of attribute that can be associated or attached to a registry object. For
example, a schema entry defines principal names as a printable character string in
DCE PCS format. When you create a principal, you enter a text string that is stored
in PCS format.

Using the extended registry attribute (ERA) facility, you can add schema entries that
define attribute types of your choosing. These attributes are calledextended attributes
because they extend the registry schema. Once the extended attribute types are defined,
you can attach them to a security object with thedcecp createor modify operations.
The extended attribute types you create are used by custom applications that run
in conjunction with DCE and are passed to those applications for processing. For
example, if you work with an MVS application that requires a user’s MVS name, you

DCE 1.2.2 Administration Guide—Core Components 519

DCE Security Service

could establish an MVS name extended attribute that is stored in the registry. The
MVS name can then be passed to the MVS application for appropriate processing.

If a principal has extended attributes, these attributes are carried with the extended
privilege attribute certificate (EPAC) obtained when the principal is authenticated.

In this manual, attribute type refers to the schema entry that defines an extended
attribute type. Attribute instance refers to an attribute that is attached to a registry
object and has a value.

This chapter describes how to create and maintain attribute types and attribute
instances. It begins first with a discussion of thexattrschemaobject; then it describes
how to define attribute types and attach attributes to objects.

32.1 The xattrschema Object

Extended attribute types are stored in the object namedxattrschemaunder the security
junction point (usually/.:/sec)in the CDS namespace. Access toxattrschemaand the
attribute type definitions it contains is controlled by an ACL on thexattrschema
object. Thexattrschema object is propagated from the master security server to
replicas, like other registry data.

32.2 Creating and Maintaining Attribute Types

Use thedcecp xattrschemacommand to create and maintain attribute types. As part of
the command, you must supply the attribute type’s fully qualified name (for example,
/.:/sec/xattrschema/name) as an argument.

32.2.1 Creating Attribute Types

Use the dcecp xattrschema createcommand to create attribute types. Attribute
options you can supply with this command are summarized in Table 32-1. Note that
the options described in this table can also be supplied without the dashes in attribute
lists.

520 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

Table 32–1. Options to Create Extended Attributes

Option Meaning

- aclmgrdescription A required list of the ACL manager types that
support the objects to which this attribute type
can be attached and the permissions supported
by those managers. No default. Attribute type
ACL managers are described fully in Section
32.2.5.

-annotation string A PCS text string that annotates the attribute
type. If the string contains spaces, enclose it in
braces or quotes. The default is blank.

-applydefs This option is not currently implemented.

- encodingtype The format of the attribute type instance value.
Attribute encoding is described more fully in
Section 32.2.6.

- intercell This option is not currently implemented.

-multivalued {yes | no} An indication of whether or not the attribute is
multivalued (yes=multivalued;no=not
multivalued). If an attribute is multivalued,
multiple instances of the same attribute type can
be attached to a single registry object. For
example, if attribute A is coded as multivalued,
a single principal can have multiple instances of
attribute A. If it is not coded as multivalued, a
single principal can have only one instance of
attribute A. The default isno.

-reserved {yes | no} An indication of whether or not the attribute is
reserved (yes=reserved;no=not reserved).
Reserved attribute types cannot be deleted
unless the reserved restriction is removed. The
default isno.

- scopename Not implemented in the current release.

DCE 1.2.2 Administration Guide—Core Components 521

DCE Security Service

-trigtype type Identifies whether or not a trigger server is
associated with the attribute type and, if a
trigger server is associated, the type of trigger.
Possible values are the following:
none—A trigger server is not associated with
the attribute type.
query—A query trigger server is associated
with the attribute type.
update—An update trigger server is associated
with the attribute type.
If the -trigtype option is set toquery or
update, you must supply the-trigbind option to
specify the trigger server’s binding. See Section
32.3 for more information.

-trigbind binding If a trigger server is associated with the attribute
type, this option specifies the trigger serving
binding.

-unique {yes | no} An indication of whether or not each instance of
the attribute type must be unique within the cell
(yes=unique;no=not unique). For example,
assume that an instance of attribute type A is
attached to 25 principals in the cell. If attribute
type A is coded as unique, the value of the A
attribute for each of those 25 principals must be
different. If it is not coded as unique, all 25
principals can be assigned the same value for
attribute A. The default isno.

-uuiduuid A UUID that identifies the attribute type
internally. Note that the name supplied as an
argument to thedcecp xattrschema create
command is used to access the attribute type. If
you do not supply a UUID, the system will
generate one.

The syntax of thedcecp xattrschema createcommand is as follows:

xattrschema createattr_name{attr_options}

522 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

where:

attr_name Is the fully qualified name of the attribute type to create.

attr_option Is one or more of the options described in Table 32-1.

The following sample command creates the extended attribute type named
employee_numand assigns it an ACL manager ofprincipal and an encoding type
of integer:

dcecp> xattrschema create /.:/sec/xattrschema/employee_num \

>-aclmgr {principal r r r r} -encoding integer

dcecp>

Although this sample uses options to supply information, you can use standarddcecp
attribute lists.

Note that you can supply a list of names to create multiple schema entries with one
operation. However, you should be aware that, if the command argument contains
more than one schema name, you cannot specify a UUID attribute and the attributes
you specify are applied to all entries created.

32.2.2 Modifying Attribute Types

Use thedcecp modify command with the-changeoption to modify attribute types.
Only the aclmgr, applydefs, intercell, trigbind , annotation, and reserved schema
type attributes can be modified.

The syntax of thexattrschema modify command is as follows:

xattrschema modifyattr_namechangenew_option

where:

attr_name Is the fully qualified name of the attribute type to change.

new_option Is the option that specifies the changes.

DCE 1.2.2 Administration Guide—Core Components 523

DCE Security Service

The following sample command modifies theMVSname attribute to change its
annotation. Note that the fully qualified attribute type name must be supplied to the
command.

dcecp> xattrschema modify /.:/sec/xattrschema/MVSname -change \

>{annotation {Use with version 2.3}}

dcecp>

32.2.3 Renaming Attribute Types

Use thedcecp xattrschema renamecommand to change the name of an extended
attribute. Enter the command in the following form:

xattrschema renameold_nametonew_name

where:

old_name Is the fully qualified extended attribute name to be changed.

new_name Is the new simple extended attribute name.

The following example shows thexattrschema renamecommand used to change an
attribute name fromlog_nameto MVSname.

dcecp> xattrschema rename /.:/sec/xattrschema/log_name -to MVSname

dcecp>

32.2.4 Deleting Attribute Types

Use thedcecp xattrschema deletecommand to delete an extended attribute. Be aware
that when you delete an attribute type you also delete all instances of that attribute
type. For example, assume that an instance of theMVSname attribute is attached to

524 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

a principal nameddelores. If you delete theMVSname attribute, you also delete the
instance of that attribute attached todelores.

To delete attribute types enter the command in the following form:

xattrschema deleteattribute_name

whereattribute_nameis the fully qualified name of the attribute to be deleted.

For example, to delete the extended attribute namedMVSname , the command would
be as follows:

dcecp> xattrschema delete /.:/xattrschema/MVSname

dcecp>

32.2.5 Defining the ACL Managers for Attributes

When you define an extended attribute type, you must define the objects to which
the attribute can be attached and the permissions to access the attribute. To do this,
you associate an attribute type with one or more ACL managers, and you supply the
permission sets that control access to attribute instances of that type. The attribute can
be attached only to the objects that are supported by the ACL manager types named
in its ACL manager set. And, only the permissions named in the ACL manager set are
valid for accessing the attribute instance. (Note that these permissions are in addition
to the permissions already established by the ACL manager for the object it controls.)
For example, suppose an ACL manager set for an attribute type namedMVSname
lists only the ACL manager type for principals. Then, instances of the attribute type
namedMVSname can be attached only to principals and not any other registry objects.
The ACL manager set for theMVSname attribute also contains the permissions that
control access to theMVSname attribute.

Use thedcecp xattrschema -aclmgroption to specify an attribute’s ACL manager
set. This option has the following form:

DCE 1.2.2 Administration Guide—Core Components 525

DCE Security Service

{ mgr_uuid queryset updateset testset deleteset }

where:

mgr_uuid Is the UUID that identifies the ACL manager to be associated with the
attribute type. You can supply either the UUID or one of the following
shorthand names (which are converted internally to a UUID) to access
the ACL manager types provided by DCE:

policy To access the ACL manager for the policy object.

principal To access the ACL manager for principals.

group To access the ACL manager for groups.

organization
To access the ACL manager for organizations.

secdirectory To access the ACL manager for directories in the registry
database.

replist To access the ACL manager for the replica list.

xattrschema
To access the ACL manager for the registry schema.

srvrconf To access the ACL manager for thedced object.

queryset Is the permission set to query instances of the attribute.

updateset Is the permission set to modify instances of the attribute.

testset Is the permission set to test instances of the attribute.

deleteset Is the permission to delete instances of the attribute.

To enter a permission set with more than one permission, concatenate the permissions;
for example, to enter the permissionst, M , andd, entertMd .

Enclose each ACL manger type’s information in braces and leave a space between
each item (except, of course, between items in the concatenated permission sets).

For example, consider the following command to define an addition ACL Manager
for the MVS_name attribute:

526 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

dcecp> xattrschema modify /.:/sec/xattrschema/MVS_name \

>-aclmgr {18dbdad2-23df-11cd-82d4-080009251352 r w t mD}

dcecp>

The command adds an ACL manager identified by the UUID18dbdad2-23df-11cd-
82d4-08000925135to the MVS_name attribute. The permissions sets for the ACL
manager are as follows:

• r is the query permission set

• w is the update permission set

• t is the test permission set

• mD is the delete permission set

Note that you cannot modify or delete an attribute type’s ACL manager set. However,
you can add additional manager types to it.

32.2.6 Defining Attribute Type Encoding

You must define the format of values that can be supplied for an attribute type in the
attribute type’s encoding. An attribute can be assigned only those values that are in the
format defined in the encoding. For example, the encoding can specify that instances
of this attribute type contain values only in the form of UUIDs.

Each attribute type can have only one encoding and that encoding cannot be modified.
In addition, a special encoding type lets you create attribute sets.

Use thedcecp xattrschema -encodingoption to specify an attribute’s encoding. This
option has the following form:

-encodingtype

The typeparameter is one of the encoding types described in Table 32-2.

DCE 1.2.2 Administration Guide—Core Components 527

DCE Security Service

Table 32–2. Encoding Types

Encoding Type Meaning

any The attribute value can take on any encoding.
This encoding type is only legal for the
definition of an ERA in a schema entry. All
instances of an ERA must have an encoding of
some other value.

attrset The attribute value must be a list of attribute
type UUIDs enclosed in braces. This encoding
type defines an attribute set. Attribute sets allow
for easier attribute search and retrieval. For
instance, a query on an attribute set returns all
instances of attributes that are members of the
set.

binding The attribute value must consist of
authentication, authorization, and binding
information suitable for communicating with a
DCE server. Use this encoding if you want to
store a name or server binding as an object’s
attribute. See Section 32.3.2.2 for more
information.

byte The attribute value must be a string of bytes.
The byte string is assumed to be a pickle or is
otherwise a self-describing type. Note that this
encoding type allows entry of binary data. See
the xattrschema(8dce)reference page for more
information on entering binary data.

confidential Not implemented in this release of DCE.

i18ndata The attribute value must be an internationalized
string of bytes with a tag identifying the OSF
registered codeset used to encode the data. Note
that this encoding type allows entry of binary
data. See thexattrschema(8dce)reference page
for more information on how to enter binary
data.

528 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

Encoding Type Meaning

integer The attribute value must be a signed 32-bit
integer.

printstring The attribute instance value must be a character
string printable by the PCS.

stringarray The attribute value must be an array of one of
more printstrings. Note that the printstring can
be a null.

uuid The attribute value must be a DCE UUID.

void The attribute has no value. It is simply a marker
that is either present or absent.

32.3 Defining Attribute Trigger Servers

Some attribute types require the support of an outside server either to verify input
attribute values or to supply output attribute values when those values are stored in an
external database. Such a server could, for example, connect a legacy registry system
to the DCE registry. The attribute trigger facility provides for automatic calls to outside
DCE servers, known asattribute triggers.

Trigger servers are invoked automatically when an attribute associated with a trigger
server is queried or updated. Note that access to information maintained by a trigger
server is controlled entirely by that server.

Note: Update trigger servers are not supported in this release.

To associate an attribute type with a trigger server, use the- trigtype and -trigbind
dcecp xattrschemaoptions.

32.3.1 The -trigtype Option

The -trigtype options defines whether the attribute type is associated with a trigger
server and, if it is, which kind of server. This option has the following form:

DCE 1.2.2 Administration Guide—Core Components 529

DCE Security Service

-trigtype [none | query | update]

where:

none Indicates the attribute is not associated with a trigger server. (This is the
default.)

query Indicates that the attribute is associated with a query trigger. Query
trigger servers can perform only queries.

update Indicates the attribute is associated with an update trigger. Update trigger
servers can perform queries and updates.

Note: Update trigger servers are not supported in this release.

Once set the-trigtype option cannot be modified.

32.3.2 The -trigbind Option

The -trigbind option defines authentication information for the trigger server and the
trigger binding itself.

The -trigbind option has the following format.

-trigbind {{ auth_info} {binding_info}}

The following sections describe how to specify the authentication type and the binding.

32.3.2.1 Specifying the Authentication Type

The auth_infoparameter has the following syntax:

{ auth_serv_typename prot_level authentication_service authorization_service}

where:

530 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

auth_serv_type
Specifies the authentication type, which can be

• none—No authentication is performed.

• dce—Standard DCE authentication is performed.

If you are using no authentication, no other information except
the binding itself is required. If you are using the standard DCE
authentication type, you must specify all the remaining parameters.

name Specifies the principal name of the trigger server.

prot_level Specifies the protection level that determines the degree to which
authenticated communications between the client and the server are
protected by the authentication service. The possible protection levels
are

• default—Uses the default protection level ofpkt .

• none—Performs no authentication: tickets are not exchanged,
session keys are not established, client EPACs or names are not
certified, and transmissions are in the clear. Note that although
uncertified EPACs should not be trusted, they may be useful for
debugging, tracing, and measurement purposes.

• connect—Authenticates only when the client establishes a
relationship with the server.

• call—Authenticates only at the beginning of each remote procedure
call when the server receives the request.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence (that is,ncacn_ip_tcp). If this
level is specified and the binding handle uses a connection-based
protocol sequence, the routine uses thepkt protection level instead.

• pkt—Ensures that all data received is from the expected client.

• pktinteg—Ensures and verifies that none of the data transferred
between client and server has been modified. This is the highest
protection level that is guaranteed to be present in the RPC runtime.

• pktprivacy —Authenticates as specified by all of the previous levels
and also encrypts each RPC argument value. This is the highest

DCE 1.2.2 Administration Guide—Core Components 531

DCE Security Service

protection level, but it is not guaranteed to be present in the RPC
runtime.

authentication_service
Specifies the authentication service. The exact level of protection
provided by the authentication service is specified by the protection
level. The supported authentication services are as follows:

• default—DCE shared-secret key.

• none—No authentication: no tickets are exchanged, no session
keys established, client EPACs or names are not transmitted, and
transmissions are in the clear. Specifynone to turn authentication
off for remote procedure calls made using this binding.

• secret—DCE shared-secret key authentication.

authorization_service
Specifies the authorization service. The validity and trustworthiness
of authorization data, like any application data, is dependent on the
authentication service and protection level specified. The supported
authorization services are as follows:

• none—Server performs no authorization. This is valid only if
the authorization service is set tonone , specifying that no
authentication is being performed.

• name—Server performs authorization based on the client principal
name. This value cannot be used if the authorization service isnone.

• dce—Server performs authorization by using the client’s DCE
EPAC sent to the server with each remote procedure call made with
this binding. Generally, access is checked against DCE ACLs.

32.3.2.2 Specifying the Binding Information

The binding_infoparameter specifies the binding, which can be a string binding, a
server entry name, or a list containing one or more string bindings or server entry
names. The following example shows a server entry name binding:

./.:/hosts/host_name/dce_entity_name

532 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

The following example shows a string binding in standard syntax:

ncadg_udp_ip:130.105.96.3[1234]

The following example shows a string binding in TCL syntax:

ncarn_ip_tcp 10-29.58.00 2001

32.3.2.3 Sample Value for the-trigbind Option

The following sample shows the value for a-trigbind option. In the sample, the
binding has the principal nameMVS_server , is authenticated with packet-privacy
protection level, uses a shared secret key and an authorization service of DCE. The
binding is supplied as a server entry name.

-trigbind {{dce MVS_server pktprivacy secret dce} \

{/.:/hosts/host_name/dce_entity_name}}

32.4 Creating and Maintaining Attribute Instances

Using dcecp, you can attach extended registry attributes to objects, modify the values
assigned to those attributes, and delete the attachement just as you would any attribute
attached to an object.

You can attach extended registry attributes to any of the following registry objects
using thedcecp createandmodify operations:

• principal

• group

• organization

• policy

Note: In DCE Version 1.2.1, you cannot attach attributes to the policy object.

DCE 1.2.2 Administration Guide—Core Components 533

DCE Security Service

• directory

• replist

• xattrschema

32.4.1 Attaching Attribute Instances to Objects

You can attach attributes to object when you create the objects with thedcecp
principal -attribute operation, or you can attach attributes to existing objects with
the dcecp modify -addoperation.

For example, to create the principaldeloresand at the same time attach theMVSname
attribute with a value ofadmin, use the followingprincipal create command:

dcecp> principal create delores -attribute {MVSname admin}

dcecp>

To attach theMVSname attribute with a value ofadmin to the principal named
delores, use the followingprincipal modify command:

dcecp> principal modify delores -add {MVSname admin}

dcecp>

To add instances of a multivalued extended attribute, include each value, separated by
a space after the attribute name. For example, to attach themulti_name attribute with
values ofvalue1 , value2, value3, andvalue4 to the principal nameddelores, use the
following command:

dcecp> principal modify delores -add {multi_name value1 value2 value3 value4}

dcecp>

534 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

32.4.2 Modifying Attribute Instances

Use thedcecp modify -changeoperation to change the values of attribute instances.
Whether an attribute is modifiable is determined by the application that uses the
attribute. For example, the following command changes the value assigned to the
MVSname from admin to cell_admin for the principal nameddelores.

dcecp> principal modify delores -change {MVSname cell_admin}

dcecp>

If you use thedcecp modify -changecommand as shown in the previous paragraphs
to change the value of a multivalued attribute, all instances of the multivalued attribute
are deleted and replaced by the new values specified in the command. For example,
to change only a specific value, you must enter all the values. For example, assume
that themulti_name attribute has the following four values:value1 , value2, value3,
andvalue4. To changevalue4 to value5 you must enter the following command:

dcecp> principal modify delores -change {multi_name {value1 value2 value3 value5}}

dcecp>

However, you can add and remove individual values from a multivalued attribute. Use
the -add option to add values. For example, assume that themulti_name attribute has
values ofvalue1, value2, value3, andvalue5. The following sample command adds
value6 to themulti_name attribute.

dcecp> principal modify delores -add {multi_name value6}

dcecp>

(Use theremoveoption described in the following subsection to delete specific values
in a multivalued attribute.)

Note that the following command replaces all instances of the attribute named
multi_name attached to the principal nameddelores with a single instance with a
value ofvalue1:

DCE 1.2.2 Administration Guide—Core Components 535

DCE Security Service

dcecp> principal modify delores -change {multi_name value1}

dcecp>

For example, if themulti_name attribute had the following values:

{multi_name value1 value2 value3}

then the previous command would change the values as follows:

{multi_name value1}

32.4.3 Deleting Attribute Instances

Use thedcecp modify command with the-removeoption to delete attribute instances
attached to an object. To delete all instances of an attribute from an object, supply the
attribute name to the-remove option. For example, the following command deletes
all instances of theMVSname attribute from the principal nameddelores:

dcecp> principal modify delores -remove MVSname

dcecp>

To remove a single instance of a multivalued attribute, supply the attribute name and
the attribute value. For example, the following command deletes only the instance
value5 from the multivalued attribute namedmulti-value. All other values and the
attribute itself remain intact.

dcecp> principal modify delores -remove {multi-value value5}

dcecp>

However, if you delete the last instance of a multivalued attribute,dcecp will also
delete the attribute from the object because an attribute without a value cannot be
attached to an object. Note that you cannot combine deleting multivalued attributes
and values from multivalued attributes with the same command.

536 DCE 1.2.2 Administration Guide—Core Components

Creating and Using Extended Registry Attributes

To delete more than one attribute from an object, you must use the-types option.
This option tellsdcecp that all the values supplied are the names of attribute types,
not attribute values. For example, the following sample command uses the- types
option to delete the attributes namedMVSname andMVSinteger from the principal
delores:

dcecp> principal modify delores -remove {MVSname MVSinteger} -types

dcecp>

Without the -types option, dcecp will assume thatMVSinteger is the value for the
MVSname attribute and, because no such value exists, the command will fail.

32.4.4 Using Attribute Sets

An attribute set is a collection of attribute UUIDs that identify the attribute instances
that are members of the set. Attribute sets let you group related attributes instances on
an object for easier access. For example, if you use thedcecp showoperation to display
an attribute set, the display expands the attribute set and includes all members of the
set in the display output. This attribute expansion works only fordcecp commands
that display information. The commands to create and modify attribute instances work
only on the specific attribute named in the command. Since the attributes that are set
members exist independently of the attribute set, they can be manipulated directly like
any other attribute.

Each attribute set is attached to an object and, although the system does not enforce
it, each attribute that is a member of a set should also be attached to the same object.
Attribute sets cannot be nested; a member of an attribute set cannot itself be an attribute
set.

To create, modify, and delete members in an attribute set, follow the instructions
to create, modify, and delete mutli-valued attributes. The attribute instances that are
members of the set are identified by UUIDs.

DCE 1.2.2 Administration Guide—Core Components 537

Chapter 33
Administering a Multicell
Environment

Previous chapters in this guide described the DCE administration tasks that are
performed within individual cells. The administration of a multicell environment,
which is one in which principals from foreign cells access objects in the local cell,
has additional tasks and considerations that arise from the interaction of principals
across different cells.

In fact, you can have two types of system administrators: one for local cell
administration and one for intercell administration of the multicell environment. If
you set up groups for the two types of administrators, you can set the ACL for
the krbtgt directory, which contains cell principals, in the registry database to allow
updating only by the group of intercell administrators. Be sure, however, to allow all
other users read access to thekrbtgt directory or intercell access will be denied to
those users. Note that, if you protect thekrbtgt directory in this way, ensure that all
directories below thekrbtgt directory also have the proper ACLs. The easiest way
to accomplish this is to change the Object ACL and the Initial Creation ACLs on the
krbtgt directory after the registry is created.

DCE 1.2.2 Administration Guide—Core Components 539

DCE Security Service

This chapter describes the trust relationships between cells that allow principals from
foreign cells access to objects in your cell and vice versa.

33.1 Trust Relationships

Note: The DCE Version 1.2.2 code does not provide support for the transitive trust
relationships discussed in this section.

To give explicit permission for principals in other cells to engage in authenticated
access to objects in your cell, you must establish a trust relationship with that cell.
You do this using thedcecp registry connectcommand to create two special accounts:
one in your cell’s registry to represent the foreign cell and one in the foreign cell’s
registry to represent your cell. Establishing these accounts indicates that you trust
the foreign cell’s authentication service to correctly authenticate foreign users, and,
therefore, you consider all users from this cell to be authenticated if they are marked
as authenticated by the foreign cell’s authentication service.

Once the trust relationship is established, you can control foreign principals’ access
to specific objects with ACL entries, just as you do for principals in the local cell.
The trust relationship also allows users in the foreign cell to log into accounts in the
local cell and vice versa.

Two kinds of trust relationships allow principals in other cells to engage in
authenticated access to objects in your cell. These relationships aredirect trust
relationshipsand hierarchical transitive trust relationships. Throughout this chapter
the termtransitive trust relationshipis used to indicate the DCE implementation of
hierarchical transitive trust relationships.

33.1.1 Direct Trust Relationships

In a direct trust relationship, two cells’ authentication service share authentication keys
and trust each other to authenticate principals from their respective cells. Therefore,
both cells consider all users from each cell to be authenticated if they are marked
as authenticated by their respective authentication services. The shared authentication
keys are derived from a single password (one for each cell) that is used by all principals

540 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

from one cell to be authenticated to the other cell. A direct trust relationship involves
only two cells.

33.1.2 Transitive Trust Relationships

A transitive trust relationship comes about as a result of a direct trust relationship. In
this relationship, cells in a direct trust relationship trust (with some constraints) each
other’s authentication service to authenticate principals not only from their respective
cells but also from the cells with which they have direct trust relationships. A transitive
trust relationship can involve three or more cells. A transitive trust relationship is
illustrated in Figure 33-1.

Figure 33–1. Transitive Trust Relationships

transitive trust

direct trust
A B

direct trust

C

In this figure, cell A trusts peer cell B (the cell with which it has a direct trust
relationship) to authenticate the principals in cell B and to guarantee the authentication
of the principals in cell B/C (the cell with which it has a transitive trust relationship).

Because cell A trusts cell B’s authentication service, it allows authenticated access to
all principals whose authentication is guaranteed by cell B’s authentication service.
These authenticated principals include principals from cell B and principals from cell
B/C.

DCE 1.2.2 Administration Guide—Core Components 541

DCE Security Service

33.1.3 Establishing Trust Relationships

Use the registry connect command to establish direct trust and transitive trust
relationships. Note that, although you can create a direct trust relationship between any
two cells, you can create a transitive trust relationship only for those cells connected
by a transitive trust path.

This command creates two special accounts: one in your cell’s registry to represent
the foreign cell, another in the foreign cell’s registry to represent your cell. The
command creates the accounts’ principals at the same time. Once the trust relationship
is established, users in the foreign cell can log into accounts in the local cell and vice
versa. You control foreign principals’ access to specific objects with ACL entries, just
as you do for principals in the local cell.

When the accounts are created, theregistry connectcommand performs two tasks that
you should be aware of. First, it automatically generatesonepassword that is shared
by both accounts. This means that users who log into a cell with which their cell
has a trust relationship are seen as the same principal and share the same password.
Second, theregistry modify command generates a UNIX number that is shared by
all principals that are in a given foreign cell. This shared UNIX number helps prevent
collision between the UNIX numbers of local and foreign principals when objects on
a local machine are accessed.

Within the registry and for the purposes of network access, principals are identified
by a UUID that represents their fully qualified names; for example,/.../dresden.com/
dce/users/mahlerfor the principalmahler. However, the local operating system on
a local machine identifies principals by UNIX number. Because UNIX numbers are
not required to be unique across cells, it is possible for two principals from different
cells to have the same UNIX number. Thus, a foreign principal that is accessing files
in the local cell could have the same UNIX number as the local principal and be seen
by the local system as the owner of the local user’s files on the local machine.

Creating a UNIX number that is applied to every principal from a given cell that
accesses the local cell prevents this from occurring. However, you need to be aware
that, because the foreign users all have the same UNIX number, the very feature that
prevents them from accessing the local user’s files allows them to access each other’s
files. Because each user from the same foreign cell is seen as the same user, every file
on the local machine that is owned by a foreign user can be accessed by every other
foreign user from the same foreign cell.

542 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

33.1.4 Constraints on Transitive Trust Relationships

To prevent the widespread proliferation of trust relationships that could result in
unwieldy administrative burdens and weakened security, the DCE Security Service
imposes the following three rules on transitive trust relationships:

1. Any number of descendent cells can be traversed by a transitive trust relationship,
and any number of ancestor cells can be traversed by a transitive trust relationship.

2. No more than one direct trust peer relationship can be traversed by a transitive
trust relationship. (A direct trust peer relationship is a direct trust relationship
between cells that are neither ancestors nor descendants of each other in the
naming hierarchy.)

3. Once a hierarchical trust relationship traverses a direct trust ancestor and an
optional direct trust peer, it cannot traverse to an ancestor of the peer cell. In
other words, once a transitive trust path goes up and across, it cannot go up.

The ramifications of these rules are explained in the following paragraphs.

Rule 1:

Any number of descendent cells can be traversed in a hierarchical trust
relationship, and any number of ancestor cells can be traversed by a transitive
trust relationship.

For example, in Figure 33-2, peer Cells A and B have a direct trust relationship. Cell
A has a transitive trust relationship with cells B/C and B/C/D.

DCE 1.2.2 Administration Guide—Core Components 543

DCE Security Service

Figure 33–2. Direct and Transitive Trust Relationships

A B

C

Transitive trust relationships between
cell A and cells B/C and B/C/D

D

direct trust

direct trust

direct trust

The previous configuration also makes possible the transitive trust relationship between
B and cell B/C/D shown in Figure 33-3.

544 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

Figure 33–3. Cell Traversal in Transitive Trust Relationships

B

C
Transitive trust relationship
between cell B and cell B/C/D

D
B

 and D

Rule 2:

No more than one direct trust peer relationship can be traversed by a transitive
trust relationship.

For example, in Figure 33-4, cells A, B, and C are peer cells. Cell A has a direct trust
peer relationship with cell B, and cell B has a direct trust peer relationship with cell
C. Cell A does not have a transitive trust relationship with cell C because to do so
would traverse more than one direct trust peer relationship (A to B and B to C).

DCE 1.2.2 Administration Guide—Core Components 545

DCE Security Service

Figure 33–4. Limited Direct Trust Peer Traversal in Transitive Trust

A B C

No transitive trust relationship is possible between
cell A and cell C because that relationship must
traverse more than one direct trust link

direct direct

Note that it is not required to traverse a direct trust peer relationship to have a transitive
trust relationship. In Figure 33-5, no direct trust peer relationships are traversed. In
the figure, a transitive trust relationship exists between the following:

• B_Division and C_Division and C_organization

• C_Division and B_Division and B_organization

Figure 33–5. Transitive Trust Without Direct Trust Peer Traversal

C_Division

B_organization

A_Conglomerate

B_Division

C_organization

transitive trust

direct trustdirect trust

546 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

Rule 3:

Once a hierarchical trust relationship traverses a direct trust ancestor and a
direct trust peer, it cannot traverse to an ancestor of the cell.

For example, consider Figure 33-6. The A_Conglomerate cell hierarchy and the
B_Conglomerate cell are connected by direct trust relationships. Additionally, there is
a direct trust relationship between A_product in the A_Conglomerate hierarchy and
B_product in the B_Conglomerate hierarchy. In this configuration, no transitive trust
relationships are possible because they cannot traverse to an ancestor after traversing
a direct trust peer.

Figure 33–6. Limited Trust Traversal to Cell Ancestors

INVALID PATH

B_Company

B_engineering

B_product

A_Company

A_engineering

A_product

A_Conglomerate B_Conglomerate

The type of trust relationship shown in this figure might be used by two companies
that have a very limited agreement to cooperate on product development.

DCE 1.2.2 Administration Guide—Core Components 547

DCE Security Service

Figure 33-7 shows another transitive trust path.

Figure 33–7. Alternate Trust Traversal to Cell Ancestors

INVALID PATH

B_Company

B_engineering

B_product

A_Company

A_engineering

A_product

A_Conglomerate B_Conglomerate

In the path, the B_product cell has a transitive trust path up to its ancestor, B_Company,
and from B_Company to A_Company. But from A_company, the transitive trust
path cannot continue up to A_Company’s ancestor, although it can continue down
to A_Company’s descendants. Because this transitive trust relationship has traversed
up to a trust ancestor (B_Company) and across to a trust peer (A_Company), it cannot
then continue by going up to A_Company’s ancestor (A_Conglomerate). This type of
relationship might be used by two companies that have decided to combine operations
at a very high level.

Note that a principal accessing a foreign cell through transitive trust relationships is
not authenticated by each cell transited in the trust path, but only by the target cell
itself. The authentication service in a transited cell simply gives the principal a ticket

548 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

to the next cell in the path, stamping the ticket with the hierarchical name of the
transited cell, until the principal acquires a ticket to the target cell.

To determine whether or not to give a principal a ticket to the next cell in a transitive
trust path, the authentication service in each transited cell examines the ticket and
compares the last cell transited to the next cell in the path and applies the rules of
transitive trust described in this section. If the next cell to be transited is consistent
with a valid transitive trust path, then the authentication service gives the principal a
ticket to the next cell; otherwise, the authentication service refuses to issue a ticket.

33.2 Creating Trust Relationships

To create peer-to-peer relationships, follow these steps:

1. Run theregistry connect command to create cross-cell authentication accounts
(an account in your cell’s registry and another account in the foreign cell’s
registry).

2. Optionally, use theaccount modify command to fine tune the attributes of the
account, which were assigned by default when the account was created. For
example, the account’s expiration date (expdate attribute) defaults tonone. You
may want to enter a date to ensure that the account will be actively renewed after
a period of time.

3. Ensure that the system administrator in the foreign cell changes theacctvalid flag
of the account that represents your cell toyesin order to indicate that the account
is valid. If one or both accounts are invalid, no cross-cell communications can
take place.

33.2.1 Command Options for the registry connect Command

When you use theregistry connect command, you must supply the fully qualified
name of the foreign cell with which you will establish a peer-to-peer relationship.
This name is stripped of the full pathname, prefixed withkrbtgt , and used as the
primary name of the account’s principal. For example, if you enter a cell name of/.../
dresden.com, the principal name iskrbtgt/dresden.com . The unchanged cell name
is stored as the principal’s full name.

DCE 1.2.2 Administration Guide—Core Components 549

DCE Security Service

Note thatregistry connect uses your local cell name for the primary name of the
local cell’s account principal. This name is stripped of the full pathname and prefixed
with krbtgt , just as the foreign cell name is.

You can supply the following options to theregistry connect command:

-acctvalid, -facctvalid
The setting that marks an account as being valid. A valid local account
(-acctvalid) allows users from the foreign cell to log in to nodes in the
local cell. A valid foreign account (-facctvalid)allows users from the
local cell to log in to nodes in the foreign cell. The default isinvalid
for each option.

-expdate The time and date that both the local and the foreign cell’s account
expires, and the peer-to-peer relationship is ended, prohibiting any
further authenticated communications between principals in the two
cells. To renew the account, change the date in this field. The default is
none.

-facct, -facctpw
The system administrator in the foreign cell must provide you with
the name and password of an account in the foreign cell. The foreign
account must have the permissions that are required to create principals
and accounts. You need the account to access the foreign registry in order
to create the account that represents your cell in the foreign account’s
registry. The lifetime and creation quota of this account should be limited
to only that necessary to complete the task.

-group, -fgroup
The group name to be associated with the account in the local cell
(-group) and the foreign cell (-fgroup). These groups have no meaning
for the accounts and are not associated with any users in the foreign
or local cell. You must enter them because it is a requirement of the
registry that all accounts be associated with groups. If the group does
not exist, it will be created.

-mypwd Theregistry connectcommand does not prompt you for a password for
the accounts that you are creating; it generates this password randomly.
However, you must supply your password with themypw option as to
validate your identity.

-org, -forg The organization name to be associated with the account in the local
cell (-org) and the foreign cell (-forg). These organizations have no

550 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

meaning for the accounts and are not associated with any users in the
foreign or local cell. You must enter them because it is a requirement
of the registry that all accounts be associated with organizations. If the
organization does not exist, it will be created.

33.2.2 Creating Cross-Cell Authentication Accounts Example

The following sampleregistry connect command is used to create an account for
the foreign cell identified by/.../dresden.com. The local account is associated with
the group namedcell_group_local, the organization namedcell_group_dres, and the
organization namedcell_org_dres. The expiration date for the accounts is allowed to
default tonone.

dcecp> registry connect /.../dresden.com -facct cell_log -facctpw music \

>-group cell_group_local -fgroup cell_group_dres \

>-org cell_org_local -forg cell_org_dres -mypwd cell_admin

dcecp>

33.2.3 The Accounts Created by the registry connect Command

The accounts and principals that are created by theregistry connect command are
given default attribute values listed in Table 33-1. These attributes apply to all foreign
principals when they access objects in your cell. Likewise, the attributes of the account
created for your cell in the foreign cell apply to all principals in your cell when they
access objects in the foreign cell.

DCE 1.2.2 Administration Guide—Core Components 551

DCE Security Service

Table 33–1. Default Attribute Values of Cross-Cell Authorization Principals and Accounts

Information Meaning

Account Principal Name The local cell name for the local cell’s account,
or foreign cell name for the foreign cell’s
account stripped of its full pathname and
prefixed withkrbtgt .

fullname The cell’s pathname.

quota Set tonone. This quota applies to all principals
who use the cross-cell authentication accounts
to access objects in foreign cells. For example,
if you change the object creation quota to 10,
the total number of objects that can be created
in your cell’s registry by all foreign users who
use the account to access your cell cannot
exceed 10. It is not 10 per foreign principal.
The object creation quota that is set for your
cell’s account in the foreign cell places the
same restriction on the number of objects that
your cell’s principals can create in the foreign
cell’s registry.

description, home, shell Set to blank.

server Set toyes; that is, the account is a server that
can engage in authenticated communications.

client Set tono.

pwdvalid Set toyes (valid).

acctvalid Set tono (not valid) unless the-acctvalid and -
facctvalid options are used.

postdatedtkt Set toyes; that is, the account can be issued
tickets with a start time in the future.

forwardabletkt Set toyes ; that is, the account can be issued a
new ticket-granting ticket with a network
address that is different than the present
ticket-granting ticket.

552 DCE 1.2.2 Administration Guide—Core Components

Administering a Multicell Environment

Information Meaning

renewabletkt Set toyes; that is, the account’s tickets can be
renewed.

proxiabletkt Set toyes; that is, the account can be issued
tickets with a different network address than
the present tickets.

dupkey Set toyes; that is, the account’s ticket can have
duplicate keys.

goodsince Set to the date that the account was created.

maxtktlife Set to the registry policy.

maxtktrenew Set to the registry policy. Themaxtktrenew
attribute is not currently used by the DCE; any
use of this option is unsupported at the present
time.

33.3 Modifying Cross-Cell Authentication Accounts

You can change the account that is created by theregistry connect command at any
time using the standarddcecp accountoperations. However, you should be aware of
the following cautions.

Never set the account’spwdvalid attribute tono (invalid). For standard accounts,
setting the attribute tono causes the user to be prompted to change their passwords at
the next login. Passwords for cross-cell authentication accounts, however, are shared
by the authentication services in two cells. If you change one, this synchronization is
destroyed and cross-cell communications end. If you want to change the passwords
that are shared by the authentication services, you must rerun theregistry connect
command to recreate the accounts and create the properly synchronized passwords.

Generally, do not delete the accounts or the account’s principals unless you are
breaking the peer-to-peer relationship with the cell. If one of the accounts is deleted,
you must run theregistry connect command to recreate both accounts and restore
the peer-to-peer relationship.

DCE 1.2.2 Administration Guide—Core Components 553

Chapter 34
Viewing Registry Information

Using dcecp, you can display information about the following security objects:

• Principals

• Groups

• Organizations

• Accounts

• The registry

• The xattrschema object

• ACLs

• Keytab files

The following dcecpoperations provide these displays:

• The catalog command displays the names of all the specified objects.

• The list command displays the names of the members of the specified groups or
organizations or of the specified key table.

DCE 1.2.2 Administration Guide—Core Components 555

DCE Security Service

• The show command displays information about a specific instance of an object.

This chapter describes how to display operation available for all security objects except
the registry object, which is described in Chapter 36.

34.1 Displaying Account Information

Use thedcecp account catalogandaccount showcommands to display information
about accounts. When you use theaccount showcommand, you must supply the name
of the account’s principal to specify the account to display. You can supply multiple
principal names by enclosing them in braces and separating them with spaces.

To display all accounts in the registry database in alphabetic order with names prefixed
by the cell name, enter

account catalog

To display all accounts in the registry database in alphabetic order with namesnot
prefixed by the cell name, enter

account catalog -simplename

To display all attributes for a named principal’s account, enter

account showprincipal_name

To display all policies for a named principal’s account, enter

account showacct_name-policy

To display all attributes and all policies for a named principal’s account, enter

556 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

account showacct_name-all

The following example shows theaccount catalog command used without the
-simplenameoption:

dcecp> account catalog

/.../dresden.com/bach

/.../dresden.com/bin

/.../dresden.com/brahms

/.../dresden.com/britten

/.../dresden.com/cell_admin

/.../dresden.com/daemon

/.../dresden.com/dce-ptgt

/.../dresden.com/dce-rgy

/.../dresden.com/mahler

/.../dresden.com/nobody

/.../dresden.com/root

/.../dresden.com/uucp

/.../dresden.com/hosts/pmin17/cds-server

/.../dresden.com/hosts/pmin17/gda

/.../dresden.com/hosts/pmin17/self

/.../dresden.com/krbtgt/dresden.com

dcecp>

The following example shows theaccount show command used to display the
attributes and associated with the account formahler:

dcecp> account show mahler{acctvalid yes}

{client yes}

{created

/.../dresden.com/cell_admin 1994-06-15-18:31:08.000+00:00I-- ---}

{description {}}

{dupkey no}

{expdate 1995-06-16-00:00:00.000+00:00I-- ---}

{forwardabletkt yes}

{goodsince 1994-06-15-18:31:05.000+00:00I-- ---}

{group users}

DCE 1.2.2 Administration Guide—Core Components 557

DCE Security Service

{home /}

{lastchange

/.../dresden.com/cell_admin 1994-06-16-12:21:07.000+00:00I-- ---}

{organization users}

{postdatedtkt no}

{proxiabletkt no}

{pwdvalid yes}

{renewabletkt yes}

{server yes}

{shell {}}

{stdtgtauth yes}

dcecp>

Note that, if the policy defined for the account is not actually in effect because it is
overridden by the registry policy, the policy is followed by theeffective tag and the
actual value in effect.

34.2 Displaying Group and Organization Information

Use thedcecp group catalog, group show, and group list commands to display
information about groups and thedcecp organization catalog, organization show,
andorganization list commands to display information about organizations. When you
use thegroup list, group show, organization list, andorganization showcommands,
you must supply the name of the group or organization to display. You can supply
multiple names by enclosing them in braces and separating them with spaces.

To display all groups or organizations in the registry database in alphabetic order with
names prefixed by the cell name, enter

group catalog

or

organization catalog

558 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

To display all groups or organizations in the registry database in alphabetic order with
namesnot prefixed by the cell name, enter

group catalog -simplename

or

organization catalog -simplename

To display all members of a specified group or organization in alphabetical order with
names prefixed by the cell name, enter

group list group_name

or

organization list organization_name

To display all members of a specified group or organization in alphabetical order with
namesnot prefixed by the cell name, enter

group list group_name-simplename

or

organization list organization_name-simplename

To display all attributes for a group or organization, enter

group show group_name

DCE 1.2.2 Administration Guide—Core Components 559

DCE Security Service

or

organization showorganization_name

To display all extended attribute instances attached to a group or organization, enter

group show group_name-xattrs

or

organization showorganization_name-xattrs

To display all regular attributes and all extended attributes for a group or organization,
enter

group show group_name-all

or

organization showorganization_name-all

The following example shows thegroup catalog command used without the
-simplenameoption:

dcecp> group cat

/.../dresden.com/nogroup

/.../dresden.com/system

/.../dresden.com/daemon

/.../dresden.com/uucp

/.../dresden.com/bin

/.../dresden.com/kmem

/.../dresden.com/mail

560 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

/.../dresden.com/tty

/.../dresden.com/none

/.../dresden.com/tcb

/.../dresden.com/acct-admin

/.../dresden.com/subsys/dce/sec-admin

/.../dresden.com/subsys/dce/cds-admin

/.../dresden.com/subsys/dce/dts-admin

/.../dresden.com/subsys/dce/cds-server

/.../dresden.com/subsys/dce/dts-servers

/.../dresden.com/users

dcecp>

The following example shows the attributes of the group namedusers_temporary:

dcecp> group show users_temporary

{alias no}

{gid 5211}

{uuid 0000145b-9362-21cd-a601-0000c08adf56}

{inprojlist no}

{fullname {temporary users}}

dcecp>

Note, in the preceding example, the line that says{alias no}. This indicates that the
nameusers_temporary is the primary name, not an alias name. For an alias, this line
would read{alias yes}.

The following group list command displays the members of the groupsymphonists:

dcecp> group list symphonists

/.../dresden.com/bach

/.../dresden.com/britten

/.../dresden.com/mahler

dcecp>

DCE 1.2.2 Administration Guide—Core Components 561

DCE Security Service

34.3 Displaying Principal Information

Use the dcecp principal catalog and principal show commands to display
information about principals. When you use theprincipal show command, you must
supply the name of the principal to display. You can supply multiple principal names
by enclosing them in braces and separating them with spaces.

To display all principals in the registry database in alphabetic order with names
prefixed by the cell name, enter

principal catalog

To display all principals in the registry database in alphabetic order with namesnot
prefixed by the cell name, enter

principal catalog -simplename

To display all attributes for a named principal, enter

principal show principal_name

To display all extended attribute instances attached to a principal, enter

principal show principal_name-xattrs

To display all regular attributes and all extended attributes for a principal, enter

principal show principal_name-all

The following example shows theprincipal catalog used with the-simplename
option:

562 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

dcecp> principal catalog -simplename

bach

bin

brahms

britten

cell_admin

daemon

dce-ptgt

dce-rgy

mahler

nobody

root

uucp

cds-server

dcecp>

The following example shows theprincipal show command used to display
information about the principalmahler:

dcecp> principal show /.:/mahler

{fullname {Gustav Mahler}}

{uid 30014}

{uuid 0000753e-f51f-2e0e-b000-0000c08adf56}

{alias no}

{quota unlimited}

{groups {symphonists composers}}

dcecp>

All the information listed by theprincipal show command is information created
when the principal was added to the registry, except the line for groups. This line lists
the groups in which the principal is a member.

34.4 Displaying xattrschema Information

Use thedcecp xattrschema catalogand xattrschema showcommands to display
information about the extended attribute types. Note that, to see instances of an

DCE 1.2.2 Administration Guide—Core Components 563

DCE Security Service

extended attribute attached to a principal, use the-xattr option with theprincipal ,
group, or organization showcommands.

The xattrschema catalog command displays the names of the extended attribute
objects defined in a named schema. When you use this command, you must specify
the name of the schema for which to display extended attributes. For the registry
database, this name is/.:/sec/xattrschema. Your site must supply you with the name
of the schema.

The xattrschema showcommand displays the attributes of named schemas in either
the registry schema or a schema in use at your site. When you use this command , you
must specify the name of the extended attribute type for which to display information.
You can supply multiple names by enclosing them in braces and separating them with
spaces.

To display the names of all attribute types in the registry database in alphabetic order
with names prefixed by the cell name, enter

xattrschema catalog /.:/sec/xattrschema

To display all attribute types in the registry database in alphabetic ordernot prefixed
by the cell name, enter

xattrschema catalog /.:/sec/xattrschema -simplename

To display attributes in a schema other than the registry, replace/.:/sec/xattrschema
with the fully specified name of the other schema.

To display the attributes of a named extended attribute type, enter

xattrschema showattr_name

The following example, lists the names of all extended attributes in the registry prefixed
by the cell name:

564 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

dcecp> xattrschema catalog /.:/sec/xattrschema

dcecp>

/.../dresden/sec/xattrschema/pre_auth_req

/.../dresden/sec/xattrschema/pwd_val_type

/.../dresden/sec/xattrschema/pwd_mgmt_binding

/.../dresden/sec/xattrschema/X500_DN

/.../dresden/sec/xattrschema/X500_DSA_Admin

/.../dresden/sec/xattrschema/disable_time_interval

/.../dresden/sec/xattrschema/max_invalid_attempts

/.../dresden/sec/xattrschema/passwd_override

/.../dresden/sec/xattrschema/test_integer

dcecp>

The following example, list the attributes of the extended registry attribute named
test_integer:

dcecp> xattrschema show /.:/sec/xattrschema/test_integer

{aclmgr {principal {{query r} {update r} {test r} {delete r}}}}

{annotation {test_integer: encoding type integer}}

{applydefs yes}

{encoding integer}

{intercell reject}

{multivalued yes}

{reserved no}

{scope {}}

{trigbind {none {}}}

{trigtype none}

{unique no}

{uuid 5f439154-2af1-11cd-8ec3-080009353559}

dcecp>

34.5 Displaying ACL Information

Use thedcecp acl showcommands to display ACL entries for a named object.
When you use this command, you must specify the name of the object for which

DCE 1.2.2 Administration Guide—Core Components 565

DCE Security Service

to display ACL entries. You can supply multiple names by enclosing them in braces
and separating them with spaces.

If this command is not able to determine the name of the object, it will display the
object’s UUID.

To display the ACL entries for a specified object, enter

acl showobject_name

To display the ACL’s default cell, enter

acl showobject_name-cell

To display the ACL managers supported by an object, enter

acl showobject_name-managers

The following example displays ACL entries for the object namedhosts:

dcecp> acl show /.:/hosts

{unauthenticated r--t---}

{user cell_admin rwdtcia}

{user hosts/absolut/cds-server1 rwdtcia}

{user root rwdtcia}

{group subsys/dce/cds-admin rwdtcia}

{group subsys/dce/cds-server rwdtcia}

{any_other r--t---}

dcecp>

566 DCE 1.2.2 Administration Guide—Core Components

Viewing Registry Information

34.6 Displaying keytab Information

Use thedcecp keytab catalog, keytab list, and keytab show commands to display
information about accounts. When you use thekeytab catalog command, you must
supply the name of the host for which to display keytab files. When you use the
keytab list or keytab showcommand, you must supply the name of thedced object
for which to display keytab information. You can supply multiple names to either
command by enclosing them in braces and separating them with spaces.

To display the names of all keytab files on a specified host with names prefixed by
the cell name, enter

keytab cataloghost_name

If you do not supplyhost_name, the display lists keytab files on the current host.

To display the names of all keytab files on a specified host with namesnot prefixed
by the cell name, enter

keytab cataloghost_name-simplename

To display a list of all principals for which there are entries in a specified keytab file,
enter

keytab list file_name

To display all principals for which there are entries in a named keytab file, enter

keytab showfile_name

The information displayed includes only the principal name.

To display the local names of a specified key file, enter

DCE 1.2.2 Administration Guide—Core Components 567

DCE Security Service

keytab showdced_object_name-entry

To display all entries in a key file, including the keys, enter

keytab showdced_object_name-members

The following example shows the entries in the keytab file namedsvr_3:

dcecp> keytab show /.:/hosts/music/config/keytab/svr_3 -members

{brahms des 1}

{britten plain 3}

{mahler des 2}

dcecp>

568 DCE 1.2.2 Administration Guide—Core Components

Chapter 35
Maintaining Policies and Properties

Registry policies are attributes that can be set registry wide. To provide a finer lever
of control, policies can also be set for individual organizations and accounts. An
organization’s or account’s policies can override the registry default policies if the
organization’s or account’s policies are more restrictive.

Registry properties are attributes that apply to the principals, groups, and organizations
created in the registry. They cannot be set for individual organizations or accounts.
Properties regulate such things as the range of numbers that can be used for UNIX
IDs and whether encrypted passwords are displayed.

You can set both polices and properties with thedcecp registry modify command.
In addition, you can set policies for an individual organization or account with the
dcecp organization modifyanddcecp account modifycommands. In all commands,
policies and properties to be set are supplied as attributes in standarddcecp attribute
lists with the-changeoption or as attribute options.

This chapter first describes policies and then properties.

DCE 1.2.2 Administration Guide—Core Components 569

DCE Security Service

35.1 Policies

You can set policies for the following:

• The registry as a whole with thedcecp registry modify command. The policies
thus apply to all principals, groups, and organizations unless a stricter policy is
set for specific organizations or accounts.

• Specific organizations with thedcecp organization modifycommand.

• Specific accounts with thedcecp account modifycommand.

There are two types of policies: standard policy and authentication policy.

35.1.1 Standard Policy

Standard policy regulates such things as account and password lifetimes and password
format. It can be set for the registry and for specific organizations. The standard
policies you can set are described in the following subsections.

Note: In addition to defining the password policies described in this section, you
can exert additional control in such areas as password formats, password
generation, invalid login handling, and expired password handling by attaching
ERAs to principals. See Chapter 30 for more information.

35.1.1.1 Account Lifespan

The account lifespan that you set determines the period during which the accounts for
a specific organization or the registry as a whole are valid. After the period of time
passes, the accounts become invalid and must be recreated.

You define the account lifespan as thedcecp acctlifeattribute in the following form:

acctlife {time | unlimited}

570 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

where time is a number that indicates the number of days the account is valid, and
unlimited specifies an unlimited lifespan.

An account’s lifespan is also controlled by the account expiration date (expdate
attribute) that you set when you use thedcecp account createor account modify
command to create or change an account. If you set an account expiration date that is
in conflict with the account lifespan policy, the stricter setting applies. For example, if
you set the standard policy account lifespan to 40 days, and then you set an account
expiration date to the next day, the account expires on the next day because that is
the stricter setting.

Note: You can control the validity of accounts at a more immediate level by using the
dcecp account modifycommand to mark the accounts as invalid (acctvalid
attribute).

35.1.1.2 Password Lifespan

The password lifespan specifies the period of time before account passwords for a
specific organization or the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It
is possible, however, to override this policy for a user such ascell_admin, in order
to prevent the cell administrator from being locked out of the system by an expired
password. You do this by attaching an instance of thepasswd_overrideERA to the
principal. See Chapter 30 for information on how to do this.

You define the password lifespan as thedcecp pwdlifeattribute in the following form:

pwdlife { time | unlimited}

wheretime is a number that indicates the number of days the password is valid, and
unlimited specifies an unlimited lifespan.

You can also set the exact date passwords expire by using the password expiration
date policy (pwdexpdate attribute).

DCE 1.2.2 Administration Guide—Core Components 571

DCE Security Service

35.1.1.3 Password Expiration Date

The password expiration date sets the exact date on which account passwords for a
specific organization or for the registry as a whole expire.

Generally, DCE security disables login for users whose passwords have expired. It
is possible, however, to override this policy for a user such ascell_admin in order
to prevent the cell administrator from being locked out of the system by an expired
password. You do this by attaching an instance of thepasswd_overrideERA to the
principal. See Chapter 30 for information on how to do this.

You define the password expiration date as thedcecp pwdexpdateattribute in the
following form:

pwdexpdate {date| none}

wheredateis the date the password expires inyyyy-mm-ddformat, andnonespecifies
that the password has no expiration date.

You can also set a period of time after which a password expires with the password
lifespan policy (pwdlife attribute).

35.1.1.4 Password Format

The password format policies apply to a specific organization or the registry as a
whole. They determine the following:

• The minimum length of passwords, defined by thedcecp registry modify
pwdminlen attribute in the form

pwdminlen integer

Passwords cannot consist of fewer characters than the number you enter for
integer. If you specify0 (zero), no minimum length is in effect.

572 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

• Whether or not passwords can consist entirely of spaces, defined by thedcecp
pwdspacesattribute in the form

pwdspaces {yes | no}

If you specifyno, passwords cannot consist of all spaces.

• Whether or not a password can consist entirely of alphanumeric characters, defined
by thedcecp pwdalphaattribute in the form

pwdalpha {yes | no}

If you specifyno, passwords must contain at least one non-alphanumeric character.

Note: You can exert additional control over password formats by attaching ERAs to
principals. For information on how to do this, see Chapter 30.

35.1.2 Authentication Policy

Authentication policy regulates ticket lifetimes. You can set authentication policy for
the registry as a whole, using thedcecp registry modify command, and for individual
accounts by using thedcecp account modifycommand. The authentication policies
you can set are described in the following subsections.

Note: Be aware that, in addition to the authentication policies described in
this section, you can also control preauthentication policy for a principal
by attaching an instance of thepre_auth_reqERA to the principal. See
Chapter 30 for a general discussion of preauthentication and information on
preauthentication administration.

35.1.2.1 Maximum Ticket Renewable Time

Note: Renewable ticket functionality is not currently used by DCE RPC when
refreshing service tickets. However, it is supported by the DCE Security Server

DCE 1.2.2 Administration Guide—Core Components 573

DCE Security Service

and is useful for Kerberos V5 applications that use the DCE Security Server
as a KDC.

The maximum ticket renewable time (maxtktrenew attribute) that you set determines
the maximum amount of time in hours before a principal’s ticket-granting ticket expires
and the time the principal must log in again to reauthenticate and obtain another ticket-
granting ticket. The shorter you make the maximum ticket renewable time, the greater
the security of the system. However, since users must log in again to renew their
ticket-granting ticket, the time needs to take into consideration user convenience and
the level of security that your cell requires.

You define maximum ticket renewable time with thedcecp maxtktrenewattribute in
the following form:

maxtktrenew hours

wherehoursis a number that indicates the number of hours before a principal’s ticket-
granting ticket expires.

Note that you can set this time for individual accounts by using theaccount modify
command.

35.1.2.2 Maximum Ticket Lifetime

The maximum ticket lifetime (maxtktlife attribute) is the maximum amount of time
in hours that a ticket issued to a principal is valid. When a client requests a ticket to a
server, the lifetime that is granted to the ticket takes into account the maximum ticket
lifetime that is set for both the server and the client. The lifetime that is granted will
not exceed the shorter of the server’s and client’s maximum ticket lifetime.

You define maximum ticket lifetime with thedcecp maxtktlife attribute in the
following form:

maxtktlife hours

574 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

wherehours is a number that indicates the number of hours that a ticket issued to a
principal is valid.

The shorter you make the maximum ticket lifetime, the greater the security of
the system. However, extremely frequent renewal can cause processing overhead.
The maximum ticket lifetime that you set needs to take into consideration system
performance and the level of security that you require.

Note that you can set this time for individual accounts by using theaccount modify
command.

35.1.3 Handling Conflicting Policies

Different standard and authentication policies can be in effect for the registry as
a whole and for individual organizations (for standard policy) and accounts (for
authentication policy). If the policy that is set for the registry as a whole differs
from the policy that is set for an individual organization or account, the stricter policy
applies. For example, suppose registry policy specifies a minimum password length of
six characters and policy for the organization namedclassicspecifies eight characters.
If you create the accountbach cantata classic,the stricter policy (in this case, the
organization policy) applies, and the account password must be at least eight characters
long. Table 35-1 lists the stricter policy for each policy type.

Table 35–1. Stricter Standard Policies

For This Type of Policy... This Is the Stricter Policy...

Password expiration date The shorter expiration period.

Password lifespan The shorter lifespan.

Account lifespan The shorter lifespan.

Password length The greater length.

Password consisting of all spaces The password cannot consist of all
spaces; it must include some characters

Password consisting of all
alphanumerics

The password cannot consist of all
alphanumerics; it must include some
nonalphanumeric characters

DCE 1.2.2 Administration Guide—Core Components 575

DCE Security Service

For This Type of Policy... This Is the Stricter Policy...

Maximum ticket renewable The shorter time (Note: Renewable
ticket functionality is not currently used
by DCE RPC when refreshing service
tickets. However, it is supported by the
DCE Security Server and is useful for
Kerberos V5 applications that use the
DCE Security Server as a KDC.)

Maximum ticket lifetime The shorter time.

When the registry is created, standard policies are by default at their most permissive
state; that is, the password expiration date isnone, password and account lifespans are
unlimited , the minimum password length is0, and passwords can consist of all spaces
and all alphanumerics. The maximum ticket lifetime is set to 10 hours. (Maximum
ticket renewable is not currently used.) To implement stricter policies, you must use
the registry modify command.

35.1.4 The Effects of Changes on Existing Policies

Except for the password format policies described in Section 35.1.1.4, policy changes
affect all existing accounts and all accounts that you create after the change.

Changes to password format policies, such as password length, whether passwords
can consist of all spaces, and whether passwords can consist of all alphanumeric
characters, affect only passwords for those accounts that are created after the policy
is changed. The changes have no effect on existing passwords. For example, if you
change the minimum password length policy to enforce a longer length password,
existing passwords that are shorter than the length specified by the new policy are
unaffected. They do not need to be changed, but any new passwords that are created
must adhere to the new policy. However, the next time you change an existing
password, the longer length policy is enforced.

35.1.5 Displaying and Setting Standard and Authentication Policies

To display policy:

576 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

• For the registry as a whole, use thedcecp registry showcommand with the
-policies option.

• For an individual organization or account, use thedcecp organization show
command with the-policies option (for standard policies) or thedcecp account
show command with the-policies option (for authentication policies).

To set policy:

• For the registry as a whole, use thedcecp registry modify command. The
following sample command uses thepwdlife option to set the password lifespan
policy for the registry as a whole to 180 days:

dcecp> registry modify -pwdlife 180

dcecp>

• For an individual organization or account, use thedcecp organization modify
command for standard policies or thedcecp account modify command for
authentication policies. The following sample command uses the-pwdlife attribute
option to set the password lifespan policy for the organizationclassicto unlimited :

dcecp> organization modify classic -pwdlife unlimited

dcecp>

Note that the previous examples all use attribute options. You can also set policy by
using thedcecp registry modify, dcecp account modify, and dcecp organization
modify commands with the-changeoption and attribute lists. For example, to use
an attribute list to set the password lifespan policy for the organizationclassic to
unlimited , the command would be as follows:

dcecp> organization modify classic -change {pwdlife unlimited}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 577

DCE Security Service

35.2 Properties

The dcecp registry modify command sets properties for the registry as a whole. The
properties that you can set are described in the following subsections.

35.2.1 Default Ticket Lifetime Property

The default ticket lifetime is the default lifetime in hours for tickets that are issued to
principals in the registry.

You set default ticket lifetimes with thedcecp deftktlife attribute in the following
form:

deftktlife hours

wherehoursa number indicating the number of hours in the lifetime.

35.2.2 Hidden Password Property

The hidden password property determines whether encrypted passwords are displayed
or not. You set the hidden password property with thedcecp hidepwdattribute in the
following form:

hidepwd {yes | no}

where yes displays an * (asterisk) in place of the encrypted password in command
output and in files where passwords are displayed, andno displays the hidden
password.

578 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

35.2.3 Minimum Group ID Property

The minimum group ID property is the starting point for group IDs that are
automatically generated by the DCE Security Service when a group’s account is added
to the registry. (You can explicitly enter a lower group ID than this number; it applies
only to automatically generated numbers.)

You set the minimum group ID property with thedcecp mingid attribute in the
following form:

mingid integer

integer is the starting ID number.

35.2.4 Minimum Organization ID Property

The minimum organization ID property is the starting point for organization IDs that
are automatically generated by the security service when an organization’s account
is added to the registry. (You can explicitly enter a lower organization ID than this
number; it applies only to automatically generated numbers.)

You set the minimum organization ID property with thedcecp minorgid attribute in
the following form:

minorgid integer

where integer is the starting ID number.

35.2.5 Minimum UNIX ID Property

The minimum UNIX ID property is the starting point for UNIX IDs that are
automatically generated by the security service when a principal’s account is added

DCE 1.2.2 Administration Guide—Core Components 579

DCE Security Service

to the registry. (You can explicitly enter a lower UNIX ID than this number; it applies
only to automatically generated numbers.)

You set the minimum organization ID property with thedcecp minuid attribute in the
following form:

minuid integer

where integer is the starting ID number.

35.2.6 Maximum UNIX ID Property

The maximum UNIX ID property (maxuid attribute) lets you set the highest number
that can be supplied as a UNIX ID when the accounts for principals are created. This
maximum applies to both the system-generated and user-entered UNIX IDs.

You set the maximum UNIX ID property with thedcecp maxuid attribute in the
following form:

maxuid integer

where integer is the starting UNIX ID.

35.2.7 Minimum Ticket Lifetime Property

The minimum ticket lifetime is the minimum amount of time in minutes before the
principal’s ticket must be renewed. This renewal is performed automatically with
no intervention on the part of the user. The shorter you make the minimum ticket
lifetime, the greater the security of the system. However, extremely frequent renewal
can degrade system performance. The minimum ticket lifetime that you set needs to
take into consideration system performance and the level of security that your cell
requires.

580 DCE 1.2.2 Administration Guide—Core Components

Maintaining Policies and Properties

You set the minimum ticket lifetime with thedcecp mintktlife attribute in the
following form:

mintktlife integer

whereintegeris a number that indicates the number of minutes in the minimum ticket
lifetime.

The minimum ticket lifetime can be set only as a registry property. It cannot be set for
individual accounts. (Contrast this with the maximum ticket lifetime property, which
is set with thedcecp registry modify or account modify commands.)

35.2.8 Displaying and Setting Properties

To display registry properties, use thedcecp registry showcommand.

To set registry properties, use thedcecp registry modify command. The following
sample command uses themaxuid option to change the the maximum UNIX ID
property to 67899:

dcecp> registry modify -maxuid 67899

dcecp>

Note that the previous example uses an attribute option. You can also set properties
by using thedcecp registry modify command with the-changeoption and attribute
lists. For example, to use an attribute list to set the maximum UNIX ID property to
67899, the command would be

dcecp> registry modify -change {maxuid 67899}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 581

Chapter 36
Performing Routine Maintenance

This chapter describes security maintenance procedures that should be performed on
a regular basis, such as

• Adding new users to the registry

• Creating overrides for individual machines

• Changing the master key

• Backing up and restoring the database

• Updating the/etc/passwdand/etc/group files so that they are consistent with the
registry

36.1 Adding Accounts

To add new user accounts to the registry, you must have the appropriate permissions
to the registry (see Chapter 41). Once you have the appropriate permissions, you can
proceed as follows to add accounts:

DCE 1.2.2 Administration Guide—Core Components 583

DCE Security Service

1. If the principal to be used in the account does not already exist, execute the
principal create command to add the principal.

2. Execute thegroup create command to add the group to be used in the account
if this group does not already exist.

3. Execute theorganization createcommand to add the organization to be used in
the account if this organization does not already exist.

4. Finally, execute theaccount createcommand to add the account.

36.2 Overriding Entries in the Local Registry

You can override registry entries for local machines. By using overrides, you can,
for example, prevent individuals and groups from logging into a particular machine,
establish local root passwords, and tailor local user environments. The override
information is in effect for the local machine only and has no effect on the account
information that is stored in the registry.

The override mechanism provides a high level of local autonomy and allows individual
users to control their own machines. For example, an administrator who is responsible
for a group of machines can use the override facility to restrict access to those
machines. The administrator can allow access to specific groups, or the administrator
can allow access to everyone except specific groups or principals.

36.2.1 How Overrides Work

Thepasswd_overrideadministrative file that is stored in the local machine’sdcelocal/
etc/security directory contains override information. By using this file, you can enter
overrides for the following:

• Passwords

• GECOS information

• Home directories

• Login shells

• Group memberships

584 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

• UNIX IDs for principals

The override information that you enter is in effect only for the local machine, which
is the machine on which thepasswd_overridefile is stored. When a user logs into a
machine with an override file, any information for the user’s account in the override
file replaces the pertinent information obtained from the registry.

For example, assume that the registry account forbach specifies a Korn shell at login.
Sincebach normally logs into a machine that can run a Korn shell, this is fine for a
majority of situations. However,bach occasionally works for another department and
logs into a machine that cannot run a Korn shell. To accommodatebach’s needs, you
can create an override file on the machine that cannot run the Korn shell. The override
can specify a Bourne login shell. Then, ifbach logs into the machine that can run a
Korn shell, registry data is used and a Korn shell is invoked. Whenbach logs into
the machine that cannot run a Korn shell, override data is used and a Bourne shell is
invoked.

36.2.2 The passwd_override File Format

Entries in thepasswd_overridefile have the following format:

principal_name:passwd:principal_uid:group_uid:GECOS:home_dir:shell

where:

principal_name
A keyfield that contains a principal name that identifies the principal to
whose account the override applies. Enterprincipal_nameto apply the
override only to the account for the principal’s primary name and not
to any accounts for the principal’s aliases.

You must enter one of the keyfields (principal_name, principal_uid, or
group_uid) to identify the account(s) to which the override applies.

passwd The encrypted password. If you specify an override, the password that
you enter here is in effect for this local machine only.

You can also specifyOMIT in the passwdfield to disallow login on
the local machine. The use ofOMIT in conjunction with an option to

DCE 1.2.2 Administration Guide—Core Components 585

DCE Security Service

the passwd_exportcommand prevents the inclusion of the user in the
password file created bypasswd_export. (See Section 36.2.8.)

principal_uid
The principal_uid field, which contains a UNIX ID that specifies the
local identity of a principal, can function as a keyfield when the
principal_namekeyfield is not entered, or as a field containing an
override when entered in conjunction withprincipal_name.

Enter principal_uid and notprincipal_namewhen you want to apply
the overrides to all of a principal’s accounts, including any accounts for
the principal’s aliases. Theprincipal_uid keyfield is especially useful
for overrides toroot. For example, ifroot has an alias ofvirtuoso, an
override that is keyed by principal name applies only when root logs in
asroot. An override that is keyed by root’sprincipal_uid applies when
root logs in asroot, asvirtuoso, and under any other alias.

Enterprincipal_uidandprincipal_nameto override the UNIX ID of the
named principal.

group_uid The group_uid field, which contains a group UNIX ID, can function
as a keyfield when no other keyfields are entered, or as a field
containing an override when entered in conjunction withprincipal_name
or principal_uid.

Entergroup_uidand no other keyfield (principal_nameor principal_uid)
to apply the override to all members of the group that is identified by
group_uid. In this instance, thegroup_uidfield functions as a keyfield,
identifying the accounts to which to apply the overrides; that is, accounts
whose principal is a member of the specified group.

Entergroup_uidandprincipal_nameto change the group of the principal
that is identified byprincipal_nameto the group that is identified by
group_uid. The change applies only to the account for the principal’s
primary name, not to any accounts for the principal’s aliases. Enter
group_uidand principal_uid to apply the group override to all of the
principal’s accounts, including any for the principal’s aliases. In these
instances, thegroup_uidfield functions as a field that supplies override
information, not as a keyfield.

GECOS The account’s GECOS field. If you specify an override, it is reflected
in the information that is displayed by the UNIXfinger command.

586 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

home_dir The account’s home directory. If you specify an override, the directory
that you specify is the account’s home directory on this machine only.

shell The shell that is invoked when the account logs in. If you specify an
override, the shell that you specify is invoked at login to this machine.

36.2.3 The group_override File Format

This section explains thegroup_override file.

36.2.3.1 Description

The /opt/dcelocal/etc/group_override administrative file lets you override the UNIX
group ID for a group similar to the way in which thepasswd_overridefile permits
overriding information in the network registry database.

The group_override file is stored on each machine. Any changes you make to it are
in effect for the local machine only; they have no effect on the centralized registry.
You might find working with filegroup_override especially useful in overriding the
default group definitions supplied with the registry if they do not match your local
UNIX system.

36.2.3.2 File Format

The format of the entries in filegroup_override is similar to the format of the entries
in the UNIX group file. This format is

group_name:passwd:group_uid:members

In this entry,group_nameandgroup_uidare keyfields. You must enter one to identify
the group to which the override applies. The keyfield is used to perform a lookup in
the override file when you use thepasswd_exportcommand. The lookup is performed
in order as the entries are specified in an override file: first by group name, then by

DCE 1.2.2 Administration Guide—Core Components 587

DCE Security Service

group UNIX ID. If you specify both keyfields in an override entry, the group name is
used as the lookup key; subsequent fields are used as overrides.

36.2.3.3 Field Descriptions

The following list describes each entry in the filegroup_override:

group_name A keyfield that contains the name that identifies the group to which the
override applies.

passwd This field specifies the encrypted password. If you specify an override
in this field, the password you enter is in effect for this local machine
only.

The use of OMIT along with an option to thepasswd_export
command prevents the inclusion of this group in the group file created
by the passwd_export command. This effectively disallowsnewgrp
commands to this group on the local machine. (See Section 36.2.3.5 for
details.)

group_uid A UNIX group ID. This field can function as a keyfield when no
other keyfields are entered. It can also function as a field containing
an override when entered along withgroup_name. Thegroup_uidvalue
specifies the local override of the group ID supplied by the network
registry server.

members This field specifies a comma-separated list of members of the group.
The contents of this field will override information in the registry when
the passwd_exportcommand creates an/etc/group file. Note that, to
specify a null membership, as opposed to indicating that no override is
required, use an * (asterisk) for this field.

36.2.3.4 Leaving Fields Blank

If you do not want to override an item, leave its field blank, separating each blank
field with a : (colon). Note that, to override a group with a null membership list, enter
an asterisk for themembersfield.

588 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

36.2.3.5 UsingOMIT

If you specifyOMIT and issue apasswd_exportcommand with the-x option, then
the named group will not appear in the/etc/group file produced by thepasswd_export
command. Subsequent to this, users will not be able to issue anewgrp command to
this group on the local machine.

The ls command is likewise affected. For example, the following command accesses
the group file to obtain additional information about a group:

ls -lg

If the group is omitted, no group entry will exist and no information will be available.
For this reason, you should useOMIT to omit groups from file/etc/group only if
your user community is very large and either of the following conditions occur:

• The group file is taking up too much space.

• Group ID-to-name mapping is too slow (during anls -lg command, for example).

36.2.3.6 Examples

To override the group ID of groupkmem to be3, use the following entry:

kmem::3:

To override the group password and membership for groupsystem to the single
accountroot, use the following entry:

system:*::root

DCE 1.2.2 Administration Guide—Core Components 589

DCE Security Service

36.2.4 Creating Override File Entries

To create override file entries, edit thepasswd_overridefile and supply the override
entries. The entry must identify the account (or accounts) to which the override applies
by specifying one of the following keyfields:

principal_name
The name of the specific principal to which to apply the overrides. The
override applies only to the account for the principal’s primary name.
For example, if you specifymahler as the principal name in an override
entry, the overrides apply only to principalmahler’s account, and not
to any accounts formahler’s aliases.

principal_uid
A UNIX ID that identifies the accounts to which to apply the override if
principal_nameis not specified. The override is applied to all accounts
for the principal that is identified byprincipal_uid, including any
accounts for the principal’s aliases. For example, suppose that principal
mahler has a UNIX ID of2195. If you specify2195as the key of the
entry, the overrides apply to all accounts that are associated with that
UNIX ID. Because a principal’s primary name and aliases carry the
same UNIX ID, this means that the overrides apply to accounts for the
principal’s primary name and all aliases.

group_uid A UNIX ID that identifies the group to which to apply the overrides if
neitherprincipal_namenor principal_uid are specified. The overrides
are applied to all accounts for all principals that are members of the
identified group.

The principal_namefield always acts as the keyfield and cannot be overridden. If
you enterprincipal_name, it identifies the specific account to be overridden. The
principal_uid or thegroup_uidfield can act as the keyfield or they can act as override
fields. Only one of the possible keyfields is used as a key for any one entry; the others
(if entered) are used as override fields. Theprincipal_namefield takes precedence,
followed by principal_uid, and finallygroup_uid.

For example, if you enterprincipal_uidanddo notenterprincipal_name, principal_uid
is used as the keyfield. If you enterprincipal_uidandprincipal_name, principal_name
is used as the keyfield andprincipal_uid is used as an override field.

590 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

If you enter thegroup_uidfield anddo notenter any other keyfields (principal_name
or principal_uid), group_uid is used as the keyfield, and the overrides apply to the
accounts of all members of the group. If you enterprincipal_nameand group_uid,
principal_nameis used as the keyfield, and the group affiliation of the named principal
is overridden by the group that is identified by the group UNIX ID.

36.2.5 Leaving passwd_override File Fields Blank

If you do not want to override an item in thepasswd_overridefile, leave its field
blank, separating each blank field with a : (colon). You must enter one of the keyfields,
however, to identify the principal or group for which you are creating overrides. For
example, an entry to override the home directory for the account identified bymozart
looks like this:

mozart:::::/aria/wolfgang:

You must enter the colons that are associated with any blank trailing fields. In the
preceding example, a colon is required for the shell field, which is the remaining field
after the home directory field.

36.2.6 Specifying Passwords for a Specific Machine

Manually edit the password entry in thepasswd_overridefile on the local machine
to create an entry in the override file to override passwords on the local machine. The
password that you enter must be encrypted, but you can copy the encrypted password
from the /etc/passwd file or you can write a program that generates encrypted
passwords.

When you override a principal’s password, only the principal’s local credentials are
obtained at login, not the principal’s network credentials. Without network credentials,
the principal cannot access the network registry and obtain the information that is
normally provided at network login. Therefore, you must supply all of this information
in the password_overridefile entry. For overrides to passwords, you must enter all
of the fields in the override entry, including all keyfields.

DCE 1.2.2 Administration Guide—Core Components 591

DCE Security Service

The following example shows apasswd_overridefile entry that changes a specific
machine’s password for usermozart’s account:

mozart:sq1Rc1Urrb1L6:678:893:Wolfgang A. Mozart:/aria/wolfgang:/bin/csh

Note: If your password is overridden and you then userlogin or rsh to log in
remotely to the machine with the overrides, you are prompted for a password,
regardless of what is in either the/etc/hosts.equivor .rhosts file.

36.2.7 Preventing Login to a Machine

To prevent users from logging into a machine, create an override entry with an invalid
string in thepasswdfield. Because thepasswdfield contains an encrypted password,
any character string that is not exactly 13 characters in length can be used as an invalid
password. For example, the following entry in thepasswd_override file supplies
excludeas a password. This string of less than 13 characters prevents members of the
group that is identified by a UNIX ID of25 from logging in.

:exclude::25:::

36.2.8 Omitting Users from the Local Password Files

An invalid password entry in thepasswd_overridefile prohibits users from logging
into the machine on which the file exists. However, the invalid entryOMIT has a
special meaning. Just as with any other invalid password, if you enterOMIT , the user
cannot log in. Additionally, however, if you maintain the standard/etc/passwdand /
etc/group files and used thepasswd_exportcommand to keep these files consistent
with the registry database, you can specify that users with a password ofOMIT be
excluded from the/etc/passwdfile. (See Section 36.7 for more information on the
passwd_exportcommand.)

592 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

Also, be aware that, if you have omitted users from the/etc/passwdfile, information
about those users is not available to any programs that use the password file. For
example, thels -l and thefinger commands both access the password file to obtain
further information about a user identified by a UNIX ID. If the user is omitted, no
password entry exists and no information is available on that user.

36.2.9 Specifying a Home Directory and Login Shell for a Machine

To change an account’s home directory and login shell for a specific machine, create
an override entry with a home directory name and a login shell name. For example,
the following entry changes the home directory and login shell for usermozart’s
account:

mozart:::::rondo/mozart:/bin/ksh

36.2.10 Overriding a Principal’s Group Affiliation

To override a principal’s group affiliation, create an override entry that contains the
principal’s name or UNIX ID as a key and the UNIX ID of the group that is to be
used as the override. Use the principal’s name as a key to apply the overrides only
to the account for the principal’s primary name. Use the principal’s UNIX ID as a
key to apply the overrides to all of the principal’s accounts, including any accounts
for the principal’s aliases. For example, the following entry overrides the group that
is normally associated with the account for principalmozart:

mozart:::356:::

This override does not apply to any accounts for any ofmozart’s aliases. To apply
the overrides to those accounts, the entry must be keyed bymozart’s UNIX ID (567),
as follows:

::567:356:::

DCE 1.2.2 Administration Guide—Core Components 593

DCE Security Service

36.2.11 Applying Overrides to All Members of a Group

To apply overrides to all members of a specific group, create an override entry that
contains the group’s UNIX ID as a key and the items to override. For groups, you can
override passwords, GECOS information, home directories, and shells. For example,
the following entry makes/sonata/piano the home directory for all members of the
group that is identified by UNIX ID356:

:::356::/sonata/piano:

Be sure not to include theprincipal_nameor principal_uid keyfields. If you do, the
principal name or UNIX ID that you supply will be used as a keyfield, and the group
UNIX ID will be used to override that principal’s group affiliations.

36.2.12 How passwd_override Handles Multiple Override Entries

When more than one override entry applies to an account, the entry with the most
specific account identifier (that is, either a principal UNIX ID, a group UNIX ID, or
a principal name) is selected. Principal names are the most specific, followed by the
principal UNIX ID and group UNIX ID.

For example, assume that the override file contains the following two entries that
override the login shells:

mozart::::::/bin/ksh

:::25:::/bin/csh

If a principal logs in asmozart, the override that is keyed bymozart is in effect. In
this case, the principal (mozart) is more specific than the group (25).

594 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

36.3 Changing the Registry’s Master Key

All passwords stored in a registry are encrypted by a master key. Note that the master
key is created when you create the registry database during system configuration.

You can use thedcecp registry modify command with the-key option to change the
registry’s master key and to reencrypt all passwords with the new master key. Each
replica (master and slave) maintains its own master key to access the data in its copy
of the registry.

You should change each replica’s master key on a regular basis. Before you run either
program to do this, ensure that you are logged into an administrative account.

The following command line changes the master key and reencrypts all the passwords
for the replicaart_server_1:

dcecp> registry modify /.../giverny.com/subsys/dce/sec/art_server_1 -key

dcecp>

36.4 Validating the Authenticity of the DCE Security
Service

The secvalprocess within the DCE daemon can confirm that the DCE security server
is an authentic server. An illegitimate DCE security server could give a malicious user
root access on a machine by returning a counterfeit local system identity. Asecval
ping operation confirms the authenticity of the DCE security server by performing
an authenticated RPC to thesecvalprocess. A successful return (1) indicates that the
security server used all of the correct passwords needed for the authenticated RPC to
succeed.

You can perform asecval ping operation on the local host or you can supply an
argument to operate on a remote host. Because remote hosts might use different
security servers, performingsecval pingoperations on remote hosts provides a way
to test the authenticity of other security servers operating in a cell.

DCE 1.2.2 Administration Guide—Core Components 595

DCE Security Service

The following example illustrates asecval ping operation to thesecvalprocess on
remote hostcharon:

dcecp> secval ping /.:/hosts/charon/config/secval

1

dcecp>

36.5 Backing Up and Restoring the Registry Database

Use the exact procedures that are described here to back up the registry database to
prevent backups from arriving at the master during the backup.

Only the master replica database and its master key file need to be backed up. Use
the procedures that are described in the following subsections when you back up the
entire disk on which the master replica and its master key are stored, and when you
back up only the master’s database files and its master key file.

36.5.1 Procedures for Backing Up the Registry Database

To run the backup procedures, ensure that you are logged into DCE via an
administrative account. Then, run the DCE control program to do the backup. The
backup steps are as follows:

1. Enter theregistry disable command to set the master replica to the maintenance
state. The following command sets the master registry in the cellgiverny.com to
maintenance state:

dcecp> registry disable /.../giverny.com/subsys/dce/sec/oddball

dcecp>

Setting the master replica to the maintenance state causes the master to save its
database to disk and refuse all updates.

596 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

2. Back up the master registry by backing up either the entire volume or thedcelocal/
var/security/rgy_data tree (the registry) and thedcelocal/var/security/.mkey file,
which is the file that contains the master key used to encrypt all keys in the registry.
Note that, because thedcelocal/var/security/.mkey file contains the master key,
restoring a backup of the registry database is useless unless thedcelocal/var/
security/.mkey file is also restored.

The exact commands that are used for the backup are a matter of personal
preference. However, if you write both the database and the master key file to the
same tape, store the tape in a locked area with restricted access. Alternatively,
you can write the database and the key file to separate tapes and store each tape
in a different location.

3. When the backup completes, take the master replica out of maintenance state, as
follows:

dcecp> registry enable /.../giverny.com/subsys/dce/sec/oddball

dcecp>

The security server resumes accepting updates.

Note that the previous examples supplied the name of the registry master site to the
registry enable and registry disable commands. If you do not supply a registry site
name, the commands use the site named in the_s(sec)variable. If this variable is not
set, the commands use the master registry of the machine’s default cell. See Section
36.6 for more information.

36.5.2 Procedure for Restoring the Registry Database

This section provides instructions for restoring the master replica’s database files and
master key file. The procedure assumes that the database is being restored to the
same machine from which it was backed up, and that you are using the DCE control
program. If you are moving the database to a different machine, follow the instructions
in Chapter 37.

To restore the registry database to a machine, perform the following steps:

1. Log in asroot at the master registry site.

DCE 1.2.2 Administration Guide—Core Components 597

DCE Security Service

2. If secdis running, stop it by issuing theregistry stop command. When you use
this command, you must supply the fully qualified name of a specific replica as
an argument. The following sample command stops thesecdnamedmaster:

dcecp> registry stop /.../giverny.com/subsys/dce/sec/oddball

dcecp>

3. Copy the backup files from the backup media to the machine. If you have backed
up only the registry data files and the master key files, be sure to copy the
registry database todcelocal/var/security/rgy_data and the master key file to
dcelocal/var/security/.mkey. Note that, because thedcelocal/var/security/.mkey
file contains the master key, restoring a backup of the registry database is useless
unless thedcelocal/var/security/.mkey file is also restored.

4. Restart the server by invokingsecdwith the -restore_masteroption, as follows:

dcelocal/bin/secd -restore_master &

This command startssecd and causes the master to mark all slaves to be
reinitialized.

5. Verify that secdstarts automatically at system startup.

Note: If you are restoringonly a master key file and have not changed the master
key, you can simply copy the master key file from the backup media without
performing all of the other steps that are in the restore procedures.

36.6 Setting the _s(sec) Variable

You can supply the name of the registry site to bind to as an argument to thedcecp
commands that operate on the registry. If you do not supply a name, the command
binds to the replica named in the_s(sec)variable. If this variable is not set, the
command binds to the cell’s master replica. You can set the_s(sec)variable and then
use that replica as the default replica fordcecp registry commands. To do so, use
the set command as shown in the following sample that sets the default replica to the
master replica (namedslave_3) in the cellgiverny.com:

598 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/slave_3

dcecp>

The name of the new default replica that you supply as an argument to thesetcommand
can be in any of the following forms:

• A cell name (for example,/.../dresden.com)

If you enter a cell name, the named cell becomes the default cell. The DCE control
program randomly chooses a replica to bind to in the named cell, and that replica
becomes the default replica.

• The global name given to the replica when it was created (for example,/.../
dresden.com/subsys/dce/sec/rs_server_250_2)

A global name identifies a specific replica in a specific cell. That cell becomes
the default cell, and that replica becomes the default replica.

• The replica’s name as it appears on the replica list of the current default replica
(that is, its cell-relative name; for example,subsys/dce/sec/rs_server_250_2)

That replica becomes the default replica, and the cell in which the replica exists
becomes the default cell.

• The network address of the host on which the replica is running (for example,
ncadg_ip_udp:15.22.144.248)

The replica on that host becomes the default replica, and the cell in which the
host exists becomes the default cell.

Some of thedcecp commands can act only on the master replica and thus require
binding to the master. If you execute a command that acts only on the master and the
master is not the default replica, in most casesdcecp automatically attempts to bind
to the master replica in the current default cell. In other cases,dcecpdisplays an error
message, and the command fails.

36.7 Ensuring Consistent Local Files

The passwd_exportcommand makes the standard/etc/passwdand /etc/group files
on the local machine consistent with the registry database. Run thepasswd_export
command on a regular, but staggered, basis preferably as part ofcron processing.
If passwd_exportsucceeds in creating the new password and group files, it saves

DCE 1.2.2 Administration Guide—Core Components 599

DCE Security Service

the current files as backups that are namedpasswd.bakandgroup.bak. If it fails, it
leaves the current files as is.

The passwd_exportcommand has the following syntax:

passwd_export [-n][-ddirectory_name] [-x] [-m max_entries] [-s] | [-h[elp] [-v]

where:

-n Specifies thatpasswd_overrideandgroup_override file entries should
be ignored. Without this flag,passwd_exportapplies the override entries
from both files to the local password and group files that it creates.

-d directory_name
Specifies the name of a directory in which to store the local password
and group files that are created bypasswd_export. If you do not enter
this option, the files are stored by default in the/etc directory on the
local node.

For example, to store the files in the directory that is called/etc/locals,
enter the command in the following form:

dceshared/bin/passwd_export -d/etc/locals

-x Prohibits the creation of entries for users with password or group
overrides (on the local machine) that specifyOMIT as their encrypted
password. Use the-x option to exclude omitted users or groups from
the password and group files that are created bypasswd_export. To
omit a user, you must create an override entry for the user and enter the
wordOMIT as the user’s password field entry. Omitted users are unable
to log into the local machine. (See Section 36.2.8.) To omit a group,
create an override entry for the group and enter the wordOMIT as the
group’s password field entry.

-mmax_entries
Sets the maximum number of registry entries that are put in the/etc/
passwdand /etc/group files.

600 DCE 1.2.2 Administration Guide—Core Components

Performing Routine Maintenance

-s Sorts the entries in the/etc/passwd and /etc/group files by UNIX
number. If this option is not specified, the entries are in the random
order in which they are retrieved from the registry.

-h[elp] Displays help information.

-v Runs in verbose mode.

DCE 1.2.2 Administration Guide—Core Components 601

Chapter 37
Handling Network Reconfigurations

This chapter describes the procedures to handle network reconfigurations that change
the locations of registry replicas. Specifically, this chapter covers the following:

• Changing the master registry site

• Removing a node from the network

• Handling network address changes

To perform the procedures in this chapter, you must be logged into the network registry
account via an administrative account.

37.1 Changing the Master Replica Site

The machine that runs the master replica server must be available at all times. If you
are planning to remove this machine from your network or to shut it down for an
extended period, you need to change the site of the master replica.

DCE 1.2.2 Administration Guide—Core Components 603

DCE Security Service

The preferred method for changing the master registry site is to use thedcecp registry
designatecommand to reverse the roles of the master server and a slave server. In
other words, make the master the slave and the slave the master.

When you invoke thedcecp registry designatecommand, the following occurs:

1. The current master sends all pending updates and its propagation queue to the
replica designated as the new master.

2. The designated new master reads the current master’s replica list to obtain
information required for it to manage propagation to the slaves.

3. When the designated new master has obtained all necessary information from
the current master, it becomes the new master, and the current master becomes a
slave.

Because this orderly and complete transfer of information ensures that no data is lost,
the dcecp registry designatecommand is the preferred method to move the master
registry to another machine when the registry servers at the master and slave sites are
operating normally. Note that thedcecp registry designate -mastercommand is also
available to change a replica from a slave to the master. However, because thedcecp
registry designate -mastercommand can cause data to be lost, use itonly when
the current master has been destroyed. It is not recommended in instances when the
master is unreachable because of a network failure or because the master has gone
down temporarily.

Follow these steps to change the site of a master replica:

1. Choose the new master site. A slave replica must exist at this site. If necessary,
use thedce_configcommand or your platform’s equivalent to configure a slave
machine.

2. Issue the Tclset command to set the default replica to the current master replica.
In the following example, the master replica is set to the replica namedoddball
in the cellgiverny.com:

dcecp> set _s(sec) /.../giverny.com/subsys/dce/sec/oddball

dcecp>

3. Issue theregistry designate command to reverse the roles of the master and
slave. This command takes the name of the replica to be made the new master as

604 DCE 1.2.2 Administration Guide—Core Components

Handling Network Reconfigurations

an argument. The following example makes the replica named/.../giverny.com/
subsys/dce/sec/musicthe new master:

dcecp> registry designate /.../giverny.com/subsys/dce/sec/music

dcecp>

4. Verify that the master site changed. Do this by issuing theregistry show -replica
command.

37.2 Removing a Server Machine from the Network

If you are planning to remove a machine that runs a slave replica from the network
or to shut the machine down for an extended period, delete the replica at that site.

If you are removing a node running the master server, you must change the master
server site as described previously before you remove the node.

Use thedcecp registry deletecommand to delete a slave replica. When execute this
command, the master performs the following actions:

1. Marks the replica as deleted.

2. Propagates the deletion to all replicas on its replica list.

3. Delivers the delete request to the replica.

4. Removes the replica from its replica list.

The following sample command deletes the slave replica named/.../giverny.com/
subsys/dce/sec/art_1:

dcecp> registry delete /.../giverny.com/subsys/dce/sec/art_1

dcecp>

When you issue this command,dcecpbinds to the master replica that is in the current
cell, if necessary; then the master replica instructs the slave replica to delete itself.

DCE 1.2.2 Administration Guide—Core Components 605

DCE Security Service

To verify that the slave is deleted, issue thedcecp registry catalogcommand. When
the master has received the request to delete the slave, the slave appears on the replica
list as marked for deletion. When the replica has actually been deleted, it no longer
appears on the list.

37.3 Handling Network Address Changes

Whensecdstarts, master and slave replicas can detect address changes and can perform
the necessary updates to the master’s replica list and to the cell namespace. Generally,
all that is required on your part to handle network address changes is to update the
pe_sitefile. However, if the network address of the master and a slave replica change
simultaneously, your intervention is required. This subsection describes how to update
the pe_sitefile and how to handle simultaneous address changes.

37.3.1 Updating the pe_site File

Whenever the master’s or a slave’s network address changes, you must update the
/opt/dcelocal/etc/security/pe_sitefile on that host before restartingsecd. This file,
which exists on each machine in the cell, is required for binding by the DCE Security
Service to itself. For the master replica, the file contains the cell name and the name of
the master. For slave replicas, the file contains the cell name, the name of the master
replica, and the name of the replica itself.

If the master replica address changes, update thepe_sitefile on every node in the cell
that runs a security server (including the master) with the new address for the master.
If a slave address changes, update only that slave’spe_sitefile to reflect its changed
address.

37.3.2 Handling Simultaneous Address Changes

If an address change occurs simultaneously for the master replica and a slave replica,
the master and slave will not be able to reach each other while both are trying to
notify the other of the changed address. To avoid this problem, make sure the address
change of one replica (either master or slave) is propagated to all replicas before the

606 DCE 1.2.2 Administration Guide—Core Components

Handling Network Reconfigurations

other address is changed. Make one address change. Then, use thedcecp registry
show -replica command to view the replica list at both the master site and the slave
replica site. When the new address is displayed, on both replica lists, it is safe to
proceed with the next network address change.

If you are unable to prevent simultaneous network address changes for the master
and a slave, the only way to restore communication between the master and slave is
to delete the slave, then recreate it. Delete the slave by using one of the following
methods, depending on your circumstances:

• If you anticipate a simultaneous address change, while the master and slave are
still communicating, use theset command to bind to the master and then the
dcecp registry deletecommand to delete the slave replica.

• If secd is running at the master and slave sites, but the master and slave are
not communicating, first use theset command to bind to the slave and then the
registry destroy command to destroy the slave. Then useset to bind to the master
and theregistry delete -force command to remove the replica list entry for the
slave.

• If secd is not running at the slave site or if you are unable to bind to the slave
site, use the procedure for recreating a replica described in Chapter 40.

DCE 1.2.2 Administration Guide—Core Components 607

Chapter 38
Setting Up the Registry

This chapter describes the steps that you take to set up the registry in the DCE
Security Service. Some of these steps are automatically handled by thedce_config
script during DCE installation and configuration; others are performed by you, using
the DCE utilities and control programs. The steps for setting up the registry are as
follows:

1. Plan where the security service components are to be located in your network.

2. Create the master registry database (performed by thedce_configscript during
system configuration).

3. Start the master replica (performed by thedce_config script during system
configuration).

4. Populate the registry database (performed by you using thedcecp rgy_edit
command).

• Set policies and properties.

• Add names and accounts.

5. Create a slave database and start the slave replica (performed by thedce_config
script during system configuration).

DCE 1.2.2 Administration Guide—Core Components 609

DCE Security Service

6. Set up cron to run passwd_export on all of the DCE-based machines to
ensure that the local password and group files are kept consistent with the
registry (performed by you using standard UNIX commands). Thepasswd_export
command is described in Chapter 36.

Because the registry uses the Cell Directory Service (CDS) to obtain information about
network resources, this chapter assumes that your network is configured properly for
CDS operation.

38.1 Planning Sites for DCE Security Service
Components

The first thing that you do to configure the security service in your network is choose
the sites for the master replica and any slave replicas of the registry. These sites will
run secd, the security server. Machines runningsecdmust be up and available at all
times. It is especially important that the machine where the master replica runs be
available throughout the network.

The machine size that is required to runsecddepends on the platform and operating
system. As a very general rule, choose machines large enough to accommodate future
growth of the registry database. The machines must have enough disk space for the
registry database and enough backing store so that processes do not thrash.

When you run thedce_configscript, it will configure the master replica site to run the
DCE host daemon (dced), which provides the endpoint mapper service for the local
host, and any required CDS servers.

38.2 Creating the Master Registry Database

When you initially configure your cell’s security server, thedce_config script
invokes thedcelocal/bin/sec_create_dbcommand to create the master replica. When
sec_create_dbcreates a new master replica, it initializes its database with names and
accounts. Note that you must beroot to run sec_create_db.

610 DCE 1.2.2 Administration Guide—Core Components

Setting Up the Registry

Thesec_create_dbcommand also creates a registry configuration file, which is named
dcelocal/etc/security/pe_site, that contains the cell name and network address of the
master replica. This file supplies the binding address of thesecd server to clients
running on that machine, if the CDS is unavailable.

In the event that you ever need to create a new master registry database, you can invoke
sec_create_dbdirectly. Note that you must be root to runsec_create_db. Note also
that it is highly unusual to recreate a master database, but you may need to recreate
a slave database if the slave is destroyed. The following subsections describe how to
use thesec_create_dbcommand.

38.2.1 The sec_create_db Command Format

The sec_create_dbcommand has the following format:

sec_create_db {-master | -slave} -my[name] my_server_name\

[-k[eyseed] keyseed] [-cr[eator] creator_name] \

[-cu[nix_id] creator_unix_id] [-u[uid] cell_uuid] \

[-p[erson_low_unix_id] unix_id] [-g[roup_low_unix-id] unix_id] \

[-o[rg_low_unix-id] unix_id] [-ma[x_unix_id] unix_id] \

[-pa[ssword] default_password] [-v[erbose]

where:

-master Specifies that the master replica’s database should be created. All other
sec_create_dboptions can be used with the- master option.

-slave Specifies that a slave replica’s database should be created. Only the
-myname, -keyseed, and-verboseoptions can be used with the-slave
option.

-my[name] my_server_name
This is a name that you assign to the security server (secd) on this
machine. It is used by the name service to locate this cell’s security
server.

-k[eyseed] keyseed
This is a character string that you enter to seed the random key generator
in order to create the master key for the database that you are creating. It

DCE 1.2.2 Administration Guide—Core Components 611

DCE Security Service

should be a string that cannot be easily guessed. The master key is used
to encrypt all account passwords. Each instance of a replica (master
or slave) has its own master key. You can change the master key by
using thedcecp registry modify command orsec_admin master_key
command. (See Chapter 36 for information on the use of thedcecp
registry modify command for modifying the master key.) If you do not
enter this option,sec_create_dbprompts you for it.

-cr[eator] creator_name
This is the name of the registry creator. The registry creator is the
initial privileged user of the registry database. Note that you can
give equivalent privileges to another user at any time by using the
dcecp acl modify command oracl_edit modify command to change
the registry database ACL. When the registry is created, default ACL
entries for registry objects are also created. These entries give the most
privileged permissions to the principal that is named in the-cr option.
If the principal that is named as the registry creator is not one of the
reserved names,sec_create_dbadds the principal and an account for
that principal. If you do not enter this option, the initial privileged user
of the registry database isroot.

-cu[nix_id] creator_unix_id
This is a UNIX number that you specify to be assigned to the registry
creator. If you do not enter this option, the registry creator’s UNIX
number is assigned dynamically.

-u[uid] cell_uuid
This is the cell’s UUID. If you do not enter this UUID, it is assigned
dynamically.

-p[erson_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated
when a principal is added by using thedcecp registry modify command
or rgy_edit properties command. Note that you can explicitly assign
a lower UNIX ID than this number; this lower limit applies only to
automatically generated UNIX IDs.

-g[roup_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated
when a group is added by using thedcecp registry modify command
or rgy_edit properties command. Note that you can explicitly enter

612 DCE 1.2.2 Administration Guide—Core Components

Setting Up the Registry

a lower UNIX ID than this number; this lower limit applies only to
automatically generated UNIX IDs.

-o[rg_low_unix_id] unix_id
This is the starting point for UNIX IDs that are automatically generated
by the security service when an organization is added by using thedcecp
registry modify command orrgy_edit properties command. Note that
you can explicitly enter a lower UNIX ID than this number; this lower
limit applies only to automatically generated UNIX IDs.

-ma[x_unix_id] unix_id
This is the highest number that can be assigned as a UNIX ID when
a principal, group, or organization is added. No UNIX IDs higher than
this number are assigned automatically, and you cannot specifically enter
numbers higher than this number. The maximum UNIX ID stays in
place until you change it with thedcecp registry modify command or
rgy_edit properties command.

-pa[ssword] default_password
This is the default password that is assigned to the accounts created by
sec_create_db. If you do not specify a default password,-dce- is used.
Note the accountshosts/local_host_name/principal_namenone none,
krbtgt /cell_namenone, and nobody none noneare not assigned the
default password, but instead a randomly generated password.

-v[erbose] Runs in verbose mode and generates a verbose transcript of all activity.

38.2.2 An sec_create_db Run Example

The following example shows thesec_create_dbcommand that is run to create the
master database and the information thatsec_create_dbdisplays as it runs. Note that,
because the- k option is not entered,sec_create_dbprompts you for the master key
seed string. This string is not displayed as it is entered.

/work/krb/sec_create_db -v -myname /.../dresden.com/subsys/dce/sec/master -master

Enter keyseed for initial database master key: <enter up to

1024 characters>

SECD Checkpoint on Tue Sep 27 11:44:12 1994

DCE 1.2.2 Administration Guide—Core Components 613

DCE Security Service

.... saving rgy

.... saving acct

.... saving person

.... saving group

.... saving org

.... saving replicas

.... saving acl

End SECD Checkpoint on Tue Sep 27 11:44:13 1994

SECD Checkpoint on Tue Sep 27 11:44:15 1994

.... saving rgy

.... saving acct

.... saving person

.... saving group

.... saving org

.... saving acl

End SECD Checkpoint on Tue Sep 27 11:44:17 1994

38.2.3 The Results of sec_create_db

The master registry database that is created bysec_create_dbcontains the principals,
groups, and organizations listed in Table 38-1.

Table 38–1. Initial Persons, Groups, and Organizations

Principal Group Organization

bin bin none

daemon daemon —

dce-ptgt kmem —

dce-rgy mail —

krbtgt/ local_cell_name nogroup —

hosts/local_host/self none —

mail system —

nobody tcb —

614 DCE 1.2.2 Administration Guide—Core Components

Setting Up the Registry

Principal Group Organization

root tty —

sys uucp —

tcb — —

uucp — —

who — —

The accounts thatsec_create_dbcommand creates are:

• bin bin none

• daemon daemon none

• dce-ptgt none none

• dce-rgy none none

• hosts/local_host/self none none

• krbtgt/ cell_namenone none

• nobody nogroup none

• root system none

• uucp uucp none

Some of the objects that were initially created bysec_create_dbare reserved and
cannot be deleted. These are indicated in the following list.

• The reserved principals are:

— dce-ptgt

— krbtgt/ cell_name

— dce-rgy

• The reserved accounts are:

— dce-ptgt none none

— krbtgt/ cell_namenone none

— dce-rgy none none

DCE 1.2.2 Administration Guide—Core Components 615

DCE Security Service

When you run thesec_create_dbcommand to create the master registry database,
you can name the principal who has the most privileged access to the registry. This
person is known as the registry creator. If the registry creator you name is not one of
the default principals,sec_create_dbadds the accountrgy_creatornone none, where
rgy_creator is the principal you named as the registry creator. If you do not name a
registry creator,sec_create_dbassigns the most privileged registry access to theroot
system noneaccount.

With one exception, all of the accounts created by thesec_create_dbcommand
are assigned randomly generated passwords and are marked as invalid. Before these
principals can log into these accounts, you must change the account passwords and
mark the accounts as valid. You can do this by using thedcecp account modify
command. Chapter 31 provides instructions for using thedcecp account modify
command to change all of the attributes for a principal’s account in the registry,
including the principal’s password. Also,dcecp has options to randomly generate
new passwords.

However, the exception is that the account created for the registry creator is valid and
is assigned the DCE default password (-dce-). Change the default password to ensure
the security of the registry creator account.

In addition to the group memberships implied by the accounts that are created by
sec_create_db, the principals are also made members of the groups listed in Table
38-2.

Table 38–2. Group Memberships Created by sec_create_db

The principal... Is a member of the group...

who bin

root system

kmen

tty

sys kmem

mail mail

tcb tcb

616 DCE 1.2.2 Administration Guide—Core Components

Setting Up the Registry

Chapter 30 provides instructions for adding principals to groups.

38.3 Starting the Master Replica

After dce_configcreates the master replica, it starts the master replica. To start the
master replica (secd) explicitly, use the following steps:

1. Log in asroot on the machine that will run the master replica.

2. Useps to ensure that adced is running on the machine. If one is not, start one.
To do so, ensure you areroot and enter

dceshared/bin/dced

3. Start the master replica by entering

dcelocal/bin/secd

Set upsecdso that it starts automatically when the machine is rebooted.

38.4 Populating the New Registry Database

Once the master replica has been created and started, you must populate the database
by setting policies and procedures and adding accounts.

38.4.1 Setting Policies and Properties

Use thedcecp registry showanddcecp registry modify commands to view policies
and properties and to change them as desired.

DCE 1.2.2 Administration Guide—Core Components 617

DCE Security Service

38.4.2 Adding Accounts

After a new registry database is created, it contains only the principals, groups,
organizations, and accounts that were added as initial information bysec_create_db.
Use thedcecp account createcommand to add any other names and accounts that
your site requires. You can do this now or at any time later. See Chapter 31 for
information about adding accounts by usingdcecp.

38.5 Creating Slave Replicas

After the master replica database has been created and started and its database has
been populated, you rundce_configat the slave sites to create the slave replicas and
start them. To create and start a slave replica,dce_configfirst ensures that the sites
are runningdced, and the appropriate CDS servers. It then executes the following
sec_create_dbcommand:

dcelocal/bin/sec_create_db -slave -mynamemy_server_name

First, the command creates a database for the new slave replica. The database consists
of only stub files. The command then locates the master replica and adds the new
slave to the master’s replica list. The master marks the new replica for initialization.
Finally, thedce_configscript startssecdand ensures that it starts automatically each
time the machine reboots.

You must rundce_configto configure a slave replica at each machine where you want
to run a slave replica.

38.6 Verifying that the Replicas Are Running

After the master and slave replicas are in place and started, perform the following
steps to ensure that they are running:

1. Get a list of names of security servers running in the cell:

618 DCE 1.2.2 Administration Guide—Core Components

Setting Up the Registry

dcecp> registry catalog

/.../dc.cell.ch.hp.com/subsys/dce/sec/dce6

/.../dc.cell.ch.hp.com/subsys/dce/sec/dce5

dcecp>

2. Look at the propagation information kept by the replica:

dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6 -replica

{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6}

{type slave}

{cell /.../dc.cell.ch.hp.com}

{uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636}

{status enabled}

{lastupdtime 1996-09-17-13:06:53.000-04:00I-- ---}

{lastupdseq 0.33826}

{addresses

{ncadg_ip_udp 15.22.51.49}

{ncadn_ip_tcp 15.22.51.49}}

{masteraddrs

{ncadg_ip_udp 15.22.48.183}

{ncadn_ip_tcp 15.22.48.183}}

{masterseqnum 0.15724}

{masteruuid 90067612-d3f6-11ce-b773-0800095a49d8}

{supportedversion

secd.dce.1.0.2

secd.dce.1.1}

dcecp>

3. Look at the propagation information that is kept by the master for each slave:

dcecp> registry show /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5 -master

{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce6}

{uuid 07f5c1dc-80ef-11cf-b60c-0800095f6636}

{type slave}

{addresses

{ncadg_ip_udp 15.22.51.49}

{ncadn_ip_tcp 15.22.51.49}}

DCE 1.2.2 Administration Guide—Core Components 619

DCE Security Service

{propstatus update}

{lastupdtime 1996-09-17-13:06:53.000-04:00I-- ---}

{lastupdseq 0.33826}

{numupdtogo 0}

{commstate ok}

{lastcommstatus {Successful completion}}

{name /.../dc.cell.ch.hp.com/subsys/dce/sec/dce5}

{uuid 90067612-d3f6-11ce-b773-0800095a49d8}

{type master}

{addresses

{ncadg_ip_udp 15.22.48.183}

{ncadn_ip_tcp 15.22.48.183}}

dcecp>

620 DCE 1.2.2 Administration Guide—Core Components

Chapter 39
Importing UNIX Accounts to DCE

The passwd_import command creates entries in the registry that are based on
information in the/etc/passwdand/etc/group files. It provides a method of ensuring
account consistency between machines that use the DCE Security Service and those
that do not, and a means of adding an existing UNIX user base to the registry.

39.1 How passwd_import Works

Whenpasswd_import processes entries, it compares group and password file entries
to registry entries. It can find two types of conflicts:

Name Conflicts
These conflicts arise when the same name string is defined in the
registry and the group or password files. The namesjoe 102andjoe 555
exemplify such a conflict. The duplicate name can represent the same
user or two different users.

DCE 1.2.2 Administration Guide—Core Components 621

DCE Security Service

UNIX ID Conflicts
These conflicts arise when the same UNIX ID is defined in the registry
and the group or password files for users with different names. The
namesjoe 102andann 102exemplify such a conflict.

These conflicts can be found separately, as in the preceding examples, or together. For
example, a registry entry ofjoe 102and a UNIX entry ofjoe 102are in conflict. When
a conflict is found, you must either supply the information that is used to change the
password and group file entries or informpasswd_importnot to import that entry. The
passwd_import command makes no changes to existing registry principals, groups,
or accounts; but, if you so specify, it will create new principals, groups, and accounts
in the registry that are based on the group and password files.

39.1.1 The passwd_import Processing Steps

As passwd_import processes entries, it performs the following steps in sequence:

1. It opens the group and password files and establishes a connection to the registry.

2. It compares the group file entries to groups in the registry. If there are no conflicts,
it creates groups in the registry that correspond to the groups in the group file.

3. It compares the entries in the password file to principals in the registry. Again, if
there are no conflicts, it

• Creates principals in the registry that correspond to the entries in the password
file.

• Adds the newly created principals to the appropriate groups.

• Creates accounts for the newly created principals.

4. It reexamines the group file and adds the principals as members of any additional
groups that it finds there.

The changes to the registry are made individually as each step is processed. If you
specify the-o option,passwd_importadds all newly created registry principals to the
specified organization. If you do not specify the organization, the principals are added
to the organizationnone.

622 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

39.1.2 Registry Entries Created by passwd_import

If an entry exists in the password or group file but does not exist in the registry,
passwd_import creates a new registry entry. For additional registry information,
passwd_import takes the following values:

• For Principal and Group Entries:

— Alias/Primary Name = If the password file contains two entries with the
same UNIX number,passwd_import creates a primary name entry for the
first UNIX number it finds and an alias for each occurrence of the same UNIX
number.

— Full Name = A blank string; no full name is added for the entry.

— Membership List = For new groups only, all principals that are listed in the
group file and all principals with registry accounts that are associated with
that group.

— Project List = Yes (for groups only).

• For Account Entries:

— Account Expiration Date = None.

— Account-Valid Flag = No. Use thedcecp account modify command to
change this flag toy after the password is set.

— Client Flag = Yes.

— Duplicate Certificate Flag = No.

— Forwardable Certificate Flag = Yes.

— GECOS = The same value as the entry in the principal’s GECOS field in the
etc/passwdfile.

— Good Since Date= Time of the account creation.

— Home Directory = The same value as the principal’s home directory entry
in the /etc/passwdfile.

— Login Shell = The same value as the principal’s login shell entry in the/etc/
passwdfile.

— Maximum Certificate Lifetime = Set to the registry authentication policy.

— Maximum Certificate Renewable= Set to the registry authentication policy.

DCE 1.2.2 Administration Guide—Core Components 623

DCE Security Service

— Password = Randomly generated. Note that you must modify or reset
randomly generated passwords before user authentication is possible.

— Password Date and Time Modified = Set to the date and time
passwd_import was run.

— Password-Valid Flag= No.

— Postdated Certificate Flag= No.

— Proxiable Certificate Flag = No.

— Renewable Certificate Flag= Yes.

— Server Flag = Yes.

— TGT Authentication Flag = Yes.

Note thatpasswd_import does not set usable passwords for the accounts it creates.
You must use thedcecp account modify command to set passwords before
authentication is possible.

39.2 The passwd_import Command Syntax

The passwd_import command has the following syntax:

dceshared/bin/passwd_import [-h] [-c] -d pathname[-i] [-o org] \

[-p password] [-u username] [-v]

where:

-h Displays usage information.

-c Runs in check mode; processes the command showing conflicts, but
makes no changes to the registry.

-dpathname The path to the directory containing the password and group files to be
imported.

-i Specifies that identical name strings are not in conflict, but represent the
same identity.

624 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

-oorg The name of the organization to be assigned to all principals that are
added to the registry. The default is the organization namednone.

-ppassword The password for the account with whose privileges
passwd_import will run. If you do not use the -i option,
passwd_import prompts you to resolve the name conflict.

-uusername The principal name of the account with whose privileges
passwd_import will run. This account must have the privileges
to access the registry and add principals, groups, accounts and
organizations, and members to groups and organizations. The principal
name and password are used to obtain network authentication. If you
do not supply them,passwd_import prompts you for them, even if
you have already performed a network login.

-v Runs in verbose mode, generating a verbose transcript of all activity.

39.3 Using passwd_import

To usepasswd_import, the security server must be running. The following subsections
describe how to use thepasswd_import command and its options.

39.3.1 Using the Identical User Option

The -i option lets you specify that duplicate names are not in conflict but, instead,
represent the same identity. Whenpasswd_import finds duplicate name entries, it
processes them as though they are the same user and skips to the next entry.

39.3.2 Using Check Mode

Run passwd_import first in check mode by using the-c option. In this mode,
passwd_import attempts to simulate the results of a processing run, showing the
conflicts that are encountered whenpasswd_import is run without the-c option.

Check mode gives you a good idea of the quantity and complexity of the potential
conflicts. However, check mode does not make any changes to the registry. When

DCE 1.2.2 Administration Guide—Core Components 625

DCE Security Service

you runpasswd_import without the-c option and make changes to resolve conflicts,
these changes can in turn create further conflicts not readily apparent in check mode.

If you encounter numerous conflicts in check mode, it is more efficient to manually
edit either the registry or the UNIX group and password files to resolve some obvious
conflicts before you runpasswd_import.

39.3.3 Resolving Conflicts

The passwd_import command prompts you for instructions on how to resolve the
conflicts it finds. You have the following choices:

• You can create an alias to resolve a UNIX ID conflict. This action creates an alias
for the registry object that is in conflict. This alias is assigned the same name as
the conflicting entry in the group or password file. For example, if the entryjoe
555 exists in the registry and the entrytim 555 exists in the password file, this
option creates the aliastim for joe 555.

• You can generate a new UNIX ID automatically or enter a new one explicitly to
resolve a UNIX ID conflict. For example, if there is a conflict between the entry
joe 555 in the registry andtim 555 in the password file, you can generate a new
UNIX ID for tim .

• You can enter a new name to resolve a name conflict. For example, if there is a
conflict between the entryjoe 555 in the registry andjoe 383 in the password
file, you can generate a new name forjoe 383. This new name will be added to
the registry.

In addition, you are given the option of ignoring the conflict and skipping the entry.

39.3.4 Answering Prompts

When you runpasswd_import, you can be prompted for names and numbers (UNIX
IDs). Names can contain any characters or digits except the @ (at sign) and : (colon)
characters, and they must not exceed 1024 characters in length.

If you enter a name or number in an incorrect format,passwd_import ignores your
entry and prompts you again.

626 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

39.4 Sample passwd_import Session

This section shows a simplifiedpasswd_import session. The sample session uses the
following registry group and password entries and the UNIX group file and password
file entries. For convenience, the registry entries are shown in the password and group
file format, although they are not stored that way in the registry database.

Registry Group and Password Entries

• Group Entries

wheel::0:

daemon::1:

none::2:

backup::3:user

locksmith::4:

login::5:

mail::6:bin

bin::7:root

server::8:

sys::9:root

staff::10:

sys_admin::11:user

sys_proj::12:

tgroup::35:

• Password Entries

root:sq1RclUrrb1L6:0:10::/:

daemon:sq1RclUrrb1L6:1:2::/:

none:sq1RclUrrb1L6:2:2::/:

user:sq1RclUrrb1L6:3:2::/:

lp:sq1RclUrrb1L6:4:7::/:

sys_person:sq1RclUrrb1L6:5:2::/:

admin:sq1RclUrrb1L6:6:2::/:

uucp:sq1RclUrrb1L6:7:2::/usr/spool/uucppublic:

DCE 1.2.2 Administration Guide—Core Components 627

DCE Security Service

bin:sq1RclUrrb1L6:8:7::/:

UNIX Group and Password File Entries

• Group File Entries

system::0:root

other::1:

bin::2:root,bin,daemon

sys::3:root,bin,sys,adm

adm::4:root,adm,daemon

mail::6:root

rje::8:rje,shqer

daemon::12:root,daemon

tgroup::35:

diags::48:brown,smith,jones

cheetah::50:root,daemon

mkt_dev::52:roberts,anderson,hill

• Password File Entries

root::0:1:0000-Admin(0000):/:

daemon::1:1:0000-Admin(0000):/:

bin::2:2:0000-Admin(0000):/bin:

sys::3:3:0000-Admin(0000):/usr/src:

adm::4:4:0000-Admin(0000):/usr/adm:

uucp::5:5:0000-uucp(0000):/usr/lib/uucp:

rje::18:18:0000-rje(0000):/usr/rje:

trouble::70:1:trouble(0000):/usr/lib/trouble:

lp::71:2:0000-lp(0000):/usr/spool/lp:

setup::0:0:general system administration:/usr/admin:/bin/rsh

powerdown::0:0:general system administration:/usr/admin:/bin/rsh

sysadm::0:0:general system administration:/usr/admin:/bin/rsh

checkfsys::0:0:check diskette file system:/usr/admin:/bin/rsh

makefsys::0:0:make diskette file system:/usr/admin:/bin/rsh

mountfsys::0:0:mount diskette file system:/usr/admin:/bin/rsh

628 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

umountfsys::0:0:unmount diskette file system:/usr/admin:/bin/rsh

39.4.1 Invoking passwd_import

In the sample session, the followingpasswd_import command is entered at the shell
prompt:

passwd_import -d sys5.3_tapes/adm -i -v -u cell_admin

This command specifies that

• Identical names represent the same identity (-i).

• The UNIX group and password files are in thesys5.3_tapes/admdirectory.

• The command will not run in check mode (-c is not specified).

• The command will run in verbose mode (-v is specified).

• The principal whose account should be used for authentication iscell_admin.

• The command prompts you for thecell_admin account’s password because the
-p option is not used.

After the command is invoked, the system prepares forpasswd_import processing
by displaying the following:

Preparing import files. (dce / sad)

Setting up registry information. (dce / sad)

Verifying that the necessary Organization exists. (dce / sad)

Creating group objects from group file. (dce / sad)

As passwd_import reads the UNIX group and password files, it informs you of any
conflicts and prompts for their resolution.

DCE 1.2.2 Administration Guide—Core Components 629

DCE Security Service

39.4.2 Examining the Group File

The passwd_import command first checks the group file for name and then UNIX
ID conflicts. When you resolve the conflict by answering the prompt,passwd_import
creates the groups in the registry if it is so directed.

The following steps show how UNIX ID group conflicts are handled:

1. Thepasswd_importcommand first finds a conflict between UNIX IDs, as shown
in the preceding sections. The namewheel in the group file and the namesystem
in the registry both have UNIX IDs of0. Thepasswd_import command prompts
you for how to resolve the conflict, as follows:

CONFLICT: (wheel 0) - Import Group’s UNIX id exists in registry.

(dce / sad)

(system 0) is the conflicting entry from the registry.

Do you wish to resolve the conflict (y) or skip this entry (n):

2. If you enter ann to skip the entry,passwd_import continues processing. If you
enter ay to resolve the conflict,passwd_import prompts you for how to resolve
the conflict. In the following example, the conflict is resolved by creating an alias
of wheel for the systementry in the registry:

Do you wish to resolve the conflict (y) or skip this entry (n):

y

Select one of: (a)lias, (g)enerate, (e)nter, (s)kip entry, (h)elp: a

>> Adding Group entry for: wheel 0

Because it is running in verbose mode,passwd_import describes the actions it
is taking. Each action description is prefaced with the>> (redirection symbols).

If you are runningpasswd_importin check mode, you are not prompted to resolve
the conflict. Instead, you are informed of the conflict and processing continues.
The message looks like the following display:

630 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

CONFLICT: (wheel 0) - Import Group’s UNIX id exists in registry.

(dce / sad)

(system 0) is the conflicting entry from the registry.

Would need new UNIX id to resolve conflict. (dce / sad)

3. If passwd_import does not find conflicts that you must resolve, it displays the
group entries as it processes them and, because it is running in verbose mode, the
actions it is taking. In the following example, you are not prompted to resolve
the name conflict becausepasswd_import was invoked with the-i option.

CONFLICT: (tgroup 35)

- Group name exists in registry and UNIX ids match.

(dce / sad)

>> Import Group: - Ignoring name conflict, as instructed

(dce / sad)

>> Adding Group entry for: diags 48

>> Adding Group entry for: cheetah 50

>> Adding Group entry for: mkt_dev 52

As passwd_import continues through the UNIX group file, it finds two other
UNIX ID conflicts: UNIX entriesadm 4 and rje 8, which are in conflict with
registry entrieslocksmith 4 andserver 8, respectively.

39.4.3 Examining the Password File

The passwd_import command then proceeds to examine the password file for
conflicts. As it begins, it displays the following:

Creating principal entries and accounts from password file.

(dce / sad)

DCE 1.2.2 Administration Guide—Core Components 631

DCE Security Service

When an entry is processed with no conflicts,passwd_importcreates the principal in
the registry, adds the principal to the appropriate group and organization, and creates
an account for the principal. As it does this, it displays the following:

>> Adding Principal entry for: rje

>> Adding account for rje none.

The following example shows the warning message that is displayed when
passwd_import finds a conflict:

CONFLICT: (bin 2)

- Principal name exists in registry and UNIX ids match.

(dce / sad)

>> Import Principal: - Ignoring name conflict, as instructed

(dce / sad)

This message notifies you that the account forbin exists in the registry. Both accounts
remain unchanged even though the UNIX password file entry contains information that
differs from the registry account.

Because the-i option is specified in the command used in the sample session, name
conflicts are ignored. The following example shows the prompt from a name conflict
that was found whenpasswd_import was run without the-i option:

CONFLICT: (daemon 1)

- Principal name exists in registry and UNIX ids match.

(dce / sad)

Do you wish to resolve the conflict (y) or skip this entry (n):

If you enter ann, the entry is skipped and processing continues. If you enter ay,
passwd_import prompts you for the new name for the foreign principal, as follows:

632 DCE 1.2.2 Administration Guide—Core Components

Importing UNIX Accounts to DCE

Enter new name for principal "daemon" "1":

39.4.4 Adding Members to Groups

When passwd_import completes the processing of the UNIX password file, it
reexamines the group file and adds the newly created principals to any additional
groups that it finds there. As it does, it displays the following:

Add memberships from imported group file. (dce / sad)

>> Add root as member of group with UNIX id: 0

>> Add root as member of group with UNIX id: 2

>> Add daemon as member of group with UNIX id: 2

39.4.5 Completing Processing

Whenpasswd_import completes processing, it displays the following:

Closing import files. (dce / sad)

Closing connection to registry. (dce / sad)

DCE 1.2.2 Administration Guide—Core Components 633

Chapter 40
Troubleshooting Procedures

This chapter contains procedures for troubleshooting the security servers. Use these
procedures only when network or hardware failures disrupt operation of the registry, or
when you encounter problems that can be remedied in no other way. These procedures
tell you how to

• Restart a security server

• Restart a security server in locksmith mode

• Restore replicas from a backup

• Forcibly delete a slave replica

• Adopt a registry object that was orphaned because its owner was deleted

Before you run the procedures, ensure that you are logged in via an administrative
account.

DCE 1.2.2 Administration Guide—Core Components 635

DCE Security Service

40.1 Restarting Security Servers

To restart a security server (master or slave), enter the following command:

dcelocal/bin/secd &

For convenience, set up the server to start automatically whenever the machine reboots.

40.2 Restarting the Master Server in Locksmith Mode

The secd -locksmithoption startssecd in locksmith mode. This option can be used
only on the master replica. In locksmith mode, the principal name that you specify
to secdbecomes the locksmith principal. As the locksmith principal, you can repair
malicious or accidental changes that prevent you from logging in with full registry
access privileges.

When you bring up a security server in locksmith mode,secdautomatically creates
a locksmith account or, if the locksmith account exists, it lets you supply a new
password for that account. Once the security server is running, you can log into the
locksmith account by using the newly changed password, if you changed it, and access
the registry to change the account or policy information that may have prevented you
from accessing the registry by using your normal credentials.

In locksmith mode, all principals with valid accounts can log in and operate on the
registry with normal access checking. The locksmith principal, however, is granted
special access to the registry: no access checking is performed for the authenticated
locksmith principal. This means that, as the locksmith principal, you can operate on
the registry with full access.

40.2.1 Automatic Changes to the Locksmith Account

If the locksmith account exists when you start the security server in locksmith mode,
the security server checks certain account and registry policy information and makes
the changes shown in Tables 40-1 and 40-2. These changes ensure that, even if account

636 DCE 1.2.2 Administration Guide—Core Components

Troubleshooting Procedures

or registry policy was tampered with, you will now be able to log into the locksmith
account. For example, if an intruder changes the account lifespan registry policy to 1
minute, the locksmith account will never be valid long enough to be used. Therefore,
if the security server finds that the account lifespan registry policy is set to less than
what is required for the locksmith account to be valid for at least 1 hour, it changes
the account lifespan policy to be the time difference between the creation time of the
locksmith account and the time 1 hour from the current time.

Table 40–1. Locksmith Account Changes Made by the Security Server

If the security server finds the... It changes the....

Password-Valid Flag is set tono Password-Valid Flag toyes

Account Expiration Date is set to less
than the current time plus 1 hour

Account Expiration Date to the current
time plus 1 hour

Client Flag is set tono Client Flag toyes

Account-Valid Flag is set tono Account-Valid Flag toyes

Good Since Date is set to greater than
the current time

Good Since Date to the current time

Password Expiration Date is set to less
than the current time plus 1 hour

Password Expiration Date to the current
time plus 1 hour

Table 40–2. Registry Policy Changes Made by the Security Server

If the security server finds the... It changes the....

Account Lifespan is set to less than the
difference between the locksmith
account creation date and the current
time plus 1 hour

Account Lifespan to the current time
plus 1 hour minus the locksmith
account creation date

Password Expiration Date is set to
greater than the time the password was
last changed but less than the current
time plus 1 hour

Password Expiration Date to the current
time plus 1 hour

DCE 1.2.2 Administration Guide—Core Components 637

DCE Security Service

40.2.2 Starting a Security Server in Locksmith Mode

Use the following form of thesecdcommand to start a security server in locksmith
mode:

dcelocal/bin/secd [-locksm[ith]pname[-lockpw] [-rem[ote]]]

where:

-locksm[ith] Starts a security server in locksmith mode.

pname Specifies the name of the locksmith principal. If no registry account
exists for this principal,secdcreates one.

-lockpw Prompts for a new locksmith password. This option allows you to specify
a new password for the locksmith account when the old one is unknown.

-rem[ote] Allows the locksmith principal to log in remotely. If this option is not
used, the principal must log in from the local machine on whichsecd
will be started.

40.2.3 Restarting a Security Server in Locksmith Mode

To restart a security server in locksmith mode, perform the following steps on the
node on which the master replica is running. You must haveroot access to this node.

1. Shut down the security server.

a. If you cannot log in with administrative privileges and accessdcecp to shut
down the server, log in asroot on the machine on which the server is running
and kill the security server process.

b. If you are able to log in with administrative privileges, use thedcecp registry
stop command to shut down the security server. When you use this command,
you must supply the fully qualified name of the replica to stop as an argument.
The following sample command stops the replica namedslave_3:

638 DCE 1.2.2 Administration Guide—Core Components

Troubleshooting Procedures

dcecp> registry stop /.../giverny.com/subsys/dce/sec/slave_3

dcecp>

2. Start the security server in locksmith mode. The following example shows the
security server started with the locksmith account that was created for the
principal namedmaster_admin. The -remote option is also supplied to allow
master_admin to log in from a remote node; otherwise,master_adminmust log
in from the node on which the security server was started.

dcelocal/bin/secd -locksmith master_admin -remote

If the locksmith account exists but you have lost its password, use the-lockpw
option to causesecd to prompt you for a new locksmith password and replace
the existing password with the one you enter.

The security server normally runs in the background. When you start a security server
in locksmith mode, it runs in the foreground so that you can answer prompts.

Once the security server is started in locksmith mode, you can use thedcecp registry
modify command to change the registry so that the standard privileged account can
access it. After these changes are made, you should do the following:

1. Shut down the security server that is running in locksmith mode.

2. Restart a security server according to your standard procedures.

40.3 Recovering the Master Replica

To recover a master replica because the master’s database is damaged, you can use
either of the following methods:

• Use thedcecp registry designatecommand to make a slave replica the master
replica and create a slave replica on the host of the former master. This method
is described in the following subsection.

• Restore the master from a backup. This method is described in Chapter 36.

DCE 1.2.2 Administration Guide—Core Components 639

DCE Security Service

The method you choose depends on whether the master replica’s backup database or
the slave replica’s database is more current.

40.3.1 Determining the Most Current Database

To determine whether the backup of the master replica’s database or a slave replica’s
database is more current, run thedcecp registry show -replicacommand for the
replica. The output of this command lists the last update sequence number and the
update date and time. Compare the replica’s last update sequence number and the
update date and time with the sequence number and date and time of the master’s
backup. If the replica is more current, make the replica the new master as described
in the following section. If the master’s backup is more current, restore the master
from the backup as described in Chapter 36.

40.3.2 Converting a Slave to a Master

This subsection describes how to use thedcecp registry designatecommand to
convert a slave to a master. Be aware that, because theregistry designate -master
command can cause data to be lost, theregistry designate command without the
-master option is the preferred means of designating a different master replica. Use
the registry designate -mastercommand only if the master replica is irrevocably
damaged and you are unable to use theregistry designate command without the
-master option.

Follow these steps to convert a master replica to a slave replica:

1. Choose the slave replica that will become the new master.

2. Issue the followingregistry designate -mastercommand to change the default
host to the master registry:

dcecp> registry designate /.../musee.com/subsys/dce/sec/art -master

dcecp>

3. Use theregistry show -replica command to verify the change.

640 DCE 1.2.2 Administration Guide—Core Components

Troubleshooting Procedures

4. Use standard UNIX commands to delete the old master replica’s database and
.mkey file by deleting the directorydcelocal/var/security/rgy_data and the file
dcelocal/var/.mkey.

5. Use theregistry deletecommand with the-force option to remove the old master
from the replica list. The following example deletes the old master namedhistory
from the replica list:

dcecp> registry delete /.../musee.com/subsys/dce/sec/history -force

dcecp>

40.4 Recovering Slave Replicas

Because slave replicas are not backed up, you must recreate a replica to restore a
replica that is corrupted. To do so, use the following procedure:

1. Use standard UNIX commands to manually delete the replica’s database files and
master key file. To do this, delete all the files in in the following locations:

• /opt/dcelocal/var/security/rgy_data

• /opt/dcelocal/var/security/.mkey

2. Use theset _s(sec)command to bind to the master and then thedcecp registry
delete -forcecommand to delete the replica from the master’s replica list. The
next two commands show how to bind to the master and then delete the replica.

dcecp> set _s(sec) /.../musee.com/subsys/dce/sec/master

dcecp> registry delete /.../musee.com/subsys/dce/sec/art -force

dcecp>

3. Use standard UNIX commands to copy the file/opt/dcelocal/etc/security/pe_site
from the machine running the master to the machine that will run the replica.

4. Use/etc/dce_config(or your provider’s equivalent) on the replica machine to do
the following:

a. Stop DCE daemons.

DCE 1.2.2 Administration Guide—Core Components 641

DCE Security Service

b. Start DCE daemons.

c. Configure a security server replica. This configuration creates the replica’s
database and startssecd.

5. When you configure the replica in the previous step, you assign it a name. If you
did not give this replica the same name that it previously had, the old name must
be deleted from CDS by performing the following steps:

a. Deleting the replica’s server entry name from/.:/subsys/dce/sec

b. Deleting the replica’s name from the CDS group/.:/sec

40.5 Converting a Master to a Slave

Use the following procedure to convert a master replica to a slave. Use this procedure
only if you have more than one master running on your network or on the Internet,
which is a highly unusual condition.

1. Choose the master replica that will become a slave.

2. Issue the followingregistry designate -slavecommand to change the chosen
master to a slave:

dcecp> registry designate /.../dublin.com/subsys/dce/sec/lit -slave

dcecp>

3. Use theregistry show -replica command to verify the change.

40.6 Forcibly Deleting a Slave Replica

The procedure described in this section explains how to forcibly delete a slave replica.
Use this drastic method only when the ordinary method of deletion described in
Chapter 37 fails.

To forcibly delete a slave replica, use thedcecp registry delete -forcecommand.
This command deletes the slave replica from the master’s replica list. The master

642 DCE 1.2.2 Administration Guide—Core Components

Troubleshooting Procedures

then propagates the delete request to the other replicas. Since this operation never
communicates with the deleted replica, use the-force option only when the replica
dies and cannot be restarted. If a forcibly deleted replica continues operation, use the
registry destroy command to stop the server and delete its database. You can also
simply stopsecd(by using thedcecp registry stopcommand) and delete or rename
its database.

To forcibly delete a registry replica, issue theregistry deletecommand with the-force
option, supplying the name of the registry to delete as an argument. The following
sample deletes the replica at/.../giverny.com/subsys/dce/sec/lit_server_2:

dcecp> registry delete /.../giverny.com/subsys/dce/sec/lit_server_2 -force

dcecp>

If the default replica is not the master,dcecpautomatically binds to the master.

If a forcibly deleted replica continues operation, use theregistry destroy command to
stop the server and delete its database. When you use theregistry destroy command,
you must enter the name of the replica that you want to stop. The following example
shows theregistry destroy command used to delete the replica at/.../giverny.com/
subsys/dce/sec/lit_server_2:

dcecp> registry destroy /.../giverny.com/subsys/dce/sec/lit_server_2

dcecp>

Alternatively, you can simply stopsecd(by using thedcecp registry stopcommand)
and destroy the replica by deleting or renaming its database.

40.7 Restoring a Duplicate Master

This section describes how to recover from a very unusual problem. Do not use the
methods described here to resolve the problem unless it is absolutely necessary.

Occasionally the replica that you want to be the master will have a master sequence
number that is lower than (or equal to) another master sequence number in the system.

DCE 1.2.2 Administration Guide—Core Components 643

DCE Security Service

When the master detects that its master sequence number is lower than another one
in the system, it marks itself as a duplicate master and its process exits. Each time
you start the master replica, it will notice that it has been deemed a duplicate master,
and its process will again exit.

To force this duplicate master to become the master and not exit, restart itssecd
process with the-master_seqnooption in the following format:

secd -master_seqnonew_master_seqno

wherenew_master_seqnois a new master sequence number to assign to the replica.
Make this number one digit higher than the highest master sequence number in the
system.

Use thedcecp registry dumpcommand to find the highest master sequence number.

40.8 Adopting Registry Orphans

Although dcecpdisplays object names and you identify registry objects by name, the
DCE Security Service uses UUIDs to identify objects internally. When you create a
registry object, the DCE Security Service automatically sets up an association between
the object name and a UUID that it uses to identify the object. When you delete
registry objects, you delete the association between the registry object and the UUID
that identifies the object.

Orphans are objects owned by UUIDs that are not associated with a principal or group
because the principal or group has been deleted. For example, if you delete a principal
from the registry, you also delete the association between the name used to identify
the principal externally and the UUID used to identify the principal internally. Any
objects (files, programs) owned by the deleted principal are now owned internally
by a UUID no longer associated with a principal. If no other principal, group, or
organization has access rights to the object, the object cannot be accessed at all and
is now anorphan.

To solve this problem, you can use thedcecp principal create, group create, andorg
create commands with the-uuid option to create a principal, group, or organization

644 DCE 1.2.2 Administration Guide—Core Components

Troubleshooting Procedures

with the same UUID as the UUID that owns the orphaned object and thus adopt the
orphaned object.

Note: When you create a new registry object, you have no way of specifying the
UUID associated with the object; therefore, you cannot simply add a new
registry object of the same name to adopt the orphan.

The -uuid option creates a principal, group, or organization and lets you specify the
UUID with which it should be associated instead of assigning it automatically. Except
for the manner in which it is created, a principal, group, or organization created
by these commands is no different from any other principal, group, or organization.
The following examples show how to use this option to create a principal, group, or
organization to adopt an orphaned registry object.

To create a principal associated with the UUID that owns the orphaned object, use
the following command:

principal create name-uuiduuid [-fullname fullname] \

[-quota object_creation_quota] [-uid UNIX_number]

To create a group associated with the UUID that owns the orphaned object, use the
following command:

group create name-uuiduuid [-fullname string] \

[-inprojlist [yes | no]] [-gid UNIX_number]

To create an organization associated with the UUID that owns the orphaned object,
use the following command:

organization create name-uuiduuid \

[-fullname string] [-orgid UNIX_number]

where:

name The principal’s, group’s, or organization’s primary name.

DCE 1.2.2 Administration Guide—Core Components 645

DCE Security Service

uuid The UUID number to be assigned to the principal, group, or
organization. This UUID should be the one that owns the orphaned
object (that is, the one that was associated with the deleted registry
object). The UUID is specified in RPC print string format as 8
hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; 4
hexadecimal digits, a hyphen; 4 hexadecimal digits, a hyphen; and 12
hexadecimal digits. The format is as follows:

nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn

string The principal’s, group’s, or organization’s full name.

UNIX_number
For cell principalsonly, the UNIX number to be associated with the
name. If you do not enter this option, the next sequential UNIX number
is supplied. For all principals other than cells, the UNIX number is
extracted from information that is embedded in the principal’s UUID
and cannot be specified here.

object_creation_quota
For principalsonly, the principal’s object creation quota. If you do not
enter this option, the default isunlimited .

-inprojlist For groupsonly, yes turns off the project list inclusion so that groups
are not included in project lists. If you enterno, the group is included
in project lists.

Note: In the current implementation of DCE, UNIX numbers are embedded in
UUIDs. If you try to create a group or organization to adopt an orphaned
object and fail, it could be because the embedded UNIX number is invalid
because it does not fall within the range of valid UNIX numbers set for the
cell as a registry property. If this is the case, you must reset the range of valid
UNIX number to include the UNIX number embedded in the UUID and then
try again to adopt the object. See Chapter 35 for information on setting the
valid range of UNIX numbers.

646 DCE 1.2.2 Administration Guide—Core Components

Chapter 41
Accessing Registry Objects

This chapter describes the permissions that apply to objects in the registry. Because the
permissions that are granted are based on the way the registry database is structured,
this chapter first briefly describes the structure of the registry database. It then describes
the permissions for each object in the registry database, the registry ACL managers,
and the initial registry ACLs.

Both dcecp and theacl_edit command have functions for creating, modifying, and
deleting ACL entries for registry objects. See each command’s reference page in the
DCE 1.2.2 Command Referencefor a description of the operations it performs on ACL
entries.

41.1 The Registry Database

The registry is structured into the following main directories:

• The principal directory—Contains information about principals

• The group directory—Contains information about groups

DCE 1.2.2 Administration Guide—Core Components 647

DCE Security Service

• The org directory—Contains information about organizations

In addition to the directories, the registry contains thepolicy object, thereplist
object, and thexattrschema object, all of which are created when the registry is
created during machine configuration. Thepolicy object contains information that
applies to registry properties and policies and organization policies; thereplist object
contains information about the replicas in the DCE cell; and thexattrschema object
contains information about extended registry attributes (ERAs). You can modifypolicy
and replica information at any time by using thedcecp registry commands. The
xattrschema object is modified by using thedcecp xattrschemacommands.

When you create simple objects in theprincipal , group, or org directory,
subdirectories are created as needed. For example, if you add a principal such as
preludes/villa/lobos , the subdirectoriespreludes and villa are created. You can
use these subdirectories to help organize your data. When you delete all objects in
a subdirectory, the subdirectory itself is deleted. (You cannot delete theprincipal ,
group, or org directory.)

The permissions that are granted to objects in the registry depend on where the object
fits in the structure of the registry database. Figure 41-1 illustrates the registry database.
The boxes represent container objects (directories). The ovals represent simple objects.
Figure 41-1 shows only the top levelprincipal , group, and org directories. Your
registry can have subdirectories if you create them.

Figure 41–1. The Registry Database Structure

xattrschema Principal Group OrgReplist Policy

mahler bach conductors composers cantatas classics

Registry Database

648 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

41.2 Registry Permissions

Table 41-1 lists the permissions that can be granted for the object types found in the
registry.

Table 41–1. Permissions for Registry Objects

Permission Meaning

A Executes commands that act on replicas (sec_admin).

a Modifies authentication information.

c Modifies ACLs on objects. All registry ACLs must have one
entry that specifiesc (control) permission.

d Deletes from an object’s contents.

D Deletes an object from the registry.

f Modifies a principal’s, group’s, or organization’s full name.

g Adds a principal to a group.

i Adds to a object’s contents.

m Modifies management information.

M Adds and deletes members from this group or organization. To
add a member to a group, you must also haveg permission for
the principal to be added.

n Modifies the name of a directory, a principal, a group, or an
organization.

u Modifies user information.

r Views management, authentication, and user information.

t Tests the group or organization membership of a named
principal.

DCE 1.2.2 Administration Guide—Core Components 649

DCE Security Service

41.2.1 Management, Authentication, and User Information

The registry contains three different kinds of information about the objects in
it: management information, authentication information, and user information. The
specific items of information that are kept for each object type are summarized in the
following subsections.

41.2.1.1 Management Information

Management information includes the following categories:

• For registry policies and properties

— The account lifespan

— The password minimum length

— The password lifespan

— Whether or not passwords can contain spaces

— Whether or not passwords can consist of all nonalphanumeric characters

— The password expiration date

— The minimum ticket lifetime

— The default ticket lifetime

— A number that defines the lowest UNIX ID that is supplied automatically
when principals, groups, or organizations are created

— A number that defines the highest number that can be supplied (either
automatically or manually) as a UNIX ID when principals, groups, or
organizations are created

— Whether or not encrypted passwords are displayed (the shadow password
property)

• For principals

— The account, group, and organization names

— Text string showing the full name of the principal

— Object creation quota for the principal

650 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

— Whether the principal can change primary names to aliases and aliases to
primary names

— User identifier (UID) of the principal

— Unique user identifier (UUID) of the principal

— The expiration date for the principal’s account

— The Account-Valid Flag for the principal’s account

— Flags that indicate whether the account is for a principal that can act as a
client or as a server

• For groups

— Primary name of the group

— Text string showing the full name of the group

— Whether the group’s primary name can be changed to an alias and its aliases
to its primary name

— Group Identifier (GID) for the group

— The project list inclusion property

— UUID of the group

• For organizations

— Primary name of the organization

— Whether the organization’s primary name can be changed to an alias and its
aliases to its primary name

— Text string showing the full name of the organization

— Organization Identifier (ORGID) for the organization

— UUID of the organization

— The account lifespan

— The password minimum length

— The password lifespan

— The password expiration date

— Whether or not passwords can contain spaces

DCE 1.2.2 Administration Guide—Core Components 651

DCE Security Service

— Whether or not passwords can consist of all nonalphanumeric characters

• For thexattrschema object

— Whether or not the xattrschema can be modified

41.2.1.2 Authentication Information

Authentication information includes the following categories:

• For registry policies and properties

— The maximum ticket lifetime

— The maximum time for which tickets can be renewed

• For principals

— The maximum ticket lifetime for the principal’s account

— The maximum time for which tickets that are issued to the principal’s account
can be renewed

— The date and time that the principal’s account was last changed (Good Since
Date)

— The date and time that the principal’s account was enabled (Last Changed
Date)

— The creator of the principal’s account and account creation date

— Description of the account’s use

— Whether the principal’s account can be issued postdated tickets, forwardable
tickets, renewable tickets, or proxiable tickets

— Whether the DCE Authentication Service can issue tickets to the principal’s
account based on ticket-granting ticket authorization or whether principals
must obtain tickets directly for the service

— Whether the principal’s account can be issued duplicate session keys

652 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

41.2.1.3 User Information

User information includes the following information pertaining to a principal’s
account:

• Password

• Home directory

• Miscellaneous information (GECOS information)

• Login shell

• Password-Valid Flag

41.2.2 Permission Required to Create Principals, Groups, or
Organizations

Figure 41-2 shows the permission that is required to create principals, groups, or
organizations.

Figure 41–2. Permission Required to Create Principals, Groups, or Organizations

Parent Directory i permission

To create a principal, group, or organization, you must havei permission on the
directory in which you create the principal, group, or organization. For example, to
create the principalpreludes/villa/lobos, you must havei on villa .

DCE 1.2.2 Administration Guide—Core Components 653

DCE Security Service

41.2.3 Permissions Required to Delete Principals, Group, or
Organizations

Figure 41-3 shows the permissions that are required to delete principals, groups, or
organizations.

Figure 41–3. Permissions Required to Delete Principals, Groups, or Organizations

Parent Directory d permission

 principal, group, or
 organization D permission

To delete principals, groups, or organizations, you must have the following
permissions:

• The d permission on the directory in which the principal to be deleted exists

• The rD permission on the principal, group, or organization to be deleted

For example, to delete the principalpreludes/villa/lobos, you must have thed
permission for thepreludes/villadirectory, and rD permissions for the principal
preludes/villa/lobos.

41.2.4 Permissions Required to Add Accounts

When you add accounts, by using theuser createcommand,dcecpadds the principal
to the group or organization that is named in the account, if the principal is not already
a member of the group and/or organization. For this reason, the permissions that are
required to add an account may include the permissions that are required to add a

654 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

member to a group or organization. The following topics are covered in the discussion
of the permissions required to add accounts:

• The permissions that are required to add an account and at the same time add the
principal as a member of the group and organization that is named in the account.
(See Section 41.2.4.1.)

• The permissions that are required to add an account for which the principal is
already a member of the named group and organization. (See Section 41.2.4.2.)

• The permissions that are required to add an account and add the principal only to
the group that is named in the account (because the principal is already a member
of the organization). (See Section 41.2.4.3.)

• The permissions that are required to add an account and add the principal only to
the organization that is named in the account (because the principal is already a
member of the group). (See Section 41.2.4.4.)

41.2.4.1 Adding an Account and the Account Principal to the
Group and Organization

Figure 41-4 shows the permissions required to add an account and the account
principals to the group or organization.

Figure 41–4. Permissions Required to Add an Account and the Account Principal to the
Group and Organization

organization
named in the
account

principal named
 in the account maug permission rtM permission

group named in
 the account

Policy ObjecttM permission r permission

To add an account and add the account’s principal to the group and the organization
named in the account automatically, you must have the following permissions:

• The maug permissions on the account’s principal

DCE 1.2.2 Administration Guide—Core Components 655

DCE Security Service

• The tM permissions on the group that is named in the account

• The rtM permissions on the organization that is named in the account

• The r permission on the registrypolicy object

For example, to create an account for the principalpreludes/villa/lobos associated
with the groupcomposersand the organizationpianists, you must have the following
permissions:

• The maug permissions onpreludes/villa/lobos

• The tM permissions on the groupcomposers

• The rtM permissions on the organizationpianists

• The r permission on the registrypolicy object

41.2.4.2 Adding an Account for Which the Principal is Already a
Member of the Group and Organization

Figure 41-5 shows the permissions that are required to add an account for which the
principal is already a member of the group or organization.

Figure 41–5. Adding an Account For Which the Principal Is Already a Member of the
Group and Organization

organization
named in the
account

principal named
 in the account mau permission r permission

group named in
 the account

Policy Objectany permission r permission

To add an account that does not require adding the account’s principal to the group
and the organization named in the account, you must have the following permissions:

• The mau permissions on the account principal

656 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

• At least one permission of any kind on the group that is named in the account

• The r permission on the organization that is named in the account

• The r permission on the registrypolicy object

For example, to create an account for the principalpreludes/villa/lobos associated
with the groupcomposersand the organizationpianists, you must have the following
permissions:

• The mau permissions onpreludes/villa/lobos

• At least one permission of any kind on the groupcomposers

• The r permission on the organizationpianists

• The r permission on the registrypolicy object

41.2.4.3 Adding an Account and the Principal to the Group Only

Figure 41-6 shows the permissions that are required to add an account and the principal
to the group only.

Figure 41–6. Permissions to Add an Account and the Principal to the Group Only

organization
named in the
account

principal named
 in the account maug permission r permission

group named in
 the account

Policy ObjecttM permission r permission

To add an account and add the account’s principal to the group (the principal is already
a member of the organization named in the account), you must have the following
permissions:

• The maug permissions on the account’s principal

• The tM permissions on the group that is named in the account

DCE 1.2.2 Administration Guide—Core Components 657

DCE Security Service

• The r permission on the organization that is named in the account

• The r permission on the registrypolicy object

41.2.4.4 Adding an Account and the Principal to the Organization
Only

Figure 41-7 shows the permissions that are required to add an account and the principal
to the organization only.

Figure 41–7. Permissions to Add an Account and the Principal to the Organization Only

organization
named in the
account

principal named
 in the account mau permission rtM permission

group named in
 the account

Policy Objectany permission r permission

To add an account and add the account’s principal to the organization (the principal
is already a member of the group named in the account), you must have the following
permissions:

• The mau permissions on the account’s principal

• At least one permission of any type on the group that is named in the account

• The rtM permissions on the organization that is named in the account

• The r permission on the registrypolicy object

41.2.5 Permissions Required to Delete Accounts

Figure 41-8 shows the permissions that are required to delete accounts.

658 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

Figure 41–8. Permissions Required to Delete Accounts

1

principal named
 in the account rmau permission

To delete accounts, you must have thermau permissions for the principal that is
named in the account. For example, to add or delete the account for the principal
namedpreludes/villa/lobos, you must have thermau permissions forpreludes/villa/
lobos.

41.2.6 Permissions Required to Add Members to Groups

Figure 41-9 shows the permissions that are required to add members to groups.

Figure 41–9. Permissions Required to Add Members to Groups

rM permissionprincipal to be added
to the group

rg permission
group to which the
principal is to be
added

To add members to groups, you must have the following permissions:

• The rM permissions on the group to which the principal is being added

• The rg permissions on the principal to be added

For example, to add the principalpreludes/villa/lobos to the groupcomposers, you
must have the following permissions:

• The rM permissions on the groupcomposers

• The rg permissions on the principallobos

DCE 1.2.2 Administration Guide—Core Components 659

DCE Security Service

41.2.7 Permissions Required to Add Members to Organizations

Figure 41-10 shows the permissions that are required to add members to organizations.

Figure 41–10. Permissions Required to Add Members to Organizations

rM permissionprincipal to be added
to the organization

r permission
organization to
which the principal
is to be added

To add members to organizations, you must have the following permissions:

• The rM permissions on the organization to which the principal is being added

• The r permissions on the principal to be added

For example, to add the principalpreludes/villa/lobos to the organizationpianists,
you must have the following permissions:

• The rM permissions on the organizationpianists

• The r permission on the principallobos

41.2.8 Permissions to Delete Members from Groups or
Organizations

Figure 41-11 shows the permissions that are required to delete members from groups
or organizations.

Figure 41–11. Permissions to Delete Members From Groups or Organizations

rM permission
principal to be deleted
from the group or
organization

r permission
group or organization
from which the principal
is to be deleted

660 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

To delete members from a group or organization, you need therM permissions on the
group or organization from which the principal is being deleted and ther permission
on the principal being deleted.

For example, to delete the principalpreludes/villa/lobos from the groupcomposers,
you must have the following permissions:

• The rM permissions on the groupcomposers

• The r permission on the principallobos

41.2.9 Permissions Required to Change a Principal’s, Group’s, or
Organization’s Full Name

Figure 41-12 shows the permissions that are required to change a principal’s, a group’s,
or an organization’s full name.

Figure 41–12. Permissions Required to Change a Principal’s, Group’s, or Organization’s
Full Name

 principal, group, or
 organization

rf permission

To change a principal’s, group’s, or organization’s full name, you must have therf
permissions for the principal, group, or organization for which you are making the
change.

41.2.10 Permissions Required to Change Management Information
for Principals, Groups, or Organizations

Figure 41-13 shows the permissions that are required to change management
information for principals, groups, or organizations.

DCE 1.2.2 Administration Guide—Core Components 661

DCE Security Service

Figure 41–13. Permissions Required to Change Management Information For Principals,
Groups, or Organizations

 principal, group, or
 organization

rm permission

To change management information for a principal, a group, or an organization, you
must have therm permissions for the object for which you are changing management
information.

41.2.11 Permissions Required to Change Management,
Authentication, and User Information (Except Passwords) for
Accounts

Figure 41-14 shows the permissions that are required to change management,
authentication, and user information (except passwords) for accounts.

Figure 41–14. Permissions Required to Change Management, Authentication, and User
Information (Except Passwords) For Accounts

 principal named in
 the account

ra permission (authentication)
rm permission (management)
ru permission (user)

To change all management, authentication, and user information (except passwords)
for accounts, you must have the following permissions for the principal that is named
in the account:

• The ra permission to change authentication information

• The rm permission to change management information

• The ru permission to change user information

662 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

41.2.12 Permissions Required to Change Passwords for Accounts

Figure 41-15 shows the permissions that are required to change passwords for
accounts.

Figure 41–15. Permissions Required to Change Passwords For Accounts

r permissionprincipal named in
the account

ru permission

Policy Object

To change passwords for accounts, you must have the following permissions for the
principal that is named in the account:

• The ru permissions on the account’s principal

• The r permission on the registrypolicy object

41.2.13 Permissions Required to Change Authentication and
Management Information for Registry Policies and Properties

Figure 41-16 shows the permissions that are required to change authentication and
management information for registry policies and properties.

Figure 41–16. Permissions Required to Change Authentication and Management
Information For Registry Policies and Properties

Policy Object ra permission (authentication)
rm permission (management)

To change management or authentication information for the registry by using the
dcecp registry modify command, you must have thera permissions to change
authentication information or therm permissions to change management information
for the registrypolicy object.

DCE 1.2.2 Administration Guide—Core Components 663

DCE Security Service

41.2.14 Permissions Required to Execute Commands That Act on
Replicas

Figure 41-17 shows the permissions that are required to execute commands that act
on replicas.

Figure 41–17. Permissions Required to Execute Commands That Act on
Replicas

Replist Object A permission
d permission (to delete replicas)

To execute any of the commands that act on replicas, you must have the following
permissions on thereplist object:

• The A permission to execute all commands except for those that display replica
information, which require no permissions on thereplist object.

• The d permission to execute the commands that delete replicas.

41.2.15 Permissions Required to Create Extended Registry Attribute
Types

Figure 41-18 shows the permission that is required to create ERA types.

Figure 41–18. Permissions Required to Create Extended Registry Attribute Types

xattrschema object i permission

664 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

To create an ERA type in the registry schema, you must havei permission on the
xattrschema object.

41.2.16 Permissions Required to Delete Extended Registry Attribute
Types

Figure 41-19 shows the permissions that are required to delete ERA types.

Figure 41–19. Permissions Required to Delete Extended Registry Attribute Types

xattrschema object d permission

To delete ERA types, you must haved permission on thexattrschema object.

41.2.17 Permissions Required to View Extended Registry Attribute
Types

Figure 41-20 shows the permission that is required to view one or more ERAs in the
registry’s schema database (with thedcecp xattrschema showcommand).

Figure 41–20. Permissions Required to View Extended Registry Attributes

xattrschema object r permission

To view ERA types, you must haver permission on thexattrschema object.

DCE 1.2.2 Administration Guide—Core Components 665

DCE Security Service

41.2.18 Permissions Required to Modify Extended Registry Attribute
Types

Figure 41-21 shows the permission that is required to modify ERA types.

Figure 41–21. Permissions Required to Modify Extended Registry Attribute Types

xattrschema object m permission

To modify ERA types, you must havem permission on thexattrschema object.

41.2.19 Permission Required to Change ACLs on Registry Objects

Figure 41-22 shows the permissions that are required to change ACLs on registry
objects.

Figure 41–22. Permission Required to Change ACLs on Registry Objects

object whose ACL
is being changed

c permission

To modify ACLs on registry objects, you must have thec permission on the object
whose ACL you are changing. The registry object can be thepolicy object or a
principal, group, or organization.

666 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

41.2.20 Permissions Required by Slave Replicas

In order to initialize and function properly, slave replicas must have thei, m, and
I permissions for thereplist object (/.:/sec/replist). A slave server runs under the
indentity of the machine on which it runs. A machine name is the local host principal
name in the following form:

host/hostname/self

The required ACL entry is added when thedce_configtool initially configures the
DCE cell’s security server and when you use the tool to create new slave replicas.
The entry has the following form:

user:host/hostname/self:imI

41.3 Registry ACL Manager

The registry ACL manager consists of five manager types, which are used to handle
different ACL semantics that are required by the five types of objects in the registry.
For example, the principal ACL manager type controls the ACLs on allprincipal
objects in the registry. Becausegroup objects require a set of permissions that are
different than those of aprincipal object, there is a separate group ACL manager type
that controls the ACLs ongroup objects.

Not all permissions nor all ACL entry types are valid for each ACL manager. Table
41-2 summarizes the valid and invalid permissions and the invalid ACL entry types
for each ACL manager.

DCE 1.2.2 Administration Guide—Core Components 667

DCE Security Service

Table 41–2. ACL managers and Valid Permissions and ACL Entry Types

Manager Type Controls Valid Permissions
Invalid ACL
Entry Types

dir directory objects rcidDn user_obj,
group_obj

policy the policy object rcma user_obj,
group_obj

principal principal objects rcDnfmaug group_obj

group group objects rctDnfmM user_obj

org org objects rctDnfmM user_obj,
group_obj

replist replica lists cidmIA user_obj,
group_obj

xattrschema ERA types rcidm user_obj,
group_obj

41.4 Initial Registry ACLs

When the registry database is created, theprincipal , group, andorg directories and
the policy, replist, andxattrschema objects are given initial ACLs. As new objects
are created in the registry, they inherit their ACLs from theprincipal , group, and
org directory ACLs. The ACL entry key for those initial ACL entries that require a
key is the name of the principal that creates the registry database (supplied to the
sec_create_dbcommand as the registry creator), orroot if no name is supplied. (See
Chapter 38 for more information onsec_create_dband the registry creator.)

The initial ACLs that are created when the registry database is created are described
in the following list. In the list,rgy_creatorsignifies the principal that is named as
the registry creator.

Note: You platform’s configuration tool may update these initial ACLs.

668 DCE 1.2.2 Administration Guide—Core Components

Accessing Registry Objects

• For principal objects

unauthenticated:r-- -- -- --

user_obj:r---f--ug

user: rgy_creator: rcDnFmaug

other_obj:r-- -- ---g

any_other:r-- -- -- --

• For group objects

unauthenticated:r-t-- ---

user: rgy_creator :rctDnfmM

group_obj:r-t-- ---

other_obj:r-t-- ---

any_other:r-t-- ---

• For org objects

unauthenticated:r-t-- ---

user: rgy_creator :rctDnfmM

other_obj:r-t-- ---

any_other:r-t-- ---

• For thepolicy object

unauthenticated:r-- --

user: rgy_creator :rcma

other_obj:r-- --

any_other:r-- --

• For directory objects

DCE 1.2.2 Administration Guide—Core Components 669

DCE Security Service

unauthenticated:r-- ---

user: rgy_creator: rcidDn

other_obj:r-- ---

any_other:r-- ---

• For thereplist object

user:cell_admin:cidmA-

• For thexattrschema object

unauthenticated:r-- ---

user:cell_admin:rcidm

other_obj:r-- ---

any_other:r-- ---

670 DCE 1.2.2 Administration Guide—Core Components

Chapter 42
DCE Audit Service

Auditing plays a critical role in distributed systems. Adequate audit facilities are
necessary for detecting and recording critical events in distributed applications.

Auditing, a key component of DCE, is provided by the DCE Audit Service. This
chapter provides an introduction to the DCE Audit Service.

42.1 Features of the DCE Audit Service

The DCE Audit Service has the following features:

• An audit daemon (auditd) performs the logging of audit records based on specified
criteria.

• Application programming interfaces (APIs) can be used as part of application
server programs to record audit events. These APIs can also be used to create
tools that can analyze the audit records.

DCE 1.2.2 Administration Guide—Core Components 671

DCE Security Service

• An administrative command interface to the audit daemon directs the daemon in
selecting the events that are going to be recorded based on certain criteria. This
interface is accessed through the DCE control program (dcecp).

• An event classification mechanism allows the logical grouping of a set of events
for ease of administration.

• Audit records can be directed to logs or to the console.

42.2 Components of the DCE Audit Service

The DCE Audit Service has three basic components:

• Application programming interfaces (APIs)

Provide the functions that are used to detect and record critical events when
the application server services a client. The application programmer uses these
functions at certaincode pointsin the application server program to actuate the
recording of audit events. Other APIs can be used to create tools that examine
and analyze the audit event records.

• Audit daemon

The audit daemon provides the following services:

— Maintains the filters and the central audit trail file.

— Exports an RPC interface with which it can be controlled by the DCE control
program (dcecp).

• DCE control program

The DCE Audit Service’s management interface to the audit daemon. As an
administrator, you can use it to specify how the audit daemon will filter the
recording of audit events.

42.3 DCE Audit Service Concepts

This section describes some of the concepts that are relevant to the administration of
the DCE Audit Service.

672 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

42.3.1 Audit Clients

All RPC-based servers are potential audit clients; DCE servers and user-written
application servers. The DCE Security Service and the Distributed Time Service are
auditable. That is, code points (discussed in the next section) are already in place in
these services.

The audit daemon can also audit itself.

Audit clients should have thelog permission to the audit daemon object to be able
to use the central audit trail file. Permissions to the audit daemon are discussed in
Chapter 43.

42.3.2 Code Points

A code point is a location in the application server program where DCE audit APIs
are used. Code points generally correspond to operations or functions offered by the
application server that requires audit. For example, if a bank server offers the cash
withdrawal functionacct_withdraw(), this function may be deemed to be an auditable
event and be designated as a code point.

Code points are already in place in the DCE Security Service, Distributed Time
Service, and Audit Service code. Code points and their associated events for the
DCE Security Service are documented in thesec_audit_events(5sec)reference
page. Code points and their associated events for the DCE Distributed Time
Service are documented in thedts_audit_events(5sec)reference page. Code points
and their associated events for the DCE Audit Service are documented in the
aud_audit_events(5sec)reference page.

42.3.3 Audit Events

An audit event is any event that an audit client wishes to record. Generally, audit
events involve the integrity of the system. For example, when a client withdraws cash
from his bank account, this can be an audit event because it can involve a possible
security violation on the bank account.

DCE 1.2.2 Administration Guide—Core Components 673

DCE Security Service

An audit event is associated with a code point in the application server code.

42.3.4 Event Numbers

Every audit event is assigned an event number by the application programmer. The
event number is a 32-bit integer, such as 0xC0000000. Event numbers are discussed
in more detail in theDCE 1.2.2 Application Development Guide—Core Components.

42.3.5 Event Classes

Audit events can be logically grouped together into an event class. Event classes
provide an efficient mechanism by which sets of events can be specified by a single
value. Generally, an event class consists of audit events with some commonality. For
example, in a bank server program, the cash transactions (deposit, withdrawal, and
transfer) may be grouped into an event class. Event classes are also discussed in
Chapter 43.

42.3.5.1 Event Class Files

Event classes are defined inevent class files. All event class files must be created in
the dcelocal/etc/audit/ecdirectory.

Default event class files are provided to classify auditable events from the DCE
Security Service, Time Service, and Audit Service. They are installed on the host
system when any of these services is installed.

The name of an event class is the same as its filename. Each event class is defined
within an event class file.

You can define new event classes by removing or adding event numbers in the event
class files, or by creating new event class files.

674 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

42.3.5.2 Event Class Names

Each event class has a symbolic name assigned to it. Following is the suggested name
format of event classes that vendors should follow:

ec_org_product_class

where:

org Is the name of the organization or company that defines the event class.

product Is the name of the product for which the event class is defined.

class Is the characterization of the event class.

The following are two examples of event class names:

• ec_osf_dce_authentication—Defines an authentication event class for OSF’s
DCE core components.

• ec_transarc_encina_update—Defines an update event class for Transarc’s
Encina.

You can also define event classes to meet your own auditing needs. The following is
the suggested name format for these event classes:

dce_server-name_class

whereclassis a characterization of the event class.

42.3.5.3 Event Class Numbers

If you define your own event classes, you must associate it with an event class number.
Event class numbers are 32-bit integers. Each event class number is a tuple made up
of a set ID and theclass event ID. The set ID corresponds to a set of event classes
and is assigned by OSF to an organization or vendor. The class event ID identifies an

DCE 1.2.2 Administration Guide—Core Components 675

DCE Security Service

event class within the set of event classes. The organization or vendor manages the
issuance of the class event ID numbers to generate an event class number.

The structure and administration of event class numbers can be likened to the structure
and administration of IP addresses. Recall that an IP address is a tuple of a network
ID (analogous to the set ID) and a host ID (analogous to the class event ID).

42.3.5.4 Event Class Number Formats

Event class numbers follow one of five formats (A to E), depending on the number
of event classes in the organization. The format of an event class number can be
determined from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors)
that need more than 16 bits for the class event ID. This format allocates 7 bits to the
set ID and 24 bits to the class event ID. Format A event class numbers with zero (0)
as its set ID are assigned to OSF. That is, all event class numbers used by OSF have
a zero in the most significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for
the class event ID.

Format C can be used by small organizations that need less than 8 bits for the class
event ID.

Format D is not administered by OSF and can be used freely within the cell.
These event class numbers cannot be unique across cells and should not be used
by application servers that are installed in more than one cell.

Format E is reserved for future use.

The numbers with 110 in the most significant bits (that is, 0xC0000000 to
0xDFFFFFFF) are reserved to be used locally within a cell.

The event class number formats are illustrated in Figure 42-1 (class event IDs are
labeled ‘‘event-id’’).

676 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

Figure 42–1. Event Class Number Formats

Format A
Format B
Format C
Format D
Format E

0 1 2 3 4 8 16 24 31
0 set–id event–id
1 0 set–id event–id
1 1 0 set–id event–id
1 1 1 0 event–id
1 1 1 1 reserved

The cell administrator is responsible for administering and assigning local event class
numbers and their names.

42.3.6 Filters

Once the code points are identified and placed in the application server, all audit events
corresponding to the code points will be logged in the audit trail file, irrespective of the
outcome of these audit events. However, recording all audit events under all conditions
may neither be practical nor necessary. Filters provide a means by which audit records
are logged only when certain conditions are satisfied. The administrator defines filters
using the DCE control program.

A filter is composed of filter guides that specify these conditions. Filter guides also
specify what action to take if the condition (outcome) is met.

A filter answers the following questions:

• Who will be audited?

• What events will be audited?

• What should be the outcome of these events before an audit record is written?

• Will the audit record be logged in the audit trail file, or displayed on the system
console, or both?

For example, for the bank server program, you can impose the following conditions
before an audit record is written:

DCE 1.2.2 Administration Guide—Core Components 677

DCE Security Service

‘‘Log audit records on all withdrawal transactions (the audit events) that fail because
of access denial (outcome of the event) that are performed by all customers in the
DCE cell (who to audit).’’

42.3.6.1 Filter Subject Identity

A filter is associated with one filter subject, which denotesto whomthe filter applies.
The filter subject is the client of the distributed application who caused the event to
happen. The filter subject has two parts: the filter type and the key.

There are eight filter types:

• principal —DCE principal in the local cell.

• foreign_principal—DCE principal in a foreign cell.

• group—DCE group in the local cell.

• foreign_group—DCE group in a foreign cell.

• cell—DCE cell in the network.

• cell_overridable—DCE cell in the network. This type can be overriden by a more
specific filter type.

• world—All clients of the distributed application.

• world_overridable—All clients of the distributed application. This type can be
overriden by a more specific filter type.

The key is the specific name of theprincipal , foreign_principal , group,
foreign_group, cell, and cell_overridable filter types. The world and
world_overridable filter types have no keys.

42.3.6.2 Filter Guides

A filter contains one or more guides. A filter guide contains three elements: audit
condition, audit action, and event class.

678 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

An audit condition specifies the required outcome (or outcomes) of the event before
an audit record is written to the audit trail. These outcomes are not mutually exclusive.
The audit conditions are

• success—Records only if event succeeds.

• failure—Records only if event fails.

• denial—Records only if event failed because of access denial.

An audit action specifies where the audit record is written. The audit actions are

• alarm—Displays the audit record on system console.

• log—Logs the audit record through an audit daemon or directly to an audit trail
file.

The audit actions are not mutually exclusive; you can specify both.

The third element of the filter guide specifies the event class or event classes to which
the filter will apply (for the specific filter subject identity).

42.3.6.3 Example of Filter Guides

The following is an example of a filter with two guides:

filter type: foreign_principal

key: /.../cell_x/foo

guide 1:

audit conditions - denial

audit actions - log

event classes - Confidential

guide 2:

audit conditions - denial

audit actions - alarm, log

event classes - Restricted

Guide 1 specifies that an audit record will be logged for any event in event class
Confidential if the user is the foreign principal/.../cell_x/foo and the event failed

DCE 1.2.2 Administration Guide—Core Components 679

DCE Security Service

because of access denial. Guide 2 specifies that an audit record will not only be logged
but also be displayed on the system console for any event in event classRestricted,
for the same user and event outcome.

42.3.6.4 Filter Rules

Filter rules are used to resolve overlapping guides from different filters. There are two
filter rules: the override and the high-water-mark.

Under the override rule, filters that are overridable (that is,cell_overridable and
world_overridable types) are nullified by more specific filters. The override rule
serves as a mechanism that allows for complementary filters. A filter for a principal
or a group is more specific than a filter for a cell or for the world.

The high-water-mark rule is applied after the override rule. If multiple filters are
applicable to a client, the union of the actions (log or alarm) specified by these filters
is applied.

A filter is applicable to a client if its principal, groups, or cell identity matches the key
of the filter. Theworld andworld_overridable filters have no keys and are applicable
to all clients. If there are multiple filters that are applicable to a client, then the union
of the actions (log or alarm) specified by these filters is taken.

42.3.6.5 Example of Using Filter Rules

The use of overridable filters is described in the following scenario:

Alice in Company (cell) X is responsible for activating some operations (event class
critical_transactions). Other principals in the company are also authorized to activate
the same operations, but only under certain conditions; for example, when Alice is
not available. The system administrator wants to log an audit record regardless of
the event outcome (that is, audit conditions = all) or who activates these operations.
The administrator also wants to generate an alarm if the activator is not Alice. This
specification is implemented by the following two filters:

680 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

Filter 1:

filter type: principal

key: Alice

guide 1:

audit conditions - all

audit actions - log

event classes - critical_transactions

Filter 2:

filter type: cell_overridable

key: X

guide 1:

audit conditions - all

audit actions - log, alarm

event classes - critical_transactions

When Alice invokes events in thecritical_transactions event class, the principal filter
(filter 1) is applicable because its key matches Alice’s identity. The principal filter is
more specific than the cell filter. Although the cell filter (filter 2) is also applicable
to Alice (Alice belongs to cell X), it is overridden by the principal filter because the
cell filter is overridable. For other principals in Company (cell) X, the only applicable
filter is the cell filter (filter 2). Thus, these same events will cause an audit record to
be logged and also raise an alarm.

Nonoverridable world and cell filters are also useful. Without them, an administrator,
for example, would have to delete all filters for groups and principals of a cell in order
to make a cell-wide filter effective to the whole cell. (System administrators may want
to introduce atemporarynonoverridable cell filter when a cell is suspected to be the
source of a security problem.)

The following figure illustrates the override relations between different types of filters.
An arrow from filter type X to filter type Y means that X overrides Y.

DCE 1.2.2 Administration Guide—Core Components 681

DCE Security Service

Figure 42–2. Override Relations Between Filter Types

principal foreign_principal group foreign_group cell world

cell_overridable

world_overridable
overrides

DCE groups are generally defined for the purpose of granting access permissions.
A group filter specifiesauditing the intent to use the group’s privileges, instead of
specifyingauditing the principals that belong to the group. That is, a group filter would
not have auditing effects on a member principal of the group unless the principal has
the intent to use the group’s privileges (by including the group in the PAC). Because
group filters are defined to audit the intention of using a group’s privileges, they are
independent of other filters and are not overridable.

42.3.7 Audit Trail File

The audit trail file contains all the audit records that are written by the audit daemon.
You can specify either acentral audit trail fileor a vocal audit trail file.

The central audit trail file is created by the audit daemon when it is started. By default,
if the dce_aud_open()function does not specify a name for an audit trail file, all audit
records are sent to the audit daemon, which stores them in the central audit trail file.

If the dce_aud_open()function is invoked with a name for the trail file, this name
becomes the pathname to the local audit trail file and all audit records are sent to that
file.

42.4 Administration and Programming in DCE Audit

Many of the DCE Audit Service administrative tasks are related to the tasks performed
by the application programmer. To understand these administrative tasks, you should
be familiar with some programming aspects of the DCE Audit Service. This section

682 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

describes a typical DCE Audit Service programming and administrative scenario and
their tasks.

A banking server example illustrates this scenario.

42.4.1 Programmer Tasks

The application programmer uses the DCE audit APIs to enable auditing in the
application server program. Specifically, the programmer performs the following tasks:

1. Identifies the code points corresponding to the audit events in the application
server program.

For example, a banking server program can have these functions:acct_open(),
acct_close(), acct_withdraw(), acct_deposit(), and acct_transfer(). Each of
these functions can be designated as a code point, meaning that these are possible
audit events that can be recorded (depending on the filter):

acct_open() /* first code point */

acct_close() /* second code point */

acct_withdraw() /* third code point */

acct_deposit() /* fourth code point */

acct_transfer() /* fifth code point */

2. Assigns an event number to each code point. The event numbers are used as
parameters by thedce_aud_open()API, which opens an audit trail, and the
dce_aud_start()API, which initializes the audit record for the code point. The
programmer may want to define these event numbers in the server’s header file.

For example:

/* event number for the first code point, acct_open()

*/

#define evt_vn_bank_server_acct_open 0x01000000

/* event number for the second code point, acct_close() */

DCE 1.2.2 Administration Guide—Core Components 683

DCE Security Service

#define evt_vn_bank_server_acct_close 0x01000001

/* event number for the third code point, acct_withdraw() */

#define evt_vn_bank_server_acct_withdraw 0x01000002

/* event number for the fourth code point, acct_deposit() */

#define evt_vn_bank_server_acct_deposit 0x01000003

/* event number for the fifth code point, acct_transfer() */

#define evt_vn_bank_server_acct_transfer 0x01000004

3. Adds a call to thedce_aud_open()API to the application server’s initialization
routines. This opens the audit trail file. This function uses the event number of
the lowest numbered event, (in this caseacct_open()) as one of its parameters.
For example:

main()

/* evt_vn_bank_server_acct_open is the lowest event number */

dce_aud_open(aud_c_trl_open_write, description,

evt_vn_bank_server_acct_open,

5, &audit_trail, &status);

4. Adds Audit event logging functions to every code point in the application server
code. These functions perform the following at each code point:

• Initializes an audit record by using thedce_aud_start()API. This function
assigns the event number to the code point representing an event. Thus, this
function uses the event number as one of its parameters.

• Adds event-specific information to the audit record by using the
dce_aud_put_ev_info()API.

• Commits the audit record using thedce_aud_commit()API. This function
writes the audit record to the audit trail file.

Following is an example of how these APIs are used on the code points of the
bank server program:

acct_open() /* first code point */

684 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

/* Uses the event number for acct_open(), */

/* evt_vn_bank_server_acct_open */

dce_aud_start(evt_vn_bank_server_acct_open,

binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */

dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events were logged */

dce_aud_commit(at,ard,options,format,&outcome,&status);

acct_close() /* second code point */

/* Uses the event number for acct_close(), */

/* evt_vn_bank_server_acct_close */

dce_aud_start(evt_vn_bank_server_acct_close,

binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */

dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events were logged */

dce_aud_commit(at,ard,options,format,&outcome,&status);

5. Closes the audit trail file when the server shuts down, using thedce_aud_close()
API in the main server routine. For example:

dce_aud_close(audit_trail, &status);

42.4.2 Administrator Tasks

The administrator uses the event numbers representing the different code points in the
audit client application server program to create event class files and filter guides in
the following manner:

1. The administrator obtains the event numbers of the code points (representing each
audit event) from the application server programmer. In our example, these code
points were assigned the following event numbers:

acct_open() 0x01000000

acct_close() 0x01000001

DCE 1.2.2 Administration Guide—Core Components 685

DCE Security Service

acct_withdraw()
0x01000002

acct_deposit()
0x01000003

acct_transfer()
0x01000004

(Note that event numbers should be entirely sequential. That is, no missing
members of the sequence are allowed.)

1. The administrator decides to create two event classes: the
account_creation_operationsclass comprised ofacct_open()andacct_close(),
and the account_balance_operationsclass comprised ofacct_withdraw(),
acct_deposit(), and acct_transfer(). The administrator assigns the event class
account_creation_operationsthe event class number 0xC0000006. Event class
account_balance_operationsis assigned the event class number 0xC0000007.

To create the event classes, the administrator creates and edits two files, one for
each event class. The name of each of these files will be the same as the event
class that each represents. Each file will contain the numbers of the events in each
event class.

The file with the nameaccount_creation_operationsis edited as follows (lines
that begin with # (number sign) are comment lines):

Event class number of account_creation_operations

ECN = 0xC0000006

Event number of acct_open()

0xC1000000

Event number of acct_close()

0xC1000001

The file with the nameaccount_balance_operationsis edited as follows:

Event class number of account_balance_operations

ECN = 0xC0000007

Event number of acct_withdraw()

0xC1000002

686 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service

Event number of acct_deposit()

0xC1000003

Event number of acct_transfer()

0xC1000004

The administrator stores both files in thedcelocal/etc/audit/ecdirectory.

2. The administrator decides to create two filters: one for all users within the cell
(for the cell /.:/torolabcell), and the other for all other users.

The filter for all users within the cell has the following guides:

• Audit the events in the event classaccount_balance_operationsonly, subject
to the next condition.

• Write an audit record only if an operation in that event class failed because
of access denial.

• If the first condition is fulfilled, write the audit record in an audit trail file
only.

• The administrator then uses the DCE control program’saudfilter create
command to create this filter:

dcecp> audfilter create {cell /.../torolabcell} -attribute \

>{account_balance_operations denial log}

dcecp>

The filter for all other users has the following guides:

• Audit the events in both event classes, subject to the next condition.

• Write an audit record if an operation in that event class succeeded, failed, or
failed because of access denial.

• Write the audit record both in an audit trail file and the console.

Following is thedcecpsession for creating this filter:

dcecp> audfilter create world -attribute \

> {account_balance_operations,account_creation_operations alarm,log all}

DCE 1.2.2 Administration Guide—Core Components 687

DCE Security Service

dcecp>

Chapter 43 provides detailed information about the DCE control program’s
audfilter create command.

688 DCE 1.2.2 Administration Guide—Core Components

Chapter 43
DCE Audit Service Administrative
Tasks

This chapter describes the following administrative tasks that are performed for the
DCE Audit Service:

• Setting the DCE audit environment variables.

• Starting (and stopping) the DCE audit daemon.

• Controlling access to the DCE audit daemon.

• Creating and maintaining event classes to logically group a set of audit events.
Event classes are created by editing event class files.

• Creating and maintaining filters that set the criteria for recording audit events in
an audit trail file.

• Enabling and disabling the audit logging service of the DCE audit daemon.

• Modifying and querying the attributes of the DCE audit daemon.

• Controlling and displaying the audit trail file.

• Using the DCE serviceability routing file.

DCE 1.2.2 Administration Guide—Core Components 689

DCE Security Service

All of the examples that the chapter gives for audit tasks use the DCE control program
(dcecp).

43.1 Setting DCE Audit Environment Variables

There are three environment variables that are related to the operation of the DCE
Audit Service. The DCE audit environment variables should be set before running the
application server (that is, the DCE audit client). The environment variables are as
follows:

• DCEAUDITOFF —If this variable is declared at the time the application is started,
auditing is turned off. By default, this variable is not declared.

• DCEAUDITFILTERON —If this variable is declared at the time the application
is started, filtering is enabled. By default, this variable is not declared; that is,
there is no filtering and all audit events are recorded.

• DCEAUDITTRAILSIZE —Sets the maximum size of the audit trail.

43.2 Starting the Audit Daemon

The DCE Audit Service is not a distributed application. The audit daemon (auditd)
does not need to run on all DCE hosts even if a client application is making use of the
audit service. The audit daemon only needs to run on a host if the audit logs are to go
to the central trail file or if filters are to be installed on the host. This is because the
audit daemon controls access to the central trail file and also manages the audit filters.
However, since the DTS daemon and the security server daemon are audit clients, you
may want to consider running the audit daemon on all hosts in the cell.

You must beroot to be able to start the audit daemon.

Use the following command to start the audit daemon:

auditd

690 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

This command uses flags that influence the behavior of the daemon. For more details
on these flags, see theauditd(8sec)reference page.

43.3 Controlling Access to the Audit Daemon

You must control access to the audit daemon to prevent unauthorized application
servers (the audit clients) from using it. If an unauthorized server is able to log its
audit records, the audit storage space would be exhausted.

You control access to the audit daemon by editing the ACL of the audit daemon object,
/.:/hosts/hostname/audit-server, usingdcecp.

43.3.1 DCE Permissions Supported by the DCE Audit Service

The DCE Audit Service supports the following DCE permissions that can be used to
define the ACL of the audit daemon:

r Read permission. Allows a principal to read the filters.

w Write permission. Allows a principal to modify the filters.

c Control permission. Allows a principal to control the audit daemon.
This includes the ability to enable or disable the logging service, and to
modify the ACL of the audit daemon.

l Log permission. Allows a principal to write audit records in the audit
trail file.

43.3.2 Initial ACL of the Audit Daemon

The initial ACL of a host’s audit daemon contains the following entries:

{unauthenticated -r--}

{user hosts/nodoz/self crwl}

{group subsys/dce/audit-admin crwl}

DCE 1.2.2 Administration Guide—Core Components 691

DCE Security Service

{any_other -r--}

The first entry allows any unauthenticated user onlyread access to the filters. The
second entry allows the host principal (hosts/<hostname>/self) to query and modify
the filters, control the audit daemon, and to write to the audit trail file. The third entry
allows the members of the groupsubsys/dce/audit-adminthe same access rights as
the host principal. The last entry allows all other principals onlyread access to the
filters. You can modify this ACL to suit your security requirements by usingdcecp.

43.3.3 Giving Permissions to Audit Clients and Administrators

Usingdcecp, you can add entries to the ACL of the audit daemon that will grant audit
clients thelog permission to the audit trail file. You can create a DCE security group
that consists of the servers on the host that are authorized to generate audit records.
For example:

group/hosts/<hostname>/audit-clients

Give this group thelog permission to the audit daemon. For example:

dcecp> acl modify /.:/hosts/machine1/audit-server \

>-add {group hosts/machine1/audit-clients l}

dcecp>

All audit clients can then be made members of this group and inherit its permissions
to the audit daemon.

ACL entries must also be added to grant designated administrators the read, query, and
control permissions to the audit daemon. For example, for the administrator’s group
group/hosts/machine1/audit-admin:

dcecp> acl modify /.:/hosts/machine1/audit-server \

>-add {group hosts/machine1/audit-admin rwc}

dcecp>

692 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

43.4 Defining Event Classes

Individual audit events can be grouped together to form event classes. The event class
provides an efficient mechanism by which sets of events can be logically grouped and
selected using a single value.

DCE audit event classes are configurable. You can add or remove events of an existing
event class or define new event classes.

The ability to define local event classes is useful in simplifying the management
of audit services in multiple DCE applications. Administrators can design their own
audit event classes reflecting their security requirements and trail storage resource
constraints.

Temporary event classes can also be created to track down security violations.

43.4.1 Steps in Defining an Event Class

To define an event class, follow these steps:

1. Obtain an event class number for the event class from your cell administrator. A
range of event class numbers should have been allocated to your organization by
OSF. If not, contact OSF.

2. Create an event class file in thedcelocal /etc/audit/ecdirectory. Edit the file as
follows:

a. Declare theevent class number(ECN) by adding a line with the following
format:

ECN=_event_class_number

b. Optionally, you can add aserver event prefix(SEP) line in the file. The SEP
line contains the event number prefixes of each server. The event number
prefix is the lowest event number in each server. The SEP line has the
following format:

DCE 1.2.2 Administration Guide—Core Components 693

DCE Security Service

SEP=_event_number1 event_number2 event_number3 ...

You can put the SEP line anywhere in the file. The SEP line speeds up the
scanning of audit clients by skipping irrelevant event class files.

c. From the application, obtain the event numbers for the code points that you
want to include in the event class.

d. Add the event numbers corresponding to the events that you want to include
in the event class, one number per line.

In the event class file, empty lines are ignored and comments are designated by a #
(number sign) preceding the comment text.

43.4.2 Example Event Class File

Following is a sample event class file namedec_local_cell_critical_events:

ECN = 0xC0000005

Server Event Number Prefixes

0x000001 Security Service Events

0x000002 Time Service Events

0x000003 Audit Service Events

SEP = 0x00000100 0x00000200 0x00000300

Security Service Critical Events

evt_osf_dce_rs_properties_set_info (sets registry properties)

0x0000011f

evt_osf_dce_rs_policy_set_info (sets registry policy)

0x00000121

evt_osf_dce_rs_rep_admin_stop (stops the registry service)

0x00000127

evet_osf_dce_rs_rep_admin_mkey (changes master key)

0x00000129

Time Service Critical Events

evt_osf_dce_dts_create (creates a server or a clerk)

0x00000201

evt_osf_dce_dts_delete (deletes a server or a clerk)

0x00000202

694 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

evt_osf_dce_dts_enable (enables the time service)

0x00000203

evt_osf_dce_dts_disable (disables the time service)

0x00000204

Audit Service Critical Events

evt_osf_dce_aud_enable (enables audit-record logging service)

0x00000301

evt_osf_dce_aud_disable (disables audit-record logging service)

0x00000302

evt_osf_dce_aud_stop (terminates the execution of the audit daemon)

0x00000303

43.5 Creating and Maintaining Filters

After starting the audit daemon and creating the event class file, you can rundcecp
to create, modify, or display the filters maintained by the audit daemon. Use the
audfilter create, audfilter modify , andaudfilter delete commands to create, modify,
and delete the filters. Use theaudfilter catalog and audfilter show commands to
display the existing filters.

43.5.1 Creating Filters

The following is an exampleaudfilter create command for creating a filter:

dcecp> audfilter create {group trust} \

>-attribute {ec_local_bank_audit denial log}

dcecp>

The example command specifies that a filter typegroup be created for the DCE group
namedtrust in the local cell.

The -attribute option is required. The argument to the option is afilter guideor list of
guides. Each filter guide is made up of three elements: anevent class nameor list of
names, anaudit conditionor list of conditions, and anaudit actionor list of actions.

DCE 1.2.2 Administration Guide—Core Components 695

DCE Security Service

The event class name corresponds to the name of the event class file for which your
are creating a filter.

The audit condition is the condition required for the event to be audited. Valid
conditions aresuccess, denial, failure , pending, andall.

The audit action is the action to take if the event being generated matches the audit
condition specified. Valid actions arelog, alarm, andall.

43.5.2 Modifying Filters

You can modify an existing audit filter by adding or deleting one or more of the filter’s
guides. The following is a sampledcecpcommand for modifying an existing filter:

dcecp> audfilter modify world -add {Monetary_Transfers denial log}

dcecp>

The example command adds a guide with an event class ofMonetary_Transfers, an
audit condition ofdenial, and an audit action oflog to the existing filter typeworld .
Note that the filter typeworld does not take a key.

The DCE control program does not use commas. Multiple guides and multiple filters
are specified in the standarddcecp list format: {x y} for single arguments or{{x y}
{a b}} for multiple arguments.

In order to execute theaudfilter modify command, you must have write (w)
permission to the audit daemon’s ACL.

43.5.3 Deleting Filters

You can delete one or more of the audit filters for a DCE client by using theaudfilter
deletecommand. The following is an exampleaudfilter delete command:

696 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

dcecp> audfilter delete {foreign_principal /.../foreign_cell_name/jedwards}

dcecp>

The example command deletes the audit filter for the DCE principaljedwards in the
foreign cell /.../foreign_cell_name.

You can specify more than one filter to be operated on in theaudfilter delete
command. As with the previous example of modifying filters, when deleting multiple
filter, you must use the standarddcecp syntax.

In order to execute this command, you must have write (w) permission to the audit
daemon’s ACL.

43.5.4 Default Filters

During the configuration of the host (usingdce_config), the followingaudfilter create
commands (usingdcecp) are executed to create filters for the security daemon, the
DTS daemon, and the audit daemon:

audfilter create world -at {dce_sec_modify success log}

audfilter create world -at {dce_sec_modify {failure denial} all}

audfilter create world -at {dce_sec_server success log}

audfilter create world -at {dce_sec_server {failure denial} all}

audfilter create world -at {dce_sec_authent {failure denial} all}

audfilter create world -at {dce_sec_query denial all}

audfilter create world -at {dce_dts_mgt_modify success log}

audfilter create world -at {dce_dts_mgt_modify {failure denial} all}

audfilter create world -at {dce_dts_mgt_query {failure denial} all}

audfilter create world -at {dce_audit_admin_modify success log}

audfilter create world -at

{dce_audit_admin_modify {failure denial} all}

audfilter create world -at {dce_audit_filter_modify success log}

audfilter create world -at

{dce_audit_filter_modify {failure denial} all}

audfilter create world -at

{dce_audit_admin_query {failure denial} all}

audfilter create world -at

DCE 1.2.2 Administration Guide—Core Components 697

DCE Security Service

{dce_audit_filter_query {failure denial} all}

43.5.5 Enabling Audit Filters

If you want to enable the audit filters, you must first set theDCEAUDITFILTERON
environment variable. You must set this variable before starting the server (that is, the
audit client).

43.5.5.1 Removing the Update Binding File

If a server (audit client) is running with filters enabled (that is,
DCEAUDITFILTERON was set), libaudit (which is linked to the server)
obtains the server’s binding information and stores it in the following:

/opt/dcelocal/var/audit/client/pid-of-server/update_binding_file

wherepid-of-serveris the process ID of the server.

If the server ends abnormally, this file must be removed manually. If this is not
removed, you will receive an error message the next time you restart the server with
DCEAUDITFILTERON . The message indicates that the audit daemon is unable to
inform the audit client of filter updates:

unable to inform process

/opt/dcelocal/var/audit/client/ pid-of-server /update_binding_file

about esl update.

You can also check for stale update binding files by checking what servers are running
(for example, usingps -e) and comparing their process IDs with the pathnames of
the update binding files. Because the pathname of these files contain apid-of-server
component, you can determine what files correspond to nonexistent servers.

Both the binding information file and the directory containing it (pid-of-server) must
be removed.

698 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

43.5.5.2 Buffering of the Audit Trail

The operating system buffers the audit trail data while it is written before writing it to
disk. For this reason, the growth of the audit trail file will not become apparent until
the data is flushed to disk.

43.6 Enabling and Disabling the Audit Logging Service

Usedcecp to enable or disable the audit record logging service of the audit daemon.
Theaud enablecommand enables the logging service, and theaud disablecommand
disables it.

You may want to disable the logging service when the audit trail file becomes too
large, and then enable it again after the audit trail has been backed up and rewound
(using theaud rewind command).

Using the enable or disable commands enable or disable audit record logging to the
central audit trail file. Applications such as the security server and the time server use
their own audit trail files and are not affected by use of enable or disable.

The aud stop command stops the audit daemon.

43.7 Modifying and Querying Audit Daemon Attributes

The DCE audit daemon has two attributes that relate to the audit trail file:

• stostrategy—Specifies the storage strategy when the size of the audit trail file has
reached its limit. You can specify either of the following storage strategies:

save If the specified trail size limit is reached, the audit daemon saves the
current trail file to a new file (renaming it to its original name with
a timestamp appended at the end of the name). The audit daemon
then deletes the contents of the original trail file and continues
auditing from the beginning of this file. This is the default value
for stostrategy.

wrap The audit daemon will overwrite the old audit trails.

DCE 1.2.2 Administration Guide—Core Components 699

DCE Security Service

• state—Indicates whether the audit daemon is servicing audit record logging
requests from audit clients. The possible values for this attribute areenabled
(default value) ordisabled.

You can usedcecp to see the value of these settings, as follows:

dcecp> aud show

{state enabled}

{stostrategy save}

dcecp>

Use theaud modify command to change these attributes.

43.8 Controlling and Displaying Audit Trails

Audit daemons log audit records sent from audit clients into an audit trail file. If the
audit daemon is started without any argument, then the default audit trail file used is
dcelocal/var/audit/adm/central_trail . You can also direct the audit trail to another
file by using the-t option of theauditd command when starting daemon; thetrail
argument to the-t option specifies the pathname of the file to which the logs should
be written.

43.8.1 Displaying Audit Trail Files

Use thedcecpauditrail show command to examine the contents of an audit trail file.
You can display the contents of either the central or local audit trail file.

For example, you can use the following command to see the contents of the audit trail
file central_trail :

dcecp> audtrail show /opt/dcelocal/var/audit/adm/central_trail

--- Start of an event record --- Event Number: 275

Event Name: LOGIN_getinfo

700 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

Event Outcome: success

Server: /.../stp.gburg.ibm.com/hosts/dceos2

Client: /.../stp.gburg.ibm.com/hosts/drinkernisti/self

Number of groups: 0

Authorization Status: Authorized with a pac

Date and Time recorded: 1994-12-19-19:02:27.037-05:00I-- ---

1 Event(s) specific:

- item number 1 hosts/drinkernisti/self

--- End of an event record ---

--- Start of an event record --- Event Number: 275

Event Name: LOGIN_getinfo

Event Outcome: success

Server: /.../stp.gburg.ibm.com/hosts/dceos2

Client: Unknown client and cell uuids

Number of groups: 0

Authorization Status: Authorized with a pac

Date and Time recorded: 1994-12-19-19:02:28.819-05:00I-- ---

1 Event(s) specific:

- item number 1 dce-rgy

--- End of an event record ---

If you prefer to have the audit trail data put into a file instead of displayed on your
screen, include the-to option in theaudtrail show command line. This option prints
the audit trail file’s contents to a specified filename. Using this option is strongly
recommended for large trail files.

43.8.2 Controlling the Audit Trail Size

By default, audit trail files are limited to a size of 2 MB. When the audit service
detects that the trail file will grow larger than this value, it closes the file, creates a
new unique name for the file by using timestamp information, and then opens a new
trail file with the original name. It then proceeds to write new audit logs to this file.
When this file grows too large, this process is repeated.

If you wish to change the size of the audit trail file, you must set the environment
variable DCEAUDITTRAILSIZE to the size you require before starting the
application that is using the audit service. Setting this environment variable overrides
the default 2 MB size limit.

DCE 1.2.2 Administration Guide—Core Components 701

DCE Security Service

For example, if you wish to use a trail file size of 5 MB, the value of
DCEAUDITTRAILSIZE should be as follows:

DCEAUDITTRAILSIZE 5000000

You can also allow the audit daemon to wrap around the central trail file when its
limit (the default 2 MB or set byDCEAUDITTRAILSIZE) is reached. To do this,
you should start the audit daemon with the-wrap option:

auditd -wrap

You may also want to use this option if old audit records have little or no value and
you want to keep only relatively recent records.

A trail size limit can also be set using the-s option of theauditd command. The limit
set using this method overrides the default 2 MB limit.

If for any reason you desire to take a snapshot of the audit trail before it reaches the
limit, you can use thedcecpaud disablecommand to disable logging and then copy
the file. You can then use thedcecpaud rewindcommand to rewind the central audit
trail file. (Note that, if required, you can back up this audit file at this time. But, if
backup is desired, it is best to let the audit service automatically create new trail files
and back these up.) Then use theaud enablecommand to enable the audit daemon’s
logging service again.

43.8.3 Changing the Audit Trail File Storage Option

The storage strategy option can be changed while the audit daemon is running. This
can only be performed on the central audit trail file.

The following example shows how theaud modify command is used to cause the
audit trail to wrap when it reaches the limit of the file:

702 DCE 1.2.2 Administration Guide—Core Components

DCE Audit Service Administrative Tasks

dcecp> aud modify -stostrategy wrap

dcecp>

This example command changes the value of the audit daemon’s storage strategy
attribute towrap.

DCE 1.2.2 Administration Guide—Core Components 703

Chapter 44
Kerberos Interoperability with DCE
and Secure Remote Utilities

The authentication portion of the DCE Security Service is primarily based on Version
5 of the Kerberos network authentication system, which is described in Internet
Engineering Task Force (IETF) RFC 1510. For the most part, this basis has allowed
the DCE Security Server to operate as a Kerberos Key Distribution Center (KDC)
for Kerberos V5 clients. In prior releases of DCE (Versions 1.2.1 and earlier), this
interoperability was not officially supported or documented.

This chapter explains interoperability features and configuration of DCE and Kerberos
V5. The following main features are provided with the current release of DCE:

• Berkeley Software Distribution (BSD) remote utility interoperability: Secure
versions of the BSD 4.4-Lite remote utilities are provided. These use Kerberos
V5 authentication.

• KDC interoperability: The DCE Security Service can be used as a Kerberos KDC
for Kerberos V5 clients.

• Credential cache and keytab file compatibility: DCE and Kerberos V5 applications
are able to share credential cache and keytab files without losing data.

DCE 1.2.2 Administration Guide—Core Components 705

DCE Security Service

44.1 The Secure Remote Utilities

The current release of DCE provides secure versions of the following utilities, based
on the BSD 4.4-Lite versions:

• rlogin/rlogind

• rsh/rshd

When a client uses a secure remote Kerberos V5 utility such asrsh or rlogin to
connect to the server daemon, the server daemon requests authentication. The remote
utilities authenticate the identity of the client and server to each other in a secure
way. The secure remote utilities also authorize users to access an account on a remote
system. This is done through the transmission of encrypted tickets rather than through
the traditional password mechanism. The traditional password mechanism, used with
nonsecure remote utilities, sends the password in a readable form (unencrypted) over
the network. This creates a security risk from intruders who may be listening over
the network. The main benefit of running the secure remote utilities is that user
authorization no longer requires transmitting a password in a readable form over the
network.

For the securerlogin utility and rlogind server, Kerberos V5 authentication involves
sending encrypted tickets instead of a readable password over the network to verify
and identify the user. The securersh utility, when used with a command, and thershd
server ensure that the user is authorized to access the remote account. Ifrsh is used
without a specified command,rlogin andrlogind are invoked.

If any secure remote utility is installed in an environment in which some of the remote
systems are not secure, the clients will try accessing those remote systems without
using Kerberos authentication.

44.1.1 Related Kerberos Terms and Concepts

Although realms, cells, principals, and authorization are discussed in the
Authentication chapter of theDCE 1.2.2 Application Development Guide, they are
described here briefly as they relate to the secure remote utilities.

706 DCE 1.2.2 Administration Guide—Core Components

Kerberos Interoperability with DCE and Secure Remote Utilities

44.1.1.1 Realms and Cells

In Kerberos, a realm defines an administrative boundary and has a unique name.
A realm consists of the KDC and all the security clients (application servers and
application clients) registered to that KDC.

When using the DCE Security Server as a KDC, the term cell is used. A cell is roughly
equivalent to a realm.

By convention, Kerberos uses uppercase realm names, which appear as suffixes in
principal names such asdavid@MYREALM.COM .

A DCE cell name must be lowercase and have a prefix of leading/.../ in a principal
name, such as/.../my_kdc_cell.com/david.

44.1.1.2 Principals

Each principal that participates in Kerberos V5 authentication and authorization must
be in the KDC database, which is the security registry database for DCE. The
KDC database does not distinguish between types of principal names. However,
distinguishing between two kinds of principal names — user principal names and
service principal names — is useful.

A user principal name is associated with a specific user of the secure remote utilities.
A user principal name consists of a user ID and a realm (or cell) name. Each user
must have a user principal name in the KDC database. An example of a Kerberos user
principal name issusan@MYREALM.COM . An example of a DCE user principal
name is/.../my_kdc_cell/susan.

A service principal name is one that authorizes a client to use a particular
service, including the specific application server machine that the service will
access, and the realm name. Forrlogin and rsh, the service principal name
is host. An example of a Kerberos service principal name forrlogin is host/
abc_system.com@REALM_A.COM. An example of a DCE service principal name
for rlogin is /.../cell_a.com/host/abc_system.com.

DCE 1.2.2 Administration Guide—Core Components 707

DCE Security Service

44.1.1.3 Authorization

Kerberos V5 authorization is the process by which users verify that they may
access remote accounts on specified servers. Authorization depends on successful
user principal validation through the Kerberos V5 authentication protocol.

For Kerberos V5 authorization to succeed, a mapping must exist on the application
server that authorizes the user principal to operate as the login user. The term login
user refers to the user whose account is being accessed on the remote host. This is
not necessarily the same user who originally issued thekinit or dce_logincommand.

Assume David has already issued thekinit command. In this example, David enters
the following command, in which Susan is the login user:

$ rlogin -l susan hostA

Authorization is successful if both of the following requirements are met:

• The login user must have an entry in the/etc/passwdfile on the application server
(remote host).

• One of the following conditions must be true:

— A $HOME/.k5login file must exist in the login user’s home directory on the
application server and contain an entry for the authenticated user principal.
This file must be owned by the login user, and only the login user can have
write permission.

— A Kerberos V5 authorization name database file called/krb5/aname must
exist on the application server and contain a mapping of the user principal to
the login user. This condition requires additional tools only available in a full
Kerberos environment.

— The user name in the user principal must be the same as the login user name,
and the client and server systems must be in the same realm.

708 DCE 1.2.2 Administration Guide—Core Components

Kerberos Interoperability with DCE and Secure Remote Utilities

44.1.2 Components of the Secure Environment

The security server, which is the trusted host to which security clients authenticate
themselves, is referred to as the Key Distribution Center (KDC). The DCE Security
Service fulfills the role of the KDC.

Security clients are hosts that run the secure remote utility clients and daemons.
Security clients communicate with the security server for authentication. The two
types of security clients are application clients and application servers.

Application clients can run the secure remote utilitiesrcp, rlogin , and rsh. The
Kerberos utilitieskinit , klist , and kdestroy also run on the application client. In
some cases, an application client is referred to as a local host.

Application servers can run the secure remote utility daemonsrlogind and rshd. In
some cases, an application server is referred to as a remote host.

The secure remote utility takes the following steps to be authenticated by the KDC:

1. The user first issues thekinit or dce_login command to the KDC and obtains
a ticket-granting ticket (TGT) from the authentication server (AS) portion of the
KDC.

2. When the user invokes one of the secure remote utilities, the client requests a
service ticket from the ticket granting server (TGS) portion of the KDC. As part
of the request, the client sends to the TGS the acquired TGT, the name of the
application server (remote host), and an encrypted authenticator.

The same TGT can be used to acquire multiple service tickets.

3. The TGS generates new credentials that both the server and client use to
authenticate each other. Included in the TGS credentials is a subsession key,
which is a new key that is an encrypted form of the old session key that the client
sent to the TGS. Also, the TGS sends the requested service ticket to the client.
This ticket holds a copy of the subsession key and an encrypted form of the target
server’s secret key.

4. The client sends to the application server the service ticket and a new authenticator
that is encrypted with the subsession key. The application server decrypts the
service ticket with its own secret key and extracts the subsession key. This
subsession key is now ashared secretbetween the client and the application
server.

DCE 1.2.2 Administration Guide—Core Components 709

DCE Security Service

5. At the client’s request, the application server can also return to the client
credentials encrypted in the subsession key. This implies a mutual authentication
between the client and the application server. This optional Kerberos V5 mutual
authentication step is performed in each of the secure remote utilities.

44.1.3 Forwarding Tickets

Service ticket credentials that a user obtains are for accessing a remote system. What
if, however, the user wants to use a secure service to access a remote system and then
run a secure service from that remote system to a second remote system? This can be
risky because it would require possession of a valid TGT for the first remote system.
Therefore, runningkinit on the first remote system to obtain a TGT would cause the
user’s password to be transmitted in a readable form over the network.

To avoid this problem and provide more security, Kerberos offers the option to create
TGTs that have special attributes allowing the TGTs to be forwarded to remote systems
within the realm.

The rlogin and rsh utilities offer TGT forwarding options-f and -F. Before the
forwarding options can be recognized, two prerequisite flags must be enabled.

• First, the KDC’s forwardable ticket option must be enabled. For the DCE Security
Server, use thedcecp account modify command to set theforwardabletkt
account attribute.

• Second,kinit must be invoked with the forwardable flag (-f) enabled. If the-f
option is selected whenkinit is run, the TGT for the local system can be forwarded
to the remote system and clients will not need to reauthenticate themselves from
the remote system to the KDC.

DCE clients must usekinit -f to enable forwarding because thedce_loginutility
does not have options for ticket attributes.

Provided these two flags are enabled, the forwarding options ofrlogin and rsh can
take effect. When therlogin or rsh client invokes the-f option, forwarding of the
TGT occurs to only one remote system (one free hop). When therlogin or rsh client
invokes the-F option, forwarding the TGT can continue to more than one system
(potentially unlimited free hops).

710 DCE 1.2.2 Administration Guide—Core Components

Kerberos Interoperability with DCE and Secure Remote Utilities

Multiple free hops are possible because using the-F option leaves the forwardable
attribute enabled in the forwarded TGT ticket, whereas using the-f option does not.
Thus, the client can forward the TGT to an unlimited number of remote systems if the
-F option is used every time. Once the-f option is used, the forwarding chain stops
at the next node.

If the Kerberos V5 credentials are forwarded to a DCE client, they will be promoted
to DCE credentials, allowing the user to run DCE applications on that remote host.
The k5dcelogin utility, which is invoked byrlogind on the remote host, converts the
Kerberos V5 credentials to DCE credentials without prompting for a password. See
the k5dcelogin reference page for syntax information.

44.1.4 Remote Utility Interoperability

The DCE 1.2.2 versions ofrlogin , rlogind , rsh, and rshd are fully interoperable
with remote utilities based on the MIT source. Using a DCE KDC,rlogin and rsh
interoperate with Kerberos V5rlogind and rshd. In addition, the Kerberos Version 5
of rlogin and rsh work with DCE versions ofrlogind and rshd.

44.1.5 Encrypted Sessions

A user may be transmitting sensitive or private data during the remote session. By
specifying the-x option to rlogin*O, rsh , all session data transmitted between the
remote hosts will be encrypted with the shared session key. This option is subject to
export control and may not be available outside the United States and Canada.

44.2 KDC Interoperability

IETF RFC 1510 defines the mandatory interoperability requirements of a Kerberos
V5 implementation. Although the DCE Security Server can be used as a DCE KDC
for Kerberos V5 clients, the following restrictions still apply:

• Algorithms not supported by the DCE KDC are the following:

— DES-CBC-MD5 encryption

DCE 1.2.2 Administration Guide—Core Components 711

DCE Security Service

— CRC-32 checksum

— DES-MAC checksum

— DES-MAC-K checksum

— DES-MD5 checksum

• Interrealm communication, including transitive trust between a DCE cell and a
Kerberos V5 realm, is not supported.

• Kerberos V5 does not support DCE third-party preauthentication. Therefore, a
principal is unable to retrieve a TGT from a DCE KDC if thepre_auth_reqERA
attached to a principal has a value of 2 (PA-ENC-THIRD-PARTY).

44.2.1 Configuration

The dce_configutility has been enhanced to facilitate the interoperability of Kerberos
V5 clients with a DCE Security server. The additions allow Kerberos V5 clients to
interoperate with a DCE KDC without any further configuration steps. When a host
is configured as a DCE Security server or client, the following steps are performed
for Kerberos V5 interoperability:

1. Service entries for the secure remote utilities are added to the/etc/servicesfile
(klogin, kshell, ekshell, eklogin).

2. Entries for the secure remote utilities are added to the/etc/inetd.conf file. The
inetd command is then restarted to read the new entries.

3. The host principal key and account required by the secure remote utilities are
created.

4. The /krb5/krb.realms file, which describes where to find the KDC, is created
and the default realm is added.

5. The /etc/krb5.conf file, which contains necessary configuration information, is
created.

6. The/etc/v5srvtabfile, which is the default keytab used by Kerberos V5 clients, is
linked to the/krb5/srvtab file, which is the default keytab used by DCE clients.

712 DCE 1.2.2 Administration Guide—Core Components

Kerberos Interoperability with DCE and Secure Remote Utilities

44.3 Credential Cache and Keytab File Compatibility

In order for a DCE client and a Kerberos V5 client to coexist on the same host,
they may need to be able to share credentials and keys. DCE Version 1.2.2 provides
compatible credential and keytab file formats to allow for this coexistence.

As of the fifth beta release of Kerberos V5, three versions of formats for the credential
cache file and two for the keytab file exist.

Not all of the file formats are compatible with one another. For example, an older
Kerberos V5 client that writes credential cache files in the Version 1 format will not
be able to read credential caches in a Version 2 or 3 format. Tables 44-1 and 44-2
describe the compatibility of credential cache and keytab files.

Table 44–1. Credential Cache Files

Release
Kerberos V5
(Version 1)

Kerberos V5
(Version 2)

Kerberos V5
(Version 3)

DCE 1.0 or Kerberos V5 beta 1 yes no no

Kerberos V5 beta 2-3 no yes no

DCE 1.1-1.2.1 or Kerberos V5
beta 4

yes yes no

DCE 1.2.2 or Kerberos V5 beta
5-7

yes yes yes

A defect in the Beta 2 and Beta 3 releases of Kerberos V5 prevented compatibility
with files created in the Version 1 format, which was fixed in Beta 4.

Table 44–2. Keytab Files

Release
Kerberos V5
(Version 1)

Kerberos V5
(Version 2)

DCE 1.0 or Kerberos V5 beta 1 yes no

Kerberos V5 beta 2-3 no yes

DCE 1.1-1.2.2 or Kerberos V5 beta 4-7 yes yes

DCE 1.2.2 Administration Guide—Core Components 713

DCE Security Service

The credential cache and keytab file format that DCE clients use can be set with the
dcecp hostvar setcommand. The default format for both files is Version 1. You may
change this on a per-host basis to allow Kerberos V5 applications to run on your DCE
client and to share keytab and credential files.

For example, use the followingdcecpcommand to set the version number format of
the Kerberos V5 credential cache file to 3:

dcecp> hostvar set -krbccachevno 3

dcecp>

To set the version number format of the Kerberos V5 keytab file to 2:

dcecp> hostvar set -krbktvno 2

dcecp>

To display the current settings:

dcecp> hostvar show -krbccachevno -krbktvno

dcecp>

See thedcecp reference page for more information. For the changes to take effect,
stop and restart the DCE daemons on the host.

714 DCE 1.2.2 Administration Guide—Core Components

Appendix A
Valid Characters and Naming Rules
for CDS

This appendix discusses the valid character sets for the DCE Directory Service names
as used by CDS interfaces. It also explains some characters that have special meaning
and describes some restrictions and rules regarding case matching, syntax, and size
limits. It is not a comprehensive reference for CDS, GDS, and DNS, but instead
gives an overview of some key points to remember about each service. For specific
information on valid characters in GDS and DNS names, see the documentation for
each technology.

The use of names in DCE often involves more than one directory service. For example,
CDS interacts with either GDS or DNS to find names outside the local cell.

Note: Because CDS, GDS, and DNS all have their own valid character sets and
syntax rules, the best way to avoid problems is to keep names short and
simple, consisting of a minimal set of characters common to all three services.
The recommended set is the letters A to Z, a to z, and the digits 0 to 9. In
addition to making directory service interoperations easier, use of this subset

DCE 1.2.2 Administration Guide—Core Components 715

DCE Security Service

decreases the probability that users in a heterogeneous hardware and software
environment will encounter problems in creating and using names.

Figure A-1 details the valid characters in CDS names, and the valid characters in GDS
and DNS names as used by CDS interfaces:

• Characters in white boxes are valid in all three kinds of names.

• Characters in light shaded boxes are valid only in CDS and GDS names.

• Characters in dark shaded boxes are valid only in CDS names.

716 DCE 1.2.2 Administration Guide—Core Components

Valid Characters and Naming Rules for CDS

Figure A–1. Valid Characters in CDS, GDS, and DNS Names

M

O

!

$

SP

"

%

.

/

&

’

(

−

)

*

+

,

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

A

B

C

D

E

F

G

H

I

J

K

L

N

Q

R

S

U

W

P

T

V

X

Y

Z

_

[

] m

a

b

c

d

e

f

g

h

i

j

k

l

n

o

‘

v

w

y

p

q

r

s

t

u

x

z

~

}

|

{

^

?

\

@

Key: Valid in CDS, GDS, and DNS names

Valid only in CDS and GDS names

Valid only in CDS names

DCE 1.2.2 Administration Guide—Core Components 717

DCE Security Service

Although spaces are valid in both CDS and GDS names, a CDS simple name
containing a space must be enclosed in" " (quotes) when you enter it through the
CDS control program. Additional interface-specific rules are documented where they
apply.

A.1 Metacharacters

Certain characters have special meaning to the directory service; these are known as
metacharacters. Table A-1 lists and explains the CDS, GDS, and DNS metacharacters.

Table A–1. Metacharacters and Their Meanings

Directory
Service Character Meaning

CDS / Separates elements of a name (simple
names).

\ Used where necessary in front of a\
(backslash) to escape the character; indicates
that the following character is not a
metacharacter.

GDS / Separates relative distinguished names
(RDNs).

, Separates multiple attribute type/value pairs
(attribute value assertions) within an RDN.

\= Separates an attribute type and value in an
attribute value assertion.

\ Used in front of a/ (slash), a, (comma), or
an = (equal sign) to escape the character;
indicates that the following character is not
a metacharacter.

DNS . Separates elements of a name.

Some metacharacters are not permitted as normal characters within a name. For
example, a\ (backslash) cannot be used as anything but an escape character in GDS.

718 DCE 1.2.2 Administration Guide—Core Components

Valid Characters and Naming Rules for CDS

You can use other metacharacters as normal characters in a name, provided that you
escape them with the backslash metacharacter.

A.2 Additional Rules

Table A-2 summarizes major points to remember about CDS, GDS, and DNS character
sets, metacharacters, restrictions, case-matching rules, internal storage of data, and
ordering of elements in a name. For additional details, see the documentation for each
technology.

Table A–2. Summary of CDS, GDS, and DNS Characteristics

Characteristic CDS GDS DNS

Character Set a to z, A to Z,
0 to 9 plus
space and
special
characters
shown in
Figure A-1

a to z, A to Z, 0 to 9 plus . :
, ’+ − = () ? / and space

a to z, A to Z,
0 to 9 plus . -

Metacharacters / * ? \ / , = \ .

DCE 1.2.2 Administration Guide—Core Components 719

DCE Security Service

Characteristic CDS GDS DNS

Restrictions Simple names
cannot begin
or end with a /
(slash).
The first
simple name
following the
global cell
name (or /.:
prefix) cannot
contain an =
(equal sign).

Relative distinguished names
cannot begin or end with a /
(slash).
Attribute types must begin
with an alphabetic character,
can contain only
alphanumerics, and cannot
contain spaces. An alternate
method of specifying
attribute types is by object
identifier, a sequence of
digits separated by . (dots).
You must use a \ (backslash)
to escape a / (slash), a ,
(comma), and an = (equal
sign) when using them as
anything other than
metacharacters.

Multiple consecutive
unescaped occurrences of /
(slash), , (comma), = (equal
sign) and \ (backslash) are
not allowed.

Each attribute value assertion
contains exactly one
unescaped = (equal sign).

The first character must be
alphabetic. The first and last
characters cannot be a .
(dot) or a - (dash).
Cell names in DNS must
contain at least one . (dot);
they must be more than one
level deep.

720 DCE 1.2.2 Administration Guide—Core Components

Valid Characters and Naming Rules for CDS

Characteristic CDS GDS DNS

Case-Matching
Rules

Case exact. Attribute types are matched
case insensitive. The
case-matching rule for an
attribute value can be case
exact or case insensitive,
depending on the rule
defined for its type at the
DSA.

Case
insensitive.

Internal
Representation

Case exact. Depends on the
case-matching rule defined
at DSA. If the rule says case
insensitive, alphabetic
characters are converted to
all lowercase characters.
Spaces are removed
regardless of the
case-matching rule.

Alphabetic
characters are
converted to
all lowercase
characters.

Ordering of
Name Elements

Big endian
(left to right
from root to
lower-level
names).

Big endian (left to right from
root to lower-level names).

Little endian
(right to left
from root to
lower-level
names).

A.3 Maximum Name Sizes

Table A-3 lists the maximum sizes for directory service names. Note that the limits
are implementation specific, not architectural.

DCE 1.2.2 Administration Guide—Core Components 721

DCE Security Service

Table A–3. Maximum Sizes of Directory Service Names

Name Type Maximum Size (characters)

CDS simple name (character string between two
slashes)

254

CDS full name (including global or local prefix,
cell name, and slashes separating simple names)

1023

GDS relative distinguished name 64

GDS distinguished name 1024

DNS relative name (character string between
two dots)

64

DNS fully qualified name (sum of all relative
names)

255

722 DCE 1.2.2 Administration Guide—Core Components

Appendix B
Object Identifier Files

The X/Open Directory Service (XDS) interface offers client application programmers
the ability to create and maintain names in either CDS or GDS. Programmers can also
create new CDS attribute names or GDS attribute type labels. In the DCE Version
1.1 Directory Service, every CDS attribute name and GDS attribute type label has a
corresponding unique number called anobject identifier(OID).

CDS provides a method for translating between object identifiers and human-readable
names. This translation capability enables users to enter names instead of object
identifiers at the DCE control program (dcecp) interface. Also,dcecp displays the
names rather than object identifiers in command output. CDS attribute names and their
corresponding identifiers are stored in a file calledcds_attributes. GDS attribute type
labels and their corresponding identifiers are stored in a file calledcds_globalnames.
(See theDCE 1.2.2 Administration Guide—Introductionand theDCE 1.2.2 Porting
and Testing Guidefor the full pathnames of all CDS files.)

This appendix describes the contents and usage of both thecds_attributes and
cds_globalnamesfiles and explains how application developers or directory service
managers can update the files with the object identifiers of new attributes.

DCE 1.2.2 Administration Guide—Core Components 723

DCE Security Service

B.1 Origin of Object Identifiers

The purpose of object identifiers is to ensure uniqueness among the attribute types
that many different applications generate and use. Object identifiers are typically
obtained from a hierarchy of allocation authorities, the highest being the International
Organization for Standardization (ISO) and the International Telegraph and Telephone
Consultative Committee (CCITT). Individual application developers do not usually
have to contact ISO or CCITT directly to obtain unique numbers. Application
developers are more likely to request object identifiers from a person within their
company who is in charge of allocating them. The company authority would in turn
contact a higher authority to obtain a unique company prefix.

The hierarchy of allocation authorities is indicated by dots that separate portions of an
object identifier. Each string of numbers delineated by dots represents a level of the
allocation hierarchy, going left to right from the highest authority down. For example,
the object identifier1.3.22.1.1.2consists of the following levels:

1 ISO

3 Identified organization

22 Open Software Foundation

1 Distributed Computing Environment

1 Remote procedure call

2 RPC object UUIDs

B.2 The cds_attributes File

The cds_attributes file contains object identifiers for CDS attributes and object
classes. The following is a sample portion of the default contents of the file:

OID LABEL SYNTAX

#

1.3.22.1.3.10 CDS_Members GroupMember

1.3.22.1.3.11 CDS_GroupRevoke Timeout

1.3.22.1.3.12 CDS_CTS Timestamp

724 DCE 1.2.2 Administration Guide—Core Components

Object Identifier Files

1.3.22.1.3.13 CDS_UTS Timestamp

1.3.22.1.3.15 CDS_Class byte

1.3.22.1.3.16 CDS_ClassVersion Version

1.3.22.1.3.17 CDS_ObjectUUID uuid

1.3.22.1.3.19 CDS_Replicas ReplicaPointer

1.3.22.1.3.20 CDS_AllUpTo Timestamp

1.3.22.1.3.21 CDS_Convergence small

1.3.22.1.3.22 CDS_InCHName small

1.3.22.1.3.23 CDS_ParentPointer ParentPointer

1.3.22.1.3.24 CDS_DirectoryVersion Version

1.3.22.1.3.25 CDS_UpgradeTo Version

1.3.22.1.3.27 CDS_LinkTarget FullName

1.3.22.1.3.28 CDS_LinkTimeout Timeout

1.3.22.1.3.30 CDS_Towers byte

1.3.22.1.3.32 CDS_CHName FullName

1.3.22.1.3.34 CDS_CHLastAddress byte

1.3.22.1.3.36 CDS_CHState small

1.3.22.1.3.37 CDS_CHDirectories CHDirectory

1.3.22.1.3.40 CDS_ReplicaState small

1.3.22.1.3.41 CDS_ReplicaType small

1.3.22.1.3.42 CDS_LastSkulk Timestamp

1.3.22.1.3.43 CDS_LastUpdate Timestamp

1.3.22.1.3.44 CDS_RingPointer uuid

1.3.22.1.3.45 CDS_Epoch uuid

1.3.22.1.3.46 CDS_ReplicaVersion Version

1.3.22.1.3.48 CDS_NSCellname char

1.3.22.1.3.52 CDS_GDAPointers gdaPointer

1.3.22.1.3.53 CDS_CellAliases GroupMember

1.3.22.1.3.54 CDS_ParentCellPointers ReplicaPointer

1.3.22.1.1.1 RPC_ClassVersion byte

1.3.22.1.1.2 RPC_ObjectUUIDs byte

1.3.22.1.1.3 RPC_Group byte

1.3.22.1.1.4 RPC_Profile byte

1.3.22.1.1.5 RPC_Codesets byte

1.3.22.1.5.1 SEC_RepUUID byte

The first column contains the OID, the second column contains a label (the name
to which the identifier is mapped), and the third column indicates the data type.
Descriptions of the CDS data types are in thecdsclerk.h header file. (See theDCE

DCE 1.2.2 Administration Guide—Core Components 725

DCE Security Service

1.2.2 Administration Guide—Introductionand theDCE 1.2.2 Porting and Testing Guide
for the full pathnames of all CDS files.)

Application programmers should never need to modify, except for the purpose of
foreign language translation, the CDS labels associated with the unique OIDs in the
cds_attributesfile. However, programmers can obtain new OIDs from the appropriate
allocation authority, create new attributes for their own object entries, and then append
them to the existing list.

B.3 The cds_globalnames File

The cds_globalnamesfile contains a copy of data that is stored in a directory service
agent (DSA) schema for use by GDS. CDS uses this file to interpret the GDS portion
of global names that it handles. The file contains only naming attributes; that is,
attributes that constitute a distinguished name. The following is a sample portion of
the cds_globalnamesfile:

OID LABEL ASN.1-IDENTIFIER SYNTAX MATCHING

#

Reference: X.520 (Selected Attribute Types for the Directory)

2.5.4.0 OC objectClass - -

2.5.4.1 AO aliasedObjectName - -

2.5.4.2 KI knowledgeInformation CIS CIM

2.5.4.3 CN commonName CIS CIM

2.5.4.4 S surname CIS CIM

2.5.4.5 SN serialNumber PS PM

2.5.4.6 C countryName PS CIM

2.5.4.7 L localityName CIS CIM

2.5.4.8 SP stateOrProvinceName CIS CIM

2.5.4.9 SADR streetAddress CIS CIM

2.5.4.10 O organizationName CIS CIM

2.5.4.11 OU organizationalUnitName CIS CIM

2.5.4.12 T title CIS CIM

2.5.4.13 D description CIS CIM

#2.5.4.14 SG searchGuide Guide -

2.5.4.15 BC businessCategory CIS CIM

726 DCE 1.2.2 Administration Guide—Core Components

Object Identifier Files

#2.5.4.16 POST postalAddress PostalAddress

2.5.4.17 PC postalCode CIS CIM

2.5.4.18 POB postOfficeBox CIS CIM

The first column contains the object identifier, and the second column contains the
string name to which it is mapped. The third column is the ASN.1 identifier for the
attribute type, as defined in the appropriate CCITT recommendation (X.500 or X.400).
The fourth column is the ASN.1 label for the syntax of the attribute type. The fifth
column contains the ASN.1 identifier of the matching rule to be applied to the attribute
type. Possible syntax abbreviations are as follows:

CES Case Exact String

CIS Case Ignore String

PS Printable String

NS Numeric String

— Unspecified

Matching rules are defined as follows:

CEM Case Exact String Matching—Leading and trailing spaces are ignored
and multiple consecutive internal spaces are reduced to one; otherwise,
the strings must be the same length and corresponding characters must
be identical.

CIM Case Ignore String Matching—Same as CEM, except that characters
differing only in case are considered to match.

PM Printable String Matching—Same as CEM.

NM Numeric String Matching—Same as CEM, except that all spaces are
ignored.

— Unspecified.

The cds_globalnamesfile contains additional comments and descriptive information
about attribute types and case-matching rules. (See the X.500 recommendation for
details on the ASN.1 identifiers and their meaning.)

DCE 1.2.2 Administration Guide—Core Components 727

DCE Security Service

B.4 Modifying the Files

When a programmer develops an application that uses the directory service, the
directory service manager or the application developer needs to obtain unique
identifiers for any new CDS attribute names or GDS attribute types that the new
application uses and then update the appropriate file.

If the application stores names in CDS, edit thecds_attributes file. (Refer to the
cdsclerk.h file for the list of appropriate data type descriptors.) If the application
stores names in GDS, edit thecds_globalnamesfile and use the appropriate ASN.1
identifiers to describe the data type, syntax, and case-matching rules for the name.

Note: If you modify the OID values for standard attributes in thecds_attributes
andcds_globalnamesfiles, you may encounter problems interoperating with
other directory service implementations.

B.5 Modifying a CDS Entity’s Attributes

Every CDS entity has attributes, which are pieces or sets of data that are associated
with that entity. Attributes can reflect or affect the operational behavior of an entity,
record the number of times a particular event or problem occurred since the entity
was last enabled, and uniquely distinguish an entity for any other entity.

CDS attributes are identified by ISO OIDs. Every CDS attribute name maps to an
OID and a corresponding data type. Usually, client applications define the name of an
attribute and its data type. Application programmers should never need to modify
(except for the purpose of foreign language translation) the existing CDS labels
associated with the unique OIDs in thecds_attributes file. However, programmers
can obtain new OIDs from the appropriate authority, create new attributes for their
own object entries, and then append them to the existing list. The OID and data type
of each attribute are stored in the filecds_attributes. Descriptions of the CDS data
types that applications can use are in thecdsclerk.h file.

728 DCE 1.2.2 Administration Guide—Core Components

Object Identifier Files

B.5.1 Adding a New Attribute

Use thedcecpmodify operation with the-add option to add a new attribute to an
object entity.

To add a new attribute, you must have previously added the new attribute to the
cds_attributes file on each host in the cell. You must also have write permission to
the entity to which you are adding new attributes.

For example, the following command adds the single-valued attribute (owner) to a
directory (/.:/admin) and assigns a value ofLeland to the new attribute:

dcecp> directory modify /.:/admin -add {owner Leland}

dcecp>

The following command adds a new multivalued attribute (vegetables) to an object (/
.:/admin/garden) and assigns values ofcarrots and lettuce to the new attribute:

dcecp> object modify /.:/admin/garden -add {vegetables {carrots} {lettuce}}

dcecp>

B.5.2 Modifying the Value of an Existing Attribute

Use thedcecpmodify operation with the-changeoption to modify the value of an
existing attribute.

To modify the value of an attribute, you must have write permission to the name
whose attributes you are modifying.

For example, the following command changes the value of the owner attribute of the
/.:/admin directory fromLeland to Peters:

dcecp> directory modify /.:/admin -change {owner Peters}

dcecp>

DCE 1.2.2 Administration Guide—Core Components 729

DCE Security Service

B.5.3 Removing an Attribute

Use thedcecpmodify operation with the-remove option to remove an attribute from
an object entity.

To remove an attribute, you must have write permission to the name whose attribute
you are removing.

To remove an attribute, use themodify command with the-removeand-typesoptions.
For example, the following command removes the owner attribute from the/.:/admin
directory:

dcecp> directory modify /.:/admin -remove owner -types

dcecp>

To remove a single value from a multivalued attribute, use the-remove option and
specify the value to be removed. For example, the following command removes the
carrots value of the vegetables attribute from the/.:/admin/garden object:

dcecp> object modify /.:/admin/garden -remove {vegetables carrots}

dcecp>

730 DCE 1.2.2 Administration Guide—Core Components

Appendix C
Time-Providers and Time Services

This appendix explains the criteria to use when selecting a time-provider, and
describes time dissemination services, time-providers (hardware and software) and
their interaction with DTS. The appendix also contains a world time zone map.

C.1 Criteria for Selecting a Time Source

Before you select a time source for your network, ask the following questions:

• How accurate is the time that is provided?

Accuracy is affected by the time source itself, as well as the transmission media.
As long as the inaccuracy is known, it can be compensated for.

• How reliable is the time source?

The time source must be available. If it is not , the server connected to the time-
provider uses times from other servers and compensates for any time difference
when the source again becomes available.

• What is the extent of coverage?

DCE 1.2.2 Administration Guide—Core Components 731

DCE Security Service

The time source must be available in the geographical area where the time-provider
server is located.

• What is the level of known inaccuracy?

If this is known, DTS can compensate for it. Most sources have known inaccuracy
levels.

• What is the cost?

• Does the source conform to the operating environment?

The available power supply and physical conditions must be compatible with the
source; consult the supplier for the specifications.

Table C-1 summarizes the selection criteria for each type of time source.
Table C–1. Time-Provider Selection Criteria

Type Coverage Inaccuracy Cost

Telephone

NIST Regional 10 msec. Variable fee per
call

Radio

MSF Europe 10 msec. $1K to 2K

WWV North America 100 msec. $1K to 2K

WWVB North America &
Europe

10 msec. $1K to 2K

WWVH Eastern & Central
North Pacific

100 msec. $1K to 2K

Satellite

GOES Worldwide 1 msec. corrected $2K to $20K

GPS Worldwide < 100 nsec. $15K to $20K

732 DCE 1.2.2 Administration Guide—Core Components

Time-Providers and Time Services

C.2 Sources of Coordinated Universal Time

There are several sources of UTC time, including telephone, radio, and satellite, as
described in the following subsections.

C.2.1 Telephone Services

Telephone time-provider services require the time-provider to dial a centralized UTC
time source through a modem. Modem speeds and line delays can affect the accuracy
of the time returned.

Telephone services are usually provided by standards agencies. For example, in
the United States this service is offered by the National Institute of Standards and
Technology (NIST). There is a per-call fee for the service in addition to the cost of
the modem software.

C.2.2 Radio Transmissions

DTS can obtain time from a radio time source. Commercial receivers that monitor time
and frequency broadcasts can return time values through the Time-Provider Interface
(TPI) to the DTS server. The NIST operates the following U.S. time and frequency
stations:

• WWV

Transmits at 2.5, 5.0, 10.0, 15.0 MHz to North America and South America.

• WWVB

Transmits at 60 kHz primarily to the United States, providing high-quality
frequency information because atmospheric propagation effects are relatively
minor.

• WWVH

Transmits at 2.5, 5.0, 10.0, 15.0 MHz to Alaska, Hawaii, Australia, New Zealand,
Japan, and Southeast Asia.

The following stations are available in Europe:

DCE 1.2.2 Administration Guide—Core Components 733

DCE Security Service

• MSF

Broadcasts from England at 60 kHz.

• DCF77

Broadcasts from Germany at 77.5 kHz.

In addition to the stations previously listed, more than 30 radio stations worldwide
provide UTC time. Consult the national standards organization in your country for
further information.

C.2.3 Network Time Protocol

Nodes that have Internet access can use the Network Time Protocol (NTP) as a source
of UTC time for DTS. (See Chapter 26 for an explanation of how to use NTP as a
time-provider.)

C.2.4 Satellite

Satellites have worldwide availability; they can provide relatively precise times if their
delays are known and compensated for. See the following list for satellite sources of
UTC:

• GOES

Geostationary Operational Environment Satellite

• TRANSIT

A U.S. Navy satellite system consisting of four tracking systems and two ground
satellite communications sites

• GPS

Global Positioning System, a satellite receiver

734 DCE 1.2.2 Administration Guide—Core Components

Time-Providers and Time Services

C.3 World Time Zone Map

Figure C-1 shows a map of the world time zones, including the following:

• UTC reference zone

• Odd-numbered and even-numbered zones

• Half-hour zones

• Countries and areas that have not adopted the zone system or where time differs
other than a half hour from the neighboring zone

Figure C–1. World Time Zone Map

 ASIA

 AUSTRALIA

 SOUTH AMERICA

−1 DAY
+1 DAY

+9

+7 +8

+7h 30m

 +5h 30m

+6h 30m

F G H I

+9h 30m

K L MY X W V U T S R

 +6 +7 +8 +9 +10 +11 +12− −11 −10 −9

 −3

 −3h 30m

 −4

 −3h 45m
−3h 30m

 −3

 −44m

 AFRICA

EUROPE

 ARCTIC OCEAN

 NORTH AMERICA

 NORTH ATLANTIC OCEAN

 SOUTH ATLANTIC OCEAN

ARCTIC OCEAN

INDIAN OCEAN

ASIA

 NORTH PACIFIC OCEAN

 105°

PM PM PM PM MIDNIGHT AMPM AM AM NOON PM PM PM PM PM

 90° 105° 120° 135° 180° 165° 150° 135° 120° 105° 90° 150° 165° 75° 60° 45°

 80°

 60°

 40°

 20°

 0°

 20°

 40°

 60°

 80°

+6h 30m

P O N Z A B C D E FQ

0 +1 +2 +3 +4 +5 +6

Half hour zone Countries and areas which have not adopted
zone system, or where time differs other than
half hour from neighboring zones.

ZK−2455A−GE

SOUTH PACIFIC OCEAN

 120° 135° 150° 165° 180° 90° 165° 150° 135° 120° 105° 75° 45° 60° 30° 15° 0° 15° 30° 45° 60° 75° 75°

 60°

 40°

 20°

 0°

 20°

 40°

 60°

 30° 15° 0° 15° 30° 45° 60° 75° 90°

Even numbered zones Odd numbered zones

 −8 −7 −6 −5 −5

AM

−4 −3 −2 −1

AM AM AM AM AM AMAM

DCE 1.2.2 Administration Guide—Core Components 735

Appendix D
DTS Extended BNF

This appendix defines the Distributed Time Service (DTS) syntax in extended Backus
Naur Format (BNF) notation.

The BNF for DTS time conversion has four parts:year, day, tdf, andinaccuracy. For
any part whose value is not explicitly expressed, the conversion default value is taken
as that of the current day. The BNF for the DTS time conversion is as follows:

dts_time : year_part day_part tdf_part inacc_part

| year_part day_part tdf_part

| year_part day_part

| year_part day_part inacc_part

| year_part inacc_part

| year_part

| day_part tdf_part inacc_part

| day_part tdf_part

| day_part inacc_part

| day_part

| year_part Z

DCE 1.2.2 Administration Guide—Core Components 737

DCE Security Service

| year_part Z inacc_part

| year_part day_part Z inacc_part

| day_part Z inacc_part

| day_part Z

;

year_part : number - number - number -

| number - number - number T

| number - number T

| number T

;

day_part : partial : partial : partial

| partial : partial

| partial

;

tdf_part : sign number : number

| sign number

;

sign : -

| +

;

partial : number

| number frac

| number frac number

| frac number

;

frac : .

| ,

;

inacc_part : I

| I partial

| I infinity

;

infinity : ’i’’n’’f’

| - -

| - - - - -

;

number : DIGIT

| number DIGIT

;

738 DCE 1.2.2 Administration Guide—Core Components

Index

?? ??

/.: prefix, 205
/: prefix, 207

A
abbreviations, 10, 19
absolute time, 349
access control list, 245
accounts

about, 411, 491
changing, 505
changing passwords, 663
changing registry information,

662
creating, 498, 654
deleting, 506, 658
displaying registry information,

556
expiration information, 496
for foreign cells, 539, 555
importing, 621
lifespan, 570
machine, 493, 507
membership lists, 487
reserved, 463, 615

server, 492, 507
user, 492

ACL entry types, 430
compared to ACL types, 445
in future DCE releases, 436

ACL facility, 409
ACL manager

for registry database, 667
role in checking sequence, 437
role in granting access, 425
scope of support, 425
support for entry types, 437

ACLs
checking sequence, 437
components and scope of entries,

428
control programs for managing,

442
copying to other objects, 443
default, 446
denying access, 442
displaying, 565
entry types, 247
for local names (CDS), 244
function, 424
in DTS, 395
inheritance, 274
keys, 428
permissions for krbtgt directory ,

539

DCE 1.2.2 Administration Guide—Core Components Index–1

Index

registry objects, 666
scope, 424
scope compared to UNIX

permission bits, 425
types, 245
types of, editing, 445

administration objects, 6
adding new objects, 27

alias cell names, 204
aliases

changing, 489
creating, 489
deleting, 469
on project lists, 482
rights accrued, 462

any_other entry type, 432, 434
applications

using DTS, 339
arithmetic functions in dcecp, 47
attribute, 219
attribute schema

defined, 519
attribute types

access control, 520
Attribute Value Assertions , 209
attributes

identifier file, 724
in CDS and GDS names, 211

audit, 671
clients

definition, 673
code point, 673
daemon, 690

attributes, 699
controlling access to, 691
giving permissions to,

692
initial ACL, 691
starting, 690

event, 673

event class, 674
how to define, 693

event class file, 674
SEP line, 693

event class name, 675
event class number, 675

format, 676
event number, 674
filter, 677

audit actions, 679
audit condition, 679
creating and maintaining,

695
guides, 678
key, 678
subject identity, 678
types, 678

filter rules
high-water-mark rule,

680
override rule, 680

service, 671
ACL permissions, 691
administration tasks, 685,

689
application programmer’s

tasks, 683
components, 672
concepts, 672
features, 671

trail file
changing storage option,

702
controlling, 701
displaying, 700

trail file, 682
authentication

managing, 473
preauthentication, 470
public key protocol, 470

Index–2 DCE 1.2.2 Administration Guide—Core Components

Index

third-party protocol, 470
timestamps protocol, 470

authentication policies, 495, 652
authentication service, 409

about, 410
how it works, 494
shared authentication keys, 541

authorization groups
adding members, 258
creating, 259

AVA, 209

B
background skulk time, 237
backup couriers, 390
Backus Naur format (BNF) notation,

737
BIND namespace

structure, 212
browser

about, 224

C
CDS, 610

about, 198
appending directories, 298
attribute

adding, 729
modifying, 728, 729
removing, 730

browser

how to use, 285
clerk

about, 216
clerks

clearinghouse
communications,
263

in lookups, 231
interaction with GDA,

325
restarting, 265
stopping, 264
viewing counters, 262

components, 216
concepts, 215
configuration (figure), 217
control programs for managing,

239
controlling local management

operations, 251
dcecp operations on objects, 240
deleting nonreplicated

directories, 315
deleting replicas, 316
displaying attribute values, 289
how it works, 217
listing contents of directories,

288
managing directories, 271
merging directories , 295
monitoring network traffic, 261
object attributes, 242
object types, 240
restoring merged directories ,

304
security, 222
servers

about, 207, 216
components (figure), 222
permissions, 256

DCE 1.2.2 Administration Guide—Core Components Index–3

Index

restarting, 265
stopping, 264
viewing counters, 262

user interfaces, 224
viewing the namespace, 285

cds_attributes file, 728
cdsclerk.h file, 728
cell aliases, 204

extending the cellalias task
object, 109

managing with the cellalias task
object, 107

Cell Directory Service, 198
cell names

about, 202
managing, 107
multiple names for, 107

cell object
extending, 105

cell-relative names
about, 205

cellalias object
extending, 109

cells
about, 412
access between, 539, 555
backing up servers, 103
contacting foreign, 330
creating hierarchical, 322
extending the cell task object,

105
managing the names of, 107
managing with cell task object,

99
naming environments, 200
testing operation of, 102

child
cells

and child pointers, 221
naming, 202

pointers
about, 221
and child cells, 221
how they work, 229

clearinghouses
about, 217, 218
communications with CDS

clerks, 263
deleting, 321
object entries, 220, 227
preserving after server upgrades,

267
relocating, 319
viewing contents, 263
viewing counters, 262

clients
showing in a cell, 100

clock set command, 392, 394
clocks

adjusting, 392
adjustment mechanism, 348
correcting malfunctions, 384
errors, 342
forcing synchronization , 395
restricting synchronization cycles

, 383
synchronizing, 345

code point, 673
command substitution

used in dcecp, 32
command-line editing, 15
commands

dcecp, 256, 368
comments

in dcecp scripts , 37
computed time, 346
configuration

of public key authentication, 471
password management server,

479

Index–4 DCE 1.2.2 Administration Guide—Core Components

Index

configuring public key authentication,
471

containers
definition of, 445

control programs, 442
convenience variables

CDS confidence level, 47
current cell name, 40
current host name, 40
current principal name, 39
DCE server names, 44
in dcecp scripts, 38
last security server used, 46
most recent argument, 41
most recent error code, 47
most recent object name, 43
most recent return value, 43
parent of last argument, 42

Coordinated Universal Time, 337
couriers

about, 355
designating, 389

Creation Timestamp (CTS), 237
credentials, 426
customizing the DCE control program,

24

D
DCE control program language

lists
nested, 62

DCE control program
creating audit filters, 695

DCE control program, 4
abbreviations, 10
adding new objects, 27

administration objects, 6
benefits of, 4
command-line editing, 15
command-line operations, 8
commands for managing ACLs,

442
commands for managing DTS ,

367
customizing, 24
description of, 4
enabling and disabling audit

logging, 699
extending, 77
history, 17
initialization files, 24
invoking operations, 8, 10
its use of Tcl, 4
language, 29
modifying and querying audit

daemon attributes, 699
modifying filters, 696
multiple operations, 9
starting and stopping, 7
uses of, 11

DCE control program language
variables

importing, 62
DCE control program language, 29

command substitution, 32
comments, 37
conditional if statements, 52
controlling scripts, 51
convenience variables, 38
creating procedures, 60
error handling, 67
error information, 68
evaluating commands, 58
expressions, 47
extending, 77
files

DCE 1.2.2 Administration Guide—Core Components Index–5

Index

reading and writing, 73
specifying names of, 73
working with, 72

grouping elements, 33
lists, 49
loops, 52

for, 55
foreach, 52
terminating, 55
while, 54

mathematic functions , 47
pattern matching, 56
reading other files, 59
reissuing errors in, 71
strings, 63

constructing, 64
manipulating, 66
parsing, 65

subprocesses
creating, 75

trapping errors in, 69
variables, 31

local and global, 60
writing scripts, 77

DCE daemon, 128
starting and stopping, 129

dcecp
commands for managing CDS,

239
DCE control program, 368
description, 239
permissions for using security

commands, 664
use with CDS, 224

dcecp CDS commands
show, 292

dcecp commands
account catalog, 557
account create, 504
account delete, 506

account modify, 505, 575
cdsclient show, 292
clearinghouse create, 320
clearinghouse delete, 322
clearinghouse disable, 319
directory delete, 315
directory modify, 310
directory show, 333
group create -uuid, 644
group list, 561
keytab delete, 513
keytab remove, 512
link create, 306
link modify, 308, 309
list, 288
modify, 729
org create -uuid, 644
principal catalog, 562
principal create, 466, 467
principal create -uuid, 644
principal modify, 467
properties, 581
registry modify, 569, 576
registry show, 576
remove, 730
required permissions, 252
show, 289

.dcecprc
example of, 25
use of, 25

default filters, 697
DFS

interaction with directory service,
196

DIB
about, 209

direct trust relationships, 541
directories

about, 207
access control (CDS), 246

Index–6 DCE 1.2.2 Administration Guide—Core Components

Index

appending errors, 301
cell root, 207
checking the ACLs for, 273
child, 207
child pointers (CDS), 221, 229
controlling access to, 423
convergence (CDS), 283
creating, 272
creating (CDS), 271
merging, 293

duplicate name problems,
301

handling insufficient
permissions, 302

handling unreachable
name failures, 301

merging errors, 301
merging into foreign cells, 303
overriding default, 593
parent, 207
permissions needed to create,

272
updating (CDS), 280
upgrading the cell root directory

version, 274
upgrading the directory version,

274
Directory Information Base, 209
Directory Information Tree, 209
directory service

cell environment, 198, 199, 200
how used, 197
names outside, 213

Directory System Agent, 209
disable_time_interval ERA, 476
Distinguished Names, 209
distinguished value, 210
Distributed File Service , 196
Distributed Time Service , 196
DIT, 209

DN
about, 209
structure (figure), 212

DNS
about, 199, 212
defining cell names, 331

Domain Name System, 199
drift, 342, 343
DSA

about, 209
DTS

access control, 395
BNF notation, 737
clerks

about, 337, 353
converting to servers, 374
synchronization

procedures, 345
configuring, 357
creating a new clerk or server ,

373
dcecp operations for managing,

368
how it works, 352
interaction with directory service,

196
interoperation with NTP, 397
managing, 341, 367
reconfiguring on nodes, 372
servers

about, 337, 354
changing names, 387
changing the number

required, 377
checking synchronization

with time-
providers, 391

checkinterval attribute,
391

converting to clerks, 374

DCE 1.2.2 Administration Guide—Core Components Index–7

Index

designating, 388
matching epochs, 390
setting response time,

386
specific management

tasks, 388
synchronization

procedures, 345
temporary reconfiguration on a

node, 374
dts_ntp_provider.c, 398
dts_null_provider.c, 398
dtscp commands

clock set, 392, 394

E
editing

command lines
substitutions, 19

DCE control program, 15
using the history facility, 17

enabling public key authentication, 471
endpoint maps

about, 166
endpoints

purging obsolete, 167
entities

about, 224
in DTS, 337

epochs
about, 354
matching, 390

ERA, 519
deleting, 665
disable_time_interval, 476
facility, 410

invalid login handling, 470
max_invalid_attempts, 476
modifying, 666
passwd_override, 481
password management, 470
permissions to create, 664
pre_auth_req, 473
preauthentication, 470
public key protocol, 470
pwd_mgmt_binding, 477
pwd_val_type , 477
security , 470
third-party protocol, 470
timestamps protocol, 470
viewing, 665

ERAs
viewing, 666

errors
handling in dcecp, 67
reissuing in dcecp, 71
trapping in dcecp, 69

/etc/group file, 419, 599
/etc/passwd file, 599
/etc/passwd file, 419
evaluating commands in dcecp, 58
event class, 674

defining, 693
file, 674
name, 675
number, 675

event number, 674
exceptions

handling in dcecp, 67
reissuing in dcecp, 71
trapping in dcecp, 69

extended ACL entry type
form and function, 436

extended registry attribute, 519
extending

cell task object, 105

Index–8 DCE 1.2.2 Administration Guide—Core Components

Index

dcecp, 77
the cellalias task object, 109
the host task object, 118
the user task object, 124

F
files

controlling access to, 423
reading and writing in dcecp, 73
specifying in dcecp, 73
working with in dcecp, 72

filter, 677
creating and maintaining, 695
default, 697
guides, 678
subject identity, 678

foreign_group entry type, 432, 434
foreign_other entry type, 432, 434
foreign_user entry type, 431, 433
full names, 208, 211, 462

G
GDA

about, 199
how it works, 325
managing, 329

gdad process, 329
gdad command, 330
GDS

about, 198
defining cell names, 333

searching via attributes, 212
GECOS information

overriding, 584
Global Directory Agent, 199
Global Directory Service , 198
global names

about, 201, 202
attributes, 211
GDS format, 209
identifier file, 726
outside directory service, 214

global servers, 355
advertising, 389
changing required , 380

globaltimeout attribute, 386
group entry type, 431, 433
group IDs

setting in registry, 579
group_obj entry type, 430
group_obj entry type, 432
group_override file

format, 587
grouping dcecp elements, 33
groups

about, 411
accrual of permissions , 434
ACL entry types, 430
adding members, 633, 659
adding to organization, 483
adding to registry, 653
aliases, 462
changing full names, 661
changing management

information, 661
changing registry information,

485
default memberships (table), 616
deleting, 486, 654
deleting members, 660

DCE 1.2.2 Administration Guide—Core Components Index–9

Index

displaying registry information,
558

excluding from project lists, 435
management information, 651
membership lists, 487
naming restrictions, 461
overriding memberships, 594
project lists, 482, 485

H
help

accessing reference pages, 23
hierarchical cells

creating, 322
naming conventions, 202

history
DCE control program, 17

host object
extending, 118

host services, 128
starting and stopping, 129

hosts
configuring, 115
extending the host task object,

118
listing in a cell, 112
managing with the host task

object, 111
removing from a cell, 117
showing in a cell, 100
showing servers configured on,

113
starting processes on, 114
stopping processes on, 115
testing availability of, 114

I
if statements in dcecp, 52
inaccuracy values

determining, 343
example, 372

init.dcecp
use of, 25

init.tcl
use of, 24

Initial Container ACL, 246, 445
Initial Object ACL, 246, 445
initialization files

example in dcecp, 25
use of in dcecp, 24

interface
RPC identifier , 182

interim file, 294
interval, 338

J
junctions, 213

K
kdestroy command, 498
Key Distribution Center, 709
key entries

deleting from keytab file, 512
key tables

Index–10 DCE 1.2.2 Administration Guide—Core Components

Index

displaying registry information,
567

keys
deleting from keytab file, 509
machine and server accounts,

515
version numbers, 509

keytab file
adding keys, 509
dced object, 507
deleting, 513
protecting, 508

klist command, 496
krbtgt directory

in multicell environment, 539

L
LAN, 359
leap seconds

inaccuracy values, 343
lists in dcecp, 49

nested, 62
local

identity , 491
names

about, 209
access control, 244
attributes, 211
CDS lookups, 225
CDS rules and valid

characters, 715
registry

files, 515
purging expired entries,

518
setting properties, 516

servers, 354
localtimeout attribute, 386
locksmith account, 636
locksmith mode, 636
login, 470

changing defaults, 593
invalid

handling, 476
preventing, 592
remote, 706

login shells
overriding, 593

lookups
between cells, 325
how they work, 217, 225

loops in dcecp, 52
for, 55
foreach, 52
terminating, 55
while, 54

M
mask_obj entry type

effect on ACL checking, 441
masks

types and use of, 436
master keys

backing up, 596
master keys

backing up, 596
changing, 595
restoring, 597

mathmatical functions in dcecp, 47
max_invalid_attempts ERA, 476
maxinaccuracy attribute, 381
membership lists, 487

DCE 1.2.2 Administration Guide—Core Components Index–11

Index

merging
overview of procedure, 294

merging CDS directories
overview, 293

minimum ticket lifetime
setting in registry, 580

minservers attribute
changing, 377

N
namespace

about, 207
access by CDS servers, 257
access control, 258
backing up, 267
compared to GDS hierarchy, 209
files for backup, 269
logical and physical structure

(figure) , 226
maintenance operations, 237
restructuring, 305
updating, 235
viewing, 224

network identity, 491
Network Time Protocol, 397
NTP

getting time from, 398
giving time to, 401
interoperation with DTS, 397
preventing loops, 403

number formats in registry, 465

O
Object ACL, 245, 445
object identifier, 728

files, 724
objects

about, 219
controlling access to, 423
creating , 80
dcecp administration, 6
entries, 219
quotas for creating, 464, 551
types of, 445

OID, 728
OMIT entry

in passwd_override file, 592
operating system commands

executing from dcecp, 75
operations

invoking, 8
invoking within dcecp, 10

organization name, 503
organization IDs

setting in registry, 579
organizations

about, 411
adding members, 660
adding to registry, 483, 653
changing full names, 661
changing management

information, 661
changing registry information,

485
deleting, 486, 654
deleting members, 660
displaying registry information,

558
management information, 651
membership lists, 487

Index–12 DCE 1.2.2 Administration Guide—Core Components

Index

naming restrictions, 461
policies, 578

orphans
adopting, 465, 644

other_obj entry type, 430, 432
overrides, 584

P
parent cells

and child pointers, 221
parsing

arguments in dcecp scripts, 90
strings in dcecp, 65

passwd_override ERA, 481
passwd_override file

format, 585
scope, 584

password, 470
changing, 663
changing in cross-cell

authorization accounts,
553

default, 616
effects of policy changes, 576
encrypting, 578
expiration date, 572
expiration information, 496
format, 572
lifespan, 571
management server

configuring, 479
managing expiration of, 481
managing generation of, 477

pwd_strengthd, 477
managing strength of, 477

pwd_strengthd, 477

overriding, 590
permissions , 663

pathnames
for registry objects, 420
for security objects, 420
in commands, 420

pattern matching in dcecp, 56
permissions

accrual, 434, 482
accrual, effect on ACL checking,

441
ACL entry syntax, 430
CDS objects, 250
CDS objects, 223
checking sequence, 437
dcecp for CDS, 252
denying, 442
granting, effect on ACL checking

sequence, 441
inheriting, 427
principals and groups, 430
propagation, 246
registry objects, 649
restricting, 436
scope of UNIX permission bits,

425
setting default, 445
setuid bit, 427
use of, 424

policies
authentication, 573
authentication information, 652
changing, 663
handling conflicting, 575
standard, 570

POSIX
scope of permissions and DCE

ACLs, 425
pre_auth_req ERA, 473
preauthentication, 470

DCE 1.2.2 Administration Guide—Core Components Index–13

Index

interoperability, 475
pre_auth_req ERA, 473
public key, 470
third-party, 470
timestamps, 470

primary names
about, 462, 489
changing, 489
conflicting, 622, 624
format, 463

principals, 119
about, 411
accounts for foreign, 540, 555
accrual of group permissions,

434
ACL entry types, 430
add from foreign cells, 487
adding to registry, 465, 653
authenticating, 494
authentication information, 652
changing full names, 661
changing management

information, 661
changing registry information,

467
deleting, 464, 469, 654
displaying registry information,

562
group memberships (table), 616
locksmith, 636
logical identity, 421
management information, 650
name format, 463
naming restrictions, 461
network and local identities, 491
object creation quotas, 464
overriding group memberships,

593
overriding UNIX IDs, 584
permissions, 259

registry creator, 616
reserved, 463
unauthenticated, 259

privilege attributes
about, 495
viewing, 496

privilege service, 409
procedures, controlling the context of,

62
procedures, creating in dcecp, 60
profiles

role in lookups, 353
programming

CDS object identifier files, 723
project lists

about, 482
definition, 434
excluding groups from, 435
in ACL checking sequence, 438

propagation queues, 418
properties

authentication information, 652
changing, 663
setting, 578

public key authentication
enabling and configuring, 471

public key authentication protocol, 470
pwd_mgmt_binding ERA, 477
pwd_val_type ERA, 477

Q
queryattempts attribute, 386
quotas

for creating registry objects, 464,
551

Index–14 DCE 1.2.2 Administration Guide—Core Components

Index

R
RDN

about, 209
reference pages

within dcecp, 23
registry

accessing objects, 647
account lifespan, 570
authentication policies, 573
changing the master replica site,

603
database

about, 411
backing up, 596
changing master key, 595
creating, 610
how stored, 413
physical security, 412
populating, 617
privileges of creator, 616
range for UNIX numbers,

465
routine maintenance, 583
setting up, 609
structure and contents,

647
updating, 415
viewing information, 555

default ticket lifetime property,
578

deleting when machines are
removed, 605

displaying and setting policies,
576

extending, 519
hidden password property, 578
Initial Object ACLs, 668
local, 419, 515

local overrides, 584
maintaining local, 515
maintaining policies and

properties, 569
maximum ticket renewable time,

574
maximum ticket lifetime, 574,

575
maximum UNIX ID property,

580
minimum group ID property,

579
minimum organization ID

property, 579
minimum ticket lifetime property,

580
minimum UNIX ID property,

579
objects

adopting, 465
pathnames, 420
permissions, 649

password expiration date, 572
password format, 572
password lifespan, 571
planning the sites of replicas,

610
policies, 570
registry-wide, policies, 578
service, 409
table of access permissions to

objects, 649
registry connect command, 542
Relative Distinguished Names, 209
relative time, 351
remote login, 706
remote procedure call, 196
remote utilities, 706
replica

about (CDS), 218

DCE 1.2.2 Administration Guide—Core Components Index–15

Index

about (security), 414
checking status (security), 618
creating (CDS), 275
creating slaves (security), 618
deleting (CDS), 279
deleting slaves (security), 605,

642
designating new master (CDS),

311
lists, 418
restarting master (security), 418
sets

excluding replicas, 313
modifying, 310

slave permissions (security, 667
starting master (security) , 617
updating (CDS), 235
updating (security), 418

replication
namespace backup mechanism,

268
reserved accounts, 615
resource records, 331
rgy_edit

commands
description, 457
properties, 516
purge, 518

rlogin/rlogind, 706
RPC

interaction with directory service,
196

interface
identifier, 182

rsh/rshd, 706

S
schema, 519

about, 209
entries

displaying , 563
scripts, 77

formal
example of, 82
writing in dcecp, 80

informal
example of, 80
writing in dcecp, 78

invoking, 9
making available, 92
parsing arguments in, 90
writing dcecp, 77

security
commands

kdestroy, 498
klist , 496
passwd_export, 599
passwd_import, 621
pathnames, 420
secd, syntax, 638

dcecp operations for objects, 455
ERAs, 470
passwords, 470
planning the sites of components,

610
servers

locksmith account
changes, 636

service
interaction with directory

service, 196
server

password management
configuring, 479

Index–16 DCE 1.2.2 Administration Guide—Core Components

Index

server machines
removing from network

(security), 603
serverentry attribute, 387
serverprincipal attribute, 387
servers

showing in a cell, 100
set directory to new epoch command,

312
simple names, 208
skew, 342, 347
skulk

explained, 236
skulking, 237, 280
soft links

about, 220
changing destination names, 308
creating, 306

with timeout attribute,
306

deleting, 309
expiration and extension values,

309
how they work, 228
managing, 306

starting
DCE host processes, 114
host services, 129

stopping
DCE host processes, 115
host services, 129

strings in dcecp, 63
constructing, 64
manipulating, 66
parsing, 65

subprocesses
creating in dcecp, 75

substitutions, 19
subtrees

merging, 293

synchronization
about, 337
how it works, 342

synchronizing CDS server clocks, 282
syncinterval attribute, 383
system time

changing, 392
monotonically, 392

updating nonmonotonically , 394

T
task objects

about, 95
cell, 99

extending, 105, 109
cell_alias, 107
creating, 80
host, 111
listed, 97
user, 119

extending, 124
Tcl, 4
TGT

forwarding, 710
third-party authentication protocol, 470
tick, 348
ticket cache name, 497
tickets

about, 495
deleted passwords, 509
destroying, 498
expiration and renewal, 496
setting lifetimes, 503, 580
status when process halts, 498
ticket lifetime, 574

DCE 1.2.2 Administration Guide—Core Components Index–17

Index

ticket-granting ticket validity,
574

viewing information, 497
time

display formats, 349
inaccuracy values

maximum, 381
setting abruptly, 394
setting gradually, 392
standards, 338
translating UTC to local, 351

time-provider
checking server synchronization ,

391
determining accuracy, 343
in DTS configuration, 365
selection criteria, 731
support, 340

timestamps
format, 371
manipulating, 349
use by CDS, 237

timestamps authentication protocol, 470
timezones

world map, 735
tolerance attribute, 384
Tool Command Language

its use in dcecp, 4, 29
trail file, 682
transitive trust relationships, 541
trust relationships, 540, 541

U
unauthenticated mask

effect on ACL checking, 441

inappropriate use of, 442
unique universal identifiers, 464
UNIX accounts

importing, 621
UNIX IDs

conflicting, 622
for foreign users, 543
importing, 624
overriding, 584
setting in registry, 579, 580

update propagation, 235
Update Timestamp (UTS), 238
user entry type, 431, 433
user information, 653
user object

extending, 124
user_obj entry type, 430, 432
users

creating, 120
extending the user task object,

124
managing with the user task

object, 119
removing from a cell, 123
showing information about, 122

UTC
about, 349
and local time, 351
commercial providers, 733

UUID
and deleted principals , 464

V
variables

convenience, in dcecp scripts, 38

Index–18 DCE 1.2.2 Administration Guide—Core Components

Index

error information in dcecp, 67
global error information in dcecp,

68
global, in dcecp, 61
importing, in dcecp, 62
local, in dcecp, 60
used in dcecp, 31

W
WAN, 360

wide area network, 360

X
X.500

DCE implementation, 209, 211
xattrschema

displaying registry information,
563

xattrschema object, 520

DCE 1.2.2 Administration Guide—Core Components Index–19

