
DCE 1.2.2 Application Development Reference

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:

DCE 1.2.2 Application Development Reference, (Volume 1)
ISBN 1–85912–103–9
Document Number F205A

DCE 1.2.2 Application Development Reference, (Volume 2)
ISBN 1–85912–108–X
Document Number F205B

DCE 1.2.2 Application Development Reference, (Volume 3)
ISBN 1–85912–159–4
Document Number F205C

Published in the U.K. by The Open Group, 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xxi

The Open Group xxi

The Development of Product Standards. xxii

Open Group Publications xxiii

Versions and Issues of Specifications. xxv

Corrigenda. xxv

Ordering Information xxv

This Book xxvi

Audience xxvi

Applicability xxvi

Purpose. xxvi

Document Usage xxvi

Related Documents. xxvii

Typographic and Keying Conventions. xxviii

Pathnames of Directories and Files in DCE
Documentation. xxix

Problem Reporting. xxix

Trademarks. xxx

Chapter 1. DCE Routines. 1
dce_intro 2
dce_attr_intro. 4
dce_cf_intro 7
dce_db_intro 11
dce_msg_intro. 17

i

DCE 1.2.2 Application Development Reference

dce_server_intro 20
dce_svc_intro. 23
dced_intro. 27
DCE_SVC_INTRO 40
dce_assert. 42
dce_attr_sch_bind. 44
dce_attr_sch_bind_free. 46
dce_attr_sch_create_entry. 48
dce_attr_sch_cursor_alloc. 50
dce_attr_sch_cursor_init 52
dce_attr_sch_cursor_release. 54
dce_attr_sch_cursor_reset. 56
dce_attr_sch_delete_entry. 58
dce_attr_sch_get_acl_mgrs. 60
dce_attr_sch_lookup_by_id. 62
dce_attr_sch_lookup_by_name. 64
dce_attr_sch_scan. 66
dce_attr_sch_update_entry. 69
dce_cf_binding_entry_from_host. 72
dce_cf_dced_entry_from_host. 74
dce_cf_find_name_by_key. 77
dce_cf_free_cell_aliases 80
dce_cf_get_cell_aliases. 82
dce_cf_get_cell_name. 84
dce_cf_get_csrgy_filename. 86
dce_cf_get_host_name. 89
dce_cf_prin_name_from_host. 91
dce_cf_profile_entry_from_host 93
dce_cf_same_cell_name. 95
dce_db_close. 97
dce_db_delete. 99
dce_db_delete_by_name. 101
dce_db_delete_by_uuid 103
dce_db_fetch 105
dce_db_fetch_by_name 107
dce_db_fetch_by_uuid. 110
dce_db_free 113
dce_db_header_fetch. 115
dce_db_inq_count. 117
dce_db_iter_done. 119
dce_db_iter_next 121
dce_db_iter_next_by_name. 123
dce_db_iter_next_by_uuid. 125
dce_db_iter_start 127

ii

Contents

dce_db_lock 129
dce_db_open. 131
dce_db_std_header_init 136
dce_db_store. 138
dce_db_store_by_name. 141
dce_db_store_by_uuid. 144
dce_db_unlock. 147
dce_error_inq_text. 149
dce_msg_cat_close. 151
dce_msg_cat_get_msg. 153
dce_msg_cat_open. 155
dce_msg_define_msg_table. 157
dce_msg_get 160
dce_msg_get_cat_msg. 162
dce_msg_get_default_msg. 164
dce_msg_get_msg. 166
dce_msg_translate_table. 168
dce_pgm_printf 170
dce_pgm_fprintf 170
dce_pgm_sprintf 170
dce_printf 172
dce_fprintf. 172
dce_sprintf. 172
dce_server_disable_service. 175
dce_server_enable_service. 177
dce_server_inq_attr 179
dce_server_inq_server. 181
dce_server_inq_uuids. 183
dce_server_register. 185
dce_server_sec_begin. 188
dce_server_sec_done. 190
dce_server_unregister. 192
dce_server_use_protseq 194
dce_svc_components. 196
dce_svc_debug_routing 198
dce_svc_debug_set_levels. 200
dce_svc_define_filter. 202
dce_svc_filter. 206
dce_svc_log_close. 208
dce_svc_log_get 210
dce_svc_log_open. 212
dce_svc_log_rewind 214
dce_svc_printf. 216
dce_svc_register 220

iii

DCE 1.2.2 Application Development Reference

dce_svc_routing 223
dce_svc_set_progname. 225
dce_svc_table. 227
dce_svc_unregister. 230
dced_binding_create 232
dced_binding_free. 236
dced_binding_from_rpc_binding 238
dced_binding_set_auth_info 242
dced_entry_add 245
dced_entry_get_next 248
dced_entry_remove 251
dced_hostdata_create. 253
dced_hostdata_delete. 257
dced_hostdata_read 259
dced_hostdata_write 262
dced_initialize_cursor. 264
dced_inq_id 266
dced_inq_name 269
dced_keytab_add_key. 272
dced_keytab_change_key. 275
dced_keytab_create 278
dced_keytab_delete 281
dced_keytab_get_next_key. 283
dced_keytab_initialize_cursor. 285
dced_keytab_release_cursor. 287
dced_keytab_remove_key. 289
dced_list_get 291
dced_list_release. 294
dced_object_read. 296
dced_object_read_all. 300
dced_objects_release. 303
dced_release_cursor 306
dced_secval_start. 308
dced_secval_status. 310
dced_secval_stop. 312
dced_secval_validate. 314
dced_server_create. 316
dced_server_delete. 319
dced_server_disable_if. 322
dced_server_enable_if. 325
dced_server_modify_attributes. 328
dced_server_start. 330
dced_server_stop. 333
DCE_SVC_DEBUG 337

iv

Contents

DCE_SVC_DEBUG_ATLEAST 339
DCE_SVC_DEBUG_IS 341
DCE_SVC_DEFINE_HANDLE 343
DCE_SVC_LOG 345
svcroute 347

Chapter 2. DCE Threads. 353
thr_intro 354
datatypes 360
atfork 365
exceptions. 367
pthread_attr_create. 369
pthread_attr_delete. 371
pthread_attr_getinheritsched. 373
pthread_attr_getprio 375
pthread_attr_getsched. 377
pthread_attr_getstacksize. 379
pthread_attr_setinheritsched. 381
pthread_attr_setprio 383
pthread_attr_setsched. 386
pthread_attr_setstacksize. 388
pthread_cancel. 390
pthread_cleanup_pop. 392
pthread_cleanup_push. 394
pthread_cond_broadcast. 396
pthread_cond_destroy. 398
pthread_cond_init. 400
pthread_cond_signal 402
pthread_cond_timedwait 404
pthread_cond_wait. 406
pthread_condattr_create 408
pthread_condattr_delete 410
pthread_create. 412
pthread_delay_np. 416
pthread_detach. 418
pthread_equal. 420
pthread_exit 422
pthread_get_expiration_np. 424
pthread_getprio 426
pthread_getscheduler. 428
pthread_getspecific. 430
pthread_join 432
pthread_keycreate. 434

v

DCE 1.2.2 Application Development Reference

pthread_lock_global_np 436
pthread_mutex_destroy. 438
pthread_mutex_init. 440
pthread_mutex_lock 442
pthread_mutex_trylock. 444
pthread_mutex_unlock. 446
pthread_mutexattr_create. 448
pthread_mutexattr_delete. 450
pthread_mutexattr_getkind_np. 452
pthread_mutexattr_setkind_np. 454
pthread_once. 456
pthread_self 458
pthread_setasynccancel. 459
pthread_setcancel. 461
pthread_setprio 463
pthread_setscheduler. 466
pthread_setspecific. 470
pthread_signal_to_cancel_np. 472
pthread_testcancel. 474
pthread_unlock_global_np. 475
pthread_yield 477
sigaction 479
sigpending. 482
sigprocmask 484
sigwait. 486

Chapter 3. DCE Remote Procedure Call. 489
rpc_intro 490
cs_byte_from_netcs 533
cs_byte_local_size. 537
cs_byte_net_size. 541
cs_byte_to_netcs. 545
dce_cs_loc_to_rgy. 549
dce_cs_rgy_to_loc. 552
idl_es_decode_buffer. 555
idl_es_decode_incremental. 557
idl_es_encode_dyn_buffer. 560
idl_es_encode_fixed_buffer. 563
idl_es_encode_incremental. 566
idl_es_handle_free. 570
idl_es_inq_encoding_id 572
rpc_binding_copy. 574
rpc_binding_free 576

vi

Contents

rpc_binding_from_string_binding. 578
rpc_binding_inq_auth_caller 581
rpc_binding_inq_auth_client 586
rpc_binding_inq_auth_info. 591
rpc_binding_inq_object 596
rpc_binding_reset. 598
rpc_binding_server_from_client 601
rpc_binding_set_auth_info. 606
rpc_binding_set_object. 613
rpc_binding_to_string_binding. 615
rpc_binding_vector_free 617
rpc_cs_binding_set_tags. 619
rpc_cs_char_set_compat_check. 622
rpc_cs_eval_with_universal. 625
rpc_cs_eval_without_universal. 628
rpc_cs_get_tags 631
rpc_ep_register 635
rpc_ep_register_no_replace. 641
rpc_ep_resolve_binding 646
rpc_ep_unregister. 651
rpc_if_id_vector_free 654
rpc_if_inq_id 656
rpc_mgmt_ep_elt_inq_begin 659
rpc_mgmt_ep_elt_inq_done 664
rpc_mgmt_ep_elt_inq_next. 666
rpc_mgmt_ep_unregister. 670
rpc_mgmt_inq_com_timeout 673
rpc_mgmt_inq_dflt_protect_level. 675
rpc_mgmt_inq_if_ids 678
rpc_mgmt_inq_server_princ_name. 681
rpc_mgmt_inq_stats 684
rpc_mgmt_is_server_listening. 687
rpc_mgmt_set_authorization_fn 690
rpc_mgmt_set_cancel_timeout. 694
rpc_mgmt_set_com_timeout 696
rpc_mgmt_set_server_stack_size. 699
rpc_mgmt_stats_vector_free. 701
rpc_mgmt_stop_server_listening. 703
rpc_network_inq_protseqs. 706
rpc_network_is_protseq_valid. 708
rpc_ns_binding_export. 710
rpc_ns_binding_import_begin. 714
rpc_ns_binding_import_done. 717
rpc_ns_binding_import_next 719

vii

DCE 1.2.2 Application Development Reference

rpc_ns_binding_inq_entry_name. 723
rpc_ns_binding_lookup_begin. 726
rpc_ns_binding_lookup_done. 729
rpc_ns_binding_lookup_next. 731
rpc_ns_binding_select. 736
rpc_ns_binding_unexport. 738
rpc_ns_entry_expand_name. 742
rpc_ns_entry_inq_resolution 745
rpc_ns_entry_object_inq_begin. 748
rpc_ns_entry_object_inq_done. 750
rpc_ns_entry_object_inq_next. 752
rpc_ns_group_delete. 755
rpc_ns_group_mbr_add 757
rpc_ns_group_mbr_inq_begin. 760
rpc_ns_group_mbr_inq_done. 763
rpc_ns_group_mbr_inq_next. 765
rpc_ns_group_mbr_remove. 768
rpc_ns_import_ctx_add_eval. 771
rpc_ns_mgmt_binding_unexport 775
rpc_ns_mgmt_entry_create. 780
rpc_ns_mgmt_entry_delete. 782
rpc_ns_mgmt_entry_inq_if_ids. 785
rpc_ns_mgmt_free_codesets. 788
rpc_ns_mgmt_handle_set_exp_age. 790
rpc_ns_mgmt_inq_exp_age. 794
rpc_ns_mgmt_read_codesets. 796
rpc_ns_mgmt_remove_attribute. 799
rpc_ns_mgmt_set_attribute. 802
rpc_ns_mgmt_set_exp_age. 805
rpc_ns_profile_delete. 808
rpc_ns_profile_elt_add. 810
rpc_ns_profile_elt_inq_begin. 814
rpc_ns_profile_elt_inq_done 819
rpc_ns_profile_elt_inq_next 821
rpc_ns_profile_elt_remove. 824
rpc_object_inq_type 827
rpc_object_set_inq_fn. 830
rpc_object_set_type 833
rpc_protseq_vector_free 836
rpc_rgy_get_codesets. 838
rpc_rgy_get_max_bytes 841
rpc_server_inq_bindings 844
rpc_server_inq_if 846
rpc_server_listen 848

viii

Contents

rpc_server_register_auth_ident. 852
rpc_server_register_auth_info. 855
rpc_server_register_if. 861
rpc_server_unregister_if 865
rpc_server_use_all_protseqs. 868
rpc_server_use_all_protseqs_if. 871
rpc_server_use_protseq. 874
rpc_server_use_protseq_ep. 877
rpc_server_use_protseq_if. 880
rpc_sm_allocate 883
rpc_sm_client_free. 885
rpc_sm_destroy_client_context. 887
rpc_sm_disable_allocate 889
rpc_sm_enable_allocate 891
rpc_sm_free 893
rpc_sm_get_thread_handle. 895
rpc_sm_set_client_alloc_free. 897
rpc_sm_set_thread_handle. 899
rpc_sm_swap_client_alloc_free. 901
rpc_ss_allocate. 903
rpc_ss_bind_authn_client. 905
rpc_ss_client_free. 908
rpc_ss_destroy_client_context. 910
rpc_ss_disable_allocate. 911
rpc_ss_enable_allocate. 912
rpc_ss_free 914
rpc_ss_get_thread_handle. 916
rpc_ss_set_client_alloc_free 919
rpc_ss_set_thread_handle. 921
rpc_ss_swap_client_alloc_free. 924
rpc_string_binding_compose. 927
rpc_string_binding_parse. 929
rpc_string_free. 932
rpc_tower_to_binding. 934
rpc_tower_vector_free. 936
rpc_tower_vector_from_binding 938
uuid_compare. 940
uuid_create 942
uuid_create_nil 944
uuid_equal. 946
uuid_from_string 948
uuid_hash. 950
uuid_is_nil. 952
uuid_to_string. 954

ix

DCE 1.2.2 Application Development Reference

wchar_t_from_netcs 956
wchar_t_local_size. 960
wchar_t_net_size. 964
wchar_t_to_netcs. 968

Chapter 4. DCE Directory Service. 973
xds_intro 974
decode_alt_addr 977
dsX_extract_attr_values 979
ds_add_entry. 981
ds_bind 984
ds_compare 987
ds_initialize 990
ds_list. 991
ds_modify_entry 994
ds_modify_rdn. 998
ds_read 1001
ds_remove_entry 1005
ds_search. 1007
ds_shutdown 1011
ds_unbind. 1013
ds_version. 1015
encode_alt_addr 1017
gds_decode_alt_addr. 1019
gds_encode_alt_addr. 1021
xds_intro 1023
xds.h 1024
xdsbdcp.h. 1036
xdscds.h 1042
xdsdme.h 1044
xdsgds.h 1046
xdsmdup.h. 1050
xdssap.h 1054
xmhp.h 1058
xmsga.h 1073
xom_intro 1077
omX_extract 1081
omX_fill 1086
omX_fill_oid 1088
omX_object_to_string. 1090
omX_string_to_object. 1092
om_copy 1095
om_copy_value 1097

x

Contents

om_create. 1100
om_delete. 1103
om_get 1105
om_instance 1111
om_put 1113
om_read 1117
om_remove 1120
om_write 1122
xom.h 1125

Chapter 5. DCE Distributed Time Service. 1135
dts_intro 1136
utc_abstime 1142
utc_addtime 1145
utc_anytime 1148
utc_anyzone 1152
utc_ascanytime 1154
utc_ascgmtime. 1156
utc_asclocaltime 1158
utc_ascreltime. 1160
utc_binreltime. 1162
utc_bintime 1165
utc_boundtime. 1167
utc_cmpintervaltime 1170
utc_cmpmidtime 1174
utc_gettime 1178
utc_getusertime 1180
utc_gmtime 1182
utc_gmtzone 1184
utc_localtime 1188
utc_localzone. 1190
utc_mkanytime 1192
utc_mkascreltime. 1195
utc_mkasctime. 1197
utc_mkbinreltime 1199
utc_mkbintime. 1201
utc_mkgmtime. 1203
utc_mklocaltime 1205
utc_mkreltime. 1207
utc_mulftime 1210
utc_multime 1213
utc_pointtime 1215
utc_reltime 1217

xi

DCE 1.2.2 Application Development Reference

utc_spantime 1219
utc_subtime 1222

Chapter 6. DCE Security Service. 1225
sec_intro 1226
audit_intro. 1289
pkc_intro 1297
crypto_intro 1300
policy_intro 1309
pkc_trustlist_intro. 1326
gssapi_intro 1328
dce_acl_copy_acl. 1342
dce_acl_inq_acl_from_header. 1344
dce_acl_inq_client_creds. 1346
dce_acl_inq_client_permset 1348
dce_acl_inq_permset_for_creds. 1350
dce_acl_inq_prin_and_group.3sec. 1353
dce_acl_is_client_authorized. 1355
dce_acl_obj_add_any_other_entry. 1358
dce_acl_obj_add_foreign_entry. 1360
dce_acl_obj_add_group_entry. 1362
dce_acl_obj_add_id_entry. 1364
dce_acl_obj_add_obj_entry. 1366
dce_acl_obj_add_unauth_entry. 1368
dce_acl_obj_add_user_entry. 1370
dce_acl_obj_free_entries. 1372
dce_acl_obj_init 1374
dce_acl_register_object_type. 1376
dce_acl_resolve_by_name. 1382
dce_acl_resolve_by_uuid. 1384
dce_aud_close. 1386
dce_aud_commit 1388
dce_aud_discard 1393
dce_aud_free_ev_info. 1395
dce_aud_free_header. 1397
dce_aud_get_ev_info. 1399
dce_aud_get_header. 1401
dce_aud_length 1403
dce_aud_next. 1405
dce_aud_open. 1410
dce_aud_prev. 1414
dce_aud_print. 1418
dce_aud_put_ev_info. 1421

xii

Contents

dce_aud_reset. 1423
dce_aud_rewind 1425
dce_aud_set_trail_size_limit 1427
dce_aud_start. 1430
dce_aud_start_with_name. 1435
dce_aud_start_with_pac 1440
dce_aud_start_with_server_binding. 1445
dce_aud_start_with_uuid. 1450
gss_accept_sec_context 1455
gss_acquire_cred. 1462
gss_compare_name 1465
gss_context_time. 1467
gss_delete_sec_context. 1469
gss_display_name. 1471
gss_display_status. 1473
gss_import_name. 1476
gss_indicate_mechs 1478
gss_init_sec_context 1480
gss_inquire_cred 1486
gss_process_context_token. 1489
gss_release_buffer. 1491
gss_release_cred. 1492
gss_release_name. 1494
gss_release_oid_set 1496
gss_seal 1497
gss_sign 1499
gss_unseal. 1501
gss_verify. 1504
gssdce_add_oid_set_member. 1506
gssdce_create_empty_oid_set. 1508
gssdce_cred_to_login_context. 1510
gssdce_extract_creds_from_sec_context. . . . 1512
gssdce_login_context_to_cred. 1514
gssdce_register_acceptor_identity. 1517
gssdce_set_cred_context_ownership. 1520
gssdce_test_oid_set_member. 1522
pkc_add_trusted_key. 1524
pkc_append_to_trustlist 1526
pkc_ca_key_usage.class. 1528
pkc_check_cert_against_trustlist. 1529
pkc_constraints.class. 1531
pkc_copy_trustlist. 1533
pkc_crypto_generate_keypair. 1535
pkc_crypto_get_registered_algorithms. 1537

xiii

DCE 1.2.2 Application Development Reference

pkc_crypto_lookup_algorithm. 1539
pkc_crypto_register_signature_alg. 1541
pkc_crypto_sign 1543
pkc_crypto_verify_signature 1545
pkc_delete_trustlist. 1547
pkc_display_trustlist 1549
pkc_free 1551
pkc_free_keyinfo 1553
pkc_free_trustbase. 1555
pkc_free_trustlist 1557
pkc_generic_key_usage.class. 1559
pkc_get_key_certifier_count 1561
pkc_get_key_certifier_info. 1563
pkc_get_key_count. 1566
pkc_get_key_data. 1568
pkc_get_key_trust_info. 1570
pkc_get_registered_policies 1574
pkc_init_trustbase. 1576
pkc_init_trustlist 1579
pkc_key_policies.class. 1581
pkc_key_policy.class 1583
pkc_key_usage.class. 1585
pkc_lookup_element_in_trustlist 1587
pkc_lookup_key_in_trustlist 1589
pkc_lookup_keys_in_trustlist. 1593
pkc_name_subord_constraint.class. 1595
pkc_name_subord_constraints.class. 1598
pkc_name_subtree_constraint.class. 1600
pkc_name_subtree_constraints.class. 1603
pkc_pending_revocation.class. 1605
pkc_plcy_delete_keyinfo 1607
pkc_plcy_delete_trustbase. 1609
pkc_plcy_establish_trustbase. 1611
pkc_plcy_get_key_certifier_count. 1613
pkc_plcy_get_key_certifier_info 1615
pkc_plcy_get_key_count 1618
pkc_plcy_get_key_data. 1620
pkc_plcy_get_key_trust 1622
pkc_plcy_get_registered_policies. 1625
pkc_plcy_lookup_policy 1627
pkc_plcy_register_policy 1629
pkc_plcy_retrieve_keyinfo. 1632
pkc_retrieve_keyinfo 1635
pkc_retrieve_keylist 1638

xiv

Contents

pkc_revocation.class 1640
pkc_revocation_list.class. 1642
pkc_revoke_certificate. 1645
pkc_revoke_certificates. 1647
pkc_trust_list.class. 1649
pkc_trust_list_element.class 1651
pkc_trusted_key.class. 1653
rdacl_get_access. 1656
rdacl_get_manager_types. 1659
rdacl_get_mgr_types_semantics. 1662
rdacl_get_printstring 1665
rdacl_get_referral. 1669
rdacl_lookup 1672
rdacl_replace 1675
rdacl_test_access. 1678
rdacl_test_access_on_behalf. 1681
rsec_pwd_mgmt_gen_pwd. 1684
rsec_pwd_mgmt_str_chk. 1687
sec_acl_bind 1690
sec_acl_bind_auth. 1692
sec_acl_bind_to_addr. 1695
sec_acl_calc_mask. 1698
sec_acl_get_access. 1700
sec_acl_get_error_info. 1702
sec_acl_get_manager_types. 1704
sec_acl_get_mgr_types_semantics. 1707
sec_acl_get_printstring. 1710
sec_acl_lookup 1714
sec_acl_release 1717
sec_acl_release_handle. 1719
sec_acl_replace 1721
sec_acl_test_access 1724
sec_acl_test_access_on_behalf. 1726
sec_attr_trig_query. 1729
sec_attr_trig_update 1733
sec_attr_util_alloc_copy 1737
sec_attr_util_free 1739
sec_attr_util_inst_free. 1741
sec_attr_util_inst_free_ptrs. 1743
sec_attr_util_sch_ent_free. 1744
sec_attr_util_sch_ent_free_ptrs. 1746
sec_cred_free_attr_cursor. 1748
sec_cred_free_cursor. 1750
sec_cred_free_pa_handle. 1752

xv

DCE 1.2.2 Application Development Reference

sec_cred_get_authz_session_info. 1754
sec_cred_get_client_princ_name. 1756
sec_cred_get_deleg_restrictions. 1758
sec_cred_get_delegate. 1760
sec_cred_get_delegation_type. 1763
sec_cred_get_extended_attrs. 1765
sec_cred_get_initiator. 1767
sec_cred_get_opt_restrictions. 1769
sec_cred_get_pa_data. 1771
sec_cred_get_req_restrictions. 1773
sec_cred_get_tgt_restrictions. 1775
sec_cred_get_v1_pac. 1777
sec_cred_initialize_attr_cursor. 1779
sec_cred_initialize_cursor. 1781
sec_cred_is_authenticated. 1783
sec_id_gen_group. 1785
sec_id_gen_name. 1788
sec_id_parse_group 1791
sec_id_parse_name. 1794
sec_key_mgmt_change_key 1797
sec_key_mgmt_delete_key. 1800
sec_key_mgmt_delete_key_type. 1803
sec_key_mgmt_free_key. 1806
sec_key_mgmt_garbage_collect 1808
sec_key_mgmt_gen_rand_key. 1811
sec_key_mgmt_get_key 1814
sec_key_mgmt_get_next_key. 1817
sec_key_mgmt_get_next_kvno. 1819
sec_key_mgmt_initialize_cursor 1822
sec_key_mgmt_manage_key. 1825
sec_key_mgmt_release_cursor. 1828
sec_key_mgmt_set_key 1830
sec_login_become_delegate. 1833
sec_login_become_impersonator. 1837
sec_login_become_initiator. 1839
sec_login_certify_identity. 1843
sec_login_cred_get_delegate. 1847
sec_login_cred_get_initiator 1850
sec_login_cred_init_cursor. 1852
sec_login_disable_delegation. 1854
sec_login_export_context. 1856
sec_login_free_net_info 1858
sec_login_get_current_context. 1860
sec_login_get_expiration. 1863

xvi

Contents

sec_login_get_groups. 1866
sec_login_get_pwent. 1869
sec_login_import_context. 1873
sec_login_init_first. 1875
sec_login_inquire_net_info. 1877
sec_login_newgroups. 1880
sec_login_purge_context. 1884
sec_login_refresh_identity. 1887
sec_login_release_context. 1890
sec_login_set_context. 1892
sec_login_set_extended_attrs. 1895
sec_login_setup_first. 1897
sec_login_setup_identity 1900
sec_login_valid_and_cert_ident. 1904
sec_login_valid_from_keytable. 1909
sec_login_validate_first 1914
sec_login_validate_identity. 1917
sec_pk_data_free. 1922
sec_pk_data_zero_and_free. 1923
sec_psm_close. 1924
sec_psm_decrypt_data. 1926
sec_psm_encrypt_data. 1929
sec_psm_gen_pub_key. 1932
sec_psm_open. 1934
sec_psm_put_pub_key. 1936
sec_psm_sign_data. 1939
sec_psm_update_pub_key. 1942
sec_psm_verify_data. 1945
sec_pwd_mgmt_free_handle. 1948
sec_pwd_mgmt_gen_pwd. 1950
sec_pwd_mgmt_get_val_type. 1952
sec_pwd_mgmt_setup. 1954
sec_rgy_acct_add. 1956
sec_rgy_acct_admin_replace. 1960
sec_rgy_acct_delete 1964
sec_rgy_acct_get_projlist. 1967
sec_rgy_acct_lookup. 1971
sec_rgy_acct_passwd. 1975
sec_rgy_acct_rename. 1978
sec_rgy_acct_replace_all. 1981
sec_rgy_acct_user_replace. 1985
sec_rgy_attr_cursor_alloc. 1989
sec_rgy_attr_cursor_init 1991
sec_rgy_attr_cursor_release. 1994

xvii

DCE 1.2.2 Application Development Reference

sec_rgy_attr_cursor_reset. 1996
sec_rgy_attr_delete. 1998
sec_rgy_attr_get_effective. 2001
sec_rgy_attr_lookup_by_id. 2005
sec_rgy_attr_lookup_by_name. 2010
sec_rgy_attr_lookup_no_expand. 2013
sec_rgy_attr_sch_aclmgr_strings. 2017
sec_rgy_attr_sch_create_entry. 2021
sec_rgy_attr_sch_cursor_alloc. 2024
sec_rgy_attr_sch_cursor_init. 2026
sec_rgy_attr_sch_cursor_release. 2029
sec_rgy_attr_sch_cursor_reset. 2031
sec_rgy_attr_sch_delete_entry. 2033
sec_rgy_attr_sch_get_acl_mgrs. 2035
sec_rgy_attr_sch_lookup_by_id 2038
sec_rgy_attr_sch_lookup_by_name. 2040
sec_rgy_attr_sch_scan. 2042
sec_rgy_attr_sch_update_entry. 2045
sec_rgy_attr_test_and_update. 2048
sec_rgy_attr_update 2052
sec_rgy_auth_plcy_get_effective. 2056
sec_rgy_auth_plcy_get_info 2058
sec_rgy_auth_plcy_set_info 2061
sec_rgy_cell_bind. 2064
sec_rgy_cursor_reset. 2066
sec_rgy_login_get_effective 2068
sec_rgy_login_get_info. 2072
sec_rgy_pgo_add. 2076
sec_rgy_pgo_add_member. 2079
sec_rgy_pgo_delete 2082
sec_rgy_pgo_delete_member. 2085
sec_rgy_pgo_get_by_eff_unix_num 2088
sec_rgy_pgo_get_by_id 2092
sec_rgy_pgo_get_by_name. 2096
sec_rgy_pgo_get_by_unix_num 2099
sec_rgy_pgo_get_members. 2103
sec_rgy_pgo_get_next. 2107
sec_rgy_pgo_id_to_name. 2111
sec_rgy_pgo_id_to_unix_num. 2114
sec_rgy_pgo_is_member. 2116
sec_rgy_pgo_name_to_id. 2119
sec_rgy_pgo_name_to_unix_num. 2121
sec_rgy_pgo_rename. 2123
sec_rgy_pgo_replace. 2126

xviii

Contents

sec_rgy_pgo_unix_num_to_id. 2129
sec_rgy_pgo_unix_num_to_name. 2131
sec_rgy_plcy_get_effective. 2134
sec_rgy_plcy_get_info. 2137
sec_rgy_plcy_set_info. 2140
sec_rgy_properties_get_info 2143
sec_rgy_properties_set_info 2146
sec_rgy_site_bind. 2149
sec_rgy_site_bind_query. 2152
sec_rgy_site_bind_update. 2155
sec_rgy_site_binding_get_info. 2158
sec_rgy_site_close. 2161
sec_rgy_site_get 2163
sec_rgy_site_is_readonly. 2165
sec_rgy_site_open. 2167
sec_rgy_site_open_query. 2170
sec_rgy_site_open_update. 2173
sec_rgy_unix_getgrgid. 2176
sec_rgy_unix_getgrnam 2179
sec_rgy_unix_getpwnam. 2182
sec_rgy_unix_getpwuid 2185
sec_rgy_wait_until_consistent. 2188

Index Index–1

xix

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

xxi

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xxii

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

xxiii

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides
These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

xxiv

Preface

are intended to communicate the findings to the outside world so as
to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

xxv

Preface

This Book

The DCE 1.2.2 Application Development Referenceprovides complete and detailed
reference information to help application programmers use the correct syntax for
Distributed Computing Environment (DCE) calls when writing UNIX applications for
a distributed computing environment.

Audience

This document is written for application programmers who want to write Distributed
Computing Environment applications for a UNIX environment.

Applicability

This document applies to the OSF
®

DCE Version 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this document is to assist application programmers when writing
UNIX applications for a distributed computing environment. After reading this manual,
application programmers should be able to use the correct syntax for DCE calls.

Document Usage

This document consists of six chapters and is organized into three volumes.

• Volume 1 (Document Number 205A, ISBN 1–85912–103–9)
includes:

— DCE Routines (Chapter 1)

xxvi

Preface

— DCE Threads (Chapter 2)

— DCE Remote Procedure Call (beginning of Chapter 3)

• Volume 2 (Document Number 205B, ISBN 1–85912–108–X)
includes:

— DCE Remote Procedure Call (Chapter 3, continued)

— DCE Directory Service (Chapter 4)

— DCE Distributed Time Service (Chapter 5)

— DCE Security Service (beginning of Chapter 6)

• Volume 3 (Document Number 205C, ISBN 1–85912–159–4)
includes:

— DCE Security Service (Chapter 6, continued)

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1–85912–182–9

• DCE 1.2.2 Command Reference
Document Number F212, ISBN 1–85912–138–1

• DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1–85912– 187–X

• DCE 1.2.2 Application Development Guide—Core Components
Document Number F203A, ISBN 1–85912–192–6 (Volume 1)
Document Number F203B, ISBN 1–85912–154–3 (Volume 2)

• DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1–85912–197–7

• DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1–85912–113–6

xxvii

Preface

• DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1–85912–118–7

• DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1–85912–123–3 (Volume 1)
Document Number F209B, ISBN 1–85912–128–4 (Volume 2)

• DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1–85912–133–0

• DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1–85912–158–6

• DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1–85912–163–3

• DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1–85912–143–8 (Volume 1)
Document Number F213B, ISBN 1–85912–148–9 (Volume 2)

• DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1–85912–153–5

• DCE 1.2.2 File-Access FVT User’s Guide
Document Number F210, ISBN 1–85912–189–6

• DCE 1.2.2 Release Notes
Document Number F218, ISBN 1–85912–168–3

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

xxviii

Preface

{ } Braces enclose a list from which y ou must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

< Ctrl- x > or ^ x
The notation< Ctrl- x > or ^ x followed by the name of a key indicates
a control character sequence. For example,< Ctrl-C> means that you
hold down the control key while pressing< C>.

< Return> The notation< Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—IntroductionandDCE 1.2.2 Testing Guide.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

xxix

Preface

Trademarks

Motif ®, OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the “X Device”
TM

are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

xxx

Preface

NetWare is a registered trademark of Novell, Inc.

xxxi

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_begin(3rpc)

rpc_mgmt_ep_elt_inq_begin

Purpose Creates an inquiry context for viewing the elements in an endpoint map; used by
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_begin(
rpc_binding_handle_t ep_binding,
unsigned32inquiry_type,
rpc_if_id_t * if_id,
unsigned32vers_option,
uuid_t * object_uuid,
rpc_ep_inq_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input

ep_binding Specifies the host whose local endpoint map elements you receive. To
receive elements from the same host as the calling application, specify
NULL.

To receive local endpoint map elements from another host, specify
a server binding handle for that host. You can specify the same
binding handle you are using to make other remote procedure calls.
The object UUID associated with this parameter must be a nil UUID.
If you specify a nonnil UUID, the routine fails with the status code
ept_s_cant_perform_op. Other than the host information and object
UUID, all information in this parameter is ignored.

inquiry_type Specifies an integer value that indicates the type of inquiry to perform
on the local endpoint map. The following table shows the valid inquiry
types:

659

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_elt_inq_begin(3rpc)

Valid Inquiries on Local Endpoint Maps

Value Description

rpc_c_ep_all_elts Returns every element from the local
endpoint map. Theif_id, vers_option, and
object_uuidparameters are ignored.

rpc_c_ep_match_by_if Searches the local endpoint map for those
elements that contain the interface identifier
specified by theif_id andvers_option
values. Theobject_uuidparameter is
ignored.

rpc_c_ep_match_by_obj Searches the local endpoint map for those
elements that contain the object UUID
specified by theobject_uuidparameter. The
if_id andvers_optionparameters are
ignored.

rpc_c_ep_match_by_both Searches the local endpoint map for those
elements that contain the interface identifier
and object UUID specified by theif_id,
vers_option, andobject_uuidparameters.

if_id Specifies the interface identifier of the local endpoint map elements to
be returned by therpc_mgmt_ep_elt_inq_next()routine.

Use this parameter only when specifying a value of
rpc_c_ep_match_by_if or rpc_c_ep_match_by_both for the
inquiry_typeparameter. Otherwise, this parameter is ignored and the
value NULL can be specified.

vers_option Specifies how therpc_mgmt_ep_elt_inq_next() routine uses the
if_id parameter. Use this parameter only when specifying a value
of rpc_c_ep_match_by_if or rpc_c_ep_match_by_both for the
inquiry_typeparameter. Otherwise, this parameter is ignored and a 0
(zero) value can be specified.

The following table presents the valid values for this parameter:

660

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_begin(3rpc)

Valid values of vers_option

Value Description

rpc_c_vers_all Returns local endpoint map elements that
offer the specified interface UUID,
regardless of the version numbers. For this
value, specify 0 (zero) for both the major
and minor versions inif_id.

rpc_c_vers_compatible Returns local endpoint map elements that
offer the same major version of the
specified interface UUID and a minor
version greater than or equal to the minor
version of the specified interface UUID.

rpc_c_vers_exact Returns local endpoint map elements that
offer the specified version of the specified
interface UUID.

rpc_c_vers_major_only Returns local endpoint map elements that
offer the same major version of the
specified interface UUID (ignores the
minor version). For this value, specify 0
(zero) for the minor version inif_id.

rpc_c_vers_upto Returns local endpoint map elements that
offer a version of the specified interface
UUID less than or equal to the specified
major and minor version. (For example,
supposeif_id contains V2.0 and the local
endpoint map contained elements with the
following versions: V1.3, V2.0, and V2.1.
The rpc_mgmt_ep_elt_inq_next()routine
returns the elements with V1.3 and V2.0.)

object_uuid Specifies the object UUID thatrpc_mgmt_ep_elt_inq_next()looks for
in local endpoint map elements.

This parameter is used only when you specify a value of
rpc_c_ep_match_by_obj or rpc_c_ep_match_by_both for the
inquiry_typeparameter. Otherwise, this parameter is ignored and you
can supply NULL to specify a nil UUID.

661

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_elt_inq_begin(3rpc)

Output

inquiry_context
Returns an inquiry context for use with the
rpc_mgmt_ep_elt_inq_next() and rpc_mgmt_ep_elt_inq_done()
routines.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_elt_inq_begin()routine creates an inquiry context for viewing
server address information stored in the local endpoint map.

Using the inquiry_typeand vers_optionparameters, an application specifies which
of the following local endpoint map elements are returned from calls to the
rpc_mgmt_ep_elt_inq_next()routine:

• All elements.

• Those elements with the specified interface identifier.

• Those elements with the specified object UUID.

• Those elements with both the specified interface identifier and object UUID.

Before calling therpc_mgmt_ep_elt_inq_next()routine, the application must first
call this routine to create an inquiry context.

After viewing the local endpoint map elements, the application calls the
rpc_mgmt_ep_elt_inq_done()routine to delete the inquiry context.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

662

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_begin(3rpc)

rpc_s_ok Success.

rpc_s_invalid_inquiry_context
Invalid inquiry context.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),
rpc_ep_unregister(3rpc), rpc_mgmt_ep_elt_inq_done(3rpc),
rpc_mgmt_ep_elt_inq_next(3rpc), rpc_mgmt_ep_unregister(3rpc).

663

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_elt_inq_done(3rpc)

rpc_mgmt_ep_elt_inq_done

Purpose Deletes the inquiry context for viewing the elements in an endpoint map; used by
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_done(
rpc_ep_inq_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input/Output

inquiry_context
Specifies the inquiry context to delete. (An inquiry context is created by
calling rpc_mgmt_ep_elt_inq_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_ep_elt_inq_done() routine deletes an inquiry context. The
rpc_mgmt_ep_elt_inq_begin()routine created the inquiry context.

An application calls this routine after viewing local endpoint map elements using the
rpc_mgmt_ep_elt_inq_next()routine.

664

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_done(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_inquiry_context
Invalid inquiry context.

Related Information

Functions:rpc_mgmt_ep_elt_inq_begin(3rpc), rpc_mgmt_ep_elt_inq_next(3rpc).

665

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_elt_inq_next(3rpc)

rpc_mgmt_ep_elt_inq_next

Purpose Returns one element from an endpoint map; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_elt_inq_next(
rpc_ep_inq_handle_tinquiry_context,
rpc_if_id_t * if_id,
rpc_binding_handle_t *binding,
uuid_t * object_uuid,
unsigned_char_t **annotation,
unsigned32 *status);

Parameters
Input

inquiry_context
Specifies an inquiry context. This inquiry context is returned from the
rpc_mgmt_ep_elt_inq_begin()routine.

Output

if_id Returns the interface identifier of the local endpoint map element.

binding Returns the binding handle from the local endpoint map element.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not call therpc_binding_free() routine.

object_uuid Returns the object UUID from the local endpoint map element.

Specify NULL to prevent the routine from returning this parameter.

annotation Returns the annotation string for the local endpoint map element. If there
is no annotation string in the local endpoint map element, the string\0
is returned.

666

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_next(3rpc)

Specify NULL to prevent the routine from returning this argument. In
this case the application does not call therpc_string_free() routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_mgmt_ep_elt_inq_next()routine returns one element from the local endpoint
map. Regardless of the selector value specified for theinquiry_type parameter
in rpc_mgmt_ep_elt_inq_begin(), this routine returns all the components of a
selected local endpoint map element. Therpc_ep_register()routine’s reference page
summarizes the contents of an element in the local endpoint map.

An application can view all the selected local endpoint map elements by repeatedly
calling the rpc_mgmt_ep_elt_inq_next() routine. When all the elements have
been viewed, this routine returns anrpc_s_no_more_elementsstatus. The returned
elements are unordered.

If a remote endpoint map contains elements that include a protocol sequence that
your system does not support, this routine does not return the elements. (A protocol
sequence is part of the binding information component of an endpoint map element.)
To receive all possible elements from a remote endpoint map, your application must
run on a system that supports the protocol sequences included in the elements.

For example, if your system does not support protocol sequencencacn_ip_tcp and
a remote endpoint map contains elements that include this protocol sequence, this
routine does not return these elements to your application. If your application ran on
a system that supported protocol sequencencacn_ip_tcp, this routine would return
the elements.

The RPC runtime allocates memory for the returnedbindingand theannotationstring
on each call to this routine. The application calls therpc_binding_free() routine for
each returnedbinding and therpc_string_free() routine for each returnedannotation
string.

After viewing the local endpoint map’s elements, the application must call the
rpc_mgmt_ep_elt_inq_done()routine to delete the inquiry context.

667

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_elt_inq_next(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_comm_failure
Communications failure.

ept_s_database_invalid
Endpoint map database invalid.

rpc_s_fault_context_mismatch
Fault context mismatch.

ept_s_invalid_context
Invalid inquiry type for this context.

ept_s_invalid_entry
Invalid database entry.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_inquiry_context
Invalid inquiry context.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_no_more_elements
No more elements.

668

DCE Remote Procedure Call

rpc_mgmt_ep_elt_inq_next(3rpc)

Related Information

Functions:rpc_binding_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_mgmt_ep_elt_begin(3rpc),
rpc_mgmt_ep_elt_done(3rpc), rpc_string_free(3rpc).

669

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_unregister(3rpc)

rpc_mgmt_ep_unregister

Purpose Removes server address information from an endpoint map; used by management
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_ep_unregister(
rpc_binding_handle_t ep_binding,
rpc_if_id_t * if_id,
rpc_binding_handle_t binding,
uuid_t * object_uuid,
unsigned32 *status);

Parameters
Input

ep_binding Specifies the host whose local endpoint map elements you unregister
(that is, remove). To remove elements from the same host as the calling
application, specify NULL.

To remove local endpoint map elements from another host, specify
a server binding handle for that host. You can specify the same
binding handle you are using to make other remote procedure calls.
The object UUID associated with this parameter must be a nil UUID.
If you specify a nonnil UUID, the routine fails with the status code
ept_s_cant_perform_op. Other than the host information and object
UUID, all information in this parameter is ignored.

if_id Specifies the interface identifier to remove from the local endpoint map.

binding Specifies the binding handle to remove.

object_uuid
Specifies an optional object UUID to remove.

670

DCE Remote Procedure Call

rpc_mgmt_ep_unregister(3rpc)

The value NULL indicates there is no object UUID to consider in the
removal.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_mgmt_ep_unregister()routine unregisters (that is, removes) an element from
a local endpoint map. A management program calls this routine to remove addresses
of servers that are no longer available, or to remove addresses of servers that support
objects that are no longer offered.

Use this routine cautiously; removing elements from the local endpoint map may
make servers unavailable to client applications that do not already have a fully bound
binding handle to the server.

A management application calls therpc_mgmt_ep_inq_next()routine to view local
endpoint map elements. The application can then remove the elements using the
rpc_mgmt_ep_unregister()routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

ept_s_cant_access
Error reading the endpoint database.

ept_s_cant_perform_op
Cannot perform the requested operation.

671

DCE 1.2.2 Application Development Reference

rpc_mgmt_ep_unregister(3rpc)

rpc_s_comm_failure
Communications failure.

ept_s_database_invalid
Endpoint map database is invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_not_registered
No entries found.

ept_s_update_failed
Update failed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),
rpc_mgmt_ep_elt_inq_begin(3rpc), rpc_mgmt_ep_elt_inq_done(3rpc),
rpc_mgmt_ep_elt_inq_next(3rpc), rpc_ns_binding_unexport(3rpc).

672

DCE Remote Procedure Call

rpc_mgmt_inq_com_timeout(3rpc)

rpc_mgmt_inq_com_timeout

Purpose Returns the communications timeout value in a binding handle; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_com_timeout(
rpc_binding_handle_t binding,
unsigned32 *timeout,
unsigned32 *status);

Parameters
Input

binding Specifies a server binding handle.

Output

timeout Returns the communications timeout value from thebinding parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_mgmt_inq_com_timeout()routine returns the communications timeout value
in a server binding handle. The timeout value specifies the relative amount of time
to spend trying to communicate with the server. Depending on the protocol sequence
for the specified binding handle, the value intimeoutacts only as advice to the RPC
runtime.

The rpc_mgmt_set_com_timeout(3rpc)reference page explains the timeout values
returned intimeout.

673

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_com_timeout(3rpc)

To change the timeout value, a client callsrpc_mgmt_set_com_timeout().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_mgmt_set_com_timeout(3rpc).

674

DCE Remote Procedure Call

rpc_mgmt_inq_dflt_protect_level(3rpc)

rpc_mgmt_inq_dflt_protect_level

Purpose Returns the default protection level for an authentication service; used by client and
server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_dflt_protect_level(
unsigned32authn_svc,
unsigned32 *protect_level,
unsigned32 *status);

Parameters
Input

authn_svc Specifies the authentication service for which to return the default
protection level.

The supported authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

Output

protect_levelReturns the default protection level for the specified authentication
service. The protection level determines the degree to which

675

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_dflt_protect_level(3rpc)

authenticated communications between the client and the server are
protected.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypts each remote procedure call
argument value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_inq_dflt_protect_level() routine returns the default protection level
for the specified authentication service.

A client can call this routine to learn the default protection level before
specifying rpc_c_protect_level_default for the protect_level parameter in the
rpc_binding_set_auth_info() routine. If the default level is inappropriate, the client
can specify a different, explicit level.

676

DCE Remote Procedure Call

rpc_mgmt_inq_dflt_protect_level(3rpc)

A called remote procedure within a server application can call this routine to obtain
the default protection level for a given authentication service. By calling routine
rpc_binding_inq_auth_client() in the remote procedure, the server can obtain the
protection level set up by the calling client. The server can then compare the client-
specified protection level with the default level to determine whether to allow the
remote procedure to execute.

Alternatively, a remote procedure can compare the client’s protection level against a
level other than the default level. In this case there is no need for the server’s remote
procedure to call this routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_unknown_authn_service
Unknown authentication service.

Related Information

Functions:rpc_binding_inq_auth_client(3rpc), rpc_binding_set_auth_info(3rpc).

677

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_if_ids(3rpc)

rpc_mgmt_inq_if_ids

Purpose Returns a vector of interface identifiers of interfaces a server offers; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_if_ids(
rpc_binding_handle_t binding,
rpc_if_id_vector_t ** if_id_vector,
unsigned32 *status);

Parameters
Input

binding Specifies a binding handle. To receive interface identifiers from a remote
application, specify a server binding handle for that application. To
receive interface information about your own (local) application, specify
NULL.

If the binding handle you supply refers to partially bound binding
information and the binding information contains a nil object UUID,
this routine returns therpc_s_binding_incompletestatus code. In this
case, the DCE host daemon (dced) does not know which server instance
to select from the local endpoint map because the RPC management
interface is automatically registered (by the RPC runtime) for all RPC
servers.

To avoid this situation, you can obtain a fully bound server binding
handle by calling therpc_ep_resolve_binding()routine.

Output

if_id_vector Returns the address of an interface identifier vector.

678

DCE Remote Procedure Call

rpc_mgmt_inq_if_ids(3rpc)

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.statuscan also return
the value of parameterstatusfrom the application-defined authorization
function (rpc_mgmt_authorization_fn_t). The prototype for such a
function is defined in theauthorization_fn parameter listed in the
reference page for therpc_mgmt_set_authorization_fn(3rpc)routine.

Description

An application calls therpc_mgmt_inq_if_ids() routine to obtain a vector of interface
identifiers listing the interfaces registered by a server with the RPC runtime.

If a server has not registered any interfaces with the runtime, this routine returns a
rpc_s_no_interfacesstatus code and anif_id_vectorparameter value of NULL.

The application calls therpc_if_id_vector_free() routine to release the memory used
by the vector.

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using therpc_mgmt_set_authorization_fn()routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_arg
Invalid argument.

679

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_if_ids(3rpc)

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_resolve_binding(3rpc), rpc_if_id_vector_free(3rpc),
rpc_mgmt_set_authorization_fn(3rpc), rpc_server_register_if(3rpc).

680

DCE Remote Procedure Call

rpc_mgmt_inq_server_princ_name(3rpc)

rpc_mgmt_inq_server_princ_name

Purpose Returns a server’s principal name; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_server_princ_name(
rpc_binding_handle_t binding,
unsigned32authn_svc,
unsigned_char_t **server_princ_name,
unsigned32 *status);

Parameters
Input

binding Specifies a binding handle. If a client application wants the principal
name from a server application, supply a server binding handle for that
server. For a server application to receive a principal name of itself,
supply the value NULL.

If the binding handle you supply refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine returns therpc_s_binding_incompletestatus code. In this case
the DCE host daemon does not know which server instance to select
from the local endpoint map because the RPC runtime automatically
registers the RPC management interface for all RPC servers.

You can avoid this situation by callingrpc_ep_resolve_binding()to
obtain a fully bound server binding handle.

authn_svc Specifies the authentication service for which a principal name is
returned. Therpc_binding_set_auth_info(3rpc) reference page, in its
explanation of theauthn_svcparameter, contains a list of supported
authentication services.

681

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_server_princ_name(3rpc)

Output

server_princ_name
Returns a principal name. This name is registered for the authentication
service in parameterauthn_svcby the server referenced in parameter
binding. If the server registered multiple principal names, only one of
them is returned.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

In addition to the above values,status can return the value of
parameterstatus from the application-defined authorization function
(rpc_mgmt_authorization_fn_t). The prototype for such a function
is defined in theauthorization_fnparameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc).

Description

An application calls therpc_mgmt_inq_server_princ_name()routine to obtain the
principal name of a server registered for a specified authentication service.

A client (or management) application uses this routine when it wants to allow one-way
authentication with the server specified bybinding. This means that the client does not
care which server principal receives the remote procedure call request. However, the
server verifies that the client is who the client claims to be. For one-way authentication,
a client calls this routine before callingrpc_binding_set_auth_info().

A server application uses this routine to obtain the principal name it registered by
calling rpc_server_register_auth_info().

The RPC runtime allocates memory for the string returned inserver_princ_name. The
application callsrpc_string_free() to deallocate that memory.

By default, the RPC runtime allows all clients to call this routine remotely. To
restrict these calls, a server application supplies an authorization function by calling
rpc_mgmt_set_authorization_fn().

Return Values

No value is returned.

682

DCE Remote Procedure Call

rpc_mgmt_inq_server_princ_name(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_inq_object(3rpc), rpc_binding_set_auth_info(3rpc),
rpc_ep_resolve_binding(3rpc), rpc_mgmt_set_authorization_fn(3rpc),
rpc_server_register_auth_info(3rpc), rpc_string_free(3rpc), uuid_is_nil(3rpc).

683

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_stats(3rpc)

rpc_mgmt_inq_stats

Purpose Returns RPC runtime statistics; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_inq_stats(
rpc_binding_handle_t binding,
rpc_stats_vector_t **statistics,
unsigned32 *status);

Parameters
Input

binding Specifies a binding handle. To receive statistics about a remote
application, specify a server binding handle for that application. To
receive statistics about your own (local) application, specify NULL.

If the binding handle you supply refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine returns therpc_s_binding_incompletestatus code. In this case,
the DCE host daemon does not know which server instance to select
from the local endpoint map because the RPC management interface is
automatically registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding
handle by calling therpc_ep_resolve_binding()routine.

Output

statistics Returns the statistics vector for the server specified by thebinding
parameter. Each statistic is a value of the typeunsigned32.

status Returns the status code from this routine. This status code
indicates whether the routine completed successfully or, if not,
why not. status can also return the value of parameterstatus from

684

DCE Remote Procedure Call

rpc_mgmt_inq_stats(3rpc)

rpc_mgmt_authorization_fn_t, which is the application-defined
authorization function. The prototype for such a function is
defined in theauthorization_fnparameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc).

Description

The rpc_mgmt_inq_stats() routine returns statistics from the RPC runtime about a
specified server.

The explanation of a statistics vector in therpc_intro(3rpc) reference page lists the
elements of the vector.

The RPC runtime allocates memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free()routine to release the memory that the statistics vector
used.

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using therpc_mgmt_set_authorization_fn()routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

685

DCE 1.2.2 Application Development Reference

rpc_mgmt_inq_stats(3rpc)

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_resolve_binding(3rpc), rpc_mgmt_set_authorization_fn(3rpc),
rpc_mgmt_stats_vector_free(3rpc).

686

DCE Remote Procedure Call

rpc_mgmt_is_server_listening(3rpc)

rpc_mgmt_is_server_listening

Purpose Tells whether a server is listening for remote procedure calls; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

boolean32 rpc_mgmt_is_server_listening(
rpc_binding_handle_t binding,
unsigned32 *status);

Parameters
Input

binding Specifies a server binding handle. To determine if a remote application is
listening for remote procedure calls, specify a server binding handle for
that application. To determine if your own (local) application is listening
for remote procedure calls, specify NULL.

If the binding handle you supply refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine returns therpc_s_binding_incompletestatus code. In this case,
the DCE host daemon does not know which server instance to select
from the local endpoint map because the RPC management interface is
automatically registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding
handle by calling therpc_ep_resolve_binding()routine.

Output

status Returns the status code from this routine. This status code
indicates whether the routine completed successfully or, if not,
why not. status can also return the value of parameterstatus from
rpc_mgmt_authorization_fn_t, which is the application-defined

687

DCE 1.2.2 Application Development Reference

rpc_mgmt_is_server_listening(3rpc)

authorization function. The prototype for such a function is
defined in theauthorization_fnparameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc).

Description

The rpc_mgmt_is_server_listening()routine determines whether the server specified
in the binding parameter is listening for remote procedure calls.

This routine returns a value of TRUE if the server is blocked in therpc_server_listen()
routine.

By default, the RPC runtime allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorization function
using therpc_mgmt_set_authorization_fn()routine.

Return Values

Your program must examine the return value of thestatusparameter and the return
value of the routine to understand the meaning of the routine value. The following
table summarizes the values that this routine can return.

Values Returned by rpc_mgmt_is_server_listening()

Value Returned Status Code Explanation

TRUE rpc_s_ok The specified server is
listening for remote
procedure calls.

FALSE One of the status codes
returned by thestatus
parameter

The specified server is
not listening for remote
procedure calls, or the
server cannot be reached.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

688

DCE Remote Procedure Call

rpc_mgmt_is_server_listening(3rpc)

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_resolve_binding(3rpc), rpc_mgmt_set_authorization_fn(3rpc),
rpc_server_listen(3rpc).

689

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_authorization_fn(3rpc)

rpc_mgmt_set_authorization_fn

Purpose Establishes an authorization function for processing remote calls to a server’s
management routines; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_authorization_fn(
rpc_mgmt_authorization_fn_t authorization_fn,
unsigned32 *status);

Parameters
Input

authorization_fn
Specifies a pointer to an authorization function. The RPC server runtime
automatically calls this function whenever the server runtime receives a
client request to execute one of the RPC management routines.

Specify NULL to unregister a previously registered authorization
function. In this case, the default authorizations (as described later) are
used.

The following C definition for rpc_mgmt_authorization_fn_t
illustrates the prototype for the authorization function:

typedef boolean32 (*rpc_mgmt_authorization_fn_t)

(

rpc_binding_handle_t client_binding, /* in */

unsigned32 requested_mgmt_operation, /* in */

unsigned32 *status /* out */

);

690

DCE Remote Procedure Call

rpc_mgmt_set_authorization_fn(3rpc)

The following table shows therequested_mgmt_operationvalues passed
by the RPC runtime to the authorization function.

Operation Values Passed to Authorization Function

Called Remote Routine requested_mgmt_operationValue

rpc_mgmt_inq_if_ids() rpc_c_mgmt_inq_if_ids

rpc_mgmt_inq_server_princ_name() rpc_c_mgmt_inq_princ_name

rpc_mgmt_inq_stats() rpc_c_mgmt_inq_stats

rpc_mgmt_is_server_listening() rpc_c_mgmt_is_server_listen

rpc_mgmt_stop_server_listening() rpc_c_mgmt_stop_server_listen

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_authorization_fn() routine sets up an authorization function to
control remote access to the calling server’s remote management routines.

If a server does not provide an authorization function, the RPC runtime controls client
application access to the server’s remote management routines as shown in the next
table. In the table, anenabledauthorization allows all clients to execute the remote
routine and adisabledauthorization prevents all clients from executing the remote
routine.

Default Controls for Remote Management Routines

Remote Routine Default Authorization

rpc_mgmt_inq_if_ids() Enabled

rpc_mgmt_inq_server_princ_name() Enabled

rpc_mgmt_inq_stats() Enabled

rpc_mgmt_is_server_listening() Enabled

rpc_mgmt_stop_server_listening() Disabled

691

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_authorization_fn(3rpc)

A server can modify the default authorizations by calling
rpc_mgmt_set_authorization_fn() to specify an authorization function. When an
authorization function is provided, the RPC runtime automatically calls that function
to control the execution of all remote management routines called by clients.

The specified function must provide access control for all of the remote management
routines.

If the authorization function returns TRUE, the management routine is allowed to
execute. If the authorization function returns FALSE, the management routine does
not execute, and the called routine returns to the client the status code returned
from the rpc_mgmt_authorization_fn_t function. However, if the status code that
the rpc_mgmt_authorization_fn_t function returns is 0 (zero) orrpc_s_ok, then the
status coderpc_s_mgmt_op_disallowedis returned to the client.

The RPC runtime calls the server-provided authorization function with the following
two input arguments:

• The binding handle of the calling client.

• An integer value denoting which management routine the client has called.

Using these arguments, the authorization function determines whether the calling
client is allowed to execute the requested management routine. For example,
the authorization function can callrpc_binding_inq_auth_client() to obtain
authentication and authorization information about the calling client and determine if
that client is authorized to execute the requested management routine.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

692

DCE Remote Procedure Call

rpc_mgmt_set_authorization_fn(3rpc)

Related Information

Functions:rpc_mgmt_ep_unregister(3rpc), rpc_mgmt_inq_if_ids(3rpc),
rpc_mgmt_inq_server_princ_name(3rpc), rpc_mgmt_inq_stats(3rpc),
rpc_mgmt_is_server_listening(3rpc), rpc_mgmt_stop_server_listening(3rpc).

693

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_cancel_timeout(3rpc)

rpc_mgmt_set_cancel_timeout

Purpose Sets the lower bound on the time to wait before timing out after forwarding a cancel;
used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_cancel_timeout(
signed32seconds,
unsigned32 *status);

Parameters
Input

seconds An integer specifying the number of seconds to wait for a server to
acknowledge a cancel. To specify that a client waits an infinite amount
of time, supply the valuerpc_c_cancel_infinite_timeout.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_cancel_timeout()routine resets the amount of time the RPC
runtime waits for a server to acknowledge a cancel before orphaning the call.

The application specifies either to wait forever or to wait a length of time specified
in seconds. If the value ofsecondsis 0 (zero), the remote procedure call is
immediately orphaned when the RPC runtime detects and forwards a pending
cancel; control returns immediately to the client application. The default value,
rpc_c_cancel_infinite_timeout, specifies waiting forever for the call to complete.

694

DCE Remote Procedure Call

rpc_mgmt_set_cancel_timeout(3rpc)

The value for the cancel timeout applies to all remote procedure calls made in the
current thread. A multithreaded client that wishes to change the timeout value must
call this routine in each thread of execution.

For more information about canceled threads and orphaned remote procedure calls,
see theDCE 1.2.2 Application Development Guide—Directory Services.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:pthread_cancel(3thr), pthread_setcancel(3thr).

695

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_com_timeout(3rpc)

rpc_mgmt_set_com_timeout

Purpose Sets the communications timeout value in a binding handle; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_com_timeout(
rpc_binding_handle_t binding,
unsigned32timeout,
unsigned32 *status);

Parameters
Input

binding Specifies the server binding handle whose timeout value is set.

timeout Specifies a communications timeout value.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_com_timeout()routine resets the communications timeout value
in a server binding handle. The timeout value specifies the relative amount of time
to spend trying to communicate with the server. Depending on the protocol sequence
for the specified binding handle, thetimeout value acts only as advice to the RPC
runtime.

After the initial relationship is established, subsequent communications for the binding
handle cannot revert to less than the default timeouts for the protocol service. This

696

DCE Remote Procedure Call

rpc_mgmt_set_com_timeout(3rpc)

means that after setting a short initial timeout and establishing a connection, calls in
progress are not timed out any sooner than the default.

Note: Because of differences in underlying transport layers, only the
rpc_c_infinite_binding_timeout constant changes binding behavior
when rpc_mgmt_set_com_timeout()is used with connection-oriented RPC.

The timeout value can be any integer value from 0 (zero) to 10. Note that these
values donot represent seconds. They represent a relative amount of time to spend to
establish a client/server relationship (a binding).

Constants are provided for certain values in the timeout range. The following table
lists the binding timeout values, describing the DCE RPC predefined values that an
application can use for thetimeoutparameter.

Predefined Time-Out Values

Name Value Description

rpc_c_binding_min_timeout 0 Attempts to communicate for the
minimum amount of time for the
network protocol being used. This
value favors response time over
correctness in determining whether
the server is running.

rpc_c_binding_default_timeout 5 Attempts to communicate for an
average amount of time for the
network protocol being used. This
value gives equal consideration to
response time and correctness in
determining whether a server is
running. This is the default value.

rpc_c_binding_max_timeout 9 Attempts to communicate for the
longest finite amount of time for
the network protocol being used.
This value favors correctness in
determining whether a server is
running over response time.

rpc_c_binding_infinite_timeout 10 Attempts to communicate forever.

697

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_com_timeout(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_invalid_timeout
Invalid timeout value.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_mgmt_inq_com_timeout(3rpc).

698

DCE Remote Procedure Call

rpc_mgmt_set_server_stack_size(3rpc)

rpc_mgmt_set_server_stack_size

Purpose Specifies the stack size for each server thread; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_set_server_stack_size(
unsigned32thread_stack_size,
unsigned32 *status);

Parameters
Input

thread_stack_size
Specifies, in bytes, the stack size allocated for each thread created by
rpc_server_listen(). This value is applied to all threads created for the
server. Select this value based on the stack requirements of the remote
procedures offered by the server.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_mgmt_set_server_stack_size()routine specifies the thread stack size to use
when the RPC runtime creates call threads for executing remote procedure calls.
The max_calls_execparameter inrpc_server_listen() specifies the number of call
execution threads created.

A server, provided it knows the stack requirements of all the manager routines in the
interfaces it offers, can callrpc_mgmt_set_server_stack_size()to ensure that each
call thread has the necessary stack size.

699

DCE 1.2.2 Application Development Reference

rpc_mgmt_set_server_stack_size(3rpc)

This routine is optional. When it is used, it must be called before the server calls
rpc_server_listen(). If a server does not call this routine, the default per thread stack
size from the underlying threads package is used.

Some thread packages do not support the specification or modification of thread stack
sizes. The packages cannot perform such operations or the concept of a thread stack
size is meaningless to them.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_not_supported
Not supported.

Return Values

No value is returned.

Related Information

Functions:rpc_server_listen(3rpc).

700

DCE Remote Procedure Call

rpc_mgmt_stats_vector_free(3rpc)

rpc_mgmt_stats_vector_free

Purpose Frees a statistics vector; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_stats_vector_free(
rpc_stats_vector_t **stats_vector,
unsigned32 *status);

Parameters
Input/Output

stats_vector Specifies the address of a pointer to a statistics vector. On return,
stats_vectorcontains the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application callsrpc_mgmt_stats_vector_free()to release the memory used to
store a vector of statistics.

An application callsrpc_mgmt_inq_stats() to obtain a vector of statistics. Follow a
call to rpc_mgmt_inq_stats()with a call to rpc_mgmt_stats_vector_free().

Return Values

No value is returned.

701

DCE 1.2.2 Application Development Reference

rpc_mgmt_stats_vector_free(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_mgmt_inq_stats(3rpc).

702

DCE Remote Procedure Call

rpc_mgmt_stop_server_listening(3rpc)

rpc_mgmt_stop_server_listening

Purpose Tells a server to stop listening for remote procedure calls; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_mgmt_stop_server_listening(
rpc_binding_handle_t binding,
unsigned32 *status);

Parameters
Input

binding Specifies a server binding handle. To direct a remote server to stop
listening for remote procedure calls, specify a server binding handle to
that server. To direct your own (local) server to stop listening for remote
procedure calls, specify NULL.

If the binding handle you supply refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine returns therpc_s_binding_incompletestatus code. In this case,
the DCE host daemon does not know which server instance to select
from the local endpoint map because the RPC management interface is
automatically registered (by the RPC runtime) for all RPC servers.

To avoid this situation, you can obtain a fully bound server binding
handle by callingrpc_ep_resolve_binding().

Output

status Returns the status code from this routine. This status code
indicates whether the routine completed successfully or, if not,
why not. status can also return the value of parameterstatus
from rpc_mgmt_authorization_fn_t(), which is the application-

703

DCE 1.2.2 Application Development Reference

rpc_mgmt_stop_server_listening(3rpc)

defined authorization function. The prototype for such a function is
defined in theauthorization_fnparameter in the reference page for
rpc_mgmt_set_authorization_fn(3rpc).

Description

The rpc_mgmt_stop_server_listening()routine directs a server to stop listening for
remote procedure calls.

On receiving such a request, the DCE RPC runtime stops accepting new remote
procedure calls. Executing calls are allowed to complete.

After all calls complete,rpc_server_listen()returns to the caller.

By default, the RPC runtime does not allow any client to remotely call this routine.
To allow clients to execute this routine, a server application supplies an authorization
function usingrpc_mgmt_set_authorization_fn().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_mgmt_op_disallowed
Management operation disallowed.

704

DCE Remote Procedure Call

rpc_mgmt_stop_server_listening(3rpc)

rpc_s_unknown_if
Unknown interface.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_resolve_binding(3rpc), rpc_mgmt_set_authorization_fn(3rpc),
rpc_server_listen(3rpc).

705

DCE 1.2.2 Application Development Reference

rpc_network_inq_protseqs(3rpc)

rpc_network_inq_protseqs

Purpose Returns all protocol sequences supported by both the RPC runtime and the operating
system; used by client and server applications

Synopsis
#include <dce/rpc.h>

void rpc_network_inq_protseqs(
rpc_protseq_vector_t **protseq_vector,
unsigned32 *status);

Parameters
Input

None.

Output

protseq_vector
Returns the address of a protocol sequence vector.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_network_inq_protseqs() routine obtains a vector containing the protocol
sequences supported by the RPC runtime and the operating system. A server chooses to
accept remote procedure calls over some or all of the supported protocol sequences. If
there are no supported protocol sequences, this routine returns therpc_s_no_protseqs
status code and the value NULL in theprotseq_vectorparameter.

The application callsrpc_protseq_vector_free()to release the memory used by the
vector.

706

DCE Remote Procedure Call

rpc_network_inq_protseqs(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_protseqs
No supported protocol sequences.

Related Information

Functions:rpc_network_is_protseq_valid(3rpc), rpc_protseq_vector_free(3rpc).

707

DCE 1.2.2 Application Development Reference

rpc_network_is_protseq_valid(3rpc)

rpc_network_is_protseq_valid

Purpose Tells whether the specified protocol sequence is supported by both the RPC runtime
and the operating system; used by client and server applications

Synopsis
#include <dce/rpc.h>

boolean32 rpc_network_is_protseq_valid(
unsigned_char_t *protseq,
unsigned32 *status);

Parameters
Input

protseq Specifies a string identifier for a protocol sequence. (See the table of
valid protocol sequences in therpc_intro(3rpc) reference page for a list
of acceptable values.)

The rpc_network_is_protseq_valid() routine determines whether
this parameter contains a valid protocol sequence. If not, the
routine returns FALSE and thestatus parameter contains the
rpc_s_invalid_rpc_protseqstatus code.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_network_is_protseq_valid()routine determines whether a specified protocol
sequence is available for making remote procedure calls. A server chooses to accept
remote procedure calls over some or all of the supported protocol sequences.

708

DCE Remote Procedure Call

rpc_network_is_protseq_valid(3rpc)

A protocol sequence is valid if the RPC runtime and the operating system support
the protocol sequence. DCE RPC supports the protocol sequences pointed to by the
explanation of theprotseqparameter.

An application callsrpc_network_inq_protseqs()to obtain all the supported protocol
sequences.

Return Values

This routine can return the following values:

TRUE The RPC runtime supports the protocol sequence specified in theprotseq
parameter. The routine returns the status coderpc_s_ok in the status
parameter.

FALSE The RPC runtime does not support the protocol sequence specified in
the protseqparameter.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions:rpc_network_inq_protseqs(3rpc), rpc_string_binding_parse(3rpc).

709

DCE 1.2.2 Application Development Reference

rpc_ns_binding_export(3rpc)

rpc_ns_binding_export

Purpose Establishes a name service database entry with binding handles or object UUIDs for
a server; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_export(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_nameparameter.

To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the valuerpc_c_ns_syntax_default.

entry_name Specifies the entry name to which binding handles and object UUIDs
are exported. This can be either the global or cell-relative name.

if_handle Specifies a stub-generated data structure that identifies the interface
to export. Specifying the value NULL indicates there are no binding
handles to export (only object UUIDs are exported) and thebinding_vec
parameter is ignored.

710

DCE Remote Procedure Call

rpc_ns_binding_export(3rpc)

binding_vec Specifies a vector of server bindings to export. Specify the value NULL
for this parameter in cases where there are no binding handles to export
(only object UUIDs are exported).

object_uuid_vec
Identifies a vector of object UUIDs offered by the server. The server
application constructs this vector. NULL indicates there are no object
UUIDs to export (only binding handles are exported).

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_export() routine allows a server application to publicly offer,
in the name service database, an interface that any client application can use. A
server application can also use this routine to publicly offer the object UUIDs of the
application’s resources.

To export an interface, the server application calls the routine with an interface and
the server binding handles that a client can use to access the server.

A server can export interfaces and objects in a single call to this routine, or it can
export them separately.

If the entry in the name service database specified by theentry_nameparameter does
not exist,rpc_ns_binding_export() tries to create it. In this case a server must have
the correct permissions to create the entry. Otherwise, a management application with
the necessary permissions creates the entry by callingrpc_ns_mgmt_entry_create()
before the server runs.

A server is not required to export its interfaces to the name service database.
When a server does not export any interfaces, only clients that privately know
of that server’s binding information can access its interfaces. For example, a
client that has the information needed to construct a string binding can call
rpc_binding_from_string_binding() to create a binding handle for making remote
procedure calls to a server.

Before callingrpc_ns_binding_export() to export interfaces (but not to export object
UUIDs), a server must do the following:

711

DCE 1.2.2 Application Development Reference

rpc_ns_binding_export(3rpc)

• Register one or more protocol sequences with the local RPC runtime by calling
one of the following routines:

— rpc_server_use_protseq()

— rpc_server_use_protseq_ep()

— rpc_server_use_protseq_if()

— rpc_server_use_all_protseqs()

— rpc_server_use_all_protseqs_if()

• Obtain a list of server bindings by callingrpc_server_inq_bindings().

The vector returned fromrpc_server_inq_bindings() becomes thebinding_vec
parameter for this routine. To prevent a binding from being exported, set the
selected vector element to the value NULL. (See the section on RPC data types
and structures in therpc_intro(3rpc) reference page.)

If a server exports an interface to the same entry in the name service database more
than once, the second and subsequent calls to this routine add the binding information
and object UUIDs only if they differ from the ones in the server entry. Existing data
is not removed from the entry.

To remove binding handles and object UUIDs from the name service database, a
server application callsrpc_ns_binding_unexport() and a management application
calls rpc_ns_mgmt_binding_unexport().

For an explanation of how a server can establish a client/server relationship without
using the name service database, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

In addition to calling this routine, a server that called either
rpc_server_use_all_protseqs() or rpc_server_use_protseq() must also
register with the local endpoint map by calling eitherrpc_ep_register() or
rpc_ep_register_no_replace().

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry). If the entry does not exist, you also need insert permission
to the parent directory.

712

DCE Remote Procedure Call

rpc_ns_binding_export(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_nothing_to_export
Nothing to export.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),
rpc_ns_binding_unexport(3rpc), rpc_ns_mgmt_binding_unexport(3rpc),
rpc_ns_mgmt_entry_create(3rpc), rpc_server_inq_bindings(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

713

DCE 1.2.2 Application Development Reference

rpc_ns_binding_import_begin(3rpc)

rpc_ns_binding_import_begin

Purpose Creates an import context for an interface and an object in the name service database;
used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_begin(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_t * obj_uuid,
rpc_ns_handle_t *import_context,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of parameter
entry_name. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the valuerpc_c_ns_syntax_default.

entry_name Specifies the entry name with which the search for compatible binding
handles begins. This can be either the global or the cell-relative name.

To use the entry name found in theRPC_DEFAULT_ENTRY
environment variable, supply NULL or a null string (\0) for
this parameter. When this entry name is used, the RPC runtime
automatically uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

if_handle A stub-generated data structure specifying the interface to import. If
the interface specification has not been exported or is of no concern to

714

DCE Remote Procedure Call

rpc_ns_binding_import_begin(3rpc)

the caller, specify NULL for this parameter. In this case the bindings
returned are only guaranteed to be of a compatible and supported
protocol sequence and, depending on the value of parameterobj_uuid,
contain the specified object Universal Unique Identifier (UUID). The
desired interface may not be supported by the contacted server.

obj_uuid Specifies an optional object UUID.

If you specify NULL or a nil UUID for this parameter, the returned
binding handles contain one of the object UUIDs that the compatible
server exported. If the server did not export any object UUIDs, the
returned compatible binding handles contain a nil object UUID.

If you specify a nonnil UUID, compatible binding handles are returned
from an entry only if the server has exported the specified object UUID.
Each returned binding handle contains the specified nonnil object UUID.

Output

import_context
Returns the name service handle for use with the following routines:

• rpc_ns_binding_import_next()

• rpc_ns_binding_import_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_object
Invalid object.

rpc_s_no_env_setup
Environment variable not set up.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

715

DCE 1.2.2 Application Development Reference

rpc_ns_binding_import_begin(3rpc)

Description

The rpc_ns_binding_import_begin() routine creates an import context for importing
compatible server binding handles for servers. These servers offer the specified
interface and object UUID in the respectiveif_handleandobj_uuidparameters.

Before callingrpc_ns_binding_import_next(), the client must first call this routine
to create an import context. The arguments to this routine control the operation of
rpc_ns_binding_import_next().

After importing binding handles, the client callsrpc_ns_binding_import_done() to
delete the import context.

Return Values

No value is returned.

Related Information

Functions:rpc_ns_binding_import_done(3rpc),
rpc_ns_binding_import_next(3rpc), rpc_ns_mgmt_handle_set_exp_age(3rpc).

716

DCE Remote Procedure Call

rpc_ns_binding_import_done(3rpc)

rpc_ns_binding_import_done

Purpose Deletes the import context for searching the name service database; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_done(
rpc_ns_handle_t*import_context,
unsigned32 *status);

Parameters
Input/Output

import_context
Specifies the name service handle to delete. (A name service handle is
created by callingrpc_ns_binding_import_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_import_done() routine deletes an import context created by
calling rpc_ns_binding_import_begin(). This deletion does not affect any previously
imported bindings.

Typically, a client calls this routine after completing remote procedure calls to a
server using a binding handle returned fromrpc_ns_binding_import_next(). A client
program calls this routine for each created import context, regardless of the status

717

DCE 1.2.2 Application Development Reference

rpc_ns_binding_import_done(3rpc)

returned from rpc_ns_binding_import_next(), or the success in making remote
procedure calls.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_binding_import_begin(3rpc),
rpc_ns_binding_import_next(3rpc).

718

DCE Remote Procedure Call

rpc_ns_binding_import_next(3rpc)

rpc_ns_binding_import_next

Purpose Returns a binding handle of a compatible server (if found) from the name service
database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_import_next(
rpc_ns_handle_timport_context,
rpc_binding_handle_t *binding,
unsigned32 *status);

Parameters
Input

import_context
Specifies a name service handle. This handle is returned from the
rpc_ns_binding_import_begin() routine.

Output

binding Returns a compatible server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_import_next() routine returns one compatible (to the client)
server binding handle selected at random from the name service database. The server
offers the interface and object UUID specified by the respectiveif_handleandobj_uuid
parameters inrpc_ns_binding_import_begin().

719

DCE 1.2.2 Application Development Reference

rpc_ns_binding_import_next(3rpc)

A similar routine is rpc_ns_binding_lookup_next(), which returns a vector of
compatible server binding handles for one or more servers.

Note: The routine rpc_ns_binding_import_next() calls the routine
rpc_ns_binding_lookup_next() which, in turn, obtains a vector of
server binding handles from the name service database. Next, routine
rpc_ns_binding_import_next() randomly selects one of the elements from
the vector.

The rpc_ns_binding_import_next() routine communicates only with the name
service database, not directly with servers.

The returned compatible binding handle always contains an object UUID.
Its value depends on the value specified in theobj_uuid parameter of the
rpc_ns_binding_import_begin() routine, as follows:

• If obj_uuidcontains a nonnil object UUID, the returned binding handle contains
that object UUID.

• If obj_uuid contains a nil object UUID or NULL, the object UUID returned in
the binding handle depends on how the server exported object UUIDs:

— If the server did not export any object UUIDs, the returned binding handle
contains a nil object UUID.

— If the server exported one object UUID, the returned binding handle contains
that object UUID.

— If the server exported multiple object UUIDs, the returned binding handle
contains one of the object UUIDs, selected in an unspecified way.

Applications should not count on multiple calls to
rpc_ns_binding_import_next() returning different object UUIDs. In
particular, note that each name service entry stores server address
information separately from exported object UUIDs. Successive calls to
rpc_ns_binding_import_next() using the same import context will return
exactly one binding for each compatible server address, not the cross product
of all compatible server addresses with all exported UUIDs. Each returned
binding will contain one of the exported object UUIDs, but applications
should not count on any specific selection mechanism for these object UUIDs

The client application can use the returned binding handle to make a remote procedure
call to the server. If the client fails to communicate with the server, it can call the
rpc_ns_binding_import_next() routine again.

720

DCE Remote Procedure Call

rpc_ns_binding_import_next(3rpc)

Each time the client callsrpc_ns_binding_import_next(), the routine returns another
server binding handle. The binding handles returned are unordered. Multiple binding
handles can refer to different protocol sequences from the same server.

When the search finishes, the routine returns a status code of
rpc_s_no_more_bindingsand returns the value NULL inbinding.

A client application callsrpc_ns_binding_inq_entry_name()to obtain the name of
the entry in the name service database where the binding handle came from.

The rpc_ns_binding_import_next() routine allocates memory for the returned
binding parameter. When a client application finishes with the binding handle,
it must call rpc_binding_free() to deallocate the memory. Each call to
rpc_ns_binding_import_next() requires a corresponding call torpc_binding_free().

The client calls the rpc_ns_binding_import_done() routine after it has
satisfactorily used one or more returned server binding handles. The
rpc_ns_binding_import_done() routine deletes the import context. The client also
calls rpc_ns_binding_import_done() if the application wants to start a new search
for compatible servers (by callingrpc_ns_binding_import_begin()). The order of
binding handles returned can be different for each new search. This means that the
order in which binding handles are returned to an application can be different each
time the application is run.

Permissions Required

You need read permission to the specified CDS object entry (the starting name service
entry) and to any CDS object entry in the resulting search path.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

721

DCE 1.2.2 Application Development Reference

rpc_ns_binding_import_next(3rpc)

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions:rpc_ns_binding_import_begin(3rpc),
rpc_ns_binding_import_done(3rpc), rpc_ns_binding_inq_entry_name(3rpc),
rpc_ns_binding_lookup_begin(3rpc), rpc_ns_binding_lookup_done(3rpc),
rpc_ns_binding_lookup_next(3rpc), rpc_ns_binding_select(3rpc).

722

DCE Remote Procedure Call

rpc_ns_binding_inq_entry_name(3rpc)

rpc_ns_binding_inq_entry_name

Purpose Returns the name of an entry in the name service database from which the server
binding handle came; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_inq_entry_name(
rpc_binding_handle_t binding,
unsigned32entry_name_syntax,
unsigned_char_t **entry_name,
unsigned32 *status);

Parameters
Input

binding Specifies a server binding handle whose entry name in the name service
database is returned.

entry_name_syntax
An integer value that specifies the syntax of returned parameter
entry_name. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the valuerpc_c_ns_syntax_default.

Output

entry_name Returns the name of the entry in the name service database in which
binding was found. The returned name is a global name.

Specify NULL to prevent the routine from returning this parameter.
When you specify this value, the client does not need to call
rpc_string_free().

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

723

DCE 1.2.2 Application Development Reference

rpc_ns_binding_inq_entry_name(3rpc)

Description

The rpc_ns_binding_inq_entry_name()routine returns the global name of the entry
in the name service database from which a binding handle for a compatible server
came.

The RPC runtime allocates memory for the string returned in theentry_name
parameter. Your application callsrpc_string_free() to deallocate that memory.

An entry name is associated only with binding handles returned from the following
routines:

• rpc_ns_binding_import_next()

• rpc_ns_binding_lookup_next()

• rpc_ns_binding_select()

If the binding handle specified in thebindingparameter is not returned from an entry
in the name service database (for example, the binding handle is created by calling
rpc_binding_from_string_binding()), this routine returns therpc_s_no_entry_name
status code.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_binding
Invalid binding handle.

724

DCE Remote Procedure Call

rpc_ns_binding_inq_entry_name(3rpc)

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_no_entry_name
No entry name for binding.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc), rpc_ns_binding_lookup_next(3rpc),
rpc_ns_binding_select(3rpc), rpc_string_free(3rpc).

725

DCE 1.2.2 Application Development Reference

rpc_ns_binding_lookup_begin(3rpc)

rpc_ns_binding_lookup_begin

Purpose Creates a lookup context for an interface and an object in the name service database;
used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_begin(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_t * object_uuid,
unsigned32binding_max_count,
rpc_ns_handle_t *lookup_context,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the valuerpc_c_ns_syntax_default.

entry_name Specifies the entry name at which the search for compatible binding
handles begins. This can be either the global or cell-relative name.

To use the entry name found in theRPC_DEFAULT_ENTRY
environment variable, supply NULL or a null string (\0) for
this parameter. When this entry name is used, the RPC runtime
automatically uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

726

DCE Remote Procedure Call

rpc_ns_binding_lookup_begin(3rpc)

if_handle A stub-generated data structure specifying the interface to look up. If
the interface specification has not been exported or is of no concern to
the caller, specify NULL for this parameter. In this case the bindings
returned are only guaranteed to be of a compatible and supported
protocol sequence and contain the specified object UUID. The desired
interface might not be supported by the contacted server.

object_uuid Specifies an optional object UUID.

If you specify NULL or a nil UUID for this parameter, the returned
binding handles contain one of the object UUIDs exported by the
compatible server. If the server did not export any object UUIDs, the
returned compatible binding handles contain a nil object UUID.

For a nonnil UUID, compatible binding handles are returned from an
entry only if the server has exported the specified object UUID. Each
returned binding handle contains the specified nonnil object UUID.

binding_max_count
Sets the maximum number of bindings to return in the
binding_vector parameter of rpc_ns_binding_lookup_next().
Specifyrpc_c_binding_max_count_defaultto use the default count.

Output

lookup_context
Returns the name service handle for use with the following routines:

• rpc_ns_binding_lookup_next()

• rpc_ns_binding_lookup_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_begin()routine creates a lookup context for locating
compatible server binding handles for servers. These servers offer the specified
interface and object UUID in the respectiveif_handleandobject_uuidparameters.

Before callingrpc_ns_binding_lookup_next(), the client application must first create
a lookup context by callingrpc_ns_binding_lookup_begin(). The parameters to this
routine control the operation of the routinerpc_ns_binding_lookup_next().

727

DCE 1.2.2 Application Development Reference

rpc_ns_binding_lookup_begin(3rpc)

When finished locating binding handles, the client application calls the
rpc_ns_binding_lookup_done()routine to delete the lookup context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_object
Invalid object.

rpc_s_no_env_setup
Environment variable not set up.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_binding_lookup_done(3rpc),
rpc_ns_binding_lookup_next(3rpc), rpc_ns_mgmt_handle_set_exp_age(3rpc).

728

DCE Remote Procedure Call

rpc_ns_binding_lookup_done(3rpc)

rpc_ns_binding_lookup_done

Purpose Deletes the lookup context for searching the name service database; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_done(
rpc_ns_handle_t *lookup_context,
unsigned32 *status);

Parameters
Input/Output

lookup_context
Specifies the name service handle to delete. (A name service handle is
created by callingrpc_ns_binding_lookup_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_done() routine deletes a lookup context created by
calling rpc_ns_binding_lookup_begin().

Typically, a client calls this routine after completing remote procedure calls to a
server using a binding handle returned fromrpc_ns_binding_lookup_next(). A client
program calls this routine for each created lookup context, regardless of the status

729

DCE 1.2.2 Application Development Reference

rpc_ns_binding_lookup_done(3rpc)

returned fromrpc_ns_binding_lookup_next(), or success in making remote procedure
calls.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_binding_lookup_begin(3rpc),
rpc_ns_binding_lookup_next(3rpc).

730

DCE Remote Procedure Call

rpc_ns_binding_lookup_next(3rpc)

rpc_ns_binding_lookup_next

Purpose Returns a list of binding handles of one or more compatible servers (if found) from
the name service database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_lookup_next(
rpc_ns_handle_tlookup_context,
rpc_binding_vector_t ** binding_vec,
unsigned32 *status);

Parameters
Input

lookup_context
Specifies a name service handle. This handle is returned from the
rpc_ns_binding_lookup_begin()routine.

Output

binding_vec Returns a vector of compatible server binding handles.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_lookup_next() routine returns a vector of compatible
(to the client) server binding handles. The servers offer the interface and
object UUID specified by the respectiveif_handle and object_uuid parameters
in rpc_ns_binding_lookup_begin(). The number of binding handles that
rpc_ns_binding_lookup_next()attempts to return is the value ofbinding_max_count
in the rpc_ns_binding_lookup_begin()routine.

731

DCE 1.2.2 Application Development Reference

rpc_ns_binding_lookup_next(3rpc)

A similar routine isrpc_ns_binding_import_next(), which returnsone compatible
server binding handle.

The rpc_ns_binding_lookup_next() routine communicates only with the name
service database, not directly with servers.

This routine traverses entries in the name service database, returning compatible server
binding handles from each entry. The routine can return multiple binding handles from
each entry. The search operation obeys the following rules for traversing the entries:

• At each entry visited, the search operation randomly processes binding
information, then group members, then profile members. Profile members with
different priorities are returned according to their priorities, highest priority first.

• The search operation returns members of a group in random order.

• The search operation returns members of a profile with the same priority in random
order.

If the entry where the search begins (see theentry_name parameter in
rpc_ns_binding_lookup_begin()) contains binding handles as well as an RPC
group and/or a profile, rpc_ns_binding_lookup_next() returns the binding
handles fromentry_namebefore searching the group or profile. This means that
rpc_ns_binding_lookup_next() can return a partially full vector before processing
the members of the group or profile.

Each binding handle in the returned vector always contains an object UUID.
Its value depends on the value specified in theobject_uuid parameter of
rpc_ns_binding_lookup_begin()as follows:

• If object_uuid contains a nonnil object UUID, each returned binding handle
contains that object UUID.

• If object_uuidcontains a nil object UUID or NULL, the object UUID returned in
each binding handle depends on how the server exported object UUIDS:

— If the server did not export any object UUIDs, each returned binding handle
contains a nil object UUID.

— If the server exported one object UUID, each returned binding handle contains
that object UUID.

— If the server exported multiple object UUIDs, the returned binding handle
contains one of the object UUIDs, selected in an unspecified way.

732

DCE Remote Procedure Call

rpc_ns_binding_lookup_next(3rpc)

Applications should not count on the binding handles returned from a given
entry to contain different object UUIDs. In particular, note that each name
service entry stores server address information separately from exported object
UUIDs. One or more calls torpc_ns_binding_lookup_next() will return
exactly one binding for each compatible server address, not the cross product
of all compatible server addresses with all exported UUIDs. Each returned
binding will contain one of the exported object UUIDs, but applications should
not count on any specific selection mechanism for these object UUIDs.

From the returned vector of server binding handles, the client application
can employ its own criteria for selecting individual binding handles, or the
application can callrpc_ns_binding_select() to select a binding handle. The
rpc_binding_to_string_binding() and rpc_string_binding_parse() routines are
useful for a client creating its own selection criteria.

The client application can use the selected binding handle to attempt a remote
procedure call to the server. If the client fails to communicate with the server, it
can select another binding handle from the vector. When all the binding handles in
the vector are used, the client application callsrpc_ns_binding_lookup_next()again.

Each time the client callsrpc_ns_binding_lookup_next(), the routine returns another
vector of binding handles. The binding handles returned in each vector are unordered,
as is the order in which the vectors are returned from multiple calls to this routine.

When looking up compatible binding handles from a profile, the binding handles
from entries of equal profile priority are unordered in the returned vector. In addition,
the vector returned from a call torpc_ns_binding_lookup_next() contains only
compatible binding handles from entries of equal profile priority. This means the
returned vector may be partially full.

For example, if the binding_max_count parameter value in
rpc_ns_binding_lookup_begin() was 5 and rpc_ns_binding_lookup_next()
finds only three compatible binding handles from profile entries of priority 0 (zero),
rpc_ns_binding_lookup_next() returns a partially full binding vector (with three
binding handles). The next call torpc_ns_binding_lookup_next() creates a new
binding vector and begins looking for compatible binding handles from profile entries
of priority 1.

When the search finishes, the routine returns a status code of
rpc_s_no_more_bindingsand returns the value NULL inbinding_vec.

A client application callsrpc_ns_binding_inq_entry_name()to obtain the name of
the entry in the name service database where the binding handle came from.

733

DCE 1.2.2 Application Development Reference

rpc_ns_binding_lookup_next(3rpc)

The rpc_ns_binding_lookup_next() routine allocates memory for the
returned binding_vec. When a client application finishes with the vector,
it must call rpc_binding_vector_free() to deallocate the memory. Each
call to rpc_ns_binding_lookup_next() requires a corresponding call to
rpc_binding_vector_free().

The client calls rpc_ns_binding_lookup_done(), which deletes the lookup
context. The client also callsrpc_ns_binding_lookup_done() if the application
wants to start a new search for compatible servers (by calling the routine
rpc_ns_binding_lookup_begin()). The order of binding handles returned can be
different for each new search. This means that the order in which binding handles
are returned to an application can be different each time the application is run.

Permissions Required

You need read permission to the specified CDS object entry (the starting name service
entry) and to any CDS object entry in the resulting search path.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_bindings
No more bindings.

734

DCE Remote Procedure Call

rpc_ns_binding_lookup_next(3rpc)

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions:rpc_binding_to_string_binding(3rpc), rpc_binding_vector_free(3rpc),
rpc_ns_binding_import_next(3rpc), rpc_ns_binding_inq_entry_name(3rpc),
rpc_ns_binding_lookup_begin(3rpc), rpc_ns_binding_lookup_done(3rpc),
rpc_ns_binding_select(3rpc), rpc_string_binding_parse(3rpc).

735

DCE 1.2.2 Application Development Reference

rpc_ns_binding_select(3rpc)

rpc_ns_binding_select

Purpose Returns a binding handle from a list of compatible server binding handles; used by
client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_select(
rpc_binding_vector_t *binding_vec,
rpc_binding_handle_t *binding,
unsigned32 *status);

Parameters
Input/Output

binding_vec Specifies the vector of compatible server binding handles from which
a binding handle is selected. The returned binding vector no longer
references the selected binding handle (returned separately in thebinding
parameter).

Output

binding Returns a selected server binding handle.

status Returns the status code from this routine, which indicates whether the
routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_select()routine randomly chooses and returns a server binding
handle from a vector of server binding handles.

Each time the client callsrpc_ns_binding_select(), the routine returns another binding
handle from the vector.

736

DCE Remote Procedure Call

rpc_ns_binding_select(3rpc)

When all of the binding handles are returned from the vector, the routine returns a
status code ofrpc_s_no_more_bindingsand returns the value NULL inbinding.

The select operation allocates storage for the data referenced by the returnedbinding
parameter. When a client finishes with the binding handle, it callsrpc_binding_free()
to deallocate the storage. Each call to therpc_ns_binding_select()routine requires a
corresponding call torpc_binding_free().

Instead of using this routine, client applications can select a binding handle according
to their specific needs. In this case the routinesrpc_binding_to_string_binding() and
rpc_string_binding_parse() are useful to the applications since the routines work
together to extract the individual fields of a binding handle for examination.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_more_bindings
No more bindings.

Related Information

Functions:rpc_binding_free(3rpc), rpc_binding_to_string_binding(3rpc),
rpc_ns_binding_lookup_next(3rpc), rpc_string_binding_parse(3rpc).

737

DCE 1.2.2 Application Development Reference

rpc_ns_binding_unexport(3rpc)

rpc_ns_binding_unexport

Purpose Removes the binding handles for an interface, or object UUIDs, from an entry in the
name service database; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_binding_unexport(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_handle_t if_handle,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the valuerpc_c_ns_syntax_default.

entry_name Specifies an entry name whose binding handles or object UUIDs are
removed. This can be either the global or cell-relative name.

if_handle Specifies an interface specification for the binding handles to be removed
from the name service database. The value NULL indicates that no
binding handles are removed (only object UUIDs are removed).

object_uuid_vec
Specifies a vector of object UUIDs to be removed from the name
service database. The application constructs this vector. The value NULL
indicates that no object UUIDs are removed (only binding handles are
removed).

738

DCE Remote Procedure Call

rpc_ns_binding_unexport(3rpc)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_binding_unexport() routine allows a server application to unexport (that
is, remove) one of the following from an entry in the name service database:

• All the binding handles for an interface.

• One or more object UUIDs for a resource or resources.

• Both binding handles and object UUIDs.

The rpc_ns_binding_unexport() routine removes only those binding handles that
match the interface UUID and the major and minor interface version numbers
found in the if_handle parameter. To remove multiple versions of an interface, use
rpc_ns_mgmt_binding_unexport().

A server application can remove an interface and objects in a single call to this routine,
or it can remove them separately.

If rpc_ns_binding_unexport() does not find any binding handles for the specified
interface, it returns anrpc_s_interface_not_foundstatus code and does not remove
the object UUIDs, if any are specified.

If one or more binding handles for the specified interface are found and removed
without error, rpc_ns_binding_unexport() removes the specified object UUIDs, if
any.

If any of the specified object UUIDs are not found,rpc_ns_binding_unexport()
returns the status coderpc_s_not_all_objs_unexported.

A server application, in addition to calling this routine, also callsrpc_ep_unregister()
to unregister any endpoints that the server previously registered with the local endpoint
map.

Use this routine with caution, only when you expect a server to be unavailable for an
extended time; for example, when it is permanently removed from service.

Additionally, keep in mind that name service databases are designed to be relatively
stable. In replicated name service databases, frequent use ofrpc_ns_binding_export()

739

DCE 1.2.2 Application Development Reference

rpc_ns_binding_unexport(3rpc)

and rpc_ns_binding_unexport() causes the name service to remove and replace the
same entry repeatedly, and can cause performance problems.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_interface_not_found
Interface not found.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

740

DCE Remote Procedure Call

rpc_ns_binding_unexport(3rpc)

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_nothing_to_unexport
Nothing to unexport.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ep_unregister(3rpc), rpc_ns_binding_export(3rpc),
rpc_ns_mgmt_binding_unexport(3rpc).

741

DCE 1.2.2 Application Development Reference

rpc_ns_entry_expand_name(3rpc)

rpc_ns_entry_expand_name

Purpose Expands the name of a name service entry; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_expand_name(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
unsigned_char_t **expanded_name,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide a
value of rpc_c_ns_syntax_default.

entry_name Specifies the entry name to expand. This can be either the global or
cell-relative name.

Output

expanded_name
Returns a pointer to the expanded version ofentry_name. Do not specify
NULL since the routine always returns a name string.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

742

DCE Remote Procedure Call

rpc_ns_entry_expand_name(3rpc)

Description

An application callsrpc_ns_entry_expand_name()to obtain a fully expanded entry
name.

The RPC runtime allocates memory for the returnedexpanded_nameparameter. The
application is responsible for callingrpc_string_free() for that returned parameter
string.

The returned and expanded entry name accounts for local name translations and
differences in locally defined naming schemas. For example, suppose the entry in
the name service is

/.:/subsys/PrintQ/server1

Upon return fromrpc_ns_entry_expand_name(), the expanded name could be

/.../abc.com/subsys/PrintQ/server1

For more information about local names and their expansions, see the information on
the DCE Directory Service in theDCE 1.2.2 Administration Guide—Core Components.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

743

DCE 1.2.2 Application Development Reference

rpc_ns_entry_expand_name(3rpc)

Related Information

Functions:rpc_string_free(3rpc).

Books:DCE 1.2.2 Administration Guide—Introduction.

744

DCE Remote Procedure Call

rpc_ns_entry_inq_resolution()

rpc_ns_entry_inq_resolution

Purpose Resolves the cell namespace components of a name and returns partial results.

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_inq_resolution(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
unsigned_char_t **resolved_name,
unsigned_char_t **unresolved_name,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of the argument
entry_name. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, supply a
value of rpc_c_ns_syntax_default.

entry_name The entry name on which the attempted name resolution is to be done.
The name can be specified in either cell-relative or global from.

Input/Output

resolved_name
Returns a pointer to the resolved portion of the entry name. The
resolved_namestring returned will be null terminated and will not
contain trailing component separators (that is, no trailing/ (slash)
characters).

If NULL is specified on input for this parameter, nothing will be
returned.

745

DCE 1.2.2 Application Development Reference

rpc_ns_entry_inq_resolution()

unresolved_name
Returns a pointer to the unresolved portion of the entry name. The
unresolved_namestring returned will be a relative name, containing no
leading component separators (that is, it will contain no leading/ (slash)
characters).

If NULL is specified on input for this parameter, nothing will be
returned.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Description

The rpc_ns_entry_inq_resolution() routine attempts to read an entry in the cell
namespace. If the entire entry name as specified is successfully read, the full
resolution of the entry name (that is, the originally-specifiedentry_name) is returned
in resolved_nameand the status is set torpc_s_ok.

If the read was unsuccessful because the full entry was not found in the cell namespace,
then the status code will be set torpc_s_partial_results, and the following will occur:

• The part of the name successfully read will be returned inresolved_name

• The remaining (unresolved) part of the name will be returned inunresolved_name

Thus, if the status code isrpc_s_partial_resultsand the (nonempty) return parameter
resolved_namespecifies a leaf (not a directory) entry, the contents ofresolved_name
can be used in subsequent calls to the NSI interface to obtain a binding handle for
the server that exported to the entry. This behavior allows applications to implement
namespace junctions to their own internally-implemented namespaces. Using this
routine, clients can attempt to bind to overqualified name entries whoseresolved_name
part is the name of the server entry, and whoseunresolved_namepart is the pathname
(meaningful to the server) of some object that is managed by the application. Calling
rpc_ns_entry_inq_resolution()with the full name allows the client to learn what part
of the name denotes the server entry it must import bindings from; it can then bind
to the server, passing the rest of the name, which the server interprets as appropriate.
The sec_acl_bind()routine, for example, works this way.

746

DCE Remote Procedure Call

rpc_ns_entry_inq_resolution()

The RPC runtime allocates memory for the returnedresolved_nameand
unresolved_name parameters. The application is responsible for calling
rpc_string_free() to free the allocated memory.

The application requires read permission for the name entries that are resolved within
the cell namespace.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_partial_results
The entry name was only partially resolved within the cell namespace
and the value ofunresolved_namepoints to the residual of the name.

rpc_s_invalid_name_syntax
The requested name syntax is invalid.

rpc_s_unsupported_name_syntax
The requested name syntax is not supported.

Related Information

Functions:rpc_ns_binding_* () routines.

747

DCE 1.2.2 Application Development Reference

rpc_ns_entry_object_inq_begin(3rpc)

rpc_ns_entry_object_inq_begin

Purpose Creates an inquiry context for viewing the objects of an entry in the name service
database; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_begin(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide a
value of rpc_c_ns_syntax_default.

entry_name Specifies the entry in the name service database for which object UUIDs
are viewed. This can be either the global or cell-relative name.

Output

inquiry_context
Returns a name service handle for use with the routine
rpc_ns_entry_object_inq_next(), and with the routine
rpc_ns_entry_object_inq_done().

status Returns the status code from this routine, indicating whether the routine
completed successfully or, if not, why not.

748

DCE Remote Procedure Call

rpc_ns_entry_object_inq_begin(3rpc)

Description

The rpc_ns_entry_object_inq_begin()routine creates an inquiry context for viewing
the object UUIDs exported toentry_name.

Before callingrpc_ns_entry_object_inq_next(), the application must first call this
routine to create an inquiry context.

When finished viewing the object UUIDs, the application calls the
rpc_ns_entry_object_inq_done()routine to delete the inquiry context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_binding_export(3rpc), rpc_ns_entry_object_inq_done(3rpc),
rpc_ns_entry_object_inq_next(3rpc), rpc_ns_mgmt_handle_set_exp_age(3rpc).

749

DCE 1.2.2 Application Development Reference

rpc_ns_entry_object_inq_done(3rpc)

rpc_ns_entry_object_inq_done

Purpose Deletes the inquiry context for viewing the objects of an entry in the name service
database; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input/Output

inquiry_context
Specifies the name service handle to delete. (A name service handle is
created by callingrpc_ns_entry_object_inq_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_entry_object_inq_done()routine deletes an inquiry context created by
calling rpc_ns_entry_object_inq_begin().

An application calls this routine after viewing exported object UUIDs using the
rpc_ns_entry_object_inq_next()routine.

750

DCE Remote Procedure Call

rpc_ns_entry_object_inq_done(3rpc)

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_entry_object_inq_begin(3rpc),
rpc_ns_entry_object_inq_next(3rpc).

751

DCE 1.2.2 Application Development Reference

rpc_ns_entry_object_inq_next(3rpc)

rpc_ns_entry_object_inq_next

Purpose Returns one object at a time from an entry in the name service database; used by
client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_entry_object_inq_next(
rpc_ns_handle_tinquiry_context,
uuid_t * obj_uuid,
unsigned32 *status);

Parameters
Input

inquiry_context
Specifies a name service handle. This handle is returned from the
rpc_ns_entry_object_inq_begin()routine.

Output

obj_uuid Returns an exported object UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_entry_object_inq_next() routine returns one of the object UUIDs
exported to an entry in the name service database. Theentry_nameparameter in
the rpc_ns_entry_object_inq_begin()routine specified the entry.

An application can view all of the exported object UUIDs by repeatedly calling the
rpc_ns_entry_object_inq_next()routine. When all the object UUIDs are viewed, this

752

DCE Remote Procedure Call

rpc_ns_entry_object_inq_next(3rpc)

routine returns anrpc_s_no_more_membersstatus. The returned object UUIDs are
unordered.

The application supplies the memory for the object UUID returned in theobj_uuid
parameter.

After viewing the object UUIDs, the application must call the
rpc_ns_entry_object_inq_done()routine to delete the inquiry context.

The order in whichrpc_ns_entry_object_inq_next()returns object UUIDs can be
different for each viewing of an entry. Therefore, the order in which an application
receives object UUIDs can be different each time the application is run.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

753

DCE 1.2.2 Application Development Reference

rpc_ns_entry_object_inq_next(3rpc)

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions:rpc_ns_binding_export(3rpc), rpc_ns_entry_object_inq_begin(3rpc),
rpc_ns_entry_object_inq_done(3rpc).

754

DCE Remote Procedure Call

rpc_ns_group_delete(3rpc)

rpc_ns_group_delete

Purpose Deletes a group attribute; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_delete(
unsigned32group_name_syntax,
unsigned_char_t *group_name,
unsigned32 *status);

Parameters
Input

group_name_syntax
An integer value that specifies the syntax of thegroup_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
the integer valuerpc_c_ns_syntax_default.

group_name Specifies the RPC group to delete. This can be either the global or cell-
relative name.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_ns_group_delete()routine deletes the group attribute from the specified entry
in the name service database.

755

DCE 1.2.2 Application Development Reference

rpc_ns_group_delete(3rpc)

Neither the specified entry nor the entries represented by the group members are
deleted.

Permissions Required

You need write permission to the CDS object entry (the target group entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_group_member_add(3rpc),
rpc_ns_group_member_delete(3rpc).

756

DCE Remote Procedure Call

rpc_ns_group_mbr_add(3rpc)

rpc_ns_group_mbr_add

Purpose Adds an entry name to a group; if necessary, creates the entry; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_add(
unsigned32group_name_syntax,
unsigned_char_t *group_name,
unsigned32member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

Parameters
Input

group_name_syntax
An integer value that specifies the syntax of thegroup_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

group_name Specifies the RPC group that receives a new member. This can be either
the global or cell-relative name.

member_name_syntax
An integer value that specifies the syntax ofmember_name.

To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

757

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_add(3rpc)

member_name
Name of the new RPC group member. This can be either the global or
cell-relative name.

Output

status Returns the status code from this routine, indicating whether the routine
completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_add() routine adds, to the name service database, an entry
name as a member to the name service interface (NSI) group attribute of an entry.
The group_nameparameter specifies the entry.

If the specifiedgroup_nameentry does not exist, this routine creates the entry with a
group attribute and adds the group member specified by themember_nameparameter.
In this case, the application must have permission to create the entry. Otherwise, a
management application with the necessary permissions creates the entry by calling
rpc_ns_mgmt_entry_create()before the application is run.

An application can add the entry inmember_nameto a group before it creates the
entry itself.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target group entry). If the entry does not exist, you also need insert permission to the
parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

758

DCE Remote Procedure Call

rpc_ns_group_mbr_add(3rpc)

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_group_mbr_remove(3rpc), rpc_ns_mgmt_entry_create(3rpc).

759

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_inq_begin(3rpc)

rpc_ns_group_mbr_inq_begin

Purpose Creates an inquiry context for viewing group members; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_begin(
unsigned32group_name_syntax,
unsigned_char_t *group_name,
unsigned32member_name_syntax,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input

group_name_syntax
An integer value that specifies the syntax of thegroup_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

group_name Specifies the name of the RPC group to view.

member_name_syntax
An integer value that specifies the syntax ofmember_namein the
rpc_ns_group_mbr_inq_next()routine.

To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

760

DCE Remote Procedure Call

rpc_ns_group_mbr_inq_begin(3rpc)

Output

inquiry_context
Returns a name service handle for use with the following routines:

• rpc_ns_group_mbr_inq_next()

• rpc_ns_group_mbr_inq_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_inq_begin()routine creates an inquiry context for viewing
the members of an RPC group.

Before calling rpc_ns_group_mbr_inq_next(), the application must first call this
routine to create an inquiry context.

When finished viewing the RPC group members, the application calls the
rpc_ns_group_mbr_inq_done()routine to delete the inquiry context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

761

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_inq_begin(3rpc)

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_group_mbr_add(3rpc), rpc_ns_group_mbr_inq_done(3rpc),
rpc_ns_group_mbr_inq_next(3rpc), rpc_ns_mgmt_handle_set_exp_age(3rpc).

762

DCE Remote Procedure Call

rpc_ns_group_mbr_inq_done(3rpc)

rpc_ns_group_mbr_inq_done

Purpose Deletes the inquiry context for a group; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input/Output

inquiry_context
Specifies the name service handle to delete. (A name service handle is
created by callingrpc_ns_group_mbr_inq_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_inq_done()routine deletes an inquiry context created by
calling rpc_ns_group_mbr_inq_begin().

An application calls this routine after viewing RPC group members using the
rpc_ns_group_mbr_inq_next() routine.

763

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_inq_done(3rpc)

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_group_mbr_inq_begin(3rpc),
rpc_ns_group_mbr_inq_next(3rpc).

764

DCE Remote Procedure Call

rpc_ns_group_mbr_inq_next(3rpc)

rpc_ns_group_mbr_inq_next

Purpose Returns one member name at a time from a group; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_inq_next(
rpc_ns_handle_tinquiry_context,
unsigned_char_t **member_name,
unsigned32 *status);

Parameters
Input

inquiry_context
Specifies a name service handle. This handle is returned from the
rpc_ns_group_mbr_inq_begin()routine.

Output

member_name
Returns a pointer to a (global) RPC group member name. The syntax of
the returned name is specified by therpc_ns_group_mbr_inq_begin()
routine parametermember_name_syntax.

Specify NULL to prevent the routine from returning this parameter. In
this case, the application does not callrpc_string_free().

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

765

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_inq_next(3rpc)

Description

The rpc_ns_group_mbr_inq_next() routine returns one member of
the RPC group specified by thegroup_name parameter in the routine
rpc_ns_group_mbr_inq_begin().

An application can view all the members of an RPC group by calling the
rpc_ns_group_mbr_inq_next()routine repeatedly. When all the group members have
been viewed, this routine returns anrpc_s_no_more_membersstatus. The returned
group members are unordered.

On each call to this routine that returns a member name (as a global name), the
RPC runtime allocates memory for the returnedmember_name. The application calls
rpc_string_free() for each returnedmember_namestring.

After viewing the RPC group’s members, the application must call the
rpc_ns_group_mbr_inq_done()routine to delete the inquiry context.

Permissions Required

You need read permission to the CDS object entry (the target group entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

766

DCE Remote Procedure Call

rpc_ns_group_mbr_inq_next(3rpc)

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions:rpc_ns_group_mbr_inq_begin(3rpc),
rpc_ns_group_mbr_inq_done(3rpc), rpc_string_free(3rpc).

767

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_remove(3rpc)

rpc_ns_group_mbr_remove

Purpose Removes an entry name from a group; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_group_mbr_remove(
unsigned32group_name_syntax,
unsigned_char_t *group_name,
unsigned32member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

Parameters
Input

group_name_syntax
An integer value that specifies the syntax of thegroup_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

group_name Specifies the RPC group from which to removemember_name. This can
be either the global or cell-relative name.

member_name_syntax
An integer value that specifies the syntax ofmember_name.

To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

768

DCE Remote Procedure Call

rpc_ns_group_mbr_remove(3rpc)

member_name
Specifies the member to remove from the name service interface (NSI)
group attribute in thegroup_nameentry. This member can be either the
global or cell-relative name.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_group_mbr_remove()routine removes a member from the NSI group
attribute in thegroup_nameentry.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target group entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_group_member_not_found
Group member not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

769

DCE 1.2.2 Application Development Reference

rpc_ns_group_mbr_remove(3rpc)

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_group_mbr_add(3rpc).

770

DCE Remote Procedure Call

rpc_ns_import_ctx_add_eval(3rpc)

rpc_ns_import_ctx_add_eval

Purpose Adds an evaluation routine to an import context; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_import_ctx_add_eval(
rpc_ns_handle_t *import_context,
unsigned32function_type,
rpc_ns_handle_t *eval_args,
void *eval_func,
void * free_func,
error_status_t *status);

Parameters
Input

import_context
The name service handle obtained from the
rpc_ns_binding_import_begin() routine.

func_type The type of evaluation function. This value currently must be
rpc_cs_code_eval_func.

eval_args An opaque data type that data used by the evaluation routine.

Client applications adding a DCE RPC code sets evaluation
routine (that is, the routinesrpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify the server’s NSI entry name
in this parameter.

eval_func A function pointer to the evaluation routine to be called from the
rpc_ns_binding_import_next() routine. The void declaration for
eval_funcmeans that the function does not return a value.

771

DCE 1.2.2 Application Development Reference

rpc_ns_import_ctx_add_eval(3rpc)

Client applications adding a DCE RPC code sets evaluation
routine (that is, the routinesrpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify the routine name in this
parameter.

free_func A function pointer to a routine that is invoked from
rpc_ns_binding_import_done() and which performs application-
specific cleanup. Client applications adding a DCE RPC code
sets evaluation routine (that is,rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal()) specify NULL in this parameter.

Output

import_context
Returns the name service handle which contains the following routines:

• rpc_ns_binding_import_next()

• rpc_ns_binding_import_done()

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_import_ctx_add_eval()routine adds an evaluation routine to an import
context created by therpc_ns_binding_import_begin() routine. The evaluation
routine adds additional criteria to that used byrpc_ns_binding_import_next()(that is,
protocol and interface information) for importing compatible server binding handles.
Client applications call therpc_ns_import_ctx_add_eval() routine once for each
evaluation routine to be added to an import context (if there are multiple evaluation
routines to be set up.)

If the user-specified evaluation routine needs to perform special cleanup functions,
such as deleting a temporary file from a disk, use thefree_funcparameter to specify
the cleanup routine to be called fromrpc_ns_binding_import_done().

For DCE 1.1, client applications that transfer international character
data in a heterogeneous character set and code set environment use the
rpc_ns_import_ctx_add_eval() routine to add one or more code sets evaluation
routines to the import context returned by therpc_ns_binding_import_begin()
routine. When the client application calls therpc_ns_binding_import_next()
routine to import compatible binding handles for servers, this routine calls the

772

DCE Remote Procedure Call

rpc_ns_import_ctx_add_eval(3rpc)

code sets evaluation routine, which applies client-server character set and code sets
compatibility checking as another criteria for compatible binding selection.

The code sets compatibility evaluation routine specified can be one of the following:

rpc_cs_eval_with_universal
A DCE RPC code sets evaluation routine that evaluates character set and
code sets compatibility between client and server. If client and server
character sets are compatible, but their supported code sets are not, the
routine sets code set tags that direct the client and/or server stubs to
convert character data to either user-defined intermediate code sets (if
they exist) or the DCE intermediate code set, which is the ISO 10646
(or universal) code set.

rpc_cs_eval_without_universal
A DCE RPC code sets evaluation routine that evaluates character set and
code sets compatibility between client and server. If client and server
character sets are compatible, but their supported code sets are not, the
routine attempts to return the messagerpc_s_no_compat_codesetsto
rpc_ns_binding_import_next().

application-supplied-routine
A user-written code sets evaluation routine. Application developers
writing internationalized DCE applications can develop their own code
sets evaluation routines for client-server code sets evaluation if the DCE-
supplied routines do not meet their application’s needs.

Restrictions

Client applications that add evaluation routines to server binding import context cannot
use the automatic binding method to bind to a server.

Permissions Required

No permissions are required.

Return Values

No value is returned.

773

DCE 1.2.2 Application Development Reference

rpc_ns_import_ctx_add_eval(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_memory
The RPC runtime could not allocate heap storage.

rpc_s_invalid_ns_handle
The import_contextparameter was not valid.

Related Information

Functions:rpc_cs_eval_with_universal(3rpc),
rpc_cs_eval_without_universal(3rpc), rpc_ns_binding_import_begin(3rpc),
rpc_ns_binding_import_done(3rpc), rpc_ns_binding_import_next(3rpc),
rpc_ns_mgmt_handle_set_exp_age(3rpc).

774

DCE Remote Procedure Call

rpc_ns_mgmt_binding_unexport(3rpc)

rpc_ns_mgmt_binding_unexport

Purpose Removes multiple binding handles, or object UUIDs, from an entry in the name service
database; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_binding_unexport(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_id_t * if_id,
unsigned32vers_option,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies an entry name whose binding handles or object UUIDs are
removed. This can be either the global or cell-relative name.

if_id Specifies an interface identifier for the binding handles to be removed
from the name service database. The value NULL indicates that no
binding handles are removed (only object UUIDs are removed).

vers_option Specifies how therpc_ns_mgmt_binding_unexport() routine uses the
vers_majorand thevers_minorfields of theif_id parameter.

The following table presents the accepted values for this parameter:

775

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_binding_unexport(3rpc)

Uses of vers_major and vers_minor fields of if_id

Value Description

rpc_c_vers_all Unexports (removes) all bindings for
the interface UUID inif_id, regardless
of the version numbers. For this value,
specify 0 (zero) for both the major and
minor versions inif_id.

rpc_c_vers_compatible Removes those bindings for the
interface UUID inif_id with the same
major version as inif_id, and with a
minor version greater than or equal to
the minor version inif_id.

rpc_c_vers_exact Removes those bindings for the
interface UUID inif_id with the same
major and minor versions as inif_id.

rpc_c_vers_major_only Removes those bindings for the
interface UUID inif_id with the same
major version as inif_id (ignores the
minor version). For this value, specify 0
(zero) for the minor version inif_id.

rpc_c_vers_upto Removes those bindings that offer a
version of the specified interface UUID
less than or equal to the specified major
and minor version. (For example, if
if_id contains V2.0 and the name
service entry contains binding handles
with the versions V1.3, V2.0, and V2.1,
the rpc_ns_mgmt_binding_unexport()
routine removes the binding handles
with V1.3 and V2.0.)

object_uuid_vec
Specifies a vector of object UUIDs to be removed from the name
service database. The application constructs this vector. The value NULL
indicates that no object UUIDs are removed (only binding handles are
removed).

776

DCE Remote Procedure Call

rpc_ns_mgmt_binding_unexport(3rpc)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_binding_unexport() routine allows a management application to
unexport (that is, remove) one of the following from an entry in the name service
database:

• All the binding handles for a specified interface UUID, qualified by the interface
version numbers (major and minor).

• One or more object UUIDs of resources.

• Both binding handles and object UUIDs of resources.

A management application can remove an interface and objects in a single call to this
routine, or it can remove them separately.

If the rpc_ns_mgmt_binding_unexport() routine does not find any binding handles
for the specified interface, the routine returns anrpc_s_interface_not_foundstatus
and does not remove the object UUIDs, if any are specified.

If one or more binding handles for the specified interface are found and removed
without error, rpc_ns_mgmt_binding_unexport() removes the specified object
UUIDs, if any.

If any of the specified object UUIDs are not found,
rpc_ns_mgmt_binding_unexport()returns therpc_not_all_objs_unexportedstatus
code.

A management application, in addition to calling this routine, also calls the
rpc_mgmt_ep_unregister()routine to remove any servers that have registered with
the local endpoint map.

Use this routine with caution, only when you expect a server to be unavailable for an
extended time; for example, when it is permanently removed from service.

Additionally, keep in mind that name service databases are designed to be
relatively stable. In replicated name service databases, frequent use of the
rpc_ns_binding_export() and rpc_ns_mgmt_binding_unexport() routines causes
the name service to remove and replace the same entry repeatedly, and can cause
performance problems.

777

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_binding_unexport(3rpc)

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_interface_not_found
Interface not found.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_nothing_to_unexport
Nothing to unexport.

778

DCE Remote Procedure Call

rpc_ns_mgmt_binding_unexport(3rpc)

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_mgmt_ep_unregister(3rpc), rpc_ns_binding_export(3rpc),
rpc_ns_binding_unexport(3rpc).

779

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_entry_create(3rpc)

rpc_ns_mgmt_entry_create

Purpose Creates an entry in the name service database; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_create(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the name of the entry to create. This can be either the global
or cell-relative name.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_entry_create() routine creates an entry in the name service
database.

780

DCE Remote Procedure Call

rpc_ns_mgmt_entry_create(3rpc)

A management application can callrpc_ns_mgmt_entry_create()to create an entry
in the name service database for use by another application that does not itself have
the necessary name service permissions to create an entry.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target name service entry). You also need insert permission to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_already_exists
Name service entry already exists.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_mgmt_entry_delete(3rpc).

781

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_entry_delete(3rpc)

rpc_ns_mgmt_entry_delete

Purpose Deletes an entry from the name service database; used by management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_delete(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the name of the entry to delete. This can be either the global
or cell-relative name.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_entry_delete()routine removes an RPC entry from the name
service database.

782

DCE Remote Procedure Call

rpc_ns_mgmt_entry_delete(3rpc)

Management applications use this routine only when an entry is no longer needed,
such as when a server is permanently removed from service. If the entry is a member
of a group or profile, it must also be deleted from the group or profile.

Use this routine cautiously. Since name service databases are designed to be relatively
stable, the frequent use ofrpc_ns_mgmt_entry_delete()can result in the following
difficulties:

• Performance problems

Creating and deleting entries in client or server applications causes the name
service to remove and replace the same entry repeatedly in the name service
database, which can lead to performance problems.

• Lost entry updates

When multiple applications access a single entry through different replicas of a
name service database, updates to the entry can be lost.

In this situation, if one application deletes the entry and another application
updates the entry before the replicas are synchronized, the delete operation takes
precedence over the update operation. When the replicas are synchronized, the
update is lost because the entry is deleted from all replicas.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).
You also need delete permission to the CDS object entry or to the parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

783

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_entry_delete(3rpc)

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_mgmt_entry_create(3rpc).

784

DCE Remote Procedure Call

rpc_ns_mgmt_entry_inq_if_ids(3rpc)

rpc_ns_mgmt_entry_inq_if_ids

Purpose Returns the list of interfaces exported to an entry in the name service database; used
by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_entry_inq_if_ids(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_if_id_vector_t ** if_id_vec,
unsigned32 *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of argument
entry_name. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the entry in the name service database for which an interface
identifier vector is returned. This can be either the global or cell-relative
name.

Output

if_id_vec Returns the address of the interface identifier vector.

status Returns the status code from this routine, indicating whether the routine
completed successfully or, if not, why not.

785

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_entry_inq_if_ids(3rpc)

Description

The rpc_ns_mgmt_entry_inq_if_ids() routine returns an interface identifier vector
containing the interfaces of binding handles exported to argumententry_name.

This routine uses an expiration age of 0 (zero) to cause an immediate update of
the local copy of name service data. Therpc_ns_mgmt_inq_exp_age()routine’s
reference page contains an explanation of the expiration age.

The application callsrpc_if_id_vector_free() to release memory used by the returned
vector.

Permissions Required

You need read permission to the CDS object entry (the target name service entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_interfaces_exported
No interfaces were exported to entry.

rpc_s_no_ns_permission
No permission for name service operation.

786

DCE Remote Procedure Call

rpc_ns_mgmt_entry_inq_if_ids(3rpc)

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_if_id_vector_free(3rpc), rpc_if_inq_id(3rpc) ,
rpc_ns_binding_export(3rpc).

787

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_free_codesets(3rpc)

rpc_ns_mgmt_free_codesets

Purpose Frees a code sets array that has been allocated by the RPC runtime; used by client
and server applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_free_codesets(
rpc_codeset_mgmt_p_t *code_sets_array,
error_status_t *status);

Parameters
Input/Output

code_sets_array
A pointer to a code sets array that has been allocated by a call to
rpc_ns_mgmt_read_codesets()or rpc_rgy_get_codesets().

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_free_codesets()routine belongs to a set of DCE RPC routines
for character and code set interoperability. These routines permit client and server
applications to transfer international character data in a heterogeneous character set
and code sets environment.

Therpc_ns_mgmt_free_codesets()routine frees from the client application’s memory
a code sets array allocated by a client call to therpc_ns_mgmt_read_codesets()or
the rpc_rgy_get_codesets()routines. The routine frees from a server application’s

788

DCE Remote Procedure Call

rpc_ns_mgmt_free_codesets(3rpc)

memory a code sets array allocated by a server call to therpc_rgy_get_codesets()
routine.

Client applications use therpc_ns_mgmt_read_codesets()routine to retrieve a
server’s supported code sets in order to evaluate them against the code sets that
the client supports. Clients and servers use therpc_rgy_get_codesets()routine to
get their supported code sets from the code set registery. Clients and servers use the
rpc_ns_mgmt_free_codesets()routine to free the memory allocated to the code sets
array as part of their cleanup procedures.

Permissions Required

None.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_ns_mgmt_read_codesets(3rpc), rpc_rgy_get_codesets(3rpc).

789

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_handle_set_exp_age(3rpc)

rpc_ns_mgmt_handle_set_exp_age

Purpose Sets a handle’s expiration age for local copies of name service data; used by client,
server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_handle_set_exp_age(
rpc_ns_handle_tns_handle,
unsigned32expiration_age,
unsigned32 *status);

Parameters
Input

ns_handle Specifies the name service handle for which you supply an expiration
age. An RPC name service interface (NSI) inquiry begin operation
returns a name service handle. An example is the operation that
rpc_ns_entry_object_inq_begin()performs; it returns a name service
handle in itsinquiry_contextparameter.

expiration_age
This integer value specifies the expiration age, in seconds, of local
name service data. This data is read by all RPC NSI next routines
that use the specifiedns_handle parameter. An example is the
rpc_ns_entry_object_inq_next() routine; it accepts a name service
handle in itsinquiry_contextparameter.

An expiration age of 0 (zero) causes an immediate update of the local
name service data.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

790

DCE Remote Procedure Call

rpc_ns_mgmt_handle_set_exp_age(3rpc)

Description

The rpc_ns_mgmt_handle_set_exp_age()routine sets an expiration age for a
specified name service handle (inns_handle). The expiration age is the amount of
time, in seconds, that a local copy of data from a name service attribute can exist,
before a request from the application for the attribute requires updating the local copy.
When an application begins running, the RPC runtime specifies a random value of
between 8 and 12 hours as the default expiration age. The default is global to the
application. An expiration age applies only to a specific name service handle and
temporarily overrides the current global expiration age.

Normally, avoid using this routine; instead, rely on the application’s global expiration
age.

A handle’s expiration age is used exclusively by RPC NSI next operations (which
read data from name service attributes). A next operation normally starts by looking
for a local copy of the attribute data being requested by an application. In the absence
of a local copy, the next operation creates one with fresh attribute data from the name
service database. If a local copy already exists, the operation compares its actual age
to the expiration age being used by the application (which in this case is the expiration
age set for the name service handle). If the actual age exceeds the handle’s expiration
age, the operation automatically tries to update the local copy with fresh attribute data.
If updating is impossible, the old local data remains in place and the next operation
fails, returning therpc_s_name_service_unavailablestatus code.

The scope of a handle’s expiration age is a single series of RPC NSI next operations.
The rpc_ns_mgmt_handle_set_exp_age()routine operates as follows:

1. An RPC NSI begin operation, such as the one performed by
rpc_ns_group_mbr_inq_begin(), creates a name service handle.

2. A call to rpc_ns_mgmt_handle_set_exp_age()creates an expiration age for the
handle.

3. A series of corresponding RPC NSI next operations for the name service handle
uses the handle’s expiration age.

4. A corresponding RPC NSI done operation for the name service handle deletes
both the handle and its expiration age.

Permissions Required

No permissions are required.

791

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_handle_set_exp_age(3rpc)

Cautions

Use this routine with extreme caution.

Setting the handle’s expiration age to a small value causes the RPC NSI next
operations to frequently update local data for any name service attribute requested
by your application. For example, setting the expiration age to 0 (zero) forces the
next operation to update local data for the name service attribute requested by your
application. Therefore, setting a small expiration age for a name service handle can
create performance problems for your application. Also, if your application is using
a remote server with the name service database, a small expiration age can adversely
affect network performance for all applications.

Limit the use of this routine to the following types of situations:

• When youmustalways get accurate name service data.

For example, during management operations to update a profile, you may need to
always see the profile’s current contents. In this case, before beginning to inquire
about a profile, your application must callrpc_ns_mgmt_handle_set_exp_age()
and specify 0 (zero) for theexpiration_ageparameter.

• When a request using the default expiration age fails, and your application needs
to retry the operation.

For example, a client application using import must first try to obtain
bindings using the application’s default expiration age. However, sometimes
the import-next operation returns either no binding handles or an
insufficient number of them. In this case, the client can retry the import
operation and, afterrpc_ns_binding_import_begin() terminates, include a
rpc_ns_mgmt_handle_set_exp_age()routine that specifies 0 (zero) for the
expiration_ageparameter. When the client calls the import-next routine again,
the small expiration age for the name service handle causes the import-next
operation to update the local attribute data.

Return Values

No value is returned.

792

DCE Remote Procedure Call

rpc_ns_mgmt_handle_set_exp_age(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_binding_import_begin(3rpc),
rpc_ns_binding_lookup_begin(3rpc), rpc_ns_entry_object_inq_begin(3rpc),
rpc_ns_group_mbr_inq_begin(3rpc), rpc_ns_mgmt_inq_exp_age(3rpc),
rpc_ns_mgmt_set_exp_age(3rpc), rpc_ns_profile_elt_inq_begin(3rpc).

793

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_inq_exp_age(3rpc)

rpc_ns_mgmt_inq_exp_age

Purpose Returns the application’s global expiration age for local copies of name service data;
used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_inq_exp_age(
unsigned32 *expiration_age,
unsigned32 *status);

Parameters
Input

None.

Output

expiration_age
Returns the default expiration age (in seconds). All the RPC name
service interface (NSI) read operations (all the next operations) use this
value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_inq_exp_age()routine returns the global expiration age that the
application is using. Theexpiration_ageparameter represents the amount of time, in
seconds, that a local copy of data from a name service attribute can exist before a
request from the application for the attribute requires updating the local copy. When
an application begins running, the RPC runtime specifies a random value of between
8 and 12 hours as the default expiration age. The default is global to the application.

794

DCE Remote Procedure Call

rpc_ns_mgmt_inq_exp_age(3rpc)

The RPC NSI next operations, which read data from name service attributes, use an
expiration age. A next operation normally starts by looking for a local copy of the
attribute data that an application requests. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name service database. If
a local copy already exists, the operation compares its actual age to the expiration
age being used by the application. If the actual age exceeds the expiration age, the
operation automatically tries to update the local copy with fresh attribute data from the
name service database. If updating is impossible, the old local data remains in place
and the next operation fails, returning therpc_s_name_service_unavailablestatus
code.

Applications normally use only the default expiration age. For special cases, an
application can substitute a user-supplied global expiration age for the default
by calling rpc_ns_mgmt_set_exp_age(). The rpc_ns_mgmt_inq_exp_age()routine
returns the current global expiration age, whether it is a default or a user-supplied
value.

An application can also override the global expiration age temporarily by calling
rpc_ns_mgmt_handle_set_exp_age().

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_ns_mgmt_handle_set_exp_age(3rpc),
rpc_ns_mgmt_set_exp_age(3rpc).

795

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_read_codesets(3rpc)

rpc_ns_mgmt_read_codesets

Purpose Reads the code sets attribute associated with an RPC server entry in the name service
database; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_read_codesets(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
rpc_codeset_mgmt_p_t *code_sets_array,
error_status_t *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the name of the RPC server entry in the name service database
from which to read the code sets attribute. The name can be either the
global or cell-relative name.

Output

code_sets_array
A code sets array that specifies the code sets that the RPC server
supports.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

796

DCE Remote Procedure Call

rpc_ns_mgmt_read_codesets(3rpc)

Description

The rpc_ns_mgmt_read_codesets()routine belongs to a set of DCE RPC routines
for character and code set interoperability. These routines permit client and server
applications to transfer international character data in a heterogeneous character set
and code sets environment. Therpc_ns_mgmt_read_codesets()routine reads the code
sets attribute associated with an RPC server entry in the name service database. The
routine takes the name of an RPC server entry and returns a code sets array that
corresponds to the code sets that this RPC server supports.

Client applications use therpc_ns_mgmt_read_codesets()routine to retrieve
a server’s supported code sets in order to evaluate them against the code sets
that the client supports. Client applications that use the evaluation routines
rpc_cs_eval_with_universal()and rpc_cs_eval_without_universal()do not need to
call this routine explicitly, because these code sets evaluation routines call it on the
client’s behalf. Application developers who are writing their own character and code
set evaluation routines may need to includerpc_ns_mgmt_read_codesets()in their
user-written evaluation routines.

Permissions Required

You need read permission to the target RPC server entry (which is a CDS object).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

797

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_read_codesets(3rpc)

rpc_s_ok

rpc_s_invalid_name_syntax

rpc_s_mgmt_bad_type

rpc_s_name_service_unavailable

rpc_s_no_permission

rpc_s_incomplete_name

rpc_s_no_memory

Related Information

Functions:dce_cs_rgy_to_loc(3rpc), dce_cs_loc_to_rgy(3rpc),
rpc_ns_mgmt_free_codesets(3rpc), rpc_ns_mgmt_remove_attribute(3rpc),
rpc_ns_mgmt_set_attribute(3rpc), rpc_rgy_get_codesets(3rpc),
rpc_rgy_get_max_bytes(3rpc).

798

DCE Remote Procedure Call

rpc_ns_mgmt_remove_attribute(3rpc)

rpc_ns_mgmt_remove_attribute

Purpose Removes an attribute from an RPC server entry in the name service database; used
mainly by server applications; can also be used by management applications

Synopsis
#include <dce/rpc.h>
#include <dce/nsattrid.h>

void rpc_ns_mgmt_remove_attribute(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
uuid_t * attr_type,
error_status_t *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the name of the RPC server entry in the name service database
from which the attribute will be removed. The name can be either the
global or cell-relative name. If you are using this routine to remove
a code sets attribute from an RPC server entry in the Cell Directory
Service database, then this parameter specifies the CDS name of the
server entry that contains the code sets attribute to be removed.

attr_type A UUID that specifies the attribute type. For DCE 1.2, this value must
be rpc_c_attr_codesets.

799

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_remove_attribute(3rpc)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_remove_attribute()routine belongs to a set of DCE RPC routines
for use by client and server applications that are transferring international character
data in a heterogeneous character set and code sets environment.

The rpc_ns_mgmt_remove_attribute() routine is designed to be a generic routine
for removing an attribute from an RPC server entry in the name service database. The
routine removes the attribute from the specified RPC server entry in the name service
database. The routine does not remove the RPC server entry.

For DCE 1.2, you userpc_ns_mgmt_remove_attribute()in your application server
initialization routine or signal handling routine to remove a code sets attribute from
the server’s entry in the Cell Directory Service database as part of the server cleanup
procedure carried out prior to the server’s termination.

A management application can callrpc_ns_mgmt_remove_attribute()to remove an
attribute from an RPC server entry in the name service database on behalf of an
application that does not itself have the necessary name service permissions to remove
one.

Permissions Required

You need write permission to the target RPC server entry (which is a CDS object).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

800

DCE Remote Procedure Call

rpc_ns_mgmt_remove_attribute(3rpc)

rpc_s_entry_not_found
The routine cannot find the RPC server entry specified in the call in the
name service database.

rpc_s_incomplete_name
The routine cannot expand the RPC server entry name specified in the
call.

rpc_s_invalid_name_syntax
The name syntax specified in the call is not valid.

rpc_s_mgmt_bad_type
The attribute type specified in the call does not match that of the attribute
to be removed from the name service database.

rpc_s_name_service_unavailable
The routine was unable to communicate with the name service.

rpc_s_no_ns_permission
The routine’s caller does not have the proper permission for an NSI
operation.

Related Information

Functions:rpc_ns_mgmt_read_codesets(3rpc), rpc_ns_mgmt_set_attribute(3rpc),
rpc_rgy_get_codesets(3rpc).

801

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_set_attribute(3rpc)

rpc_ns_mgmt_set_attribute

Purpose Adds an attribute to an RPC server entry in the name service database; used mainly
by server applications; can also be used by management applications

Synopsis
#include <dce/rpc.h>
#include <dce/nsattrid.h>

void rpc_ns_mgmt_set_attribute(
unsigned32entry_name_syntax,
unsigned_char_t *entry_name,
uuid_t * attr_type,
void *attr_value,
error_status_t *status);

Parameters
Input

entry_name_syntax
An integer value that specifies the syntax of theentry_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

entry_name Specifies the name of the RPC server entry in the name service database
with which the attribute will be associated. The name can be either the
global or cell-relative name. If you are using this routine to add a code
sets attribute to an RPC server entry in the name service database, then
this parameter specifies the name of the server entry with which the
code sets attribute will be associated.

attr_type A UUID that specifies the attribute type. For DCE 1.2, this value must
be rpc_c_attr_codesets.

802

DCE Remote Procedure Call

rpc_ns_mgmt_set_attribute(3rpc)

attr_val An opaque data structure that specifies the attribute value to be stored
in the name service database. If you are using this routine to add a code
sets attribute to an RPC server entry, you must cast the representation
of the code set data from the data typerpc_codeset_mgmt_p_tto the
data typevoid* .

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_set_attribute()routine belongs to a set of DCE RPC routines for
use by client and server applications that are transferring international character data
in a heterogeneous character set and code sets environment.

The rpc_ns_mgmt_set_attribute() routine is designed to be a generic routine for
adding an attribute to an RPC server entry in the name service database. The routine
takes an attribute type and a pointer to the value, and stores the attribute value in the
name service database.

For DCE 1.2, you userpc_ns_mgmt_set_attribute() in your application server
initialization routine to add a code sets attribute to the server’s entry in the Cell
Directory Service database (which the initialization routine has created with the
rpc_ns_binding_export() routine). Because CDS stores integer values in little-endian
format, therpc_ns_mgmt_set_attribute()routine also encodes the code sets attribute
value into an endian-safe format before storing it in the name service database.

A management application can callrpc_ns_mgmt_set_attribute()to add an attribute
to an RPC server entry in the name service database on behalf of an application that
does not itself have the necessary name service permissions to add one.

Permissions Required

You need both read permission and write permission to the target RPC server entry
(which is a CDS object). You also need insert permission to the parent directory.

Return Values

No value is returned.

803

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_set_attribute(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_name_syntax
The name syntax specified in the call is not valid.

rpc_s_mgmt_bad_type
The attribute type specified in the call does not match that of the attribute
to be added to the name service database.

rpc_s_no_memory
The routine was unable to allocate memory to encode the value.

rpc_s_name_service_unavailable
The routine was unable to communicate with the name service.

rpc_s_no_ns_permission
The routine’s caller does not have the proper permission for an NSI
operation.

Related Information

Functions:rpc_ns_mgmt_read_codesets(3rpc),
rpc_ns_mgmt_remove_attribute(3rpc), rpc_rgy_get_codesets(3rpc).

804

DCE Remote Procedure Call

rpc_ns_mgmt_set_exp_age(3rpc)

rpc_ns_mgmt_set_exp_age

Purpose Modifies the application’s global expiration age for local copies of name service data;
used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_mgmt_set_exp_age(
unsigned32expiration_age,
unsigned32 *status);

Parameters
Input

expiration_age
An integer value that specifies the default expiration age, in seconds, for
local name service data. This expiration age applies to all RPC name
service interface (NSI) read operations (all the next operations).

An expiration age of 0 (zero) causes an immediate update of the local
name service data.

To reset the expiration age to an RPC-assigned random value between
8 and 12 hours, specify a value ofrpc_c_ns_default_exp_age.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_mgmt_set_exp_age()routine modifies the global expiration age that the
application is using. Theexpiration_ageparameter represents the amount of time, in

805

DCE 1.2.2 Application Development Reference

rpc_ns_mgmt_set_exp_age(3rpc)

seconds, that a local copy of data from a name service attribute can exist before a
request from the application for the attribute requires updating the local copy. When
an application begins running, the RPC runtime specifies a random value of between
8 and 12 hours as the default expiration age. The default is global to the application.

Normally, you should avoid using this routine; instead, rely on the default expiration
age.

The RPC NSI next operations, which read data from name service attributes, use an
expiration age. A next operation normally starts by looking for a local copy of the
attribute data that an application requests. In the absence of a local copy, the next
operation creates one with fresh attribute data from the name service database. If
a local copy already exists, the operation compares its actual age to the expiration
age being used by the application. If the actual age exceeds the expiration age, the
operation automatically tries to update the local copy with fresh attribute data from the
name service database. If updating is impossible, the old local data remains in place
and the next operation fails, returning therpc_s_name_service_unavailablestatus
code.

Permissions Required

No permissions are required.

Cautions

Use this routine with extreme caution.

Setting the expiration age to a small value causes the RPC NSI next operations
to frequently update local data for any name service attribute that your application
requests. For example, setting the expiration age to 0 (zero) forces all next operations
to update local data for the name service attribute that your application has requested.
Therefore, setting small expiration ages can create performance problems for your
application. Also, if your application is using a remote server with the name service
database, a small expiration age can adversely affect network performance for all
applications.

Return Values

No value is returned.

806

DCE Remote Procedure Call

rpc_ns_mgmt_set_exp_age(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_ns_mgmt_handle_set_exp_age(3rpc),
rpc_ns_mgmt_set_exp_age(3rpc).

807

DCE 1.2.2 Application Development Reference

rpc_ns_profile_delete(3rpc)

rpc_ns_profile_delete

Purpose Deletes a profile attribute; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_delete(
unsigned32profile_name_syntax,
unsigned_char_t *profile_name,
unsigned32 *status);

Parameters
Input

profile_name_syntax
An integer value that specifies the syntax of theprofile_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

profile_nameSpecifies the name of the profile to delete. This can be either the global
or cell-relative name.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_delete()routine deletes the profile attribute from the specified
entry in the name service database (theprofile_nameparameter).

808

DCE Remote Procedure Call

rpc_ns_profile_delete(3rpc)

Neither the specified entry nor the entry names included as members in each profile
element are deleted.

Use this routine cautiously; deleting a profile may break a hierarchy of profiles.

Permissions Required

You need write permission to the CDS object entry (the target profile entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_profile_elt_add(3rpc), rpc_ns_profile_elt_remove(3rpc).

809

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_add(3rpc)

rpc_ns_profile_elt_add

Purpose Adds an element to a profile; if necessary, creates the entry; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_add(
unsigned32profile_name_syntax,
unsigned_char_t *profile_name,
rpc_if_id_t * if_id,
unsigned32member_name_syntax,
unsigned_char_t *member_name,
unsigned32priority,
unsigned_char_t *annotation,
unsigned32 *status);

Parameters
Input

profile_name_syntax
An integer value that specifies the syntax of theprofile_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

profile_nameSpecifies the RPC profile that receives a new element. This can be either
the global or cell-relative name.

if_id Specifies the interface identifier of the new profile element. To add or
replace the default profile element, specify NULL.

member_name_syntax
An integer value that specifies the syntax ofmember_name.

810

DCE Remote Procedure Call

rpc_ns_profile_elt_add(3rpc)

To use the syntax specified in theRPC_DEFAULT_ENTRY_SYNTAX
environment variable, providerpc_c_ns_syntax_default.

member_name
Specifies the entry in the name service database to include in the new
profile element. This can be either the global or cell-relative name.

priority An integer value (0 to 7) that specifies the relative priority for using the
new profile element during the import and lookup operations. A value
of 0 (zero) is the highest priority. A value of 7 is the lowest priority.
Two or more elements can have the same priority.

When adding the default profile member, use a value of 0 (zero).

annotation Specifies an annotation string that is stored as part of the new profile
element. The string can be up to 17 characters long. Specify NULL or
the string\0 if there is no annotation string.

The string is used by applications for informational purposes only. For
example, an application can use this string to store the interface name
string (specified in the IDL file).

DCE RPC does not use this string during lookup or import operations,
or for enumerating profile elements.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_add()routine adds an element to the profile attribute of the
entry in the name service database specified by theprofile_nameparameter.

If the profile_nameentry does not exist, this routine creates the entry with a profile
attribute and adds the profile element specified by theif_id, member_name, priority,
andannotationparameters. In this case, the application must have permission to create
the entry. Otherwise, a management application with the necessary permissions creates
the entry by callingrpc_ns_mgmt_entry_create()before the application is run.

If an element with the specified member name and interface identifier are already in
the profile, this routine updates the element’s priority and annotation string using the
values provided in thepriority andannotationparameters.

811

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_add(3rpc)

An application can add the entry in themember_nameparameter to a profile before
it creates the entry itself.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target profile entry). If the entry does not exist, you also need insert permission to the
parent directory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_priority
Invalid profile element priority.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

812

DCE Remote Procedure Call

rpc_ns_profile_elt_add(3rpc)

Related Information

Functions:rpc_if_inq_id(3rpc) , rpc_ns_mgmt_entry_create(3rpc),
rpc_ns_profile_elt_remove(3rpc).

813

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_inq_begin(3rpc)

rpc_ns_profile_elt_inq_begin

Purpose Creates an inquiry context for viewing the elements in a profile; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_begin(
unsigned32profile_name_syntax,
unsigned_char_t *profile_name,
unsigned32inquiry_type,
rpc_if_id_t * if_id,
unsigned32vers_option,
unsigned32member_name_syntax,
unsigned_char_t *member_name,
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input

profile_name_syntax
An integer value that specifies the syntax of theprofile_name
parameter. To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

profile_nameSpecifies the name of the profile to view. This can be either the global
or cell-relative name.

inquiry_type An integer value that specifies the type of inquiry to perform on the
profile. The following table describes the valid inquiry types:

814

DCE Remote Procedure Call

rpc_ns_profile_elt_inq_begin(3rpc)

Valid Values of inquiry_ type

Value Description

rpc_c_profile_default_elt Searches the profile for the default
profile element, if any. Theif_id,
vers_option, andmember_name
parameters are ignored.

rpc_c_profile_all_elts Returns every element from the
profile. Theif_id, vers_option, and
member_nameparameters are
ignored.

rpc_c_profile_match_by_if Searches the profile for those
elements that contain the interface
identifier specified by theif_id and
vers_optionvalues. The
member_nameparameter is ignored.

rpc_c_profile_match_by_mbr Searches the profile for those
elements that contain the member
name specified by the
member_nameparameter. Theif_id
andvers_optionparameters are
ignored.

rpc_c_profile_match_by_both Searches the profile for those
elements that contain the interface
identifier and member name
specified by theif_id, vers_option,
andmember_nameparameters.

if_id Specifies the interface identifier of the profile elements to be returned
by rpc_ns_profile_elt_inq_next().

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the
inquiry_typeparameter. Otherwise, this parameter is ignored and you
can specify the value NULL.

vers_option Specifies howrpc_ns_profile_elt_inq_next()uses theif_id parameter.

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_if or rpc_c_profile_match_by_both for the

815

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_inq_begin(3rpc)

inquiry_typeparameter. Otherwise, this parameter is ignored and you
can specify the value 0 (zero).

The following table describes the valid values for this parameter:

Valid Values of vers_option

Value Description

rpc_c_vers_all Returns profile elements that offer the
specified interface UUID, regardless of
the version numbers. For this value,
specify 0 (zero) for both the major and
minor versions inif_id.

rpc_c_vers_compatible Returns profile elements that offer the
same major version of the specified
interface UUID and a minor version
greater than or equal to the minor
version of the specified interface UUID.

rpc_c_vers_exact Returns profile elements that offer the
specified version of the specified
interface UUID.

rpc_c_vers_major_only Returns profile elements that offer the
same major version of the specified
interface UUID (ignores the minor
version). For this value, specify 0 (zero)
for the minor version inif_id.

rpc_c_vers_upto Returns profile elements that offer a
version of the specified interface UUID
less than or equal to the specified major
and minor version. (For example, ifif_id
contains V2.0 and the profile contains
elements with the versions V1.3, V2.0,
and V2.1,
rpc_ns_profile_elt_inq_next()returns
the elements with V1.3 and V2.0.)

member_name_syntax
An integer value that specifies the syntax of themember_nameparameter
in this routine and the syntax of themember_nameparametr in

816

DCE Remote Procedure Call

rpc_ns_profile_elt_inq_begin(3rpc)

rpc_ns_profile_elt_inq_next(). To use the syntax that is specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable, provide
rpc_c_ns_syntax_default.

member_name
Specifies the member name thatrpc_ns_profile_elt_inq_next() looks
for in profile elements. This can be either the global or cell-relative
name.

This parameter is used only when specifying a value of either
rpc_c_profile_match_by_mbr or rpc_c_profile_match_by_both for
the inquiry_typeparameter. Otherwise, this parameter is ignored and
you specify the value NULL.

Output

inquiry_context
Returns a name service handle for use with the following routines:

• rpc_ns_profile_elt_inq_next()

• rpc_ns_profile_elt_inq_done()

status Returns the status code from this routine, indicating indicates whether
the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_begin()routine creates an inquiry context for viewing
the elements in a profile.

Using the inquiry_type and vers_option parameters, an application specifies
which of the following profile elements will be returned from calls to
rpc_ns_profile_elt_inq_next():

• The default element.

• All elements.

• Those elements with the specified interface identifier.

• Those elements with the specified member name.

• Those elements with both the specified interface identifier and member name.

817

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_inq_begin(3rpc)

Before calling rpc_ns_profile_elt_inq_next(), the application must first call this
routine to create an inquiry context.

When finished viewing the profile elements, the application calls the
rpc_ns_profile_elt_inq_done()routine to delete the inquiry context.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_inquiry_type
Invalid inquiry type.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_invalid_vers_option
Invalid version option.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_if_inq_id(3rpc) , rpc_ns_mgmt_handle_set_exp_age(3rpc),
rpc_ns_profile_elt_inq_done(3rpc), rpc_ns_profile_elt_inq_next(3rpc).

818

DCE Remote Procedure Call

rpc_ns_profile_elt_inq_done(3rpc)

rpc_ns_profile_elt_inq_done

Purpose Deletes the inquiry context for a profile; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_done(
rpc_ns_handle_t *inquiry_context,
unsigned32 *status);

Parameters
Input/Output

inquiry_context
Specifies the name service handle to delete. (A name service handle is
created by callingrpc_ns_profile_elt_inq_begin().)

Returns the value NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_done() routine deletes an inquiry context created by
calling rpc_ns_profile_elt_inq_begin().

An application calls this routine after viewing profile elements using the
rpc_ns_profile_elt_inq_next()routine.

819

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_inq_done(3rpc)

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_ns_handle
Invalid name service handle.

Related Information

Functions:rpc_ns_profile_elt_inq_begin(3rpc),
rpc_ns_profile_elt_inq_next(3rpc).

820

DCE Remote Procedure Call

rpc_ns_profile_elt_inq_next(3rpc)

rpc_ns_profile_elt_inq_next

Purpose Returns one element at a time from a profile; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_inq_next(
rpc_ns_handle_tinquiry_context,
rpc_if_id_t * if_id,
unsigned_char_t **member_name,
unsigned32 *priority,
unsigned_char_t **annotation,
unsigned32 *status);

Parameters
Input

inquiry_context
Specifies a name service handle. This handle is returned from the
rpc_ns_profile_elt_inq_begin()routine.

Output

if_id Returns the interface identifier of the profile element.

member_name
Returns a pointer to the profile element’s member name. The name is a
global name.

The syntax of the returned name is specified by the
rpc_ns_profile_elt_inq_begin()member_name_syntaxparameter.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

821

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_inq_next(3rpc)

priority Returns the profile element priority.

annotation Returns the annotation string for the profile element. If there is no
annotation string in the profile element, the string\0 is returned.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not need to call therpc_string_free()
routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_inq_next() routine returns one element from the profile
specified by theprofile_name parameter in therpc_ns_profile_elt_inq_begin()
routine.

The selection criteria for the element returned are based on theinquiry_typeparameter
in the rpc_ns_profile_elt_inq_begin() routine. Therpc_ns_profile_elt_inq_next()
routine returns all the components (interface identifier, member name, priority,
annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the
rpc_ns_profile_elt_inq_next()routine. When all the elements have been viewed, this
routine returns anrpc_s_no_more_elementsstatus code. The returned elements are
unordered.

On each call to this routine that returns a profile element, the DCE RPC runtime
allocates memory for the returnedmember_name(which points to a global name) and
annotationstrings. The application is responsible for calling therpc_string_free()
routine for each returnedmember_nameandannotationstring.

After viewing the profile’s elements, the application must call the
rpc_ns_profile_elt_inq_done()routine to delete the inquiry context.

Permissions Required

You need read permission to the CDS object entry (the target profile entry).

Return Values

No value is returned.

822

DCE Remote Procedure Call

rpc_ns_profile_elt_inq_next(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_class_version_mismatch
RPC class version mismatch.

rpc_s_entry_not_found
Name service entry not found.

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_ns_handle
Invalid name service handle.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_elements
No more elements.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_not_rpc_entry
Not an RPC entry.

Related Information

Functions:rpc_ns_profile_elt_begin(3rpc), rpc_ns_profile_elt_done(3rpc),
rpc_string_free(3rpc).

823

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_remove(3rpc)

rpc_ns_profile_elt_remove

Purpose Removes an element from a profile; used by client, server, or management applications

Synopsis
#include <dce/rpc.h>

void rpc_ns_profile_elt_remove(
unsigned32profile_name_syntax,
unsigned_char_t *profile_name,
rpc_if_id_t * if_id,
unsigned32member_name_syntax,
unsigned_char_t *member_name,
unsigned32 *status);

Parameters
Input

profile_name_syntax
An integer value that specifies the syntax of theprofile_nameparameter.
To use the syntax specified in theRPC_DEFAULT_ENTRY_SYNTAX
environment variable, providerpc_c_ns_syntax_default.

profile_nameSpecifies the profile from which to remove an element. This can be
either the global or cell-relative name.

if_id Specifies the interface identifier of the profile element to be removed.
Specify NULL to remove the default profile member.

member_name_syntax
An integer value that specifies the syntax ofmember_name. To
use the syntax specified in theRPC_DEFAULT_ENTRY_SYNTAX
environment variable, providerpc_c_ns_syntax_default.

824

DCE Remote Procedure Call

rpc_ns_profile_elt_remove(3rpc)

member_name
Specifies the name service entry name in the profile element to remove.
This can be either the global or cell-relative name. Whenif_id is NULL,
this argument is ignored.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ns_profile_elt_remove()routine removes a profile element from the profile
specified byprofile_name. Unlessif_id is NULL, the member_nameparameter and
the if_id parameter must match the corresponding profile element attributes exactly
for an element to be removed. Whenif_id is NULL, the default profile element is
removed, and themember_nameargument is ignored.

The routine removes the reference to the entry specified bymember_namefrom the
profile; it does not delete the entry itself.

Use this routine cautiously; removing elements from a profile may break a hierarchy
of profiles.

Permissions Required

You need both read permission and write permission to the CDS object entry (the
target profile entry).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_entry_not_found
Name service entry not found.

825

DCE 1.2.2 Application Development Reference

rpc_ns_profile_elt_remove(3rpc)

rpc_s_incomplete_name
Incomplete name.

rpc_s_invalid_name_syntax
Invalid name syntax.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_profile_element_not_found
Profile element not found.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Related Information

Functions:rpc_ns_profile_delete(3rpc), rpc_ns_profile_elt_add(3rpc).

826

DCE Remote Procedure Call

rpc_object_inq_type(3rpc)

rpc_object_inq_type

Purpose Returns the type of an object; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_inq_type(
uuid_t * obj_uuid,
uuid_t * type_uuid,
unsigned32 *status);

Parameters
Input

obj_uuid Specifies the object UUID whose associated type UUID is returned.
Supply NULL to specify a nil UUID for this parameter.

Output

type_uuid Returns the type UUID corresponding to the object UUID supplied in
the obj_uuidparameter.

Specifying NULL here prevents the return of a type UUID. An
application, by specifying NULL here, can determine from the value
returned instatus whether obj_uuid is registered. This determination
occurs without the application specifying an output type UUID variable.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

A server application calls therpc_object_inq_type() routine to obtain the type UUID
of an object.

827

DCE 1.2.2 Application Development Reference

rpc_object_inq_type(3rpc)

If the object is registered with the RPC runtime using therpc_object_set_type()
routine, the registered type is returned.

Optionally, an application can maintain an object/type registration privately.
In this case, if the application provides an object inquiry function (see the
rpc_object_set_inq_fn(3rpc)reference page), the RPC runtime uses that function to
determine an object’s type.

The table below shows howrpc_object_inq_type() obtains the returned type UUID.

Rules for Returning an Object’s Type

Was object UUID
registered (using
rpc_object_set_type)?

Was an object inquiry
runction registered (using
rpc_object_set_inq_fn)?

Return Value

Yes Ignored Returns the object’s
registered type UUID.

No Yes Returns the type
UUID returned from
calling the inquiry
function.

No No Returns the nil UUID.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_object_not_found
Object not found.

uuid_s_bad_version
Bad UUID version.

828

DCE Remote Procedure Call

rpc_object_inq_type(3rpc)

Related Information

Functions:rpc_object_set_inq_fn(3rpc), rpc_object_set_type(3rpc).

829

DCE 1.2.2 Application Development Reference

rpc_object_set_inq_fn(3rpc)

rpc_object_set_inq_fn

Purpose Registers an object inquiry function; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_set_inq_fn(
rpc_object_inq_fn_t inquiry_fn,
unsigned32 *status);

Parameters
Input

inquiry_fn Specifies a pointer to an object type inquiry function. When an
application calls therpc_object_inq_type() routine and the RPC
runtime finds that the specified object is not registered, the runtime
automatically calls therpc_object_inq_type() routine to determine the
object’s type. Specify NULL to remove a previously set inquiry function.

The following C language definition forrpc_object_inq_fn_t illustrates
the prototype for this function:

typedef void (*rpc_object_inq_fn_t)

(

uuid_t *object_uuid, /* in */

uuid_t *type_uuid, /* out */

unsigned32 *status /* out */

);

The returnedtype_uuidand status values are returned as the output
arguments from therpc_object_inq_type() routine.

830

DCE Remote Procedure Call

rpc_object_set_inq_fn(3rpc)

If you specify NULL, therpc_object_set_inq_fn()routine unregisters
(that is, removes) a previously registered object type inquiry function.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

A server application callsrpc_object_set_inq_fn()to specify a function to determine
an object’s type. If an application privately maintains object/type registrations, the
specified inquiry function returns the type UUID of an object from that registration.

The RPC runtime automatically calls the inquiry function when the application
calls rpc_object_inq_type() and the object was not previously registered by
rpc_object_set_type(). The RPC runtime also automatically calls the inquiry
function for every remote procedure call it receives if the object was not previously
registered.

Cautions

Use this routine with caution. When the RPC runtime automatically calls this routine
in response to a received remote procedure call, the inquiry function can be called from
the context of runtime internal threads with runtime internal locks held. The inquiry
function should not block or at least not block for long (for example, the inquiry
function should not perform a remote procedure call). Also, the inquiry function must
not unwind because of an exception. In general, the inquiry function should not call
back into the RPC runtime. It is legal to callrpc_object_set_type()or any of the
uuid_* routines. Failure to comply with these restrictions will result in undefined
behavior.

Return Values

No value is returned.

831

DCE 1.2.2 Application Development Reference

rpc_object_set_inq_fn(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_object_inq_type(3rpc), rpc_object_set_type(3rpc).

832

DCE Remote Procedure Call

rpc_object_set_type(3rpc)

rpc_object_set_type

Purpose Registers the type of an object with the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_object_set_type(
uuid_t * obj_uuid,
uuid_t * type_uuid,
unsigned32 *status);

Parameters
Input

obj_uuid Specifies an object UUID to associate with the type UUID in the
type_uuidparameter. Do not specify NULL or a nil UUID.

type_uuid Specifies the type UUID of theobj_uuidparameter.

Specify an argument value of NULL or a nil UUID to reset the object
type to the default association of object UUID/nil type UUID.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_object_set_type()routine assigns a type UUID to an object UUID.

By default, the RPC runtime assumes that the type of all objects is nil. A server
program that contains one implementation of an interface (one manager entry point
vector) does not need to call this routine, provided that the server registered the

833

DCE 1.2.2 Application Development Reference

rpc_object_set_type(3rpc)

interface with the nil type UUID (see therpc_server_register_if(3rpc) reference
page).

A server program that contains multiple implementations of an interface (multiple
manager entry point vectors; that is, multiple type UUIDs) calls this routine once for
each object UUID the server offers. Associating each object with a type UUID tells
the RPC runtime which manager entry point vector (interface implementation) to use
when the server receives a remote procedure call for a nonnil object UUID.

The RPC runtime allows an application to set the type for an unlimited number of
objects.

To remove the association between an object UUID and its type UUID (established
by calling this routine), a server calls this routine again and specifies the value NULL
or a nil UUID for the type_uuidparameter. This resets the association between an
object UUID and type UUID to the default.

A server cannot register a nil object UUID. The RPC runtime automatically registers
the nil object UUID with a nil type UUID. Attempting to set the type of a nil object
UUID will result in the routine’s returning the status coderpc_s_invalid_object.

Servers that want to maintain their own object UUID to type UUID mapping can use
rpc_object_set_inq_fn()in place of, or in addition to,rpc_object_set_type().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_already_registered
Object already registered.

rpc_s_invalid_object
Invalid object.

uuid_s_bad_version
Bad UUID version.

834

DCE Remote Procedure Call

rpc_object_set_type(3rpc)

Related Information

Functions:rpc_object_set_inq_fn(3rpc), rpc_server_register_if(3rpc).

835

DCE 1.2.2 Application Development Reference

rpc_protseq_vector_free(3rpc)

rpc_protseq_vector_free

Purpose Frees the memory used by a vector and its protocol sequences; used by client or server
applications

Synopsis
#include <dce/rpc.h>

void rpc_protseq_vector_free(
rpc_protseq_vector_t **protseq_vector,
unsigned32 *status);

Parameters
Input/Output

protseq_vector
Specifies the address of a pointer to a vector of protocol sequences. On
return the pointer is set to NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_protseq_vector_free()routine frees the memory used to store a vector of
protocol sequences. The freed memory includes both the protocol sequences and the
vector itself.

Call rpc_network_inq_protseqs()to obtain a vector of protocol sequences. Follow a
call to rpc_network_inq_protseqs()with a call to rpc_protseq_vector_free().

836

DCE Remote Procedure Call

rpc_protseq_vector_free(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_network_inq_protseqs(3rpc).

837

DCE 1.2.2 Application Development Reference

rpc_rgy_get_codesets(3rpc)

rpc_rgy_get_codesets

Purpose Gets supported code sets information from the local host; used by client and server
applications

Synopsis
#include <dce/rpc.h>

void rpc_rgy_get_codesets(
rpc_codeset_mgmt_p_t *code_sets_array,
error_status_t *status);

Parameters
Input

No input is required.

Output

code_sets_array
An integer array that specifies the code sets that the client’s or server’s
host environment supports. Each array element is an integer value that
uniquely identifies one code set.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_rgy_get_codesets()routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The rpc_rgy_get_codesets()routine examines the locale environment of the host on
which the client or server process is running to determine the local code set currently

838

DCE Remote Procedure Call

rpc_rgy_get_codesets(3rpc)

in use by the client or server process and the set of supported code set conversion
routines that exist on the host into which the client or server process can convert if
necessary. It then reads the code sets registry on the local host to retrieve the unique
identifiers associated with these supported code sets.

The routine returns a code sets array. The set of values returned in this structure
correspond to the process’s local code set and the code sets into which processes that
run on this host can convert. The array also contains, for each code set, the maximum
number of bytes that code set uses to encode one character (c_max_bytes).

Server applications use therpc_rgy_get_codesets()routine in their initialization code
to get their host’s supported character and code sets values in order to export them
into the name service database withrpc_ns_mgmt_set_attribute().

Client applications use therpc_rgy_get_codesets()routine during the server binding
selection process to retrieve the supported character and code sets at their host in
order to evaluate them against the character and code sets that a server supports.
Client applications that use the evaluation routinesrpc_cs_eval_with_universal()and
rpc_cs_eval_without_universal()do not need to call this routine explicitly, because
these code sets evaluation routines call it on the client’s behalf. Application developers
who are writing their own character and code set evaluation routines may need to
include rpc_rgy_get_codesets()in their user-written evaluation routines.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

839

DCE 1.2.2 Application Development Reference

rpc_rgy_get_codesets(3rpc)

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

rpc_s_ok

rpc_s_no_memory

Related Information

Commands:csrc(8dce).

Functions:rpc_ns_mgmt_read_codesets(3rpc),
rpc_ns_mgmt_remove_attribute(3rpc), rpc_ns_mgmt_set_attribute(3rpc).

840

DCE Remote Procedure Call

rpc_rgy_get_max_bytes(3rpc)

rpc_rgy_get_max_bytes

Purpose Gets the maximum number of bytes that a code set uses to encode one character from
the code set registry on a host; used by client and server applications

Synopsis
#include <dce/rpc.h>

void rpc_rgy_get_max_bytes(
unsigned32rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

Parameters
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output

rgy_max_bytes
The registered decimal value that indicates the number of bytes this
code set uses to encode one character.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_rgy_get_max_bytes()routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

841

DCE 1.2.2 Application Development Reference

rpc_rgy_get_max_bytes(3rpc)

The rpc_rgy_get_max_bytes()routine reads the code set registry on the local host. It
takes the specified registered code set value, uses it as an index into the registry, and
returns the decimal value that indicates the number of bytes that the code set uses to
encode one character.

The DCE RPC stub support routines for buffer sizing use the
rpc_rgy_get_max_bytes()routine as part of their procedure to determine whether
additional storage needs to be allocated for conversion between local and network
code sets. The DCE RPC stub support routines call therpc_rgy_get_max_bytes()
routine once to get thergy_max_bytesvalue for the code set to be used to transfer
the data over the network (the network code set) then call the routine again to get
the rgy_max_bytesvalue of their local code set. The stubs then compare the two
values to determine whether or not additional buffers are necessary or whether the
conversion can be done in place.

Client and server applications that use the following DCE RPC buffer sizing routines
do not need to call this routine explicitly because these DCE RPC stub support routines
call it on their behalf:

• byte_net_size()

• byte_local_size()

• wchar_t_net_size()

• wchar_t_local_size()

Application programmers who are developing their own stub support routines for
buffer sizing can use therpc_rgy_get_max_bytes()routine in their code to get code
setmax_byteinformation for their user-written buffer sizing routines.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

842

DCE Remote Procedure Call

rpc_rgy_get_max_bytes(3rpc)

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_notfound

dce_cs_c_unknown

rpc_s_ok

Related Information

Commands:csrc(8dce).

Functions:dce_cs_loc_to_rgy(3rpc), dce_cs_rgy_to_loc(3rpc),
rpc_ns_mgmt_read_code_sets(3rpc), rpc_rgy_get_code_sets(3rpc).

843

DCE 1.2.2 Application Development Reference

rpc_server_inq_bindings(3rpc)

rpc_server_inq_bindings

Purpose Returns binding handles for communications with a server; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_inq_bindings(
rpc_binding_vector_t ** binding_vector,
unsigned32 *status);

Parameters
Input

None.

Output

binding_vector
Returns the address of a vector of server binding handles.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_inq_bindings() routine obtains a vector of server binding handles.
Binding handles are created by the RPC runtime when a server application calls any
of the following routines to register protocol sequences:

• rpc_server_use_all_protseqs()

• rpc_server_use_all_protseqs_if()

• rpc_server_use_protseq()

• rpc_server_use_protseq_ep()

844

DCE Remote Procedure Call

rpc_server_inq_bindings(3rpc)

• rpc_server_use_protseq_if()

The returned binding vector can contain binding handles with dynamic endpoints and
binding handles with well-known endpoints, depending on which of the preceding
routines the server application called. Therpc_intro(3rpc) reference page contains an
explanation of dynamic and well-known endpoints.

A server uses the vector of binding handles for exporting to the name service, for
registering with the local endpoint map, or for conversion to string bindings.

If there are no binding handles (no registered protocol sequences), this routine returns
the rpc_s_no_bindingsstatus code and returns the value NULL to thebinding_vector
parameter.

The server is responsible for calling therpc_binding_vector_free() routine to
deallocate the memory used by the vector.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_bindings
No bindings.

Related Information

Functions:rpc_binding_vector_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_ns_binding_export(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

845

DCE 1.2.2 Application Development Reference

rpc_server_inq_if(3rpc)

rpc_server_inq_if

Purpose Returns the manager entry point vector registered for an interface; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_server_inq_if(
rpc_if_handle_t if_handle,
uuid_t * mgr_type_uuid,
rpc_mgr_epv_t *mgr_epv,
unsigned32 *status);

Parameters
Input

if_handle Specifies the interface specification whose manager entry point vector
(EPV) pointer is returned in themgr_epvparameter.

mgr_type_uuid
Specifies a type UUID for the manager whose EPV pointer is returned
in the mgr_epvparameter.

Specifying the value NULL (or a nil UUID) has this routine return a
pointer to the manager EPV that is registered withif_handleand the nil
type UUID of the manager.

Output

mgr_epv Returns a pointer to the manager EPV corresponding toif_handleand
mgr_type_uuid.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

846

DCE Remote Procedure Call

rpc_server_inq_if(3rpc)

Description

A server application calls therpc_server_inq_if() routine to determine the manager
EPV for a registered interface and type UUID of the manager.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

Related Information

Functions:rpc_server_register_if(3rpc).

847

DCE 1.2.2 Application Development Reference

rpc_server_listen(3rpc)

rpc_server_listen

Purpose Tells the RPC runtime to listen for remote procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_listen(
unsigned32max_calls_exec,
unsigned32 *status);

Parameters
Input

max_calls_exec
Specifies the maximum number of concurrent executing remote
procedure calls.

Use the valuerpc_c_listen_max_calls_defaultto specify the default
value.

Also, the five rpc_server_use_*_protseq* () routines limit (according
to their max_call_requestsparameter) the number of concurrent remote
procedure call requests that a server can accept.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_listen()routine makes a server listen for remote procedure calls. DCE
RPC allows a server to simultaneously process multiple calls. Themax_calls_exec
parameter specifies the maximum number of concurrent remote procedure calls the

848

DCE Remote Procedure Call

rpc_server_listen(3rpc)

server executes. Each remote procedure call executes in a call execution thread. The
implementation of the RPC architecture determines whether it reuses call execution
threads for the execution of subsequent remote procedure calls or, instead, it creates
a new thread for each execution of a subsequent remote procedure call.

The following conditions affect the number of concurrent remote procedure calls that
a server can process:

• Sufficient network resources must be available to accept simultaneous call requests
arriving over a particular protocol sequence. The value ofmax_call_requestsin
the five rpc_server_use_*_protseq*() routines advises the RPC runtime about
the runtime’s request of network resources.

• Enough call threads must be available to execute the simultaneous call requests
once they have been accepted. The value ofmax_calls_execin rpc_server_listen()
specifies the number of call threads.

These conditions are independent of each other.

A server application that specifies a value formax_calls_execgreater than 1 is
responsible for concurrency control among the remote procedures since each executes
in a separate thread.

If the server receives more remote procedure calls than it can execute (more calls
than the value ofmax_calls_exec), the RPC runtime accepts and queues additional
remote procedure calls until a call execution thread is available. From the client’s
perspective, a queued remote procedure call appears the same as one that the server
is actively executing. A client call remains blocked and in the queue until any one of
the following events occurs:

• The remote procedure call is assigned to an available call execution thread and
the call runs to completion.

• The client no longer can communicate with the server.

• The client thread is canceled and the remote procedure call does not complete
within the cancel timeout limits.

The implementation of the RPC architecture determines the amount of queuing it
provides.

The RPC runtime continues listening for remote procedure calls (that is, the routine
does not return to the server) until one of the following events occurs:

• One of the server application’s manager routines calls
rpc_mgmt_stop_server_listening().

849

DCE 1.2.2 Application Development Reference

rpc_server_listen(3rpc)

• A client is allowed to, and makes, a remoterpc_mgmt_stop_server_listening()
call to the server.

On receiving a request to stop listening, the RPC runtime stops accepting new remote
procedure calls for all registered interfaces. Executing calls and existing queued calls
are allowed to complete.

After all calls complete,rpc_server_listen() returns to the caller, which is a server
application.

For more information about a server’s listening for and handling incoming remote
procedure calls, refer to theDCE 1.2.2 Application Development Guide—Core
Components. It also contains information about canceled threads.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_already_listening
Server already listening.

rpc_s_max_calls_too_small
Maximum calls value too small.

rpc_s_no_protseqs_registered
No protocol sequences registered.

Related Information

Functions:rpc_mgmt_server_stop_listening(3rpc), rpc_server_register_if(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

850

DCE Remote Procedure Call

rpc_server_listen(3rpc)

Books:DCE 1.2.2 Application Development Guide—Core Components.

851

DCE 1.2.2 Application Development Reference

rpc_server_register_auth_ident(3rpc)

rpc_server_register_auth_ident

Purpose Registers user-to-user based authentication information with the RPC runtime; used
by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_auth_ident(
unsigned_char_p_t *server_princ_name,
unsigned32authn_svc,
rpc_auth_identity_handle_t auth_identity,
unsigned32 *status);

Parameters
Input

server_princ_name
A pointer to the principal name to use for the server when authenticating
remote procedure calls. The content of the name and its syntax is defined
by the authentication service in use.

authn_svc Specifies the authentication service to use when the server receives a
remote procedure call request. The following authentication services are
supported:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

852

DCE Remote Procedure Call

rpc_server_register_auth_ident(3rpc)

auth_identity
Specifies a handle for the data structure that contains the client’s
authentication and authorization credentials appropriate for the selected
authentication and authorization services.

When using therpc_c_authn_dce_secretauthentication service and any
authorization service, this value must be asec_login_handle_t, which
can be obtained from one of the following routines:

• sec_login_setup_identity()

• sec_login_get_current_context()

• sec_login_import_context()

Specify NULL to use the default security login context for the current
address space.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_register_auth_ident() routine registers an authentication service
to use for authenticating remote procedure calls to a particular server principal.
This routine is used for user-to-user authentication where the server principal’s
credentials are available, but not the server principal’s long-term key. Use the
rpc_server_register_auth_info()routine for server-key based authentication.

A server calls this routine once for each authentication service and principal name
combination that it wants to register. The authentication service specified by a client
(using therpc_binding_set_auth_info() routine) must be one of the authentication
services registered by the server. If it is not, the client’s remote procedure call request
fails with an rpc_s_unknown_authn_servicestatus code.

Return Values

No value is returned.

853

DCE 1.2.2 Application Development Reference

rpc_server_register_auth_ident(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_unknown_authn_service
Unknown authentication service.

sec_s_user_to_user_disabled
Account is not allowed to use user-to-user protocol registration.

sec_s_multiple_u2u_req
Server identity has already been registered.

sec_s_svr_type_conflict
Simultaneous registration of both keytable and identity is not suppported.
Server has already registered with therpc_server_register_auth_info()
routine.

Related Information

Functions:rpc_binding_set_auth_info(3rpc), rpc_server_register_auth_info(3rpc).

854

DCE Remote Procedure Call

rpc_server_register_auth_info(3rpc)

rpc_server_register_auth_info

Purpose Registers server-key based authentication information with the RPC runtime; used by
server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_auth_info(
unsigned_char_t *server_princ_name,
unsigned32authn_svc,
rpc_auth_key_retrieval_fn_t get_key_fn,
void *arg,
unsigned32 *status);

Parameters
Input

server_princ_name
Specifies the principal name to use for the server when authenticating
remote procedure calls using the service specified byauthn_svc. The
content of the nam e and its syntax is defined by the authentication
service in use.

authn_svc Specifies the authentication service to use when the server receives a
remote procedure call request. The following authentication services are
supported:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

855

DCE 1.2.2 Application Development Reference

rpc_server_register_auth_info(3rpc)

rpc_c_authn_default
DCE default authentication service.

get_key_fn Specifies the address of a server-provided routine that returns encryption
keys.

The following C definition forrpc_auth_key_ret rieval_fn_t illustrates
the prototype for the encryption key acquisition routine:

typedef void (*rpc_auth_key_retrieval_fn_t)

(

void *arg, /* in */

unsigned_char_t *server_princ_name, /* in */

unsigned32 key_type, /* in */

unsigned32 key_ver, /* in */

void **key, /* out */

unsigned32 *status /* out */

);

The RPC runtime passes theserver_princ_nameparameter value
specified on the call torpc_server_register_auth_info(), as the
server_princ_nameparameter value, to theget_key_fnkey acquisition
routine. The RPC runtime automatically provides a value for the key
version (key_ver) parameter. For akey_vervalue of 0 (zero), the key
acquisition routine must return the most recent key available. The
routine returns the key in thekeyparameter.

Note: The key_typeparameter specifies a Kerberos encryption key
type. Because currently the DCE supports only DES encryption,
this parameter can be ignored.

If the key acquisition routine, when called from the
rpc_server_register_auth_info() routine, returns a status other
than rpc_s_ok, the rpc_server_register_auth_info() routine fails and
returns the error status to the calling server.

If the key acquisition routine, when called by the RPC runtime while
authenticating a client remote procedure call request, returns a status
other thanrpc_s_ok, the request fails and the RPC runtime returns the
error status to the client.

856

DCE Remote Procedure Call

rpc_server_register_auth_info(3rpc)

arg Specifies an argument to pass to theget_key_fnkey acquisition routine,
if specified. (See the description of theget_key_fnparameter for details.)

Specify NULL for arg to use the default key table file,/krb/v5srvtab .
The calling server must be root to access this file.

If arg is a key table filename, the file must have been created with the
ktadd command. If the specified key table file resides in/krb5 , you
can supply only the filename. If the file does not reside in/krb5 , you
must supply the full pathname. You must prepend the file’s absolute
pathname with the prefixFILE: .

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_server_register_auth_info()routine registers an authentication service to use
for authenticating remote procedure calls to a particular server principal. This routine
is used for server-key based authentication. Use therpc_server_register_auth_ident()
routine for user-to-user authentication.

A server calls this routine once for each authentication service and principal name
combination that it wants to register. The authentication service specified by a client
(using therpc_binding_set_auth_info() routine) must be one of the authentication
services registered by the server. If it is not, the client’s remote procedure call request
fails with an rpc_s_unknown_authn_servicestatus code.

The following table shows the RPC runtime behavior for acquiring encryption keys for
each supported authentication service. Note that ifauthn_svcis rpc_c_authn_default,
then get_key_fnmust be NULL.

857

DCE 1.2.2 Application Development Reference

rpc_server_register_auth_info(3rpc)

RPC Key Acquisition for Authentication Services

authn_svc get_key_fn arg Runtime
Behavior

rpc_c_authn_default NULL NULL Uses the default
method of
encryption key
acquisition from
the default key
table.

rpc_c_authn_default NULL non-
NULL

Uses the default
method of
encryption key
acquisition from
the specified key
table.

rpc_c_authn_default non-
NULL

Ignored Error returned.

rpc_c_authn_none Ignored Ignored No
authentication
performed.

rpc_c_authn_dce_secret NULL NULL Uses the default
method of
encryption key
acquisition from
the default key
table.

858

DCE Remote Procedure Call

rpc_server_register_auth_info(3rpc)

rpc_c_authn_dce_secret NULL non-
NULL

Uses the default
method of
encryption key
acquisition from
the specified key
table.

rpc_c_authn_dce_secret non-
NULL

NULL Uses the
specified
encryption key
acquisition
routine to obtain
keys from the
default key table.

RPC Key Acquisition for Authentication Services

authn_svc get_key_fn arg Runtime
Behavior

rpc_c_authn_dce_secret non-
NULL

non-
NULL

Uses the
specified
encryption key
acquisition
routine to obtain
keys from the
specified key
table.

rpc_c_authn_dce_public Ignored Ignored (Reserved for
future use.)

Return Values

No value is returned.

859

DCE 1.2.2 Application Development Reference

rpc_server_register_auth_info(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_key_func_not_allowed
authn_svcis rpc_c_authn_default and a nonnull value was supplied
for get_key_fnparameter.

Related Information

Functions:rpc_binding_set_auth_info(3rpc),
rpc_server_register_auth_ident(3rpc).

860

DCE Remote Procedure Call

rpc_server_register_if(3rpc)

rpc_server_register_if

Purpose Registers an interface with the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_register_if(
rpc_if_handle_t if_handle,
uuid_t * mgr_type_uuid,
rpc_mgr_epv_t mgr_epv,
unsigned32 *status);

Parameters
Input

if_handle An IDL-generated data structure specifying the interface to register.

mgr_type_uuid
Specifies a type UUID to associate with themgr_epv parameter.
Specifying the value NULL (or a nil UUID) registers theif_handle
with a nil type UUID.

mgr_epv Specifies the manager routines’ entry point vector. To use the IDL-
generated default entry point vector, specify NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_server_register_if()routine registers a server interface with the RPC runtime.
A server can register an unlimited number of interfaces. Once registered, an interface

861

DCE 1.2.2 Application Development Reference

rpc_server_register_if(3rpc)

is available to clients through any binding handle of the server, provided that the
binding handle is compatible for the client.

A server must provide the following information to register an interface:

• An interface specification, which is a data structure generated by the IDL compiler.
The server specifies the interface specification of the interface using theif_handle
parameter.

• A type UUID and manager entry point vector (EPV), a data pair that determines
which manager routine executes when a server receives a remote procedure call
request from a client.

The server specifies the type UUID and EPV using themgr_type_uuidand
mgr_epvparameters, respectively. Note that when a nonnil type UUID is specified,
the server must also call therpc_object_set_type()routine to register objects of
this nonnil type.

A server that only offers a single manager for an interface calls
rpc_server_register_if() once for that interface. In the simple case where
the single manager’s entry point names are the same as the operation names in the
IDL interface definition, the IDL-generated default manager EPV for the interface
may be used. The value NULL inmgr_epvspecifies the default manager EPV.

Note that if a server offers multiple implementations of an interface, the server code
must register a separate manager entry point vector for each interface implementation.

Rules for Invoking Manager Routines

The RPC runtime dispatches an incoming remote procedure call to a manager that
offers the requested RPC interface. When multiple managers are registered for an
interface, the RPC runtime must select one of them. To select a manager, the RPC
runtime uses the object UUID specified by the call’s binding handle. The following
table summarizes the rules applied for invoking manager routines.

862

DCE Remote Procedure Call

rpc_server_register_if(3rpc)

Rules for Invoking Manager Routines

Object UUID
of Call1

Has Server Set
Type of Object

UUID?2

Has Server
Set Type

for
Manager

EPV?3 Dispatching Action

Nil Not applicable4 Yes Uses the manager with the nil
type UUID.

Nil Not applicable4 No The RPC error
(rpc_s_unknown_mgr_type).
Rejects the remote procedure
call.

Non-nil Yes Yes Uses the manager with the
same type UUID.

Rules for Invoking Manager Routines

Object UUID
of Call1

Has Server Set
Type of Object
UUID?2

Has Server
Registered
Type for
Manager
EPV?3 Dispatching Action

Non-nil No Ignored Uses the manager with the nil
type UUID. If no manager
with the nil type UUID,
rpc_s_unknown_mgr_type.
Rejects the remote procedure
call.

Non-nil Yes No The error
(rpc_s_unknown_mgr_type).
Rejects the remote procedure
call.

1 This is the object UUID found in a binding handle for a remote
procedure.

2 By calling rpc_object_set_type() to specify the type UUID for an
object.

863

DCE 1.2.2 Application Development Reference

rpc_server_register_if(3rpc)

3 By calling rpc_server_register_if()using the same type UUID.

4 The nil object UUID is always automatically assigned the nil type UUID.
It is illegal to specify a nil object UUID inrpc_object_set_type().

For more information about registering server interfaces and invoking manager
routines, refer to theDCE 1.2.2 Application Development Guide—Core Components.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_type_already_registered
An interface with the given type of UUID is already registered.

Related Information

Functions:rpc_binding_set_object(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_ns_binding_export(3rpc),
rpc_object_set_type(3rpc), rpc_server_unregister_if(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

864

DCE Remote Procedure Call

rpc_server_unregister_if(3rpc)

rpc_server_unregister_if

Purpose Removes an interface from the RPC runtime; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_unregister_if(
rpc_if_handle_t if_handle,
uuid_t * mgr_type_uuid,
unsigned32 *status);

Parameters
Input

if_handle Specifies an interface specification to unregister (remove).

Specify NULL to remove all interfaces previously registered with the
type UUID value given in themgr_type_uuidparameter.

mgr_type_uuid
Specifies the type UUID for the manager entry point vector (EPV) to
remove. This needs to be the same value as provided in a call to the
rpc_server_register_if() routine.

Specify NULL to remove the interface given in theif_handleparameter
for all previously registered type UUIDs.

Specify a nil UUID to remove the IDL-generated default manager EPV.
In this case all manager EPVs registered with a nonnil type UUID remain
registered.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

865

DCE 1.2.2 Application Development Reference

rpc_server_unregister_if(3rpc)

Description

The rpc_server_unregister_if() routine removes the association between an interface
and a manager entry point vector (EPV).

Specify the manager EPV to remove by providing, in themgr_type_uuidparameter,
the type UUID value specified in a call to therpc_server_register_if() routine. Once
removed, an interface is no longer available to client applications.

When an interface is removed, the RPC runtime stops accepting new calls for that
interface. Executing calls (on that interface) are allowed to complete.

The table below summarizes the actions of this routine.

Rules for Removing an Interface

if_handle mgr_type_uuid Action

nonNULL non-NULL Removes the manager EPV associated
with the specified parameters.

nonNULL NULL Removes all manager EPVs associated
with parameterif_handle.

NULL non-NULL Removes all manager EPVs associated
with parametermgr_type_uuid.

NULL NULL Removes all manager EPVs.

Note that when both of the parametersif_handle and mgr_type_uuidare given the
value NULL, this call has the effect of preventing the server from receiving any
new remote procedure calls since all the manager EPVs for all interfaces have been
removed.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

866

DCE Remote Procedure Call

rpc_server_unregister_if(3rpc)

rpc_s_ok Success.

rpc_s_unknown_if
Unknown interface.

rpc_s_unknown_mgr_type
Unknown manager type.

Related Information

Functions:rpc_server_register_if(3rpc).

867

DCE 1.2.2 Application Development Reference

rpc_server_use_all_protseqs(3rpc)

rpc_server_use_all_protseqs

Purpose Tells the RPC runtime to use all supported protocol sequences for receiving remote
procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_all_protseqs(
unsigned32max_call_requests,
unsigned32 *status);

Parameters
Input

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value ofmax_call_requestsand can vary for
each protocol sequence.

Use the valuerpc_c_protseq_max_reqs_defaultto specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is
replaced by the default value.

Also, the rpc_server_listen() routine limits (according to its
max_calls_execparameter) the amount of concurrent remote procedure
call execution. See therpc_server_listen(3rpc) reference page for
more information.

868

DCE Remote Procedure Call

rpc_server_use_all_protseqs(3rpc)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_all_protseqs()routine registers all supported protocol sequences
with the RPC runtime. A server must register at least one protocol sequence with the
RPC runtime to receive remote procedure call requests.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains a dynamic endpoint that the RPC
runtime and operating system generated.

The max_call_requestsparameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

After registering protocol sequences, a server typically calls the following routines:

rpc_server_inq_bindings()
Obtains a vector containing all of the server’s binding handles.

rpc_ep_register()
Registers the binding handles with the local endpoint map.

rpc_ep_register_no_replace()
Registers the binding handles with the local endpoint map.

rpc_ns_binding_export()
Places the binding handles in the name service database for access by
any client.

rpc_binding_vector_free()
Frees the vector of server binding handles.

rpc_server_register_if()
Registers with the RPC runtime those interfaces that the server offers.

rpc_server_listen()
Enables the reception of remote procedure calls.

To register protocol sequences selectively, a server calls one of the following routines:

• rpc_server_use_protseq()

869

DCE 1.2.2 Application Development Reference

rpc_server_use_all_protseqs(3rpc)

• rpc_server_use_all_protseqs_if()

• rpc_server_use_protseq_if()

• rpc_server_use_protseq_ep()

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map or the name service database, see the information on
string bindings in therpc_intro(3rpc) reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_no_protseqs
No supported protocol sequences.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc), rpc_binding_vector_free(3rpc),
rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),
rpc_ns_binding_export(3rpc), rpc_server_inq_bindings(3rpc),
rpc_server_listen(3rpc), rpc_server_register_if(3rpc),
rpc_server_use_all_protseqs_if(3rpc), rpc_server_use_protseq(3rpc),
rpc_server_use_protseq_ep(3rpc), rpc_server_use_protseq_if(3rpc).

870

DCE Remote Procedure Call

rpc_server_use_all_protseqs_if(3rpc)

rpc_server_use_all_protseqs_if

Purpose Tells the RPC runtime to use all the protocol sequences and endpoints specified in the
interface specification for receiving remote procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_all_protseqs_if(
unsigned32max_call_requests,
rpc_if_handle_t if_handle,
unsigned32 *status);

Parameters
Input

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater that the value ofmax_call_requestsand can vary for each
protocol sequence.

Use the valuerpc_c_protseq_max_reqs_defaultto specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is
replaced by the default value.

Also, the rpc_server_listen() routine limits (according to its
max_calls_execparameter) the amount of concurrent remote procedure
call execution. See therpc_server_listen(3rpc) reference page for
more information.

871

DCE 1.2.2 Application Development Reference

rpc_server_use_all_protseqs_if(3rpc)

if_handle Specifies an interface specification containing the protocol sequences
and their corresponding endpoint information to use in creating
binding handles. Each created binding handle contains a well-known
(nondynamic) endpoint contained in the interface specification.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_all_protseqs_if()routine registers all protocol sequences and
associated endpoint address information provided in the IDL file with the RPC runtime.
A server must register at least one protocol sequence with the RPC runtime to receive
remote procedure call requests.

For each protocol sequence registered by a server, the RPC runtime creates one or more
binding handles. Each binding handle contains the well-known endpoint specified in
the IDL file.

The max_call_requestsparameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

If you want to register selected protocol sequences specified in the IDL, your server
usesrpc_server_use_protseq_if().

The explanation ofrpc_server_use_all_protseqs()contains a list of the routines a
server typically calls after calling this routine. (However, a server that uses only
rpc_server_use_all_protseqs_if()does not subsequently callrpc_ep_register() or
rpc_ep_register_no_replace().) For an explanation of how a server can establish a
client/server relationship without using the local endpoint map or the name service
database, see the information on string bindings in therpc_intro(3rpc) reference page.

Return Values

No value is returned.

872

DCE Remote Procedure Call

rpc_server_use_all_protseqs_if(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_cant_inq_socket
Cannot inquire endpoint from socket.

rpc_s_invalid_endpoint_format
Invalid interface handle.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_no_protseqs
No supported protocol sequences.

Related Information

Functions:rpc_binding_vector_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_ns_binding_export(3rpc),
rpc_server_inq_bindings(3rpc), rpc_server_listen(3rpc),
rpc_server_register_if(3rpc), rpc_server_use_all_protseqs(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

873

DCE 1.2.2 Application Development Reference

rpc_server_use_protseq(3rpc)

rpc_server_use_protseq

Purpose Tells the RPC runtime to use the specified protocol sequence for receiving remote
procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq(
unsigned_char_t *protseq,
unsigned32max_call_requests,
unsigned32 *status);

Parameters
Input

protseq Specifies a string identifier for the protocol sequence to register with
the RPC runtime. (For a list of string identifiers, see the table of valid
protocol sequences in therpc_intro(3rpc) reference page.)

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value ofmax_call_requestsand can vary for
each protocol sequence.

Use the valuerpc_c_protseq_max_reqs_defaultto specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is
replaced by the default value.

874

DCE Remote Procedure Call

rpc_server_use_protseq(3rpc)

Also, rpc_server_listen() limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution.
See therpc_server_listen(3rpc)reference page for more information.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_protseq()routine registers a single protocol sequence with the
RPC runtime. A server must register at least one protocol sequence with the RPC
runtime to receive remote procedure call requests. A server can call this routine
multiple times to register additional protocol sequences.

For each protocol sequence registered by a server, the RPC runtime creates one or
more binding handles. Each binding handle contains a dynamic endpoint that the RPC
runtime and operating system generated.

The max_call_requestsparameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

A server callsrpc_server_use_all_protseqs()to register all protocol sequences.

The explanation of therpc_server_use_all_protseqs()routine contains a list of the
routines a server typically calls after calling this routine. For an explanation of how
a server can establish a client/server relationship without using the local endpoint
map or the name service database, see the information on string bindings in the
rpc_intro(3rpc) reference page.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

875

DCE 1.2.2 Application Development Reference

rpc_server_use_protseq(3rpc)

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions:rpc_binding_vector_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_network_is_protseq_valid(3rpc),
rpc_ns_binding_export(3rpc), rpc_server_inq_bindings(3rpc),
rpc_server_listen(3rpc), rpc_server_register_if(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq_ep(3rpc), rpc_server_use_protseq_if(3rpc).

876

DCE Remote Procedure Call

rpc_server_use_protseq_ep(3rpc)

rpc_server_use_protseq_ep

Purpose Tells the RPC runtime to use the specified protocol sequence combined with the
specified endpoint for receiving remote procedure calls; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq_ep(
unsigned_char_t *protseq,
unsigned32max_call_requests,
unsigned_char_t *endpoint,
unsigned32 *status);

Parameters
Input

protseq Specifies a string identifier for the protocol sequence to register with
the RPC runtime. (For a list of string identifiers, see the table of valid
protocol sequences in therpc_intro(3rpc) reference page.

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value ofmax_call_requestsand can vary for
each protocol sequence.

Use the valuerpc_c_protseq_max_reqs_defaultto specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is
replaced by the default value.

877

DCE 1.2.2 Application Development Reference

rpc_server_use_protseq_ep(3rpc)

Also, rpc_server_listen() limits (according to its max_calls_exec
parameter) the amount of concurrent remote procedure call execution.
See therpc_server_listen(3rpc)reference page for more information.

endpoint Specifies address information for an endpoint. This information is used
in creating a binding handle for the protocol sequence specified in the
protseqparameter.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_protseq_ep()routine registers a protocol sequence and its
specified endpoint address information with the RPC runtime. A server must register
at least one protocol sequence with the RPC runtime to receive remote procedure call
requests. A server can call this routine multiple times to register additional protocol
sequences and endpoints.

For each protocol sequence registered by a server, the RPC runtime creates one or more
binding handles. Each binding handle contains the well-known endpoint specified in
the endpointparameter.

The max_call_requestsparameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

The explanation ofrpc_server_use_all_protseqs()contains a list of the routines a
server typically calls after calling this routine. For an explanation of how a server
can establish a client/server relationship without using the local endpoint map or the
name service database, see the information on string bindings in therpc_intro(3rpc)
reference page.

Return Values

No value is returned.

878

DCE Remote Procedure Call

rpc_server_use_protseq_ep(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_cant_create_socket
Cannot create socket.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions:rpc_binding_vector_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_ns_binding_export(3rpc),
rpc_server_inq_bindings(3rpc), rpc_server_listen(3rpc),
rpc_server_register_if(3rpc), rpc_server_use_all_protseqs(3rpc),
rpc_server_use_all_protseqs_if(3rpc), rpc_server_use_protseq(3rpc),
rpc_server_use_protseq_ep(3rpc).

879

DCE 1.2.2 Application Development Reference

rpc_server_use_protseq_if(3rpc)

rpc_server_use_protseq_if

Purpose Tells the RPC runtime to use the specified protocol sequence combined with the
endpoints in the interface specification for receiving remote procedure calls; used by
server applications

Synopsis
#include <dce/rpc.h>

void rpc_server_use_protseq_if(
unsigned_char_t *protseq,
unsigned32max_call_requests,
rpc_if_handle_t if_handle,
unsigned32 *status);

Parameters
Input

protseq Specifies a string identifier for the protocol sequence to register with
the RPC runtime. For a list of string identifiers, see the table of valid
protocol sequences in therpc_intro(3rpc) reference page.

max_call_requests
Specifies the maximum number of concurrent remote procedure call
requests that the server can accept.

The RPC runtime guarantees that the server can accept at least this
number of concurrent call requests. The actual number of these requests
can be greater than the value ofmax_call_requestsand can vary for
each protocol sequence.

Use the valuerpc_c_protseq_max_reqs_defaultto specify the default
parameter value.

Note that in this version of DCE RPC, any number you specify is
replaced by the default value.

880

DCE Remote Procedure Call

rpc_server_use_protseq_if(3rpc)

Also, the rpc_server_listen() routine limits (according to its
max_calls_execparameter) the amount of concurrent remote procedure
call execution. See therpc_server_listen(3rpc) reference page for
more information.

if_handle Specifies an interface specification whose endpoint information is
used in creating a binding for the protocol sequence specified in the
protseqparameter. Each created binding handle contains a well-known
(nondynamic) endpoint contained in the interface specification.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_server_use_protseq_if()routine registers one protocol sequence with the
RPC runtime, including its endpoint address information as provided in the specified
IDL file.

A server must register at least one protocol sequence with the RPC runtime to receive
remote procedure call requests. A server can call this routine multiple times to register
additional protocol sequences.

For each protocol sequence registered by a server, the RPC runtime creates one or more
binding handles. Each binding handle contains the well-known endpoint specified in
the IDL file.

The max_call_requestsparameter allows you to specify the maximum number of
concurrent remote procedure call requests the server handles.

To register all protocol sequences from the IDL, a server calls the
rpc_server_use_all_protseqs_if()routine.

The explanation ofrpc_server_use_all_protseqs()contains a list of the routines
a server typically calls after calling this routine. However, a server that uses
only rpc_server_use_protseq_if()does not subsequently callrpc_ep_register() or
rpc_ep_register_no_replace(). For an explanation of how a server can establish a
client/server relationship without using the local endpoint map or the name service
database, see the information on string bindings in therpc_intro(3rpc) reference page.

881

DCE 1.2.2 Application Development Reference

rpc_server_use_protseq_if(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_calls_too_large_for_wk_ep
Maximum concurrent calls too large.

rpc_s_cant_bind_socket
Cannot bind to socket.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_max_descs_exceeded
Exceeded maximum number of network descriptors.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions:rpc_binding_vector_free(3rpc), rpc_ep_register(3rpc),
rpc_ep_register_no_replace(3rpc), rpc_ns_binding_export(3rpc),
rpc_server_inq_bindings(3rpc), rpc_server_listen(3rpc),
rpc_server_register_if(3rpc), rpc_server_use_all_protseqs(3rpc),
rpc_server_use_all_protseqs_if(3rpc), rpc_server_use_protseq(3rpc),
rpc_server_use_protseq_ep(3rpc).

882

DCE Remote Procedure Call

rpc_sm_allocate(3rpc)

rpc_sm_allocate

Purpose Allocates memory within the RPC stub memory management scheme.

Synopsis
#include <rpc.h>

idl_void_p_t rpc_sm_allocate(
unsigned longsize,
unsigned32 *status);

Parameters
Input

size Specifies, in bytes, the size of memory to be allocated.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Applications call rpc_sm_allocate() to allocate memory within the RPC stub
memory management scheme. Before a call to this routine, the stub memory
management environment must have been established. For manager code that is
called from the stub, the stub itself normally establishes the necessary environment.
When rpc_sm_allocate() is used by code that is not called from the stub, the
application must establish the required memory management environment by calling
rpc_sm_enable_allocate().

When the stub establishes the memory management environment, the stub itself frees
any memory allocated byrpc_sm_allocate(). The application can free such memory
before returning to the calling stub by callingrpc_sm_free().

883

DCE 1.2.2 Application Development Reference

rpc_sm_allocate(3rpc)

When the application establishes the memory management environment, it
must free any memory allocated, either by callingrpc_sm_free() or by calling
rpc_sm_disable_allocate().

Multiple threads may callrpc_sm_allocate()andrpc_sm_free() to manage the same
memory within the stub memory management environment. To do so, the threads
must share the same stub memory management thread handle. Applications pass
thread handles from thread to thread by callingrpc_sm_get_thread_handle()and
rpc_sm_set_thread_handle().

Return Values

A pointer to the allocated memory.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_free(3rpc), rpc_sm_enable_allocate(3rpc),
rpc_sm_disable_allocate(3rpc), rpc_sm_get_thread_handle(3rpc),
rpc_sm_set_thread_handle(3rpc).

884

DCE Remote Procedure Call

rpc_sm_client_free(3rpc)

rpc_sm_client_free

Purpose Frees memory returned from a client stub

Synopsis
#include <rpc.h>

void rpc_sm_client_free(
idl_void_p_t node_to_free,
unsigned32 *status);

Parameters
Input

node_to_free
Specifies a pointer to memory returned from a client stub.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_client_free() routine releases memory allocated and returned from a
client stub. The thread callingrpc_sm_client_free()must have the same thread handle
as the thread that made the RPC call. Applications pass thread handles from thread to
thread by callingrpc_sm_get_thread_handle()andrpc_sm_set_thread_handle().

This routine enables a routine to deallocate dynamically allocated memory returned
by an RPC call without knowledge of the memory management environment from
which it was called.

885

DCE 1.2.2 Application Development Reference

rpc_sm_client_free(3rpc)

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_free(3rpc), rpc_sm_get_thread_handle(3rpc),
rpc_sm_set_client_alloc_free(3rpc), rpc_sm_set_thread_handle(3rpc),
rpc_sm_swap_client_alloc_free(3rpc).

886

DCE Remote Procedure Call

rpc_sm_destroy_client_context(3rpc)

rpc_sm_destroy_client_context

Purpose Reclaims the client memory resources for a context handle, and sets the context handle
to null

Synopsis
#include <rpc.h>

void rpc_sm_destroy_client_context(
idl_void_p_t p_unusable_context_handle,
unsigned32 *status);

Parameters
Input

p_unusable_context_handle
Specifies the context handle that can no longer be accessed.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_sm_destroy_client_context()routine is used by client applications to reclaim
the client resources used in maintaining an active context handle. Applications call
this routine after a communications error makes the context handle unusable. When
the rpc_sm_destroy_client_context()routine reclaims the memory resources, it also
sets the context handle to null.

Return Values

None.

887

DCE 1.2.2 Application Development Reference

rpc_sm_destroy_client_context(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

888

DCE Remote Procedure Call

rpc_sm_disable_allocate(3rpc)

rpc_sm_disable_allocate

Purpose Releases resources and allocated memory within the stub memory management scheme

Synopsis
#include <rpc.h>

void rpc_sm_disable_allocate(
unsigned32*status);

Parameters
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_disable_allocate()routine releases all resources acquired by a call to
rpc_sm_enable_allocate(), and any memory allocated by calls torpc_sm_allocate()
after the call torpc_sm_enable_allocate()was made.

The rpc_sm_enable_allocate()andrpc_sm_disable_allocate()routines must be used
in matching pairs.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

889

DCE 1.2.2 Application Development Reference

rpc_sm_disable_allocate(3rpc)

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_enable_allocate(3rpc).

890

DCE Remote Procedure Call

rpc_sm_enable_allocate(3rpc)

rpc_sm_enable_allocate

Purpose Enables the stub memory managment environment

Synopsis
#include <rpc.h>

void rpc_sm_enable_allocate(
unsigned32 *status);

Parameters
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Applications can call rpc_sm_enable_allocate() to establish a stub memory
management environment in cases where one is not established by the stub itself.
A stub memory management environment must be established before any calls are
made torpc_sm_allocate(). For server manager code called from the stub, the stub
memory management environment is normally established by the stub itself. Code
that is called from other contexts needs to callrpc_sm_enable_allocate()before
calling rpc_sm_allocate().

Note: For a discussion of how spawned threads acquire a stub memory
management environment, see therpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle()reference pages.

891

DCE 1.2.2 Application Development Reference

rpc_sm_enable_allocate(3rpc)

Return Values

None

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_disable_allocate(3rpc).

892

DCE Remote Procedure Call

rpc_sm_free(3rpc)

rpc_sm_free

Purpose Frees memory allocated by therpc_sm_allocate()routine

Synopsis
#include <rpc.h>

void rpc_sm_free(
idl_void_p_t node_to_free,
unsigned32 *status);

Parameters
Input

node_to_free
Specifies a pointer to memory allocated byrpc_sm_allocate().

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Applications callrpc_sm_free() to release memory allocated byrpc_sm_allocate().

When the stub allocates memory within the stub memory management environment,
manager code called from the stub can also userpc_sm_free() to release memory
allocated by the stub.

The thread calling rpc_sm_free() must have the same thread handle as the
thread that allocated the memory withrpc_sm_allocate(). Applications pass
thread handles from thread to thread by callingrpc_sm_get_thread_handle()and
rpc_sm_set_thread_handle().

893

DCE 1.2.2 Application Development Reference

rpc_sm_free(3rpc)

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_get_thread_handle(3rpc),
rpc_sm_set_thread_handle(3rpc).

894

DCE Remote Procedure Call

rpc_sm_get_thread_handle(3rpc)

rpc_sm_get_thread_handle

Purpose Gets a thread handle for the stub memory management environment

Synopsis
#include <rpc.h>

rpc_ss_thread_handle_t rpc_sm_get_thread_handle(
unsigned32 *status);

Parameters
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Applications callrpc_sm_get_thread_handle()to get a thread handle for the current
stub memory management environment. A thread that is managing memory within
the stub memory managment scheme calls pc_sm_get_thread_handle() to get a thread
handle for its current stub memory management environment. A thread that calls
rpc_sm_set_thread_handle()with this handle, is able to use the same memory
management environment.

When multiple threads callrpc_sm_allocate()andrpc_sm_free()to manage the same
memory, they must share the same thread handle. The thread that established the stub
memory management environment callsrpc_sm_get_thread_handle()to get a thread
handle before spawning new threads that will manage the same memory. The spawned
threads then callrpc_sm_set_thread_handle()with the handle provided by the parent
thread.

Note: Typically, rpc_sm_get_thread_handle() is called by a server manager
routine before it spawns additional threads. Normally the stub sets up the

895

DCE 1.2.2 Application Development Reference

rpc_sm_get_thread_handle(3rpc)

memory management environment for the manager routine. The manager
calls rpc_sm_get_thread_handle()to make this environment available to
the spawned threads.

A thread may also use rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle()to save and restore its memory management
environment.

Return Values

A thread handle.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_free(3rpc),
rpc_sm_set_thread_handle(3rpc.

896

DCE Remote Procedure Call

rpc_sm_set_client_alloc_free(3rpc)

rpc_sm_set_client_alloc_free

Purpose Sets the memory allocation and freeing mechanisms used by the client stubs

Synopsis

#include <rpc.h>

void rpc_sm_set_client_alloc_free(
idl_void_p_t (*p_allocate) (
unsigned longsize),
void (*p_free) (
idl_void_p_t ptr),
unsigned32 *status);

Parameters
Input

p_allocate Specifies a memory allocator routine.

p_free Specifies a memory free routine. This routine is used to free memory
allocated with the routine specified byp_allocate.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_set_client_alloc_free()routine overrides the default routines that the
client stub uses to manage memory.

897

DCE 1.2.2 Application Development Reference

rpc_sm_set_client_alloc_free(3rpc)

Note: The default memory management routines are ISOmalloc() and ISO
free() except when the remote call occurs within manager code in which
case the default memory management routines arerpc_sm_allocate()and
rpc_sm_free().

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_free(3rpc).

898

DCE Remote Procedure Call

rpc_sm_set_thread_handle(3rpc)

rpc_sm_set_thread_handle

Purpose Sets a thread handle for the stub memory management environment

Synopsis
#include <rpc.h>

void rpc_sm_set_thread_handle(
rpc_ss_thread_handle_tid,
unsigned32 *status);

Parameters
Input

id Specifies a thread handle returned by a call to the routine
rpc_sm_get_thread_handle().

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application thread callsrpc_sm_set_thread_handle()to set a thread handle
for memory management within the stub memory management environment. A
thread that is managing memory within the stub memory managment scheme calls
rpc_sm_get_thread_handle()to get a thread handle for its current stub memory
management environment. A thread that callsrpc_sm_set_thread_handle()with this
handle is able to use the same memory management environment.

When multiple threads callrpc_sm_allocate()andrpc_sm_free()to manage the same
memory, they must share the same thread handle. The thread that established the stub
memory management environment callsrpc_sm_get_thread_handle()to get a thread
handle before spawning new threads that will manage the same memory. The spawned

899

DCE 1.2.2 Application Development Reference

rpc_sm_set_thread_handle(3rpc)

threads then callrpc_sm_set_thread_handle()with the handle provided by the parent
thread.

Note: Typically, rpc_sm_set_thread_handle() is called by a thread spawned
by a server manager routine. Normally the stub sets up the memory
management environment for the manager routine and the manager calls
rpc_sm_get_thread_handle()to get a thread handle. Each spawned thread
then calls rpc_sm_get_thread_handle() to get access to the manager’s
memory management environment.

A thread may also use rpc_sm_get_thread_handle() and
rpc_sm_set_thread_handle()to save and restore its memory management
environment.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_free(3rpc),
rpc_sm_get_thread_handle(3rpc).

900

DCE Remote Procedure Call

rpc_sm_swap_client_alloc_free(3rpc)

rpc_sm_swap_client_alloc_free

Purpose Exchanges the current memory allocation and freeing mechanism used by the client
stubs with one supplied by the client

Synopsis

#include <rpc.h>

void rpc_sm_swap_client_alloc_free (
idl_void_p_t (*p_allocate) (
unsigned longsize),
void (*p_free) (
idl_void_p_t ptr),
idl_void_p_t (** p_p_old_allocate) (
unsigned longsize),
void (** p_p_old_free) (
idl_void_p_t ptr),
unsigned32 *status);

Parameters
Input

p_allocate Specifies a new memory allocation routine.

p_free Specifies a new memory free routine.

Output

p_p_old_allocate
Returns the memory allocation routine in use before the call to this
routine.

901

DCE 1.2.2 Application Development Reference

rpc_sm_swap_client_alloc_free(3rpc)

p_p_old_free
Returns the memory free routine in use before the call to this routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_sm_swap_client_alloc_free()routine exchanges the current allocate and free
mechanisms used by the client stubs for routines supplied by the caller.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_sm_allocate(3rpc), rpc_sm_free(3rpc),
rpc_sm_set_client_alloc_free(3rpc).

902

DCE Remote Procedure Call

rpc_ss_allocate(3rpc)

rpc_ss_allocate

Purpose Allocates memory within the RPC stub memory management scheme; used by server
or possibly by client applications

Synopsis
#include <dce/rpc.h>

idl_void_p_t rpc_ss_allocate(
idl_size_t size);

Parameters
Input

size Specifies, in bytes, the size of memory to be allocated.

Note that in ANSI standard C environments,idl_void_p_t is defined asvoid * and in
other environments is defined aschar * .

Description

Usually, therpc_ss_allocate()routine is used in the manager code that is called from
a server stub. Memory allocated byrpc_ss_allocate()is released by the server stub
after marshalling any output parameters at the end of the remote call in which the
memory was allocated. If you want to release memory allocated byrpc_ss_allocate()
before returning from the manager code userpc_ss_free().

You can also userpc_ss_free()in manager code to release memory pointed to by a
full pointer (ptr) in an input parameter.

When the server usesrpc_ss_allocate(), the server stub creates the environment the
routine needs. If the parameters of the operation include any pointers other than those
used for passing parameters by reference, the environment is set up automatically.

903

DCE 1.2.2 Application Development Reference

rpc_ss_allocate(3rpc)

If you need to userpc_ss_allocate()in a manager code routine that does not have a
pointer in any of its parameters, use an ACF and apply theenable_allocateattribute
to the relevant operation. This causes the generated server stub to set up the necessary
environment.

Note that memory allocated by allocators other thanrpc_ss_allocate()is not released
when the operation on the server side completes execution.

If you want to userpc_ss_allocate()outside the code called from a server stub, you
must first create an environment for it by callingrpc_ss_enable_allocate().

See theDCE 1.2.2 Application Development Guide—Core Componentsfor more
information.

Return Values

A pointer to the allocated memory.

An exception,rpc_x_no_memory, when no memory is available for allocation.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:rpc_ss_disable_allocate(3rpc), rpc_ss_enable_allocate(3rpc),
rpc_ss_free(3rpc), rpc_ss_get_thread_handle(3rpc),
rpc_ss_set_thread_handle(3rpc).

904

DCE Remote Procedure Call

rpc_ss_bind_authn_client(3rpc)

rpc_ss_bind_authn_client

Purpose Authenticates a client’s identity to a server from a client stub; a pointer to the
server binding handle for the remote procedure call to which the routine will add
authentication and authorization context

Synopsis
#include <rpc.h>

void rpc_ss_bind_authn_client(
rpc_binding_handle_t *binding,
if_handle_t if_handle,
error_status_t *status);

Parameters
Input/Output

binding A pointer to the server binding handle for the remote procedure call to
which the routine will add authentication and authorization context.

Input

if_handle A stub-generated data structure that specifies the interface of interest.
The routine can use this parameter to resolve a partial binding or to
distinguish between interfaces.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ss_bind_authn_client()routine is a DCE-supplied binding callout routine
for use with thebinding_callout ACF interface attribute.

905

DCE 1.2.2 Application Development Reference

rpc_ss_bind_authn_client(3rpc)

The binding_callout attribute enables applications to specify the name of a routine
that the client stub will call automatically to modify a server binding handle with
additional information before it initiates a remote procedure call. This attribute is
especially useful for applications using the automatic binding method, where it is
the client stub that obtains the binding handle, rather than the application code. The
binding_callout attribute provides these applications with a way to gain access to a
server binding handle from the client stub, since the handle is not accessible from the
application code.

Applications can specifyrpc_ss_bind_authn_client() to the binding_callout ACF
interface attribute in order to authenticate the client’s identity to a server from the client
stub before the remote procedure call to the server is initiated. This routine performs
one-way authentication: the client does not care which server principal receives the
remote procedure call request, but the server verifies that the client is who the client
claims to be.

The routine sets the protection level used, the authentication identity,
and the authentication service used to their default values. See the
rpc_binding_set_auth_info(3rpc) reference page for more information on
these default values. It sets the authorization service to perform authorization based
on the client’s principal name.

Applications can also specify user-written binding callout routines with the
binding_callout attribute to modify server binding handles from client stubs with
other types of information. For more information on using thebinding_callout ACF
attribute, see theDCE 1.2.2 Application Development Guide—Core Components.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
Success.

rpc_s_no_more_bindings
Directs the client stub not to look for another server binding.

906

DCE Remote Procedure Call

rpc_ss_bind_authn_client(3rpc)

Related Information

Functions:rpc_binding_set_auth_info(3rpc), rpc_ep_resolve_binding(3rpc),
rpc_mgmt_inq_server_princ_name(3rpc).

Books:DCE 1.2.2 Application Development—Introduction and Style Guide, DCE
1.2.2 Application Development Guide—Core Components.

907

DCE 1.2.2 Application Development Reference

rpc_ss_client_free(3rpc)

rpc_ss_client_free

Purpose Frees memory returned from a client stub; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_client_free(
idl_void_p_t node_to_free);

Parameters
Input

node_to_freeSpecifies a pointer to memory returned from a client stub.

Description

The rpc_ss_client_free()routine releases memory allocated and returned from a client
stub. The thread callingrpc_ss_client_free()must have the same thread handle as the
thread that made the RPC call.

This routine enables a routine to deallocate dynamically allocated memory returned
by an RPC call without knowledge of the memory management environment from
which it was called.

Note that while this routine is always called from client code, the code can be executing
as part of another server.

Return Values

No value is returned.

908

DCE Remote Procedure Call

rpc_ss_client_free(3rpc)

Related Information

Functions:rpc_ss_free(3rpc), rpc_ss_get_thread_handle(3rpc),
rpc_ss_set_client_alloc_free(3rpc), rpc_ss_set_thread_handle(3rpc),
rpc_ss_swap_client_alloc_free(3rpc).

909

DCE 1.2.2 Application Development Reference

rpc_ss_destroy_client_context(3rpc)

rpc_ss_destroy_client_context

Purpose Reclaims the client memory resources for the context handle, and sets the context
handle to NULL; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_destroy_client_context(
void *p_unusable_context_handle);

Parameters
Input

p_unusable_context_handle
Specifies the context handle that can no longer be accessed.

Description

The rpc_ss_destroy_client_context()routine is used by the client application to
reclaim the client resources used in maintaining an active context handle. Only
call this after a communications error makes the context handle unusable. When
rpc_ss_destroy_client_context()reclaims the memory resources, it also sets the
context handle to null.

Return Values

No value is returned.

The rpc_ss_destroy_client_context()routine raises no exceptions.

910

DCE Remote Procedure Call

rpc_ss_disable_allocate(3rpc)

rpc_ss_disable_allocate

Purpose Releases resources and allocated memory; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_disable_allocate(
void);

Description

The rpc_ss_disable_allocate()routine releases (disables) all resources acquired
by a call to rpc_ss_enable_allocate(), and any memory allocated by calls to
rpc_ss_allocate()after the call torpc_ss_enable_allocate()was made.

The rpc_ss_enable_allocate()and rpc_ss_disable_allocate()routines must be used
in matching pairs.

For information about rules for using memory management routines, see theDCE
1.2.2 Application Development Guide—Core Components.

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_enable_allocate(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

911

DCE 1.2.2 Application Development Reference

rpc_ss_enable_allocate(3rpc)

rpc_ss_enable_allocate

Purpose Enables the allocation of memory by therpc_ss_allocate()routine when not in
manager code; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_enable_allocate(
void);

Description

In sophisticated servers, it may be necessary to call manager code routines from
different environments. This occurs, for example, when the application is both a client
and a server of the same interface. Therefore, a manager code routine may need to be
called both by the application code and by the stub code. If code, other than manager
code, calls therpc_ss_allocate()routine, it must first callrpc_ss_enable_allocate()
to initialize the memory management environment thatrpc_ss_allocate()uses.

For information about rules for using memory management routines, see theDCE
1.2.2 Application Development Guide—Core Components.

Return Values

An exception,rpc_x_no_memory, when there is insufficient memory available to set
up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

912

DCE Remote Procedure Call

rpc_ss_enable_allocate(3rpc)

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_disable_allocate(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

913

DCE 1.2.2 Application Development Reference

rpc_ss_free(3rpc)

rpc_ss_free

Purpose Frees memory allocated by therpc_ss_allocate()routine; used by server or possibly
by client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_free(
idl_void_p_t node_to_free);

Parameters
Input

node_to_freeSpecifies a pointer to memory allocated byrpc_ss_allocate().

Note that in ANSI standard C environments,idl_void_p_t is defined asvoid * and in
other environments is defined aschar * .

Description

The rpc_ss_free() routine releases memory allocated byrpc_ss_allocate(). The
thread callingrpc_ss_free() must have the same thread handle as the thread that
allocated the memory withrpc_ss_allocate(). Use it only in an environment where
rpc_ss_allocate()is used.

If the manager code allocates memory withrpc_ss_allocate()and the memory is
not released byrpc_ss_free()during manager code execution, then the server stub
automatically releases the memory when the manager code completes execution and
returns control to the stub.

Manager code can also userpc_ss_free()to release memory that is pointed to by a
full pointer in an input parameter.

914

DCE Remote Procedure Call

rpc_ss_free(3rpc)

For information about rules for using memory management routines, see theDCE
1.2.2 Application Development Guide—Core Components.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_get_thread_handle(3rpc),
rpc_ss_set_thread_handle(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

915

DCE 1.2.2 Application Development Reference

rpc_ss_get_thread_handle(3rpc)

rpc_ss_get_thread_handle

Purpose Gets a thread handle for the manager code before it spawns additional threads, or
for the client code when it becomes a server; used by server or possibly by client
applications

Synopsis
#include <dce/rpc.h>

rpc_ss_thread_handle_t rpc_ss_get_thread_handle(
void);

Description

The rpc_ss_get_thread_handle()routine is used by a server manager thread when
it spawns additional threads. To spawn additional threads that are able to perform
memory management, the server manager code callsrpc_ss_get_thread_handle()
and passes the thread handle to each spawned thread. Each spawned thread that
uses rpc_ss_allocate()and rpc_ss_free() for memory management must first call
rpc_ss_set_thread_handle(), using the handle obtained by the original manager
thread.

The rpc_ss_get_thread_handle()routine can also be used when a program changes
from being a client to being a server. The program gets a handle on its environment as
a client by callingrpc_ss_get_thread_handle(). When the program reverts to being a
client it re−establishes the client environment by callingrpc_ss_set_thread_handle(),
supplying the previously obtained handle as a parameter.

Return Values

A thread handle.

916

DCE Remote Procedure Call

rpc_ss_get_thread_handle(3rpc)

Examples

This function determines the thread handle, creates a thread, and passes the thread
handle to the thread so it can share the memory management environment of the
calling thread.

#include <pthread.h>

#include <idlbase.h>

pthread_t Launch_thread(

int (*routine_to_launch)(

pthread_addr_t th

)

)

{

rpc_ss_thread_handle_t th = rpc_ss_get_thread_handle();

pthread_t t;

/*

* Create the thread and pass to it the thread handle

* so it can use rpc_ss_set_thread_handle.

*/

pthread_create (&t, pthread_attr_default,

(pthread_startroutine_t)routine_to_launch,

(pthread_addr_t)th);

return t;

}

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

917

DCE 1.2.2 Application Development Reference

rpc_ss_get_thread_handle(3rpc)

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_free(3rpc),
rpc_ss_set_thread_handle(3rpc).

918

DCE Remote Procedure Call

rpc_ss_set_client_alloc_free(3rpc)

rpc_ss_set_client_alloc_free

Purpose Sets the memory allocation and freeing mechanism used by the client stubs, thereby
overriding the default routines the client stub uses to manage memory for pointed-to
nodes; used by client applications

Synopsis

#include <dce/rpc.h>

void rpc_ss_set_client_alloc_free (
idl_void_p_t (*p_allocate) (
unsigned longsize),
void (*p_free) (
idl_void_p_t *ptr)
);

Parameters
Input

p_allocate Specifies a pointer to a routine that has the same procedure declaration
as themalloc() routine and that is used by the client stub to allocate
memory.

p_free Specifies a pointer to a routine that has the same procedure declaration
as thefree() routine and that is used to free memory that was allocated
using the routine pointed at byp_allocate.

Note that in ANSI standard C environments,idl_void_p_t is defined asvoid * and in
other environments is defined aschar * .

919

DCE 1.2.2 Application Development Reference

rpc_ss_set_client_alloc_free(3rpc)

Description

Therpc_ss_set_client_alloc_free()routine overrides the default routines that the client
stub uses to manage memory for pointed-to nodes. The default memory management
routines aremalloc() and free(), except when the remote call occurs within manager
code, in which case the default memory management routines arerpc_ss_allocate()
and rpc_ss_free().

For information about rules for using memory management routines, see theDCE
1.2.2 Application Development Guide—Core Components.

Return Values

An exception,rpc_x_no_memory, when there is insufficient memory available to set
up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_free(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

920

DCE Remote Procedure Call

rpc_ss_set_thread_handle(3rpc)

rpc_ss_set_thread_handle

Purpose Sets the thread handle for either a newly created spawned thread or for a server that
was formerly a client and is ready to be a client again; used by server or possibly by
client applications

Synopsis
#include <dce/rpc.h>

void rpc_ss_set_thread_handle(
rpc_ss_thread_handle_tid);

Parameters
Input

id A thread handle returned by a call torpc_ss_get_thread_handle().

Description

The rpc_ss_set_thread_handle()routine is used by a thread spawned in the manager
code to associate itself with the main RPC manager thread. Each spawned thread
that usesrpc_ss_allocate()and rpc_ss_free() for memory management must call
rpc_ss_set_thread_handle(), using the handle that the main RPC manager thread
obtained throughrpc_ss_get_thread_handle().

Therpc_ss_set_thread_handle()routine can also be used by a program that originally
was a client, then became a server, and is now reverting to a client. The program
must re−establish the client environment by calling therpc_ss_set_thread_handle()
routine, supplying the handle it received (throughrpc_ss_get_thread_handle()) prior
to becoming a server, as a parameter.

921

DCE 1.2.2 Application Development Reference

rpc_ss_set_thread_handle(3rpc)

Return Values

An exception,rpc_x_no_memory, when there is insufficient memory available to set
up necessary data structures.

Examples

When this function is invoked within a spawned thread, its argument is the thread
handle of the calling thread. This example assumes the data passed to the thread
consists of only the middle thread.

#include <pthread.h>

#include <dce/idlbase.h>

int helper_thread (

pthread_addr_t th

)

{

/*

* Set the memory management environment to match

* the parent environment.

*/

rpc_ss_set_thread_handle(rpc_ss_thread_handle_t)th;

/*

* Real work of this thread follows here ...

*/

}

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

922

DCE Remote Procedure Call

rpc_ss_set_thread_handle(3rpc)

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_free(3rpc),
rpc_ss_get_thread_handle(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

923

DCE 1.2.2 Application Development Reference

rpc_ss_swap_client_alloc_free(3rpc)

rpc_ss_swap_client_alloc_free

Purpose Exchanges the current memory allocation and freeing mechanism used by the client
stubs with one supplied by the client; used by client applications

Synopsis

#include <dce/rpc.h>

void rpc_ss_swap_client_alloc_free(
idl_void_p_t (*p_allocate) (
idl_size_t size),
void (*p_free) (
idl_void_p_t ptr),
idl_void_p_t (** p_p_old_allocate) (
idl_size_t size),
void (** p_p_old_free) (
idl_void_p_t ptr)
);

Parameters
Input

p_allocate Specifies a pointer to a routine that has the same procedure declaration as
the malloc() routine and that is used for allocating client stub memory.

p_free Specifies a pointer to a routine that has the same procedure declaration
as thefree() routine and that is used for freeing client stub memory.

924

DCE Remote Procedure Call

rpc_ss_swap_client_alloc_free(3rpc)

Output

p_p_old_allocate
Specifies a pointer to a pointer to a routine that has the same procedure
declaration as themalloc() routine. A pointer to the routine that was
previously used to allocate client stub memory is returned in this
parameter.

p_p_old_free
Specifies a pointer to a pointer to a routine that has the same procedure
declaration as thefree() routine. A pointer to the routine that was
previously used to free client stub memory is returned in this parameter.

Note that in ANSI standard C environments,idl_void_p_t is defined asvoid * and in
other environments is defined aschar * .

Description

The rpc_ss_swap_client_alloc_free()routine exchanges the current client allocate
and free mechanism used by the client stubs for one supplied by the caller. If it
is appropriate for the client code called by an application to use a certain memory
allocation and freeing mechanism, regardless of its caller’s state, the client code can
swap its own mechanism into place on entry, replacing its caller’s mechanism. It can
then swap the caller’s mechanism back into place prior to returning.

For information about rules for using memory management routines, see theDCE
1.2.2 Application Development Guide—Core Components.

Return Values

An exception,rpc_x_no_memory, is returned when there is insufficient memory
available to set up necessary data structures.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

925

DCE 1.2.2 Application Development Reference

rpc_ss_swap_client_alloc_free(3rpc)

Related Information

Functions:rpc_ss_allocate(3rpc), rpc_ss_free(3rpc),
rpc_ss_set_client_alloc_free(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

926

DCE Remote Procedure Call

rpc_string_binding_compose(3rpc)

rpc_string_binding_compose

Purpose Combines the components of a string binding into a string binding; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_string_binding_compose(
unsigned_char_t *obj_uuid,
unsigned_char_t *protseq,
unsigned_char_t *network_addr,
unsigned_char_t *endpoint,
unsigned_char_t *options,
unsigned_char_t **string_binding,
unsigned32 *status);

Parameters
Input

obj_uuid Specifies a NULL-terminated string representation of an object UUID.

protseq Specifies a NULL-terminated string representation of a protocol
sequence.

network_addr
Specifies a NULL-terminated string representation of a network address.

endpoint Specifies a NULL-terminated string representation of an endpoint.

options Specifies a NULL-terminated string representation of network options.

Output

string_binding
Returns a pointer to a NULL-terminated string representation of a
binding handle.

927

DCE 1.2.2 Application Development Reference

rpc_string_binding_compose(3rpc)

Specify NULL to prevent the routine from returning this argument. In
this case the application does not callrpc_string_free().

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_string_binding_compose() routine combines string binding handle
components into a string binding handle.

The RPC runtime allocates memory for the string returned in thestring_binding
parameter. The application callsrpc_string_free() to deallocate that memory.

Specify NULL or provide a null string (\0) for each input string that has no data.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc), rpc_string_binding_parse(3rpc),
rpc_string_free(3rpc), uuid_to_string(3rpc).

928

DCE Remote Procedure Call

rpc_string_binding_parse(3rpc)

rpc_string_binding_parse

Purpose Returns, as separate strings, the components of a string binding; used by client or
server applications

Synopsis
#include <dce/rpc.h>

void rpc_string_binding_parse(
unsigned_char_t *string_binding,
unsigned_char_t **obj_uuid,
unsigned_char_t **protseq,
unsigned_char_t **network_addr,
unsigned_char_t **endpoint,
unsigned_char_t **network_options,
unsigned32 *status);

Parameters
Input

string_binding
Specifies a NULL-terminated string representation of a binding.

Output

obj_uuid Returns a pointer to a NULL-terminated string representation of an
object UUID.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

protseq Returns a pointer to a NULL-terminated string representation of a
protocol sequence.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

929

DCE 1.2.2 Application Development Reference

rpc_string_binding_parse(3rpc)

network_addr
Returns a pointer to a NULL-terminated string representation of a
network address.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

endpoint Returns a pointer to a NULL-terminated string representation of an
endpoint.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

network_options
Returns a pointer to a NULL-terminated string representation of network
options.

Specify NULL to prevent the routine from returning this parameter. In
this case the application does not callrpc_string_free().

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_string_binding_parse() routine parses a string representation of a binding
handle into its component fields.

The RPC runtime allocates memory for each component string the routine returns.
The application callsrpc_string_free() once for each returned string to deallocate the
memory for that string.

If any field of thestring_bindingfield is empty,rpc_string_binding_parse() returns
the empty string in the corresponding output parameter.

Return Values

No value is returned.

930

DCE Remote Procedure Call

rpc_string_binding_parse(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_string_binding
Invalid string binding.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_binding_to_string_binding(3rpc), rpc_string_binding_compose(3rpc),
rpc_string_free(3rpc), uuid_from_string(3rpc) .

931

DCE 1.2.2 Application Development Reference

rpc_string_free(3rpc)

rpc_string_free

Purpose Frees a character string allocated by the runtime; used by client, server, or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_string_free(
unsigned_char_t **string,
unsigned32 *status);

Parameters
Input/Output

string Specifies the address of the pointer to the character string to free.

The value NULL is returned.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_string_free() routine deallocates the memory occupied by a character string
returned by the RPC runtime.

An application must call this routine once for each character string allocated and
returned by calls to other RPC runtime routines. The names of these routines appear
at the end of this reference page.

932

DCE Remote Procedure Call

rpc_string_free(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:dce_error_inq_text(3rpc), rpc_binding_inq_auth_client(3rpc),
rpc_binding_inq_auth_info(3rpc), rpc_binding_to_string_binding(3rpc),
rpc_mgmt_ep_elt_inq_next(3rpc), rpc_mgmt_inq_server_princ_name(3rpc),
rpc_ns_binding_inq_entry_name(3rpc), rpc_ns_entry_expand_name(3rpc),
rpc_ns_group_mbr_inq_next(3rpc), rpc_ns_profile_elt_inq_next(3rpc),
rpc_string_binding_compose(3rpc), rpc_string_binding_parse(3rpc),
uuid_to_string(3rpc).

933

DCE 1.2.2 Application Development Reference

rpc_tower_to_binding(3rpc)

rpc_tower_to_binding

Purpose Returns a binding handle from a tower representation

Synopsis
#include <dce/rpc.h>

void rpc_tower_to_binding(
byte_p_t prot_tower,
rpc_binding_handle_t *binding,
unsigned32 *status);

Parameters
Input

prot_tower Specifies a single protocol tower to convert to a binding handle.

Output

binding Returns the server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_tower_to_binding() routine creates a server binding handle a canonical
representation of a protocol tower.

When an application finishes using thebinding parameter, the application calls the
rpc_binding_free() routine to release the memory used by the binding handle.

The rpc_intro(3rpc) reference page contains an explanation of binding handles.

934

DCE Remote Procedure Call

rpc_tower_to_binding(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

Related Information

Functions:rpc_binding_copy(3rpc), rpc_binding_free(3rpc),
rpc_tower_vector_free(3rpc), rpc_tower_vector_from_binding(3rpc).

935

DCE 1.2.2 Application Development Reference

rpc_tower_vector_free(3rpc)

rpc_tower_vector_free

Purpose Releases memory associated with a tower vector

Synopsis
#include <dce/rpc.h>

void rpc_tower_vector_free(
rpc_tower_vector_p_t *twr_vector,
unsigned32 *status);

Parameters
Input

twr_vector Specifies the tower vector to be freed. On return, its value is NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The status code is eitherrpc_s_ok or a value returned from a called
routine.

Description

The rpc_tower_vector_free()routine releases memory associated with a tower vector,
including the towers as well as the vector.

Return Values

No value is returned.

936

DCE Remote Procedure Call

rpc_tower_vector_free(3rpc)

Related Information

Functions:rpc_binding_copy(3rpc), rpc_binding_free(3rpc),
rpc_tower_to_binding(3rpc), rpc_tower_vector_from_binding(3rpc).

937

DCE 1.2.2 Application Development Reference

rpc_tower_vector_from_binding(3rpc)

rpc_tower_vector_from_binding

Purpose Creates a tower vector from a binding handle

Synopsis
#include <dce/rpc.h>

void rpc_tower_vector_from_binding(
rpc_if_handle_t if_spec,
rpc_binding_handle_t binding,
rpc_tower_vector_p_t *twr_vector,
unsigned32 *status);

Parameters
Input

if_spec The interface specification that will be combined with a binding handle
to form a tower vector.

binding The binding handle that will be combined with a interface specification
to form a tower vector.

Output

twr_vector Returns the allocated tower vector.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The status code is eitherrpc_s_ok, or rpc_s_no_interfaces, or a value
returned from a called routine.

Description

The rpc_tower_vector_from_binding() routine creates a vector of towers
from a binding handle. After the caller is finished with the tower vector, the

938

DCE Remote Procedure Call

rpc_tower_vector_from_binding(3rpc)

rpc_tower_vector_free() routine must be called to release the memory used by the
vector.

Return Values

No value is returned.

Related Information

Functions:rpc_binding_copy(3rpc), rpc_binding_free(3rpc),
rpc_tower_to_binding(3rpc), rpc_tower_vector_free(3rpc).

939

DCE 1.2.2 Application Development Reference

uuid_compare(3rpc)

uuid_compare

Purpose Compares two UUIDs and determines their order; used by client, server, or
management applications

Synopsis
#include <dce/uuid.h>

signed32 uuid_compare(
uuid_t * uuid1,
uuid_t * uuid2,
unsigned32 *status);

Parameters
Input

uuid1 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified inuuid2.

Use the value NULL to specify a nil UUID for this parameter.

uuid2 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified inuuid1.

Use the value NULL to specify a nil UUID for this parameter.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_compare() routine compares two UUIDs and determines their order. A nil
UUID is considered the first element in order. The order of UUIDs is defined by the
RPC architecture and is not a temporal (related to time) ordering. Comparing two

940

DCE Remote Procedure Call

uuid_compare(3rpc)

specific UUIDs always returns the same result regardless of the implementation or
system architecture.

You can use this routine to sort data with UUIDs as a key.

Return Values

Returns one of the following constants:

−1 Theuuid1 parameter precedes theuuid2 parameter in order.

0 Theuuid1 parameter is equal to theuuid2 parameter in order.

1 Theuuid1 parameter follows theuuid2 parameter in order.

Note that a value of 0 (zero) has the same meaning as ifuuid_equal(&uuid1, &uuid2)
returned a value of TRUE.

A nil UUID is the first UUID in order. This means the following:

• If uuid1 is NULL and uuid2 is nonnil, the routine returns -1.

• If uuid1 is NULL and uuid2 is NULL, the routine returns 0.

• If uuid1 is nonnil anduuid2 is NULL, the routine returns 1.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions:uuid_equal(3rpc), uuid_is_nil(3rpc).

941

DCE 1.2.2 Application Development Reference

uuid_create(3rpc)

uuid_create

Purpose Creates a new UUID; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_create(
uuid_t * uuid,
unsigned32 *status);

Parameters
Input

None.

Output

uuid Returns the new UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_create() routine creates a new UUID.

Return Values

No value is returned.

942

DCE Remote Procedure Call

uuid_create(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_getconf_failure
Cannot get network interface device configuration.

uuid_s_no_address
Cannot get Ethernet hardware address.

uuid_s_socket_failure
Cannot create socket.

Related Information

Functions:uuid_create_nil(3rpc), uuid_from_string(3rpc) , uuid_to_string(3rpc).

943

DCE 1.2.2 Application Development Reference

uuid_create_nil(3rpc)

uuid_create_nil

Purpose Creates a nil UUID; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_create_nil(
uuid_t * nil_uuid,
unsigned32 *status);

Parameters
Input

None.

Output

nil_uuid Returns a nil UUID.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_create_nil() routine creates a nil UUID.

Return Values

No value is returned.

944

DCE Remote Procedure Call

uuid_create_nil(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

Related Information

Functions:uuid_create(3rpc).

945

DCE 1.2.2 Application Development Reference

uuid_equal(3rpc)

uuid_equal

Purpose Determines if two UUIDs are equal; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

boolean32 uuid_equal(
uuid_t * uuid1,
uuid_t * uuid2,
unsigned32 *status);

Parameters
Input

uuid1 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified inuuid2. Supply the value NULL to specify a nil UUID for
this parameter.

uuid2 Specifies a pointer to a UUID. This UUID is compared with the UUID
specified inuuid1. Supply the value NULL to specify a nil UUID for
this parameter.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_equal() routine compares two UUIDs and determines if they are equal.

946

DCE Remote Procedure Call

uuid_equal(3rpc)

Return Values

The possible return values and their meanings are as follows:

TRUE Theuuid1 parameter is equal to theuuid2 parameter. Parameterstatus
contains the status codeuuid_s_ok.

FALSE Theuuid1 parameter is not equal to theuuid2 parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions:uuid_compare(3rpc).

947

DCE 1.2.2 Application Development Reference

uuid_from_string(3rpc)

uuid_from_string

Purpose Converts a string UUID to its binary representation; used by client, server, or
management applications

Synopsis
#include <dce/uuid.h>

void uuid_from_string(
unsigned_char_t *string_uuid,
uuid_t * uuid,
unsigned32 *status);

Parameters
Input

string_uuid Specifies a string representation of a UUID. Supply the value NULL or
the null string (\0) to specify a nil UUID.

Output

uuid Returns the binary form of the UUID specified by thestring_uuid
parameter into the address specified by this parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls theuuid_from_string() routine to convert a string UUID to its
binary representation.

948

DCE Remote Procedure Call

uuid_from_string(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_bad_version
Bad UUID version.

uuid_s_invalid_string_uuid
Invalid format for a string UUID.

Related Information

Functions:uuid_to_string(3rpc).

949

DCE 1.2.2 Application Development Reference

uuid_hash(3rpc)

uuid_hash

Purpose Creates a hash value for a UUID; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

unsigned16 uuid_hash(
uuid_t * uuid,
unsigned32 *status);

Parameters
Input

uuid Specifies the UUID for which a hash value is created. Supply NULL to
specify a nil UUID for this parameter.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_hash() routine generates a hash value for a specified UUID.

Note that the return value for a singleuuid value may differ across platforms.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

950

DCE Remote Procedure Call

uuid_hash(3rpc)

uuid_s_bad_version
Bad UUID version.

Return Values

Returns a hash value for the specified UUID.

951

DCE 1.2.2 Application Development Reference

uuid_is_nil(3rpc)

uuid_is_nil

Purpose Determines if a UUID is nil; used by client, server, or management applications

Synopsis
#include <dce/uuid.h>

boolean32 uuid_is_nil(
uuid_t * uuid,
unsigned32 *status);

Parameters
Input

uuid Specifies a UUID to test as a nil UUID. Supply NULL to specify a nil
UUID for this parameter.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_is_nil() routine determines whether the specified UUID is a nil UUID. This
routine yields the same result as if an application did the following:

• Called theuuid_create_nil() routine.

• Called theuuid_equal() routine to compare the returned nil UUID to the UUID
specified in theuuid parameter.

Return Values

The possible return values and their meanings are as follows:

952

DCE Remote Procedure Call

uuid_is_nil(3rpc)

TRUE Theuuid parameter is a nil UUID. Parameterstatuscontains the status
codeuuid_s_ok.

FALSE Theuuid parameter is not a nil UUID.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions:uuid_compare(3rpc), uuid_create_nil(3rpc), uuid_equal(3rpc).

953

DCE 1.2.2 Application Development Reference

uuid_to_string(3rpc)

uuid_to_string

Purpose Converts a UUID from a binary representation to a string representation; used by
client, server, or management applications

Synopsis
#include <dce/uuid.h>

void uuid_to_string(
uuid_t * uuid,
unsigned_char_t **string_uuid,
unsigned32 *status);

Parameters
Input

uuid Specifies a UUID in its binary format. Supply NULL to specify a nil
UUID for this parameter.

Output

string_uuid Returns a pointer to the string representation of the UUID specified in
the uuid parameter. Specify NULL for this parameter to prevent the
routine from returning this information.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The uuid_to_string() routine converts a UUID from its binary representation to its
string representation.

The RPC runtime allocates memory for the string returned in thestring_uuid
parameter. The application callsrpc_string_free() to deallocate that memory. It is

954

DCE Remote Procedure Call

uuid_to_string(3rpc)

not necessary to callrpc_string_free() when you supply NULL for thestring_uuid
parameter.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

uuid_s_ok Success.

uuid_s_bad_version
Bad UUID version.

Related Information

Functions:rpc_string_free(3rpc), uuid_from_string(3rpc) .

955

DCE 1.2.2 Application Development Reference

wchar_t_from_netcs(3rpc)

wchar_t_from_netcs

Purpose Converts international character data from a network code set to a local code set prior
to unmarshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void wchar_t_from_netcs(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
idl_byte *network_data,
unsigned32network_data_length,
unsigned32local_buffer_size,
wchar_t * local_data,
unsigned32 *local_data_length,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain code
set conversion information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
that was used to transmit character data over the network. In general,
the network code set is the code set that the client application’s code
sets evaluation routine has determined to be compatible for this client
and server. When the caller is the client stub, this value is the receiving
tag. When the caller is the server stub, this value is the sending tag.

956

DCE Remote Procedure Call

wchar_t_from_netcs(3rpc)

network_data
A pointer to the international character data that has been received, in
the network code set encoding.

network_data_length
The number ofidl_byte data elements to be converted. For a varying
array or a conformant varyihg array, the value is the local value of the
length_is variable. For a conformant array, the value is the local value
of the size_isvariable. For a fixed array, the value is the array size
specified in the interface definition.

local_buffer_size
A pointer to the buffer size to be allocated to contain the converted data,
in units of wchar_t. The value specified in this parameter is the local
buffer size returned by thewchar_t_local_size()routine.

Output

local_data A pointer to the converted data, inwchar_t format.

local_data_length
The length of the converted data, in units ofwchar_t. NULL is specified
if a fixed array or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The wchar_t_from_netcs() routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The wchar_t_from_netcs()routine is one of the DCE RPC stub code set conversion
routines that RPC stubs use before they marshall or unmarshall data to convert
international character data to and from local and network code sets.

Client and server stubs call thewchar_t_*_netcs routines when thewchar_t type
has been specified as the local data type using thecs_char attribute in the attribute
configuration file for the application.

Client and server stubs call thewchar_t_from_netcs()routine before they unmarshall
the international character data received from the network. The routine takes a binding
handle, a code set value that identifies the code set used to transfer international

957

DCE 1.2.2 Application Development Reference

wchar_t_from_netcs(3rpc)

character data over the network, the address of the network data, inidl_byte format,
that may need to be converted, and the data length, in units ofidl_byte.

The routine compares the sending code set to the local code set currently in use. If the
routine finds that code set conversion is necessary, (because the local code set differs
from the code set specified to be used on the network), it determines which host code
set converter to call to convert the data and then invokes that converter.

The routine then returns the converted data, inwchar_t format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units ofwchar_t.

Prior to calling wchar_t_from_netcs(), client and server stubs call the
wchar_t_local_size()routine to calculate the size of the buffer required to hold the
converted data. Becausewchar_t_local_size()cannot make this calculation for fixed
and varying arrays, applications should either restrict use ofwchar_t_from_netcs()
to conformant and conformant varying arrays, or independently ensure that the buffer
allocated for converted data is large enough.

Applications can specify local data types other thancs_byte and wchar_t (the
local data types for which DCE RPC supplies stub code set conversion routines)
with the cs_char ACF attribute. In this case, the application must also supply
local_type_to_netcs()and local_type_from_netcs() stub conversion routines for this
type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

958

DCE Remote Procedure Call

wchar_t_from_netcs(3rpc)

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If
this error occurs in the server stub, an exception is raised to the client
application.

When the routine is running the host converter routines, the following errors can be
returned:

• rpc_s_ss_invalid_char_support

• rpc_s_ss_short_conv_buffer

When invoked from the server stub, this routine calls thedce_cs_loc_to_rgy()routine
and the host converter routines. If one of these routines returns an error, an exception
is raised to the client application.

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_to_netcs(3rpc),
dce_cs_loc_to_rgy(3rpc), wchar_t_local_size(3rpc), wchar_t_net_size(3rpc),
wchar_t_to_netcs(3rpc).

959

DCE 1.2.2 Application Development Reference

wchar_t_local_size(3rpc)

wchar_t_local_size

Purpose Calculates the necessary buffer size for code set conversion from a network code set
to a local code set prior to unmarshalling; used by client and server stubs, but not
directly by applications

Synopsis
#include <dce/codesets_stub.h>

void wchar_t_local_size(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
unsigned32network_buffer_size,
idl_cs_convert_t *conversion_type,
unsigned32 *local_buffer_size,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain buffer
size evaluation information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
used to transmit character data over the network. In general, the network
code set is the code set that the client application’s code sets evaluation
routine has determined to be compatible for this client and server. When
the caller is the client stub, this value is the receiving tag. When the
caller is the server stub, this value is the sending tag.

960

DCE Remote Procedure Call

wchar_t_local_size(3rpc)

network_buffer_size
The size, in units ofidl_byte, of the buffer that is allocated for the
international character data, For a conformant or conformant varying
array, this value is the network value of thesize_is variable for the
array; that is, the value is the size of the unmarshalled string if no
conversion is done.

Output

conversion_type
A pointer to the enumerated type defined indce/idlbase.hthat indicates
whether data conversion is necessary and whether or not the existing
buffer is sufficient for storing the results of the conversion. Because
wchar_t and idl_byte require different numbers of bytes to encode one
character, andidl_byte to wchar_t conversion always takes place, the
conversion type returned is alwaysidl_cs_new_buffer_convert.

local_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units ofwchar_t. This value is to be used as the
local value of thesize_isvariable for the array, and is nonNULL only
if a conformant or conformant varying array is to be unmarshalled. A
value of NULL in this parameter indicates that a fixed or varying array
is to be unmarshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The wchar_t_local_size()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The wchar_t_local_size()routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant varying
array is to be marshalled or unmarshalled); the RPC stub then allocates a buffer of
that size before it calls one of the code set conversion routines.

961

DCE 1.2.2 Application Development Reference

wchar_t_local_size(3rpc)

Client and server stubs call the twowchar_t_*_size routines when thewchar_t
type has been specified as the local data type using thecs_char attribute in the
attribute configuration file for the application. Thewchar_t_local_size()routine is
used to evaluate buffer size requirements prior to unmarshalling data received over
the network.

Applications do not call thewchar_t_local_size()routine directly. Client and server
stubs call the routine before they unmarshall any data. The stubs pass the routine
a binding handle and a code set value that identifies the code set that was used
to transfer international character data over the network. The stubs also specify the
network storage size of the data, in units ofidl_byte.

Because wchar_t and idl_byte require different numbers of bytes to
encode one character,wchar_t_local_size() always sets conversion_type to
idl_cs_new_buffer_convert, regardless of whether it is called from a client or server
stub, or whether client and server code set tag information has been stored in the
binding handle by a code sets evaluation or tag-setting routine. If a conformant or
conformant varying array is to be unmarshalled, the routine then calculates a new
buffer size by dividing the value ofnetwork_buffer_sizeby the number of bytes
required to encode onewchar_t unit. The routine returns the new buffer size in the
local_buffer_sizeargument. The size is specified in units ofwchar_t, which is the
local representation used for international character data in wide character format.

When a fixed or varying array is being unmarshalled, thewchar_t_local_size()
routine cannot calculate the required buffer size and does not return a value in the
local_buffer_sizeargument.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

962

DCE Remote Procedure Call

wchar_t_local_size(3rpc)

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to
evaluate the code set. If this error occurs in the server stub, an exception
is raised to the client application.

When invoked from the server stub, this routine calls the routinesdce_cs_loc_to_rgy()
and rpc_rgy_get_max_bytes(). If either of these routines returns an error, the
wchar_t_local_size()routine raises an exception to the client application.

Related Information

Functions:cs_byte_local_size(3rpc), cs_byte_net_size(3rpc),
dce_cs_loc_to_rgy(3rpc), rpc_rgy_get_max_bytes(3rpc),
wchar_t_from_netcs(3rpc), wchar_t_net_size(3rpc), wchar_t_to_netcs(3rpc).

963

DCE 1.2.2 Application Development Reference

wchar_t_net_size(3rpc)

wchar_t_net_size

Purpose Calculates the necessary buffer size for code set conversion from a local code set to a
network code set prior to marshalling; used by client and server stubs but not directly
by applications

Synopsis
#include <dce/codesets_stub.h>

void wchar_t_net_size(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
unsigned32local_buffer_size,
idl_cs_convert_t *conversion_type,
unsigned32 *network_buffer_size,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain buffer
size evaluation information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
to be used to transmit character data over the network. In general, the
network code set is the code set that the client application’s code sets
evaluation routine has determined to be compatible for this client and
server. When the caller is the client stub, this value is the sending tag.
When the caller is the server stub, this value is the receiving tag.

964

DCE Remote Procedure Call

wchar_t_net_size(3rpc)

local_buffer_size
The size, in units ofwchar_t, of the buffer that is allocated for the
international character data. For a conformant or conformant varying
array, this value is the local value of thesize_isvariable for the array;
that is, the value is the size of the marshalled string if no conversion is
done.

Output

conversion_type
A pointer to the enumerated type defined indce/idlbase.hthat indicates
whether data conversion is necessary and whether or not the existing
buffer is sufficient for storing the results of the conversion. Because
wchar_t to idl_byte require different numbers of bytes to encode one
character, andwchar_t to idl_byte conversion always takes place, the
conversion type returned is alwaysidl_cs_new_buffer_convert.

network_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units ofidl_byte. This value is to be used as the
network value of thesize_isvariable for the array, and is non-NULL
only if a conformant or conformant varying array is to be marshalled. A
value of NULL in this parameter indicates that a fixed or varying array
is to be marshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The wchar_t_net_size()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The wchar_t_net_size()routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant varying
array is to be marshalled or unmarshalled); the RPC stub then allocates a buffer of
that size before it calls one of the code set conversion routines.

965

DCE 1.2.2 Application Development Reference

wchar_t_net_size(3rpc)

Client and server stubs call the twowchar_t_*_size routines when thewchar_t
type has been specified as the local data type using thecs_char attribute in the
attribute configuration file for the application. Thewchar_t_net_size()routine is used
to evaluate buffer size requirements prior to marshalling data to be sent over the
network.

Applications do not call thewchar_t_net_size()routine directly. Client and server
stubs call the routine before they marshall any data. The stubs pass the routine a
binding handle and a code set value that identifies the code set to be used to transfer
international character data over the network. The stubs also specify the local storage
size of the data, in units ofwchar_t.

Because wchar_t and idl_byte require different numbers of bytes to
encode one character,wchar_t_net_size() always sets conversion_type to
idl_cs_new_buffer_convert, regardless of whether it is called from a client or server
stub, or whether client and server code set tag information has been stored in the
binding handle by a code sets evaluation or tag-setting routine. If a conformant or
conformant varying array is to be marshalled, the routine then calculates a new
buffer size by multiplying the value oflocal_buffer_sizeby the number of bytes
required to encode onewchar_t unit. The routine returns the new buffer size in the
network_buffer_sizeargument. The size is specified in units ofidl_byte, which is the
network representation used for international character data.

When a fixed or varying array is being marshalled, thewchar_t_net_size()routine
cannot calculate the required buffer size and does not return a value in the
network_buffer_sizeargument.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

966

DCE Remote Procedure Call

wchar_t_net_size(3rpc)

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to
evaluate the code set. If this error occurs in the server stub, an exception
is raised to the client application.

When invoked from the server stub, this routine calls the routinesdcs_cs_loc_to_rgy()
and rpc_rgy_get_max_bytes(). If either of these routines returns an error, the
wchar_t_net_size()routine raises an exception to the client application.

Related Information

Functions:cs_byte_local_size(3rpc), cs_byte_net_size(3rpc),
dcs_cs_loc_to_rgy(3rpc), rpc_rgy_get_max_bytes(3rpc),
wchar_t_from_netcs(3rpc), wchar_t_local_size(3rpc), wchar_t_to_netcs(3rpc).

967

DCE 1.2.2 Application Development Reference

wchar_t_to_netcs(3rpc)

wchar_t_to_netcs

Purpose Converts international character data from a local code set to a network code set prior
to marshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void wchar_t_to_netcs(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
wchar_t * local_data,
unsigned32local_data_length,
idl_byte *network_data,
unsigned32 *network_data_length,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain code
set conversion information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
to be used to transmit character data over the network. In general, the
network code set is the code set that the client application’s code sets
evaluation routine has determined to be compatible for this client and
server. When the caller is the client stub, this value is the sending tag.
When the caller is the server stub, this value is the receiving tag.

local_data A pointer to the international character data to be transmitted, in the
local code set encoding.

968

DCE Remote Procedure Call

wchar_t_to_netcs(3rpc)

local_data_length
The number ofwchar_t data elements to be converted. For a varying
array or a conformant varying array, this value is the local value of the
length_is variable. For a conformant array, this value is the local value
of the size_isvariable. For a fixed array, the value is the array size
specified in the interface definition.

Output

network_data
A pointer to the converted data, inidl_byte format.

network_data_length
A pointer to the length of the converted data, in units ofidl_byte. NULL
is specified if a fixed or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The wchar_t_to_netcs()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The wchar_t_to_netcs()routine is one of the DCE RPC stub code set conversion
routines that RPC stubs use before they marshall or unmarshall data to convert
international character data to and from local and network code sets.

Client and server stubs call thewchar_t_*_netcs()routines when thewchar_t type
has been specified as the local data type with thecs_char attribute in the attribute
configuration file for the application.

Client and server stubs call thewchar_t_to_netcs()routine before they marshall any
data. The routine takes a binding handle, a code set value that identifies the code set
to be used to transfer international character data over the network, the address of the
data to be converted, and the length of the data, in units ofwchar_t.

The routine first converts the character data fromwchar_t values toidl_byte values.
The routine next compares the sending code set to the local code set currently in use.
If the routine finds that code set conversion is necessary, (because the local code set
differs from the code set specified to be used on the network), it determines which
host code set converter to call to convert the data and then invokes that converter.

969

DCE 1.2.2 Application Development Reference

wchar_t_to_netcs(3rpc)

The routine then returns the converted data, inidl_byte format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units ofidl_byte.

Prior to calling wchar_t_to_netcs(), client and server stubs call the
wchar_t_net_size() routine to calculate the size of the buffer required to
hold the converted data. Becausewchar_t_net_size()cannot make this calculation for
fixed and varying arrays, applications should either restrict use ofwchar_t_to_netcs()
to conformant and conformant varying arrays, or independently ensure that the buffer
allocated for converted data is large enough.

Applications can specify local data types other thancs_byte and wchar_t (the
local data types for which DCE RPC supplies stub support routines for code set
conversion) with thecs_char ACF attribute. In this case, the application must also
supply local_type_to_netcs()and local_type_from_netcs() stub conversion routines
for the application-defined local type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If
this error occurs in the server stub, an exception is raised to the client
application.

When this routine is running the host converter routines, the following errors can be
returned:

• rpc_s_ss_invalid_char_input

• rpc_s_ss_short_conv_buffer

970

DCE Remote Procedure Call

wchar_t_to_netcs(3rpc)

When invoked from the server stub, this routine calls thedce_cs_loc_to_rgy()routine
and host converter routines. If any of these routines returns an error, an exception is
raised to the client application.

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_to_netcs(3rpc),
dce_cs_loc_to_rgy(3rpc), wchar_t_from_netcs(3rpc), wchar_t_local_size(3rpc),
wchar_t_net_size(3rpc),

971

Chapter 4
DCE Directory Service

973

DCE 1.2.2 Application Development Reference

xds_intro(3xds)

xds_intro

Purpose Introduction to X/OPEN Directory Services (XDS) functions

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsext.h>

Description

This xds_intro reference page lists the XDS interface functions in the following table.
XDS provides a C language binding.

Service Interface Functions—xds_intro(3xds)

Function Description

dsX_extract_attr_values() Extracts attribute values from an OM object.

ds_abandon() Function not supported.

ds_add_entry() Adds a leaf entry to the directory
information tree (DIT).

ds_bind() Opens a session with a directory user agent.

ds_compare() Compares a purported attribute value with
the attribute value stored in the directory
for a particular entry.

ds_initialize() Initializes the interface.

ds_list() Enumerates the immediate subordinates of
a particular directory entry.

ds_modify_entry() Performs an atomic modification of a
directory entry.

974

DCE Directory Service

xds_intro(3xds)

ds_modify_rdn() Changes the relative distinguished name
(RDN) of a leaf entry.

ds_read() Queries information on a directory entry by
name.

ds_receive_result() Function partially supported.

ds_remove_entry() Removes a leaf entry from the DIT.

ds_search() Finds entries of interest in a portion of the
DIT.

ds_shutdown() Shuts down the interface.

ds_unbind() Unbinds from a directory session.

ds_version() Negotiates features of the interface and
service.

gds_decode_alt_addr() Used by DME applications for alternate
address mapping.

gds_encode_alt_addr() Used by DME applications for alternate
address mapping.

The Distributed Computing Environment (DCE) XDS interface does not support
asynchronous operations within the same thread. Thus,ds_abandon()is redundant. A
ds_abandon()call returns with aDS_C_ABANDON_FAILED (DS_E_TOO_LATE)
error. Fords_receive_result(), if there are any outstanding operations (when multiple
threads issue XDS calls in parallel), this function returnsDS_SUCCESSwith the
completion_flag_returnparameter set toDS_OUTSTANDING_OPERATIONS.

If no XDS calls are outstanding,ds_receive_result() returns with DS_status
set to DS_SUCCESS, and with the completion_flag_returnparameter set to
DS_NO_OUTSTANDING_OPERATION.

The following differences exist between Global Directory Service (GDS) and Cell
Directory Service (CDS):

• All functions operate on the GDS namespace.

• CDS does not support theds_modify_rdn() or ds_search(). If either of these two
functions is attempted on CDS, the error messageDS_C_SERVICE_ERROR is
returned (DS_E_UNWILLING_TO_PERFORM).

• In CDS, no X.500 schema rules apply. There is

975

DCE 1.2.2 Application Development Reference

xds_intro(3xds)

— No concept of an object class.

— No mandatory attributes for a given object.

— No set of attributes expressly permitted for a given object.

— No predefined definition of single and multivalued attributes.

The absence of these schema rules means that the usual errors, which are returned by
GDS for breach of schema rules, are not returned by CDS.

The CDS naming DIT is modeled on a typical file system architecture, where
directories are used for storing objects and directories can contain subdirectories. Leaf
objects in the CDS DIT are similar to X.500 naming objects. However, subtree objects
are called directories as in a file system directory. All new objects must be added to
an existing directory. CDS directory objects cannot be added, removed, modified, or
compared using the XDS programming interface.

In CDS, the naming attribute of an object is not stored in the object. Consequently,
in CDS, ds_read() never returns this attribute. Note that theds_compare()
routine applied to this attribute returns withDS_C_ATTRIBUTE_ERROR
(DS_E_CONSTRAINT_VIOLATION).

Notes

See the notes in the relevant reference page for function-specific differences.

XDS functions check for NULL pointers and will return an error. The pointers are only
checked at the function interface. The check is only for NULL and not for validity. If
NULL pointers are passed, this may result in an undetermined behavior.

976

DCE Directory Service

decode_alt_addr(3xds)

decode_alt_addr

Purpose Converts an alternate address attribute from internal GDS format to a structured format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

int decode_alt_addr(
const D2_str *in,
D2_alt_addr ** out);

Parameters

in A pointer to a D2_str structure that contains the alternate address
attribute in an internal GDS format.

Description

Thedecode_alt_addr()routine converts a linearized string that is stored in a structure
D2_str into a structured alternate address format stored in aD2_alt_addr structure.
This function is provided for use by DME applications. It converts an alternate address
attribute from an internal GDS format (linear octet string) to a structured format for
application usage.

in->d2_sizecontains the length of the encoded octet string.

in->d2_valueis a pointer to the beginning of the encoded octet string.

The decode_alt_addr()routine allocates memory for the structured alternate address.
The parameter (*out) contains the address of the memory area that should later be
freed by the application.

The D2_alt_addr structure contains one fieldD2_str for the address, followed by
a structured field for the set of object identifiers. The structureD2_str consists of

977

DCE 1.2.2 Application Development Reference

decode_alt_addr(3xds)

the length of the address and a pointer to the beginning of the address (not zero-
terminated). The second component of theD2_alt_addr contains the number of
object identifiers and the address of the firstD2_obj_id structure. To read a set of
object identifiers, the address of the firstD2_obj_id structure should be increased by
sizeof(D2_obj_id)bytes for each object identifier to be read.

The structureD2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier is
treated as an octet string; that means thatdecode_alt_addr()does no BER conversion
for object identifiers.

Return Values

**out A pointer to the structureD2_alt_addr that stores the alternate address
attribute in a structured format.

int 0 if successful.

-1 if unsuccessful (malloc() failure).

Related Information

Functions:encode_alt_addr(3xds).

978

DCE Directory Service

dsX_extract_attr_values(3xds)

dsX_extract_attr_values

Purpose Extracts attribute values from an OM object

Synopsis
#include <xom.h>
#include <xds.h>
#include <xdsext.h>

OM_return_code dsX_extract_attr_values(
OM_private_object object,
OM_object_identifier attribute_type,
OM_boolean local_strings,
OM_public_object *values,
OM_value_position *total_number);

Parameters
Input

object The private object from which the attribute values are to be extracted.
Objects of typeDS_C_ATTRIBUTE_LIST or DS_C_ENTRY_INFO
are supported.

attribute_type
The attribute type from which the values are to extracted.

local_strings Indicates if results should be converted to a local string format.

Output

values The values parameter is only present if the return value from
OM_return_code is OM_SUCCESS. It points to a public object
containing an array of OM descriptors with the extracted attribute
values.

total_number
Contains the total number of attribute values that have been extracted.

979

DCE 1.2.2 Application Development Reference

dsX_extract_attr_values(3xds)

Note that the total includes only the attribute descriptors in thevalues
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The dsX_extract_attr_values() routine is used to extract the attribute values
associated with the specified attribute type from an OM object. The OM object
must be of typeDS_C_ATTRIBUTE_LIST or DS_C_ENTRY_INFO. It returns an
object containing an array of OM descriptors.

Notes

The memory space for thevalues return parameter is allocated by
dsX_extract_attr_values(). The calling application is responsible for releasing this
memory with theom_delete()routine.

Return Values

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

Errors

Refer to xom.h(4xom) for a list of possible error values that can be returned in
OM_return_code. Refer to theDCE 1.2.2 Problem Determination Guidefor complete
descriptions of all error messages.

980

DCE Directory Service

ds_add_entry(3xds)

ds_add_entry

Purpose Adds a leaf entry to the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_add_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object entry,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be
used for this operation. This parameter must be a private
object or the DS_DEFAULT_CONTEXT constant. Note that
DS_DONT_DEREFERENCE_ALIASES and DS_SIZE_LIMIT do
not apply to this operation.

name (Object(DS_C_NAME)). The name of the entry to be added. The
immediate superior of the new entry is determined by removing the
last RDN component, which belongs to the new entry.

The immediate superior must exist in the same Directory Service
Agent, or the function can fail withDS_C_UPDATE_ERROR
(DS_E_AFFECTS_MULTIPLE_DSAS). Any aliases in the name are
not dereferenced.

981

DCE 1.2.2 Application Development Reference

ds_add_entry(3xds)

entry (Object(DS_C_ATTRIBUTE_LIST)). The attribute information that,
together with that from the RDN, constitutes the entry to be created. Note
that an instance of OM classDS_C_ENTRY_INFO can be supplied as
the value of this parameter, since OM classDS_C_ENTRY_INFO is a
subclass of OM classDS_C_ATTRIBUTE_LIST .

Output

invoke_id_return
(Integer). Not supported.

Description

The ds_add_entry() function adds a leaf entry to the directory. The entry can be
either an object or an alias. The directory checks that the resulting entry conforms to
the directory schema.

Notes

Although the user ideally is not aware whether naming operations are being handled
by GDS or CDS, there are some situations where naming results can differ between
the two services. (See thexds_intro(3xds) reference page for XDS functions for the
general differences between operations on GDS and CDS.)

Note the following issues for theds_add_entry()operation:

• Only leaf objects (that is, objects that are not CDS directory objects) can be added
to CDS through the XDS interface. In other words, the immediate superior of the
new entry must exist.

• Only the DS_A_COMMON_NAME and DS_A_MEMBER attributes are valid
for the DS_O_GROUP_OF_NAMESobject in CDS.

• GDS-structured attribute types are not supported by CDS. If an attempt is
made to add a GDS-structured attribute type to CDS, then it returns with a
DS_C_ATTRIBUTE_ERROR (DS_E_CONSTRAINT_VIOLATION).

Since CDS does not implement the X.500 schema rules, some CDS objects may not
contain mandatory attributes like object class and so on.

982

DCE Directory Service

ds_add_entry(3xds)

Return Values

DS_status DS_SUCCESSis returned if the entry was added; otherwise, an error
is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The function can return the following directory errors:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

• DS_C_UPDATE_ERROR

The DS_C_UPDATE_ERROR (DS_E_AFFECTS_MULTIPLE_DSAS) error,
referred to earlier in this reference page, need not be returned if there is local
agreement between the DSAs to allow the entry to be added.

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

983

DCE 1.2.2 Application Development Reference

ds_bind(3xds)

ds_bind

Purpose Opens a session with the directory

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_bind(
OM_object session,
OM_workspace workspace,
OM_private_object *bound_session_return);

Parameters
Input

session (Object(DS_C_SESSION)). Specifies a particular directory service
provider, together with other details of the service required. This
parameter can be either a public object or a private object. The
DS_DEFAULT_SESSION constant can also be used as the value of
this parameter, causing a new session to be created with default values
for all its OM attributes.

workspace Specifies the workspace obtained from a call tods_initialize() that is
to be associated with the session. All function results from directory
operations using this session will be returned as private objects in this
workspace. If thesessionparameter is a private object, it must be a
private object in this workspace.

Output

bound_session_return
(Object(DS_C_SESSION)). Upon successful completion, this
parameter contains an instance of a directory session that can be
used as a parameter to other functions (for example,ds_read()).
This is a new private object if the value of thesessionparameter

984

DCE Directory Service

ds_bind(3xds)

was DS_DEFAULT_SESSION or a public object; otherwise,
it is that value supplied as a parameter. The function supplies
default values for any of the OM attributes that are not present
in the sessionparameter instance supplied as a parameter. It also
sets the value of theDS_FILE_DESCRIPTOR OM attribute to
DS_NO_VALID_FILE_DESCRIPTOR , since the functionality is not
supported.

Description

The ds_bind() function sets up a communications link to the DSA.

Notes

Although the user ideally is not aware whether naming operations are being handled
by GDS or CDS, there are some situations where naming results can differ between
the two services. (See thexds_intro(3xds) reference page for XDS functions at the
start of this chapter for general differences between operations on GDS and CDS.)

Note that in order to use CDS when GDS is not active,ds_bind() must be called with
the value of thesessionparameter set toDS_DEFAULT_SESSION.

Return Values

DS_status DS_SUCCESSis returned if the function is completed successfully;
otherwise, it indicates the error that has occurred.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_SESSION

• DS_E_BAD_WORKSPACE

985

DCE 1.2.2 Application Development Reference

ds_bind(3xds)

• DS_E_MISCELLANEOUS

• DS_E_NOT_SUPPORTED

• DS_E_TOO_MANY_SESSIONS

The function can return the following directory errors:

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

Related Information

Functions:ds_unbind(3xds).

986

DCE Directory Service

ds_compare(3xds)

ds_compare

Purpose Compares an attribute value with the attribute value stored in the directory for a
particular entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_compare(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object ava,
OM_private_object * result_return,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be used
for this operation. Note thatDS_SIZE_LIMIT does not apply
to this operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the target object entry.
Any aliases in the name are dereferenced unless prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control attribute of
the DS_C_CONTEXT object.

ava (Object(DS_C_AVA)). The attribute value assertion that specifies the
attribute type and value to be compared with those in the entry.

987

DCE 1.2.2 Application Development Reference

ds_compare(3xds)

Output

result_return (Object(DS_C_COMPARE_RESULT)). Upon successful completion,
the result contains flags indicating whether the values matched and
whether the comparison was made against the original entry. It also
contains the DN of the target object if an alias is dereferenced.

invoke_id_return
(Integer). Not supported.

Description

The ds_compare()function compares the value supplied in the givenava parameter
with the value or values of the same attribute type in the named entry.

Notes

Although the user ideally is not aware whether naming operations are being handled
by GDS or CDS, there are some situations where naming results can differ between
the two services. (See thexds_intro(3xds) reference page for XDS functions for the
general differences between operations on GDS and CDS.)

Note the following issues for theds_compare()operation:

• In CDS, the naming attribute of an object is not stored in the attribute list of an
object. Thus in CDS, ads_compare()of the purported naming attribute value
with the naming attribute value of the directory object always fails to match.

• GDS-structured types are not supported by CDS. If a GDS-structured attribute type
is used as a parameter tods_compare()on a CDS object, then it returns with the
error DS_C_ATTRIBUTE_ERROR (DS_E_CONSTRAINT_VIOLATION).

• In CDS, ds_compare() can only be used on leaf objects; otherwise, a
DS_C_NAME_ERROR (DS_E_NO_SUCH_OBJECT) is returned.

• In CDS, if the name parameter is a CDS soft link and the
Dont_Dereference_Aliases context parameter is set toTRUE, the only
allowed attribute for comparison is theDS_A_ALIASED_OBJECT_NAME
attribute. This attribute is compared with the Distinguished Name of the soft link
target.

988

DCE Directory Service

ds_compare(3xds)

Return Values

DS_status Indicates whether the comparison is completed or not. If successful,
DS_SUCCESSis returned. Note that the operation fails and an error is
returned either if the target object is not found or if it does not have an
attribute of the required type.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

989

DCE 1.2.2 Application Development Reference

ds_initialize(3xds)

ds_initialize

Purpose Initializes the XDS interface

Synopsis
#include <xom.h>
#include <xds.h>

OM_workspace ds_initialize(
void);

Description

The ds_initialize() function performs any necessary initialization of the XDS
application program interface (API), including the creation of a workspace. It must be
called before any other directory interface functions are called. If it is subsequently
called beforeds_shutdown(), the function returns NULL.

Return Values

OM_workspace
Upon successful completion,OM_workspace contains a handle to
a workspace in which OM objects can be created and manipulated.
Objects created in this workspace, and only such objects, can be used
as parameters to the other directory interface functions. This function
returns NULL if it fails.

Related Information

Functions:ds_shutdown(3xds).

990

DCE Directory Service

ds_list(3xds)

ds_list

Purpose Enumerates the immediate subordinates of a particular directory entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_list(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_private_object * result_return,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be used
for this operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the object entry whose
immediate subordinates are to be listed. Any aliases in the name are
dereferenced unless this is prohibited by the service control attribute
DS_DONT_DEREFERENCE_ALIASES of the DS_C_CONTEXT
object.

Output

result_return (Object(DS_C_LIST_RESULT)). Upon successful completion, the
result contains some information about the target object’s immediate
subordinates. It also contains the DN of the target object, if an alias

991

DCE 1.2.2 Application Development Reference

ds_list(3xds)

was dereferenced to find it. Aliases in the subordinate names are not
dereferenced. In addition, there can be a partial outcome qualifier,
which indicates that the result is incomplete. It also explains the reason
for this (for example, because the time limit expired), and it contains
information that can be helpful when attempting to complete the
operation.

invoke_id_return
(Integer). Not supported.

Description

The ds_list() function is used to obtain a list of the immediate subordinates of the
named entry. The list can be incomplete in some circumstances; for example, if the
results exceedDS_SIZE_LIMIT .

Return Values

DS_status Takes the valueDS_SUCCESSif the named object is located (even if
there are no subordinates) and takes an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

992

DCE Directory Service

ds_list(3xds)

The function can return the following directory errors:

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

993

DCE 1.2.2 Application Development Reference

ds_modify_entry(3xds)

ds_modify_entry

Purpose Performs an atomic modification on a directory entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_modify_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object changes,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be
used for this operation. Note thatDS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the target object entry. Any
aliases in the name arenot dereferenced.

changes (Object(DS_C_ENTRY_MOD_LIST)). A sequence of modifications to
the named entry.

Output

invoke_id_return
(Integer). Not supported.

994

DCE Directory Service

ds_modify_entry(3xds)

Description

The ds_modify_entry() routine is used to make a series of one or more of the
following changes to a single directory entry:

• Add a new attribute (DS_ADD_ATTRIBUTE).

• Remove an attribute (DS_REMOVE_ATTRIBUTE).

• Add attribute values (DS_ADD_VALUES).

• Remove attribute values (DS_REMOVE_VALUES).

Values can be replaced by a combination of adding values and removing values in a
single operation. The RDN can only be changed by usingds_modify_rdn().

The result of the operation is as if each modification is made in the order specified
in the changesparameter. If any of the individual modifications fails, then a
DS_C_ATTRIBUTE_ERROR is reported and the entry is left as it was prior to
the whole operation. The operation is atomic; that is, either all or none of the changes
are made. The directory checks that the resulting entry conforms to the directory
schema.

Notes

Although the user ideally is not aware whether naming operations are being handled
by GDS or CDS, there are some situations where naming results can differ between
the two services. (See thexds_intro(3xds) reference page for XDS functions for the
general differences between operations on GDS and CDS.)

Note the following issues for theds_modify_entry() operation:

• Naming schema rules do not apply in CDS. Thus, the following attribute errors
are never returned by CDS:

— DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

— DS_E_ATTRIBUTE_OR_VALUE_EXISTS

• Naming operations that would normally return these errors succeed in CDS. In
particular, the addition of an attribute that already exists does not return with an
error. Instead, the values of the attribute to be added are combined with the values
of the existing attribute.

• GDS-structured attribute types are not supported by CDS. If a GDS-
structured attribute type is used as a parameter tods_modify_entry()

995

DCE 1.2.2 Application Development Reference

ds_modify_entry(3xds)

on a CDS object, then it returns with aDS_C_ATTRIBUTE_ERROR
(DS_E_CONSTRAINT_VIOLATION). In CDS, ds_modify_entry()
can only be used on leaf objects; otherwise, aDS_C_NAME_ERROR
(DS_E_NO_SUCH_OBJECT) is returned.

• In CDS, if thenameparameter is a CDS soft link and theDont_Dereference_Alias
flag is set toTRUE, the soft link entry itself is modified. In this case, the only
allowed modifications are to theDS_A_ALIASED_OBJECT_NAME attribute.

Return Values

DS_status Takes the valueDS_SUCCESSif all the modifications succeeded and
takes an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

996

DCE Directory Service

ds_modify_entry(3xds)

• DS_C_SERVICE_ERROR

• DS_C_UPDATE_ERROR

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

The following situations apply to GDS:

• An attempt to useDS_ADD_ATTRIBUTE to add an existing attribute results in
a DS_C_ATTRIBUTE_ERROR.

• An attempt to useDS_ADD_VALUES to add an existing value results in a
DS_C_ATTRIBUTE_ERROR, as does an attempt to add a value to a nonexistent
attribute type.

• An attempt to useDS_REMOVE_ATTRIBUTE to remove a nonexisting attribute
results in aDS_C_ATTRIBUTE_ERROR, whereas an attempt to remove an
attribute that is part of the object’s RDN results in aDS_C_UPDATE_ERROR.

• An attempt to useDS_REMOVE_VALUES to remove a nonexisting value results
in a DS_C_ATTRIBUTE_ERROR, whereas an attempt to remove a value of an
attribute that is part of the object’s RDN, or to modify the object class attribute,
results in aDS_C_UPDATE_ERROR.

997

DCE 1.2.2 Application Development Reference

ds_modify_rdn(3xds)

ds_modify_rdn

Purpose Changes the RDN of a leaf entry

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_modify_rdn(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object new_RDN,
OM_boolean delete_old_RDN,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be
used for this operation. Note thatDS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The current name of the target leaf entry.
Any aliases in the name arenot dereferenced. The immediate
superior mustnot have any nonspecific subordinate references; if
it does, the function can fail with aDS_C_UPDATE_ERROR
(DS_E_AFFECTS_MULTIPLE_DSAS).

A nonspecific subordinate reference is an indication that another DSA
holds some number of children, but does not indicate their RDNs. This

998

DCE Directory Service

ds_modify_rdn(3xds)

means that it is not possible to check the uniqueness of the requested
new RDN within a single DSA.

new_RDN (Object(DS_C_RELATIVE_NAME)). The requested new RDN. If an
attribute value in the new RDN does not already exist in the entry (either
as part of the old RDN or as a nondistinguished value), the new value
is added. If it cannot be added, an error is reported.

delete_old_RDN
(Boolean). If this value isOM_TRUE , all attribute values that are
in the old RDN but not in the new RDN are deleted. If the value is
OM_FALSE , the old values should remain in the entry (not as part of
the RDN). The value must beOM_TRUE when a single value attribute
in the RDN has its value changed by the operation. If this operation
removes the last attribute value of an attribute, that attribute is deleted.

Output

invoke_id_return
(Integer). Not supported.

Description

The ds_modify_rdn() function is used to change the RDN of a leaf entry (either an
object entry or an alias entry).

Notes

CDS does not supportds_modify_rdn(), and returns withDS_C_SERVICE_ERROR
(DS_E_UNWILLING_TO_%PERFORM).

Return Values

DS_status Indicates whether the name of the entry is changed (DS_SUCCESSis
returned); otherwise, an error is returned.

999

DCE 1.2.2 Application Development Reference

ds_modify_rdn(3xds)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

• DS_C_UPDATE_ERROR

The DS_C_UPDATE_ERROR (DS_E_AFFECTS_MULTIPLE_DSAS) error,
referred to earlier in this reference page, need not be returned if there is local
agreement between the DSAs to allow the entry to be modified.

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

1000

DCE Directory Service

ds_read(3xds)

ds_read

Purpose Queries information on an entry by name

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_read(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object selection,
OM_private_object * result_return,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be used
for this operation. Note thatDS_SIZE_LIMIT does not apply
to this operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the target object entry.
Any aliases in the name are dereferenced unless prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control attribute of
the DS_C_CONTEXT object.

selection (Object(DS_C_ENTRY_INFO_SELECTION)). Specifies what
information from the entry is requested. Information about no
attributes, all attributes, or just for a named set can be chosen. Attribute
types are always returned, but the attribute values need not be returned.

1001

DCE 1.2.2 Application Development Reference

ds_read(3xds)

The possible values of this parameter are given in theDCE 1.2.2
Application Development Guide—Directory Services.

Output

result_return (Object(DS_C_READ_RESULT)). Upon successful completion, the
result contains the DN of the target object, and a flag indicating whether
the result came from the original entry or a copy, as well as any requested
attribute types and values. Attribute information is only returned if
access rights are sufficient.

invoke_id_return
(Integer). Not supported.

Description

The ds_read()function is used to extract information from an explicitly named entry.
It can also be used to verify a DN.

Notes

Although the user ideally is not aware whether naming operations are being handled
by GDS or CDS, there are some situations where naming results can differ between
the two services. (See thexds_intro(3xds) reference page for XDS functions for the
general differences between operations on GDS and CDS.)

Note the following issues for theds_read()operation:

• Since CDS does not implement the X.500 schema rules, some CDS objects
may not contain mandatory attributes like object class and so on. In CDS, a
read of an alias object fails if theDS_A_ALIASED_OBJECT_NAME
does not exist. Instead, CDS returns withDS_C_NAME_ERROR
(DS_E_NO_SUCH_OBJECT).

• In CDS, the naming attribute of an object is not stored in the attribute list for the
object. Thus in CDS,ds_read() does not return this attribute in the attribute list
for an object.

1002

DCE Directory Service

ds_read(3xds)

Return Values

DS_status Indicates whether or not the read operation is completed. This is
DS_SUCCESSif completed.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_ATTRIBUTE

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

Note that the directory error DS_C_ATTRIBUTE_ERROR
(DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE) is reported in GDS if an
explicit list of attributes is specified by theselectionparameter, but none of them are
present in the entry. This error is not reported if any of the selected attributes are
present.

1003

DCE 1.2.2 Application Development Reference

ds_read(3xds)

A DS_C_SECURITY_ERROR (DS_E_INSUFFICIENT_ACCESS_RIGHTS) is
only reported where access rights preclude the reading of all requested attribute values.

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

1004

DCE Directory Service

ds_remove_entry(3xds)

ds_remove_entry

Purpose Removes a leaf entry from the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_remove_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be
used for this operation. Note thatDS_SIZE_LIMIT and
DS_DONT_DEREFERENCE_ALIASES do not apply to this
operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the target object entry. Any
aliases in the name arenot dereferenced.

Output

invoke_id_return
(Integer). Not supported.

1005

DCE 1.2.2 Application Development Reference

ds_remove_entry(3xds)

Description

The ds_remove_entry()function is used to remove a leaf entry from the directory
(either an object entry or an alias entry).

Return Values

DS_status Indicates whether or not the entry was deleted.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The function can return the following directory errors:

• DS_C_NAME_ERROR

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

• DS_C_UPDATE_ERROR

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

1006

DCE Directory Service

ds_search(3xds)

ds_search

Purpose Finds entries of interest in a part of the DIT

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_search(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint subset,
OM_object filter,
OM_boolean search_aliases,
OM_object selection,
OM_private_object * result_return,
OM_sint * invoke_id_return);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session against which this
operation is performed. This must be a private object.

context (Object(DS_C_CONTEXT)). The directory context to be used
for this operation. This parameter must be a private object or the
DS_DEFAULT_CONTEXT constant.

name (Object(DS_C_NAME)). The name of the object entry that
forms the base of ds_search(). Any aliases in the name
are dereferenced, unless dereferencing is prohibited by the
DS_DONT_DEREFERENCE_ALIASES service control attribute of
the DS_C_CONTEXT object.

1007

DCE 1.2.2 Application Development Reference

ds_search(3xds)

subset (Integer). Specifies the portion of the DIT to be searched. Its value must
be one of the following:

• DS_BASE_OBJECTSearches just the given object entry.

• DS_ONE_LEVEL Searches just the immediate subordinates of the
given object entry.

• DS_WHOLE_SUBTREE Searches the given object and all its
subordinates.

filter (Object(DS_C_FILTER)). The filter is used to eliminate entries from
the search that are not wanted. Information is only returned on entries
that satisfy the filter. TheDS_NO_FILTER constant can be used as the
value of this parameter if all entries are searched and none eliminated.
This corresponds to a filter with aDS_FILTER_TYPE value of
DS_AND and no values of theDS_FILTER or DS_FILTER_ITEM
OM attributes.

search_aliases
(Boolean). Any aliases in the subordinate entries being searched are
dereferenced if the value of this parameter isOM_TRUE , and they are
not dereferenced if its value isOM_FALSE .

selection (Object(DS_C_ENTRY_INFO_SELECTION)). Specifies what
information from the entry is requested. Information about no
attributes, all attributes, or just for a named set can be chosen. Attribute
types are always returned, but the attribute values need not be. The
possible values of this parameter are listed in theDCE 1.2.2 Application
Development Guide—Directory Services.

Output

result_return (Object(DS_C_SEARCH_RESULT)). If completion is successful, the
result contains the requested information from each object in the search
space that satisfied the filter. The DN of the target object is present if
an alias is dereferenced. In addition, there may be a partial outcome
qualifier, which indicates that the result is incomplete. It also explains
why it is not complete and how it could be completed.

invoke_id_return
(Integer). Not supported.

1008

DCE Directory Service

ds_search(3xds)

Description

The ds_search() function is used to search a portion of the directory and return
selected information from entries of interest. The information may be incomplete in
some circumstances; for example, if the results exceedDS_SIZE_LIMIT .

Notes

CDS does not supportds_search(), and it returns withDS_C_SERVICE_ERROR
(DS_E_UNWILLING_TO_PERFORM).

Return Values

DS_status Takes the valueDS_SUCCESSif the named object is located and takes
an error value if not.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_ARGUMENT

• DS_E_BAD_CONTEXT

• DS_E_BAD_NAME

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

• DS_E_MISSING_TYPE

• DS_E_TOO_MANY_OPERATIONS

The following directory errors can be returned by the function:

• DS_C_ATTRIBUTE_ERROR

• DS_C_NAME_ERROR

1009

DCE 1.2.2 Application Development Reference

ds_search(3xds)

• DS_C_REFERRAL

• DS_C_SECURITY_ERROR

• DS_C_SERVICE_ERROR

Note that an unfiltered search of just the base object succeeds even if none of the
requested attributes are found, while theds_read() call fails with the same selected
attributes.

A DS_C_SECURITY_ERROR (DS_E_INSUFFICIENT_ACCESS_RIGHTS) is
only reported where access rights preclude the reading of all requested attribute values.

This function can return aDS_C_COMMUNICATIONS_ERROR , as well as the
error constantDS_NO_WORKSPACE.

1010

DCE Directory Service

ds_shutdown(3xds)

ds_shutdown

Purpose Deletes a directory workspace

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_shutdown(
OM_workspace workspace);

Parameters
Input

workspace Specifies the workspace (obtained from a call tods_initialize()) that is
to be deleted.

Description

The ds_shutdown()function deletes the workspace established byds_initialize() and
enables the service to release resources. All sessions associated with the workspace
must be terminated by callingds_unbind() prior to callingds_shutdown(). No other
directory function can reference the specified workspace after it has been deleted.
However,om_delete()andom_instance()may be called if referring to public objects.

Return Values

DS_status DS_SUCCESSif the function completed successfully; otherwise, it
indicates the error that has occurred.

1011

DCE 1.2.2 Application Development Reference

ds_shutdown(3xds)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SERVICE_ERROR (value DS_E_BUSY) if
ds_shutdown() is called before all directory connections have been released with
ds_unbind().

This function can return the error constantDS_NO_WORKSPACE.

This function does not return aDS_C_COMMUNICATIONS_ERROR or any
directory errors.

Related Information

Functions:ds_initialize(3xds).

1012

DCE Directory Service

ds_unbind(3xds)

ds_unbind

Purpose Unbinds from a directory session

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_unbind(
OM_private_object session);

Parameters
Input

session (Object(DS_C_SESSION)). The directory session to be unbound. This
must be a private object. The value of theDS_FILE_DESCRIPTOR
OM attribute isDS_NO_VALID_FILE_DESCRIPTOR if the function
succeeds. The remaining OM attributes are unchanged.

Description

The ds_unbind() function terminates the given directory session and makes the
parameter unavailable for use with other interface functions (exceptds_bind()).

The unbound session can be used again as a parameter tods_bind() possibly after
modification by the OM functions. When it is no longer required, it must be deleted
by using the OM functions.

Return Values

DS_status Takes the valueDS_SUCCESSif the sessionparameter is unbound and
takes an error value if not.

1013

DCE 1.2.2 Application Development Reference

ds_unbind(3xds)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return aDS_C_SYSTEM_ERROR or one of the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_SESSION

• DS_E_MISCELLANEOUS

If ds_unbind() is called while there are outstanding directory operations (from other
threads), then this function will return aDS_SERVICE_ERROR with the value
DS_E_BUSY.

This function does not return aDS_C_COMMUNICATIONS_ERROR or
any directory errors. However, this function can return the error constant
DS_NO_WORKSPACE.

Related Information

Functions:ds_bind(3xds).

1014

DCE Directory Service

ds_version(3xds)

ds_version

Purpose Negotiates features of the interface and service

Synopsis
#include <xom.h>
#include <xds.h>

DS_status ds_version(
DS_feature feature_list[],
OM_workspace workspace);

Parameters
Input

workspace Specifies the workspace obtained from a call toom_initialize() for
which the features are to be negotiated. The features will be in effect
for operations that use the workspace or directory sessions associated
with the workspace.

Input/Output

feature_list[]
(DS_feature). On input contains an ordered sequence of features, each
represented by an object identifier. The sequence is terminated by an
object identifier having no components (a length of 0 (zero) and any
value for the data pointer.)

If the function completed successfully, an ordered sequence of
boolean values are returned, with the same number of elements as the
feature_list[] parameter. IfOM_TRUE , each value indicates that the
corresponding feature is now part of the interface. IfOM_FALSE ,
each value indicates that the corresponding feature is not available.

This result is combined with thefeature_list[] parameter as a single
array of structures of typeDS_feature, which is defined as follows:

1015

DCE 1.2.2 Application Development Reference

ds_version(3xds)

typedef struct

{

OM_object_identifier feature;

OM_boolean activated;

}

DS_feature;

Description

The ds_version() function negotiates features of the interface, which are
represented by object identifiers. TheDS_BASIC_DIR_CONTENTS_PKG,
DS_STRONG_AUTHENT_PKG, and the MHS_DIR_USER_PKG specified in
the DCE 1.2.2 Application Development Guide—Directory Servicesare negotiable
features in this specification. Features can also include vendor extensions, such as
the DSX_GDS_PKG, and new features in future versions of the XDS specification.
Versions are negotiated after a workspace is initialized withds_initialize().

Return Values

DS_status Takes the valueDS_SUCCESSif the function completed successfully.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This function can return a DS_C_SYSTEM_ERROR or the following
DS_C_LIBRARY_ERROR errors:

• DS_E_BAD_WORKSPACE

• DS_E_MISCELLANEOUS

This function does not return aDS_C_COMMUNICATIONS_ERROR or
any directory errors. However, this function can return the error constant
DS_NO_WORKSPACE.

1016

DCE Directory Service

encode_alt_addr(3xds)

encode_alt_addr

Purpose Converts an alternate address attribute structure into an internal GDS format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

int encode_alt_addr(
const D2_alt_addr *in,
D2_str ** out);

Parameters

in A pointer to an alternate address attribute in a structured format.

Description

The encode_alt_addr() converts an alternate address stored in aD2_alt_addr
structure into a linearized string that is stored in a structure of typeD2_str. This
function is provided for use by DME applications. It converts a structured alternate
address attribute into a linear octet string for internal use by GDS.

The D2_alt_addr structure contains one field of typeD2_str for storing the address,
followed by a structured field for a set of object identifiers. The structureD2_str
consists of the length of the address and a pointer to the start of the address (not
zero-terminated). The second component ofD2_alt_addr contains the number of
object identifiers and the address of the firstD2_obj_id structure. To store additional
object identifiers, the address of the firstD2_obj_id structure has to be increased by
sizeof(D2_obj_id)bytes for each object identifier to be added.

The structureD2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier

1017

DCE 1.2.2 Application Development Reference

encode_alt_addr(3xds)

is treated as an octet string; that means there is no BER conversion done by
encode_alt_addr().

encode_alt_addr()will allocate memory for the encoded string. (*out) contains the
address of the memory area that should later be freed by the application.

Return Values

** out A pointer to the structureD2_str which stores the alternate address
attribute in an internal GDS format.

(*out)->d2_sizewill contain the length of the encoded octet string.

(*out)->d2_valuewill be a pointer to the beginning of the encoded octet
string. This string is not zero-terminated.

int 0 If successful.

−1 If unsuccessful (malloc() failure).

Related Information

Functions:decode_alt_addr(3xds).

1018

DCE Directory Service

gds_decode_alt_addr(3xds)

gds_decode_alt_addr

Purpose Converts an alternate address attribute from internal GDS format to a structured format

Synopsis
#include <xom.h>
#include <xds.h>
#include <dce/d2dir.h>

d2_ret_val gds_decode_alt_addr(
const D2_str *in,
D2_alt_addr ** out);

Parameters
Input

in A pointer to a D2_str structure that contains the alternate address
attribute in an internal GDS format.

Output

out A pointer to the structureD2_alt_addr that stores the alternate address
attribute in a structured format.

Description

The gds_decode_alt_addr()function converts a linearized string that is stored in a
structureD2_str into a structured alternate address format stored in aD2_alt_addr
structure. This function is provided for use by DME applications. It converts an
alternate address attribute from an internal GDS format (linear octet string) to a
structured format for application usage.

The in->d2_size parameter contains the length of the encoded octet string;in-
>d2_valueis a pointer to the beginning of the encoded octet string.

1019

DCE 1.2.2 Application Development Reference

gds_decode_alt_addr(3xds)

The gds_decode_alt_addr()function allocates memory for the structured alternate
address. The(*out) parameter contains the address of the memory area that should
later be freed by the application.

The D2_alt_addr structure contains one fieldD2_str for the address, followed by
a structured field for the set of object identifiers. The structureD2_str consists of
the length of the address and a pointer to the beginning of the address (not zero-
terminated). The second component of theD2_alt_addr contains the number of
object identifiers and the address of the firstD2_obj_id structure. To read a set of
object identifiers, the address of the firstD2_obj_id structure should be increased by
sizeof(D2_obj_id)bytes for each object identifier to be read.

The structureD2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means thatgds_decode_alt_addr()does no BER
conversion for object identifiers.

Return Values

d2_ret_val D2_NOERROR (that is, 0) if successful.

D2_ERROR (that is, -1), if unsuccessful (malloc() failure).

Related Information

Functions:gds_encode_alt_addr(3xds).

1020

DCE Directory Service

gds_encode_alt_addr(3xds)

gds_encode_alt_addr

Purpose Converts an alternate address attribute structure into an internal GDS format

Synopsis
#include <xom.h>#include <xds.h>#include <dce/d2dir.h>

d2_ret_val gds_encode_alt_addr(
const D2_alt_addr *in,
D2_str ** out);

Parameters
Input

in A pointer to an alternate address attribute in a structured format.

Output

out A pointer to the structureD2_str that stores the alternate address
attribute in an internal GDS format.

The (*out)->d2_sizeparameter will contain the length of the encoded
octet string; the(*out)->d2_value parameter will be a pointer to the
beginning of the encoded octet string. This string is not zero-terminated.

Description

The gds_encode_alt_addr()function converts an alternate address stored in a
D2_alt_addr structure into a linearized string that is stored in a structure of type
D2_str. This function is provided for use by DME applications. It converts a structured
alternate address attribute into a linear octet string for internal use by GDS.

The D2_alt_addr structure contains one field of typeD2_str for storing the address,
followed by a structured field for a set of object identifiers. The structureD2_str
consists of the length of the address and a pointer to the start of the address (not

1021

DCE 1.2.2 Application Development Reference

gds_encode_alt_addr(3xds)

zero-terminated). The second component ofD2_alt_addr contains the number of
object identifiers and the address of the firstD2_obj_id structure. To store additional
object identifiers, the address of the firstD2_obj_id structure has to be increased by
sizeof(D2_obj_id)bytes for each object identifier to be added.

The structureD2_obj_id consists of the length of the object identifier and a pointer
to the beginning of the object identifier (not zero-terminated). Each object identifier
is treated as an octet string; that means there is no BER conversion done by
gds_encode_alt_addr().

The gds_encode_alt_addr()function will allocate memory for the encoded string.
The (*out) parameter contains the address of the memory area that should later be
freed by the application.

Return Values

d2_ret_val D2_NOERROR (that is, 0), if successful.

D2_ERROR (that is, -1), if unsuccessful (malloc() failure).

Related Information

Functions:gds_decode_alt_addr(3xds).

1022

DCE Directory Service

xds_intro(4xds)

xds_intro

Purpose Introduction to XDS header files

Description

There are nine XDS headers, as follows:

xds.h Contains definitions for the XDS functions and directory service
package.

xdsbdcp.h Contains definitions for the basic directory contents package.

xdssap.h Contains definitions for the strong authentication package.

xdscds.h Contains definitions for the cell directory service.

xdsdme.h Contains definitions for the DME specific directory object and attribute.

xdsgds.h Contains definitions for the global directory service package.

xdsmdup.h Contains definitions for the MHS directory user package.

xmhp.h Contains definitions for the MHS directory objects/attributes.

xmsga.h Contains definitions for the message store general attributes.

The xds.h header file is a mandatory include for all applications using the XDS API.

The xdsbdcp.h,xdsmdup.h, and xdssap.h headers are part of the X/Open XDS
specifications. They are required when using the basic directory contents package,
MHS directory user package, and strong authentication package respectively.

The xdsgds.h and xdscds.h headers are DCE extensions to the XDS API. The
xdsgds.hheader is required when using the GDS package. Thexdscds.hheader is
required when using CDS.

The xmhp.h and xmsga.hheaders are required when using the MHS directory user
package.

The xdsdme.hheader is required when using the DME specific directory object class
and attribute.

1023

DCE 1.2.2 Application Development Reference

xds.h(4xds)

xds.h

Purpose Definitions for the directory service package

Synopsis

#include <xom.h>
#include <xds.h>

Description

The xds.h header declares the interface functions, the structures passed to and from
those functions, and the defined constants used by the functions and structures.

All application programs that include this header must first include thexom.h object
management header.

#ifndef XDS_HEADER

#define XDS_HEADER

/* DS package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)

member-company(2) dec(1011) xopen(28) dsp(0) } */

#define OMP_O_DS_SERVICE_PKG "\x2B\x0C\x02\x87\x73\x1C\x00"

/*Defined constants */

/* Intermediate object identifier macro */

#define dsP_c(X) OMP_O_DS_SERVICE_PKG #X

1024

DCE Directory Service

xds.h(4xds)

/* OM class names (prefixed by DS_C_) */

/* Every application program which makes use of a class or other */

/* Object Identifier must explicitly import it into every */

/* compilation unit (C source program) which uses it. Each such */

/* class or Object Identifier name must be explicitly exported */

/* from just one compilation unit. */

/* In the header file, OM class constants are prefixed with the */

/* OMP_O prefix to denote that they are OM classes. However, */

/* when using the OM_IMPORT and OM_EXPORT macros, the base */

/* names (without the OMP_O prefix) should be used. */

/* For example: */

/* OM_IMPORT (DS_C_AVA) */

#define OMP_O_DS_C_ABANDON_FAILED dsP_c(\x85\x3D)

#define OMP_O_DS_C_ACCESS_POINT dsP_c(\x85\x3E)

#define OMP_O_DS_C_ADDRESS dsP_c(\x85\x3F)

#define OMP_O_DS_C_ATTRIBUTE dsP_c(\x85\x40)

#define OMP_O_DS_C_ATTRIBUTE_ERROR dsP_c(\x85\x41)

#define OMP_O_DS_C_ATTRIBUTE_LIST dsP_c(\x85\x42)

#define OMP_O_DS_C_ATTRIBUTE_PROBLEM dsP_c(\x85\x43)

#define OMP_O_DS_C_AVA dsP_c(\x85\x44)

#define OMP_O_DS_C_COMMON_RESULTS dsP_c(\x85\x45)

#define OMP_O_DS_C_COMMUNICATIONS_ERROR dsP_c(\x85\x46)

#define OMP_O_DS_C_COMPARE_RESULT dsP_c(\x85\x47)

#define OMP_O_DS_C_CONTEXT dsP_c(\x85\x48)

#define OMP_O_DS_C_CONTINUATION_REF dsP_c(\x85\x49)

#define OMP_O_DS_C_DS_DN dsP_c(\x85\x4A)

#define OMP_O_DS_C_DS_RDN dsP_c(\x85\x4B)

#define OMP_O_DS_C_ENTRY_INFO dsP_c(\x85\x4C)

#define OMP_O_DS_C_ENTRY_INFO_SELECTION dsP_c(\x85\x4D)

#define OMP_O_DS_C_ENTRY_MOD dsP_c(\x85\x4E)

#define OMP_O_DS_C_ENTRY_MOD_LIST dsP_c(\x85\x4F)

#define OMP_O_DS_C_ERROR dsP_c(\x85\x50)

#define OMP_O_DS_C_EXT dsP_c(\x85\x51)

#define OMP_O_DS_C_FILTER dsP_c(\x85\x52)

#define OMP_O_DS_C_FILTER_ITEM dsP_c(\x85\x53)

#define OMP_O_DS_C_LIBRARY_ERROR dsP_c(\x85\x54)

1025

DCE 1.2.2 Application Development Reference

xds.h(4xds)

#define OMP_O_DS_C_LIST_INFO dsP_c(\x85\x55)

#define OMP_O_DS_C_LIST_INFO_ITEM dsP_c(\x85\x56)

#define OMP_O_DS_C_LIST_RESULT dsP_c(\x85\x57)

#define OMP_O_DS_C_NAME dsP_c(\x85\x58)

#define OMP_O_DS_C_NAME_ERROR dsP_c(\x85\x59)

#define OMP_O_DS_C_OPERATION_PROGRESS dsP_c(\x85\x5A)

#define OMP_O_DS_C_PARTIAL_OUTCOME_QUAL dsP_c(\x85\x5B)

#define OMP_O_DS_C_PRESENTATION_ADDRESS dsP_c(\x85\x5C)

#define OMP_O_DS_C_READ_RESULT dsP_c(\x85\x5D)

#define OMP_O_DS_C_REFERRAL dsP_c(\x85\x5E)

#define OMP_O_DS_C_RELATIVE_NAME dsP_c(\x85\x5F)

#define OMP_O_DS_C_SEARCH_INFO dsP_c(\x85\x60)

#define OMP_O_DS_C_SEARCH_RESULT dsP_c(\x85\x61)

#define OMP_O_DS_C_SECURITY_ERROR dsP_c(\x85\x62)

#define OMP_O_DS_C_SERVICE_ERROR dsP_c(\x85\x63)

#define OMP_O_DS_C_SESSION dsP_c(\x85\x64)

#define OMP_O_DS_C_SYSTEM_ERROR dsP_c(\x85\x65)

#define OMP_O_DS_C_UPDATE_ERROR dsP_c(\x85\x66)

/* OM attribute names */

#define DS_ACCESS_POINTS ((OM_type) 701)

#define DS_ADDRESS ((OM_type) 702)

#define DS_AE_TITLE ((OM_type) 703)

#define DS_ALIASED_RDNS ((OM_type) 704)

#define DS_ALIAS_DEREFERENCED ((OM_type) 705)

#define DS_ALIAS_ENTRY ((OM_type) 706)

#define DS_ALL_ATTRIBUTES ((OM_type) 707)

#define DS_ASYNCHRONOUS ((OM_type) 708)

#define DS_ATTRIBUTES ((OM_type) 709)

#define DS_ATTRIBUTES_SELECTED ((OM_type) 710)

#define DS_ATTRIBUTE_TYPE ((OM_type) 711)

#define DS_ATTRIBUTE_VALUE ((OM_type) 712)

#define DS_ATTRIBUTE_VALUES ((OM_type) 713)

#define DS_AUTOMATIC_CONTINUATION ((OM_type) 714)

#define DS_AVAS ((OM_type) 715)

#define DS_CHAINING_PROHIB ((OM_type) 716)

#define DS_CHANGES ((OM_type) 717)

#define DS_CRIT ((OM_type) 718)

1026

DCE Directory Service

xds.h(4xds)

#define DS_DONT_DEREFERENCE_ALIASES ((OM_type) 719)

#define DS_DONT_USE_COPY ((OM_type) 720)

#define DS_DSA_ADDRESS ((OM_type) 721)

#define DS_DSA_NAME ((OM_type) 722)

#define DS_ENTRIES ((OM_type) 723)

#define DS_ENTRY ((OM_type) 724)

#define DS_EXT ((OM_type) 725)

#define DS_FILE_DESCRIPTOR ((OM_type) 726)

#define DS_FILTERS ((OM_type) 727)

#define DS_FILTER_ITEMS ((OM_type) 728)

#define DS_FILTER_ITEM_TYPE ((OM_type) 729)

#define DS_FILTER_TYPE ((OM_type) 730)

#define DS_FINAL_SUBSTRING ((OM_type) 731)

#define DS_FROM_ENTRY ((OM_type) 732)

#define DS_IDENT ((OM_type) 733)

#define DS_INFO_TYPE ((OM_type) 734)

#define DS_INITIAL_SUBSTRING ((OM_type) 735)

#define DS_ITEM_PARAMETERS ((OM_type) 736)

#define DS_LIMIT_PROBLEM ((OM_type) 737)

#define DS_LIST_INFO ((OM_type) 738)

#define DS_LOCAL_SCOPE ((OM_type) 739)

#define DS_MATCHED ((OM_type) 740)

#define DS_MOD_TYPE ((OM_type) 741)

#define DS_NAME_RESOLUTION_PHASE ((OM_type) 742)

#define DS_NEXT_RDN_TO_BE_RESOLVED ((OM_type) 743)

#define DS_N_ADDRESSES ((OM_type) 744)

#define DS_OBJECT_NAME ((OM_type) 745)

#define DS_OPERATION_PROGRESS ((OM_type) 746)

#define DS_PARTIAL_OUTCOME_QUAL ((OM_type) 747)

#define DS_PERFORMER ((OM_type) 748)

#define DS_PREFER_CHAINING ((OM_type) 749)

#define DS_PRIORITY ((OM_type) 750)

#define DS_PROBLEM ((OM_type) 751)

#define DS_PROBLEMS ((OM_type) 752)

#define DS_P_SELECTOR ((OM_type) 753)

#define DS_RDN ((OM_type) 754)

#define DS_RDNS ((OM_type) 755)

#define DS_RDNS_RESOLVED ((OM_type) 756)

#define DS_REQUESTOR ((OM_type) 757)

#define DS_SCOPE_OF_REFERRAL ((OM_type) 758)

1027

DCE 1.2.2 Application Development Reference

xds.h(4xds)

#define DS_SEARCH_INFO ((OM_type) 759)

#define DS_SIZE_LIMIT ((OM_type) 760)

#define DS_SUBORDINATES ((OM_type) 761)

#define DS_S_SELECTOR ((OM_type) 762)

#define DS_TARGET_OBJECT ((OM_type) 763)

#define DS_TIME_LIMIT ((OM_type) 764)

#define DS_T_SELECTOR ((OM_type) 765)

#define DS_UNAVAILABLE_CRIT_EXT ((OM_type) 766)

#define DS_UNCORRELATED_LIST_INFO ((OM_type) 767)

#define DS_UNCORRELATED_SEARCH_INFO ((OM_type) 768)

#define DS_UNEXPLORED ((OM_type) 769)

/* DS_Filter_Item_Type: */

enum DS_Filter_Item_Type {

DS_EQUALITY = 0,

DS_SUBSTRINGS = 1,

DS_GREATER_OR_EQUAL = 2,

DS_LESS_OR_EQUAL = 3,

DS_PRESENT = 4,

DS_APPROXIMATE_MATCH = 5

};

/* DS_Filter_Type: */

enum DS_Filter_Type {

DS_ITEM = 0,

DS_AND = 1,

DS_OR = 2,

DS_NOT = 3

};

/* DS_Information_Type: */

enum DS_Information_Type {

DS_TYPES_ONLY = 0,

DS_TYPES_AND_VALUES = 1

1028

DCE Directory Service

xds.h(4xds)

};

/* DS_Limit_Problem: */

enum DS_Limit_Problem {

DS_NO_LIMIT_EXCEEDED = -1,

DS_TIME_LIMIT_EXCEEDED = 0,

DS_SIZE_LIMIT_EXCEEDED = 1,

DS_ADMIN_LIMIT_EXCEEDED = 2

};

/* DS_Modification_Type: */

enum DS_Modification_Type {

DS_ADD_ATTRIBUTE = 0,

DS_REMOVE_ATTRIBUTE = 1,

DS_ADD_VALUES = 2,

DS_REMOVE_VALUES = 3

};

/* DS_Name_Resolution_Phase: */

enum DS_Name_Resolution_Phase {

DS_NOT_STARTED = 1,

DS_PROCEEDING = 2,

DS_COMPLETED = 3

};

/* DS_Priority: */

enum DS_Priority {

DS_LOW = 0,

DS_MEDIUM = 1,

DS_HIGH = 2

};

1029

DCE 1.2.2 Application Development Reference

xds.h(4xds)

/* DS_Problem: */

enum DS_Problem {

DS_E_ADMIN_LIMIT_EXCEEDED = 1,

DS_E_AFFECTS_MULTIPLE_DSAS = 2,

DS_E_ALIAS_DEREFERENCING_PROBLEM = 3,

DS_E_ALIAS_PROBLEM = 4,

DS_E_ATTRIBUTE_OR_VALUE_EXISTS = 5,

DS_E_BAD_ARGUMENT = 6,

DS_E_BAD_CLASS = 7,

DS_E_BAD_CONTEXT = 8,

DS_E_BAD_NAME = 9,

DS_E_BAD_SESSION = 10,

DS_E_BAD_WORKSPACE = 11,

DS_E_BUSY = 12,

DS_E_CANNOT_ABANDON = 13,

DS_E_CHAINING_REQUIRED = 14,

DS_E_COMMUNICATIONS_PROBLEM = 15,

DS_E_CONSTRAINT_VIOLATION = 16,

DS_E_DIT_ERROR = 17,

DS_E_ENTRY_EXISTS = 18,

DS_E_INAPPROP_AUTHENTICATION = 19,

DS_E_INAPPROP_MATCHING = 20,

DS_E_INSUFFICIENT_ACCESS_RIGHTS = 21,

DS_E_INVALID_ATTRIBUTE_SYNTAX = 22,

DS_E_INVALID_ATTRIBUTE_VALUE = 23,

DS_E_INVALID_CREDENTIALS = 24,

DS_E_INVALID_REF = 25,

DS_E_INVALID_SIGNATURE = 26,

DS_E_LOOP_DETECTED = 27,

DS_E_MISCELLANEOUS = 28,

DS_E_MISSING_TYPE = 29,

DS_E_MIXED_SYNCHRONOUS = 30,

DS_E_NAMING_VIOLATION = 31,

DS_E_NO_INFO = 32,

DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE = 33,

DS_E_NO_SUCH_OBJECT = 34,

DS_E_NO_SUCH_OPERATION = 35,

DS_E_NOT_ALLOWED_ON_NON_LEAF = 36,

1030

DCE Directory Service

xds.h(4xds)

DS_E_NOT_ALLOWED_ON_RDN = 37,

DS_E_NOT_SUPPORTED = 38,

DS_E_OBJECT_CLASS_MOD_PROHIB = 39,

DS_E_OBJECT_CLASS_VIOLATION = 40,

DS_E_OUT_OF_SCOPE = 41,

DS_E_PROTECTION_REQUIRED = 42,

DS_E_TIME_LIMIT_EXCEEDED = 43,

DS_E_TOO_LATE = 44,

DS_E_TOO_MANY_OPERATIONS = 45,

DS_E_TOO_MANY_SESSIONS = 46,

DS_E_UNABLE_TO_PROCEED = 47,

DS_E_UNAVAILABLE = 48,

DS_E_UNAVAILABLE_CRIT_EXT = 49,

DS_E_UNDEFINED_ATTRIBUTE_TYPE = 50,

DS_E_UNWILLING_TO_PERFORM = 51

};

/* DS_Scope_Of_Referral: */

enum DS_Scope_Of_Referral {

DS_DMD = 0,

DS_COUNTRY = 1

};

/* Typedefs */

typedef OM_private_object DS_status;

typedef struct

{

OM_object_identifier feature;

OM_boolean activated;

} DS_feature;

/* OM_object constants */

#define DS_DEFAULT_CONTEXT ((OM_object) 0)

1031

DCE 1.2.2 Application Development Reference

xds.h(4xds)

#define DS_DEFAULT_SESSION ((OM_object) 0)

#define DS_OPERATION_NOT_STARTED ((OM_object) 0)

#define DS_NO_FILTER ((OM_object) 0)

#define DS_NULL_RESULT ((OM_object) 0)

#define DS_SELECT_ALL_TYPES ((OM_object) 1)

#define DS_SELECT_ALL_TYPES_AND_VALUES ((OM_object) 2)

#define DS_SELECT_NO_ATTRIBUTES ((OM_object) 0)

#define DS_SUCCESS ((DS_status) 0)

#define DS_NO_WORKSPACE ((DS_status) 1)

/* ds_search() subset */

#define DS_BASE_OBJECT ((OM_sint) 0)

#define DS_ONE_LEVEL ((OM_sint) 1)

#define DS_WHOLE_SUBTREE ((OM_sint) 2)

/* ds_receive_result() completion_flag_return */

#define DS_COMPLETED_OPERATION ((OM_uint) 1)

#define DS_OUTSTANDING_OPERATIONS ((OM_uint) 2)

#define DS_NO_OUTSTANDING_OPERATION ((OM_uint) 3)

/* asynchronous operations limit (implementation-defined) */

#define DS_MAX_OUTSTANDING_OPERATIONS 0 /* no asynchronous */

/* operation */

/*asynchronous event posting */

#define DS_NO_VALID_FILE_DESCRIPTOR -1

/* Function Prototypes */

DS_status ds_abandon(

OM_private_object session,

OM_sint invoke_id

);

1032

DCE Directory Service

xds.h(4xds)

DS_status ds_add_entry(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_object entry,

OM_sint *invoke_id_return

);

DS_status ds_bind(

OM_object session,

OM_workspace workspace,

OM_private_object *bound_session_return

);

DS_status ds_compare(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_object ava,

OM_private_object *result_return,

OM_sint *invoke_id_return

);

OM_workspace ds_initialize(

void

);

DS_status ds_list(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_private_object *result_return,

OM_sint *invoke_id_return

);

DS_status ds_modify_entry(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_object changes,

1033

DCE 1.2.2 Application Development Reference

xds.h(4xds)

OM_sint *invoke_id_return

);

DS_status ds_modify_rdn(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_object new_RDN,

OM_boolean delete_old_RDN,

OM_sint *invoke_id_return

);

DS_status ds_read(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_object selection,

OM_private_object *result_return,

OM_sint *invoke_id_return

);

DS_status ds_receive_result(

OM_private_object session,

OM_uint *completion_flag_return,

DS_status *operation_status_return,

OM_private_object *result_return,

OM_sint *invoke_id_return

);

DS_status ds_remove_entry(

OM_private_object session,

OM_private_object context,

OM_object name,

OM_sint *invoke_id_return

);

DS_status ds_search(

OM_private_object session,

OM_private_object context,

OM_object name,

1034

DCE Directory Service

xds.h(4xds)

OM_sint subset,

OM_object filter,

OM_boolean search_aliases,

OM_object selection,

OM_private_object *result_return,

OM_sint *invoke_id_return

);

DS_status ds_shutdown(

OM_workspace workspace

);

DS_status ds_unbind(

OM_private_object session

);

DS_status ds_version(

DS_feature feature_list[]

OM_workspace workspace

);

#endif /* XDS_HEADER */

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1035

DCE 1.2.2 Application Development Reference

xdsbdcp.h(4xds)

xdsbdcp.h

Purpose Definitions for the basic directory contents package

Synopsis

#include <xom.h>#include <xds.h>#include <xdsbdcp.h>

Description

The xdsbdcp.h header defines the object identifiers of directory attribute types and
object classes supported by the basic directory contents package. It also defines OM
classes used to represent the values of the attribute types.

All application programs that include this header must first include thexom.h object
management header and thexds.h header.

Object identifiers are defined for the (directory) attribute types that are specified in the
following list. The actual values of the object identifiers are listed in theDCE 1.2.2
Application Development Guide—Directory Services.

#ifndef XDSBDCP_HEADER

#define XDSBDCP_HEADER

/* BDC package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)

member-company(2) dec(1011) xopen(28) bdcp(1) } */

#define OMP_O_DS_BASIC_DIR_CONTENTS_PKG \

"\x2B\x0C\x02\x87\x73\x1c\x01"

/* Intermediate object identifier macros */

1036

DCE Directory Service

xdsbdcp.h(4xds)

#ifndef dsP_attributeType /* joint-iso-ccitt(2) */

/* ds(5) attributeType(4) ... */

#define dsP_attributeType (X) ("\x55\x04" #X)

#endif

#ifndef dsP_objectClass /* joint-iso-ccitt(2) */

/* ds(5) objectClass(6) ... */

#define dsP_objectClass(X) ("\x55\x06" #X)

#endif

#define dsP_bdcp_c(X) (OMP_O_DS_BASIC_DIR_CONTENTS_PKG #X)

/* OM class names (prefixed by DS_C_) */

/* Directory attribute types (prefixed by DS_A_) */

/* Directory object classes (prefixed by DS_O_) */

/* Every application program which makes use of a class or */

/* other Object Identifier must explicitly import it into */

/* every compilation unit (C source program) which uses it. */

/* Each such class or Object Identifier name must be */

/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */

/* the OMP_O prefix to denote that they are OM classes. */

/* However, when using the OM_IMPORT and OM_EXPORT macros, */

/* the base names (without the OMP_O prefix) should be used.*/

/* For example: */

/* OM_IMPORT (DS_O_COUNTRY) */

/* Directory attribute types */

#define OMP_O_DS_A_ALIASED_OBJECT_NAME dsP_attributeType(\x01)

#define OMP_O_DS_A_BUSINESS_CATEGORY dsP_attributeType(\x0F)

#define OMP_O_DS_A_COMMON_NAME dsP_attributeType(\x03)

#define OMP_O_DS_A_COUNTRY_NAME dsP_attributeType(\x06)

#define OMP_O_DS_A_DESCRIPTION dsP_attributeType(\x0D)

#define OMP_O_DS_A_DEST_INDICATOR dsP_attributeType(\x1B)

#define OMP_O_DS_A_FACSIMILE_PHONE_NBR dsP_attributeType(\x17)

1037

DCE 1.2.2 Application Development Reference

xdsbdcp.h(4xds)

#define OMP_O_DS_A_INTERNAT_ISDN_NBR dsP_attributeType(\x19)

#define OMP_O_DS_A_KNOWLEDGE_INFO dsP_attributeType(\x02)

#define OMP_O_DS_A_LOCALITY_NAME dsP_attributeType(\x07)

#define OMP_O_DS_A_MEMBER dsP_attributeType(\x1F)

#define OMP_O_DS_A_OBJECT_CLASS dsP_attributeType(\x00)

#define OMP_O_DS_A_ORG_NAME dsP_attributeType(\x0A)

#define OMP_O_DS_A_ORG_UNIT_NAME dsP_attributeType(\x0B)

#define OMP_O_DS_A_OWNER dsP_attributeType(\x20)

#define OMP_O_DS_A_PHYS_DELIV_OFF_NAME dsP_attributeType(\x13)

#define OMP_O_DS_A_POST_OFFICE_BOX dsP_attributeType(\x12)

#define OMP_O_DS_A_POSTAL_ADDRESS dsP_attributeType(\x10)

#define OMP_O_DS_A_POSTAL_CODE dsP_attributeType(\x11)

#define OMP_O_DS_A_PREF_DELIV_METHOD dsP_attributeType(\x1C)

#define OMP_O_DS_A_PRESENTATION_ADDRESS dsP_attributeType(\x1D)

#define OMP_O_DS_A_REGISTERED_ADDRESS dsP_attributeType(\x1A)

#define OMP_O_DS_A_ROLE_OCCUPANT dsP_attributeType(\x21)

#define OMP_O_DS_A_SEARCH_GUIDE dsP_attributeType(\x0E)

#define OMP_O_DS_A_SEE_ALSO dsP_attributeType(\x22)

#define OMP_O_DS_A_SERIAL_NBR dsP_attributeType(\x05)

#define OMP_O_DS_A_STATE_OR_PROV_NAME dsP_attributeType(\x08)

#define OMP_O_DS_A_STREET_ADDRESS dsP_attributeType(\x09)

#define OMP_O_DS_A_SUPPORT_APPLIC_CONTEXT dsP_attributeType(\x1E)

#define OMP_O_DS_A_SURNAME dsP_attributeType(\x04)

#define OMP_O_DS_A_PHONE_NBR dsP_attributeType(\x14)

#define OMP_O_DS_A_TELETEX_TERM_IDENT dsP_attributeType(\x16)

#define OMP_O_DS_A_TELEX_NBR dsP_attributeType(\x15)

#define OMP_O_DS_A_TITLE dsP_attributeType(\x0C)

#define OMP_O_DS_A_USER_PASSWORD dsP_attributeType(\x23)

#define OMP_O_DS_A_X121_ADDRESS dsP_attributeType(\x18)

/* Directory object classes */

#define OMP_O_DS_O_ALIAS dsP_objectClass(\x01)

#define OMP_O_DS_O_APPLIC_ENTITY dsP_objectClass(\x0C)

#define OMP_O_DS_O_APPLIC_PROCESS dsP_objectClass(\x0B)

#define OMP_O_DS_O_COUNTRY dsP_objectClass(\x02)

#define OMP_O_DS_O_DEVICE dsP_objectClass(\x0E)

#define OMP_O_DS_O_DSA dsP_objectClass(\x0D)

#define OMP_O_DS_O_GROUP_OF_NAMES dsP_objectClass(\x09)

1038

DCE Directory Service

xdsbdcp.h(4xds)

#define OMP_O_DS_O_LOCALITY dsP_objectClass(\x03)

#define OMP_O_DS_O_ORG dsP_objectClass(\x04)

#define OMP_O_DS_O_ORG_PERSON dsP_objectClass(\x07)

#define OMP_O_DS_O_ORG_ROLE dsP_objectClass(\x08)

#define OMP_O_DS_O_ORG_UNIT dsP_objectClass(\x05)

#define OMP_O_DS_O_PERSON dsP_objectClass(\x06)

#define OMP_O_DS_O_RESIDENTIAL_PERSON dsP_objectClass(\x0A)

#define OMP_O_DS_O_TOP dsP_objectClass(\x00)

/* OM class names */

#define OMP_O_DS_C_FACSIMILE_PHONE_NBR dsP_bdcp_c(\x86\x21)

#define OMP_O_DS_C_POSTAL_ADDRESS dsP_bdcp_c(\x86\x22)

#define OMP_O_DS_C_SEARCH_CRITERION dsP_bdcp_c(\x86\x23)

#define OMP_O_DS_C_SEARCH_GUIDE dsP_bdcp_c(\x86\x24)

#define OMP_O_DS_C_TELETEX_TERM_IDENT dsP_bdcp_c(\x86\x25)

#define OMP_O_DS_C_TELEX_NBR dsP_bdcp_c(\x86\x26)

/* OM attribute names */

#define DS_ANSWERBACK ((OM_type) 801)

#define DS_COUNTRY_CODE ((OM_type) 802)

#define DS_CRITERIA ((OM_type) 803)

#define DS_OBJECT_CLASS ((OM_type) 804)

#define DS_PARAMETERS ((OM_type) 805)

#define DS_POSTAL_ADDRESS ((OM_type) 806)

#define DS_PHONE_NBR ((OM_type) 807)

#define DS_TELETEX_TERM ((OM_type) 808)

#define DS_TELEX_NBR ((OM_type) 809)

/* DS_Preferred_Delivery_Method: */

#define DS_ANY_DELIV_METHOD 0

#define DS_MHS_DELIV 1

#define DS_PHYS_DELIV 2

#define DS_TELEX_DELIV 3

#define DS_TELETEX_DELIV 4

#define DS_G3_FACSIMILE_DELIV 5

1039

DCE 1.2.2 Application Development Reference

xdsbdcp.h(4xds)

#define DS_G4_FACSIMILE_DELIV 6

#define DS_IA5_TERMINAL_DELIV 7

#define DS_VIDEOTEX_DELIV 8

#define DS_PHONE_DELIV 9

/* Upper bounds on string lengths and the number of repeated OM */

/* attribute values */

#define DS_VL_A_BUSINESS_CATEGORY ((OM_value_length) 128)

#define DS_VL_A_COMMON_NAME ((OM_value_length) 64)

#define DS_VL_A_DESCRIPTION ((OM_value_length) 1024)

#define DS_VL_A_DEST_INDICATOR ((OM_value_length) 128)

#define DS_VL_A_INTERNAT_ISDN_NBR ((OM_value_length) 16)

#define DS_VL_A_LOCALITY_NAME ((OM_value_length) 128)

#define DS_VL_A_ORG_NAME ((OM_value_length) 64)

#define DS_VL_A_ORG_UNIT_NAME ((OM_value_length) 64)

#define DS_VL_A_PHYS_DELIV_ OFF_NAME ((OM_value_length) 128)

#define DS_VL_A_POST_OFFICE_BOX ((OM_value_length) 40)

#define DS_VL_A_POSTAL_CODE ((OM_value_length) 40)

#define DS_VL_A_SERIAL_NBR ((OM_value_length) 64)

#define DS_VL_A_STATE_OR_PROV_NAME ((OM_value_length) 128)

#define DS_VL_A_STREET_ADDRESS ((OM_value_length) 128)

#define DS_VL_A_SURNAME ((OM_value_length) 64)

#define DS_VL_A_PHONE_NBR ((OM_value_length) 32)

#define DS_VL_A_TITLE ((OM_value_length) 64)

#define DS_VL_A_USER_PASSWORD ((OM_value_length) 128)

#define DS_VL_A_X121_ADDRESS ((OM_value_length) 15)

#define DS_VL_ANSWERBACK ((OM_value_length) 8)

#define DS_VL_COUNTRY_CODE ((OM_value_length) 4)

#define DS_VL_POSTAL_ADDRESS ((OM_value_length) 30)

#define DS_VL_PHONE_NBR ((OM_value_length) 32)

#define DS_VL_TELETEX_TERM ((OM_value_length) 1024)

#define DS_VL_TELEX_NBR ((OM_value_length) 14)

#define DS_VN_POSTAL_ADDRESS ((OM_value_length) 6)

#endif /* XDSBDCP_HEADER */

1040

DCE Directory Service

xdsbdcp.h(4xds)

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1041

DCE 1.2.2 Application Development Reference

xdscds.h(4xds)

xdscds.h

Purpose Definitions for the Cell Directory Service (CDS)

Synopsis

#include <xom.h>#include <xds.h>#include <xdscds.h>

Description

The xdscds.h header declares the object identifiers of directory attribute types
supported by CDS.

All application programs that include this header must first include thexom.h object
management header and thexds.h header.

#ifndef XDSCDS_HEADER

#define XDSCDS_HEADER

/* iso(1) identified-organization(3) osf(22) dce(1) cds(3)

= "\x2B\x16\x01\x03" */

/* Cell Directory Service attribute types */

#define OMP_O_DSX_A_CDS_Members "\x2B\x16\x01\x03\x0A"

#define OMP_O_DSX_A_CDS_GroupRevoke "\x2B\x16\x01\x03\x0B"

#define OMP_O_DSX_A_CDS_CTS "\x2B\x16\x01\x03\x0C"

#define OMP_O_DSX_A_CDS_UTS "\x2B\x16\x01\x03\x0D"

#define OMP_O_DSX_A_CDS_ACS "\x2B\x16\x01\x03\x0E"

#define OMP_O_DSX_A_CDS_Class "\x2B\x16\x01\x03\x0F"

#define OMP_O_DSX_A_CDS_ClassVersion "\x2B\x16\x01\x03\x10"

#define OMP_O_DSX_A_CDS_ObjectUID "\x2B\x16\x01\x03\x11"

#define OMP_O_DSX_A_CDS_Address "\x2B\x16\x01\x03\x12"

#define OMP_O_DSX_A_CDS_Replicas "\x2B\x16\x01\x03\x13"

1042

DCE Directory Service

xdscds.h(4xds)

#define OMP_O_DSX_A_CDS_AllUpTo "\x2B\x16\x01\x03\x14"

#define OMP_O_DSX_A_CDS_Convergence "\x2B\x16\x01\x03\x15"

#define OMP_O_DSX_A_CDS_InCHName "\x2B\x16\x01\x03\x16"

#define OMP_O_DSX_A_CDS_ParentPointer "\x2B\x16\x01\x03\x17"

#define OMP_O_DSX_A_CDS_DirecoryVersion "\x2B\x16\x01\x03\x18"

#define OMP_O_DSX_A_CDS_UpgradeTo "\x2B\x16\x01\x03\x19"

#define OMP_O_DSX_A_CDS_LinkTarget "\x2B\x16\x01\x03\x1B"

#define OMP_O_DSX_A_CDS_LinkTimeout "\x2B\x16\x01\x03\x1C"

#define OMP_O_DSX_A_CDS_Towers "\x2B\x16\x01\x03\x1E"

#define OMP_O_DSX_A_CDS_CHName "\x2B\x16\x01\x03\x20"

#define OMP_O_DSX_A_CDS_CHLastAddress "\x2B\x16\x01\x03\x22"

#define OMP_O_DSX_A_CDS_CHUpPointers "\x2B\x16\x01\x03\x23"

#define OMP_O_DSX_A_CDS_CHState "\x2B\x16\x01\x03\x24"

/* iso(1) identified-organization(3) osf(22) dce(1) gds(2)

= "\x2B\x16\x01\x02" */

#define OMP_O_DSX_UUID "\x2B\x16\x01\x01\x01"

#define OMP_O_DSX_TYPELESS_RDN "\x2B\x16\x01\x01\x02"

#define OMP_O_DSX_NORMAL_SIMPLE_NAME "\x2B\x16\x01\x03\x00"

#define OMP_O_DSX_BINARY_SIMPLE_NAME "\x2B\x16\x01\x03\x02"

#endif /*XDSCDS_HEADER*/

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1043

DCE 1.2.2 Application Development Reference

xdsdme.h(4xds)

xdsdme.h

Purpose Definitions for the DME NMO requirements.

Synopsis

#include <xom.h>#include <xds.h>#include <xdsdme.h>

Description

The xdsdme.h header declares the object identifiers of directory attribute types and
directory object classes supported for DME use.

All application programs that include this header must first include thexom.h object
management header and thexds.h header.

#ifndef XDSDME_HEADER

#define XDSDME_HEADER

/* Intermediate object identifier macros */

/* iso(1) identified-organization(3) osf(22) dme(2)

components(1) nmo(2) dmeNmoAttributeType(1) ...

*/

#define dsP_NMOattributeType(X) "\x2B\x16\x02\x01\x02\x01" #X

/* iso(1) identified-organization(3) osf(22) dme(2)

components(1) nmo(2) dmeNmoObjectClass(2) ...

*/

#define dsP_NMOobjectClass(X) "\x2B\x16\x02\x01\x02\x02" #X

1044

DCE Directory Service

xdsdme.h(4xds)

/* Directory attribute types (prefixed by DSX_A_)

Directory object classes (prefixed by DSX_O_)

*/

/* Directory attribute types */

#define OMP_O_DSX_A_ALTERNATE_ADDRESS dsP_NMOattributeType(\x01)

/* Directory object classes */

#define OMP_O_DSX_O_DME_NMO_AGENT dsP_NMOobjectClass(\x01)

#endif /* XDSDME_HEADER */

Related Information

Books:DCE 1.2.2 Application Development Guide—Directory Services.

1045

DCE 1.2.2 Application Development Reference

xdsgds.h(4xds)

xdsgds.h

Purpose Definitions for the global directory service package

Synopsis

#include <xom.h>#include <xds.h>#include <xdsgds.h>

Description

The xdsgds.hheader declares the object identifiers of directory attribute types and
directory object classes supported by the GDS package. It also defines OM classes
used to represent the values of the attribute types.

All application programs that include this header must first include thexom.h object
management header and thexds.h header.

#ifndef XDSGDS_HEADER

#define XDSGDS_HEADER

/* GDS package object identifier */

/* iso(1) identified-organization(3) icd-ecma(0012)

member-company(2) siemens-units(1107) sni(1) directory(3)

xds-api(100)gdsp(0) */

#define OMP_O_DSX_GDS_PKG \

"\x2B\x0C\x02\x88\x53\x01\x03\x64\x00"

/*Intermediate object identifier macros */

/* iso(1) identified-organization(3) icd-ecma(0012)

member-company(2) siemens-units(1107) sni(1) directory(3)

attribute-type(4) ...*/

1046

DCE Directory Service

xdsgds.h(4xds)

#define dsP_GDSattributeType(X) \

("\x2B\x0C\x02\x88\x53\x01\x03\x04" #X)

/* iso(1) identified-organization(3) icd-ecma(0012)

member-company(2) siemens-units(1107) sni(1) directory(3)

object-class(6) ...*/

#define dsP_GDSobjectClass(X) \

("\x2B\x0C\x02\x88\x53\x01\x03\x06" #X)

#define dsP_gdsp_c(X) OMP_O_DSX_GDS_PKG #X

/* OM class names (prefixed by DSX_C_)

Directory attribute types (prefixed by DSX_A_)

Directory object classes (prefixed by DSX_O_)

*/

/* Directory attribute types */

#define OMP_O_DSX_A_MASTER_KNOWLEDGE dsP_GDSattributeType(\x00)

#define OMP_O_DSX_A_ACL dsP_GDSattributeType(\x01)

#define OMP_O_DSX_A_TIME_STAMP dsP_GDSattributeType(\x02)

#define OMP_O_DSX_A_SHADOWED_BY dsP_GDSattributeType(\x03)

#define OMP_O_DSX_A_SRT dsP_GDSattributeType(\x04)

#define OMP_O_DSX_A_OCT dsP_GDSattributeType(\x05)

#define OMP_O_DSX_A_AT dsP_GDSattributeType(\x06)

#define OMP_O_DSX_A_DEFAULT_DSA dsP_GDSattributeType(\x08)

#define OMP_O_DSX_A_LOCAL_DSA dsP_GDSattributeType(\x09)

#define OMP_O_DSX_A_CLIENT dsP_GDSattributeType(\x0A)

#define OMP_O_DSX_A_DNLIST dsP_GDSattributeType(\x0B)

#define OMP_O_DSX_A_SHADOWING_JOB dsP_GDSattributeType(\x0C)

#define OMP_O_DSX_A_CDS_CELL dsP_GDSattributeType(\x0D)

#define OMP_O_DSX_A_CDS_REPLICA dsP_GDSattributeType(\x0E)

/* Directory object classes */

#define OMP_O_DSX_O_SCHEMA dsP_GDSobjectClass(\x00)

1047

DCE 1.2.2 Application Development Reference

xdsgds.h(4xds)

/* OM class names */

#define OMP_O_DSX_C_GDS_SESSION dsP_gdsp_c(\x00)

#define OMP_O_DSX_C_GDS_CONTEXT dsP_gdsp_c(\x01)

#define OMP_O_DSX_C_GDS_ACL dsP_gdsp_c(\x02)

#define OMP_O_DSX_C_GDS_ACL_ITEM dsP_gdsp_c(\x03)

/* OM attribute names */

#define DSX_PASSWORD ((OM_type) 850)

#define DSX_DIR_ID ((OM_type) 851)

#define DSX_DUAFIRST ((OM_type) 852)

#define DSX_DONT_STORE ((OM_type) 853)

#define DSX_NORMAL_CLASS ((OM_type) 854)

#define DSX_PRIV_CLASS ((OM_type) 855)

#define DSX_RESIDENT_CLASS ((OM_type) 856)

#define DSX_USEDSA ((OM_type) 857)

#define DSX_DUA_CACHE ((OM_type) 858)

#define DSX_MODIFY_PUBLIC ((OM_type) 859)

#define DSX_READ_STANDARD ((OM_type) 860)

#define DSX_MODIFY_STANDARD ((OM_type) 861)

#define DSX_READ_SENSITIVE ((OM_type) 862)

#define DSX_MODIFY_SENSITIVE ((OM_type) 863)

#define DSX_INTERPRETATION ((OM_type) 864)

#define DSX_USER ((OM_type) 865)

#define DSX_PREFER_ADM_FUNCS ((OM_type) 866)

#define DSX_AUTH_MECHANISM ((OM_type) 867)

#define DSX_AUTH_INFO ((OM_type) 868) /* future use */

#define DSX_SIGN_MECHANISM ((OM_type) 869) /* future use */

#define DSX_PROT_REQUEST ((OM_type) 870) /* future use */

/* DSX_Interpretation */

enum DSX_Interpretation {

DSX_SINGLE_OBJECT = 0,

DSX_ROOT_OF_SUBTREE = 1

1048

DCE Directory Service

xdsgds.h(4xds)

};

enum DSX_Auth_Mechanism {

DSX_DEFAULT = 1,

DSX_SIMPLE = 2,

DSX_SIMPLE_PROT1 = 3,

DSX_SIMPLE_PROT2 = 4,

DSX_DCE_AUTH = 5,

DSX_STRONG = 6

};

enum DSX_Prot_Request {

DSX_NONE = 0,

DSX_SIGNED = 1

};

/* upper bound on string lengths*/

#define DSX_VL_PASSWORD ((OM_value_length) 16)

#endif /* XDSGDS_HEADER */

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1049

DCE 1.2.2 Application Development Reference

xdsmdup.h(4xds)

xdsmdup.h

Purpose Definitions for the MHS directory user package

Synopsis

#include <xom.h>#include <xds.h>#include <xdsmdup.h>

Description

The xdsmdup.h header declares the object identifiers of directory attribute types and
object classes supported by the MHS directory user package. It also defines OM
classes used to represent the values of the attribute types.

All application programs that include this header must first include the object
management headerxom.h and thexds.h header.

#ifndef XDSMDUP_HEADER

#define XDSMDUP_HEADER

#ifndef XMHP_HEADER

#include <xmhp.h>

#endif /* XMHP_HEADER */

/* MDUP package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)

member-company(2) dec(1011) xopen(28) mdup(3) } */

#define OMP_O_DS_MHS_DIR_USER_PKG \

"\x2B\x0C\x02\x87\x73\x1C\x03"

/* Intermediate object identifier macros */

1050

DCE Directory Service

xdsmdup.h(4xds)

/* { joint-iso-ccitt(2) mhs-motis(6) arch(5) at(2) } */

#define dsP_MHSattributeType(X) ("\x56\x5\x2" #X)

/* { joint-iso-ccitt(2) mhs-motis(6) arch(5) oc(1) } */

#define dsP_MHSobjectClass(X) ("\x56\x5\x1" #X)

#define dsP_mdup_c(X) (OMP_O_DS_MHS_DIR_USER_PKG #X)

/* OM class names (prefixed DS_C_), */

/* Directory attribute types (prefixed DS_A_), */

/* and Directory object classes (prefixed DS_O_) */

/* Every application program which makes use of a class or */

/* other Object Identifier must explicitly import it into */

/* every compilation unit (C source program) which uses it. */

/* Each such class or Object Identifier name must be */

/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */

/* the OMP_O prefix to denote that they are OM classes. */

/* However, when using the OM_IMPORT and OM_EXPORT macros, */

/* the base names (without the OMP_O prefix) should be used. */

/* For example: */

/* OM_IMPORT(DS_O_CERT_AUTHORITY) */

/* Directory attribute types */

#define OMP_O_DS_A_DELIV_CONTENT_LENGTH dsP_MHSattributeType(\x00)

#define OMP_O_DS_A_DELIV_CONTENT_TYPES dsP_MHSattributeType(\x01)

#define OMP_O_DS_A_DELIV_EITS dsP_MHSattributeType(\x02)

#define OMP_O_DS_A_DL_MEMBERS dsP_MHSattributeType(\x03)

#define OMP_O_DS_A_DL_SUBMIT_PERMS dsP_MHSattributeType(\x04)

#define OMP_O_DS_A_MESSAGE_STORE dsP_MHSattributeType(\x05)

#define OMP_O_DS_A_OR_ADDRESSES dsP_MHSattributeType(\x06)

#define OMP_O_DS_A_PREF_DELIV_METHODS dsP_MHSattributeType(\x07)

#define OMP_O_DS_A_SUPP_AUTO_ACTIONS dsP_MHSattributeType(\x08)

1051

DCE 1.2.2 Application Development Reference

xdsmdup.h(4xds)

#define OMP_O_DS_A_SUPP_CONTENT_TYPES dsP_MHSattributeType(\x09)

#define OMP_O_DS_A_SUPP_OPT_ATTRIBUTES dsP_MHSattributeType(\x0A)

/* Directory object classes */

#define OMP_O_DS_O_MHS_DISTRIBUTION_LIST dsP_MHSobjectClass(\x00)

#define OMP_O_DS_O_MHS_MESSAGE_STORE dsP_MHSobjectClass(\x01)

#define OMP_O_DS_O_MHS_MESSAGE_TRANS_AG dsP_MHSobjectClass(\x02)

#define OMP_O_DS_O_MHS_USER dsP_MHSobjectClass(\x03)

#define OMP_O_DS_O_MHS_USER_AG dsP_MHSobjectClass(\x04)

/* OM class names */

#define OMP_O_DS_C_DL_SUBMIT_PERMS dsP_mdup_c(\x87\x05)

/* OM attribute names */

#define DS_PERM_TYPE ((OM_type) 901)

#define DS_INDIVIDUAL ((OM_type) 902)

#define DS_MEMBER_OF_DL ((OM_type) 903)

#define DS_PATTERN_MATCH ((OM_type) 904)

#define DS_MEMBER_OF_GROUP ((OM_type) 905)

/* DS_Permission_Type */

enum DS_Permission_Type {

DS_PERM_INDIVIDUAL = 0,

DS_PERM_MEMBER_OF_DL = 1,

DS_PERM_PATTERN_MATCH = 2,

DS_PERM_MEMBER_OF_GROUP = 3

};

#endif /* XDSMDUP_HEADER */

1052

DCE Directory Service

xdsmdup.h(4xds)

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services, X/Open
CAE Specification (November 1991), API to Electronic Mail (X.400).

1053

DCE 1.2.2 Application Development Reference

xdssap.h(4xds)

xdssap.h

Purpose Definitions for the strong authentication package

Synopsis

#include <xom.h>#include <xds.h>#include <xdssap.h>

Description

The xdssap.h header defines the object identifiers of directory attribute types and
object classes supported by the strong authentication package. It also defines OM
classes used to represent the values of the attribute types.

All application programs that include this header must first include thexom.h object
management header and thexds.h header.

#ifndef XDSSAP_HEADER

#define XDSSAP_HEADER

/* Strong Authentication Package object identifier */

/* { iso(1) identified-organization(3) icd-ecma(12)

member-company(2) dec(1011) xopen(28) sap(2) } */

#define OMP_O_DS_STRONG_AUTHENT_PKG \

"\x2B\x0C\x02\x87\x73\x1c\x02"

/* Intermediate object identifier macros */

#ifndef dsP_attributeType /* joint-iso-ccitt(2) */

/* ds(5) attributeType(4) ... */

#define dsP_attributeType (X) ("\x55\x04" #X)

#endif

1054

DCE Directory Service

xdssap.h(4xds)

#ifndef dsP_objectClass /* joint-iso-ccitt(2) */

/* ds(5) objectClass(6) ... */

#define dsP_objectClass(X) ("\x55\x06" #X)

#endif

#define dsP_sap_c(X) (OMP_O_DS_STRONG_AUTHENT_PKG #X)

/* OM class names (prefixed by DS_C_) */

/* Directory attribute types (prefixed by DS_A_) */

/* Directory object classes (prefixed by DS_O_) */

/* Every application program which makes use of a class or */

/* other Object Identifier must explicitly import it into */

/* every compilation unit (C source program) which uses it. */

/* Each such class or Object Identifier name must be */

/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */

/* the OMP_O prefix to denote that they are OM classes. */

/* However, when using the OM_IMPORT and OM_EXPORT macros, */

/* the base names (without the OMP_O prefix) should be used.*/

/* For example: */

/* OM_IMPORT (DS_O_CERT_AUTHORITY) */

/* Directory attribute types */

#define OMP_O_DS_A_AUTHORITY_REVOC_LIST dsP_attributeType(\x26)

#define OMP_O_DS_A_CA_CERT dsP_attributeType(\x25)

#define OMP_O_DS_A_CERT_REVOC_LIST dsP_attributeType(\x27)

#define OMP_O_DS_A_CROSS_CERT_PAIR dsP_attributeType(\x28)

#define OMP_O_DS_A_USER_CERT dsP_attributeType(\x24)

/* Directory object classes */

#define OMP_O_DS_O_CERT_AUTHORITY dsP_objectClass(\x10)

#define OMP_O_DS_O_STRONG_AUTHENT_USER dsP_objectClass(\x0F)

1055

DCE 1.2.2 Application Development Reference

xdssap.h(4xds)

/* OM class names */

#define OMP_O_DS_C_ALGORITHM_IDENT dsP_sap_c(\x6\x35)

#define OMP_O_DS_C_CERT dsP_sap_c(\x6\x36)

#define OMP_O_DS_C_CERT_LIST dsP_sap_c(\x6\x37)

#define OMP_O_DS_C_CERT_PAIR dsP_sap_c(\x6\x38)

#define OMP_O_DS_C_CERT_SUBLIST dsP_sap_c(\x6\x39)

#define OMP_O_DS_C_SIGNATURE dsP_sap_c(\x6\x3A)

/* OM attribute names */

#define DS_ALGORITHM ((OM_type) 821)

#define DS_FORWARD ((OM_type) 822)

#define DS_ISSUER ((OM_type) 823)

#define DS_LAST_UPDATE ((OM_type) 824)

#define DS_ALGORITHM_PARAMETERS ((OM_type) 825)

#define DS_REVERSE ((OM_type) 826)

#define DS_REVOCATION_DATE ((OM_type) 827)

#define DS_REVOKED_CERTS ((OM_type) 828)

#define DS_SERIAL_NUMBER ((OM_type) 829)

#define DS_SERIAL_NUMBERS ((OM_type) 830)

#define DS_SIGNATURE ((OM_type) 831)

#define DS_SIGNATURE_VALUE ((OM_type) 832)

#define DS_SUBJECT ((OM_type) 833)

#define DS_SUBJECT_ALGORITHM ((OM_type) 834)

#define DS_SUBJECT_PUBLIC_KEY ((OM_type) 835)

#define DS_VALIDITY_NOT_AFTER ((OM_type) 836)

#define DS_VALIDITY_NOT_BEFORE ((OM_type) 837)

#define DS_VERSION ((OM_type) 838)

/* DS_Version */

#define DS_V1988 ((OM_enumeration) 1)

/* Upper bounds on string lengths and the number of repeated OM */

/* attribute values */

1056

DCE Directory Service

xdssap.h(4xds)

#define DS_VL_LAST_UPDATE ((OM_value_length) 17)

#define DS_VL_REVOC_DATE ((OM_value_length) 17)

#define DS_VL_VALIDITY_NOT_AFTER ((OM_value_length) 17)

#define DS_VL_VALIDITY_NOT_BEFORE ((OM_value_length) 17)

#define DS_VN_REVOC_DATE ((OM_value_length) 2)

#endif /* XDSSAP_HEADER */

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1057

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

xmhp.h

Purpose Definitions for the MHS directory objects/attributes.

Synopsis

#include <xom.h>#include <xds.h>#include <xdsmdup.h>
#include <xmhp.h>

Description

The xmhp.h header defines the constants used by the message handling packages.
It is required when using the MHS directory user package. Thexdsmdup.h header
explicitly includesxmhp.h.

xmhp.h contains definitions for the X.400 message handling package. Some of these
definitions are needed when negotiating use of the MDUP.

The following four message handling classes are referenced:

• MH_C_G3_FAX_NBPS

• MH_C_OR_ADDRESS

• MH_C_OR_NAME

• MH_C_TELETEX_NBPS

The only enumerations referenced areDelivery Mode and Terminal Type. For
referenced OM attribute types and OM value lengths see theDCE 1.2.2 Application
Development Guide—Directory Services.

/*

Note that the identifier for the variable name of type OM_STRING

of a class in the Message Handling package can usually be

1058

DCE Directory Service

xmhp.h(4xds)

derived using the name of the class, preceded by "MH_C_", and

replacing a blank space with an underscore. To be in line with the

ANSI C language limitation, some words in the class names are

excepted and are abbreviated as below:

BILATERAL_INFORMATION is abbreviated to BILATERAL_INFO

DELIVERED DELIV

CONFIRMATION CONFIRM

CONFIRMATIONS CONFIRMS

PER_RECIPIENT_ PER_RECIP_

DELIV_PER_RECIP_REPORT DELIV_PER_RECIP_REP

*/

/* BEGIN MH PORTION OF INTERFACE */

/* SYMBOLIC CONSTANTS */

/* Class */

#define OMP_O_MH_C_ALGORITHM "\x56\x06\x01\x02\x05\x0B\x00"

#define OMP_O_MH_C_ALGORITHM_AND_RESULT "\x56\x06\x01\x02\x05\x0B\x01"

#define OMP_O_MH_C_ASYMMETRIC_TOKEN "\x56\x06\x01\x02\x05\x0B\x02"

#define OMP_O_MH_C_BILATERAL_INFO "\x56\x06\x01\x02\x05\x0B\x03"

#define OMP_O_MH_C_COMMUNIQUE "\x56\x06\x01\x02\x05\x0B\x04"

#define OMP_O_MH_C_CONTENT "\x56\x06\x01\x02\x05\x0B\x05"

#define OMP_O_MH_C_DELIV_MESSAGE "\x56\x06\x01\x02\x05\x0B\x06"

#define OMP_O_MH_C_DELIV_PER_RECIP_DR "\x56\x06\x01\x02\x05\x0B\x07"

#define OMP_O_MH_C_DELIV_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x08"

#define OMP_O_MH_C_DELIV_PER_RECIP_REP "\x56\x06\x01\x02\x05\x0B\x09"

#define OMP_O_MH_C_DELIV_REPORT "\x56\x06\x01\x02\x05\x0B\x0A"

#define OMP_O_MH_C_DELIVERY_CONFIRM "\x56\x06\x01\x02\x05\x0B\x0B"

#define OMP_O_MH_C_DELIVERY_ENVELOPE "\x56\x06\x01\x02\x05\x0B\x0C"

#define OMP_O_MH_C_EITS "\x56\x06\x01\x02\x05\x0B\x0D"

#define OMP_O_MH_C_EXPANSION_RECORD "\x56\x06\x01\x02\x05\x0B\x0E"

#define OMP_O_MH_C_EXTENSIBLE_OBJECT "\x56\x06\x01\x02\x05\x0B\x0F"

#define OMP_O_MH_C_EXTENSION "\x56\x06\x01\x02\x05\x0B\x10"

#define OMP_O_MH_C_EXTERNAL_TRACE_ENTRY "\x56\x06\x01\x02\x05\x0B\x11"

#define OMP_O_MH_C_G3_FAX_NBPS "\x56\x06\x01\x02\x05\x0B\x12"

#define OMP_O_MH_C_GENERAL_CONTENT "\x56\x06\x01\x02\x05\x0B\x13"

#define OMP_O_MH_C_INTERNAL_TRACE_ENTRY "\x56\x06\x01\x02\x05\x0B\x14"

1059

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define OMP_O_MH_C_LOCAL_DELIV_CONFIRM "\x56\x06\x01\x02\x05\x0B\x15"

#define OMP_O_MH_C_LOCAL_DELIV_CONFIRMS "\x56\x06\x01\x02\x05\x0B\x16"

#define OMP_O_MH_C_LOCAL_NDR "\x56\x06\x01\x02\x05\x0B\x17"

#define OMP_O_MH_C_LOCAL_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x18"

#define OMP_O_MH_C_MESSAGE "\x56\x06\x01\x02\x05\x0B\x19"

#define OMP_O_MH_C_MESSAGE_RD "\x56\x06\x01\x02\x05\x0B\x1A"

#define OMP_O_MH_C_MTS_IDENTIFIER "\x56\x06\x01\x02\x05\x0B\x1B"

#define OMP_O_MH_C_OR_ADDRESS "\x56\x06\x01\x02\x05\x0B\x1C"

#define OMP_O_MH_C_OR_NAME "\x56\x06\x01\x02\x05\x0B\x1D"

#define OMP_O_MH_C_PER_RECIP_DR "\x56\x06\x01\x02\x05\x0B\x1E"

#define OMP_O_MH_C_PER_RECIP_NDR "\x56\x06\x01\x02\x05\x0B\x1F"

#define OMP_O_MH_C_PER_RECIP_REPORT "\x56\x06\x01\x02\x05\x0B\x20"

#define OMP_O_MH_C_PROBE "\x56\x06\x01\x02\x05\x0B\x21"

#define OMP_O_MH_C_PROBE_RD "\x56\x06\x01\x02\x05\x0B\x22"

#define OMP_O_MH_C_RD "\x56\x06\x01\x02\x05\x0B\x23"

#define OMP_O_MH_C_REDIRECTION_RECORD "\x56\x06\x01\x02\x05\x0B\x24"

#define OMP_O_MH_C_REPORT "\x56\x06\x01\x02\x05\x0B\x25"

#define OMP_O_MH_C_SECURITY_LABEL "\x56\x06\x01\x02\x05\x0B\x26"

#define OMP_O_MH_C_SESSION "\x56\x06\x01\x02\x05\x0B\x27"

#define OMP_O_MH_C_SUBMISSION_RESULTS "\x56\x06\x01\x02\x05\x0B\x28"

#define OMP_O_MH_C_SUBMITTED_COMMUNIQUE "\x56\x06\x01\x02\x05\x0B\x29"

#define OMP_O_MH_C_SUBMITTED_MESSAGE "\x56\x06\x01\x02\x05\x0B\x2A"

#define OMP_O_MH_C_SUBMITTED_MESSAGE_RD "\x56\x06\x01\x02\x05\x0B\x2B"

#define OMP_O_MH_C_SUBMITTED_PROBE "\x56\x06\x01\x02\x05\x0B\x2C"

#define OMP_O_MH_C_SUBMITTED_PROBE_RD "\x56\x06\x01\x02\x05\x0B\x2D"

#define OMP_O_MH_C_TELETEX_NBPS "\x56\x06\x01\x02\x05\x0B\x2E"

#define OMP_O_MH_C_DELIVERY_REPORT "\x56\x06\x01\x02\x05\x0B\x2F"

#define OMP_O_MH_C_MT_PUBLIC_DATA "\x56\x06\x01\x02\x05\x0B\x30"

#define OMP_O_MH_C_TOKEN_PUBLIC_DATA "\x56\x06\x01\x02\x05\x0B\x31"

/* Enumeration */

/* Action */

#define MH_AC_EXPANDED ((OM_enumeration) -2)

#define MH_AC_REDIRECTED ((OM_enumeration) -1)

#define MH_AC_RELAYED ((OM_enumeration) 0)

#define MH_AC_REROUTED ((OM_enumeration) 1)

/* Builtin EIT */

1060

DCE Directory Service

xmhp.h(4xds)

#define MH_BE_UNDEFINED ((OM_enumeration) 0)

#define MH_BE_TELEX ((OM_enumeration) 1)

#define MH_BE_IA5_TEXT ((OM_enumeration) 2)

#define MH_BE_G3_FAX ((OM_enumeration) 3)

#define MH_BE_G4_CLASS1 ((OM_enumeration) 4)

#define MH_BE_TELETEX ((OM_enumeration) 5)

#define MH_BE_VIDEOTEX ((OM_enumeration) 6)

#define MH_BE_MIXED_MODE ((OM_enumeration) 9)

#define MH_BE_ODA ((OM_enumeration) 10)

#define MH_BE_ISO_6937_TEXT ((OM_enumeration) 11)

/* Delivery Mode */

#define MH_DM_ANY ((OM_enumeration) 0)

#define MH_DM_MTS ((OM_enumeration) 1)

#define MH_DM_PDS ((OM_enumeration) 2)

#define MH_DM_TELEX ((OM_enumeration) 3)

#define MH_DM_TELETEX ((OM_enumeration) 4)

#define MH_DM_G3_FAX ((OM_enumeration) 5)

#define MH_DM_G4_FAX ((OM_enumeration) 6)

#define MH_DM_IA5_TERMINAL ((OM_enumeration) 7)

#define MH_DM_VIDEOTEX ((OM_enumeration) 8)

#define MH_DM_TELEPHONE ((OM_enumeration) 9)

/* Delivery Point */

#define MH_DP_PUBLIC_UA ((OM_enumeration) 0)

#define MH_DP_PRIVATE_UA ((OM_enumeration) 1)

#define MH_DP_MS ((OM_enumeration) 2)

#define MH_DP_DL ((OM_enumeration) 3)

#define MH_DP_PDAU ((OM_enumeration) 4)

#define MH_DP_PDS_PATRON ((OM_enumeration) 5)

#define MH_DP_OTHER_AU ((OM_enumeration) 6)

/* Diagnostic */

#define MH_DG_NO_DIAGNOSTIC ((OM_enumeration) -1)

#define MH_DG_OR_NAME_UNRECOGNIZED ((OM_enumeration) 0)

#define MH_DG_OR_NAME_AMBIGUOUS ((OM_enumeration) 1)

#define MH_DG_MTS_CONGESTED ((OM_enumeration) 2)

#define MH_DG_LOOP_DETECTED ((OM_enumeration) 3)

#define MH_DG_RECIPIENT_UNAVAILABLE ((OM_enumeration) 4)

1061

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define MH_DG_MAXIMUM_TIME_EXPIRED ((OM_enumeration) 5)

#define MH_DG_EITS_UNSUPPORTED ((OM_enumeration) 6)

#define MH_DG_CONTENT_TOO_LONG ((OM_enumeration) 7)

#define MH_DG_IMPRACTICAL_TO_CONVERT ((OM_enumeration) 8)

#define MH_DG_PROHIBITED_TO_CONVERT ((OM_enumeration) 9)

#define MH_DG_CONVERSION_UNSUBSCRIBED ((OM_enumeration) 10)

#define MH_DG_PARAMETERS_INVALID ((OM_enumeration) 11)

#define MH_DG_CONTENT_SYNTAX_IN_ERROR ((OM_enumeration) 12)

#define MH_DG_LENGTH_CONSTRAINT_VIOLATD ((OM_enumeration) 13)

#define MH_DG_NUMBER_CONSTRAINT_VIOLATD ((OM_enumeration) 14)

#define MH_DG_CONTENT_TYPE_UNSUPPORTED ((OM_enumeration) 15)

#define MH_DG_TOO_MANY_RECIPIENTS ((OM_enumeration) 16)

#define MH_DG_NO_BILATERAL_AGREEMENT ((OM_enumeration) 17)

#define MH_DG_CRITICAL_FUNC_UNSUPPORTED ((OM_enumeration) 18)

#define MH_DG_CONVERSION_LOSS_PROHIB ((OM_enumeration) 19)

#define MH_DG_LINE_TOO_LONG ((OM_enumeration) 20)

#define MH_DG_PAGE_TOO_LONG ((OM_enumeration) 21)

#define MH_DG_PICTORIAL_SYMBOL_LOST ((OM_enumeration) 22)

#define MH_DG_PUNCTUATION_SYMBOL_LOST ((OM_enumeration) 23)

#define MH_DG_ALPHABETIC_CHARACTER_LOST ((OM_enumeration) 24)

#define MH_DG_MULTIPLE_INFO_LOSSES ((OM_enumeration) 25)

#define MH_DG_REASSIGNMENT_PROHIBITED ((OM_enumeration) 26)

#define MH_DG_REDIRECTION_LOOP_DETECTED ((OM_enumeration) 27)

#define MH_DG_EXPANSION_PROHIBITED ((OM_enumeration) 28)

#define MH_DG_SUBMISSION_PROHIBITED ((OM_enumeration) 29)

#define MH_DG_EXPANSION_FAILED ((OM_enumeration) 30)

#define MH_DG_RENDITION_UNSUPPORTED ((OM_enumeration) 31)

#define MH_DG_MAIL_ADDRESS_INCORRECT ((OM_enumeration) 32)

#define MH_DG_MAIL_OFFICE_INCOR_OR_INVD ((OM_enumeration) 33)

#define MH_DG_MAIL_ADDRESS_INCOMPLETE ((OM_enumeration) 34)

#define MH_DG_MAIL_RECIPIENT_UNKNOWN ((OM_enumeration) 35)

#define MH_DG_MAIL_RECIPIENT_DECEASED ((OM_enumeration) 36)

#define MH_DG_MAIL_ORGANIZATION_EXPIRED ((OM_enumeration) 37)

#define MH_DG_MAIL_REFUSED ((OM_enumeration) 38)

#define MH_DG_MAIL_UNCLAIMED ((OM_enumeration) 39)

#define MH_DG_MAIL_RECIPIENT_MOVED ((OM_enumeration) 40)

#define MH_DG_MAIL_RECIPIENT_TRAVELLING ((OM_enumeration) 41)

#define MH_DG_MAIL_RECIPIENT_DEPARTED ((OM_enumeration) 42)

#define MH_DG_MAIL_NEW_ADDRESS_UNKNOWN ((OM_enumeration) 43)

#define MH_DG_MAIL_FORWARDING_UNWANTED ((OM_enumeration) 44)

1062

DCE Directory Service

xmhp.h(4xds)

#define MH_DG_MAIL_FORWARDING_PROHIB ((OM_enumeration) 45)

#define MH_DG_SECURE_MESSAGING_ERROR ((OM_enumeration) 46)

#define MH_DG_DOWNGRADING_IMPOSSIBLE ((OM_enumeration) 47)

/* Explicit Conversion */

#define MH_EC_NO_CONVERSION ((OM_enumeration) -1)

#define MH_EC_IA5_TEXT_TO_TELETEX ((OM_enumeration) 0)

#define MH_EC_TELETEX_TO_TELEX ((OM_enumeration) 1)

#define MH_EC_TELEX_TO_IA5_TEXT ((OM_enumeration) 2)

#define MH_EC_TELEX_TO_TELETEX ((OM_enumeration) 3)

#define MH_EC_TELEX_TO_G4_CLASS1 ((OM_enumeration) 4)

#define MH_EC_TELEX_TO_VIDEOTEX ((OM_enumeration) 5)

#define MH_EC_IA5_TEXT_TO_TELEX ((OM_enumeration) 6)

#define MH_EC_TELEX_TO_G3_FAX ((OM_enumeration) 7)

#define MH_EC_IA5_TEXT_TO_G3_FAX ((OM_enumeration) 8)

#define MH_EC_IA5_TEXT_TO_G4_CLASS1 ((OM_enumeration) 9)

#define MH_EC_IA5_TEXT_TO_VIDEOTEX ((OM_enumeration) 10)

#define MH_EC_TELETEX_TO_IA5_TEXT ((OM_enumeration) 11)

#define MH_EC_TELETEX_TO_G3_FAX ((OM_enumeration) 12)

#define MH_EC_TELETEX_TO_G4_CLASS1 ((OM_enumeration) 13)

#define MH_EC_TELETEX_TO_VIDEOTEX ((OM_enumeration) 14)

#define MH_EC_VIDEOTEX_TO_TELEX ((OM_enumeration) 15)

#define MH_EC_VIDEOTEX_TO_IA5_TEXT ((OM_enumeration) 16)

#define MH_EC_VIDEOTEX_TO_TELETEX ((OM_enumeration) 17)

/* Postal Mode */

#define MH_PM_ORDINARY_MAIL ((OM_enumeration) 0)

#define MH_PM_SPECIAL_DELIVERY ((OM_enumeration) 1)

#define MH_PM_EXPRESS_MAIL ((OM_enumeration) 2)

#define MH_PM_CC ((OM_enumeration) 3)

#define MH_PM_CC_WITH_TELEPHONE_ADVICE ((OM_enumeration) 4)

#define MH_PM_CC_WITH_TELEX_ADVICE ((OM_enumeration) 5)

#define MH_PM_CC_WITH_TELETEX_ADVICE ((OM_enumeration) 6)

/* Postal Report */

#define MH_PR_UNDELIVBLE_MAIL_VIA_PDS ((OM_enumeration) 0)

#define MH_PR_NOTIFICN_VIA_PDS ((OM_enumeration) 1)

1063

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define MH_PR_NOTIFICN_VIA_MTS ((OM_enumeration) 2)

#define MH_PR_NOTIFICN_VIA_MTS_AND_PDS ((OM_enumeration) 3)

/* Priority */

#define MH_PTY_NORMAL ((OM_enumeration) 0)

#define MH_PTY_LOW ((OM_enumeration) 1)

#define MH_PTY_URGENT ((OM_enumeration) 2)

/* Reason */

#define MH_RE_TRANSFER_FAILED ((OM_enumeration) 0)

#define MH_RE_TRANSFER_IMPOSSIBLE ((OM_enumeration) 1)

#define MH_RE_CONVERSION_NOT_PERFORMED ((OM_enumeration) 2)

#define MH_RE_PHYSICAL_RENDITN_NOT_DONE ((OM_enumeration) 3)

#define MH_RE_PHYSICAL_DELIV_NOT_DONE ((OM_enumeration) 4)

#define MH_RE_RESTRICTED_DELIVERY ((OM_enumeration) 5)

#define MH_RE_DIRECTORY_OPERATN_FAILED ((OM_enumeration) 6)

/* Redirection Reason */

#define MH_RR_RECIPIENT_ASSIGNED ((OM_enumeration) 0)

#define MH_RR_ORIGINATOR_REQUESTED ((OM_enumeration) 1)

#define MH_RR_RECIPIENT_DOMAIN_ASSIGNED ((OM_enumeration) 2)

/* Registration */

#define MH_RG_UNREGISTERED_MAIL ((OM_enumeration) 0)

#define MH_RG_REGISTERED_MAIL ((OM_enumeration) 1)

#define MH_RG_REGISTERED_MAIL_IN_PERSON ((OM_enumeration) 2)

/* Report Request */

#define MH_RQ_NEVER ((OM_enumeration) 0)

#define MH_RQ_NON_DELIVERY ((OM_enumeration) 1)

#define MH_RQ_ALWAYS ((OM_enumeration) 2)

#define MH_RQ_ALWAYS_AUDITED ((OM_enumeration) 3)

/* Security Classification */

1064

DCE Directory Service

xmhp.h(4xds)

#define MH_SC_UNMARKED ((OM_enumeration) 0)

#define MH_SC_UNCLASSIFIED ((OM_enumeration) 1)

#define MH_SC_RESTRICTED ((OM_enumeration) 2)

#define MH_SC_CONFIDENTIAL ((OM_enumeration) 3)

#define MH_SC_SECRET ((OM_enumeration) 4)

#define MH_SC_TOP_SECRET ((OM_enumeration) 5)

/* Terminal Type */

#define MH_TT_TELEX ((OM_enumeration) 3)

#define MH_TT_TELETEX ((OM_enumeration) 4)

#define MH_TT_G3_FAX ((OM_enumeration) 5)

#define MH_TT_G4_FAX ((OM_enumeration) 6)

#define MH_TT_IA5_TERMINAL ((OM_enumeration) 7)

#define MH_TT_VIDEOTEX ((OM_enumeration) 8)

/* Integer */

/* Content Type */

#define MH_CTI_UNIDENTIFIED ((OM_integer) 0)

#define MH_CTI_EXTERNAL ((OM_integer) 1)

#define MH_CTI_P2_1984 ((OM_integer) 2)

#define MH_CTI_P2_1988 ((OM_integer) 22)

/* Object Identifier (Elements component) */

/* Content Type */

#define OMP_O_MH_CTO_INNER_MESSAGE "\x56\x03\x03\x01"

#define OMP_O_MH_CTO_UNIDENTIFIED "\x56\x03\x03\x00"

/* External EITs */

#define OMP_O_MH_EE_G3_FAX "\x56\x03\x04\x03"

#define OMP_O_MH_EE_G4_CLASS_1 "\x56\x03\x04\x04"

#define OMP_O_MH_EE_IA5_TEXT "\x56\x03\x04\x02"

#define OMP_O_MH_EE_MIXED_MODE "\x56\x03\x04\x09"

#define OMP_O_MH_EE_TELETEX "\x56\x03\x04\x05"

#define OMP_O_MH_EE_TELEX "\x56\x03\x04\x01"

1065

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define OMP_O_MH_EE_UNDEFINED "\x56\x03\x04\x00"

#define OMP_O_MH_EE_VIDEOTEX "\x56\x03\x04\x06"

/* Rendition Attributes */

#define OMP_O_MH_RA_BASIC_RENDITION "\x56\x03\x05\x00"

/* Type */

#define MH_T_A3_WIDTH ((OM_type) 200)

#define MH_T_ACTION ((OM_type) 201)

#define MH_T_ACTUAL_RECIPIENT_NAME ((OM_type) 202)

#define MH_T_ADMD_NAME ((OM_type) 203)

#define MH_T_ALGORITHM_DATUM ((OM_type) 204)

#define MH_T_ALGORITHM_ID ((OM_type) 205)

#define MH_T_ALGORITHM_RESULT ((OM_type) 206)

#define MH_T_ALTERNATE_RECIP_ALLOWED ((OM_type) 207)

#define MH_T_ALTERNATE_RECIPIENT_NAME ((OM_type) 208)

#define MH_T_ARRIVAL_TIME ((OM_type) 209)

#define MH_T_ATTEMPTED_ADMD_NAME ((OM_type) 210)

#define MH_T_ATTEMPTED_COUNTRY_NAME ((OM_type) 211)

#define MH_T_ATTEMPTED_MTA_NAME ((OM_type) 212)

#define MH_T_ATTEMPTED_PRMD_IDENTIFIER ((OM_type) 213)

#define MH_T_B4_LENGTH ((OM_type) 214)

#define MH_T_B4_WIDTH ((OM_type) 215)

#define MH_T_BILATERAL_INFO ((OM_type) 216)

#define MH_T_BINARY_CONTENT ((OM_type) 217)

#define MH_T_BUILTIN_EITS ((OM_type) 218)

#define MH_T_BUREAU_FAX_DELIVERY ((OM_type) 219)

#define MH_T_COMMON_NAME ((OM_type) 220)

#define MH_T_CONFIDENTIALITY_ALGORITHM ((OM_type) 221)

#define MH_T_CONFIDENTIALITY_KEY ((OM_type) 222)

#define MH_T_CONTENT ((OM_type) 223)

#define MH_T_CONTENT_CORRELATOR ((OM_type) 224)

#define MH_T_CONTENT_EXTENSIONS ((OM_type) 225)

#define MH_T_CONTENT_IDENTIFIER ((OM_type) 226)

#define MH_T_CONTENT_LENGTH ((OM_type) 227)

#define MH_T_CONTENT_RETURN_REQUESTED ((OM_type) 228)

#define MH_T_CONTENT_TYPE ((OM_type) 229)

#define MH_T_CONTROL_CHARACTER_SETS ((OM_type) 230)

#define MH_T_CONVERSION_LOSS_PROHIBITED ((OM_type) 231)

1066

DCE Directory Service

xmhp.h(4xds)

#define MH_T_CONVERSION_PROHIBITED ((OM_type) 232)

#define MH_T_CONVERTED_EITS ((OM_type) 233)

#define MH_T_COUNTRY_NAME ((OM_type) 234)

#define MH_T_CRITICAL_FOR_DELIVERY ((OM_type) 235)

#define MH_T_CRITICAL_FOR_SUBMISSION ((OM_type) 236)

#define MH_T_CRITICAL_FOR_TRANSFER ((OM_type) 237)

#define MH_T_DEFERRED_DELIVERY_TIME ((OM_type) 238)

#define MH_T_DEFERRED_TIME ((OM_type) 239)

#define MH_T_DELIVERY_CONFIRMS ((OM_type) 240)

#define MH_T_DELIVERY_POINT ((OM_type) 241)

#define MH_T_DELIVERY_TIME ((OM_type) 242)

#define MH_T_DIRECTORY_NAME ((OM_type) 243)

#define MH_T_DISCLOSURE_ALLOWED ((OM_type) 244)

#define MH_T_DISTINGUISHED_RECIP_ADDR ((OM_type) 245)

#define MH_T_DOMAIN_TYPE_1 ((OM_type) 246)

#define MH_T_DOMAIN_TYPE_2 ((OM_type) 247)

#define MH_T_DOMAIN_TYPE_3 ((OM_type) 248)

#define MH_T_DOMAIN_TYPE_4 ((OM_type) 249)

#define MH_T_DOMAIN_VALUE_1 ((OM_type) 250)

#define MH_T_DOMAIN_VALUE_2 ((OM_type) 251)

#define MH_T_DOMAIN_VALUE_3 ((OM_type) 252)

#define MH_T_DOMAIN_VALUE_4 ((OM_type) 253)

#define MH_T_ENVELOPES ((OM_type) 254)

#define MH_T_EVENT_HANDLE ((OM_type) 255)

#define MH_T_EXPANSION_HISTORY ((OM_type) 256)

#define MH_T_EXPANSION_PROHIBITED ((OM_type) 257)

#define MH_T_EXPLICIT_CONVERSION ((OM_type) 258)

#define MH_T_EXTENSION_TYPE ((OM_type) 259)

#define MH_T_EXTENSION_VALUE ((OM_type) 260)

#define MH_T_EXTENSIONS ((OM_type) 261)

#define MH_T_EXTERNAL_EITS ((OM_type) 262)

#define MH_T_EXTERNAL_TRACE_INFO ((OM_type) 263)

#define MH_T_FINE_RESOLUTION ((OM_type) 264)

#define MH_T_FORWARDING_ADDRESS ((OM_type) 265)

#define MH_T_FORWARDING_ADDR_REQUESTED ((OM_type) 266)

#define MH_T_FORWARDING_PROHIBITED ((OM_type) 267)

#define MH_T_G3_FAX_NBPS ((OM_type) 268)

#define MH_T_G4_FAX_NBPS ((OM_type) 269)

#define MH_T_GENERATION ((OM_type) 270)

#define MH_T_GIVEN_NAME ((OM_type) 271)

1067

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define MH_T_GRAPHIC_CHARACTER_SETS ((OM_type) 272)

#define MH_T_INFORMATION ((OM_type) 273)

#define MH_T_INITIALS ((OM_type) 274)

#define MH_T_INTEGRITY_CHECK ((OM_type) 275)

#define MH_T_INTENDED_RECIPIENT_NAME ((OM_type) 276)

#define MH_T_INTENDED_RECIPIENT_NUMBER ((OM_type) 277)

#define MH_T_INTERNAL_TRACE_INFO ((OM_type) 278)

#define MH_T_ISDN_NUMBER ((OM_type) 279)

#define MH_T_ISDN_SUBADDRESS ((OM_type) 280)

#define MH_T_LATEST_DELIVERY_TIME ((OM_type) 281)

#define MH_T_LOCAL_IDENTIFIER ((OM_type) 282)

#define MH_T_MESSAGE_SEQUENCE_NUMBER ((OM_type) 283)

#define MH_T_MISCELANEOUS_CAPABILITIES ((OM_type) 284)

#define MH_T_MTA_CERTIFICATE ((OM_type) 285)

#define MH_T_MTA_NAME ((OM_type) 286)

#define MH_T_MTA_REPORT_REQUEST ((OM_type) 287)

#define MH_T_MTA_RESPONSIBILITY ((OM_type) 288)

#define MH_T_MTS_IDENTIFIER ((OM_type) 289)

#define MH_T_NAME ((OM_type) 290)

#define MH_T_NON_DELIVERY_DIAGNOSTIC ((OM_type) 291)

#define MH_T_NON_DELIVERY_REASON ((OM_type) 292)

#define MH_T_NUMERIC_USER_IDENTIFIER ((OM_type) 293)

#define MH_T_ORGANIZATION_NAME ((OM_type) 294)

#define MH_T_ORGANIZATIONAL_UNIT_NAME_1 ((OM_type) 295)

#define MH_T_ORGANIZATIONAL_UNIT_NAME_2 ((OM_type) 296)

#define MH_T_ORGANIZATIONAL_UNIT_NAME_3 ((OM_type) 297)

#define MH_T_ORGANIZATIONAL_UNIT_NAME_4 ((OM_type) 298)

#define MH_T_ORIG_AND_EXPANSION_HISTORY ((OM_type) 299)

#define MH_T_ORIGIN_CHECK ((OM_type) 300)

#define MH_T_ORIGINAL_EITS ((OM_type) 301)

#define MH_T_ORIGINALLY_INTENDED_RECIP ((OM_type) 302)

#define MH_T_ORIGINATOR_CERTIFICATE ((OM_type) 303)

#define MH_T_ORIGINATOR_NAME ((OM_type) 304)

#define MH_T_ORIGINATOR_REPORT_REQUEST ((OM_type) 305)

#define MH_T_ORIGINATOR_RETURN_ADDRESS ((OM_type) 306)

#define MH_T_OTHER_RECIPIENT_NAMES ((OM_type) 307)

#define MH_T_PAGE_FORMATS ((OM_type) 308)

#define MH_T_PER_RECIP_REPORTS ((OM_type) 309)

#define MH_T_POSTAL_ADDRESS_DETAILS ((OM_type) 310)

#define MH_T_POSTAL_ADDRESS_IN_FULL ((OM_type) 311)

1068

DCE Directory Service

xmhp.h(4xds)

#define MH_T_POSTAL_ADDRESS_IN_LINES ((OM_type) 312)

#define MH_T_POSTAL_CODE ((OM_type) 313)

#define MH_T_POSTAL_COUNTRY_NAME ((OM_type) 314)

#define MH_T_POSTAL_DELIVERY_POINT_NAME ((OM_type) 315)

#define MH_T_POSTAL_DELIV_SYSTEM_NAME ((OM_type) 316)

#define MH_T_POSTAL_GENERAL_DELIV_ADDR ((OM_type) 317)

#define MH_T_POSTAL_LOCALE ((OM_type) 318)

#define MH_T_POSTAL_MODE ((OM_type) 319)

#define MH_T_POSTAL_OFFICE_BOX_NUMBER ((OM_type) 320)

#define MH_T_POSTAL_OFFICE_NAME ((OM_type) 321)

#define MH_T_POSTAL_OFFICE_NUMBER ((OM_type) 322)

#define MH_T_POSTAL_ORGANIZATION_NAME ((OM_type) 323)

#define MH_T_POSTAL_PATRON_DETAILS ((OM_type) 324)

#define MH_T_POSTAL_PATRON_NAME ((OM_type) 325)

#define MH_T_POSTAL_REPORT ((OM_type) 326)

#define MH_T_POSTAL_STREET_ADDRESS ((OM_type) 327)

#define MH_T_PREFERRED_DELIVERY_MODES ((OM_type) 328)

#define MH_T_PRESENTATION_ADDRESS ((OM_type) 329)

#define MH_T_PRIORITY ((OM_type) 330)

#define MH_T_PRIVACY_MARK ((OM_type) 331)

#define MH_T_PRIVATE_USE ((OM_type) 332)

#define MH_T_PRMD_IDENTIFIER ((OM_type) 333)

#define MH_T_PRMD_NAME ((OM_type) 334)

#define MH_T_PROOF_OF_DELIVERY ((OM_type) 335)

#define MH_T_PROOF_OF_DELIV_REQUESTED ((OM_type) 336)

#define MH_T_PROOF_OF_SUBMISSION ((OM_type) 337)

#define MH_T_PROOF_OF_SUBMISN_REQUEST ((OM_type) 338)

#define MH_T_PUBLIC_INFORMATION ((OM_type) 339)

#define MH_T_RANDOM_NUMBER ((OM_type) 340)

#define MH_T_REASON ((OM_type) 341)

#define MH_T_REASSIGNMENT_PROHIBITED ((OM_type) 342)

#define MH_T_RECIPIENT_CERTIFICATE ((OM_type) 343)

#define MH_T_RECIPIENT_DESCRIPTORS ((OM_type) 344)

#define MH_T_RECIPIENT_NAME ((OM_type) 345)

#define MH_T_RECIPIENT_NUMBER ((OM_type) 346)

#define MH_T_RECIP_NUMBER_FOR_ADVICE ((OM_type) 347)

#define MH_T_REDIRECTION_HISTORY ((OM_type) 348)

#define MH_T_REGISTRATION ((OM_type) 349)

#define MH_T_RENDITION_ATTRIBUTES ((OM_type) 350)

#define MH_T_REPORT_ADDITIONAL_INFO ((OM_type) 351)

1069

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

#define MH_T_REPORT_DESTINATION ((OM_type) 352)

#define MH_T_REPORTING_DL_NAME ((OM_type) 353)

#define MH_T_REPORTING_MTA_CERTIFICATE ((OM_type) 354)

#define MH_T_SECRET_INFORMATION ((OM_type) 355)

#define MH_T_SECURITY_CATEGORY_DATA ((OM_type) 356)

#define MH_T_SECURITY_CATEGORY_IDS ((OM_type) 357)

#define MH_T_SECURITY_CLASSIFICATION ((OM_type) 358)

#define MH_T_SECURITY_LABEL ((OM_type) 359)

#define MH_T_SECURITY_POLICY_ID ((OM_type) 360)

#define MH_T_SIGNATURE ((OM_type) 361)

#define MH_T_SUBJECT_EXT_TRACE_INFO ((OM_type) 362)

#define MH_T_SUBJECT_MTS_IDENTIFIER ((OM_type) 363)

#define MH_T_SUBMISSION_TIME ((OM_type) 364)

#define MH_T_SUPPLEMENTARY_INFO ((OM_type) 365)

#define MH_T_SURNAME ((OM_type) 366)

#define MH_T_TELETEX_NBPS ((OM_type) 367)

#define MH_T_TEMPORARY ((OM_type) 368)

#define MH_T_TERMINAL_IDENTIFIER ((OM_type) 369)

#define MH_T_TERMINAL_TYPE ((OM_type) 370)

#define MH_T_TIME ((OM_type) 371)

#define MH_T_TOKEN ((OM_type) 372)

#define MH_T_TWO_DIMENSIONAL ((OM_type) 373)

#define MH_T_UNCOMPRESSED ((OM_type) 374)

#define MH_T_UNLIMITED_LENGTH ((OM_type) 375)

#define MH_T_WORKSPACE ((OM_type) 376)

#define MH_T_X121_ADDRESS ((OM_type) 377)

/* Value Length */

#define MH_VL_ADMD_NAME ((OM_value_length) 16)

#define MH_VL_ATTEMPTED_ADMD_NAME ((OM_value_length) 16)

#define MH_VL_ATTEMPTED_COUNTRY_NAME ((OM_value_length) 3)

#define MH_VL_ATTEMPTED_PRMD_IDENTIFIER ((OM_value_length) 16)

#define MH_VL_COMMON_NAME ((OM_value_length) 64)

#define MH_VL_CONTENT_CORRELATOR ((OM_value_length) 512)

#define MH_VL_CONTENT_IDENTIFIER ((OM_value_length) 16)

#define MH_VL_COUNTRY_NAME ((OM_value_length) 3)

#define MH_VL_DOMAIN_TYPE ((OM_value_length) 8)

#define MH_VL_DOMAIN_VALUE ((OM_value_length) 128)

#define MH_VL_GENERATION ((OM_value_length) 3)

1070

DCE Directory Service

xmhp.h(4xds)

#define MH_VL_GIVEN_NAME ((OM_value_length) 16)

#define MH_VL_INFORMATION ((OM_value_length) 1024)

#define MH_VL_INITIALS ((OM_value_length) 5)

#define MH_VL_ISDN_NUMBER ((OM_value_length) 15)

#define MH_VL_ISDN_SUBADDRESS ((OM_value_length) 40)

#define MH_VL_LATEST_DELIVERY_TIME ((OM_value_length) 7)

#define MH_VL_LOCAL_IDENTIFIER ((OM_value_length) 32)

#define MH_VL_MSG_CONTENT_CORRELATOR ((OM_value_length) 16)

#define MH_VL_MTA_NAME ((OM_value_length) 32)

#define MH_VL_NUMERIC_USER_IDENTIFIER ((OM_value_length) 32)

#define MH_VL_ORGANIZATION_NAME ((OM_value_length) 64)

#define MH_VL_ORGANIZATIONAL_UNIT_NAMES ((OM_value_length) 32)

#define MH_VL_POSTAL_ADDRESS_DETAILS ((OM_value_length) 30)

#define MH_VL_POSTAL_ADDRESS_IN_FULL ((OM_value_length) 185)

#define MH_VL_POSTAL_CODE ((OM_value_length) 16)

#define MH_VL_POSTAL_COUNTRY_NAME ((OM_value_length) 32)

#define MH_VL_POSTAL_DELIV_POINT_NAME ((OM_value_length) 30)

#define MH_VL_POSTAL_DELIV_SYSTEM_NAME ((OM_value_length) 16)

#define MH_VL_POSTAL_GENERAL_DELIV_ADDR ((OM_value_length) 30)

#define MH_VL_POSTAL_LOCALE ((OM_value_length) 30)

#define MH_VL_POSTAL_OFFICE_BOX_NUMBER ((OM_value_length) 30)

#define MH_VL_POSTAL_OFFICE_NAME ((OM_value_length) 30)

#define MH_VL_POSTAL_OFFICE_NUMBER ((OM_value_length) 30)

#define MH_VL_POSTAL_ORGANIZATION_NAME ((OM_value_length) 30)

#define MH_VL_POSTAL_PATRON_DETAILS ((OM_value_length) 30)

#define MH_VL_POSTAL_PATRON_NAME ((OM_value_length) 30)

#define MH_VL_POSTAL_STREET_ADDRESS ((OM_value_length) 30)

#define MH_VL_PRIVACY_MARK ((OM_value_length) 128)

#define MH_VL_PRIVATE_USE ((OM_value_length) 126)

#define MH_VL_PRMD_IDENTIFIER ((OM_value_length) 16)

#define MH_VL_PRMD_NAME ((OM_value_length) 16)

#define MH_VL_RECIP_NUMBER_FOR_ADVICE ((OM_value_length) 32)

#define MH_VL_REDIRECTION_TIME ((OM_value_length) 7)

#define MH_VL_REPORT_ADDITIONAL_INFO ((OM_value_length) 1024)

#define MH_VL_SUPPLEMENTARY_INFO ((OM_value_length) 64)

#define MH_VL_SURNAME ((OM_value_length) 40)

#define MH_VL_TERMINAL_IDENTIFIER ((OM_value_length) 24)

#define MH_VL_TIME ((OM_value_length) 17)

#define MH_VL_X121_ADDRESS ((OM_value_length) 15)

1071

DCE 1.2.2 Application Development Reference

xmhp.h(4xds)

/* Value Number */

#define MH_VN_BILATERAL_INFORMATION ((OM_value_number) 8)

#define MH_VN_ENCODED_INFORMATION_TYPES ((OM_value_number) 8)

#define MH_VN_EXPANSION_HISTORY ((OM_value_number) 512)

#define MH_VN_OTHER_RECIPIENT_NAMES ((OM_value_number) 32767)

#define MH_VN_PREFERRED_DELIVERY_MODES ((OM_value_number) 10)

#define MH_VN_RECIPIENT_DESCRIPTORS ((OM_value_number) 32767)

#define MH_VN_REDIRECTION_HISTORY ((OM_value_number) 512)

#define MH_VN_REPORT_SUBSTANCE ((OM_value_number) 32767)

#define MH_VN_SECURITY_CATEGORY_DATA ((OM_value_number) 64)

#define MH_VN_SECURITY_CATEGORY_IDS ((OM_value_number) 64)

#define MH_VN_TRACE_INFO ((OM_value_number) 512)

/* END MH PORTION OF INTERFACE */

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services, X/Open
CAE Specification (November 1991), API to Electronic Mail (X.400).

1072

DCE Directory Service

xmsga.h(4xds)

xmsga.h

Purpose Definitions for the message store general attributes

Synopsis

#include <xom.h>
#include <xds.h>
#include <xdsmdup.h>
#include <xmhp.h>
#include <xmsga.h>

Description

The xmsga.h header declares the object identifiers for the message store general
attributes. They are used with the directory message store object. This header must be
included when use of the MHS directory user package (MDUP) has been negotiated.

All application programs that include this header must first include thexom.h object
management header, thexds.h header, thexdsmdup.h andxmhp.h headers.

#ifndef XMSGA_HEADER

#define XMSGA_HEADER

/* MS General Attributes Package object identifier */

#define OMP_O_MS_GENERAL_ATTRIBUTES_PACKAGE "\x56\x06\x01\x02\x06\x02"

/* MS General Attributes Types */

/*

* Note: Every client program must explicitly import into

* every compilation unit (C source program) the classes or

* Object Identifiers that it uses. Each of these classes or

1073

DCE 1.2.2 Application Development Reference

xmsga.h(4xds)

* Object Identifier names must then be explicitly exported from

* just one compilation unit.

* Importing and exporting can be done using the OM_IMPORT and

* OM_EXPORT macros respectively (see [OM API]).

* For instance, the client program uses

* OM_IMPORT(MS_A_CHILD_SEQUENCE_NUMBERS)

* which in turn will make use of

* OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS

* defined below.

*/

#define OMP_O_MS_A_CHILD_SEQUENCE_NUMBERS "\x56\x04\x03\x00"

#define OMP_O_MS_A_CONTENT "\x56\x04\x03\x01"

#define OMP_O_MS_A_CONTENT_CONFIDENTL_ALGM_ID "\x56\x04\x03\x02"

#define OMP_O_MS_A_CONTENT_CORRELATOR "\x56\x04\x03\x03"

#define OMP_O_MS_A_CONTENT_IDENTIFIER "\x56\x04\x03\x04"

#define OMP_O_MS_A_CONTENT_INTEGRITY_CHECK "\x56\x04\x03\x05"

#define OMP_O_MS_A_CONTENT_LENGTH "\x56\x04\x03\x06"

#define OMP_O_MS_A_CONTENT_RETURNED "\x56\x04\x03\x07"

#define OMP_O_MS_A_CONTENT_TYPE "\x56\x04\x03\x08"

#define OMP_O_MS_A_CONVERSION_LOSS_PROHIBITED "\x56\x04\x03\x09"

#define OMP_O_MS_A_CONVERTED_EITS "\x56\x04\x03\x0A"

#define OMP_O_MS_A_CREATION_TIME "\x56\x04\x03\x0B"

#define OMP_O_MS_A_DELIVERED_EITS "\x56\x04\x03\x0C"

#define OMP_O_MS_A_DELIVERY_FLAGS "\x56\x04\x03\x0D"

#define OMP_O_MS_A_DL_EXPANSION_HISTORY "\x56\x04\x03\x0E"

#define OMP_O_MS_A_ENTRY_STATUS "\x56\x04\x03\x0F"

#define OMP_O_MS_A_ENTRY_TYPE "\x56\x04\x03\x10"

#define OMP_O_MS_A_INTENDED_RECIPIENT_NAME "\x56\x04\x03\x11"

#define OMP_O_MS_A_MESSAGE_DELIVERY_ENVELOPE "\x56\x04\x03\x12"

#define OMP_O_MS_A_MESSAGE_DELIVERY_ID "\x56\x04\x03\x13"

#define OMP_O_MS_A_MESSAGE_DELIVERY_TIME "\x56\x04\x03\x14"

#define OMP_O_MS_A_MESSAGE_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x15"

#define OMP_O_MS_A_MESSAGE_SECURITY_LABEL "\x56\x04\x03\x16"

#define OMP_O_MS_A_MESSAGE_SUBMISSION_TIME "\x56\x04\x03\x17"

#define OMP_O_MS_A_MESSAGE_TOKEN "\x56\x04\x03\x18"

#define OMP_O_MS_A_ORIGINAL_EITS "\x56\x04\x03\x19"

#define OMP_O_MS_A_ORIGINATOR_CERTIFICATE "\x56\x04\x03\x1A"

#define OMP_O_MS_A_ORIGINATOR_NAME "\x56\x04\x03\x1B"

#define OMP_O_MS_A_OTHER_RECIPIENT_NAMES "\x56\x04\x03\x1C"

1074

DCE Directory Service

xmsga.h(4xds)

#define OMP_O_MS_A_PARENT_SEQUENCE_NUMBER "\x56\x04\x03\x1D"

#define OMP_O_MS_A_PERRECIP_REPORT_DELIV_FLDS "\x56\x04\x03\x1E"

#define OMP_O_MS_A_PRIORITY "\x56\x04\x03\x1F"

#define OMP_O_MS_A_PROOF_OF_DELIVERY_REQUEST "\x56\x04\x03\x20"

#define OMP_O_MS_A_REDIRECTION_HISTORY "\x56\x04\x03\x21"

#define OMP_O_MS_A_REPORT_DELIVERY_ENVELOPE "\x56\x04\x03\x22"

#define OMP_O_MS_A_REPORT_ORIGIN_AUTHEN_CHK "\x56\x04\x03\x23"

#define OMP_O_MS_A_REPORTING_DL_NAME "\x56\x04\x03\x24"

#define OMP_O_MS_A_REPORTING_MTA_CERTIFICATE "\x56\x04\x03\x25"

#define OMP_O_MS_A_SECURITY_CLASSIFICATION "\x56\x04\x03\x26"

#define OMP_O_MS_A_SEQUENCE_NUMBER "\x56\x04\x03\x27"

#define OMP_O_MS_A_SUBJECT_SUBMISSION_ID "\x56\x04\x03\x28"

#define OMP_O_MS_A_THIS_RECIPIENT_NAME "\x56\x04\x03\x29"

/* Enumeration Constants */

/* for MS_A_ENTRY_STATUS */

#define MS_ES_NEW ((OM_enumeration) 0)

#define MS_ES_LISTED ((OM_enumeration) 1)

#define MS_ES_PROCESSED ((OM_enumeration) 2)

/* for MS_A_ENTRY_TYPE */

#define MS_ET_DELIVERED_MESSAGE ((OM_enumeration) 0)

#define MS_ET_DELIVERED_REPORT ((OM_enumeration) 1)

#define MS_ET_RETURNED_CONTENT ((OM_enumeration) 2)

/* for MS_A_PRIORITY */

#define MS_PTY_NORMAL ((OM_enumeration) 0)

#define MS_PTY_LOW ((OM_enumeration) 1)

#define MS_PTY_URGENT ((OM_enumeration) 2)

/* for MS_A_SECURITY_CLASSIFICATION */

1075

DCE 1.2.2 Application Development Reference

xmsga.h(4xds)

#define MS_SC_UNMARKED ((OM_enumeration) 0)

#define MS_SC_UNCLASSIFIED ((OM_enumeration) 1)

#define MS_SC_RESTRICTED ((OM_enumeration) 2)

#define MS_SC_CONFIDENTIAL ((OM_enumeration) 3)

#define MS_SC_SECRET ((OM_enumeration) 4)

#define MS_SC_TOP_SECRET ((OM_enumeration) 5)

#endif /* XMSGA_HEADER */

Related Information

X/Open CAE Specification (November 1991), API to Directory Services (XDS), X/
Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation API
(XOM), DCE 1.2.2 Application Development Guide—Directory Services, X/Open
CAE Specification (November 1991), API to Electronic Mail (X.400).

1076

DCE Directory Service

xom_intro(3xom)

xom_intro

Purpose Introduction to X/OPEN OSI-Abstract-Data Manipulation (XOM) functions

Synopsis

#include <xom.h>
#include <xomext.h>

Description

This xom_intro reference page defines the functions of the C interface. The following
table lists the relevant functions.

Service Interface Functions—xom_intro(3xom)

Function Description

omX_extract() Gets attribute values from specified
object

omX_fill() Initializes an OM_descriptor structure

omX_fill_oid() Initializes an OM_descriptor with an
OID value

omX_object_to_string() Converts an OM_object to string format

omX_string_to_object() Converts a string to OM_object

om_copy() Copies a private object.

om_copy_value() Copies a string between private objects.

om_create() Creates a private object.

om_decode() This function is not supported by the
DCE XOM interface, and returns with
an OM_FUNCTION_DECLINED
error.

1077

DCE 1.2.2 Application Development Reference

xom_intro(3xom)

om_delete() Deletes a private or service-generated
object.

om_encode() This function is not supported by the
DCE XOM interface, and returns with
an OM_FUNCTION_DECLINED
error.

om_get() Gets copies of attribute values from a
private object.

om_instance() Tests an object’s class.

om_put() Puts attribute values into a private
object.

om_read() Reads a segment of a string in a private
object.

om_remove() Removes attribute values from a private
object.

om_write() Writes a segment of a string into a
private object.

As indicated in the table, the service interface comprises a number of functions whose
purpose and range of capabilities are summarized as follows:

omX_extract()
Creates a new public object that is an exact but independent copy of
an existing subobject in a private object. This function is similiar to the
om_get()function but includes an additional parameternavigation_path
that contains directions to the required object to be extracted.

omX_fill() Initializes an OM descriptor structure with user supplied values for its
type, syntax and value.

omX_fill_oid()
Initializes an OM descriptor structure with user supplied values for
its type and value. The syntax of the descriptor is always set to
OM_S_OBJECT_IDENTIFIER_STRING .

omX_object_to_string()
Converts an OM object into a string format.

1078

DCE Directory Service

xom_intro(3xom)

omX_string_to_object()
Creates a new private object, which is build from thestring and class
input parameters.

om_copy() Creates an independent copy of an existing private object and all its
subobjects. The copy is placed in the original’s workspace, or in another
specified by the XOM application.

om_copy_value()
Replaces an existing attribute value or inserts a new value in one private
object with a copy of an existing attribute value found in another. Both
values must be strings.

om_create() Creates a new private object that is an instance of a particular class. The
object can be initialized with the attribute values specified as initial in
the class definition.

The service does not permit the API user to explicitly create instances
of all classes, but rather only those indicated by a package’s definition
as having this property.

om_delete() Deletes a service-generated public object, or makes a private object
inaccessible.

om_get() Creates a new public object that is an exact but independent copy of an
existing private object. The client can request certain exclusions, each
of which reduces the copy to a part of the original. The client can also
request that values be converted from one syntax to another before they
are returned.

The copy can exclude: attributes of types other than those specified,
values at positions other than those specified within an attribute, the
values of multivalued attributes, copies of (not handles for) subobjects,
or all attribute values (revealing only an attribute’s presence).

om_instance()
Determines whether an object is an instance of a particular class. The
client can determine an object’s class simply by inspection. This function
is useful since it reveals that an object is an instance of a particular class,
even if the object is an instance of a subclass of that class.

om_put() Places or replaces in one private object copies of the attribute values of
another public or private object.

1079

DCE 1.2.2 Application Development Reference

xom_intro(3xom)

The source values can be inserted before any existing destination values,
before the value at a specified position in the destination attribute, or
after any existing destination values. Alternatively, the source values
can be substituted for any existing destination values or for the values
at specified positions in the destination attribute.

om_read() Reads a segment of a value of an attribute of a private object. The value
must be a string. The value can first be converted from one syntax to
another. The function enables the client to read an arbitrarily long value
without requiring that the service place a copy of the entire value in
memory.

om_remove()
Removes and discards particular values of an attribute of a private object.
The attribute itself is removed if no values remain.

om_write() Writes a segment of a value of an attribute to a private object. The value
must be a string. The segment can first be converted from one syntax
to another. The written segment becomes the value’s last segment since
any elements beyond it are discarded. The function enables the client
to write an arbitrarily long value without having to place a copy of the
entire value in memory.

In the C interface, the functions are realized by macros. The function prototype in the
synopsis of a function’s specification simply shows the client’s view of the function.

The intent of the interface definition is that each function be atomic; that is, either it
carries out its assigned task in full and reports success, or it fails to carry out even
a part of the task and reports an exception. However, the service does not guarantee
that a task is always carried out in full.

Errors

Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages. The possible error return values are described in the function reference
pages.

XOM functions check for NULL pointers and return an error, except for workspace
pointers. Pointers are only checked at the function interface. The check is only for
NULL and not for validity. If NULL or invalid pointers are passed this may result in
an undetermined behaviour.

1080

DCE Directory Service

omX_extract(3xom)

omX_extract

Purpose Extracts the first occurrence of the requested OM type from an object

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_extract(
OM_private_object object,
OM_type_list navigation_path,
OM_exclusionsexclusions,
OM_type_list included_types,
OM_boolean local_strings,
OM_value_position initial_value,
OM_value_position limiting_value,
OM_public_object *values,
OM_value_position *total_number);

Parameters
Input

object The object from which data is to be extracted.

navigation_path
Contains a NULL-terminated list of OM types that lead to the target
object to be extracted. It does not include the OM type of the target
object.

exclusions Explicit requests for zero or more exclusions, each of which reduces the
copy to a prescribed portion of the original. The exclusions apply to the
attributes of the target object, but not to those of its subobjects.

Apart from OM_NO_EXCLUSIONS, each value is chosen from the
following list. When multiple exclusions are specified, each is applied
in the order in which it is displayed in the list with lower-numbered

1081

DCE 1.2.2 Application Development Reference

omX_extract(3xom)

exclusions having precedence over higher-numbered exclusions. If, after
the application of an exclusion, that portion of the object is not returned,
no further exclusions need be applied to that portion.

• OM_EXCLUDE_ALL_BUT_THESE_TYPES

The copy includes descriptors comprising only attributes of specified
types. Note that this exclusion provides a means for determining the
values of specified attributes, as well as the syntaxes of those values.

• OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute that has
two or more values, rather than one descriptor for each value.
None of these descriptors contains an attribute value, and the
OM_S_NO_VALUE bit of the syntax component is set.

If the attribute has values of two or more syntaxes, the descriptor
identifies one of those syntaxes; however, the syntax identified is
not specified.

Note that this exclusion provides a means for discerning the presence
of multivalued attributes without simultaneously obtaining their
values.

• OM_EXCLUDE_ALL_BUT_THESE_VALUES

The copy includes descriptors comprising only values
at specified positions within an attribute. Note that,
when this exclusion is used in conjunction with the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion,
it provides a means for determining the values of a specified
attribute, as well as the syntaxes of those values, one or more but
not all attributes at a time.

• OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and theOM_S_NO_VALUE
bit of the syntax component is set.

Note that this exclusion provides a means for determining an
object’s composition; that is, the type and syntax of each of its
attribute values.

• OM_EXCLUDE_SUBOBJECTS

1082

DCE Directory Service

omX_extract(3xom)

The copy includes, for each value whose syntax is
OM_S_OBJECT, a descriptor containing an object handle
for the original private subobject, rather than a public copy of it.
This handle makes that subobject accessible for use in subsequent
function calls.

Note that this exclusion provides a means for examining an object
one level at a time.

• OM_EXCLUDE_DESCRIPTORS

When this exclusion is specified, no descriptors are returned and the
copy result is not present. Thetotal_numberparameter reflects the
number of descriptors that would be returned by applying the other
inclusion and exclusion specifications.

Note that this exclusion provides an attribute analysis capability. For
instance, the total number of values in a multivalued attribute can
be determined by specifying an inclusion of the specific attribute
type, and exclusions of OM_EXCLUDE_DESCRIPTORS,
OM_EXCLUDE_SUBOBJECTS, and
OM_EXCLUDE_ALL_BUT_THESE_TYPES .

The OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion
affects the choice of descriptors, while theOM_EXCLUDE_VALUES
exclusion affects the composition of descriptors.

included_types
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion is
requested; it identifies the types of the attributes to be included in the
copy (provided that they are displayed in the original).

local_strings This Boolean parameter indicates whether conversion to local string
format should be carried out or not.

initial_value This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is
requested; it specifies the position within each attribute of the first
value to be included in the copy.

If it is OM_ALL_VALUES or exceeds the number of values present in
an attribute, the parameter is taken to be equal to that number.

1083

DCE 1.2.2 Application Development Reference

omX_extract(3xom)

limiting_value
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is
requested; it specifies the position within each attribute one beyond
that of the last value to be included in the copy. If this parameter is not
greater than theinitial_value parameter, no values are included (and no
descriptors are returned).

If it is OM_ALL_VALUES or exceeds the number of values present in
an attribute, the parameter is taken to be equal to that number.

Output

values The values parameter is only present if the return
value from OM_return_code is OM_SUCCESS and the
OM_EXCLUDE_DESCRIPTORS exclusion is not specified.
It contains the array of OM descriptors extracted.

The memory space forvaluesis provided byomX_extract(). It is the
responsibility of the calling function to subsequently release this space
through a call toom_delete().

total_number
The number of attribute descriptors returned in the public object, but
not in any of its subobjects, based on the inclusion and exclusion
parameters specified. If theOM_EXCLUDE_DESCRIPTORS
exclusion is specified, novaluesresult is returned and thetotal_number
result reflects the actual number of attribute descriptors that would be
returned based on the remaining inclusion and exclusion values.

Note that the total includes only the attribute descriptors in thevalues
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The omX_extract() function creates a new public object that is an exact, but
independent, copy of an existing subobject in a private object. It is similiar to
the om_get() function but includes an additional parameter,navigation_pathwhich
contains directions to the required object to be extracted. The client can request certain
exclusions, each of which reduces the copy to a part of the original.

1084

DCE Directory Service

omX_extract(3xom)

One exclusion is always requested implicitly. For each attribute value in the original
that is a string whose length exceeds an implementation-defined number, thevalues
parameter includes a descriptor that omits the elements (but not the length) of the
string. Theelementscomponent of thestring component in the descriptor’svalue
component isOM_ELEMENTS_UNSPECIFIED , and theOM_S_LONG_STRING
bit of the syntaxcomponent is set toOM_TRUE .

The parameters exclusions, included_types, local_strings, initial_value, and
limiting_valueonly apply to the target object being extracted.

Note that the client can access long values by means ofom_read().

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

Errors

Refer toxom.h(4xom) for a list of the possible error values that can be returned in
OM_return_code. Refer to theDCE 1.2.2 Problem Determination Guidefor complete
descriptions of all error messages.

1085

DCE 1.2.2 Application Development Reference

omX_fill(3xom)

omX_fill

Purpose Initializes anOM_descriptor structure

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_fill(
OM_type type,
OM_syntax syntax,
OM_uint32 length,
void *elements,
OM_descriptor * destination);

Parameters
Input

type The type of OM descriptor structure.

syntax The syntax value for this OM descriptor.

length The data length for values of string syntax. Zero is entered for
values of typeOM_object. When initializing anOM_descriptor with
an OM_type that has anOM_syntax of either OM_S_INTEGER,
OM_S_BOOLEAN or OM_S_ENUMERATION , then the associated
value must be entered in thelengthparameter.

elements The string contents.

Output

destination Contains the filled descriptor.

1086

DCE Directory Service

omX_fill(3xom)

Description

The omX_fill() function is used to initialize an OM descriptor structure with user
supplied values for its type, syntax, and value.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

Errors

Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages. Refer toxom.h(4xom) for a list of the possible error values that can
be returned inOM_return_code.

1087

DCE 1.2.2 Application Development Reference

omX_fill_oid(3xom)

omX_fill_oid

Purpose Initializes anOM_descriptor structure with an object identifier value

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_fill_oid(
OM_type type,
OM_object_identifier object_id,
OM_descriptor * destination);

Parameters
Input

type The type ofOM_descriptor structure.

object_id The object identifier value.

Output

destination Contains the filled descriptor.

Description

TheomX_fill_oid() function is used to initialize an OM descriptor structure with user-
supplied values for its type and value. The syntax of the descriptor is always set to
OM_S_OBJECT_IDENTIFIER_STRING .

1088

DCE Directory Service

omX_fill_oid(3xom)

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

Errors

Refer toxom.h(4xom) for a list of the possible error values that can be returned in
OM_return_code. Refer to theDCE 1.2.2 Problem Determination Guidefor complete
descriptions of all error messages.

1089

DCE 1.2.2 Application Development Reference

omX_object_to_string(3xom)

omX_object_to_string

Purpose Converts an OM object from descriptor to string format

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_object_to_string(
OM_object object,
OM_boolean local_strings,
OM_string * string);

Parameters
Input

object Contains the OM object to be converted.

local_strings This Boolean value indicates if thestring return value should be
converted to a local string format. For further information on local
strings please refer to theDCE 1.2.2 Application Development Guide—
Directory Services.

Output

string Contains the converted object in string format.

The calling function should provide the memory forstring. The string’s
contents are initially unspecified. The string’s length becomes the
number of octets required to contain the segment that the function is to
read. The service modifies this parameter. The string’s elements become
the elements actually read. The string’s length becomes the number of
octets required to hold the segment actually read.

1090

DCE Directory Service

omX_object_to_string(3xom)

Description

The omX_object_to_string() function converts an OM object into a string format.
The object can either be a client-generated or a service-generated public or private
object.

The objects that can be handled by this function are restricted to those defined in the
schema file,xoischema. Additionally, the OM objectsDS_C_ATTRIBUTE_ERROR
andDS_C_ERRORare also handled. For these, a message string containing the error
message is returned.

For the syntax of the output strings, please refer to theDCE 1.2.2 Application
Development Guide—Directory Services.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

Errors

Refer toxom.h(4xom)andxomext.h for a list of the possible error values that can be
returned inOM_return_code. Refer to theDCE 1.2.2 Problem Determination Guide
for complete descriptions of all error messages.

1091

DCE 1.2.2 Application Development Reference

omX_string_to_object(3xom)

omX_string_to_object

Purpose Converts an OM object specified in string format to descriptor format

Synopsis
#include <xom.h>
#include <xomext.h>

OM_return_code omX_string_to_object(
OM_workspace workspace,
OM_string * string,
OM_object_identifier class,
OM_boolean local_strings,
OM_private_object *object,
OM_integer *error_position,
OM_integer *error_type);

Parameters
Input

workspace The workspace pointer obtained from ads_initialize() call.

string The string to be converted. Refer to theDCE 1.2.2 Application
Development Guide—Directory Servicesfor details of the string syntaxes
allowed.

class The OM class of the object to be created.

local_strings Indicates if the attribute values are to be converted from their local string
format.

Output

object The converted object.

1092

DCE Directory Service

omX_string_to_object(3xom)

error_position
If there is a syntax error in the input string, thenerror_positionindicates
the position in the string where the error was detected.

error_type Indicates the type of error. Refer to thexomext.h header file for
explanations of the error types.

Description

The omX_string_to_object() function creates a new private object, which is built
from thestring andclassinput parameters.

The objects that can be created by this function are restricted to those defined in the
schema file,xoischema.

Notes

The memory space for theobject return parameter is allocated by
omX_string_to_object(). The calling application is responsible for releasing
this memory with theom_delete()function call.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in thexom.h(4xom) reference page.

If there is a syntax error in the input string,OM_return_codeis set to
OM_WRONG_VALUE_MAKEUP and the type of error is returned
in error_type.

1093

DCE 1.2.2 Application Development Reference

omX_string_to_object(3xom)

Errors

Refer toxom.h(4xom) and xomext.h for a list of the possible error values that can
be returned inOM_return_codeand error_type. Refer to theDCE 1.2.2 Problem
Determination Guidefor complete descriptions of all error messages.

1094

DCE Directory Service

om_copy(3xom)

om_copy

Purpose Creates a new private object that is an exact, but independent, copy of an existing
private object

Synopsis
#include <xom.h>

OM_return_code om_copy(
OM_private_object original,
OM_workspace workspace,
OM_private_object *copy);

Parameters
Input

original The original that remains accessible.

workspace The workspace in which the copy is to be created. The original’s class
must be in a package associated with this workspace.

Output

copy The new copy of the private object. This result is present if and only if
the return value forOM_return_codeis OM_SUCCESS.

Description

The om_copy() function creates a new private object (the copy) that is an exact but
independent copy of an existing private object (the original). The function is recursive
in that copying the original also copies its subobjects.

1095

DCE 1.2.2 Application Development Reference

om_copy(3xom)

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_CLASS

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_WORKSPACE

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

• OM_TOO_MANY_VALUES

1096

DCE Directory Service

om_copy_value(3xom)

om_copy_value

Purpose Places or replaces a string in one private object with a copy of a string in another
private object

Synopsis
#include <xom.h>

OM_return_code om_copy_value(
OM_private_object source,
OM_type source_type,
OM_value_position source_value_position,
OM_private_object destination,
OM_type destination_type,
OM_value_position destination_value_position);

Parameters
Input

source The source that remains accessible.

source_type Identifies the type of an attribute. One of the attribute values is copied.

source_value_position
The position within thesourceattribute of the value copied.

destination The destination that remains accessible.

destination_type
Identifies the type of the attribute. One of the attribute values is placed
or replaced.

destination_value_position
The position within thedestinationattribute of the value placed or
replaced. If the value position exceeds the number of values present
in the destinationattribute, the parameter is taken to be equal to that
number.

1097

DCE 1.2.2 Application Development Reference

om_copy_value(3xom)

Description

The om_copy_value()function places or replaces an attribute value in one private
object (the destination) with a copy of an attribute value in another private object (the
source). The source value is a string. The copy’s syntax is that of the original.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_DECLINED

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_TYPE

• OM_NOT_PRESENT

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

1098

DCE Directory Service

om_copy_value(3xom)

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

• OM_WRONG_VALUE_LENGTH

• OM_WRONG_VALUE_SYNTAX

• OM_WRONG_VALUE_TYPE

1099

DCE 1.2.2 Application Development Reference

om_create(3xom)

om_create

Purpose Creates a new private object that is an instance of a particular class

Synopsis
#include <xom.h>

OM_return_code om_create(
OM_object_identifier class,
OM_boolean initialize,
OM_workspace workspace,
OM_private_object *object);

Parameters
Input

class Identifies the class of the object to be created. The specified class shall
be concrete.

initialize Determines whether the object created is initialized as specified in the
definition of its class. If this parameter isOM_TRUE , the object is made
to comprise the attribute values specified as initial values in the tabular
definitions of the object’s class and its superclasses. If this parameter is
OM_FALSE , the object is made to comprise theOM_CLASS attribute
alone.

workspace The workspace in which the object is created. The specified class is in
a package associated with this workspace.

Output

object The created object. This result is present if and only if the return value
for OM_return_codeis OM_SUCCESS.

1100

DCE Directory Service

om_create(3xom)

Description

Theom_create()function creates a new private object that is an instance of a particular
class.

Notes

By subsequently adding new values to the object and replacing and removing existing
values, the client can create all conceivable instances of the object’s class.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_DECLINED

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_CLASS

• OM_NO_SUCH_WORKSPACE

1101

DCE 1.2.2 Application Development Reference

om_create(3xom)

• OM_NOT_CONCRETE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

1102

DCE Directory Service

om_delete(3xom)

om_delete

Purpose Deletes a private or service-generated object

Synopsis
#include <xom.h>

OM_return_code om_delete(
OM_object subject);

Parameters
Input

subject The object to be deleted.

Description

The om_delete()function deletes a service-generated public object or makes a private
object inaccessible. It is not intended for use on client-generated public objects.

If applied to a service-generated public object, the function deletes the object and
releases any resources associated with the object, including the space occupied by
descriptors and attribute values. The function is applied recursively to any public
subobjects. This does not affect any private subobjects.

If applied to a private object, the function makes the object inaccessible. Any existing
object handles for the object are invalidated. The function is applied recursively to
any private subobjects.

1103

DCE 1.2.2 Application Development Reference

om_delete(3xom)

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_SYNTAX

• OM_NO_SUCH_TYPE

• OM_NOT_THE_SERVICES

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

1104

DCE Directory Service

om_get(3xom)

om_get

Purpose Creates a public copy of all or particular parts of a private object

Synopsis
#include <xom.h>

OM_return_code om_get(
OM_private_object original,
OM_exclusionsexclusions,
OM_type_list included_types,
OM_boolean local_strings,
OM_value_position initial_value,
OM_value_position limiting_value,
OM_public_object *copy,
OM_value_position *total_number);

Parameters
Input

original The original that remains accessible.

exclusions Explicit requests for zero or more exclusions, each of which reduces the
copy to a prescribed portion of the original. The exclusions apply to the
attributes of the object, but not to those of its subobjects.

Apart from OM_NO_EXCLUSIONS, each value is chosen from the
following list. When multiple exclusions are specified, each is applied
in the order in which it is displayed in the list with lower-numbered
exclusions having precedence over higher-numbered exclusions. If, after
the application of an exclusion, that portion of the object is not returned,
no further exclusions need be applied to that portion.

• OM_EXCLUDE_ALL_BUT_THESE_TYPES

1105

DCE 1.2.2 Application Development Reference

om_get(3xom)

The copy includes descriptors comprising only attributes of specified
types. Note that this exclusion provides a means for determining the
values of specified attributes, as well as the syntaxes of those values.

• OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute that has
two or more values, rather than one descriptor for each value.
None of these descriptors contains an attribute value, and the
OM_S_NO_VALUE bit of the syntax component is set.

If the attribute has values of two or more syntaxes, the descriptor
identifies one of those syntaxes; however, the syntax identified is
not specified.

Note that this exclusion provides a means for discerning the presence
of multivalued attributes without simultaneously obtaining their
values.

• OM_EXCLUDE_ALL_BUT_THESE_VALUES

The copy includes descriptors comprising only values
at specified positions within an attribute. Note that,
when this exclusion is used in conjunction with the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion,
it provides a means for determining the values of a specified
attribute, as well as the syntaxes of those values, one or more but
not all attributes at a time.

• OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and theOM_S_NO_VALUE
bit of the syntax component is set.

Note that this exclusion provides a means for determining an
object’s composition; that is, the type and syntax of each of its
attribute values.

• OM_EXCLUDE_SUBOBJECTS

The copy includes, for each value whose syntax is
OM_S_OBJECT, a descriptor containing an object handle
for the original private subobject, rather than a public copy of it.

1106

DCE Directory Service

om_get(3xom)

This handle makes that subobject accessible for use in subsequent
function calls.

Note that this exclusion provides a means for examining an object
one level at a time.

• OM_EXCLUDE_DESCRIPTORS

When this exclusion is specified, no descriptors are returned and the
copy result is not present. Thetotal_numberparameter reflects the
number of descriptors that would be returned by applying the other
inclusion and exclusion specifications.

Note that this exclusion provides an attribute analysis capability. For
instance, the total number of values in a multivalued attribute can
be determined by specifying an inclusion of the specific attribute
type, and exclusions of OM_EXCLUDE_DESCRIPTORS,
OM_EXCLUDE_SUBOBJECTS, and
OM_EXCLUDE_ALL_BUT_THESE_TYPES .

The OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion
affects the choice of descriptors, while theOM_EXCLUDE_VALUES
exclusion affects the composition of descriptors.

included_types
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion is
requested; it identifies the types of the attributes to be included in the
copy (provided that they are displayed in the original).

local_strings This Boolean parameter indicates whether conversion to local string
format should be carried out or not. For further information on local
strings please refer theDCE 1.2.2 Application Development Guide—
Directory Services.

initial_value This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is
requested; it specifies the position within each attribute of the first
value to be included in the copy.

If it is OM_ALL_VALUES or exceeds the number of values present in
an attribute, the parameter is taken to be equal to that number.

1107

DCE 1.2.2 Application Development Reference

om_get(3xom)

limiting_value
This parameter is present if and only if the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion is
requested; it specifies the position within each attribute one beyond
that of the last value to be included in the copy. If this parameter is not
greater than theinitial_value parameter, no values are included (and no
descriptors are returned).

If it is OM_ALL_VALUES or exceeds the number of values present in
an attribute, the parameter is taken to be equal to that number.

Output

copy The copy parameter is only present if the return value
from OM_return_code is OM_SUCCESS and the
OM_EXCLUDE_DESCRIPTORS exclusion is not specified.

The space occupied by the public object and every attribute value that
is a string is service provided. If the client alters any part of that space,
the effect upon the service’s subsequent behavior is unspecified.

total_number
The number of attribute descriptors returned in the public object, but
not in any of its subobjects, based on the inclusion and exclusion
parameters specified. If theOM_EXCLUDE_DESCRIPTORS
exclusion is specified, nocopy result is returned and thetotal_number
result reflects the actual number of attribute descriptors that would be
returned based on the remaining inclusion and exclusion values.

Note that the total includes only the attribute descriptors in thecopy
parameter. It excludes the special descriptor signaling the end of a public
object.

Description

The om_get() function creates a new public object (thecopy) that is an exact, but
independent, copy of an existing private object, theoriginal parameter. The client can
request certain exclusions, each of which reduces the copy to a part of the original.

One exclusion is always requested implicitly. For each attribute value in the original
that is a string whose length exceeds an implementation-defined number, thecopy
parameter includes a descriptor that omits the elements (but not the length) of the
string. Theelementscomponent of thestring component in the descriptor’svalue

1108

DCE Directory Service

om_get(3xom)

component isOM_ELEMENTS_UNSPECIFIED , and theOM_S_LONG_STRING
bit of the syntaxcomponent is set toOM_TRUE .

Note that the client can access long values by means ofom_read().

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_EXCLUSION

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_TYPE

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

1109

DCE 1.2.2 Application Development Reference

om_get(3xom)

• OM_TEMPORARY_ERROR

• OM_WRONG_VALUE_SYNTAX

• OM_WRONG_VALUE_TYPE

1110

DCE Directory Service

om_instance(3xom)

om_instance

Purpose Determines whether an object is an instance of a particular class or any of its subclasses

Synopsis
#include <xom.h>

OM_return_code om_instance(
OM_object subject,
OM_object_identifier class,
OM_boolean *instance);

Parameters
Input

subject The subject that remains accessible.

class Identifies the class in question.

Output

instance Indicates whether the subject is an instance of the specified class or any
of its subclasses. This result is present if and only if the value of the
OM_return_codeis set toOM_SUCCESS.

Description

The om_instance()function determines whether a service-generated public or private
object (the subject) is an instance of a particular class or any of its subclasses.

Notes

The client can determine an object’s class (C) by simply inspecting the object, using
programming language constructs if the object is public orom_get() if it is private.

1111

DCE 1.2.2 Application Development Reference

om_instance(3xom)

This function is useful in that it reveals that an object is an instance of the specified
class, even ifC is a subclass of that class.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_CLASS

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_SYNTAX

• OM_NOT_THE_SERVICES

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

1112

DCE Directory Service

om_put(3xom)

om_put

Purpose Places or replaces in one private object copies of the attribute values of another public
or private object

Synopsis
#include <xom.h>

OM_return_code om_put(
OM_private_object destination,
OM_modification modification,
OM_object source,
OM_type_list included_types,
OM_value_position initial_value,
OM_value_position limiting_value);

Parameters
Input

destination The destination that remains accessible. The destination’s class is
unaffected.

modification The nature of the requested modification. The modification determines
how om_put() uses the attribute values in the source to modify the
object. In all cases, for each attribute present in the source, copies of its
values are placed in the object’s destination attribute of the same type.
The data value is chosen from among the following:

• OM_INSERT_AT_BEGINNING

The source values are inserted before any existing destination values.
(The latter are retained.)

• OM_INSERT_AT_CERTAIN_POINT

The source values are inserted before the value at a specified position
in the destination attribute. (The latter are retained.)

1113

DCE 1.2.2 Application Development Reference

om_put(3xom)

• OM_INSERT_AT_END

The source values are inserted after any existing destination values.
(The latter are retained.)

• OM_REPLACE_ALL

The source values are placed in thedestination attribute. The
existing destination values, if any, are discarded.

• OM_REPLACE_CERTAIN_VALUES

The source values are substituted for the values at specified positions
in the destination attribute. (The latter are discarded.)

source The source that remains accessible. The source’s class is ignored.
However, the attributes being copied from the source must be compatible
with the destination’s class definition.

included_types
If present, this parameter identifies the types of the attributes to be
included in the destination (provided that they are displayed in the
source); otherwise, all attributes are to be included.

initial_value This parameter is present if and only if themodification
parameter is OM_INSERT_AT_CERTAIN_POINT or
OM_REPLACE_CERTAIN_VALUES . It specifies the position
within each destination attribute at which source values are inserted, or
of the first value replaced, respectively.

If it is OM_ALL_VALUES , or exceeds the number of values present in
a destination attribute, the parameter is taken to be equal to that number.

limiting_value
Present if and only if the modification parameter is
OM_REPLACE_CERTAIN_VALUES . It specifies the position
within each destination attribute one beyond that of the last value
replaced. If this parameter is present, it must be greater than the
initial_value parameter.

If the limiting_valueparameter isOM_ALL_VALUES or exceeds the
number of values present in a destination attribute, the parameter is
taken to be equal to that number.

1114

DCE Directory Service

om_put(3xom)

Description

Theom_put() function places or replaces in one private object (that is, the destination)
copies of the attribute values of another public or private object (that is, the source).
The client can specify that the source’s values replace all or particular values in the
destination, or are inserted at a particular position within each attribute. All string
values being copied that are in the local representation are first converted into the
nonlocal representation for that syntax (which may entail the loss of some information).

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_DECLINED

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_CLASS

• OM_NO_SUCH_MODIFICATION

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_SYNTAX

1115

DCE 1.2.2 Application Development Reference

om_put(3xom)

• OM_NO_SUCH_TYPE

• OM_NOT_CONCRETE

• OM_NOT_PRESENT

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

• OM_TOO_MANY_VALUES

• OM_VALUES_NOT_ADJACENT

• OM_WRONG_VALUE_LENGTH

• OM_WRONG_VALUE_MAKEUP

• OM_WRONG_VALUE_NUMBER

• OM_WRONG_VALUE_POSITION

• OM_WRONG_VALUE_SYNTAX

• OM_WRONG_VALUE_TYPE

1116

DCE Directory Service

om_read(3xom)

om_read

Purpose Reads a segment of a string in a private object

Synopsis
#include <xom.h>

OM_return_code om_read(
OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_boolean local_string,
OM_string_length *string_offset,
OM_string * elements);

Parameters
Input

subject The subject that remains accessible.

type Identifies the type of the attribute, one of whose values is read.

value_position
The position within the attribute of the value read.

local_string This Boolean parameter indicates whether conversion to local string
format should be carried out or not. For further information on local
strings please refer to theDCE 1.2.2 Application Development Guide—
Directory Services.

Input/Output

string_offset On input this parameter contains the offset, in octets, of the start of the
string segment to be read. If it exceeds the total length of the string, the
parameter is equal to the string length.

1117

DCE 1.2.2 Application Development Reference

om_read(3xom)

On output it contains the offset, in octets, of the start of the next string
segment to be read, or 0 (zero) if the value’s final segment is read. The
result is present if, and only if, theOM_return_codeis OM_SUCCESS.
The value returned can be used as the inputstring_offsetparameter in
the next call of this function. This enables sequential reading of a value
of a long string.

elements On input, the space the client provides for the segment to be read. The
string’s contents are initially unspecified. The string’s length is initially
the number of octets required to contain the segment that the function
is to read.

On output, the string’s elements become the elements actually read.
The string’s length becomes the number of octets required to hold the
segment actually read. This can be less than the initial length if the
segment is the last in a long string.

Description

The om_read() function reads a segment of an attribute value in a private object,
namely the subject.

The segment returned is a segment of the string value that is returned if the complete
value is read in a single call.

Note that this function enables the client to read an arbitrarily long value without
requiring that the service place a copy of the entire value in memory.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

1118

DCE Directory Service

om_read(3xom)

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_TYPE

• OM_NOT_PRESENT

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

• OM_WRONG_VALUE_SYNTAX

1119

DCE 1.2.2 Application Development Reference

om_remove(3xom)

om_remove

Purpose Removes and discards values of an attribute of a private object

Synopsis
#include <xom.h>

OM_return_code om_remove(
OM_private_object subject,
OM_type type,
OM_value_position initial_value,
OM_value_position limiting_value);

Parameters
Input

subject The subject that remains accessible. The subject’s class is unaffected.

type Identifies the type of the attribute, some of whose values are removed.
The type is notOM_CLASS.

initial_value The position within the attribute of the first value removed.

If it is OM_ALL_VALUES , or exceeds the number of values present
in the attribute, the parameter is taken to be equal to that number.

limiting_value
The position within the attribute one beyond that of the last value
removed. If this parameter is not greater than theinitial_valueparameter,
no values are removed.

If it is OM_ALL_VALUES , or exceeds the number of values present
in an attribute, the parameter is taken to be equal to that number.

1120

DCE Directory Service

om_remove(3xom)

Description

The om_remove()function removes and discards particular values of an attribute of
a private object, the subject. If no values remain, the attribute itself is also removed.
If the value is a subobject, the value is first removed and thenom_delete()is applied
to it, thus destroying the object.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to
OM_SUCCESS; if the function fails, it has one of the error values
listed in this reference page.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_DECLINED

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_TYPE

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

1121

DCE 1.2.2 Application Development Reference

om_write(3xom)

om_write

Purpose Writes a segment of a string into a private object

Synopsis
#include <xom.h>

OM_return_code om_write(
OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_syntax syntax,
OM_string_length *string_offset,
OM_string elements);

Parameters
Input

subject The subject that remains accessible.

type Identifies the type of the attribute, one of whose values is written.

value_position
The position within the above attribute of the value to be written. The
value position can neither be negative nor exceed the number of values
present. If it equals the number of values present, the segment is inserted
into the attribute as a new value.

syntax If the value being written is not already present in the subject, this
identifies the syntax that the value has. It must be a permissible syntax
for the attribute of which this is a value. If the value being written is
already present in the subject, then that value’s syntax is preserved and
this parameter is ignored.

elements The string segment to be written. A copy of this segment occupies a
position within the string value being written, starting at the offset given

1122

DCE Directory Service

om_write(3xom)

by the string_offsetinput parameter. Any values already at or beyond
this offset are discarded.

Input/Output

string_offset On input this parameter contains the offset, in octets, of the start of the
string segment to be written. If it exceeds the current length of the string
value being written, the parameter is taken to be equal to that current
length.

On output it contains the offset, in octets, after the last string segment
written. This result is present if, and only if, theOM_return_coderesult
is OM_SUCCESS. The value returned instring_offsetcan be used as
the inputstring_offsetparameter the next time this function is called.
This enables sequential writing of the value of a long string.

Description

The om_write() function writes a segment of an attribute value in a private object,
the subjectparameter.

The segment supplied is a segment of the string value that is supplied if the complete
value is written in a single call.

The written segment is made the value’s last. The function discards any values whose
offset equals or exceeds thestring_offsetresult. If the value being written is in the
local representation, it is converted to the nonlocal representation (which may entail
the loss of information and which may yield a different number of elements than that
provided).

Note that this function enables the client to write an arbitrarily long value without
having to place a copy of the entire value in memory.

Return Values

The following describes a partial list of messages (or errors) that might be returned.
Refer to theDCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages.

OM_return_code
Indicates whether the function succeeded and, if not, why not. If
the function is successful, the value ofOM_return_codeis set to

1123

DCE 1.2.2 Application Development Reference

om_write(3xom)

OM_SUCCESS; whereas, if the function fails, it has one of the values
listed underERRORS.

The exact constants forOM_return_codeare defined in thexom.h
header file (see thexom.h(4xom) reference page later in this chapter).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

• OM_FUNCTION_DECLINED

• OM_FUNCTION_INTERRUPTED

• OM_MEMORY_INSUFFICIENT

• OM_NETWORK_ERROR

• OM_NO_SUCH_OBJECT

• OM_NO_SUCH_SYNTAX

• OM_NO_SUCH_TYPE

• OM_NOT_PRESENT

• OM_NOT_PRIVATE

• OM_PERMANENT_ERROR

• OM_POINTER_INVALID

• OM_SYSTEM_ERROR

• OM_TEMPORARY_ERROR

• OM_WRONG_VALUE_LENGTH

• OM_WRONG_VALUE_MAKEUP

• OM_WRONG_VALUE_POSITION

• OM_WRONG_VALUE_SYNTAX

1124

DCE Directory Service

xom.h(4xom)

xom.h

Purpose Header file for XOM

Synopsis

#include <xom.h>

Description

The declarations, as assembled here, constitute the contents of a header file made
accessible to client programmers. The header file includes by reference a second
header file (xomi.h) comprising the declarations defining the C workspace interface.
The xomi.h header file and the workspace interface are only used internally by the
service interface, and are not visible to the client programmer.

#ifndef XOM_HEADER

#define XOM_HEADER

/* BEGIN SERVICE INTERFACE */

/* INTERMEDIATE DATA TYPES */

typedef int OM_sint;

typedef short OM_sint16;

typedef long int OM_sint32;

typedef unsigned OM_uint;

typedef unsigned short OM_uint16;

typedef long unsigned OM_uint32;

/* PRIMARY DATA TYPES */

/* Boolean */

1125

DCE 1.2.2 Application Development Reference

xom.h(4xom)

typedef OM_uint32 OM_boolean;

/* String Length */

typedef OM_uint32 OM_string_length;

/* Enumeration */

typedef OM_sint32 OM_enumeration;

/* Exclusions */

typedef OM_uint OM_exclusions;

/* Integer */

typedef OM_sint32 OM_integer;

/* Modification */

typedef OM_uint OM_modification;

/* Object */

typedef struct OM_descriptor_struct *OM_object;

/* String */

typedef struct {

OM_string_length length;

void *elements;

} OM_string;

#define OM_STRING(string) \

{ (OM_string_length)(sizeof(string)-1), string }

/* Workspace */

typedef void *OM_workspace;

1126

DCE Directory Service

xom.h(4xom)

/* SECONDARY DATA TYPES */

/* Object Identifier */

typedef OM_string OM_object_identifier;

/* Private Object */

typedef OM_object OM_private_object;

/* Public Object */

typedef OM_object OM_public_object;

/* Return Code */

typedef OM_uint OM_return_code;

/* Syntax */

typedef OM_uint16 OM_syntax;

/* Type */

typedef OM_uint16 OM_type;

/* Type List */

typedef OM_type *OM_type_list;

/* Value */

typedef struct {

OM_uint32 padding;

OM_object object;

} OM_padded_object;

typedef union OM_value_union {

OM_string string;

1127

DCE 1.2.2 Application Development Reference

xom.h(4xom)

OM_boolean boolean;

OM_enumeration enumeration;

OM_integer integer;

OM_padded_object object;

} OM_value;

/* Value Length */

typedef OM_uint32 OM_value_length;

/* Value Position */

typedef OM_uint32 OM_value_position;

/* TERTIARY DATA TYPES */

/* Descriptor */

typedef struct OM_descriptor_struct {

OM_type type;

OM_syntax syntax;

union OM_value_union value;

} OM_descriptor;

/* SYMBOLIC CONSTANTS */

/* Boolean */

#define OM_FALSE ((OM_boolean) 0)

#define OM_TRUE ((OM_boolean) 1)

/* Element Position */

#define OM_LENGTH_UNSPECIFIED ((OM_string_length) 0xFFFFFFFF)

/* Exclusions */

#define OM_NO_EXCLUSIONS ((OM_exclusions) 0)

#define OM_EXCLUDE_ALL_BUT_THESE_TYPES ((OM_exclusions) 1)

1128

DCE Directory Service

xom.h(4xom)

#define OM_EXCLUDE_ALL_BUT_THESE_VALUES ((OM_exclusions) 2)

#define OM_EXCLUDE_MULTIPLES ((OM_exclusions) 4)

#define OM_EXCLUDE_SUBOBJECTS ((OM_exclusions) 8)

#define OM_EXCLUDE_VALUES ((OM_exclusions) 16)

#define OM_EXCLUDE_DESCRIPTORS ((OM_exclusions) 32)

/* Modification */

#define OM_INSERT_AT_BEGINNING ((OM_modification) 1)

#define OM_INSERT_AT_CERTAIN_POINT ((OM_modification) 2)

#define OM_INSERT_AT_END ((OM_modification) 3)

#define OM_REPLACE_ALL ((OM_modification) 4)

#define OM_REPLACE_CERTAIN_VALUES ((OM_modification) 5)

/* Object Identifiers */

/* NOTE: These macros rely on the ## token-pasting operator of

* ANSI C. On many pre-ANSI compilers the same effect can be

* obtained by replacing ## with /**/

/* Private macro to calculate length of an object identifier

*/

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-1)

/* Macro to initialize the syntax and value of an object identifier

*/

#define OM_OID_DESC(type, oid_name) \

{ (type), OM_S_OBJECT_IDENTIFIER_STRING, \

{ { OMP_LENGTH(oid_name) , OMP_D_##oid_name } } }

/* Macro to mark the end of a client-allocated public object

*/

#define OM_NULL_DESCRIPTOR \

{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, \

{ { 0, OM_ELEMENTS_UNSPECIFIED } } }

/* Macro to make class constants available

1129

DCE 1.2.2 Application Development Reference

xom.h(4xom)

/* within a compilation unit

*/

#define OM_IMPORT(class_name) \

extern char OMP_D_##class_name []; \

extern OM_string class_name;

/* Macro to allocate memory for class constants

/* within a compilation unit

*/

#define OM_EXPORT(class_name) \

char OMP_D_##class_name[] = OMP_O_##class_name ; \

OM_string class_name = \

{ OMP_LENGTH(class_name), OMP_D_##class_name } ;

/* Constant for the OM package

*/

/* { joint-iso-ccitt(2) mhs-motis(6) group(6) white(1)

api(2) om(4) } */

#define OMP_O_OM_OM "\x56\x06\x01\x02\x04"

/* Constant for the Encoding class

*/

#define OMP_O_OM_C_ENCODING "\x56\x06\x01\x02\x04\x01"

/* Constant for the External class

*/

#define OMP_O_OM_C_EXTERNAL "\x56\x06\x01\x02\x04\x02"

/* Constant for the Object class

*/

#define OMP_O_OM_C_OBJECT "\x56\x06\x01\x02\x04\x03"

/* Constant for the BER Object Identifier

*/

#define OMP_O_OM_BER "\x51\x01"

/* Constant for the Canonical-BER Object Identifier

*/

1130

DCE Directory Service

xom.h(4xom)

#define OMP_O_OM_CANONICAL_BER "\x56\x06\x01\x02\x04\x04"

/* Return Code */

#define OM_SUCCESS ((OM_return_code) 0)

#define OM_ENCODING_INVALID ((OM_return_code) 1)

#define OM_FUNCTION_DECLINED ((OM_return_code) 2)

#define OM_FUNCTION_INTERRUPTED ((OM_return_code) 3)

#define OM_MEMORY_INSUFFICIENT ((OM_return_code) 4)

#define OM_NETWORK_ERROR ((OM_return_code) 5)

#define OM_NO_SUCH_CLASS ((OM_return_code) 6)

#define OM_NO_SUCH_EXCLUSION ((OM_return_code) 7)

#define OM_NO_SUCH_MODIFICATION ((OM_return_code) 8)

#define OM_NO_SUCH_OBJECT ((OM_return_code) 9)

#define OM_NO_SUCH_RULES ((OM_return_code) 10)

#define OM_NO_SUCH_SYNTAX ((OM_return_code) 11)

#define OM_NO_SUCH_TYPE ((OM_return_code) 12)

#define OM_NO_SUCH_WORKSPACE ((OM_return_code) 13)

#define OM_NOT_AN_ENCODING ((OM_return_code) 14)

#define OM_NOT_CONCRETE ((OM_return_code) 15)

#define OM_NOT_PRESENT ((OM_return_code) 16)

#define OM_NOT_PRIVATE ((OM_return_code) 17)

#define OM_NOT_THE_SERVICES ((OM_return_code) 18)

#define OM_PERMANENT_ERROR ((OM_return_code) 19)

#define OM_POINTER_INVALID ((OM_return_code) 20)

#define OM_SYSTEM_ERROR ((OM_return_code) 21)

#define OM_TEMPORARY_ERROR ((OM_return_code) 22)

#define OM_TOO_MANY_VALUES ((OM_return_code) 23)

#define OM_VALUES_NOT_ADJACENT ((OM_return_code) 24)

#define OM_WRONG_VALUE_LENGTH ((OM_return_code) 25)

#define OM_WRONG_VALUE_MAKEUP ((OM_return_code) 26)

#define OM_WRONG_VALUE_NUMBER ((OM_return_code) 27)

#define OM_WRONG_VALUE_POSITION ((OM_return_code) 28)

#define OM_WRONG_VALUE_SYNTAX ((OM_return_code) 29)

#define OM_WRONG_VALUE_TYPE ((OM_return_code) 30)

/* String (Elements component) */

#define OM_ELEMENTS_UNSPECIFIED ((void *) 0)

1131

DCE 1.2.2 Application Development Reference

xom.h(4xom)

/* Syntax */

#define OM_S_NO_MORE_SYNTAXES ((OM_syntax) 0)

#define OM_S_BIT_STRING ((OM_syntax) 3)

#define OM_S_BOOLEAN ((OM_syntax) 1)

#define OM_S_ENCODING_STRING ((OM_syntax) 8)

#define OM_S_ENUMERATION ((OM_syntax) 10)

#define OM_S_GENERAL_STRING ((OM_syntax) 27)

#define OM_S_GENERALISED_TIME_STRING ((OM_syntax) 24)

#define OM_S_GRAPHIC_STRING ((OM_syntax) 25)

#define OM_S_IA5_STRING ((OM_syntax) 22)

#define OM_S_INTEGER ((OM_syntax) 2)

#define OM_S_NULL ((OM_syntax) 5)

#define OM_S_NUMERIC_STRING ((OM_syntax) 18)

#define OM_S_OBJECT ((OM_syntax) 127)

#define OM_S_OBJECT_DESCRIPTOR_STRING ((OM_syntax) 7)

#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6)

#define OM_S_OCTET_STRING ((OM_syntax) 4)

#define OM_S_PRINTABLE_STRING ((OM_syntax) 19)

#define OM_S_TELETEX_STRING ((OM_syntax) 20)

#define OM_S_UTC_TIME_STRING ((OM_syntax) 23)

#define OM_S_VIDEOTEX_STRING ((OM_syntax) 21)

#define OM_S_VISIBLE_STRING ((OM_syntax) 26)

#define OM_S_LONG_STRING ((OM_syntax) 0x8000)

#define OM_S_NO_VALUE ((OM_syntax) 0x4000)

#define OM_S_LOCAL_STRING ((OM_syntax) 0x2000)

#define OM_S_SERVICE_GENERATED ((OM_syntax) 0x1000)

#define OM_S_PRIVATE ((OM_syntax) 0x0800)

#define OM_S_SYNTAX ((OM_syntax) 0x03FF)

/* Type */

#define OM_NO_MORE_TYPES ((OM_type) 0)

#define OM_ARBITRARY_ENCODING ((OM_type) 1)

#define OM_ASN1_ENCODING ((OM_type) 2)

#define OM_CLASS ((OM_type) 3)

#define OM_DATA_VALUE_DESCRIPTOR ((OM_type) 4)

#define OM_DIRECT_REFERENCE ((OM_type) 5)

#define OM_INDIRECT_REFERENCE ((OM_type) 6)

1132

DCE Directory Service

xom.h(4xom)

#define OM_OBJECT_CLASS ((OM_type) 7)

#define OM_OBJECT_ENCODING ((OM_type) 8)

#define OM_OCTET_ALIGNED_ENCODING ((OM_type) 9)

#define OM_PRIVATE_OBJECT ((OM_type) 10)

#define OM_RULES ((OM_type) 11)

/* Value Position */

#define OM_ALL_VALUES ((OM_value_position) 0xFFFFFFFF)

/* WORKSPACE INTERFACE */

#include <xomi.h> /* Only for internal use by interface */

/* END SERVICE INTERFACE */

#endif /* XOM_HEADER */

Related Information

Books:X/Open CAE Specification (November 1991), API to Directory Services
(XDS), X/Open CAE Specification (November 1991), OSI-Abstract-Data Manipulation
API (XOM), DCE 1.2.2 Application Development Guide—Directory Services.

1133

Chapter 5
DCE Distributed Time Service

1135

DCE 1.2.2 Application Development Reference

dts_intro(3dts)

dts_intro

Purpose Introduction to DCE Distributed Time Service (DTS)

Description

The DCE Distributed Time Service programming routines can obtain timestamps
that are based on Coordinated Universal Time (UTC), translate between different
timestamp formats, and perform calculations on timestamps. Applications can call the
DTS routines from server or clerk systems and use the timestamps that DTS supplies
to determine event sequencing, duration, and scheduling.

The DTS routines can perform the following basic functions:

• Retrieve the current (UTC-based) time from DTS.

• Convert binary timestamps expressed in theutc time structure to or fromtm
structure components.

• Convert the binary timestamps expressed in theutc time structure to or from
timespecstructure components.

• Convert the binary timestamps expressed in theutc time structure to or from
ASCII strings.

• Compare two binary time values.

• Calculate binary time values.

• Obtain time zone information.

DTS can convert between several types of binary time structures that are based on
different calendars and time unit measurements. DTS uses UTC-based time structures,
and can convert other types of time structures to its own presentation of UTC-based
time.

Absolute time is an interval on a time scale; absolute time measurements are derived
from system clocks or external time-providers. For DTS, absolute times reference the
UTC standard and include the inaccuracy and other information. When you display
an absolute time, DTS converts the time to ASCII text, as shown in the following
display:

1136

DCE Distributed Time Service

dts_intro(3dts)

1992-11-21-13:30:25.785-04:00I000.082

Relative time is a discrete time interval that is often added to or subtracted from an
absolute time. A TDF associated with an absolute time is one example of a relative
time. Note that a relative time does not use the calendar date fields, since these fields
concern absolute time.

UTC is the international time standard that DTS uses. The zero hour of UTC is based
on the zero hour of Greenwich Mean Time (GMT). The documentation consistently
refers to the time zone of the Greenwich Meridian as GMT. However, this time zone
is also sometimes referred to as UTC.

The Time Differential Factor (TDF) is the difference between UTC and the time in a
particular time zone.

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

The DCE 1.2.2 Application Development Guideprovides additional information about
UTC and GMT, TDF and time zones, and relative and absolute times.

Unless otherwise specified, the default input and output parameters are as follows:

• If NULL is specified for autc input parameter, the current time is used.

• If NULL is specified for any output parameter, no result is returned.

The following illustration categorizes the DTS portable interface routines by function.

1137

DCE 1.2.2 Application Development Reference

dts_intro(3dts)

Converting Times ...

To/From

utc_binreltime
utc_bintime
utc_mkbinreltime
utc_mkbintime

timespec Structures:

utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_mkasctime
utc_mkascreltime

ASCII text:
To/From

utc_anytime
utc_gmtime
utc_localtime
utc_mkanytime
utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

To/From
 Structures:tm

Retrieving Time ...
utc_gettime
utc_getusertime

Information ...
Obtaining Timezone

utc_anyzone
utc_gmtzone
utc_localzone

Comparing Times ...

utc_cmpintervaltime
utc_cmpmidtime

Manipulating Times ...
utc_boundtime
utc_spantime
utc_pointtime

Calculating Times ...

utc_addtime
utc_mulftime
utc_multime
utc_subtime

utc_abstime

An alphabetical listing of the DTS portable interface routines and a brief description
of each one follows:

utc_abstime()
Computes the absolute value of a relative binary timestamp.

utc_addtime()
Computes the sum of two binary timestamps; the timestamps can be
two relative times or a relative time and an absolute time.

utc_anytime()
Converts a binary timestamp to atm structure by using the TDF
information contained in the timestamp to determine the TDF returned
with the tm structure.

1138

DCE Distributed Time Service

dts_intro(3dts)

utc_anyzone()
Gets the time zone label and offset from GMT by using the TDF
contained in theutc input parameter.

utc_ascanytime()
Converts a binary timestamp to an ASCII string that represents an
arbitrary time zone.

utc_ascgmtime()
Converts a binary timestamp to an ASCII string that expresses a GMT
time.

utc_asclocaltime()
Converts a binary timestamp to an ASCII string that represents a local
time.

utc_ascreltime()
Converts a relative binary timestamp to an ASCII string that represents
the time.

utc_binreltime()
Converts a relative binary timestamp to twotimespec structures that
express relative time and inaccuracy.

utc_bintime()
Converts a binary timestamp to atimespecstructure.

utc_boundtime()
Given two UTC times, one before and one after an event, returns a
single UTC time whose inaccuracy includes the event.

utc_cmpintervaltime()
Compares two binary timestamps or two relative binary timestamps.

utc_cmpmidtime()
Compares two binary timestamps or two relative binary timestamps,
ignoring inaccuracies.

utc_gettime()
Returns the current system time and inaccuracy as a binary timestamp.

utc_getusertime()
Returns the time and process-specific TDF, rather than the system-
specific TDF.

1139

DCE 1.2.2 Application Development Reference

dts_intro(3dts)

utc_gmtime()
Converts a binary timestamp to atm structure that expresses GMT or
the equivalent UTC.

utc_gmtzone()
Gets the time zone label for GMT.

utc_localtime()
Converts a binary timestamp to atm structure that expresses local time.

utc_localzone()
Gets the local time zone label and offset from GMT, givenutc.

utc_mkanytime()
Converts atm structure and TDF (expressing the time in an arbitrary
time zone) to a binary timestamp.

utc_mkascreltime()
Converts a NULL-terminated character string that represents a relative
timestamp to a binary timestamp.

utc_mkasctime()
Converts a NULL-terminated character string that represents an absolute
timestamp to a binary timestamp.

utc_mkbinreltime()
Converts atimespec structure expressing a relative time to a binary
timestamp.

utc_mkbintime()
Converts atimespecstructure to a binary timestamp.

utc_mkgmtime()
Converts atm structure that expresses GMT or UTC to a binary
timestamp.

utc_mklocaltime()
Converts atm structure that expresses local time to a binary timestamp.

utc_mkreltime()
Converts atm structure that expresses relative time to a relative binary
timestamp.

utc_mulftime()
Multiplies a relative binary timestamp by a floating-point value.

1140

DCE Distributed Time Service

dts_intro(3dts)

utc_multime()
Multiplies a relative binary timestamp by an integer factor.

utc_pointtime()
Converts a binary timestamp to three binary timestamps that represent
the earliest, most likely, and latest time.

utc_reltime()
Converts a relative binary timestamp to atm structure.

utc_spantime()
Given two (possibly unordered) binary timestamps, returns a single UTC
time interval whose inaccuracy spans the two input binary timestamps.

utc_subtime()
Computes the difference between two binary timestamps that express
either an absolute time and a relative time, two relative times, or two
absolute times.

Related Information

Books:DCE 1.2.2 Application Development Guide—Core Components.

1141

DCE 1.2.2 Application Development Reference

utc_abstime(3dts)

utc_abstime

Purpose Computes the absolute value of a relative binary timestamp

Synopsis
#include <dce/utc.h>

int utc_abstime(
utc_t* result,
utc_t *utc);

Parameters
Input

utc Relative binary timestamp. Use NULL if you want this routine to use
the current time for this parameter.

Output

result Absolute value of the input relative binary timestamp.

Description

Theutc_abstime()routine computes the absolute value of a relative binary timestamp.
The input timestamp represents a relative (delta) time.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

1142

DCE Distributed Time Service

utc_abstime(3dts)

Examples

The following example scales a relative time, computes its absolute value, and prints
the result.

utc_t relutc, scaledutc;

char timstr[UTC_MAX_STR_LEN];

/*

* Make sure relative timestamp represents a positive interval...

*/

utc_abstime(&relutc, /* Out: Abs-value of rel time */

&relutc); /* In: Relative time to scale */

/*

* Scale it by a factor of 17...

*/

utc_multime(&scaledutc, /* Out: Scaled relative time */

&relutc, /* In: Relative time to scale */

17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII relative time */

UTC_MAX_STR_LEN, /* In: Length of input string */

&scaledutc); /* In: Relative time to */

/* convert */

printf("%s\n",timstr);

/*

* Scale it by a factor of 17.65...

*/

utc_mulftime(&scaledutc, /* Out: Scaled relative time */

&relutc, /* In: Relative time to scale */

17.65); /* In: Scale factor */

1143

DCE 1.2.2 Application Development Reference

utc_abstime(3dts)

utc_ascreltime(timstr, /* Out: ASCII relative time */

UTC_MAX_STR_LEN, /* In: Length of input string */

&scaledutc); /* In: Relative time to */

/* convert */

printf("%s\n",timstr);

1144

DCE Distributed Time Service

utc_addtime(3dts)

utc_addtime

Purpose Computes the sum of two binary timestamps

Synopsis
#include <dce/utc.h>

int utc_addtime(
utc_t* result,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output

result Resulting binary timestamp or relative binary timestamp, depending
upon the operation performed:

• relative time+relative time=relative time

• absolute time+relative time=absolute time

• relative time+absolute time=absolute time

• absolute time+absolute timeis undefined. (See the note later in this
reference page.)

1145

DCE 1.2.2 Application Development Reference

utc_addtime(3dts)

Description

The utc_addtime() routine adds two binary timestamps, producing a third binary
timestamp whose inaccuracy is the sum of the two input inaccuracies. One or both of
the input timestamps typically represents a relative (delta) time. The TDF in the first
input timestamp is copied to the output. The timestamps can be two relative times or
a relative time and an absolute time.

Notes

Although no error is returned, the combinationabsolute time+absolute timeshould
not be used.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example shows how to compute a timestamp that represents a time at
least 5 seconds in the future.

utc_t now, future, fivesec;

reltimespec_t tfivesec;

timespec_t tzero;

/* Construct a timestamp that represents 5 seconds...

*/

tfivesec.tv_sec = 5;

tfivesec.tv_nsec = 0;

tzero.tv_sec = 0;

tzero.tv_nsec = 0;

utc_mkbinreltime(&fivesec, /* Out: 5 secs in binary timestamp */

&tfivesec, /* In: 5 secs in timespec */

1146

DCE Distributed Time Service

utc_addtime(3dts)

&tzero); /* In: 0 secs inaccuracy in timespec */

/* Get the maximum possible current time...

* (The NULL input parameter is used to specify the current time.)

*/

utc_pointtime((utc_t *)0, /* Out: Earliest possible current time */

(utc_t *)0, /* Out: Midpoint of current time */

&now, /* Out: Latest possible current time */

(utc_t *)0); /* In: Use current time */

/* Add 5 seconds to get future timestamp...

*/

utc_addtime(&future, /* Out: Future binary timestamp */

&now, /* In: Latest possible time now */

&fivesec); /* In: 5 secs */

Related Information

Functions:utc_subtime(3dts).

1147

DCE 1.2.2 Application Development Reference

utc_anytime(3dts)

utc_anytime

Purpose Converts a binary timestamp to atm structure

Synopsis
#include <dce/utc.h>

int utc_anytime(
struct tm * timetm,
long *tns,
struct tm * inacctm,
long *ins,
long *tdf,
utc_t *utc);

Parameters
Input

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

timetm Time component of the binary timestamp expressed in the timestamp’s
local time.

tns Nanoseconds since the time component of the binary timestamp.

inacctm Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, thentm_mday returns a value of−1 andtm_mon
and tm_year return values of 0 (zero). The fieldtm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, alltm structure
fields return values of−1.

ins Nanoseconds of the inaccuracy component of the binary timestamp.

1148

DCE Distributed Time Service

utc_anytime(3dts)

tdf TDF component of the binary timestamp in units of seconds east of
GMT.

Description

The utc_anytime() routine converts a binary timestamp to atm structure by using the
TDF information contained in the timestamp to determine the TDF returned with the
tm structure. The TDF information contained in the timestamp is returned with the
time and inaccuracy components; the TDF component determines the offset from GMT
and the local time value of thetm structure. Additional returns include nanoseconds
since time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example converts a timestamp by using the TDF information in the
timestamp, and then prints the result.

utc_t evnt;

struct tm tmevnt;

timespec_t tevnt, ievnt;

char tznam[80];

/* Assume evnt contains the timestamp to convert...

*

* Get time as a tm structure, using the time zone information in

* the timestamp...

*/

utc_anytime(&tmevnt, /* Out: tm struct of time of evnt */

(long *)0, /* Out: nanosec of time of evnt */

1149

DCE 1.2.2 Application Development Reference

utc_anytime(3dts)

(struct tm *)0, /* Out: tm struct of inacc of evnt */

(long *)0, /* Out: nanosec of inacc of evnt */

(int *)0, /* Out: tdf of evnt */

&evnt); /* In: binary timestamp of evnt */

/* Get the time and inaccuracy as timespec structures...

*/

utc_bintime(&tevnt, /* Out: timespec of time of evnt */

&ievnt, /* Out: timespec of inacc of evnt */

(int *)0, /* Out: tdf of evnt */

&evnt); /* In: Binary timestamp of evnt */

/* Construct the time zone name from time zone information in the

* timestamp...

*/

utc_anyzone(tznam, /* Out: Time zone name */

80, /* In: Size of time zone name */

(long *)0, /* Out: tdf of event */

(long *)0, /* Out: Daylight saving flag */

&evnt); /* In: Binary timestamp of evnt */

/* Print timestamp in the format:

*

* 1991-03-05-21:27:50.023I0.140 (GMT-5:00)

* 1992-04-02-12:37:24.003Iinf (GMT+7:00)

*/

printf("%d-%02d-%02d-%02d:%02d:%02d.%03d",

tmevnt.tm_year+1900, tmevnt.tm_mon+1, tmevnt.tm_mday,

tmevnt.tm_hour, tmevnt.tm_min, tmevnt.tm_sec,

(tevnt.tv_nsec/1000000));

if ((long)ievnt.tv_sec == -1)

printf("Iinf");

else

printf("I%d.%03d", ievnt.tv_sec, (ievnt.tv_nsec/1000000));

printf(" (%s)\n", tznam);

1150

DCE Distributed Time Service

utc_anytime(3dts)

Related Information

Functions:utc_anyzone(3dts), utc_gettime(3dts), utc_getusertime(3dts),
utc_gmtime(3dts), utc_localtime(3dts),utc_mkanytime(3dts).

1151

DCE 1.2.2 Application Development Reference

utc_anyzone(3dts)

utc_anyzone

Purpose Gets the time zone label and offset from GMT

Synopsis
#include <dce/utc.h>

int utc_anyzone(
char * tzname,
size_t tzlen,
long *tdf,
int * isdst,
const utc_t *utc);

Parameters
Input

tzlen Length of thetznamebuffer.

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

tzname Character string that is long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT.

isdst Integer with a value of−1, indicating that no information is supplied as
to whether it is standard time or daylight saving time. A value of−1 is
always returned.

Description

The utc_anyzone()routine gets the time zone label and offset from GMT by using
the TDF contained in theutc input parameter. The label returned is always of the

1152

DCE Distributed Time Service

utc_anyzone(3dts)

form GMT+n or GMT-n wheren is the tdf expressed inhours:minutes. (The label
associated with an arbitrary time zone is not known; only the offset is known.)

Notes

All of the output parameters are optional. No value is returned and no error occurs if
the pointer is NULL.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or an insufficient buffer.

Examples

See the sample program in theutc_anytime(3dts) reference page.

Related Information

Functions:utc_anytime(3dts), utc_gmtzone(3dts), utc_localzone(3dts).

1153

DCE 1.2.2 Application Development Reference

utc_ascanytime(3dts)

utc_ascanytime

Purpose Converts a binary timestamp to an ASCII string that represents an arbitrary time zone

Synopsis
#include <dce/utc.h>

int utc_ascanytime(
char *cp,
size_tstringlen,
utc_t *utc);

Parameters
Input

stringlen The length of thecp buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

cp ASCII string that represents the time.

Description

The utc_ascanytime()routine converts a binary timestamp to an ASCII string that
expresses a time. The TDF component in the timestamp determines the local time
used in the conversion.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

1154

DCE Distributed Time Service

utc_ascanytime(3dts)

Examples

The following example converts a time to an ASCII string that expresses the time in
the time zone where the timestamp was generated.

utc_t evnt;

char localTime[UTC_MAX_STR_LEN];

/*

* Assuming that evnt contains the timestamp to convert, convert

* the time to ASCII in the following format:

*

* 1991-04-01-12:27:38.37-8:00I2.00

*/

utc_ascanytime(localtime, /* Out: Converted time */

UTC_MAX_STR_LEN, /* In: Length of string */

&evnt); /* In: Time to convert */

Related Information

Functions:utc_ascgmtime(3dts), utc_asclocaltime(3dts).

1155

DCE 1.2.2 Application Development Reference

utc_ascgmtime(3dts)

utc_ascgmtime

Purpose Converts a binary timestamp to an ASCII string that expresses a GMT time

Synopsis
#include <dce/utc.h>

int utc_ascgmtime(
char *cp,
size_tstringlen,
utc_t *utc);

Parameters
Input

stringlen Length of thecp buffer.

utc Binary timestamp.

Output

cp ASCII string that represents the time.

Description

The utc_ascgmtime() routine converts a binary timestamp to an ASCII string that
expresses a time in GMT.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

1156

DCE Distributed Time Service

utc_ascgmtime(3dts)

Examples

The following example converts the current time to GMT format.

char gmTime[UTC_MAX_STR_LEN];

/* Convert the current time to ASCII in the following format:

* 1991-04-01-12:27:38.37I2.00

*/

utc_ascgmtime(gmTime, /* Out: Converted time */

UTC_MAX_STR_LEN, /* In: Length of string */

(utc_t*) NULL); /* In: Time to convert */

/* Default is current time */

Related Information

Functions:utc_ascanytime(3dts), utc_asclocaltime(3dts).

1157

DCE 1.2.2 Application Development Reference

utc_asclocaltime(3dts)

utc_asclocaltime

Purpose Converts a binary timestamp to an ASCII string that represents a local time

Synopsis
#include <dce/utc.h>

int utc_asclocaltime(
char *cp,
size_tstringlen,
utc_t *utc);

Parameters
Input

stringlen Length of thecp buffer.

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

cp ASCII string that represents the time.

Description

The utc_asclocaltime()routine converts a binary timestamp to an ASCII string that
expresses local time.

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

1158

DCE Distributed Time Service

utc_asclocaltime(3dts)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts the current time to local time.

char localTime[UTC_MAX_STR_LEN];

/* Convert the current time...

*/

utc_asclocaltime(localTime, /* Out: Converted time */

UTC_MAX_STR_LEN, /* In: Length of string */

(utc_t*) NULL); /* In: Time to convert */

/* Default is current time */

Related Information

Functions:utc_ascanytime(3dts), utc_ascgmtime(3dts).

1159

DCE 1.2.2 Application Development Reference

utc_ascreltime(3dts)

utc_ascreltime

Purpose Converts a relative binary timestamp to an ASCII string that represents the time

Synopsis
#include <dce/utc.h>

int utc_ascreltime(
char *cp,
const size_tstringlen,
utc_t *utc);

Parameters
Input

utc Relative binary timestamp.

stringlen Length of thecp buffer.

Output

cp ASCII string that represents the time.

Description

The utc_ascreltime()routine converts a relative binary timestamp to an ASCII string
that represents the time.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

1160

DCE Distributed Time Service

utc_ascreltime(3dts)

Examples

See the sample program in theutc_abstime(3dts)reference page.

Related Information

Functions:utc_mkascreltime(3dts).

1161

DCE 1.2.2 Application Development Reference

utc_binreltime(3dts)

utc_binreltime

Purpose Converts a relative binary timestamp to twotimespecstructures that express relative
time and inaccuracy

Synopsis
#include <dce/utc.h>

int utc_binreltime(
reltimespec_t *timesp,
timespec_t *inaccsp,
utc_t *utc);

Parameters
Input

utc Relative binary timestamp. Use NULL if you want this routine to use
the current time for this parameter.

Output

timesp Time component of the relative binary timestamp, in the form of seconds
and nanoseconds since the base time (1970−01−01:00:00:00.0+00:00I0).

inaccsp Inaccuracy component of the relative binary timestamp, in the form of
seconds and nanoseconds.

Description

The utc_binreltime() routine converts a relative binary timestamp to twotimespec
structures that express relative time and inaccuracy. Thesetimespecstructures describe
a time interval.

1162

DCE Distributed Time Service

utc_binreltime(3dts)

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example measures the duration of a process, then prints the resulting
relative time and inaccuracy.

utc_t before, duration;

reltimespec_t tduration;

timespec_t iduration;

/* Get the time before the start of the operation...

*/

utc_gettime(&before); /* Out: Before binary timestamp */

/* ...Later...

* Subtract, getting the duration as a relative time.

*

* NOTE: The NULL argument is used to obtain the current time.

*/

utc_subtime(&duration, /* Out: Duration rel bin timestamp */

(utc_t *)0, /* In: After binary timestamp */

&before); /* In: Before binary timestamp */

/* Convert the relative times to timespec structures...

*/

utc_binreltime(&tduration, /* Out: Duration time timespec */

&iduration, /* Out: Duration inacc timespec */

&duration); /* In: Duration rel bin timestamp */

/* Print the duration...

*/

1163

DCE 1.2.2 Application Development Reference

utc_binreltime(3dts)

printf("%d.%04d", tduration.tv_sec, (tduration.tv_nsec/10000));

if ((long)iduration.tv_sec == -1)

printf("Iinf\n");

else

printf("I%d.%04d\n", iduration.tv_sec, (iduration.tv_nsec/100000));

Related Information

Functions:utc_mkbinreltime(3dts).

1164

DCE Distributed Time Service

utc_bintime(3dts)

utc_bintime

Purpose Converts a binary timestamp to atimespecstructure

Synopsis
#include <dce/utc.h>

int utc_bintime(
timespec_t *timesp,
timespec_t *inaccsp,
long *tdf,
utc_t *utc);

Parameters
Input

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

timesp Time component of the binary timestamp, in the form of seconds and
nanoseconds since the base time.

inaccsp Inaccuracy component of the binary timestamp, in the form of seconds
and nanoseconds.

tdf TDF component of the binary timestamp in the form of signed number
of seconds east of GMT.

Description

The utc_bintime() routine converts a binary timestamp to atimespecstructure. The
TDF information contained in the timestamp is returned.

1165

DCE 1.2.2 Application Development Reference

utc_bintime(3dts)

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_anytime(3dts) reference page.

Related Information

Functions:utc_binreltime(3dts), utc_mkbintime(3dts).

1166

DCE Distributed Time Service

utc_boundtime(3dts)

utc_boundtime

Purpose Given two UTC times, one before and one after an event, returns a single UTC time
whose inaccuracy includes the event

Synopsis
#include <dce/utc.h>

int utc_boundtime(
utc_t * result,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Before binary timestamp or relative binary timestamp. Use NULL if you
want this routine to use the current time for this parameter.

utc2 After binary timestamp or relative binary timestamp. Use NULL if you
want this routine to use the current time for this parameter.

Output

result Spanning timestamp.

Description

Given two UTC times, theutc_boundtime() routine returns a single UTC time whose
inaccuracy bounds the two input times. This is useful for timestamping events: the
routine gets theutc values before and after the event, then callsutc_boundtime() to
build a timestamp that includes the event.

1167

DCE 1.2.2 Application Development Reference

utc_boundtime(3dts)

Notes

The TDF in the output UTC value is copied from theutc2 input parameter. If one or
both input values have unspecified inaccuracies, the returned time value also has an
unspecified inaccuracy and is the average of the two input values.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid parameter order.

Examples

The following example records the time of an event and constructs a single timestamp,
which includes the time of the event. Note that theutc_getusertime()routine is called
so the time zone information that is included in the timestamp references the user’s
environment rather than the system’s default time zone.

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

utc_t before, after, evnt;

/* Get the time before the event...

*/

utc_getusertime(&before); /* Out: Before binary timestamp */

/* Get the time after the event...

*/

utc_getusertime(&after); /* Out: After binary timestamp */

1168

DCE Distributed Time Service

utc_boundtime(3dts)

/* Construct a single timestamp that describes the time of the

* event...

*/

utc_boundtime(&evnt, /* Out: Timestamp that bounds event */

&before, /* In: Before binary timestamp */

&after); /* In: After binary timestamp */

Related Information

Functions:utc_gettime(3dts), utc_pointtime(3dts), utc_spantime(3dts).

1169

DCE 1.2.2 Application Development Reference

utc_cmpintervaltime(3dts)

utc_cmpintervaltime

Purpose Compares two binary timestamps or two relative binary timestamps

Synopsis
#include <dce/utc.h>

int utc_cmpintervaltime(
enum utc_cmptype *relation,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output

relation Receives the result of the comparison ofutc1:utc2 where the result is
an enumerated type with one of the following values:

• utc_equalTo

• utc_lessThan

• utc_greaterThan

• utc_indeterminate

1170

DCE Distributed Time Service

utc_cmpintervaltime(3dts)

Description

The utc_cmpintervaltime() routine compares two binary timestamps and returns a
flag indicating that the first time is greater than, less than, equal to, or overlapping
with the second time. Two times overlap if the intervals (time − inaccuracy, time +
inaccuracy) of the two times intersect.

The input binary timestamps express two absolute or two relative times. Donot
compare relative binary timestamps to absolute binary timestamps. If you do, no
meaningful results and no errors are returned.

The following routine does a temporal ordering of the time intervals.

utc1 is utc_lessThan utc2 iff

utc1.time + utc1.inacc < utc2.time - utc2.inacc

utc1 is utc_greaterThan utc2 iff

utc1.time - utc1.inacc > utc2.time + utc2.inacc

utc1 utc_equalTo utc2 iff

utc1.time == utc2.time and

utc1.inacc == 0 and

utc2.inacc == 0

utc1 is utc_indeterminate with respect toutc2 if the intervals overlap.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example checks to see if the current time is definitely after 13:00 local
time.

1171

DCE 1.2.2 Application Development Reference

utc_cmpintervaltime(3dts)

struct tm tmtime, tmzero;

enum utc_cmptype relation;

utc_t testtime;

/* Zero the tm structure for inaccuracy...

*/

memset(&tmzero, 0, sizeof(tmzero));

/* Get the current time, mapped to a tm structure...

*

* NOTE: The NULL argument is used to get the current time.

*/

utc_gmtime(&tmtime, /* Out: Current GMT time in tm struct */

(long *)0, /* Out: Nanoseconds of time */

(struct tm *)0, /* Out: Current inaccuracy in tm struct */

(long *)0, /* Out: Nanoseconds of inaccuracy */

(utc_t *)0); /* In: Current timestamp */

/* Alter the tm structure to correspond to 13:00 local time */

*/

tmtime.tm_hour = 13;

tmtime.tm_min = 0;

tmtime.tm_sec = 0;

/* Convert to a binary timestamp...

*/

utc_mkgmtime(&testtime, /* Out: Binary timestamp of 13:00 */

&tmtime, /* In: 1:00 PM in tm struct */

0, /* In: Nanoseconds of time */

&tmzero, /* In: Zero inaccuracy in tm struct */

0); /* In: Nanoseconds of inaccuracy */

/* Compare to the current time. Note the use of the NULL argument */

*/

utc_cmpintervaltime(&relation, /* Out: Comparison relation */

(utc_t *)0, /* In: Current timestamp */

&testtime); /* In: 13:00 PM timestamp */

1172

DCE Distributed Time Service

utc_cmpintervaltime(3dts)

/* If it is not later - wait, print a message, etc.

*/

if (relation != utc_greaterThan) {

/*

* Note: It could be earlier than 13:00 local time or it could be

* indeterminate. If indeterminate, for some applications

* it might be worth waiting.

*/

}

Related Information

Functions:utc_cmpmidtime(3dts).

1173

DCE 1.2.2 Application Development Reference

utc_cmpmidtime(3dts)

utc_cmpmidtime

Purpose Compares two binary timestamps or two relative binary timestamps, ignoring
inaccuracies

Synopsis
#include <dce/utc.h>

int utc_cmpmidtime(
enum utc_cmptype *relation,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output

relation Result of the comparison ofutc1:utc2 where the result is an enumerated
type with one of the following values:

• utc_equalTo

• utc_lessThan

• utc_greaterThan

1174

DCE Distributed Time Service

utc_cmpmidtime(3dts)

Description

The utc_cmpmidtime() routine compares two binary timestamps and returns a flag
indicating that the first timestamp is greater than, less than, or equal to the second
timestamp. Inaccuracy information is ignored for this comparison; the input values
are therefore equivalent to the midpoints of the time intervals described by the input
binary timestamps.

The input binary timestamps express two absolute or two relative times. Donot
compare relative binary timestamps to absolute binary timestamps. If you do, no
meaningful results and no errors are returned.

The following routine does a lexical ordering on the time interval midpoints.

utc1 is utc_lessThan utc2 iff

utc1.time < utc2.time

utc1 is utc_greaterThan utc2 iff

utc1.time > utc2.time

utc1 is utc_equalTo utc2 iff

utc1.time == utc2.time

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example checks if the current time (ignoring inaccuracies) is after 13:00
local time.

struct tm tmtime, tmzero;

enum utc_cmptype relation;

1175

DCE 1.2.2 Application Development Reference

utc_cmpmidtime(3dts)

utc_t testtime;

/* Zero the tm structure for inaccuracy...

*/

memset(&tmzero, 0, sizeof(tmzero));

/* Get the current time, mapped to a tm structure...

*

* NOTE: The NULL argument is used to get the current time.

*/

utc_localtime(&tmtime, /* Out: Current local time in tm struct */

(long *)0, /* Out: Nanoseconds of time */

(struct tm *)0, /* Out: Current inacc in tm struct */

(long *)0, /* Out: Nanoseconds of inaccuracy */

(utc_t *)0); /* In: Current timestamp */

/* Alter the tm structure to correspond to 13:00 local time.

*/

tmtime.tm_hour = 13;

tmtime.tm_min = 0;

tmtime.tm_sec = 0;

/* Convert to a binary timestamp...

*/

utc_mklocaltime(&testtime, /* Out: Binary timestamp of 13:00 */

&tmtime, /* In: 13:00 in tm struct */

0, /* In: Nanoseconds of time */

&tmzero, /* In: Zero inaccuracy in tm struct */

0); /* In: Nanoseconds of inaccuracy */

/* Compare to the current time. Note the use of the NULL argument

*/

utc_cmpmidtime(&relation, /* Out: Comparison relation */

(utc_t *)0, /* In: Current timestamp */

&testtime); /* In: 13:00 local time timestamp */

/* If the time is not later - wait, print a message, etc.

*/

if (relation != utc_greaterThan) {

1176

DCE Distributed Time Service

utc_cmpmidtime(3dts)

/* It is not later then 13:00 local time. Note that

* this depends on the setting of the user’s environment.

*/

}

Related Information

Functions:utc_cmpintervaltime(3dts).

1177

DCE 1.2.2 Application Development Reference

utc_gettime(3dts)

utc_gettime

Purpose Returns the current system time and inaccuracy as a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_gettime(
utc_t *utc);

Parameters
Input

None.

Output

utc System time as a binary timestamp.

Description

The utc_gettime() routine returns the current system time and inaccuracy in a binary
timestamp. The routine takes the TDF from the operating system’s kernel; the TDF
is specified in a system-dependent manner.

Return Values

0 Indicates that the routine executed successfully.

−1 Generic error that indicates the time service cannot be accessed.

1178

DCE Distributed Time Service

utc_gettime(3dts)

Examples

See the sample program in theutc_binreltime(3dts) reference page.

1179

DCE 1.2.2 Application Development Reference

utc_getusertime(3dts)

utc_getusertime

Purpose Returns the time and process-specific TDF, rather than the system-specific TDF

Synopsis
#include <dce/utc.h>

int utc_getusertime(
utc_t *utc);

Parameters
Input

None.

Output

utc System time as a binary timestamp.

Description

The utc_getusertime() routine returns the system time and inaccuracy in a binary
timestamp. The routine takes the TDF from the user’s environment, which determines
the time zone rule (details are system dependent). For example, on OSF/1 systems, the
user selects a time zone by specifying theTZ environment variable. (The reference
information for the localtime() system call, which is described in thectime(3)
reference page, provides additional information.)

If the user environment does not specify a TDF, the system’s TDF is used. The
system’s time zone rule is applied (details of the rule are system dependent). For
example, on OSF/1 systems, the rule in/etc/zoneinfo/localtimeapplies.

1180

DCE Distributed Time Service

utc_getusertime(3dts)

Return Values

0 Indicates that the routine executed successfully.

−1 Generic error that indicates the time service cannot be accessed.

Examples

See the sample program in theutc_boundtime(3dts) reference page.

Related Information

Functions:utc_gettime(3dts).

1181

DCE 1.2.2 Application Development Reference

utc_gmtime(3dts)

utc_gmtime

Purpose Converts a binary timestamp to atm structure that expresses GMT or the equivalent
UTC

Synopsis
#include <dce/utc.h>

int utc_gmtime(
struct tm * timetm,
long *tns,
struct tm * inacctm,
long *ins,
utc_t *utc);

Parameters
Input

utc Binary timestamp to be converted totm structure components. Use
NULL if you want this routine to use the current time for this parameter.

Output

timetm Time component of the binary timestamp.

tns Nanoseconds since the time component of the binary timestamp.

inacctm Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, thentm_mday returns a value of−1 andtm_mon
and tm_year return values of 0 (zero). The fieldtm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, alltm structure
fields return values of−1.

ins Nanoseconds of the inaccuracy component of the binary timestamp. If
the inaccuracy is unspecified,ins returns a value of−1.

1182

DCE Distributed Time Service

utc_gmtime(3dts)

Description

Theutc_gmtime() routine converts a binary timestamp to atm structure that expresses
GMT (or the equivalent UTC). Additional returns include nanoseconds since time and
nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_cmpintervaltime(3dts) reference page.

Related Information

Functions:utc_anytime(3dts), utc_gmtzone(3dts), utc_localtime(3dts),
utc_mkgmtime(3dts).

1183

DCE 1.2.2 Application Development Reference

utc_gmtzone(3dts)

utc_gmtzone

Purpose Gets the time zone label for GMT

Synopsis
#include <dce/utc.h>

int utc_gmtzone(
char * tzname,
size_t tzlen,
long *tdf,
int * isdst,
utc_t *utc);

Parameters
Input

tzlen Length of buffertzname.

utc Binary timestamp. This parameter is ignored.

Output

tzname Character string long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT. A value of 0 (zero)
is always returned.

isdst Integer with a value of 0 (zero), indicating that daylight saving time is
not in effect. A value of 0 (zero) is always returned.

Description

The utc_gmtzone() routine gets the time zone label and zero offset from GMT.
Outputs are alwaystdf=0 andtzname=GMT . This routine exists for symmetry with the

1184

DCE Distributed Time Service

utc_gmtzone(3dts)

utc_anyzone()and theutc_localzone()routines. Use NULL if you want this routine
to use the current time for this parameter.

Notes

All of the output parameters are optional. No value is returned and no error occurs if
the tznamepointer is NULL.

Return Values

0 Indicates that the routine executed successfully (always returned).

Examples

The following example prints out the current time in both local time and GMT time.

utc_t now;

struct tm tmlocal, tmgmt;

long tzoffset;

int tzdaylight;

char tzlocal[80], tzgmt[80];

/* Get the current time once, so both conversions use the same

* time...

*/

utc_gettime(&now);

/* Convert to local time, using the process TZ environment

* variable...

*/

utc_localtime(&tmlocal, /* Out: Local time tm structure */

(long *)0, /* Out: Nanosec of time */

(struct tm *)0, /* Out: Inaccuracy tm structure */

(long *)0, /* Out: Nanosec of inaccuracy */

(int *)0, /* Out: TDF of local time */

1185

DCE 1.2.2 Application Development Reference

utc_gmtzone(3dts)

&now); /* In: Current timestamp (ignore) */

/* Get the local time zone name, offset from GMT, and current

* daylight savings flag...

*/

utc_localzone(tzlocal, /* Out: Local time zone name */

80, /* In: Length of loc time zone name */

&tzoffset, /* Out: Loc time zone offset in secs */

&tzdaylight, /* Out: Local time zone daylight flag */

&now); /* In: Current binary timestamp */

/* Convert to GMT...

*/

utc_gmtime(&tmgmt, /* Out: GMT tm structure */

(long *)0, /* Out: Nanoseconds of time */

(struct tm *)0, /* Out: Inaccuracy tm structure */

(long *)0, /* Out: Nanoseconds of inaccuracy */

&now); /* In: Current binary timestamp */

/* Get the GMT time zone name...

*/

utc_gmtzone(tzgmt, /* Out: GMT time zone name */

80, /* In: Size of GMT time zone name */

(long *)0, /* Out: GMT time zone offset in secs */

(int *)0, /* Out: GMT time zone daylight flag */

&now); /* In: Current binary timestamp */

/* (ignore) */

/* Print out times and time zone information in the following

* format:

*

* 12:00:37 (EDT) = 16:00:37 (GMT)

* EDT is -240 minutes ahead of Greenwich Mean Time.

* Daylight savings time is in effect.

*/

printf("%d:%02d:%02d (%s) = %d:%02d:%02d (%s)\n",

tmlocal.tm_hour, tmlocal.tm_min, tmlocal.tm_sec, tzlocal,

tmgmt.tm_hour, tmgmt.tm_min, tmgmt.tm_sec, tzgmt);

1186

DCE Distributed Time Service

utc_gmtzone(3dts)

printf("%s is %d minutes ahead of Greenwich Mean Time\n", tzlocal,

tzoffset/60);

if (tzdaylight != 0)

printf("Daylight savings time is in effect\n");

Related Information

Functions:utc_anyzone(3dts), utc_gmtime(3dts), utc_localzone(3dts).

1187

DCE 1.2.2 Application Development Reference

utc_localtime(3dts)

utc_localtime

Purpose Converts a binary timestamp to atm structure that expresses local time

Synopsis
#include <dce/utc.h>

int utc_localtime(
struct tm * timetm,
long *tns,
struct tm * inacctm,
long *ins,
utc_t *utc);

Parameters
Input

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

timetm Time component of the binary timestamp, expressing local time.

tns Nanoseconds since the time component of the binary timestamp.

inacctm Seconds of the inaccuracy component of the binary timestamp. If the
inaccuracy is finite, thentm_mday returns a value of−1 andtm_mon
and tm_year return values of 0 (zero). The fieldtm_yday contains the
inaccuracy in days. If the inaccuracy is unspecified, alltm structure
fields return values of−1.

ins Nanoseconds of the inaccuracy component of the binary timestamp. If
the inaccuracy is unspecified,ins returns a value of−1.

1188

DCE Distributed Time Service

utc_localtime(3dts)

Description

The utc_localtime() routine converts a binary timestamp to atm structure that
expresses local time.

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_gmtzone(3dts)reference page.

Related Information

Functions:utc_anytime(3dts), utc_gmtime(3dts), utc_localzone(3dts),
utc_mklocaltime(3dts).

1189

DCE 1.2.2 Application Development Reference

utc_localzone(3dts)

utc_localzone

Purpose Gets the local time zone label and offset from GMT, givenutc

Synopsis
#include <dce/utc.h>

int utc_localzone(
char * tzname,
size_t tzlen,
long *tdf,
int * isdst,
utc_t *utc);

Parameters
Input

tzlen Length of thetznamebuffer.

utc Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

tzname Character string long enough to hold the time zone label.

tdf Long word with differential in seconds east of GMT.

isdst Integer with a value of 0 (zero) if standard time is in effect or a value
of 1 if daylight saving time is in effect.

Description

Theutc_localzone()routine gets the local time zone label and offset from GMT, given
utc.

1190

DCE Distributed Time Service

utc_localzone(3dts)

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

Notes

All of the output parameters are optional. No value is returned and no error occurs if
the pointer is NULL.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or an insufficient buffer.

Examples

See the sample program in theutc_gmtzone(3dts)reference page.

Related Information

Functions:utc_anyzone(3dts), utc_gmtzone(3dts), utc_localtime(3dts).

1191

DCE 1.2.2 Application Development Reference

utc_mkanytime(3dts)

utc_mkanytime

Purpose Converts atm structure and TDF (expressing the time in an arbitrary time zone) to a
binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkanytime(
utc_t *utc,
struct tm * timetm,
long tns,
struct tm * inacctm,
long ins,
long tdf);

Parameters
Input

timetm A tm structure that expresses the local time;tm_wday and tm_yday
are ignored on input; the value oftm_isdt should be−1.

tns Nanoseconds since the time component.

inacctm A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or iftm_yday is negative,
the inaccuracy is considered to be unspecified;tm_mday, tm_mon,
tm_wday, andtm_isdst are ignored on input.

ins Nanoseconds of the inaccuracy component.

tdf Time differential factor to use in conversion.

Output

utc Resulting binary timestamp.

1192

DCE Distributed Time Service

utc_mkanytime(3dts)

Description

The utc_mkanytime() routine converts atm structure and TDF (expressing the time
in an arbitrary time zone) to a binary timestamp. Required inputs include nanoseconds
since time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example converts a string ISO format time in an arbitrary time zone to
a binary timestamp. This may be part of an input timestamp routine, although a real
implementation will include range checking.

utc_t utc;

struct tm tmtime, tminacc;

float tsec, isec;

double tmp;

long tnsec, insec;

int i, offset, tzhour, tzmin, year, mon;

char *string;

/* Try to convert the string... */

if(sscanf(string, "%d-%d-%d-%d:%d:%e+%d:%dI%e",

&year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,

&tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

/* Try again with a negative TDF... */

if (sscanf(string, "%d-%d-%d-%d:%d:%e-%d:%dI%e",

&year, &mon, &tmtime.tm_mday, &tmtime.tm_hour,

&tmtime.tm_min, &tsec, &tzhour, &tzmin, &isec) != 9) {

1193

DCE 1.2.2 Application Development Reference

utc_mkanytime(3dts)

/* ERROR */

exit(1);

}

/* TDF is negative */

tzhour = -tzhour;

tzmin = -tzmin;

}

/* Fill in the fields... */

tmtime.tm_year = year - 1900;

tmtime.tm_mon = --mon;

tmtime.tm_sec = tsec;

tnsec = (modf(tsec, &tmp)*1.0E9);

offset = tzhour*3600 + tzmin*60;

tminacc.tm_sec = isec;

insec = (modf(isec, &tmp)*1.0E9);

/* Convert to a binary timestamp... */

utc_mkanytime(&utc, /* Out: Resultant binary timestamp */

&tmtime, /* In: tm struct that represents input */

tnsec, /* In: Nanoseconds from input */

&tminacc, /* In: tm struct that represents inacc */

insec, /* In: Nanoseconds from input */

offset); /* In: TDF from input */

Related Information

Functions:utc_anytime(3dts), utc_anyzone(3dts).

1194

DCE Distributed Time Service

utc_mkascreltime(3dts)

utc_mkascreltime

Purpose Converts a NULL-terminated character string that represents a relative timestamp to
a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkascreltime(
utc_t *utc,
char *string);

Parameters
Input

string A NULL-terminated string that expresses a relative timestamp in its ISO
format.

Output

utc Resulting binary timestamp.

Description

Theutc_mkascreltime()routine converts a NULL-terminated string, which represents
a relative timestamp, to a binary timestamp.

Notes

The ASCII string must be NULL-terminated.

1195

DCE 1.2.2 Application Development Reference

utc_mkascreltime(3dts)

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts an ASCII relative time string to its binary equivalent.

utc_t utc;

char str[UTC_MAX_STR_LEN];

/* Relative time of -333 days, 12 hours, 1 minute, 37.223 seconds

* Inaccuracy of 50.22 seconds in the format: -333-12:01:37.223I50.22

*/

(void)strcpy((void *)str,

"-333-12:01:37.223I50.22");

utc_mkascreltime(&utc, /* Out: Binary utc */

str); /* In: String */

Related Information

Functions:utc_ascreltime(3dts).

1196

DCE Distributed Time Service

utc_mkasctime(3dts)

utc_mkasctime

Purpose Converts a NULL-terminated character string that represents an absolute timestamp
to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkasctime(
utc_t *utc,
char *string);

Parameters
Input

string A NULL-terminated string that expresses an absolute time.

Output

utc Resulting binary timestamp.

Description

The utc_mkasctime() routine converts a NULL-terminated string that represents an
absolute time to a binary timestamp.

Notes

The ASCII string must be NULL-terminated.

Return Values

0 Indicates that the routine executed successfully.

1197

DCE 1.2.2 Application Development Reference

utc_mkasctime(3dts)

−1 Indicates an invalid time parameter or invalid results.

Examples

The following example converts an ASCII time string to its binary equivalent.

utc_t utc;

char str[UTC_MAX_STR_LEN];

/* July 4, 1776, 12:01:37.223 local time

* TDF of -5:00 hours

* Inaccuracy of 3600.32 seconds

*/

(void)strcpy((void *)str,

"1776-07-04-12:01:37.223-5:00I3600.32");

utc_mkasctime(&utc, /* Out: Binary utc */

str); /* In: String */

Related Information

Functions:utc_ascanytime(3dts), utc_ascgmtime(3dts), utc_asclocaltime(3dts).

1198

DCE Distributed Time Service

utc_mkbinreltime(3dts)

utc_mkbinreltime

Purpose Converts atimespecstructure expressing a relative time to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkbinreltime(
utc_t *utc,
reltimespec_t *timesp,
timespec_t *inaccsp);

Parameters
Input

timesp A reltimespecstructure that expresses a relative time.

inaccsp A timespec structure that expresses inaccuracy. If a null pointer is
passed, or iftv_secis set to a value of−1, the inaccuracy is considered
to be unspecified.

Output

utc Resulting relative binary timestamp.

Description

The utc_mkbinreltime() routine converts atimespecstructure that expresses relative
time to a binary timestamp.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

1199

DCE 1.2.2 Application Development Reference

utc_mkbinreltime(3dts)

Examples

See the sample program in theutc_addtime(3dts) reference page.

Related Information

Functions:utc_binreltime(3dts), utc_mkbintime(3dts).

1200

DCE Distributed Time Service

utc_mkbintime(3dts)

utc_mkbintime

Purpose Converts atimespecstructure to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkbintime(
utc_t *utc,
timespec_t *timesp,
timespec_t *inaccsp,
long tdf);

Parameters
Input

timesp A timespec structure that expresses time since 1970−01−
01:00:00:00.0+00:00I0.

inaccsp A timespec structure that expresses inaccuracy. If a null pointer is
passed, or iftv_secis set to a value of−1, the inaccuracy is considered
to be unspecified.

tdf TDF component of the binary timestamp.

Output

utc Resulting binary timestamp.

Description

The utc_mkbintime() routine converts atimespec structure time to a binary
timestamp. The TDF input is used as the TDF of the binary timestamp.

1201

DCE 1.2.2 Application Development Reference

utc_mkbintime(3dts)

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example obtains the current time fromtime(3), converts it to a binary
timestamp with an inaccuracy of 5.2 seconds, and specifies GMT.

timespec_t ttime, tinacc;

utc_t utc;

/* Obtain the current time (without the inaccuracy)...

*/

ttime.tv_sec = time((time_t *)0);

ttime.tv_nsec = 0;

/* Specify the inaccuracy...

*/

tinacc.tv_sec = 5;

tinacc.tv_nsec = 200000000;

/* Convert to a binary timestamp...

*/

utc_mkbintime(&utc, /* Out: Binary timestamp */

&ttime, /* In: Current time in timespec */

&tinacc, /* In: 5.2 seconds in timespec */

0); /* In: TDF of GMT */

Related Information

Functions:utc_bintime(3dts), utc_mkbinreltime(3dts).

1202

DCE Distributed Time Service

utc_mkgmtime(3dts)

utc_mkgmtime

Purpose Converts atm structure that expresses GMT or UTC to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkgmtime(
utc_t *utc,
struct tm * timetm,
long tns,
struct tm * inacctm,
long ins);

Parameters
Input

timetm A tm structure that expresses GMT. On input,tm_wday and tm_yday
are ignored; the value oftm_isdt should be−1.

tns Nanoseconds since the time component.

inacctm A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or iftm_yday is negative,
the inaccuracy is considered to be unspecified. On input,tm_mday,
tm_mon, tm_wday, and tm_isdst are ignored.

ins Nanoseconds of the inaccuracy component.

Output

utc Resulting binary timestamp.

1203

DCE 1.2.2 Application Development Reference

utc_mkgmtime(3dts)

Description

The utc_mkgmtime() routine converts atm structure that expresses GMT or UTC to
a binary timestamp. Additional inputs include nanoseconds since the last second of
time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_cmpintervaltime(3dts) reference page.

Related Information

Functions:utc_gmtime(3dts).

1204

DCE Distributed Time Service

utc_mklocaltime(3dts)

utc_mklocaltime

Purpose Converts atm structure that expresses local time to a binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mklocaltime(
utc_t *utc,
struct tm * timetm,
long tns,
struct tm * inacctm,
long ins);

Parameters
Input

timetm A tm structure that expresses the local time. On input,tm_wday and
tm_yday are ignored; the value oftm_isdst should be−1.

tns Nanoseconds since the time component.

inacctm A tm structure that expresses days, hours, minutes, and seconds of
inaccuracy. If a null pointer is passed, or iftm_yday is negative,
the inaccuracy is considered to be unspecified. On input,tm_mday,
tm_mon, tm_wday, and tm_isdst are ignored.

ins Nanoseconds of the inaccuracy component.

Output

utc Resulting binary timestamp.

1205

DCE 1.2.2 Application Development Reference

utc_mklocaltime(3dts)

Description

The utc_mklocaltime() routine converts atm structure that expresses local time to a
binary timestamp.

The user’s environment determines the time zone rule (details are system dependent).
For example, on OSF/1 systems, the user selects a time zone by specifying theTZ
environment variable. (The reference information for thelocaltime() system call,
which is described in thectime(3) reference page, provides additional information.)

If the user’s environment does not specify a time zone rule, the system’s rule is used
(details of the rule are system dependent). For example, on OSF/1 systems, the rule
in /etc/zoneinfo/localtimeapplies.

Additional inputs include nanoseconds since the last second of time and nanoseconds
of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_cmpmidtime(3dts) reference page.

Related Information

Functions:utc_localtime(3dts).

1206

DCE Distributed Time Service

utc_mkreltime(3dts)

utc_mkreltime

Purpose Converts atm structure that expresses relative time to a relative binary timestamp

Synopsis
#include <dce/utc.h>

int utc_mkreltime(
utc_t *utc,
struct tm * timetm,
long tns,
struct tm * inacctm,
long ins);

Parameters
Input

timetm A tm structure that expresses a relative time. On input,tm_wday and
tm_yday are ignored; the value oftm_isdst should be−1.

tns Nanoseconds since the time component.

inacctm A tm structure that expresses seconds of inaccuracy. If a null pointer
is passed, or iftm_yday is negative, the inaccuracy is considered to
be unspecified. On input,tm_mday, tm_mon, tm_year, tm_wday,
tm_isdst, andtm_zoneare ignored.

ins Nanoseconds of the inaccuracy component.

Output

utc Resulting relative binary timestamp.

1207

DCE 1.2.2 Application Development Reference

utc_mkreltime(3dts)

Description

The utc_mkreltime() routine converts atm structure that expresses relative time to a
relative binary timestamp. Additional inputs include nanoseconds since the last second
of time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

The following example converts the relative time125-03:12:30.1I120.25to a relative
binary timestamp.

utc_t utc;

struct tm tmtime,tminacc;

long tnsec,insec;

/* Fill in the fields

*/

memset((void *)&tmtime,0,sizeof(tmtime));

tmtime.tm_mday = 125;

tmtime.tm_hour = 3;

tmtime.tm_min = 12;

tmtime.tm_sec = 30;

tnsec = 100000000; /* .1 * 1.0E9 */

memset((void *)&tminacc,0,sizeof(tminacc));

tminacc.tm_sec = 120;

tnsec = 250000000; /* .25 * 1.0E9 */

/* Convert to a relative binary timestamp...

*/

utc_mkreltime(&utc, /* Out: Resultant relative binary timestamp */

1208

DCE Distributed Time Service

utc_mkreltime(3dts)

&tmtime, /* In: tm struct that represents input */

tnsec, /* In: Nanoseconds from input */

&tminacc, /* In: tm struct that represents inacc */

insec); /* In: Nanoseconds from input */

1209

DCE 1.2.2 Application Development Reference

utc_mulftime(3dts)

utc_mulftime

Purpose Multiplies a relative binary timestamp by a floating-point value

Synopsis
#include <dce/utc.h>

int utc_mulftime(
utc_t * result,
utc_t *utc1,
double factor);

Parameters
Input

utc1 Relative binary timestamp. Use NULL if you want this routine to use
the current time for this parameter.

factor Real scale factor (double-precision, floating-point value).

Output

result Resulting relative binary timestamp.

Description

The utc_mulftime() routine multiplies a relative binary timestamp by a floating-point
value. Either or both may be negative; the resulting relative binary timestamp has the
appropriate sign. The unsigned inaccuracy in the relative binary timestamp is also
multiplied by the absolute value of the floating-point value.

Return Values

0 Indicates that the routine executed successfully.

1210

DCE Distributed Time Service

utc_mulftime(3dts)

−1 Indicates an invalid time argument or invalid results.

Examples

The following example scales a relative time by a floating-point factor and prints the
result.

utc_t relutc, scaledutc;

struct tm scaledreltm;

char timstr[UTC_MAX_STR_LEN];

/* Assume relutc contains the time to scale.

*/

utc_mulftime(&scaledutc, /* Out: Scaled rel time */

&relutc, /* In: Rel time to scale */

17.65); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */

UTC_MAX_STR_LEN, /* In: Input buffer length */

&scaledutc); /* In: Rel time to convert */

printf("%s\n",timstr);

/* Convert it to a tm structure and print it.

*/

utc_reltime(&scaledreltm, /* Out: Scaled rel tm */

(long *)0, /* Out: Scaled rel nano-sec */

(struct tm *)0, /* Out: Scaled rel inacc tm */

(long *)0, /* Out: Scd rel inacc nanos */

&scaledutc); /* In: Rel time to convert */

printf("Approximately %d days, %d hours and %d minutes\n",

scaledreltm.tm_yday, scaledreltm.tm_hour, scaledreltm.tm_min);

1211

DCE 1.2.2 Application Development Reference

utc_mulftime(3dts)

Related Information

Functions:utc_multime(3dts).

1212

DCE Distributed Time Service

utc_multime(3dts)

utc_multime

Purpose Multiplies a relative binary timestamp by an integer factor

Synopsis
#include <dce/utc.h>

int utc_multime(
utc_t * result,
utc_t *utc1,
long factor);

Parameters
Input

utc1 Relative binary timestamp.

factor Integer scale factor.

Output

result Resulting relative binary timestamp.

Description

Theutc_multime() routine multiplies a relative binary timestamp by an integer. Either
or both may be negative; the resulting binary timestamp has the appropriate sign. The
unsigned inaccuracy in the binary timestamp is also multiplied by the absolute value
of the integer.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

1213

DCE 1.2.2 Application Development Reference

utc_multime(3dts)

Examples

The following example scales a relative time by an integral value and prints the result.

utc_t relutc, scaledutc;

char timstr[UTC_MAX_STR_LEN];

/* Assume relutc contains the time to scale.

* Scale it by a factor of 17 ...

*/

utc_multime(&scaledutc, /* Out: Scaled rel time */

&relutc, /* In: Rel time to scale */

17L); /* In: Scale factor */

utc_ascreltime(timstr, /* Out: ASCII rel time */

UTC_MAX_STR_LEN, /* In: Input buffer length */

&scakedutc); /* In: Rel time to convert */

printf("Scaled result is %s, timstr);

Related Information

Functions:utc_mulftime(3dts).

1214

DCE Distributed Time Service

utc_pointtime(3dts)

utc_pointtime

Purpose Converts a binary timestamp to three binary timestamps that represent the earliest,
most likely, and latest time

Synopsis
#include <dce/utc.h>

int utc_pointtime(
utc_t *utclp,
utc_t *utcmp,
utc_t *utchp,
utc_t *utc);

Parameters
Input

utc Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output

utclp Lowest (earliest) possible absolute time or shortest possible relative time
that the input timestamp can represent.

utcmp Midpoint of the input timestamp.

utchp Highest (latest) possible absolute time or longest possible relative time
that the input timestamp can represent.

Description

The utc_pointtime() routine converts a binary timestamp to three binary timestamps
that represent the earliest, latest, and most likely (midpoint) times. If the input is a
relative binary time, the outputs represent relative binary times.

1215

DCE 1.2.2 Application Development Reference

utc_pointtime(3dts)

Notes

All outputs have zero inaccuracy. An error is returned if the input binary timestamp
has an unspecified inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

See the sample program in theutc_addtime(3dts) reference page.

Related Information

Functions:utc_boundtime(3dts), utc_spantime(3dts).

1216

DCE Distributed Time Service

utc_reltime(3dts)

utc_reltime

Purpose Converts a relative binary timestamp to atm structure

Synopsis
#include <dce/utc.h>

int utc_reltime(
struct tm * timetm,
long *tns,
struct tm * inacctm,
long *ins,
utc_t *utc);

Parameters
Input

utc Relative binary timestamp.

Output

timetm Relative time component of the relative binary timestamp. The field
tm_mday returns a value of−1 and the fieldstm_year and tm_mon
return values of 0 (zero). The fieldtm_yday contains the number of
days of relative time.

tns Nanoseconds since the time component of the relative binary timestamp.

inacctm Seconds of the inaccuracy component of the relative binary timestamp.
If the inaccuracy is finite, thentm_mday returns a value of−1 and
tm_mon and tm_year return values of 0 (zero). The fieldtm_yday
contains the inaccuracy in days. If the inaccuracy is unspecified, alltm
structure fields return values of−1.

ins Nanoseconds of the inaccuracy component of the relative binary
timestamp.

1217

DCE 1.2.2 Application Development Reference

utc_reltime(3dts)

Description

The utc_reltime() routine converts a relative binary timestamp to atm structure.
Additional returns include nanoseconds since time and nanoseconds of inaccuracy.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_mulftime(3dts) reference page.

Related Information

Functions:utc_mkreltime(3dts).

1218

DCE Distributed Time Service

utc_spantime(3dts)

utc_spantime

Purpose Given two (possibly unordered) binary timestamps, returns a single UTC time interval
whose inaccuracy spans the two input binary timestamps

Synopsis
#include <dce/utc.h>

int utc_spantime(
utc_t * result,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

utc2 Binary timestamp. Use NULL if you want this routine to use the current
time for this parameter.

Output

result Spanning timestamp.

Description

Given two binary timestamps, theutc_spantime() routine returns a single UTC time
interval whose inaccuracy spans the two input timestamps (that is, the interval resulting
from the earliest possible time of either timestamp to the latest possible time of either
timestamp).

1219

DCE 1.2.2 Application Development Reference

utc_spantime(3dts)

Notes

The tdf parameter in the output UTC value is copied from theutc2 input. If either
input binary timestamp has an unspecified inaccuracy, an error is returned.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument.

Examples

The following example computes the earliest and latest times for an array of 10
timestamps.

utc_t time_array[10], testtime, earliest, latest;

int i;

/* Set the running timestamp to the first entry...

*/

testtime = time_array[0];

for (i=1; i<10; i++) {

/* Compute the minimum and the maximum against the next

* element...

*/

utc_spantime(&testtime, /* Out: Resultant interval */

&testtime, /* In: Largest previous interval */

&time_array[i]); /* In: Element under test */

}

/* Compute the earliest and latest possible times

*/

utc_pointtime(&earliest, /* Out: Earliest poss time in array */

(utc_t *)0, /* Out: Midpoint */

1220

DCE Distributed Time Service

utc_spantime(3dts)

&latest, /* Out: Latest poss time in array */

&testtime); /* In: Spanning interval */

Related Information

Functions:utc_boundtime(3dts), utc_gettime(3dts), utc_pointtime(3dts).

1221

DCE 1.2.2 Application Development Reference

utc_subtime(3dts)

utc_subtime

Purpose Computes the difference between two binary timestamps

Synopsis
#include <dce/utc.h>

int utc_subtime(
utc_t * result,
utc_t *utc1,
utc_t *utc2);

Parameters
Input

utc1 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

utc2 Binary timestamp or relative binary timestamp. Use NULL if you want
this routine to use the current time for this parameter.

Output

result Resulting binary timestamp or relative binary timestamp, depending
upon the operation performed:

• absolute time− absolute time= relative time

• relative time− relative time= relative time

• absolute time− relative time= absolute time

• relative time− absolute timeis undefined. (See the note later in this
reference page.)

1222

DCE Distributed Time Service

utc_subtime(3dts)

Description

The utc_subtime() routine subtracts one binary timestamp from another. The two
binary timestamps express either an absolute time and a relative time, two relative
times, or two absolute times. The resulting timestamp isutc1 minus utc2. The
inaccuracies of the two input timestamps are combined and included in the output
timestamp. The TDF in the first timestamp is copied to the output.

Notes

Although no error is returned, the combinationrelative time−absolute timeshouldnot
be used.

Return Values

0 Indicates that the routine executed successfully.

−1 Indicates an invalid time argument or invalid results.

Examples

See the sample program in theutc_binreltime(3dts) reference page.

Related Information

Functions:utc_addtime(3dts).

1223

Chapter 6
DCE Security Service

1225

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_intro

Purpose Application program interface to the DCE Security Service

Description

The DCE Security Service application program interface (API) allows developers to
create network services with complete access to all the authentication and authorization
capabilities of DCE Security Service and facilities.

The transaction of a network service generally consists of a client process requesting
some action from a server process. The client may itself be a server, or a user, and
the server may also be a client of other servers. Before the targeted server executes
the specified action, it must be sure of the client’s identity, and it must know whether
the client is authorized to request the service.

The security service API consists of the following sets of remote procedure calls
(RPCs) used to communicate with various security-related services and facilities:

rgy Maintains the network registry of principal identities.

era Maintains extended registry attributes.

login Validates a principal’s network identity and establish delegated
identities.

epa Extracts privilege attributes from an opaque binding handle.

acl Implements an access control list (ACL) protocol for the authorization
of a principal to network access and services.

key Provides facilities for the maintenance of account keys for daemon
principals.

id Maps file system names to universal unique IDs (UUIDs).

pwd_mgmt Provides facilities for password management.

pk Provides facilities for public key authentication.

All the calls in this API have names beginning with thesec_prefix. These are the
same calls used by various user-level tools provided as part of the DCE. For example,

1226

DCE Security Service

sec_intro(3sec)

the sec_create_db(1)tool is written with sec_rgy calls, acl_edit(1) is written with
sec_aclcalls, and thelogin(1) program, with which a user logs in to a DCE system,
is written usingsec_logincalls. Most sites will find the user-level tools adequate for
their needs, and only must use the security service API to customize or replace the
functionality of these tools.

Though most of the calls in the security service API represent RPC transactions,
code has been provided on the client side to handle much of the overhead involved
with making remote calls. Thesestubshandle binding to the requested security server
site, the marshalling of data into whatever form is needed for transmission, and other
bookkeeping involved with these remote calls. An application programmer can use
the security service interfaces as if they were composed of simple C functions.

This reference page introduces each of the following APIs:

• Registry APIs

• Login APIs

• Extended privilege attributes APIs

• Extended registry attributes APIs

• ACL APIs

• Key management APIs

• ID mapping APIs

• Password management APIs

• Public Key APIs

The section for each API is organized as follows:

• Synopsis

• Data Types

• Constants

• Files

1227

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

Registry API Data Types

Synopsis

#include <dce/rgybase.h>

Data Types

The following data types are used insec_rgy_* calls:

sec_rgy_handle_t
A pointer to the registry server handle. The registry server is bound to
a handle with thesec_rgy_site_open()routine.

sec_rgy_bind_auth_info_type_t
A enumeration that defines whether or not the binding is
authenticated. This data type is used in conjunction with the
sec_rgy_bind_auth_info_tdata type to set up the authorization method
and parameters for a binding. Thesec_rgy_bind_auth_info_type_t
type consists of the following elements:

sec_rgy_bind_auth_none
The binding is not authenticated.

sec_rgy_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_rgy_bind_auth_info_t
A discriminated union that defines authorization and authentication
parameters for a binding. This data type is used in conjunction with the
sec_rgy_bind_auth_info_type_tdata type to set up the authorization
method and parameters for a binding. Thesec_rgy_bind_auth_info_t
data type consists of the following elements:

info_type A sec_rgy_bind_auth_info_type_t data type that
specifies whether or not the binding is authenticated.
The contents of the union depend on the value of
sec_rgy_bind_auth_info_type_t.

1228

DCE Security Service

sec_intro(3sec)

For unauthenticated bindings
(sec_rgy_bind_auth_info_type_t =
sec_rgy_bind_auth_none), no parameters are supplied.

For authenticated bindings
(sec_rgy_bind_auth_info_type_t =
sec_rgy_bind_auth_dce), the dce_info structure is
supplied.

dce_info A structure that consists of the following elements:

authn_level An unsigned 32-bit integer indicating the
protection level for RPC calls made using
the server binding handle. The protection
level determines the degree to which
authenticated communications between
the client and the server are protected by
the authentication service specified by
authn_svc.

If the RPC runtime or the RPC protocol
in the bound protocol sequence does
not support a specified level, the level is
automatically upgraded to the next higher
supported level. The possible protection
levels are as follows:

Protection Level Description

rpc_c_protect_level_default Uses the default protection level for the
specified authentication service. The default
protection level for DCE shared-secret key
authentication is
rpc_c_protect_level_pkt_value.

rpc_c_protect_level_none Performs no authentication: tickets are not
exchanged, session keys are not established,
client PACs or names are not certified, and
transmissions are in the clear. Note that
although uncertified PACs should not be
trusted, they may be useful for debugging,
tracing, and measurement purposes.

1229

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

rpc_c_protect_level_connect Authenticates only when the client
establishes a relationship with the server.

rpc_c_protect_level_call Authenticates only at the beginning of each
remote procedure call when the server
receives the request. This level does not
apply to remote procedure calls made over a
connection-based protocol sequence (that is,
ncacn_ip_tcp). If this level is specified and
the binding handle uses a connection-based
protocol sequence, the routine uses the
rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt Ensures that all data received is from the
expected client.

Protection Level Description

rpc_c_protect_level_pkt_integ Ensures and verifies that none of the data
transferred between client and server has
been modified. This is the highest protection
level that is guaranteed to be present in the
RPC runtime.

rpc_c_protect_level_pkt_privacy Authenticates as specified by all of the
previous levels and also encrypts each RPC
argument value. This is the highest
protection level, but is not guaranteed to be
present in the RPC runtime.

authn_svc Specifies the authentication service to use.
The exact level of protection provided by
the authentication service is specified by
protect_level. The supported authentication
services are as follows:

1230

DCE Security Service

sec_intro(3sec)

Authentication Service Description

rpc_c_authn_none No authentication: no tickets are exchanged,
no session keys established, client PACs or
names are not transmitted, and transmissions
are in the clear. Specifyrpc_c_authn_none
to turn authentication off for remote
procedure calls made using this binding.

rpc_c_authn_dce_secret DCE shared-secret key authentication.

rpc_c_authn_default Default authentication service. The current
default authentication service is DCE
shared-secret key; therefore, specifying
rpc_c_authn_default is equivalent to
specifyingrpc_c_authn_dce_secret.

rpc_c_authn_dce_public DCE public key authentication (reserved for
future use).

authz_svc Specifies the authorization service
implemented by the server for the interface.
The validity and trustworthiness of
authorization data, like any application
data, is dependent on the authentication
service and protection level specified. The
supported authorization services are as
follows:

1231

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

Authentication Service Description

rpc_c_authz_none Server performs no authorization. This is
valid only if authn_svc is set to
rpc_c_authn_none, specifying that no
authentication is being performed.

rpc_c_authz_name Server performs authorization based on the
client principal name. This value cannot be
used ifauthn_svc is rpc_c_authn_none.

rpc_c_authz_dce Server performs authorization using the
client’s DCE privilege attribute certificate
(PAC) sent to the server with each remote
procedure call made with this binding.
Generally, access is checked against DCE
access control lists (ACLs).

identity A value of type sec_login_handle_tthat
represents a complete login context.

sec_timeval_sec_t
A 32-bit integer containing the seconds portion of a UNIXtimeval_t,
to be used when expressing absolute dates.

sec_timeval_t
A structure containing the full UNIX time. The structure contains two
32-bit integers that indicate seconds (sec) and microseconds (usec) since
0:00, January 1, 1970.

sec_timeval_period_t
A 32-bit integer expressing seconds relative to some well-known time.

sec_rgy_acct_key_t
Specifies how many parts (person, group, organization) of an account
login name will be enough to specify a unique abbreviation for that
account.

sec_rgy_cursor_t
A structure providing a pointer into a registry database. This type is
used for iterative operations on the registry information. For example, a
call to sec_rgy_pgo_get_members()might return the 10 account names
following the inputsec_rgy_cursor_tposition. Upon return, the cursor
position will have been updated, so the next call to that routine will

1232

DCE Security Service

sec_intro(3sec)

return the next 10 names. The components of this structure are not used
by application programs.

sec_rgy_pname_t
A character string of lengthsec_rgy_pname_t_size.

sec_rgy_name_t
A character string of lengthsec_rgy_name_t_size.

sec_rgy_login_name_t
A structure representing an account login name. It contains three strings
of type sec_rgy_name_t:

pname The person name for the account.

gname The group name for the account.

oname The organization name for the account.

sec_rgy_member_t
A character string of lengthsec_rgy_name_t_size.

sec_rgy_foreign_id_t
The representation of a foreign ID. This structure contains two
components:

cell A string of type uuid_t representing the UUID of the
foreign cell.

principal A string of type uuid_t representing the UUID of the
principal.

sec_rgy_sid_t
A structure identifying an account. It contains three fields:

person The UUID of the person part of the account.

group The UUID of the group part of the account.

org The UUID of the organization part of the account.

sec_rgy_unix_sid_t
A structure identifying an account with UNIX ID numbers. It contains
three fields:

person The UNIX ID of the person part of the account.

group The UNIX ID of the group part of the account.

1233

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

org The UNIX ID of the organization part of the account.

sec_rgy_domain_t
This 32-bit integer specifies which naming domain a character string
refers to: person, group, or organization.

sec_rgy_pgo_flags_t
A 32-bit bitset containing flags pertaining to registry entries. This type
contains the following three flags:

sec_rgy_pgo_is_an_alias
If set, indicates the registry entry is an alias of another
entry.

sec_rgy_pgo_is_required
If set, the registry item is required and cannot be deleted.
An example of a required account is the one for the
registry server itself.

sec_rgy_pgo_projlist_ok
If the accompanying item is a person entry, this flag
indicates the person may have concurrent group sets. If
the item is a group entry, the flag means this group can
appear in a concurrent group set. The flag is undefined for
organization items.

sec_rgy_pgo_item_t
The structure identifying a registry item. It contains five components:

id The UUID of the registry item, inuuid_t form.

unix_num A 32-bit integer containing the UNIX ID number of the
registry item.

quota A 32-bit integer representing the maximum number of
user-defined groups the account owner can create.

flags A sec_rgy_pgo_flags_tbitset containing information
about the entry.

fullname A sec_rgy_pname_tcharacter string containing a full
name for the registry entry. For a person entry, this field
might contain the real name of the account owner. For a
group, it might contain a description of the group. This is

1234

DCE Security Service

sec_intro(3sec)

just a data field, and registry queries cannot search on the
fullname entry.

sec_rgy_acct_admin_flags_t
A 32-bit bitset containing administration flags used as part of the
administrator’s information for any registry account. The set contains
three flags:

sec_rgy_acct_admin_valid
Specifies that the account is valid for login.

sec_rgy_acct_admin_server
If set, the account’s name can be used as a server name
in a ticket-granting ticket.

sec_rgy_acct_admin_client
If set, the account’s name can be used as a client name in
a ticket-granting ticket.

Note that you can prevent the principal from being authenticated,
by turning off both the sec_rgy_acct_admin_server and the
sec_rgy_acct_admin_client flags.

sec_rgy_acct_auth_flags_t
A 32-bit bitset containing account authorization flags used to implement
authentication policy as defined by the Kerberos Version 5 protocol. The
set contains the following flags:

sec_rgy_acct_auth_user_to_user
Forces the use of user-to-user server authentication on a
server principal.

sec_rgy_acct_auth_post_dated
Allows issuance of post-dated certificates.

sec_rgy_acct_auth_forwardable
Allows issuance of forwardable certificates.

sec_rgy_acct_auth_tgt
Allows issuance of certificates based on ticket-granting
ticket (TGT) authentication. If this flag is not set, a
client requesting a service may have to supply a password
directly to the server.

1235

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_rgy_acct_auth_renewable
Allows issuance of renewable certificates.

sec_rgy_acct_auth_proxiable
Allows issuance of proxiable certificates.

sec_rgy_acct_auth_dup_session_key
Allows issuance of duplicate session keys.

sec_rgy_acct_admin_t
The portion of a registry account item containing components relevant to
administrators. This structure consists of the fields listed below. Note that
only expiration_date, good_since_date, flags, and authentication_flags
can be modified by an administrator; the remaining fields are set by the
security server.

creator This field, in foreign_id_t format , identifies the
administrator who created the registry account.

creation_date
Specifies the creation date of the account, in
sec_timeval_sec_tformat.

last_changer
Identifies the last person to change any of the account
information, inforeign_id_t format.

change_date
Specifies the date of the last modification of the account
information, insec_timeval_sec_tformat.

expiration_date
The date after which the account will no longer be valid.
In sec_timeval_sec_tformat.

good_since_date
The Kerberos Version 5 TGT revocation date. TGTs issued
before this date will not be honored. Insec_timeval_sec_t
format.

flags Administrative flags in sec_rgy_acct_admin_flags_t
format.

1236

DCE Security Service

sec_intro(3sec)

authentication_flags
Authentication flags in sec_rgy_acct_auth_flags_t
format.

sec_rgy_acct_user_flags_t
A 32-bit bitset containing flags controlling user-modifiable
information. There is only one flag currently implemented. If
sec_rgy_acct_user_passwd_validis set, it indicates the user password
is valid. If it is not set, this flag prompts the user to change the
password on the next login attempt.

sec_rgy_acct_user_t
A structure containing registry account information. The structure
consists of the fields listed below. Note that only thegecos, homedir,
shell, and flags fields can be modified by the account owner or other
authorized user; the remaining fields are set by the security server.

gecos This is a character string (insec_rgy_pname_tformat)
containing information about the account user. It generally
consists of everything after the full name in the UNIX
gecosformat.

homedir The login directory for the account user, in
sec_rgy_pname_tformat.

shell The default shell for the account user, in
sec_rgy_pname_tformat.

passwd_version_number
An unsigned 32-bit integer, indicating the password
version number. This value is used as output only.

passwd The UNIX encrypted account password, in
sec_rgy_unix_passwd_buf_t format. This value is
used as output only.

passwd_dtm
The date the password was established, in
sec_timeval_sec_tformat.

flags Account user flags, insec_rgy_acct_user_flags_tformat.

sec_rgy_plcy_pwd_flags_t
A 32-bit bitset containing two flags about password policy:

1237

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_rgy_plcy_pwd_no_spaces
If set, will not allow spaces in a password.

sec_rgy_plcy_pwd_non_alpha
If set, requires at least one nonalphanumeric character in
the password.

sec_rgy_plcy_t
A structure defining aspects of registry account policy. It contains five
components:

passwd_min_len
A 32-bit integer describing the minimum number of
characters in the account password.

passwd_lifetime
The number of seconds after a password’s creation until
it expires, insec_timeval_period_tformat.

passwd_exp_date
The expiration date of the account password, in
sec_timeval_sec_tformat.

acct_lifespan
The number of seconds after the creation of an account
before it expires, insec_timeval_period_tformat.

passwd_flags
Account password policy flags, in
sec_rgy_plcy_pwd_flags_tformat.

sec_rgy_plcy_auth_t
This type describes authentication policy. It is a structure
containing two time periods, insec_timeval_period_t format. One,
max_ticket_lifetime, specifies the maximum length of the period
during which a ticket-granting ticket (TGT) will be valid. The other,
max_renewable_lifetime, specifies the maximum length of time for
which such a ticket may be renewed. This authentication policy applies
both to the registry as a whole as well as individual accounts. The
effective policy for a given account is defined to be the more restrictive
of the site and principal authentication policy.

sec_rgy_properties_t
A structure describing some registry properties. It contains the following:

1238

DCE Security Service

sec_intro(3sec)

read_version
A 32-bit integer describing the earliest version of thesecd
software that can read this registry.

write_version
A 32-bit integer describing the version of thesecd
software that wrote this registry.

minimum_ticket_lifetime
The minimum lifetime of an authentication certificate, in
sec_timeval_period_tformat.

default_certificate_lifetime
The normal lifetime of an an authentication certificate
(ticket-granting ticket in Kerberos parlance), in
sec_timeval_period_t format. Processes may request
authentication certificates with longer lifetimes up to,
but not in excess of, the maximum allowable lifetime as
determined by the effective policy for the account.

low_unix_id_person
The lowest UNIX number permissible for a person item
in the registry.

low_unix_id_group
The lowest UNIX number permissible for a group item in
the registry.

low_unix_id_org
The lowest UNIX number permissible for an organization
item in the registry.

max_unix_id
The largest UNIX number permissible for any registry
entry.

flags Property flags, insec_rgy_properties_flags_tformat.

realm The name of the cell, insec_rgy_name_tform, for which
this registry is the authentication service.

realm_uuid The UUID of the same cell.

sec_rgy_properties_flags_t
A 32-bit bitset, containing flags concerning registry properties:

1239

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_rgy_prop_readonly
If set (TRUE), indicates that this registry is a query site.

sec_rgy_prop_auth_cert_unbound
If set (TRUE), the registry server will accept requests from
any site.

sec_rgy_prop_shadow_passwd
If the shadow password flag is set (TRUE), the registry
server will not include the account password when
responding to a request for the user data from a specified
account. This helps minimize the risk of an account
password being intercepted while traveling over the
network.

sec_rgy_prop_embedded_unix_id
Indicates that all UUIDs in this registry contain a UNIX
number embedded. This implies that the UNIX numbers
of objects in the registry cannot be changed, since UUIDs
are immutable.

sec_rgy_override_t
A 32-bit integer used as a flag for registry override mode. Possible values
are the constantssec_rgy_no_overrideand sec_rgy_override. When
this mode is enabled, override data supplied by the node administrator
will replace some of the data gotten from the registry for a given person/
account under certain conditions. These conditions are as follows:

1. The registry permits the requested overrides to be set for this
machine.

2. The override data is intended for person/account at hand.

When the mode is override off, data from the registry is returned to the
end user or the application remains untouched.

sec_rgy_mode_resolve_t
A 32-bit integer used as a flag for resolve mode. Possible values are the
constantssec_rgy_no_resolve_pnameand sec_rgy_resolve_pname.
When the mode is enabled, pathnames containing leading// (slashes)
will be translated into a form understandable by the local machine’s
NFS.

1240

DCE Security Service

sec_intro(3sec)

sec_rgy_unix_passwd_buf_t
A character array of UNIX password strings.

Constants

The following constants are used insec_rgy_calls:

sec_rgy_default_handle
The value of an unbound registry server handle.

sec_rgy_acct_key_t
The following 32-bit integer constants are used with the
sec_rgy_acct_key_tdata type:

sec_rgy_acct_key_none
Invalid key.

sec_rgy_acct_key_person
The person name alone is enough.

sec_rgy_acct_key_group
The person and group names are both necessary for the
account abbreviation.

sec_rgy_acct_key_org
The person, group, and organization names are all
necessary.

sec_rgy_acct_key_last
Key values must be less than this constant.

sec_rgy_pname_t_size
The maximum number of characters in asec_rgy_pname_t.

sec_rgy_name_t_size
The maximum number of characters in asec_rgy_name_t.

sec_rgy_domain_t
The following 32-bit integer constants are the possible values of the
sec_rgy_domain_tdata type:

sec_rgy_domain_person
The name in question refers to a person.

1241

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_rgy_domain_group
The name in question refers to a group.

sec_rgy_domain_org
The name in question refers to an organization.

sec_rgy_pgo_flags_t
A 32-bit constant equal to a variable of typesec_rgy_pgo_flags_twith
no flags set.

sec_rgy_quota_unlimited
A 32-bit integer. Set thequotafield of thesec_rgy_pgo_item_ttype to
this constant to override the registry quota limitation.

sec_rgy_acct_admin_flags_t
A 32-bit integer. This is the value of thesec_rgy_acct_admin_flags_t
bitset when none of its flags are set.

sec_rgy_acct_auth_flags_none
A 32-bit integer. This is the value of thesec_rgy_acct_auth_flags_t
bitset when none of its flags are set.

sec_rgy_acct_user_flags_t
A 16-bit integer. This is the value of thesec_rgy_acct_user_flags_t
bitset when none of its flags are set.

sec_rgy_plcy_pwd_flags_t
A 16-bit integer. This is the value of thesec_rgy_policy_pwd_flags_t
bitset when none of its flags are set.

sec_rgy_properties_flags_t
A 16-bit integer. This is the value of thesec_rgy_properties_flags_t
bitset when none of its flags are set.

sec_rgy_override
A 32-bit integer, which turns registry override mode on. When this mode
is enabled, override data supplied by the node administrator will replace
some of the data gotten from the registry for a given person/account
under certain conditions.

sec_rgy_no_override
A 32-bit integer, which turns off registry override mode.

1242

DCE Security Service

sec_intro(3sec)

sec_rgy_resolve_pname
A 32-bit integer, which turns on registry resolve mode. When the mode
is enabled, pathnames containing leading// (slashes) will be translated
into a form understandable by the local machine’s NFS.

sec_rgy_no_resolve_pname
A 32-bit integer, which turns off registry resolve mode.

Files

/usr/include/dce/rgybase.idl
The idl file from which rgybase.hwas derived.

Extended Registry Attribute Data Types

Synopsis

#include <dce/sec_attr_base.h>

Data Types

The following data types are used insec_rgy_attr calls:

sec_attr_twr_ref_t
A pointer to a tower. This data type is used with thesec_attr_twr_set_t
data type to allow a client to pass an unallocated array of towers, which
the server must allocate. Both data types are used in conjunction with
the sec_attr_bind_type_tdata type.

sec_attr_twr_set_t
A structure that defines an array of towers. This data type is used
with the sec_attr_twr_ref_t data type to allow a client to pass an
unallocated array of towers, which the server must allocate. Both data
types are used in conjunction with thesec_attr_bind_type_tdata type.
The sec_attr_twr_set_tstructure consists of the following elements:

1243

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

count
An unsigned 32-bit integer specifying the number of
towers in the array.

towers[]
An array of pointers (of typesec_attr_twr_ref_t) to
towers.

sec_attr_bind_type_t
A 32-bit integer that specifies the type of binding used by an attribute
interface. The data type (which is used in conjunction with the
sec_attr_binding_t data type) uses the following constants:

sec_attr_bind_type_string
An RPC string binding.

sec_attr_bind_type_twrs
A DCE protocol tower representation of a bindings.

sec_attr_bind_type_svrname
A name inrpc_c_ns_syntaxformat that identifies a CDS
entry containing the server’s binding information. This
constant has the following structure:

name_syntax
Must be rpc_c_ns_syntax_dceto specify
that DCE naming rules are used to specify
name.

name
A pointer to a name of a CDS entry in
rpc_c_ns_syntax_dcesyntax.

sec_attr_binding_t
A discriminated union that supplies information to generate a binding
handle for a attribute trigger. This data type, which is used in conjunction
with the sec_attr_bind_info_t data type, is composed of the following
elements:

bind_type A value of type sec_attr_bind_type_t that defines the
type of binding used by an attribute interface. The contents
of tagged union (see table) depend on the value of
sec_attr_bind_type_t.

1244

DCE Security Service

sec_intro(3sec)

tagged_union
A tagged union specifying the binding handle. The
contents of the tagged union depend on the value of
bind_type as follows:

If bind_type is... Then tagged_union is...

sec_attr_bind_type_string A pointer to an unsigned 32-bit
character string specifying an attribute’s
RPC string binding.

sec_attr_bind type_twrs An attribute’s tower binding
representation of type
sec_attr_twr_set_t.

sec_attr_bind_svrname A pointer to a name of type
sec_attr_bind_type_tthat specifies a
Cell Directory Service entry containing
a attribute trigger’s binding information.

sec_attr_binding_p_t
A pointer to asec_attr_binding_t union.

sec_attr_bind_auth_info_type_t
An enumeration that defines whether or not the binding is
authenticated. This data type is used in conjunction with
the sec_attr_bind_auth_info_t data type to set up the
authorization method and parameters for an RPC binding. The
sec_attr_bind_auth_info_type_t type consists of the following
elements:

sec_attr_bind_auth_none
The binding is not authenticated.

sec_attr_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_attr_bind_auth_info_t
A discriminated union that defines authorization and authentication
parameters for a binding. This data type is used in conjunction
with the sec_attr_bind_auth_info_type_t data type to set up the
authorization method and parameters for an RPC binding. The

1245

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_attr_bind_auth_info_t data type consists of the following
elements:

info_type A sec_attr_bind_auth_info_type_t data type that
specifies whether or not the binding is authenticated. The
contents oftagged union(below) depend on the value of
sec_attr_bind_auth_info_type_t.

tagged_union
A tagged union specifying the method of authorization
and the authorization parameters. For unauthenticated
bindings (sec_attr_bind_auth_info_type_t =
sec_attr_bind_auth_none), no parameters
are supplied. For authenticated bindings
(sec_attr_bind_auth_info_type_t =
sec_attr_bind_auth_dce), the following union is
supplied:

svr_princ_name
A pointer to a character string that specifies
the principal name of the server referenced
by the binding handle.

protect_level
An unsigned 32-bit integer indicating the
protection level for RPC calls made using
the server binding handle. The protection
level determines the degree to which
authenticated communications between
the client and the server are protected by
the authentication service specified by
authn_svc.

If the RPC runtime or the RPC protocol
in the bound protocol sequence does
not support a specified level, the level is
automatically upgraded to the next higher
supported level. The possible protection
levels are as follows:

1246

DCE Security Service

sec_intro(3sec)

Protection Level Description

rpc_c_protect_level_default Uses the default protection level for the
specified authentication service. The default
protection level for DCE shared-secret key
authentication is
rpc_c_protect_level_pkt_value

rpc_c_protect_level_none Performs no authentication: tickets are not
exchanged, session keys are not established,
client PACs or names are not certified, and
transmissions are in the clear. Note that
although uncertified PACs should not be
trusted, they may be useful for debugging,
tracing, and measurement purposes.

rpc_c_protect_level_connect Authenticates only when the client
establishes a relationship with the server.

rpc_c_protect_level_call Authenticates only at the beginning of each
remote procedure call when the server
receives the request. This level does not
apply to remote procedure calls made over a
connection-based protocol sequence (that is,
ncacn_ip_tcp). If this level is specified and
the binding handle uses a connection-based
protocol sequence, the routine uses the
rpc_c_protect_level_pkt level instead.

rpc_c_protect_level_pkt Ensures that all data received is from the
expected client.

1247

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

Protection Level Description

rpc_c_protect_level_pkt_integ Ensures and verifies that none of the data
transferred between client and server has
been modified. This is the highest protection
level that is guaranteed to be present in the
RPC runtime.

rpc_c_protect_level_pkt_privacy Authenticates as specified by all of the
previous levels and also encrypts each RPC
argument value. This is the highest
protection level, but is not guaranteed to be
present in the RPC runtime.

authn_svc Specifies the authentication service to use.
The exact level of protection provided by
the authentication service is specified by
protect_level. The supported authentication
services are as follows:

Authentication Service Description

rpc_c_authn_none No authentication: no tickets are exchanged,
no session keys established, client PACs or
names are not transmitted, and transmissions
are in the clear. Specifyrpc_c_authn_none
to turn authentication off for remote
procedure calls made using this binding.

rpc_c_authn_dce_secret DCE shared-secret key authentication.

rpc_c_authn_default Default authentication service. The current
default authentication service is DCE
shared-secret key; therefore, specifying
rpc_c_authn_default is equivalent to
specifyingrpc_c_authn_dce_secret.

rpc_c_authn_dce_public DCE public key authentication (reserved for
future use).

authz_svc
Specifies the authorization service
implemented by the server for the interface.

1248

DCE Security Service

sec_intro(3sec)

The validity and trustworthiness of
authorization data, like any application
data, is dependent on the authentication
service and protection level specified. The
supported authorization services are as
follows:

Authentication Service Description

rpc_c_authz_none Server performs no authorization. This is
valid only if authn_svc is set to
rpc_c_authn_none, specifying that no
authentication is being performed.

rpc_c_authz_name Server performs authorization based on the
client principal name. This value cannot be
used ifauthn_svc is rpc_c_authn_none.

rpc_c_authz_dce Server performs authorization using the
client’s DCE privilege attribute certificate
(PAC) sent to the server with each remote
procedure call made with this binding.
Generally, access is checked against DCE
ACLs.

sec_attr_bind_info_t
A structure that specifies attribute trigger binding information. This data
type, which is used in conjunction with thesec_attr_schema_entry_t
data type, contains of the following elements:

auth_info The binding authorization information of type
sec_attr_bind_auth_info_t.

num_bindings
An unsigned 32-bit integer specifying the number of
binding handles inbindings.

bindings An array of sec_attr_binding_t data types that specify
binding handles.

sec_attr_bind_info_p_t
A pointer to asec_attr_bind_info_t union.

1249

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_attr_encoding_t
An enumerator that contains attribute encoding tags used to define the
legal encodings for attribute values. The data type, which is used in
conjunction with thesec_attr_value_tand sec_attr_schema_entry_t
data types, consists of the following elements:

sec_attr_enc_any
The attribute value can be of any legal encoding type. This
encoding tag is legal only in a schema entry. An attribute
entry must contain a concrete encoding type.

sec_attr_enc_void
The attribute has no value. It is simple a marker that is
either present or absent.

sec_attr_enc_printstring
The attribute value is a printable IDL string in DCE
portable character set.

sec_attr_enc_printstring_array
The attribute value is an array of printstrings.

sec_attr_enc_integer
The attribute value is a signed 32-bit integer.

sec_attr_enc_bytes
The attribute value is a string of bytes. The string is
assumed to be a pickle or some other self describing type.
(See also thesec_attr_enc_bytes_tdata type.)

sec_attr_enc_confidential_bytes
The attribute value is a string of bytes that have been
encrypted in the key of the principal object to which the
attribute is attached. The string is assumed to be a pickle
or some other self describing type. This encoding type
is useful only when attached to a principal object, where
it is decrypted and encrypted each time the principal’s
password changes. (See also thesec_attr_enc_bytes_t
data type.)

sec_attr_enc_i18n_data
The attribute value is an internationalized string of bytes
with a tag identifying the OSF registered codeset used to

1250

DCE Security Service

sec_intro(3sec)

encode the data. (See also thesec_attr_i18n_data_tdata
type.)

sec_attr_enc_uuid
The attribute is a value of typeuuid_t, a DCE UUID.

sec_attr_enc_attr_set
The attribute value is an attribute set, a vector of attribute
UUIDs used to associate multiple related attribute
instances which are members of the set. (See also the
sec_attr_enc_attr_set_tdata type.)

sec_attr_enc_binding
The attribute value is asec_attr_bind_info_t data type
that specifies DCE server binding information.

sec_attr_enc_trig_binding
This encoding type is returned byrs_attr_lookup call. It
informs the client agent of the trigger binding information
of an attribute with a query trigger.

Unless sec_attr_enc_void or sec_attr_enc_any is specified, the
attribute values must conform to the attribute’s encoding type.

sec_attr_enc_bytes_t
A structure that defines the length of attribute encoding
values for attributes encoded assec_attr_enc_bytes and
sec_attr_enc_confidential_bytes. The structure, which is used
in conjunction with thesec_attr_value_tdata type, consists of

length An unsigned 32-bit integer that defines the data length.

data[] An array of bytes specifying the length of attribute
encoding data.

sec_attr_i18n_data_t
A structure that defines the codeset used for attributes encoded as
sec_attr_enc_il8n_dataand the length of the attribute encoding values.
The structure, which is used in conjunction with thesec_attr_value_t
data type, consists of

codeset An unsigned 32-bit identifier of a codeset registered with
the Open Software Foundation.

length An unsigned 32-bit integer that defines the data length.

1251

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

data[] An array of bytes specifying the length of attribute
encoding data.

sec_attr_enc_attr_set_t
A structure that that supplies the UUIDs of each member of an
attribute set. The structure, which is used in conjunction with the
sec_attr_value_tdata type, consists of

num_members
An unsigned 32-bit integer specifying the total number of
attribute’s in the set.

members[]
An array containing values of typeuuid_t, the UUID of
each member in the set.

sec_attr_enc_printstring_t
A structure that contains a printstring.

sec_attr_enc_printstring_p_t
A pointer to asec_attr_enc_printstring_t structure.

sec_attr_enc_str_array_t
A structure that defines a printstring array. It consists of

num_strings
An unsigned 32-bit integer specifying the number of
strings in the array.

strings[] An array of pointers (of type
sec_attr_enc_print_string_p_t) to printstrings.

sec_attr_value_t
A discriminated union that defines attribute values. The union, which
is used in conjunction with thesec_attr_t data type, consists of the
following elements:

attr_encoding
A sec_attr_encoding_tdata type that defines attribute
encoding. The contents oftagged union depend on the
value ofsec_attr_encoding_t.

tagged_union
A tagged union whose contents depend onattr_encoding
as follows:

1252

DCE Security Service

sec_intro(3sec)

If attr_encoding is... Then tagged_union is...

sec_attr_enc_void NULL

sec_attr_enc_printstring A pointer toprintstring

sec_attr_enc_printstring_array A pointer to an array ofprintstring s

sec_attr_enc_integer signed_int, a 32-bit signed integer

sec_attr_enc_bytes bytes, a pointer to a structure of type
sec_attr_enc_bytes_t

sec_attr_enc_confidential_bytes bytes, a pointer to a structure of type
sec_attr_enc_bytes_t

sec_attr_enc_i18n_data idata, a pointer to a structure of type
sec_attr_i18n_data_t

sec_attr_end_uuid uuid, a value of typeuuid_t

sec_attr_enc_attr_set attr_set, a pointer to a structure of type
sec_attr_enc_attr_set_t

sec_attr_enc_binding binding, a pointer to a structure of type
sec_attr_binding_info_t

sec_attr_t
A structure that defines an attribute. The structure consists of

attr_id A value of typeuuid_t, the UUID of the attribute.

attr_value A value of typesec_attr_value_t.

sec_attr_acl_mgr_info_t
A structure that contains the access control information defined in a
schema entry for an attribute. The structure, which is used in conjunction
with the sec_attr_schema_entry_tdata type, consists of the following
elements:

acl_mgr_type
The value of typeuuid_t that specifies the UUID of the
ACL manager type that supports the object type to which
the attribute can be attached. This field provides a well-
defined context for evaluating the permission bits needed
to operate on the attribute. The following table lists the
ACL manager types for registry objects.

1253

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

Registry
Object Type

ACL Manager Type Valid
Permissions

principal 06ab9320-0191-11ca-a9e8-08001e039d7d rcDnfmaug

group 06ab9640-0191-11ca-a9e8-08001e039d7d rctDnfmM

organization 06ab9960-0191-11ca-a9e8-08001e039d7d rctDnfmM

directory 06ab9c80-0191-11ca-a9e8-08001e039d7d rcidDn

policy 06ab8f10-0191-11ca-a9e8-08001e039d7d rcma

replist 2ac24970-60c3-11cb-b261-08001e039d7d cidmAI

query_permset
Data of type sec_acl_permset_t that defines the
permission bits needed to access the attribute’s value.

update_permset
Data of type sec_acl_permset_t that defines the
permission bits needed to update the attribute’s value.

test_permset
Data of type sec_acl_permset_t that defines the
permission bits needed to test the attribute’s value.

delete_permset
Data of type sec_acl_permset_t that defines the
permission bits needed to delete an attribute instance.

sec_attr_acl_mgr_info_p_t
A pointer to asec_attr_acl_mgr_info_tstructure.

sec_attr_acl_mgr_info_set_t
A structure that defines an attribute’s ACL manager set. The structure
consists of the following elements:

num_acl_mgrs
An unsigned 32-bit integer that specifies the number of
ACL managers in the ACL manager set.

mgr_info[] An array of pointers of typesec_attr_mgr_info_p_t that
define the ACL manager types in the ACL manager set
and the permission sets associated with the ACL manager
type.

1254

DCE Security Service

sec_intro(3sec)

sec_attr_intercell_action_t
An enumerator that specifies the action that should be taken by the
privilege service when it reads acceptable attributes from a foreign cell.
A foreign attribute is acceptable only if there is either a schema entry
for the foreign cell or ifsec_attr_intercell_act_acceptis set totrue.

This enumerator, which is used in conjunction with the
sec_attr_schema_entry_tdata type, is composed of the following
elements:

sec_attr_intercell_act_accept
If the unique flag in thesec_attr_schema_entry_tdata
type is not set on, retain the attribute. If theunique flag
is set on, retain the attribute only if its value is unique
among all attribute instances of the same attribute type
within the cell.

sec_attr_intercell_act_reject
Discard the input attribute.

sec_attr_intercell_act_evaluate
Use the binding information in thetrig_binding field
of this sec_attr_schema_entry_tdata type to make a
sec_attr_trig_query call to a trigger server. That server
determines whether to retain the attribute value, discard
the attribute value, or map the attribute to another value(s).

sec_attr_trig_type_t
Specifies the trigger type, a flag that determines whether an attribute
trigger should be invoked for query operations. The data type, which is
used in conjunction with thesec_attr_schema_entry_tdata type, uses
the following constants:

sec_attr_trig_type_query
The attribute trigger server is invoked for query operations.

sec_attr_trig_type_query
The attribute trigger server is invoked for update
operations.

sec_attr_schema_entry_t
A structure that defines a complete attribute entry for the schema catalog.
The entry is identified by both a unique string name and a unique
attribute UUID. Although either can either can be used as a retrieval

1255

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

key, the string name should be used for interactive access to the attribute
and the UUID for programmatic access. The attribute UUID is used to
identify the semantics defined for the attribute type in the schema.

The sec_attr_schema_entry_tdata type consists of the following
elements:

attr_name A pointer to the attribute name.

attr_id A value of typeuuid_t that identifies the attribute type.

attr_encoding
An enumerator of typesec_attr_encoding_tthat specifies
the attribute’s encoding.

acl_mgr_set A structure of type sec_attr_acl_mgr_info_set_t that
specifies the ACL manager types that support the objects
on which attributes of this type can be created and the
permission bits supported by that ACL manager type.

schema_entry_flags
An unsigned integer of typesec_attr_sch_entry_flags_t
that defines bitsets for the following flags:

unique When set on, this flag indicates that each
instance of this attribute type must have a
unique value within the cell for the object
type implied by the ACL manager type. If
this flag is not set on, uniqueness checks are
not performed for attribute writes.

multi_valued
When set on, this flag indicates that this
attribute type may be multivalued; in other
words, multiple instances of the same
attribute type can be attached to a single
registry object. If this flag is not set on,
only one instance of this attribute type can
be attached to an object.

reserved When set on, this flag prevents the schema
entry from being deleted through any
interface or by any user. If this flag is not

1256

DCE Security Service

sec_intro(3sec)

set on, the entry can be deleted by any
authorized principal.

use_defaults
When set on, the system-defined default
attribute value will be returned on a client
query if an instance of this attribute does
not exist on the queried object. If this flag
is not set on, system defaults are not used.

intercell_action
An enumerator of typesec_attr_intercell_action_t that
specifies how the privilege service will handle attributes
from a foreign cell.

trig_types A flag of typesec_attr_trig_type_tthat specifies whether
whether a trigger can perform update or query operations.

trig_binding
A pointer to a structure of typesec_attr_bind_info_t that
supplies the attribute trigger binding handle.

scope A pointer to a string that defines the objects to which the
attribute can be attached.

comment A pointer to a string that contains general comments about
the attribute.

sec_attr_schema_entry_parts_t
A 32-bit bitset containing flags that specify the schema entry fields that
can be modified on a schema entry update operation. This data type
contains the following flags:

sec_attr_schema_part_name
If set, indicates that the attribute name (attr_name) can
be changed.

sec_attr_schema_part_reserved
If set, indicates that the setting of the flag that determines
whether or not the schema entry can be deleted (reserved)
can be changed.

sec_attr_schema_part_defaults
If set, indicates that the flag that determines whether or
not a query for a nonexistent attribute will not result

1257

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

in a search for a system default (apply_default) can be
changed.

sec_attr_schema_part_trig_bind
If set, indicates that the trigger’s binding information
(trig_binding) can be changed.

sec_attr_schema_part_comment
If set, indicates whether or not comments associated with
the schema entry (comment) can be changed.

sec_attr_component_name_t
A pointer to a character string used to further specify the object to which
the attribute is attached. (Note that this data type is analogous to the
sec_acl_component_name_tdata type in the ACL interface.)

sec_attr_cursor_t
A structure that provides a pointer into a registry database and is used
for multiple database operations.

This cursor must minimally represent the object indicated by
xattrschema in the schema interfaces, orcomponent_namein the
attribute interfaces. The cursor may additionally represent an entry
within that schema or an attribute instance on that component.

sec_attr_srch_cursor_t
A structure that provides a pointer into a registry database and is used for
multiple database operations. The cursor must minimally represent the
list of all objects managed by this server that possess the search attributes
specified in thesec_attr_srch_cursor_init routine. It may additionally
represent a given object within this list as well as attribute instance(s)
possessed by that object.

sec_attr_trig_cursor_t
A structure that provides an attribute trigger cursor for interactive
operations. The structure consists of the following elements:

source A value of typeuuid_t that provides a UUID to identify
the server that initialized the cursor.

object_handle
A signed 32-bit integer that identifies the object
(specified byxattrschema in the schema interface or

1258

DCE Security Service

sec_intro(3sec)

component_namein the attribute interface) upon which
the operation is being performed.

entry_handle
A signed 32-bit integer that identifies the current entry
(schema_entry in the schema interface orattribute
instancein the attribute interface) for the operation.

valid A Boolean field with the following values:

true (1) Indicates an initialized cursor.

false (0) Indicates an uninitialized cursor.

sec_attr_trig_timeval_sec_t
A 32-bit integer containing the seconds portion of a UNIXtimeval_t,
to be used when expressing absolute dates.

Files

/usr/include/dce/sec_attr_base.idl
The idl file from which sec_attr_base.hwas derived.

Constants

The following constants are used insec_attr calls:

sec_attr_bind_auth_dce
The binding uses DCE shared-secret key authentication.

sec_attr_bind_auth_none
The binding is not authenticated.

sec_attr_bind_type_string
The attribute uses an RPC string binding.

sec_attr_bind_type_svrname
The attribute uses a name inrpc_c_ns_syntaxformat that identifies a
CDS entry containing the server’s binding information. This constant
has the following structure:

1259

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

name_syntax
Must be rpc_c_ns_syntax_dceto specify that DCE
naming rules are used to specifyname.

name A pointer to a name of a CDS entry in
rpc_c_ns_syntax_dcesyntax.

sec_attr_bind_type_twr
The attribute uses a DCE protocol tower binding representation.

sec_attr_trig_type_t
The following 32-bit constants are used with thesec_attr_trig_type_t
data type:

sec_attr_trig_type_queryThe trigger server can perform
only query operations.

sec_attr_trig_type_update The trigger server can
perform only update operations.

sec_attr_intercell_action_t
The following constants are used with thesec_attr_intercell_action_t
data type:

sec_attr_intercell_act_accept
If the unique flag in thesec_attr_schema_entry_tdata
type is not set on, retain attributes from a foreign cell. If
the unique flag is set on, retain the foreign attribute only
if its value is unique among all attribute instances of the
same attribute type within the cell.

sec_attr_intercell_act_reject
Discard attributes from a foreign cell.

sec_attr_intercell_act_evaluate
A trigger server determines whether to retain foreign
attributes, discard foreign attributes, or map foreign
attribute to another value(s).

sec_attr_schema_entry_parts_t
The following constants are used with the
sec_attr_schema_entry_parts_tdata type:

1260

DCE Security Service

sec_intro(3sec)

sec_attr_schema_part_name
Indicates that the attribute name can be changed in an
schema update operation.

sec_attr_schema_part_reserved
Indicates that the setting of thereserved flag can be
changed in a schema entry update.

sec_attr_schema_part_defaults
Indicates that theapply_default flag can be changed in a
schema entry update operation.

sec_attr_schema_part_trig_bind
Indicates that trigger binding information can be changed
in a schema entry update operation.

sec_attr_schema_part_comment
Indicates that comments associated with the schema entry
can be changed in a schema entry update.

Login API Data Types

Synopsis

#include <dce/sec_login.h>

Data Types

The following data types are used insec_login_calls:

sec_login_handle_t
This is an opaque pointer to a data structure representing a complete
login context. The context includes a principal’s network credentials,
as well as other account information. The network credentials are also
referred to as the principal’s ticket-granting ticket.

1261

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_login_flags_t
A 32-bit set of flags describing restrictions on the use of a principal’s
validated network credentials. Currently, only one flag is implemented.
Possible values are:

sec_login_no_flags
No special flags are set.

sec_login_credentials_private
Restricts the validated network credentials to the current
process. If this flag is not set, it is permissible to share
credentials with descendents of current process.

sec_login_auth_src_t
An enumerated set describing how the login context was authorized.
The possible values are:

sec_login_auth_src_network
Authentication accomplished through the normal network
authority. A login context authenticated this way will have
all the network credentials it ought to have.

sec_login_auth_src_local
Authentication accomplished via local data.
Authentication occurs locally if a principal’s account is
tailored for the local machine, or if the network authority
is unavailable. Since login contexts authenticated locally
have no network credentials, they may not be used for
network operations.

sec_login_auth_src_overridden
Authentication accomplished via the override facility.

sec_login_passwd_t
The sec_login_get_pwent()call will return a pointer to a password
structure, which depends on the underlying registry structure.

In most cases, the structure will look like that supported by Berkeley
4.4BSD and OSF/1, which looks like this:

struct passwd {

char *pw_name; * user name *

char *pw_passwd; * encrypted password *

1262

DCE Security Service

sec_intro(3sec)

int pw_uid; * user uid *

int pw_gid; * user gid *

time_t pw_change; * password change time *

char *pw_class; * user access class *

char *pw_gecos; * Honeywell login info *

char *pw_dir; * home directory *

char *pw_shell; * default shell *

time_t pw_expire; * account expiration *

};

sec_passwd_rec_t
A structure containing either a plaintext password or a preencrypted
buffer of password data. Thesec_passwd_rec_tstructure consists of
three components:

version_number
The version number of the password.

pepper A character string combined with the password before an
encryption key is derived from the password.

key A structure consists of the following components:

key_type The key type can be the following:

sec_passwd_plain
Indicates that a printable
string of data is stored in
plain.

sec_passwd_des
Indicates that an array of data
is stored indes_key.

tagged_union
A structure specifying the password. The
value of the structure depends onkey_type.
If key_type is sec_passwd_plain, structure
contains plain, a character string. If
key_type is sec_passwd_des, the structure
contains des_key, a DES key of type
sec_passwd_des_key_t.

1263

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

Constants

The following constants are used insec_login_calls:

sec_login_default_handle
The value of a login context handle before setup or validation.

sec_login_flags_t
The following two constants are used with thesec_login_flags_ttype:

sec_login_no_flags
No special flags are set.

sec_login_credentials_private
Restricts the validated network credentials to the current
process. If this flag is not set, it is permissible to share
credentials with descendents of current process.

sec_login_remote_uid
Used in thesec_login_passwd_tstructure for users from remote cells.

sec_login_remote_gid
Used in thesec_login_passwd_tstructure for users from remote cells.

Files

/usr/include/dce/sec_login.idl
The idl file from which sec_login.hwas derived.

Extended Privilege Attribute API Data Types

Synopsis

#include <dce/id_epac.h>
#include <dce/nbase.h>

1264

DCE Security Service

sec_intro(3sec)

Data Types

The following data types are used in extended privilege attribute calls and in the
sec_login_credcalls that implement extended privilege attributes.

sec_cred_cursor_t
A structure that provides an input/output cursor used to iterate
through a set of delegates in thesec_cred_get_delegate()or
sec_login_cred_get_delegate()calls. This cursor is initialized by the
sec_cred_initialize_cursor()or sec_login_cred_init_cursor()call.

sec_cred_attr_cursor_t
A structure that provides an input/output cursor used to iterate through
a set of extended attributes in thesec_cred_get_extended_attributes()
call. This cursor is initialized by thesec_cred_initialize_attr_cursor()
call.

sec_id_opt_req_t
A structure that specifies application-defined optional restrictions. The
sec_id_opt_req_tdata type is composed of the following elements:

restriction_len
An unsigned 16-bit integer that defines the size of the
restriction data.

restrictions
A pointer to abyte_t that contains the restriction data.

sec_rstr_entry_type_t
An enumerator that specifies the entry types for delegate and
target restrictions. This data type is used in conjunction with the
sec_id_restriction_t data type where the specific UUID(s), if
appropriate, are supplied. It consists of the following components:

sec_rstr_e_type_user
The target is a local principal identified by UUID. This
type conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_group
The target is a local group identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_foreign_user
The target is a foreign principal identified by principal and
cell UUID.

1265

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_rstr_e_type_foreign_group
The target is a foreign group identified by group and cell
UUID.

sec_rstr_e_type_foreign_other
The target is any principal that can authenticate to the
foreign cell identified by UUID.

sec_rstr_e_type_any_other
The target is any principal that can authenticate to any
cell, but is not identified in any other type entry.

sec_rstr_e_type_no_other
No pincipal can act as a target or delegate.

sec_id_restriction_t
A discriminated union that defines delegate and target restrictions. The
union, which is used in conjunction with thesec_restriction_set_tdata
type, consists of the following elements:

entry_type A sec_rstr_entry_type_t that defines the ACL entry
types for delegate and target restrictions. The value of
tagged_uniondepends on the value ofentry_type.

tagged_union
A tagged union whose contents depend onentry_type as
follows:

If entry_type is... Then tagged_union is...

sec_rstr_e_type_any_other NULL

sec_rstr_e_type_foreign_other foreign_id that identifies the foreign
cell.

sec_rstr_e_type_user
Sec_rstr_e_type_group

id, a sec_id_tthat identifies the user or
group.

sec_rstr_e_type_foreign_user
sec_rstr_e_type_foreign_group

foreign_id, a sec_id_foreign_tthat
identifies the foreign user or group.

sec_id_restriction_set_t
A structure that that supplies delegate and target restrictions. The
structure consists of

1266

DCE Security Service

sec_intro(3sec)

num_restrictions
A 16-bit unsigned integer that defines the number of
restrictions inrestrictions.

restrictions A pointer to a sec_id_restriction_t that contains the
restrictions.

sec_id_compatibility_mode_t
A unsigned 16 bit integer that defines the compatibility between current
and pre-1.1 servers. The data type uses the following constants:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The 1.0 PAC data extracted
from the EPAC of the chain initiator.

sec_id_compat_mode_caller
Compatibility mode is on. The 1.0 PAC data extracted
from the last delegate in the delegation chain.

sec_id_delegation_type_t
An unsigned 16 bit integer that defines the delegation type. The data
type uses the following constants:

sec_id_deleg_type_none
Delegation is not allowed.

sec_id_deleg_type_traced
Traced delegation is allowed.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation is allowed.

sec_id_pa_t An structure that contains pre-1.1 PAC data extracted from an EPAC of
a current version server. This data type, which is used for compatibility
with pre-1.1 servers, consists of the following elements:

realm A value of type sec_id_t that contains the UUID that
identifies the cell in which the principal associated with
the PAC exists.

principal A value of typesec_id_t that contains the UUID of the
principal.

1267

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

group A value of typesec_id_t that contains the UUID of the
principal’s primary group.

num_groups
An unsigned 16-bit integer that specifies the number of
groups in the principal’s groupset.

groups An array of pointers tosec_id_ts that contain the UUIDs
of the each group in the principal’s groupset.

num_foreign_groupsets
An unsigned 16-bit integer that specifies the number of
foreign groups for the principal’s groupset.

foreign_groupsets
An array of pointers tosec_id_ts that contain the UUIDs
of the each group in the principal’s groupset.

sec_id_pac_t
An structure that contains a pre-1.1 PAC. This data type, which is used
as output of thesec_cred_get_v1_paccall, consists of the following
elements:

pac_type
A value of typesec_id_pac_format_tthat can be used to
describe the PAC format.

authenticated
A boolean field that indicates whether or not the PAC is
authenticated (obtained from an authenticated source).
FALSE indicates that the PAC is not authenticated.
No authentication protocol was used in the rpc that
transmitted the identity of the caller. TRUE indicates that
the PAC is authenticated.

realm A value of type sec_id_t that contains the UUID that
identifies the cell in which the principal associated with
the PAC exists.

principal A value of typesec_id_t that contains the UUID of the
principal.

group For local principals, a value of typesec_id_tthat contains
the UUID of the principal’s primary group.

1268

DCE Security Service

sec_intro(3sec)

num_groups
An unsigned 16-bit integer that specifies the number of
groups in the principal’s groupset.

groups
An array of pointers tosec_id_ts that contain the UUIDs
of the each group in the principal’s groupset.

num_foreign_groups
An unsigned 16-bit integer that specifies the number of
foreign groups in the principal’s groupset.

foreign_groups
An array of pointers tosec_id_ts that contain the UUIDs
of the each foreign group in the principal’s groupset.

sec_id_pac_format_t
An enumerator that can be used to describe the PAC format.

sec_id_t A structure that contains UUIDs for principals, groups, or organizations
and an optional printstring name. Since a UUID is an handle for the
object’s identity, thesec_id_tdata type is the basic unit for identifying
principals, groups, and organizations.

Because the printstring name is dynamically allocated, this datatype
requires a destructor function. Generally, however, thesec_id_t is
embedded in other data types (ACLs, for example), and these datatypes
have a destructor function to release the printstring storage.

The sec_id_tdata type is composed of the following elements:

uuid A value of typeuuid_t, the UUID of the principal, group,
or organization.

name A pointer to a character string containing the name of the
principal, group, or organization.

sec_id_foreign_t
A structure that contains UUIDs for principals, groups, or organizations
for objects in a foreign cell and the UUID that identifies the foreign cell.
The sec_id_foreign_tdata type is composed of the following elements:

id A value of typesec_id_tthat contains the UUIDs of the
objects from the foreign cell.

1269

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

realm A value of typesec_id_t that contains the UUID of the
foreign cell.

sec_id_foreign_groupset_t
A structure that contains UUIDs for set of groups in a foreign cell and the
UUID that identifies the foreign cell. Thesec_id_foreign_groupset_t
data type is composed of the following elements:

realm
A value of typesec_id_t that contain the UUID of the
foreign cell.

num_groups
An unsigned 16-bit integer specifying the number of group
UUIDs in groups.

groups
A printer to a sec_id_t that contains the UUIDs of the
groupset from the foreign cell.

Constants

The following constants are used in the extended privilege attribute calls and in the
the sec_logincalls that implement extended privilege attributes:

sec_id_compat_mode_none
Compatibility mode is off.

sec_id_compat_mode_initiator
Compatibility mode is on. The 1.0 PAC data extracted from the EPAC
of the chain initiator.

sec_id_compat_mode_caller
Compatibility mode is on. The 1.0 PAC data extracted from the last
delegate in the delegation chain.

sec_id_deleg_type_none
Delegation is not allowed.

sec_id_deleg_type_traced
Traced delegation is allowed.

sec_id_deleg_type_impersonation
Simple (impersonation) delegation is allowed.

1270

DCE Security Service

sec_intro(3sec)

sec_rstr_e_type_user
The delegation target is a local principal identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_group
The delegation target is a local group identified by UUID. This type
conforms with the POSIX 1003.6 standard.

sec_rstr_e_type_foreign_user
The delegation target is a foreign principal identified by principal and
cell UUID.

sec_rstr_e_type_foreign_group
The delegation target is a foreign group identified by group and cell
UUID.

sec_rstr_e_type_foreign_other
The delegation target is any principal that can authenticate to the foreign
cell identified by UUID.

sec_rstr_e_type_any_other
The delegation target is any principal that can authenticate to any cell,
but is not identified in any other type entry.

sec_rstr_e_type_no_other
No pincipal can act as a target or delegate.

Files

/usr/include/dce/sec_cred.idl
The idl file from which sec_cred.hwas derived.

/usr/include/dce/sec_epac.idl
The idl file from which sec_epac.hwas derived.

/usr/include/dce/sec_nbase.idl
The idl file from which sec_nbase.hwas derived.

1271

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

ACL API Data Types

Synopsis

#include <dce/aclbase.h>

Data Types

The following data types are used insec_acl_calls:

sec_acl_handle_t
A pointer to an opaque handle bound to an ACL that is the
subject of a test or examination. The handle is bound to the
ACL with sec_acl_bind(). An unbound handle has the value
sec_acl_default_handle.

sec_acl_posix_semantics_t
A flag that indicates which, if any, POSIX ACL semantics an ACL
manager supports. The following constants are defined for use with the
sec_acl_posix_semantics_tdata type:

sec_acl_posix_no_semantics
The manager type does not support POSIX semantics.

sec_acl_posix_mask_obj
The manager type supports themask_obj entry type and
POSIX 1003.6 Draft 12 ACL mask entry semantics.

sec_acl_t This data type is the fundamental type for the ACL manager interfaces.
The sec_acl_ttype contains a complete access control list, made up of
a list of entry fields (typesec_acl_entry_t). The default cell identifies
the authentication authority for simple ACL entries (foreign entries
identify their own foreign cells). Thesec_acl_manager_typeidentifies
the manager to interpret this ACL.

The sec_acl_ttype is a structure containing the following fields:

default_realm
A structure of typesec_acl_id_t, this identifies the UUID
and (optionally) the name of the default cell.

1272

DCE Security Service

sec_intro(3sec)

sec_acl_manager_type
Contains the UUID of the ACL manager type.

num_entries
An unsigned 32-bit integer containing the number of ACL
entries in this ACL.

sec_acl_entries
An array containingnum_entries pointers to different
ACL entries, each of typesec_acl_entry_t.

sec_acl_p_t
This data type, simply a pointer to asec_acl_t, is for use with the
sec_acl_list_tdata type.

sec_acl_list_t
This data type is a structure containing an unsigned 32-bit integer
num_aclsthat describes the number of ACLs indicated by its companion
array of pointers,sec_acls, of type sec_acl_p_t.

sec_acl_entry_t
The sec_acl_entry_t type is a structure made up of the following
components:

perms A set of flags of typesec_acl_permset_tthat describe the
permissions granted for the principals identified by this
ACL entry. Note that if a principal matches more than
one ACL entry, the effective permissions will be the most
restrictive combination of all the entries.

entry_info A structure containing two members:

entry_type A flag of type sec_acl_entry_type_t,
indicating the type of ACL entry.

tagged_union
A tagged union whose contents depend on
the type of the entry.

The types of entries indicated byentry_type can be the following:

sec_acl_e_type_user_obj
The entry contains permissions for the implied user object.
This type is described in the POSIX 1003.6 standard.

1273

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_acl_e_type_group_obj
The entry contains permissions for the implied group
object. This type is described in the POSIX 1003.6
standard.

sec_acl_e_type_other_obj
The entry contains permissions for principals not
otherwise named through user or group entries. This type
is described in the POSIX 1003.6 standard.

sec_acl_e_type_user
The entry contains a key that identifies a user. This type
is described in the POSIX 1003.6 standard.

sec_acl_e_type_group
The entry contains a key that identifies a group. This type
is described in the POSIX 1003.6 standard.

sec_acl_e_type_mask_obj
The entry contains the maximum permissions for all
entries other thanmask_obj, unauthenticated, user_obj,
other_obj.

sec_acl_e_type_foreign_user
The entry contains a key that identifies a user and the
foreign realm.

sec_acl_e_type_foreign_group
The entry contains a key that identifies a group and the
foreign realm.

sec_acl_e_type_foreign_other
The entry contains a key that identifies a foreign realm.
Any user that can authenticate to the foreign realm will
be allowed access.

sec_acl_e_type_any_other
The entry contains permissions to be applied to
any accessor who can authenticate to any realm,
but is not identified in any other entry (except
sec_acl_e_type_unauthenticated).

1274

DCE Security Service

sec_intro(3sec)

sec_acl_e_type_unauthenticated
The entry contains permissions to be applied when the
accessor does not pass authentication procedures. A
privilege attribute certificate will indicate that the caller’s
identity is not authenticated. The identity is used to
match against the standard entries, but the access rights
are masked by this mask. If this mask does not exist in
an ACL, the ACL is assumed to grant no access and all
unauthenticated access attempts will be denied.

Great care should be exercised when allowing
unauthenticated access to an object. Almost by definition,
unauthenticated access is very easy to spoof. The
presence of this mask on an ACL essentially means that
anyone can get at least as much access as allowed by the
mask.

sec_acl_e_type_extended
The entry contains additional pickled data. This kind of
entry cannot be interpreted, but can be used by an out-of-
date client when copying an ACL from one manager to
another (assuming that the two managers each understand
the data).

The contents of the tagged union depend on the entry type.

For the following entry types, the union contains a UUID and an optional
print string (calledentry_info.tagged_union.idwith type sec_id_t) for
an identified local principal, or for an identified foreign realm.

• sec_acl_e_type_user

• sec_acl_e_type_group

• sec_acl_type_foreign_other

For the following entry types, the union contains two UUIDs and
optional print strings (calledentry_info.tagged_union.foreign_idwith
type sec_id_foreign_t) for an identified foreign principal and its realm.

• sec_acl_e_type_foreign_user

• sec_acl_e_type_foreign_group

1275

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

For an extended entry (sec_acl_e_type_extended), the union contains
entry_info.tagged_union.extended_info, a pointer to an information
block of typesec_acl_extend_info_t.

sec_acl_permset_t
A 32-bit set of permission flags. The flags currently represent the
conventional file system permissions (read, write, execute) and the
extended DFS permissions (owner, insert, delete).

The unused flags represent permissions that can only be
interpreted by the manager for the object. For example,
sec_acl_perm_unused_00000080may mean to one ACL manager that
withdrawals are allowed, and to another ACL manager that rebooting
is allowed.

The following constants are defined for use with thesec_acl_permset_t
data type:

sec_acl_perm_read
The ACL allows read access to the protected object.

sec_acl_perm_write
The ACL allows write access to the protected object.

sec_acl_perm_execute
The ACL allows execute access to the protected object.

sec_acl_perm_control
The ACL allows the ACL itself to be modified.

sec_acl_perm_insert
The ACL allows insert access to the protected object.

sec_acl_perm_delete
The ACL allows delete access to the protected object.

sec_acl_perm_test
The ACL allows access to the protected object only to the
extent of being able to test for existence.

The bits from 0x00000080 to 0x80000000 are not used by
the conventional ACL permission set. Constants of the form
sec_acl_perm_unused_00000080have been defined so application
programs can easily use these bits for extended ACLs.

1276

DCE Security Service

sec_intro(3sec)

sec_acl_extend_info_t
This is an extended information block, provided for future extensibility.
Primarily, this allows an out-of-date client to read an ACL from a newer
manager and apply it to another (up-to-date) manager. The data cannot
be interpreted by the out-of-date client without access to the appropriate
pickling routines (that presumably are unavailable to such a client).

In general, ACL managers should not accept ACLs that contain entries
the manager does not understand. The manager clearly cannot perform
the security service requested by an uninterpretable entry, and it is
considered a security breach to lead a client to believe that the manager
is performing a particular class of service if the manager cannot do so.

The data structure is made up of the following components:

extension_type
The UUID of the extension type.

format_label
The format of the label, inndr_format_t form.

num_bytes An unsigned 32-bit integer indicating the number of bytes
containing the pickled data.

pickled_data
The byte array containing the pickled data.

sec_acl_type_t
Thesec_acl_type_ttype differentiates among the various types of ACLs
an object can possess. Most file system objects will only have one ACL
controlling the access to that object, but objects that control the creation
of other objects (sometimes referred to ascontainers) may have more.
For example, a directory can have three different ACLs: the directory
ACL, controlling access to the directory; the initial object (or default
object) ACL, which serves as a mask when creating new objects in the
directory; and the initial directory (or default directory) ACL, which
serves as a mask when creating new directories (containers).

Thesec_acl_type_tis an enumerated set containing one of the following
values:

sec_acl_type_object
The ACL refers to the specified object.

1277

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_acl_type_default_object
The ACL is to be used when creating objects in the
container.

sec_acl_type_default_container
The ACL is to be used when creating nested containers.

The following values are defined but not currently used. They are
available for application programs that may create an application-specific
ACL definition.

• sec_acl_type_unspecified_3

• sec_acl_type_unspecified_4

• sec_acl_type_unspecified_5

• sec_acl_type_unspecified_6

• sec_acl_type_unspecified_7

sec_acl_printstring_t
A sec_acl_printstring_t structure contains a printable representation
for a permission in asec_acl_permset_tpermission set. This allows
a generic ACL editing tool to be used for application-specific ACLs.
The tool need not know the printable representation for each permission
bit in a given permission set. Thesec_acl_get_printstring()function
will query an ACL manager for the print strings of the permissions it
supports. The structure consists of three components:

printstring A character string of maximum length
sec_acl_printstring_len describing the printable
representation of a specified permission.

helpstring A character string of maximum length
sec_acl_printstring_help_lencontaining some text that
may be used to describe the specified permission.

permissions A sec_acl_permset_t permission set describing the
permissions that will be represented with the specified
print string.

sec_acl_component_name_t
This type is a pointer to a character string, to be used to specify the
entity a given ACL is protecting.

1278

DCE Security Service

sec_intro(3sec)

Constants

The following constants are used insec_acl_calls:

sec_acl_default_handle
The value of an unbound ACL manager handle.

sec_rgy_acct_key_t
The following 32-bit integer constants are used with the
sec_rgy_acct_key_tdata type:

sec_rgy_acct_key_none
Invalid key.

sec_rgy_acct_key_person
The person name alone is enough.

sec_rgy_acct_key_group
The person and group names are both necessary for the
account abbreviation.

sec_rgy_acct_key_org
The person, group, and organization names are all
necessary.

sec_rgy_acct_key_last
Key values must be less than this constant.

sec_rgy_pname_t_size
The maximum number of characters in asec_rgy_pname_t.

sec_acl_permset_t
The following constants are defined for use with thesec_acl_permset_t
data type:

sec_acl_perm_read
The ACL allows read access to the protected object.

sec_acl_perm_write
The ACL allows write access to the protected object.

sec_acl_perm_execute
The ACL allows execute access to the protected object.

sec_acl_perm_owner
The ACL allows owner-level access to the protected
object.

1279

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_acl_perm_insert
The ACL allows insert access to the protected object.

sec_acl_perm_delete
The ACL allows delete access to the protected object.

sec_acl_perm_test
The ACL allows access to the protected object only to the
extent of being able to test for existence.

sec_acl_perm_unused_00000080 –
sec_acl_perm_unused_0x80000000

The bits from 0x00000080 to 0x80000000 are not used
by the conventional ACL permission set. Constants have
been defined so application programs can easily use these
bits for extended ACLs.

sec_acl_printstring_len
The maximum length of the printable representation of an ACL
permission. (Seesec_acl_printstring_t.)

sec_acl_printstring_help_len
The maximum length of a help message to be associated with a
supported ACL permission. (Seesec_acl_printstring_t.)

Files

/usr/include/dce/aclbase.idl
The idl file from which aclbase.hwas derived.

Key Management API Data Types

Notes

Key management operations that take a keydata argument expect a pointer to a
sec_passwd_rec_tstructure, and those that take a keytype argument (void *) expect
a pointer to asec_passwd_type_t. Key management operations that yield a keydata
argument as output set the pointer to an array ofsec_passwd_rec_t. (The array is
terminated by an element with a key type ofsec_passwd_none.)

1280

DCE Security Service

sec_intro(3sec)

Operations that take a keydata argument expect a pointer to asec_passwd_rec_t
structure. Operations that yield a keydata argument as output set the pointer to an
array of sec_passwd_rec_t. (The array is terminated by an element with key type
sec_passwd_none.) Operations that take a keytype argument (void *) expect a pointer
to a sec_passwd_type_t.

Synopsis

#include <dce/keymgmt.h>

Data Types

sec_passwd_type_t
An enumerated set describing the currently supported key types. The
possible values are as follows:

sec_passwd_none
Indicates no key types are supported.

sec_passwd_plain
Indicates that the key is a printable string of data.

sec_passwd_des
Indicates that the key is DES encrypted data.

sec_passwd_privkey
Indicates that the key is a private or public key of a public
key pair used in public key authentication.

sec_passwd_genprivkey
Indicates the modulus bit size of the private key to
be generated for a public key pair used in public key
authentication.

sec_passwd_rec_t
A structure containing any of the following: a plaintext password,
a preencrypted buffer of password data, a public-key-pair generation
request, or a public or private key. Thesec_passwd_rec_tstructure
consists of three components:

1281

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

version_number
The version number of the password.

pepper A character string combined with the password before an
encryption key is derived from the password.

key A structure consists of the following components:

key_type The key type can be the following:

sec_passwd_plain
Indicates that a printable
string of data is stored in
plain.

sec_passwd_des
Indicates that an array of data
is stored indes_key.

sec_passwd_privkey
Indicates that X.509 ASN.1
DER-encoded data is stored
in priv_key.

sec_passwd_genprivkey
Indicates that unsigned
32-bit data is stored in
modulus_size.

tagged_union
A structure specifying the password. The
value of the structure depends onkey_type.

If key_type is sec_passwd_plain, the
structure containsplain, a character string.

If key_type is sec_passwd_des, the
structure containsdes_key, a DES key of
type sec_passwd_des_key_t.

If key_type is sec_passwd_privkey, the
structure containspriv_key, a public or
private key of typesec_pk_data_t.

1282

DCE Security Service

sec_intro(3sec)

If key_typeis sec_passwd_genprivkey, the
structure containsmodulus_size, unsigned
32-bit data.

sec_passwd_version_t
An unsigned 32-bit integer that defines the password version number.
You can supply a version number or a 0 for no version number. If you
supply the constantsec_passwd_c_version_none, the security service
supplies a system-generated version number.

sec_key_mgmt_authn_service
A 32-bit unsigned integer whose purpose is to indicate the authentication
service in use, since a server may have different keys for different levels
of security. The possible values of this data type and their meanings are
as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_private
DCE private key authentication (an implementation of the
Kerberos system).

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

Constants

There are no constants specially defined for use with the key management API.

Files

/usr/include/dce/keymgmt.idl
The idl file from which keymgmt.h was derived.

1283

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

ID Mapping API Data Types

Synopsis

#include <dce/secidmap.h>

Data Types

No special data types are defined for the ID mapping API.

Constants

No special constants are defined for the ID mapping API.

Files

/usr/include/dce/secidmap.idl
The idl file from which secidmap.hwas derived.

Password Management API Data Types

Synopsis

#include <dce/sec_pwd_mgmt.h>

Data Types

The following data types are used insec_pwd_mgmt_calls:

sec_passwd_mgmt_handle_t
A pointer to an opaque handle consisting of password management
information about a principal. It is returned bysec_pwd_mgmt_setup().

1284

DCE Security Service

sec_intro(3sec)

Constants

There are no constants specially defined for use with the password management API.

Files

/usr/include/dce/sec_pwd_mgmt.idl
The idl file from which sec_pwd_mgmt.hwas derived.

Public Key API Data Types

Synopsis

#include <dce/sec_pk.h>

Data Types

The following data types are used insec_pkcalls:

sec_pk_domain_t
A UUID of type uuid_t associated with the application domain in which
a public or private key is used.

sec_pk_usage_flags_t
A 32k-bit set of key-usage flags that describe the use of a key or key
pair. The flags are:

sec_pk_usage_digitalSignature

sec_pk_usage_nonRepudiation

sec_pk_usage_keyEncipherment

sec_pk_usage_keyAgreement

1285

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_pk_usage_keyCertSign

sec_pk_usage_offLineCRLSign

These flags are described in the X.509 (1993E) AM 1 standard.

sec_pk_data_t
A structure that points to an X.509 or X.511 ASN.1 DER-encoded value.
Thesec_pk_data_tdata type acts as a base for the following data types,
which are aliases forsec_pk_data_t:

sec_pk_gen_data_t

sec_pk_pubkey_t

sec_pk_pvtkey_t

sec_pk_signed_t

sec_pk_encrypted_t

sec_pk_algorithm_id_t

The alias data types indicate the specific information pointed to by
sec_pk_data_t. Instead of usingsec_pk_data_tdirectly, use the alias
data types.

The sec_pk_data_tdata type consists of the following elements:

len The size ofdata.

data A pointer to a character string.

sec_pk_gen_data_t
A structure that acts as an alias to asec_pk_data_tthat contains plain
ASCII data.

sec_pk_pubkey_t
A structure that acts as an alias to asec_pk_data_tthat contains an
X.509 ASN.1 DER-encoded value of typeSubjectPublicKeyInfo. This
data type assumes that the public key infrastructure provides functions
for generating a public key in this format.

sec_pk_pvtkey_t
A structure that contains an X.509 ASN.1 DER-encoded private key
value. The key format depends on the public key infrastructure.

1286

DCE Security Service

sec_intro(3sec)

This data type assumes that the public key infrastructure provides
functions for generating a private key in this format.

sec_pk_signed_t
A structure that contains an X.509 ASN.1 DER-encoded value of type
SIGNED. This data type assumes that the public key infrastructure
provides functions for generating a public key in this format.

sec_pk_encrypted_t
A structure that contains an X.509 ASN.1 DER-encoded value of type
ENCRYPTED. This data type assumes that the public key infrastructure
provides functions for generating a public key in this format.

sec_pk_algorithm_id_t
A structure that contains an X.509 ASN.1 DER-encoded value of
type AlgorithmIdentifier . This data type assumes that the public key
infrastructure provides functions for generating a public key in this
format.

Constants

The following constants are used insec_pkcalls:

The following unsigned 32-bit constants, which are used with the
sec_pk_usage_flags_tdata type, correspond toKeyUsagetypes defined
in DAM 1 (Dec 1995) to X.509 (1993):

1287

DCE 1.2.2 Application Development Reference

sec_intro(3sec)

sec_pk_usage_digitalSignature

sec_pk_usage_nonRepudiation

sec_pk_usage_keyEncipherment

sec_pk_usage_dataEncipherment

sec_pk_usage_keyAgreement

sec_pk_usage_keyCertSign

sec_pk_usage_offLineCRLSign

Files

/usr/include/dce/sec_pk_base.idl
The idl file from which sec_pk.hwas derived.

1288

DCE Security Service

audit_intro(3sec)

audit_intro

Purpose Introduction to the DCE audit API runtime

Description

This introduction gives general information about the DCE audit application
programming interface (API) and an overview of the following parts of the DCE
audit API runtime:

• Runtime services

• Environment variables

• Data types and structures

• Permissions required

Runtime Services

The following is an alphabetical list of the audit API routines. With each routine
name is its description. The types of application program that will most likely call the
routine are enclosed in parentheses.

dce_aud_close()
Closes an audit trail (client/server applications, audit trail analysis and
examination tools).

dce_aud_commit()
Performs the audit action(s) (client/server applications).

dce_aud_discard()
Discards an audit record which releases the memory (client/server
applications, audit trail analysis and examination tools).

dce_aud_free_ev_info()
Frees the memory allocated for an event information structure returned
from calling thedce_aud_get_ev_info()function (audit trail analysis
and examination tools).

1289

DCE 1.2.2 Application Development Reference

audit_intro(3sec)

dce_aud_free_header()
Frees the memory allocated to a designated audit record header structure
(audit trail analysis and examination tools).

dce_aud_get_ev_info()
Gets the event-specific information of a specified audit record (audit
trail analysis and examination tools).

dce_aud_get_header()
Gets the header of a specified audit record (audit trail analysis and
examination tools).

dce_aud_length()
Gets the length of a specified audit record (client/server applications,
audit trail analysis and examination tools).

dce_aud_next()
Reads the next audit record from a specified audit trail into a buffer
(audit trail analysis and examination tools).

dce_aud_open()
Opens a specified audit trail for read or write (client/server applications,
audit trail analysis and examination tools).

dce_aud_print()
Formats an audit record into a human-readable form (audit trail analysis
and examination tools).

dce_aud_put_ev_info()
Adds event-specific information to a specified audit record buffer (client/
server applications).

dce_aud_set_trail_size_limit()
Sets a limit to the audit trail size (client/server applications).

dce_aud_start()
Determines whether a specified event should be audited given the client’s
binding information and the event outcome. If the event should be
audited or if it is not yet known whether the event should be audited
because the event outcome is still unknown, memory for the audit record
descriptor is allocated and the address of this memory is returned to the
caller (client/server applications).

1290

DCE Security Service

audit_intro(3sec)

dce_aud_start_with_name()
Determines whether a specified event should be audited given the client/
server name and the event outcome. If the event should be audited or
if it is not yet known whether the event should be audited because the
event outcome is still unknown, memory for the audit record descriptor
is allocated and the address of this memory is returned to the caller
(client/server applications).

dce_aud_start_with_pac()
Determines whether a specified event should be audited given the client’s
privilege attribute certificate (PAC) and the event outcome. If the event
should be audited or if it is not yet known whether the event should
be audited because the event outcome is still unknown, memory for the
audit record descriptor is allocated and the address of this memory is
returned to the caller (client/server applications).

dce_aud_start_with_server_binding()
Determines whether a specified event should be audited given the
server’s binding information and the event outcome. If the event should
be audited or if it is not yet known whether the event should be audited
because the event outcome is still unknown, memory for the audit record
descriptor is allocated and the address of this memory is returned to the
caller (client/server applications).

dce_aud_start_with_uuid()
Determines whether a specified event should be audited given the client/
server UUID and the event outcome. If the event must be audited, or
if the outcome of the event is not yet known, the memory for the audit
record descriptor is allocated and the address of this structure is returned
to the caller (client/server applications).

Audit Data Types

The following subsections list the data types and structures used by applications to
perform auditing and to analyze audit trails.

Event-Specific Information
The audit APIs allow applications to include event-specific information
in audit records. Event-specific information must be represented as
information items using the following data type.

1291

DCE 1.2.2 Application Development Reference

audit_intro(3sec)

typedef struct {

unsigned16 format;

union {

idl_small_int small_int;

idl_short_int short_int;

idl_long_int long_int;

idl_hyper_int hyper_int;

idl_usmall_int usmall_int;

idl_ushort_int ushort_int;

idl_ulong_int ulong_int;

idl_uhyper_int uhyper_int;

idl_short_float short_float;

idl_long_float long_float;

idl_boolean boolean;

uuid_t uuid;

utc_t utc;

sec_acl_t * acl;

idl_byte * byte_string;

idl_char * char_string;

} data;

} dce_aud_ev_info_t;

The format field of the above data structure defines formatting
information that is used to determine the type of the data referenced by
the data field. The following table shows possible values of theformat
field, their corresponding data types, and their sizes.

Event Data Format Specifiers—intro(3sec)

Specifier Data Type Size

aud_c_evt_info_small_int idl_small_int 1 byte

aud_c_evt_info_short_int idl_short_int 2 bytes

aud_c_evt_info_long_int idl_long_int 4 bytes

aud_c_evt_info_hyper_int idl_hyper_int 8 bytes

aud_c_evt_info_usmall_int idl_usmall_int 1 bytes

aud_c_evt_info_ushort_int idl_ushort_int 2 bytes

aud_c_evt_info_ulong_int idl_ulong_int 4 bytes

1292

DCE Security Service

audit_intro(3sec)

aud_c_evt_info_uhyper_int idl_uhyper_int 8 bytes

aud_c_evt_info_short_float idl_short_float 4 bytes

aud_c_evt_info_long_float idl_long_float 8 bytes

aud_c_evt_info_boolean idl_boolean 1 byte

aud_c_evt_info_uuid uuid_t 16 bytes

aud_c_evt_info_utc utc_t 16 bytes

aud_c_evt_info_acl sec_acl_t * variable size

aud_c_evt_info_byte_string idl_byte * variable size

aud_c_evt_info_char_string idl_char * variable size

Byte strings and character strings are terminated with a 0 (zero) byte.
New data types can be added to this list if they are used frequently.
Servers could use the pickling service of the IDL compiler to encode
complex data types into byte strings that are to be included in an audit
record.

Audit Record Header Data Structure
The following data structure is used to store header information obtained
from an audit record. This structure is normally only used by audit trail
analysis and examination tools. That is, it is hidden from client/server
applications.

typedef struct {

unsigned32 format;

uuid_t server;

unsigned32 event;

unsigned16 outcome;

unsigned16 authz_st;

uuid_t client;

uuid_t cell;

unsigned16 num_groups;

utc_t time;

char *addr;

uuid_t *groups;

} dce_aud_hdr_t;

1293

DCE 1.2.2 Application Development Reference

audit_intro(3sec)

format Contains the version number of the tail format of the event
used for the event-specific information. With this format
version number, the audit analysis tools can accommodate
changes in the formats of the event-specific information.
For example, the event-specific information of an event
may initially be defined to be a 32-bit integer, and later
changed to a character string. Format version 0 (zero) is
assigned to the initial format for each event.

server Contains the UUID of the server that generates the audit
record.

event Contains the event number.

outcome Indicates whether the event failed or succeeded. If the
event failed, the reason for the failure is given.

authz_st Indicates how the client is authorized: by a name or by a
DCE privilege attribute certificate (PAC).

client Contains the UUID of the client.

cell Contains the UUID of the client’s cell.

num_groups
Contains the number of local group privileges the client
used for access.

groups Contains the UUIDs of the local group privileges that are
used by the client for the access. By default, the group
information is not be included in the header (num_groups
is set to 0 in this case), to minimize the size of the audit
records. If the group information is deemed as important,
it can be included.

Information about foreign groups (global groups that do
not belong to the same cell where the client is registered)
is not included in this version of audit header but may
be included in later versions when global groups are
supported.

time Contains a timestamp ofutc_t type that records the
time when the server committed the audit record (that
is, after providing the event information through audit
API function calls). Recording this time, rather than

1294

DCE Security Service

audit_intro(3sec)

recording the time when the audit record is appended to
an audit trail, will better maintain the sequence of events.
The implementation of the audit subsystem may involve
communication between the server and a remote audit
daemon, incurring indefinite delays by network problems
or intruders. The inaccuracy in theutc_t timestamp may
be useful for correlating events. When searching for events
in an audit trail that occur within a time interval, if
the results of the comparisons between the time of an
event and the interval’s starting and ending times is
maybe (because of inaccuracies), then the event should
be returned.

addr Records the client’s address (port address of the caller).
Port addresses are not authenticated. A caller can provide
a fraudulent port address to a DCE server. However, if
this unauthenticated port address is deemed to be useful
information, a DCE server can record this information
using this field.

The identity of the server cell is not recorded in the header, because
of the assumption that all audit records in an audit trail are for servers
within a single cell, and implicitly, the server cell is the local cell.

Audit Record Descriptor
An opaque data type,dce_aud_rec_t, is used to represent an
audit record descriptor. An audit record descriptor may be
created, manipulated, or disposed of by the following functions:
The functions dce_aud_start(), dce_aud_start_with_pac(),
dce_aud_start_with_name(), dce_aud_start_with_server_binding(),
and dce_aud_next() return a record descriptor. The function
dce_aud_put_ev_info() adds event information to an audit record
through a record descriptor. The functionsdce_aud_get_header(),
dce_aud_get_ev_info(), and dce_aud_length() get the event and
record information through a record descriptor. The function
dce_aud_commit() commits an audit record through its descriptor.
The functiondce_aud_discard()disposes of a record descriptor. The
function dce_aud_discard()is necessary only after reading the record
(that is, after invokingdce_aud_next().

1295

DCE 1.2.2 Application Development Reference

audit_intro(3sec)

Audit Trail Descriptor
An opaque data type,dce_aud_trail_t, is used to represent an audit
trail descriptor. Thedce_aud_open()function opens an audit trail and
returns a trail descriptor;dce_aud_next()obtains an audit record from
this descriptor; anddce_aud_commit()commits an audit record from
and to an opened audit trail through this descriptor. Thedce_aud_close()
function disposes of this descriptor.

Environment Variables

The audit API routines use the following environment variables:

DCEAUDITOFF
If this environment variable is defined at the time the application is
started, auditing is turned off.

DCEAUDITFILTERON
If this environment variable is defined, filtering is enabled.

DCEAUDITTRAILSIZE
Sets the limit of the audit trail size. This variable overrides the limit set
by thedce_aud_set_trail_size_limit()function.

Permissions Required

To use an audit daemon’s audit record logging service, you need the log (l) permission
to the audit daemon.

Related Information

Books:DCE 1.2.2 Command Reference, DCE 1.2.2 Application Development Guide.

1296

DCE Security Service

pkc_intro(3sec)

pkc_intro

Purpose Introduction to trust list facilities API

Description

This reference page describes the data types used by the trust list facility.

Overview of the Facility

Retrieving keys using this API is a three step process.

The first step involves creating apkc structure called a trust list, which reflects the
caller’s initial trust. A trust list is a list of {name, key} pairs or certificates that are
trusteda priori.

An empty trust list is created through a call to the routinepkc_init_trustlist(3sec),
and entries are inserted into a trust list by a call topkc_append_to_trustlist(3sec).

Once the trust list is complete, the application should next call
pkc_init_trustbase(3sec). This routine takes the trust list and processes it to
produce a stucture called a trust base, which reflects any transitive trust, independent
of the name of any desired target.

Creation of the trust base (and the prerequisite trust list) is expected to be performed
at application startup, although it can be done any time prior to key retrieval. All
processing up to this point is independent of the name(s) of principals whose keys are
to be retrieved, and the trust base may be used for multiple key retrieval operations.

Once a trust base has been obtained, it may be used for key retrieval. Keys are retrieved
for a given target principal using thepkc_retrieve_keys(3sec)routine, which takes a
trust base and a name and returns an array of keys.

Data Structures

The following data structures are used by the trust list facilities.

• Thetrust_type_t type consists of an enumeration of the different possible varieties
of trust:

— UNTRUSTED

1297

DCE 1.2.2 Application Development Reference

pkc_intro(3sec)

No trust (e.g., unauthenticated).

— DIRECT_TRUST

Direct trust via third party (e.g., authenticated registry).

— CERTIFIED_TRUST

Trust certified by caller’s trust base.

• The certification_flags_t structure describes the trust that can be placed in a
returned key. It contains the following fields:

— trust_type

A trust_type_t value expressing the style of trust.

— missing_crls

A char; its value is TRUE (not 0) if one or more CRLs are missing.

— revoked

A char whose value is TRUE (not 0) if any certificate has been revoked (even
if it was still valid at the retrieval time).

• The cert_t structure contains the following fields:

— version

An int whose value must be 0.

— cert

A pointer to an unsigned char representing the ASN.1 encoding of a
certificate.

— size

A size_twhich represents the size of the encoding.

• The trusted_key_t structure contains the following fields:

— version

An int whose value must be 0.

— ca

1298

DCE Security Service

pkc_intro(3sec)

A pointer to anunsigned char(x500 char) string which represents the name
of the Certification Authority whose key this is. For example,/.../foo_cell/ca
or /.../C=US/O=dec/CN=foo_cell/ca.

— key

A pointer to anunsigned char representing the Certification Authority’s
ASN.1 key.

— size

A size_t representing the size of the CA’s ASN.1 key.

— startDate

An utc_t representing the time at which the key begins to be valid.

— endDate

An utc_t representing the time at which the key ceases to be valid.

• The trustitem_t structure holds either a key, or a certificate. It has the following
fields:

— type

An int whose value specifies either that the structure holds a key (IS_KEY)
or a certificate (IS_CERT).

— Depending on the value oftype, the structure additionally contains a
trusted_key_t (if IS_KEY) or a cert_t (if IS_CERT).

• Theselection_tstructure is defined for future enhancements that will enable users
to specify usages for the key being retrieved. However, its contents are currently
ignored.

Related Information

Functions:pkc_append_to_trustlist(3sec), pkc_free(3sec), pkc_free_keyinfo(3sec),
pkc_free_trustbase(3sec), pkc_free_trustlist(3sec),
pkc_get_key_certifier_count(3sec), pkc_get_key_certifier_info(3sec),
pkc_get_key_count(3sec), pkc_get_key_data(3sec), pkc_get_key_trust_info(3sec),
pkc_get_registered_policies(3sec), pkc_init_trustbase(3sec),
pkc_init_trustlist(3sec), pkc_retrieve_keyinfo(3sec), pkc_retrieve_keylist(3sec).

1299

DCE 1.2.2 Application Development Reference

crypto_intro(3sec)

crypto_intro

Purpose Introduction to the signature algorithm API registration facility

Description

This reference page describes the data types used by the signature algorithm (or
‘‘cryptographic’’) module registration API.

Accessing and Using Cryptographic Modules

Cryptographic implementations (also known as ‘‘algorithms’’) are identified by OIDs
(object identifiers).

Policy implementors are recommended to access cryptographic modules mainly
through the following routines, which perform all locking necessary to make the
calls thread safe, and also transparently handle any context information that a given
cryptographic implementation may need.

• pkc_crypto_get_registered_algorithms(3sec)

Call this routine to get an OID set describing the currently registered algorithm
implementations.

• pkc_crypto_sign(3sec)

Call this routine to get data signed.

• pkc_crypto_verify_signature(3sec)

Call this routine to verify signed data.

• pkc_crypto_generate_keypair(3sec)

Call this routine to generate a pair of public/private keys.

Information about a cryptographic module may be obtained by calling
pkc_crypto_lookup_algorithm(3sec).

Data can also be signed and verified by looking up the desired algorithm (with
pkc_crypto_lookup_algorithm(3sec)) and then explicitly calling the module’s

1300

DCE Security Service

crypto_intro(3sec)

(sign)() or verify() routine, although in this case the calling application must take
care to avoid multi-threading problems, and is also responsible for opening the crypto
module prior to use, and closing it afterwards.

Implementing Cryptographic Modules

Every cryptographic module must export apkc_signature_algorithm_t object.

The pkc_signature_algorithm_t data type is used to register a new cryptographic
module with the certification API. It fully describes a specific implemented
cryptographic algorithm, and provides entry points to itssign() andverify() functions.
It is defined as follows:

typedef struct {
OM_uint32 version;
gss_OID_desc alg_id>;
pkc_alg_flags_t flags;
char reserved[32 - sizeof(pkc_alg_flags_t)];
char * (* name)(void);
unsigned32 (*open) (void** context);
unsigned32 (*close) (void** context);
unsigned32 (*verify) (void ** context,

sec_pk_gen_data_t * data,
sec_pk_data_t * public_key,
sec_pk_data_t * signature);

unsigned32 (*sign) (void ** context,
sec_pk_gen_data_t * data,
sec_pk_data_t * private_key,
sec_pk_data_t * signature);

unsigned32 (*generate_keypair) (void ** context,
unsigned32 size,
void * alg_info,
sec_pk_data_t * private_key,
sec_pk_data_t * public_key);} pkc_signature_algorithm_t;

The (name)(), (open)(), (close)(), (verify)() , (sign)() and (generate_keypair)()
routines must be implemented by the application implementing the algorithm and
registered by calling thepkc_crypto_register_signature_alg(3sec)routine. Note,
however, that all the routines except for(verify)() and (name)() are optional.

1301

DCE 1.2.2 Application Development Reference

crypto_intro(3sec)

Explanations of all the fields inpkc_signature_algorithm_t are contained in the
following subsections.

Cryptographic Module Data Fields

The structure contains the following data fields:

version Identifies the version of the certification API for which the module is
implemented. The value of this field is alwayspkc_V1 for DCE 1.2.

alg_id An object identifier that identifies the algorithm; the OID that appears
in certificates signed by the algorithm.

flags Describes whether the module’s(sign)() and (verify)() functions are
threadsafe, and whether the module supports simultaneous crypto
sessions.

The version andalg_id fields are required for all versions of this data structure. Other
fields may be version dependent.

Cryptographic Module Functions

NULL may be supplied as the address of the(open)(), (close)(), (sign)(), or
(generate_keypair)()routines, if the cryptographic module does not provide or require
the corresponding feature; the presence of these functions in a cryptographic module
is optional. However, all cryptographic modules must provide(verify)() and(name)()
functions.

Algorithm Flags Data Type

The pkc_alg_flags_t data type is used to record various information about a
cryptographic module. It is defined as follows:

typedef struct {
char threadsafe;
char multi_session;}

pkc_alg_flags_t;

The structure contains two fields which have the following meanings:

threadsafe Has a non-zero (TRUE) value if the module’s(sign)() and (verify)()
routines may be safely called simultaneously (within a single crypto
session) by multiple threads.

multi_session
Has a non-zero (TRUE) value if the module implementation supports
multiple simultaneous crypto sessions.

1302

DCE Security Service

crypto_intro(3sec)

Cryptographic Module Data Fields

The structure contains the following data fields:

version Identifies the version of the certification API for which the module is
implemented. The value of this field is alwayspkc_V1 for DCE 1.2.

alg_id An object identifier that identifies the algorithm; the OID that appears
in certificates signed by the algorithm.

flags Describes whether the module’s(sign)() and (verify)() functions are
threadsafe, and whether the module supports simultaneous crypto
sessions.

The version andalg_id fields are required for all versions of this data structure. Other
fields may be version dependent.

Cryptographic Module Functions

NULL may be supplied as the address of the(open)(), (close)(), (sign)(), or
(generate_keypair)()routines, if the cryptographic module does not provide or require
the corresponding feature; the presence of these functions in a cryptographic module
is optional. However, all cryptographic modules must provide(verify)() and(name)()
functions.

Name

(name)() - Returns the algorithm name as a string for use in diagnostic or auditing
messages

Synopsis

char * (* name)(void);

Description

The name should be returned in storage allocated using thepkc_alloc() function
defined inpkc_base.h. Note that this is the only cryptographic module routine that
may be called without first calling the(open)() routine.

This routine is mandatory.

1303

DCE 1.2.2 Application Development Reference

crypto_intro(3sec)

Name

(open)() - Opens and initializes the cryptographic module

(close)()- Closes the cryptographic module

Both routines are optional.

Synopsis

unsigned32 (*open) (void** context);

unsigned32 (*close) (void**context);

Parameters
Output

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

Description

Before invoking any of the module’s encryption routines (e.g.,(sign)() or (verify)() ,
the certification API will invoke the module’s(open)() function. Once the module’s
(close)()routine has been invoked, the certification facility will invoke(open)() again
before making any further calls to the module.

Both the (open)() and the(close)() routines require only one argument,context. If
the cryptographic module requires state information to be maintained between calls, it
may use thecontextparameter to do this. The information is initialized by the(open)()
routine and returned as an opaque object to the caller, who then passes the parameter
to subsequent(sign)(), (verify)() , (generate_keypair)(), or (close)()calls.

Note that if the(open)() routine stores any state in thecontextparameter, the(close)()
routine should free this storage.

1304

DCE Security Service

crypto_intro(3sec)

Name

(sign)() - Calculates a signature over the supplied data using the specified key

Synopsis

unsigned32 (*sign) (void ** context,
sec_pk_gen_data_t *data,
sec_pk_data_t *private_key,
sec_pk_data_t ** signature);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

data The certificate data that is to be signed.

private_key Key to use to generate the signature, provided as a BER-encoded
PrivateKeyInfo object, as defined in PKCS#8, as appropriate for the
algorithm.

Output

signature The signature generated on the data passed. Storage allocation should be
performed by calling thepkc_alloc() andpkc_free() functions defined
in pkc_base.h.

Description

The (sign)() routine calculates a signature over the supplied data, using the specified
key. Theprivate_keyparameter will be a BER-encodedPrivateKeyInfo data object.
The signature should be returned by the function; storage allocation should be
performed by calling thepkc_alloc() andpkc_free() functions defined inpkc_base.h.

This routine is optional.

1305

DCE 1.2.2 Application Development Reference

crypto_intro(3sec)

Name

(verify)() - Checks the supplied signature against the supplied data, thus verifying the
certificate in which the data and the signature appear

Synopsis

unsigned32 (*verify) (void ** context,
sec_pk_gen_data_t *data,
sec_pk_data_t *public_key,
sec_pk_data_t *signature);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

data The entirecertificateInfo.

public_key The public key to use on the signature.

signature The signature to be verified.

Description

The (verify)() routine checks the supplied signature against the supplied data.
public_keyis aSubjectPublicKeyInfo data structure, encoded in BER, as found within
an X.509 certificate.

The routine should return 0 for a correct signature,pkc_invalid_signature for an
incorrect signature, or another DCE-defined error status to indicate any other errors.

This routine must be implemented in any cryptographic module.

Name

(generate_keypair)()- Generates a pair of public and private keys

1306

DCE Security Service

crypto_intro(3sec)

Synopsis

unsigned32 (*generate_keypair) (void **context,
unsigned32size,
void *alg_info,
sec_pk_data_t *private_key,
sec_pk_data_t *public_key);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

size Specifies the key size.

alg_info Specifies the crypto module.

Output

private_key The generated private key.

public_key The generated public key.

Description

The (generate_keypair)() routine generates a pair of private and public keys. The
sizeparameter should be used by the routine to determine the key size in some way
(for the RSA algorithm, for example, it should be treated as the number of bits in
the key modulus). Theprivate_keyand public_keyparameters should return BER-
encodedPrivateKeyInfo and SubjectPublicKeyInfo data objects respectively. The
alg_info parameter can be used for algorithm-specific information to modify the key
generation process. However, all crypto modules that offer this function should be
prepared to operate whenNULL is supplied for this parameter.

This routine is optional.

1307

DCE 1.2.2 Application Development Reference

crypto_intro(3sec)

Related Information

Functions:pkc_crypto_generate_keypair(3sec),
pkc_crypto_get_registered_algorithms(3sec),
pkc_crypto_lookup_algorithm(3sec), pkc_crypto_register_signature_alg(3sec),
pkc_crypto_sign(3sec), pkc_crypto_verify_signature(3sec).

1308

DCE Security Service

policy_intro(3sec)

policy_intro

Purpose Introduction to the policy module registration and service facility

Description

This reference page describes the data types used by the policy module registration
and service API.

The routines documented here are intended for the use of policy implementors.
Regular users invoke a policy via the high-level API (e.g.,pkc_retrieve_keyinfo(3sec),
pkc_get_key_count(3sec), pkc_get_key_data(3sec), etc.) which calls the routines
documented below internally.

Accessing Policy Switch Modules

Policy modules are identified by OIDs (object identifiers). A policy module is accessed
by passing its identifying OID topkc_plcy_lookup_policy(3sec).

There are two ways of retrieving a key: either by looking up the desired policy module
and then explicitly calling its(retrieve_keyinfo)() routine; or by simply calling the
pkc_plcy_retrieve_keyinfo(3sec)routine, identifying the desired policy by means of
an OID passed directly to the call. The latter method, in which the operation is
performed in one step, is the recommended one.

Policy Flags Data Type

The pkc_plcy_flags_tdata type is used to record various information about a policy
module. It is defined as follows:

typedef struct {char threadsafe; char multi_session;} pkc_plcy_flags_t;

The structure contains two fields which have the following meanings:

threadsafe Has a non-zero (TRUE) value if the policy’sretrieve_keyinfo() function
may be safely called simultaneously (within a single policy session) by
multiple threads.

1309

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

multi_session
Has a non-zero (TRUE) value if the policy implementation supports
multiple simultaneous policy sessions.

Policy Module Data Type

The pkc_policy_t data type is used to register a new policy module with the
certification API. It fully describes a policy module’s functionality, and provides entry
points to its key retrieval functions. It is defined as follows:

typedef struct {
OM_uint32 version;
gss_OID_desc policy_id;
pkc_plcy_flags_t flags;
char reserved[32 - sizeof(pkc_plcy_flags_t)];
char * (* name) (void);
unsigned32 (*open) (void** context);
unsigned32 (*close) (void**context);
unsigned32 (*establish_trustbase) (void **context,

const pkc_trust_list_t & initial_trust,
const utc_t * date,
pkc_usage_tdesired_usage,
char initial_explicit_policy_required,
pkc_trust_list_t & out_trust);

unsigned32 (*retrieve_keyinfo) (void ** context,
const pkc_trust_list_t &trust,
const x500name &subjectName,
const utc_t * date,
const uuid_t & domain,
pkc_key_usage_tdesired_usage,
char initial_explicit_policy_required,
pkc_key_information_t & key);

unsigned32 (*delete_trustbase) (void **context,
void ** trust_base_handle);

unsigned32 (*delete_keyinfo) (void **context,
void ** keys_handle);

unsigned32 (*get_key_count) (void **context,
void * keys_handle,
size_t * key_count);

1310

DCE Security Service

policy_intro(3sec)

unsigned32 (*get_key_data) (void **context,
void * keys_handle,
unsignedkey_index,
unsigned char ** key_data,
size_t * key_length);

unsigned32 (*get_key_trust) (void ** context,
void * keys_handle,
unsignedkey_index,
certification_flags_t * flags uuid_t * domain,
pkc_generic_key_usage_t *usages);

unsigned32 (*get_key_certifier_count) (void **context,
void * keys_handle,
unsigned key_index,
size_t * ca_count);

unsigned32 (*get_key_certifier_info) (void ** context,
void * keys_handle,
unsignedkey_index,
unsignedca_index,
char ** ca_name,
utc_t * certification_start,
utc_t * certification_expiration,
char * is_crl_valid,
utc_t * last_crl_seen,
utc_t * next_crl_expected);

} pkc_policy_t;

The (name)(), (open)(), (close)(), (establish_trustbase(), (*get_key_count)(),
(*get_key_data)(), (*get_key_trust)(), (*get_key_certifier_count)(),
(*get_key_certifier_info)(), and (*retrieve_keyinfo)() routines must be
implemented by the application implementing the module and registered using the
pkc_register_policy(3sec)routine. Note, however, that only(*retrieve_keyinfo)(),
(*get_key_count)(), (*get_key_certifier_count)() and (*get_key_data)() are
required. Explanations of all the fields inpkc_policy_t are contained in the following
subsections.

Policy Module Data Fields

The structure contains the following data fields:

version Identifies the version of the certification API for which the module is
implemented. The value of this field is alwayspkc_V1 for DCE 1.2.

policy_id An object identifier that identifies the policy.

1311

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

flags Describes whether the module’s key retrieval function is threadsafe, and
whether the module supports simultaneous policy sessions.

The version andalg_id fields are required for all versions of this data structure. Other
fields may be version dependent.

Policy Module Functions

NULL may be supplied as the address of the(name)(), (open)(),
(establish_trustbase)() or (close)() routines, if the policy module does not
provide or require the corresponding feature; the presence of these functions
in a policy module is optional. However, all policy modules must provide a
(retrieve_keyinfo)() function.

Name

(name)() — Returns the policy name as a string, suitable for use in diagnostic or
auditing messages

This routine is optional.

Synopsis

char * (* name) (void);

Description

The name should be returned in storage allocated using thepkc_malloc() function
defined in pkc_common.h. The caller of this routine is expected to invoke
pkc_free(3sec)to release the storage once the name is no longer required.

Note that this is the only policy module routine that may be called without first calling
the (open)() routine.

Name

(open)() — Opens and initializes the policy module

(close)()— Closes the policy module

1312

DCE Security Service

policy_intro(3sec)

Both these routines are optional.

Synopsis

unsigned32 (*open) (void** context);

unsigned32 (*close) (void**context);

Parameters
Output

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

Description

Before invoking any policy routines (e.g.,(retrieve_keyinfo)()), the certification API
will invoke the module’s(open)() function. Once the module’s(close)()routine has
been invoked, the certification facility will invoke(open)() again before making any
further calls to the module.

Both the (open)() and the(close)() routines require only one argument,context. If
the policy module requires state information to be maintained between calls, it may
use thecontextparameter to do this. The information is initialized by the(open)()
routine and returned as an opaque object to the caller, who then passes the parameter
to subsequent(retrieve_keyinfo)(), (establish_trustbase)(), or (close)()calls.

Note that if the(open)() routine stores any state in thecontextparameter, the(close)()
routine should free this storage.

Name

(establish_trustbase)()— Initializes a trust base

1313

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

Synopsis

unsigned32 (*establish_trustbase) (void **context,
const pkc_trust_list_t & initial_trust,
const utc_t * date,
char initial_explicit_policy_required,
pkc_trust_list_t & out_trust);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

initial_trust Specifies the caller’s initial trust.

date Specifies time for which information is to be returned.

initial_explicit_policy_required
Specifies whether the initial certificate must explicitly contain the active
policy in its policies field.

Output

out_trust An extended trust list.

Description

This is a one-time call made by an application to initialize a trust base. It returns the
out_trustparameter, which contains an extended trust list. After this call is made, the
application can call(retrieve_keyinfo)() to obtain the public keys of any particular
principal. If the trust base does not change,(retrieve_keyinfo)() can be used to
look up another principal’s public key without incurring the cost of another call
to (establish_trustbase)(). A trust base will not change unless theinitial_trust list
changes.

Name

(*delete_trustbase)()— Frees storage allocated for a trust base

1314

DCE Security Service

policy_intro(3sec)

This routine is optional.

Synopsis

unsigned32 (*delete_trustbase) (void **context,
void ** trust_base_handle);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller.

Name

(*delete_keyinfo)() — Frees storage allocated for key information

This routine is optional.

Synopsis

unsigned32 (*delete_keyinfo) (void **context,
void ** keys_handle);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller.

1315

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

Description

(*delete_keyinfo)() frees storage that was allocated for key information.

Name

(*get_key_count)()— Returns number of keys

This routine is optional.

Synopsis

unsigned32 (*get_key_count) (void **context,
void * keys_handle,
size_t * key_count);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller.

Output

key_count Number of keys for the principal.

Description

(*get_key_count)() returns the number of keys for the principal. This value is
determined by reference to the policy-specific structure pointed to bykeys_handle,
a field in thekeyinfo_t structure passed by the original caller.

1316

DCE Security Service

policy_intro(3sec)

Name

(*get_key_data)()— Returns a public key

This routine is optional.

Synopsis

unsigned32 (*get_key_data) (void **context,
void * keys_handle,
unsignedkey_index,
unsigned char ** key_data,
size_t * key_length);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller (seepkc_intro(3sec)).

key_index Index (ranging from 0 tokey_count− 1) of the key desired.

Output

key_data The encoded public key.

key_length Length of the key data returned.

Description

(*get_key_data)()returns the public key specified byindex. Thekey_datareturned is
extracted from the policy-specific structure pointed to bykeys_handle, a field in the
keyinfo_t structure passed by the original caller.

key_datashould be returned in storage allocated using thepkc_malloc() function
defined inpkc_common.h.

1317

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

Name

(*get_key_trust)() — Returns information about key trust

This routine is optional.

Synopsis

unsigned32 (*get_key_trust) (void ** context,
void * keys_handle,
unsignedkey_index,
certification_flags_t * flagsuuid_t * domain,
pkc_generic_key_usage_t *usages);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller (seepkc_intro(3sec)).

key_index Index (ranging from 0 tokey_count− 1) of the key desired.

Output

flags Information about the trust that can be placed in the key (see below).

domain Indicates domain of retrieved key. A value of
sec_pk_domain_unspecified or NULL means that the policy
does not distinguish keys by domain.

usages Indicates usage key is intended for.

Description

(*get_key_trust)() returns information about the trust reposed in the key specified
by index. This information is determined by reference to the policy-specific structure
pointed to bykeys_handle, a field in thekeyinfo_t structure passed by the original
caller.

1318

DCE Security Service

policy_intro(3sec)

The returnedcertification_flags_t structure describes the trust that can be placed in
the key. It contains the following fields:

• trust_type

A trust_type_t value, which will be one of the following:

— UNTRUSTED

No trust (e.g., unauthenticated).

— DIRECT_TRUST

Direct trust via third party (e.g., authenticated registry).

— CERTIFIED_TRUST

Trust certified by caller’s trust base.

• missing_crls

A char; its value is TRUE (not 0) if one or more CRLs are missing.

• revoked

A char whose value is TRUE (not 0) if any certificate has been revoked (even if
it was still valid at the retrieval time).

If domain and usagesare passed as non-NULL pointers, upon successful return
these parameters will describe the domain and permitted usage(s) of the specified key.
Policies that do not distinguish keys according to domain will indicate a domain of
sec_pk_domain_unspecified; policies that do not distinguish keys according to usage
will indicate all usages are permitted.

The returnedusagesis a bit mask which describes the usage(s), if any, which the
key is restricted to. The value is formed by AND-ing together one or more of the
following constants:

PKC_KEY_USAGE_AUTHENTICATION
The key can be used to authenticate a user

PKC_KEY_USAGE_INTEGRITY
The key can be used to provide integrity protection

PKC_KEY_USAGE_KEY_ENCIPHERMENT
The key can be used to encrypt user keys

PKC_KEY_USAGE_DATA_ENCIPHERMENT
The key can be used to encrypt user data

1319

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

PKC_KEY_USAGE_KEY_AGREEMENT
The key can be used for key-exchange

PKC_KEY_USAGE_NONREPUDIATION
The key can be used for non-repudiation

PKC_CAKEY_USAGE_KEY_CERT_SIGN
The key can be used to sign key certificates

PKC_CAKEY_USAGE_OFFLINE_CRL_SIGN
The key can be used to sign CRLs

PKC_CAKEY_USAGE_TRANSACTION_SIGN
The key can be used to sign transactions

A returnedusagesvalue ofNULL (or a value with all bits set) means that the key is
suitable for any usage.

Name

(*get_key_certifier_count)() — Returns number of key’s certifying authorities

This routine is optional.

Synopsis

unsigned32 (*get_key_certifier_count) (void **context,
void * keys_handle,
unsigned key_index,
size_t * ca_count);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller (seepkc_intro(3sec)).

1320

DCE Security Service

policy_intro(3sec)

key_index Index (ranging from 0 tokey_count− 1) of the key desired.

Output

ca_count Number of certifying authorities for the key.

Description

(*get_key_certifier_count)() returns the number of certifying authorities for the key
specified byindex. This information is determined from the policy-specific structure
pointed to bykeys_handle, a field in thekeyinfo_t structure passed by the original
caller.

Name

(*get_key_certifier_info)() — Returns information about a certifying authority

This routine is optional.

Synopsis

unsigned32 (*get_key_certifier_info) (void ** context,
void * keys_handle,
unsignedkey_index,
unsignedca_index,
char ** ca_name,
utc_t * certification_start,
utc_t * certification_expiration,
char * is_crl_valid,
utc_t * last_crl_seen,
utc_t * next_crl_expected);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

1321

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

keys_handleA policy specific structure, contained in thekeyinfo_t structure passed
by the original caller (seepkc_intro(3sec)).

key_index Index (ranging from 0 tokey_count− 1) of the key desired.

ca_index Index of the certifier about whom information is desired.

Output

ca_name The name of the certifier.

certification_start
Time at which certification by this certifier starts.

certification_expiration
Time at which certification by this certifier ends.

is_crl_valid If TRUE, there is a certificate revocation list for this certifier.

last_crl_seen
Time at which certificate revocation list was last seen.

next_crl_expected
Time at which next certificate revocation list is expected.

Description

(*get_key_certifier_info)() returns information about the certifying authority specified
by ca_indexfor the key specified bykey_index.

The desired information is extracted by the routine from the policy-specific structure
pointed to bykeys_handle, a field in thekeyinfo_t structure passed by the original
caller.

Note that any of the return parameters may be passed as NULL if the corresponding
information is not required.

The certifier_nameparameter should be returned in storage allocated using the
pkc_malloc() function defined inpkc_common.h.

Name

(retrieve_keyinfo)() — Returns the public key for the specified principal

1322

DCE Security Service

policy_intro(3sec)

Synopsis

unsigned32 (*retrieve_keyinfo) (void ** context,
const void * trust_base_handle,
const x500name &subjectName,
const utc_t * date,
const uuid_t & domain,
pkc_key_usage_tdesired_usage,
char initial_explicit_policy_required,
void ** keys_handle);

Parameters
Input

context An opaque (to the caller) data structure containing any state information
required by the module across calls.

trust_base_handle
Specifies

subjectNameSpecifies the desired subject name.

date Specifies time for which information is to be returned.

domain Specifies the particular domain to which the key-search operation should
be restricted. Specifysec_pk_domain_unspecifiedor NULL to indicate
that keys for any domain should be retrieved.

desired_usage
Specifies the one or more specific usages to which the key-search
operation should be restricted.

initial_explicit_policy_required
Specifies whether the initial certificate must explicitly contain the active
policy in its policies field.

Output

keys_handleThe handle to the public key for the specified target principal.

1323

DCE 1.2.2 Application Development Reference

policy_intro(3sec)

Description

The (retrieve_keyinfo)() routine reads the certificate for the specified principal name,
verifies it, and (if the verification is successful) extracts the public key stored in it and
returns it to the caller.

The returned key information handle can be interrogated by variouspkc_cert_ routines
to extract the actual key and determine the degree of trust that can be placed in the
returned key.

If domain and desired_usageare passed as non-NULL pointers, upon successful
return these parameters will describe the domain and permitted usage(s) of the
specified key. Policies that do not distinguish keys according to domain will indicate
a domain of sec_pk_domain_unspecified; policies that do not distinguish keys
according to usage will indicate all usages are permitted.

The desired_usageparameter consists of a bit mask, formed by AND-ing together
one or more of the constants:

PKC_KEY_USAGE_AUTHENTICATION
The key can be used to authenticate a user

PKC_KEY_USAGE_INTEGRITY
The key can be used to provide integrity protection

PKC_KEY_USAGE_KEY_ENCIPHERMENT
The key can be used to encrypt user keys

PKC_KEY_USAGE_DATA_ENCIPHERMENT
The key can be used to encrypt user data

PKC_KEY_USAGE_KEY_AGREEMENT
The key can be used for key-exchange

PKC_KEY_USAGE_NONREPUDIATION
The key can be used for non-repudiation

PKC_CAKEY_USAGE_KEY_CERT_SIGN
The key can be used to sign key certificates

PKC_CAKEY_USAGE_OFFLINE_CRL_SIGN
The key can be used to sign CRLs

PKC_CAKEY_USAGE_TRANSACTION_SIGN
The key can be used to sign transactions

1324

DCE Security Service

policy_intro(3sec)

A NULL can be specified fordesired_usageto indicate that keys for any usage should
be retrieved.

Note that some of the routine’s parameters relate to X.509 version 3 certificates,
support for which is not committed for DCE 1.2. The API has been designed with
the intent that it be capable of supporting all currently defined versions of X.509, so
that it need not change when version 3 support is added. For version 1 or version
2 policies and certificates, thedesired_usageparameter will be ignored, and the
initial_explicit_policy_requiredparameter must be zero (specifying that the policy
need not explicitly appear in the first certificate).

Related Information

Functions:pkc_plcy_delete_keyinfo(3sec), pkc_plcy_delete_trustbase(3sec),
pkc_plcy_establish_trustbase(3sec), pkc_plcy_get_key_certifier_count(3sec),
pkc_plcy_get_key_certifier_info(3sec), pkc_plcy_get_key_count(3sec),
pkc_plcy_get_key_data(3sec), pkc_plcy_get_key_trust(3sec),
pkc_plcy_get_registered_policies(3sec), pkc_plcy_lookup_policy(3sec),
pkc_plcy_retrieve_key(3sec), pkc_plcy_retrieve_keyinfo(3sec),
pkc_register_policy(3sec).

1325

DCE 1.2.2 Application Development Reference

pkc_trustlist_intro(3sec)

pkc_trustlist_intro

Purpose Introduction to the certificate manipulation facility

Description

This reference page describes the data types used by the certificate manipulation
facility.

The certificate manipulation routines are a C++ interface. C++ must be used to perform
direct certificate manipulation.

Trust Lists

The trust list is the fundamental object within the certificate manipulation
facility. A trust list is a set of keys which are trusted, plus a list of
revoked certificate serial numbers. Keys are inserted into a trust list either
directly (via the pkc_add_trusted_key(3sec) function) or indirectly (via the
pkc_check_cert_against_trustlist(3sec)function). The latter routine will only add
keys if the certificate signature can be verified by a key already in the trust list, and
if the certificate has not been revoked.

Currently, trust lists are relatively static objects: once a key is inserted, its trust
properties do not change. If, for example, a key is added that is capable of extending
the trust in another key within the list, the second key is not automatically updated.

Using the Certificate Manipulation Facility

The way that a policy module is expected to use the facility is as follows.

1. Create an initial trust list containing the directly trusted keys, that is, the start
point(s) of all valid trust chains.

Typically, this set of keys will be used for multiple certificate chain evaluations.
If the policy wishes to impose additional path constraints over the constraints
expressed within the certificates, it must maintain a master copy of the original
trust list and clone it to create a modifiable version for each chain the policy
module wants to verify. After verification of a candidate chain, the cloned trust
list must be discarded so that the next trial verification starts from a known state.

1326

DCE Security Service

pkc_trustlist_intro(3sec)

2. Using the initial trust list as a starting point, the policy module retrieves a chain of
certificates and adds them to the trust list one by one, starting with the certificate(s)
closest to the start point(s).

Multiple chains may be evaluated simultaneously using a single trust list for
policies that do not wish to impose additional constraints on the trust chain;
however the policy module must ensure that for each trust-chain, certificates
are added in the correct order. A future auto-update enhancement may lift this
requirement.

Related Information

Functions:pkc_add_trusted_key(3sec), pkc_check_cert_against_trustlist(3sec),
pkc_lookup_key_in_trustlist(3sec), pkc_lookup_keys_in_trustlist(3sec),
pkc_revoke_certificate(3sec), pkc_revoke_certificates(3sec). Classes:
pkc_ca_key_usage.class(3sec), pkc_constraints.class(3sec),
pkc_generic_key_usage.class(3sec), pkc_key_policies.class(3sec),
pkc_key_policy.class(3sec), pkc_key_usage.class(3sec),
pkc_name_subord_constraint.class(3sec),
pkc_name_subord_constraints.class(3sec),
pkc_name_subtree_constraint.class(3sec),
pkc_name_subtree_constraints.class(3sec), pkc_pending_revocation.class(3sec),
pkc_revocation.class(3sec), pkc_revocation_list.class(3sec),
pkc_trust_list.class(3sec), pkc_trust_list_element.class(3sec),
pkc_trusted_key.class(3sec).

1327

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

gssapi_intro

Purpose Generic security service application programming interface

Description

This introduction includes general information about the generic security service
application programming interface (GSSAPI) defined in Internet RFC 1508,Generic
Security Service Application Programming Interface, and RFC 1509,Generic Security
Service API : C-bindings. It also includes an overview of error handling, data types,
and calling conventions, including the following:

• Integer types

• String and similar data

• Object identifiers (OIDs)

• Object identifier sets (OID sets)

• Credentials

• Contexts

• Authentication tokens

• Major status values

• Minor status values

• Names

• Channel bindings

• Optional parameters

General Information

The GSSAPI provides security services to applications using peer-to-peer
communications (instead of DCE-secure RPC). Using DCE GSSAPI routines,
applications can perform the following operations:

• Enabling an application to determine another application’s user

1328

DCE Security Service

gssapi_intro(3sec)

• Enabling an application to delegate access rights to another application

• Applying security services, such as confidentiality and integrity, on a per-message
basis

GSSAPI represents a secure connection between two communicating applications with
a data structure called asecurity context. The application that establishes the secure
connection is called thecontext indicatoror simply indicator. The context initiator
is like a DCE RPC client. The application that accepts the secure connection is the
context acceptoror simply acceptor. The context acceptor is like a DCE RPC server.

There are four stages involved in using the GSSAPI, as follows:

1. The context initiator acquires a credential with which it can prove its identity to
other processes. Similarly, the context acceptor cquires a credential to enable
it to accept a security context. Either application may omit this credential
acquistion and use their default credentials in subsequent stages. See the section
on credentials for more information.

The applications use credentials to establish their global identity. The global
identity can be, but is not necessarily, related to the local user name under which
the application is running. Credentials can contain either of the following:

• Login context

The login context includes a principal’s network credentials, as well as other
account information.

• Principal name and a key

The key corresponding to the principal name must be registered with the
DCE security registration in a key table. A set of GSSAPI routines enables
applications to register and use principal names.

2. The communicating applications establish a joint security context by exchanging
authentication tokens.

The security context is a pair of GSSAPI data structures that contain information
that is shared between the communicating applications. The information describes
the state of each application. This security context is required for per-message
security services.

To establish a security context, the context initiator calls the
gss_init_sec_context()routine to get atoken. The token is cryptographically
protected, opaque data. The context initiator transfers the token to the context

1329

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

acceptor, which in turn passes the token to thegss_accept_sec_context()routine
to decode and extract the shared information.

As part of the establishing the the security context, the context initiator is
authenticated to the context acceptor. The context initiator can require the context
acceptor to authenticate itself in return.

The context initiator candelegaterights to allow the context acceptor to act
as its agent. Delegation means the context initiator gives the context acceptor
the ability to initiate additional security contexts as an agent of the context
initiator. To delegate, the context initiator sets a flag on thegss_init_sec_context()
routine indicating that it wants to delegate and sends the returned token in
the normal way to the context acceptor. The acceptor passes this token to the
gss_accept_sec_context()routine, which generates a delegated credential. The
context acceptor can use the credential to initiate additional security contexts.

3. The applications exchange protected messages and data.

The applications can call GSSAPI routines to protect data exchanged in messages.
The application sends a protected message by calling the appropriate GSSAPI
routine to do the following:

• Apply protection

• Bind the message to the appropriate security context

The application can then send the resulting information to the peer application.

The application that receives the message passes the received data to a GSSAPI
routine, which removes the protection and validates the data.

GSSAPI treats application data as arbitrary octet strings. The GSSAPI per-
message security services can provide either of the following:

• Integrity and authentication of data origin

• Confidentiality, integrity, and authentication of data origin

4. When the applications have finished communicating, either one may instruct
GSSAPI to delete the security context.

There are two sets of GSSAPI routines, as follows:

• Standard GSSAPI routines, which are defined in the Internet RFC 1508,Generic
Security Service Application Programming Interface, and RFC 1509,Generic
Security Service API : C-bindings. These routines have the prefixgss_.

1330

DCE Security Service

gssapi_intro(3sec)

• OSF DCE extensions to the GSSAPI routines. These are additional routines that
enable an application to use DCE security services. These routines have the prefix
gssdce_.

The following sections provide an overview of the GSSAPI error handling and data
types.

Error Handling

Each GSSAPI routine returns two types of status values:

• Major status values, which are generic API routine errors or calling errors defined
in RFC 1509.

• Minor status values, which indicate DCE-specific errors.

If a routine has output parameters that contain pointers for storage allocated by the
routine, the output parameters will always contain a valid pointer even if the routine
returns an error. If no storage was allocated, the routine sets the pointer to NULL and
sets any length fields associated with the pointers (such as in thegss_buffer_desc
structure) to 0 (zero).

Minor status values usually contain more detailed information about the error. They are
not, however, portable between GSSAPI implementations. When designing portable
applications, use major status values for handling errors. Use minor status values to
debug applications and to display error and error-recovery information to users.

GSSAPI Data Types

This section provides an overview of the GSSAPI data types and their definitions.

Integer Types

The GSSAPI defines the following integer data type:

OM_uint32 32-bit unsigned integer

This integer data type is a portable data type that the GSSAPI routine definitions use
for guaranteed minimum bit-counts.

String and Similar Data

Many of the GSSAPI routines take arguments and return values that describe
contiguous multiple-byte data, such as opaque data and character strings. Use the

1331

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

gss_buffer_t data type, which is a pointer to the buffer descriptorgss_buffer_desc,
to pass the data between the GSSAPI routines and applications.

The gss_buffer_tdata type has the following structure:

typedef struct gss_buffer_desc_struct {

size_t length;

void *value;

} gss_buffer_desc, *gss_buffer_t;

The length field contains the total number of bytes in the data and thevalue field
contains a pointer to the actual data.

When using thegss_buffer_t data type, the GSSAPI routine allocates storage for
any data it passes to the application. The calling application must allocate the
gss_buffer_descobject. It can initialize unusedgss_buffer_descobjects with the
value GSS_C_EMPTY_BUFFER. To free the storage, the application calls the
gss_release_buffer()routine.

Object Identifier

Applications use thegss_OIDdata type to choose a security mechanism, either DCE
security or Kerberos, and to specify name types. Select a security mechanism by using
the following two OIDs:

• To use DCE security, specify eitherGSSDCE_C_OID_DCE_KRBV5_DESor
GSS_C_NULL_OID.

• To use Kerberos Version 5, specifyGSSDCE_C_OID_KRBV5_DES.

Use of the default security mechanisms, specified by the constant
GSS_C_NULL_OID, helps to ensure the portability of the application.

The gss_OID data type contains tree-structured values defined by ISO and has the
following structure:

typedef struct gss_OID_desc_struct {

OM_uint32 length;

void *elements;

} gss_OID_desc, *gss_OID;

1332

DCE Security Service

gssapi_intro(3sec)

The elementsfield of the structure points to the first byte of an octet string containing
the ASN.1 BER encoding of the value of thegss_OID data type. Thelength field
contains the number of bytes in the value.

The gss_OID_descvalues returned from the GSSAPI are read-only values. The
application should not try to deallocate them.

Object Identifier Sets

The gss_OID_setdata type represents one or more object identifiers. The values of
the gss_OID_setdata type are used to do the following:

• Report the available mechanisms supported by GSSAPI

• Request specific mechanisms

• Indicate which mechanisms a credential supports

The gss_OID_setdata type has the following structure:

typedef struct gss_OID_set_desc_struct {

int count;

gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

The count field contains the number of OIDs in the set. Theelementsfield is a
pointer to an array ofgss_oid_descobjects, each describing a single OID. The
application calls thegss_release_oid_set()routine to deallocate storage associated
with the gss_OID_setvalues that the GSSAPI routines return to the application.

Credentials

Credentials establish, or prove, the identity of an application or other principal.

Thegss_cred_id_tdata type is an atomic data type that identifies a GSSAPI credential
data structure.

Contexts

The security context is a pair of GSSAPI data structures that contain information
shared between the communicating applications. The information describes the
cryptographic state of each application. This security context is required for per-
message security services and is created by a successful authentication exchange.

1333

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

The gss_ctx_id_t data type contains an atomic value that identifies one end of a
GSSAPI security context. The data type is opaque to the caller.

Authentication Tokens

GSSAPI uses tokens to maintain the synchronization between the applications sharing
a security context. The token is a cryptographically protected bit string generated by
DCE security at one end of the GSSAPI security context for use by the peer application
at the other end of the security context. The data type is opaque to the caller.

The applications use thegss_buffer_tdata type as tokens to GSSAPI routines.

Major Status Values

GSSAPI routines return GSS status codes as theirOM_uint32 function value. These
codes indicate either generic API routine errors or calling errors.

A GSS status code can indicate a single, fatal generic API error from the routine and
a single calling error. Additional status information can also be contained in the GSS
status code. The errors are encoded into a 32-bit GSS status code, as follows:

MSB LSB

+---+

| Calling Error | Routine Error | Supplementary Info|

+---+

Bit 31 24 23 16 15 0

If a GSSAPI routine returns a GSS status code whose upper 16 bits contain a nonzero
value, the call failed. If the calling error field is nonzero, the context initiator’s use of
the routine was in error. In addition, the routine can indicate additional information
by setting bits in the supplementary information field of the status code. The tables
that follow describe the routine errors, calling errors, and supplementary information
status bits and their meanings.

The following table lists the GSSAPI routine errors and their meanings:

Name
Field
Value Meaning

GSS_S_BAD_MECH 1 The required mechanism is
unsupported.

GSS_S_NAME 2 The name passed is invalid.

1334

DCE Security Service

gssapi_intro(3sec)

Name
Field
Value Meaning

GSS_S_NAMETYPE 3 The name passed is unsupported.

GSS_S_BAD_BINDINGS 4 The channel bindings are
incorrect.

GSS_S_BAD_STATUS 5 A status value was invalid.

GSS_S_BAD_SIG 6 A token had an invalid signature.

GSS_S_NO_CRED 7 No credentials were supplied.

GSS_S_NO_CONTEXT 8 No context has been established.

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid.

GSS_S_DEFECTIVE
_CREDENTIAL

10 A credential was invalid.

GSS_S_CREDENTIALS
_EXPIRED

11 The referenced credentials
expired.

GSS_S_CONTEXT_EXPIRED 12 The context expired.

GSS_S_FAILURE 13 The routine failed. Check minor
status codes.

The following table lists the calling error values and their meanings:

Name Field
Value

Meaning

Name Value Meaning

GSS_S_CALL_INACCESSIBLE
_READ

1 Could not read a required input
parameter.

GSS_S_CALL_INACCESSIBLE
_WRITE

2 Could not write a required
output parameter.

GSS_S_BAD_STRUCTURE 3 A parameter was incorrectly
structured.

The following table lists the supplementary bits and their meanings.

1335

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

Name Bit Number Meaning

GSS_S_CONTINUE_NEEDED 0 (LSB) Call the routine again to
complete its function.

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of
an earlier token.

GSS_S_OLD_TOKEN 2 The token’s validity period
expired; the routine cannot
verify that the token is not a
duplicate of an earlier token.

GSS_S_UNSEQ_TOKEN 3 A later token has been
processed.

All GSS_S_symbols equate to completeOM_uint32 status codes, rather than to
bitfield values. For example, the actual value ofGSS_S_BAD_NAMETYPE (value
3 in the routine error field) is 3 << 16.

The major status codeGSS_S_FAILURE indicates that DCE security detected an
error for which no major status code is available. Check the minor status code for
details about the error. See the section on minor status values for more information.

The GSSAPI provides the following three macros:

• GSS_CALLING_ERROR()

• GSS_ROUTINE_ERROR()

• GSS_SUPPLEMENTARY_INFO()

Each macro takes a GSS status code and masks all but the relevant field. For example,
when you use theGSS_ROUTINE_ERROR() macro on a status code, it returns a
value. The value of the macro is arrived at by using only the routine errors field and
zeroing the values of the calling error and the supplementary information fields.

An additional macro,GSS_ERROR(), lets you determine whether the status code
indicated a calling or routine error. If the status code indicated a calling or routine
error, the macro returns a nonzero value. If no calling or routine error is indicated,
the routine returns a 0 (zero).

Note: At times, a GSSAPI routine that is unable to access
data can generate a platform-specific signal, instead of
returning a GSS_S_CALL_INACCESSIBLE_READ or
GSS_S_CALL_INACCESSIBLE_WRITE status value.

1336

DCE Security Service

gssapi_intro(3sec)

Minor Status Values

The GSSAPI routines return aminor_statusparameter to indicate errors from either
DCE security or Kerberos. The parameter can contain a single error, indicated by
an OM_uint32 value. TheOM_uint32 data type is equivalent to the DCE data type
error_status_t and can contain any DCE-defined error.

Names

Names identify principals. The GSSAPI authenticates the relationship between a name
and the principal claiming the name.

Names are represented in the following two forms:

• A printable form, for presentation to an application

• An internal, canonical form that is used by the API and is opaque to applications

The gss_import_name() and gss_display_name() routines convert names
between their printable form and theirgss_name_t data type. GSSAPI
supports only DCE principal names, which are identified by the constant OID,
GSSCDE_C_OID_DCENAME.

The gss_compare_names()routine compares internal form names.

Channel Bindings

You can define and use channel bindings to associate the security context with the
communications channel that carries the context. Channel bindings are communicated
to the GSSAPI by using the following structure:

typedef struct gss_channel_binding_struct {

OM_uint32 initiator_addrtype;

gss_buffer_desc initiator_address;

OM_uint32 acceptor_addrtype;

gss_buffer_desc aceptor_address;

gss_buffer_desc application_data;

} *gss_channel_bindings_t;

Use the initiator_addrtype and acceptor_addrtypefields to initiate the type of
addresses contained in theinitiator_addressandacceptor_addressbuffers. The address
types and theiraddrtype values are as follows:

Unspecified GSS_C_AF_UNSPEC

1337

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

Host-local GSS_C_AF_LOCAL

DARPA Internet
GSS_C_AF_INET

ARPAnet IMP
GSS_C_AF_IMPLINK

pup protocols (for example, BSP)
GSS_C_AF_PUP

MIT CHAOS protocol
GSS_C_AF_CHAOS

XEROX NS GSS_C_AF_NS

nbs GSS_C_AF_NBS

ECMA GSS_C_AF_ECMA

datakit protocols
GSS_C_AF_DATAKIT

CCITT protocols (for example, X.25)
GSS_C_AF_CCITT

IBM SNA GSS_C_AF_SNA

Digital DECnet
GSS_C_AF_DECnet

Direct data link interface
GSS_C_AF_DLI

LAT GSS_C_AF_LAT

NSC Hyperchannel
GSS_C_AF_HYLINK

AppleTalk GSS_C_AF_APPLETALK

BISYNC 2780/3780
GSS_C_AF_BSC

Distributed system services
GSS_C_AF_DSS

OSI TP4 GSS_C_AF_OSI

1338

DCE Security Service

gssapi_intro(3sec)

X25 GSS_C_AF_X25

No address specified
GSS_C_AF_NULLADDR

The tags specify address families rather than addressing formats. For address
families that contain several alternative address forms, theinitiator_addressand the
acceptor_addressfields should contain sufficient information to determine which
address form is used. Format the bytes that contain the addresses in the order in
which the bytes are transmitted across the network.

The GSSAPI creates an octet string by concatenating all the fields (initiator_addrtype,
initiator_address, acceptor_addrtype, acceptor_address, and application_data). The
security mechanism signs the octet string and binds the signature to the token generated
by thegss_init_sec_context()routine. The context acceptor presents the same bindings
to thegss_accept_sec_context()routine, which evaluates the signature and compares
it to the signature in the token. If the signatures differ, thegss_accept_sec_context()
routine returns aGSS_S_BAD_BINDINGSerror, and the context is not established.

Some security mechanisms check that theinitiator_address field of the channel
bindings presented to thegss_init_sec_context()routine contains the correct network
address of the host system. Therefore portable applications should use either the correct
address type and value or theGSS_C_AF_NULLADDR for the initiator_addrtype
address field. Some security mechanisms include the channel binding data in the
token instead of a signature, so portable applications should not use confidential data
as channel-binding components. The GSSAPI does not verify the address or include
the plain text bindings information in the token.

Optional Parameters

In routine descriptions,optional parametersallow the application to request default
behaviors by passing a default value for the parameter. The following conventions are
used for optional parameters:

1339

DCE 1.2.2 Application Development Reference

gssapi_intro(3sec)

Convention Value Default Explanation

gss_buffer_t types GSS_C_NO_BUFFER For an input
parameter, indicates
no data is supplied.
For an output
parameter, indicates
that the information
returned is not
required by the
application.

Integer types (input) Refer to the
reference pages for
default values.

Integer types (output) NULL Indicates that the
application does not
require the
information.

Pointer types (output) NULL Indicates that the
application does not
require the
information.

OIDs GSS_C_NULL_OID Indicates the default
choice for name type
or security
mechanism.

OID sets GSS_C_NULL_OID_SET Indicates the default
set of security
mechanisms, DCE
security and
Kerberos.

1340

DCE Security Service

gssapi_intro(3sec)

Convention Value Default Explanation

Credentials GSS_C_NO_CREDENTIAL Indicates that the
application should
use the default
credential handle.

Channel bindings GSS_C_NO_CHANNEL
_BINDINGS

Indicates that no
channel bindings are
used.

Related Information

Books:DCE 1.2.2 Application Development Guide—Core Components.

1341

DCE 1.2.2 Application Development Reference

dce_acl_copy_acl(3sec)

dce_acl_copy_acl

Purpose Copies an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_copy_acl(
sec_acl_t *source,
sec_acl_t *target,
error_status_t *status);

Parameters
Input

source A pointer to the ACL to be copied.

target A pointer to the new ACL that is to receive the copy.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_copy_acl()routine makes a copy of a specified ACL. The caller passes
the space for the target ACL, but the space for thesec_acl_entriesarray is allocated.
To free the allocated space, calldce_acl_obj_free_entries(), which frees the entries,
but not the ACL itself.

1342

DCE Security Service

dce_acl_copy_acl(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_no_memory
The rpc_sm_allocate()routine could not obtain memory.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_free_entries(3sec).

1343

DCE 1.2.2 Application Development Reference

dce_acl_inq_acl_from_header(3sec)

dce_acl_inq_acl_from_header

Purpose Retrieves the UUID of an ACL from an item’s header in a backing store

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_acl_from_header(
dce_db_header_tdb_header,
sec_acl_type_tsec_acl_type,
uuid_t * acl_uuid,
error_status_t *status);

Parameters
Input

db_header The backing store header containing the ACL object.

sec_acl_typeThe type of ACL to be identified:

• sec_acl_type_object

• sec_acl_type_default_object

• sec_acl_type_default_container

Output

acl_uuid A pointer to the UUID of the ACL object.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

1344

DCE Security Service

dce_acl_inq_acl_from_header(3sec)

Description

Thedce_acl_inq_acl_from_header()routine gets the UUID for an ACL object of the
specified type from the specified backing store header.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This error is
passed through fromdce_db_fetch().)

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID. (This error is passed through fromdce_db_fetch().)

sec_acl_invalid_type
The sec_acl_typeparameter does not contain a valid type.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_resolve_by_name(3sec), dce_acl_resolve_by_uuid(3sec).

1345

DCE 1.2.2 Application Development Reference

dce_acl_inq_client_creds(3sec)

dce_acl_inq_client_creds

Purpose Returns the client’s credentials

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_client_creds(
handle_t handle,
sec_cred_pa_handle_t *creds,
error_status_t *status);

Parameters
Input

handle The remote procedure call binding handle.

Output

creds A pointer to the returned credentials, or NULL if unauthorized.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_inq_client_creds()routine returns the client’s security credentials found
through the RPC binding handle.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

1346

DCE Security Service

dce_acl_inq_client_creds(3sec)

error_status_ok
The call was successful.

rpc_s_authn_authz_mismatch
Either the client, or the server, or both is not using therpc_c_authz_dce
authorization service.

rpc_s_invalid_binding
Invalid RPC binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_binding_has_no_auth
Binding has no authentication information. The client or the server
should have calledrpc_binding_set_auth_info().

Related Information

Functions:dce_acl_inq_client_permset(3sec),
dce_acl_inq_permset_for_creds(3sec), dce_acl_register_object_type(3sec).

1347

DCE 1.2.2 Application Development Reference

dce_acl_inq_client_permset(3sec)

dce_acl_inq_client_permset

Purpose Returns the client’s permissions corresponding to an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_client_permset(
handle_t handle,
uuid_t *mgr_type,
uuid_t *acl_uuid,
uuid_t * owner_id,
uuid_t * group_id,
sec_acl_permset_t*permset,
error_status_t *status);

Parameters
Input

handle The remote procedure call binding handle.

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting
the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

acl_uuid A pointer to the UUID of the ACL.

owner_id Identifies the owner of the object that is protected by the specified ACL.
If the sec_acl_e_type_user_objACLE (ACL entry) exists, then the
owner_id (uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_objis returned.

group_id Identifies the group to which the object that is protected by the
specified ACL belongs. If the asec_acl_e_type_group_objACLE

1348

DCE Security Service

dce_acl_inq_client_permset(3sec)

exists, thegroup_id (uuid_t pointer) can not be NULL. If it is, the
error sec_acl_expected_group_objis returned.

Output

permset The set of permissions allowed to the client.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_inq_client_permset() routine returns the client’s permissions that
correspond to the ACL. It finds the ACL in the database as defined for this
ACL manager type withdce_acl_register_object_type(). The client’s credentials
are determined from the binding handle. The ACL and credentials determine the
permission set.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

acl_s_bad_manager_type
The mgr_typeparameter does not match the manager type in the ACL
itself.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_inq_client_pac(3sec), dce_acl_inq_permset_for_pac(3sec),
dce_acl_register_object_type(3sec).

1349

DCE 1.2.2 Application Development Reference

dce_acl_inq_permset_for_creds(3sec)

dce_acl_inq_permset_for_creds

Purpose Determines a principal’s complete extent of access to an object

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_permset_for_creds(
sec_cred_pa_handle_t *creds,
sec_acl_t *ap,
uuid_t * owner_id,
uuid_t * group_id,
sec_acl_posix_semantics_tposix_semantics,
sec_acl_permset_t *perms,
error_status_t *status);

Parameters
Input

creds The security credentials that represent the principal.

ap The ACL that represents the object.

owner_id Identifies the owner of the object that is protected by the specified ACL.
If the sec_acl_e_type_user_objACLE (ACL entry) exists, then the
owner_id (uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_objis returned.

group_id Identifies the group in which the object that is protected by the
specified ACL belongs. If the asec_acl_e_type_group_objACLE
exists, thegroup_id (uuid_t pointer) can not be NULL. If it is, the
error sec_acl_expected_group_objis returned.

posix_semantics
This parameter is currently unused in OSF’s implementation.

1350

DCE Security Service

dce_acl_inq_permset_for_creds(3sec)

Output

perms A bit mask containing a 1 bit for each permission granted by the ACL
and 0 (zero) bits elsewhere.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok.

Description

The dce_acl_inq_permset_for_creds()routine returns a principal’s complete extent
of access to some object. This routine is useful for implementing operations such as
the conventional UNIX access function.

The values allowed for the credentials representing the principal include NULL or
unauthenticated.

The routine normally returns TRUE, even when the access permissions are determined
to be all 0 (zero) bits (dce_acl_c_no_permissions). It returns FALSE only on illogical
error conditions (such as unsupported ACL entry types), in which case the status output
gets the error status code and thepermsis set todce_acl_c_no_permissions.

All ACL entry types (of typesec_acl_entry_type_t) are supported by this routine

Notes

The meanings of the permission bits have no effect on the action of the
dce_acl_inq_permset_for_creds()routine. The interpretation of the bits is left
entirely to the application.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

1351

DCE 1.2.2 Application Development Reference

dce_acl_inq_permset_for_creds(3sec)

Related Information

Functions:dce_acl_inq_client_creds(3sec), dce_acl_inq_client_permset(3sec),
dce_acl_register_object_type(3sec).

1352

DCE Security Service

dce_acl_inq_prin_and_group.3sec()

dce_acl_inq_prin_and_group.3sec

Purpose Inquires the principal and group of an RPC caller

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_inq_prin_and_group(
handle_t handle,
uuid_t * principal,
uuid_t * group,
error_status_t *status);

Parameters
Input

handle The remote procedure call binding handle.

Output

principal The UUID of the principal of the caller of the RPC.

group The UUID of the group of the caller of the RPC.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_inq_prin_and_group() routine finds the principal and group of the
caller of a remote procedure call. This information is useful for filling in the
owner_id and group_id fields of standard data or object headers. Setting the owner
and group make sense only if your ACL manager will handle owners and groups,

1353

DCE 1.2.2 Application Development Reference

dce_acl_inq_prin_and_group.3sec()

which you specify with thedce_acl_c_has_ownerand dce_acl_c_has_groupsflags
to dce_acl_register_object_type().

If the caller is unauthenticated, the principal and group are filled with theNIL UUID,
generated throughuuid_create_nil().

Examples

dce_db_std_header_init(db, &data, ..., &st);

dce_acl_inq_prin_and_group(h, \

&data.h.owner_id, &data.h.group_id, &st);

Errors

The following describes a partial list of errors that might be returned. Refer
to the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all
error messages. Thedce_acl_inq_prin_and_group()routine can return errors from
dce_acl_inq_client_creds(), sec_cred_get_initiator(), and sec_cred_get_pa_data().
It generates no error messages of its own.

Related Information

Functions:dce_acl_register_object_type(3sec).

1354

DCE Security Service

dce_acl_is_client_authorized(3sec)

dce_acl_is_client_authorized

Purpose Checks whether a client’s credentials are authenticated

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_is_client_authorized(
handle_t handle,
uuid_t * mgr_type,
uuid_t * acl_uuid,
uuid_t * owner_id,
uuid_t * group_id,
sec_acl_permset_tdesired_perms,
boolean32 *authorized,
error_status_t *status);

Parameters
Input

handle The client’s binding handle.

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting
the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

acl_uuid A pointer to the UUID of the ACL.

owner_id Identifies the owner of the object that is protected by the specified ACL.
If the sec_acl_e_type_user_objACLE (ACL entry) exists, then the
owner_id (uuid_t pointer) can not be NULL. If it is, then the error
sec_acl_expected_user_objis returned.

1355

DCE 1.2.2 Application Development Reference

dce_acl_is_client_authorized(3sec)

group_id Identifies the group to which the object that is protected by the
specified ACL belongs. If the asec_acl_e_type_group_objACLE
exists, thegroup_id (uuid_t pointer) can not be NULL. If it is, the
error sec_acl_expected_group_objis returned.

desired_perms
A permission set containing the desired privileges. This is a 32-bit set of
permission flags. The flags may represent the conventional file system
permissions (read, write, and execute), the extended AFS permissions
(owner, insert, and delete), or some other permissions supported by the
specific application ACL manager. For example, a bit that is unused for
file system permissions may mean withdrawals are allowed for a bank
ACL manager, while it may mean matrix inversions are allowed for a
CPU ACL manager. Themgr_typeidentifies the semantics of the bits.

Output

authorized A pointer to the TRUE or FALSE return value of the routine.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

Thedce_acl_is_client_authorized()routine returns TRUE in theauthorizedparameter
if and only if all of the desired permissions (represented as bits indesired_perms) are
included in the actual permissions corresponding to thehandle, themgr_type, and the
acl_uuid UUID. Otherwise, the returned value is FALSE.

Notes

The routine’s return value isvoid. The returnedboolean32value is in theauthorized
parameter.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

1356

DCE Security Service

dce_acl_is_client_authorized(3sec)

acl_s_bad_manager_type
The mgr_typedoes not match the manager type in the ACL itself.

error_status_ok
The call was successful.

1357

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_any_other_entry(3sec)

dce_acl_obj_add_any_other_entry

Purpose Adds permissions forany_other ACL entry to a given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_any_other_entry(
sec_acl_t *acl,
sec_acl_permset_tpermset,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

permset The permissions to be granted tosec_acl_e_type_any_other.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_any_other_entry() routine adds an ACL entry for
sec_acl_e_type_any_otheraccess to the specified ACL. It is equivalent to calling
the dce_acl_obj_add_obj_entry()routine with thesec_acl_e_type_any_otherentry
type, but is more convenient.

1358

DCE Security Service

dce_acl_obj_add_any_other_entry(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_obj_entry(3sec).

1359

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_foreign_entry(3sec)

dce_acl_obj_add_foreign_entry

Purpose Adds permissions for an ACL entry for a foreign user or group to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_foreign_entry(
sec_acl_t *acl,
sec_acl_entry_type_tentry_type,
sec_acl_permset_tpermset,
uuid_t * realm,
uuid_t * id,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

entry_type Must be one of the following types:

• sec_acl_e_type_foreign_user

• sec_acl_e_type_foreign_group.

• sec_acl_e_type_for_user_deleg

• sec_acl_e_type_for_group_deleg

permset The permissions to be granted to the foreign group or foreign user.

realm The UUID of the foreign cell.

id The UUID identifying the foreign group or foreign user.

1360

DCE Security Service

dce_acl_obj_add_foreign_entry(3sec)

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_foreign_entry() routine adds an ACL entry for
sec_acl_e_type_foreign_xxxaccess to the specified ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

sec_acl_invalid_entry_type
The type specified inentry_typeis not one of the four specified types.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_id_entry(3sec), sec_id_parse_name(3sec).

1361

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_group_entry(3sec)

dce_acl_obj_add_group_entry

Purpose Adds permissions for a group ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_group_entry(
sec_acl_t *acl,
sec_acl_permset_tpermset,
uuid_t * group,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

permset The permissions to be granted to the group.

group The UUID identifying the group.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_group_entry()routine adds a group ACL entry to the given
ACL. It is equivalent to calling thedce_acl_obj_add_id_entry()routine with the
sec_acl_e_type_groupentry type, but is more convenient.

1362

DCE Security Service

dce_acl_obj_add_group_entry(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_id_entry(3sec).

1363

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_id_entry(3sec)

dce_acl_obj_add_id_entry

Purpose Adds permissions for an ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_id_entry(
sec_acl_t *acl,
sec_acl_entry_type_tentry_type,
sec_acl_permset_tpermset,
uuid_t * id,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

entry_type Must be one of the following types:

• sec_acl_e_type_user

• sec_acl_e_type_group

• sec_acl_e_type_foreign_other

• sec_acl_e_type_user_deleg

• sec_acl_e_type_group_deleg

• sec_acl_e_type_for_other_deleg

permset The permissions to be granted to theuser, group, or foreign_other.

id The UUID identifying theuser, group, or foreign_other to be added

1364

DCE Security Service

dce_acl_obj_add_id_entry(3sec)

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

Thedce_acl_obj_add_id_entry()routine adds an ACL entry (user or group, domestic
or foreign) to the given ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

sec_acl_invalid_entry_type
The type specified inentry_typeis not one of the six specified types.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_group_entry(3sec),
dce_acl_obj_add_user_entry(3sec).

1365

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_obj_entry(3sec)

dce_acl_obj_add_obj_entry

Purpose Adds permissions for an object (obj) ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_obj_entry(
sec_acl_t *acl,
sec_acl_entry_type_tentry_type,
sec_acl_permset_tpermset,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

entry_type Must be one of these types:

• sec_acl_e_type_unauthenticated

• sec_acl_e_type_any_other

• sec_acl_e_type_mask_obj

• sec_acl_e_type_user_obj

• sec_acl_e_type_group_obj

• sec_acl_e_type_other_obj

• sec_acl_e_type_user_obj_deleg

• sec_acl_e_type_group_obj_deleg

• sec_acl_e_type_other_obj_deleg

• sec_acl_e_type_any_other_deleg

1366

DCE Security Service

dce_acl_obj_add_obj_entry(3sec)

permset The permissions to be granted.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_obj_entry()routine adds anobj ACL entry to the given ACL.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

sec_acl_duplicate_entry
An obj ACL entry type already exits for the given ACL.

sec_acl_invalid_entry_type
The type specified inentry_typeis not a valid ACL entry type.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_any_other_entry(3sec),
dce_acl_obj_add_unauth_entry(3sec).

1367

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_unauth_entry(3sec)

dce_acl_obj_add_unauth_entry

Purpose Adds permissions forunauthenticated ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_unauth_entry(
sec_acl_t *acl,
sec_acl_permset_tpermset,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

permset The permissions to be granted forsec_acl_e_type_unauthenticated.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_unauth_entry() routine adds ACL entry for
sec_acl_e_type_unauthenticatedto the given ACL. It is equivalent to calling the
dce_acl_obj_add_obj_entry() routine with the sec_acl_e_type_unauthenticated
entry type, but it is more convenient.

1368

DCE Security Service

dce_acl_obj_add_unauth_entry(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_obj_entry(3sec).

1369

DCE 1.2.2 Application Development Reference

dce_acl_obj_add_user_entry(3sec)

dce_acl_obj_add_user_entry

Purpose Adds permissions for a user ACL entry to the given ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_add_user_entry(
sec_acl_t *acl,
sec_acl_permset_tpermset,
uuid_t * user,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be modified.

permset The permissions to be granted to the user.

user The UUID identifying the user to be added.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_add_user_entry()routine adds a user ACL entry to the given
ACL. It is equivalent to calling thedce_acl_obj_add_id_entry()routine with the
sec_acl_e_type_userentry type, but it is more convenient.

1370

DCE Security Service

dce_acl_obj_add_user_entry(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_add_id_entry(3sec).

1371

DCE 1.2.2 Application Development Reference

dce_acl_obj_free_entries(3sec)

dce_acl_obj_free_entries

Purpose Frees space used by an ACL’s entries

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_free_entries(
sec_acl_t *acl,
error_status_t *status);

Parameters
Input

acl A pointer to the ACL that is to be freed.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_free_entries()routine frees space used by an ACL’s entries, then
sets the pointer to the ACL entry array to NULL and the entry count to 0 (zero).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

1372

DCE Security Service

dce_acl_obj_free_entries(3sec)

Related Information

Functions:dce_acl_obj_init(3sec).

1373

DCE 1.2.2 Application Development Reference

dce_acl_obj_init(3sec)

dce_acl_obj_init

Purpose Initializes an ACL

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_obj_init(
uuid_t * mgr_type,
sec_acl_t *acl,
error_status_t *status);

Parameters
Input

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting
the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

acl A pointer to the ACL that is to be created.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_obj_init() routine initializes an ACL. The caller passes in the pointer to
the already-existing ACL structure (of typesec_acl_t), for which the caller provides
the space.

1374

DCE Security Service

dce_acl_obj_init(3sec)

Examples

This example shows the use ofdce_acl_obj_init() and the corresponding routine to
free the entries,dce_acl_obj_free_entries().

sec_acl_t acl;

extern uuid_t my_mgr_type;

error_status_t status;

dce_acl_obj_init(&my_mgr_type, &acl, &status);

/* ... use the ACL ... */

dce_acl_obj_free_entries(&acl, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_obj_free_entries(3sec).

1375

DCE 1.2.2 Application Development Reference

dce_acl_register_object_type(3sec)

dce_acl_register_object_type

Purpose Registers an ACL manager’s object type

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_register_object_type(
dce_db_handle_tdb,
uuid_t * mgr_type,
unsigned32printstring_size,
sec_acl_printstring_t *printstring,
sec_acl_printstring_t *mgr_info,
sec_acl_permset_tcontrol_perm,
sec_acl_permset_ttest_perm,
dce_acl_resolve_func_tresolver,
void * resolver_arg,
unsigned32flags,
error_status_t *status);

Parameters
Input

db The db parameter specifies the handle to the backing store database
in which the ACL objects are stored. It must be indexed by UUID
and not use backing store headers. The database is obtained through
dce_db_open(), which is called prior to this routine.

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting
the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

1376

DCE Security Service

dce_acl_register_object_type(3sec)

printstring_size
The number of items in theprintstring array.

printstring An array of sec_acl_printstring_t structures containing the printable
representation of each specified permission. These are the printstrings
used bydcecpor other ACL editors.

mgr_info A single sec_acl_printstring_t containing the name and short
description for the given ACL manager.

control_perm
The permission set needed to change an ACL, typically
sec_acl_perm_control. If the value is 0, then anyone is allowed to
change the ACL. The permission must be listed in theprintstring .

test_perm The permission set needed to test an ACL, typicallysec_acl_perm_test.
If the value is 0, then anyone is allowed to test the ACL. The permissions
must be listed in theprintstring .

resolver The function for finding an ACL’s UUID.

resolver_arg The argument to pass to theresolver function. If using
dce_acl_resolve_by_name() or dce_acl_resolve_by_uuid(),
then pass the database handle to the name or UUID backing store
database. The backing store must use the standard backing store header.
Seedce_db_open(3dce).

flags A bit mask with the following possible bit values:

dce_acl_c_orphans_ok
If this bit is specified, it is possible to replace an ACL
with one in which no control bits are turned on in any
of the ACL entries. (Use therdacl_replace operation to
replace an ACL.) This is a write-once operation, and once
it has been done, no one can change the ACL.

dce_acl_c_has_owner
If this bit is set, then the ACL manager supports the
concept of user owners of objects. This is required to use
ACL entries of typeuser_objanduser_obj_deleg. entries
such assec_acl_e_type_user_obj.

dce_acl_c_has_groups
A similar bit for group owners of objects.

1377

DCE 1.2.2 Application Development Reference

dce_acl_register_object_type(3sec)

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_register_object_type()routine registers an ACL manager’s object types
with the ACL library.

The resolver function may be the dce_acl_resolve_by_name() or the
dce_acl_resolve_by_uuid()routine, if the application uses the standard header in the
backing store database, or it may be some other user-supplied routine, as appropriate.
A user-supplied routine must be of typedce_acl_resolve_func_t. The resolver
function finds the UUID of the ACL of the given object. Theresolver’s parameters
must match the typedce_db_convert_func_t defined in the file<dce/aclif.h>.
Observe the use of the resolver functiondce_acl_convert_func()in EXAMPLES .

Unless thedce_acl_c_orphans_okbit is set in theflags parameter, all ACLs must
always havesomeoneable to modify the ACL.

Another way to express this is that ifdce_acl_c_orphans_okis cleared in a
call to dce_acl_register_object_type()where a control_perm value is specified,
then a subsequent ACL replacement using an ACL that has no control bits set
in any nondelegation entry will fail, resulting in theacl_s_no_control_entries
error. If dce_acl_c_orphans_okis set, but nocontrol_permbits are specified, then
dce_acl_c_orphans_okis ignored, and the replacement works in all cases.

Files

/usr/include/dce/aclif.h
Definition of dce_acl_resolve_func_t.

Examples

The dce_acl_register_object_type()routine should be called once for each type of
object that the server manages. A typical call is shown below. The sample code defines
three variables: the manager printstring, the ACL printstrings, and the ACL database.
Note that the manager printstring does not define any permission bits; they will be

1378

DCE Security Service

dce_acl_register_object_type(3sec)

set by the library to be the union of all permissions in the ACL printstring. The code
also uses the globalmy_uuid as the ACL manager type UUID. The ACL printstring
uses the standardsec_acl_perm_XXXbits.

include <dce/aclif.h>

/* Manager help. */

sec_acl_printstring_t my_acl_help = {

"me", "My manager"

};

/*

* ACL permission descriptions;

* these are from /usr/include/dce/aclbase.idl

* This example refrains from redefining any of the

* conventionally established bits.

*/

sec_acl_printstring_t my_printstring[] = {

{ "r", "read", sec_acl_perm_read },

{ "f", "foobar", sec_acl_perm_unused_00000080 },

{ "w", "write", sec_acl_perm_write },

{ "d", "delete, sec_acl_perm_delete },

{ "c", "control", sec_acl_perm_control }

};

dce_db_open("my_acldb", NULL,

dce_db_c_std_header | dce_db_c_index_by_uuid,

(dce_db_convert_func_t)dce_acl_convert_func,

&dbh, &st);

dce_acl_register_object_type(dbh, &my_manager_uuid,

sizeof my_printstring / sizeof my_printstring[0],

my_printstring, &my_acl_help, sec_acl_perm_control,

0, xxx_resolve_func, NULL, 0, &st);

If the ACL manager can use the standard collection of ACL bits (that is, has not
defined any special ones), then it can use the global variabledce_acl_g_printstring
that predefines a printstring. Here is an example of its use:

1379

DCE 1.2.2 Application Development Reference

dce_acl_register_object_type(3sec)

dce_acl_register_object_type(acl_db, &your_mgr_type,

sizeof dce_acl_g_printstring / sizeof dce_acl_g_printstring[0],

dce_acl_g_printstring, &your_acl_help,

dced_perm_control, dced_perm_test, your_resolver, NULL, 0, st);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

acl_s_owner_not_allowed
In a rdacl_replaceoperation an attempt was made to add an ACL entry
of typesec_acl_e_type_user_objor sec_acl_e_type_user_obj_delegto
a manager that does not support object users ownership.

acl_s_owner_not_allowed
In a rdacl_replaceoperation an attempt was made to add an ACL entry
of typesec_acl_e_type_user_objor sec_acl_e_type_user_obj_delegto
a manager that does not support object users ownership.

acl_s_group_not_allowed
In a rdacl_replace operation an attempt was made to
add an ACL entry of type sec_acl_e_type_group_obj or
sec_acl_e_type_group_obj_delegto a manager that does not
support object group ownership.

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the ACL
where no entries have control permission.

acl_s_owner_not_allowed
In a rdacl_replaceoperation an attempt was made to add an ACL entry
of typesec_acl_e_type_user_objor sec_acl_e_type_user_obj_delegto
a manager that does not support object users ownership.

acl_s_group_not_allowed
In a rdacl_replace operation an attempt was made to
add an ACL entry of type sec_acl_e_type_group_obj or
sec_acl_e_type_group_obj_delegto a manager that does not
support object group ownership.

1380

DCE Security Service

dce_acl_register_object_type(3sec)

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the
ACL where no entries have control permission. CL entry of type
sec_acl_e_type_group_objor sec_acl_e_type_group_obj_delegto a
manager that does not support object group ownership.

acl_s_no_control_entries
In a rdacl_replace operation an attempt was made to replace the ACL
where no entries have control permission.

Related Information

Functions:dce_acl_resolve_by_name(3sec), dce_acl_resolve_by_uuid(3sec),
dce_db_open(3dce).

1381

DCE 1.2.2 Application Development Reference

dce_acl_resolve_by_name(3sec)

dce_acl_resolve_by_name

Purpose Finds an ACL’s UUID, given an object’s name

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

void dce_acl_resolve_by_name(
handle_t handle,
sec_acl_component_name_tcomponent_name,
sec_acl_type_tsec_acl_type,
uuid_t * mgr_type,
boolean32writing,
void * resolver_arg,
uuid_t * acl_uuid,
error_status_t *status);

Parameters
Input

handle A client binding handle passed into the server stub. Usesec_acl_bind()
to create this handle.

component_name
A character string containing the name of the target object.

sec_acl_typeThe type of ACL to be resolved:

• sec_acl_type_object

• sec_acl_type_default_object

• sec_acl_type_default_container

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting

1382

DCE Security Service

dce_acl_resolve_by_name(3sec)

the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

writing This parameter is ignored in OSF’s implementation.

resolver_arg This argument is passed intodce_acl_register_object_type(). It should
be a handle for a backing store indexed by name.

Output

acl_uuid The ACL UUID, as resolved bydce_acl_resolve_by_name().

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_resolve_by_name()routine finds an ACL’s UUID, given an object’s
name, as provided in thecomponent_nameparameter. The user does not call this
function directly. It is an instance of the kind of function provided to theresolver
argument ofdce_acl_register_object_type().

If dce_acl_resolve_by_name()anddce_acl_resolve_by_uuid()are inappropriate, the
user ofdce_acl_register_object_type()must provide some otherresolverfunction.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_register_object_type(3sec), dce_acl_resolve_by_uuid(3sec),
dce_db_open(3dce), dce_db_header_fetch(3dce).

1383

DCE 1.2.2 Application Development Reference

dce_acl_resolve_by_uuid(3sec)

dce_acl_resolve_by_uuid

Purpose Finds an ACL’s UUID, given an object’s UUID

Synopsis
#include <dce/dce.h>
#include <dce/aclif.h>

dce_acl_resolve_func_t dce_acl_resolve_by_uuid(
handle_t handle,
sec_acl_component_name_tcomponent_name,
sec_acl_type_tsec_acl_type,
uuid_t * mgr_type,
boolean32writing,
void * resolver_arg,
uuid_t * acl_uuid,
error_status_t *status);

Parameters
Input

handle A client binding handle passed into the server stub. Usesec_acl_bind()
to create this handle.

component_name
A character string containing the name of the target object. (The
dce_acl_resolve_by_uuid()routine ignores this parameter.)

sec_acl_typeThe type of ACL to be resolved:

• sec_acl_type_object

• sec_acl_type_default_object

• sec_acl_type_default_container

1384

DCE Security Service

dce_acl_resolve_by_uuid(3sec)

mgr_type A pointer to the UUID identifying the type of the ACL manager in
question. There may be more than one type of ACL manager protecting
the object whose ACL is bound to the input handle. Use this parameter
to distinguish them.

writing This parameter is ignored in OSF’s implementation.

resolver_arg This argument is passed intodce_acl_register_object_type(). It should
be a handle for a backing store indexed by UUID.

Output

acl_uuid The ACL UUID, as resolved bydce_acl_resolve_by_uuid().

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_acl_resolve_by_uuid()routine finds an ACL’s UUID, given an object’s
UUID, as provided through thehandleparameter. The user does not call this function
directly. It is an instance of the kind of function provided to theresolverargument of
dce_acl_register_object_type().

If dce_acl_resolve_by_uuid()anddce_acl_resolve_by_name()are inappropriate, the
user ofdce_acl_register_object_type()must provide some otherresolverfunction.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_acl_register_object_type(3sec), dce_acl_resolve_by_name(3sec),
dce_db_open(3dce), dce_db_header_fetch(3dce).

1385

DCE 1.2.2 Application Development Reference

dce_aud_close(3sec)

dce_aud_close

Purpose Closes an audit trail file. Used by client/server applications and audit trail analysis
and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_close(
dce_aud_trail_t at,
unsigned32 *status);

Parameters
Input

at A pointer to an audit trail descriptor returned by a previous call to
dce_aud_open().

Output

status The status code returned by this routine.

Description

The dce_aud_close()function releases data structures of file openings, RPC bindings,
and other memory associated with the audit trail that is specified by the audit trail
descriptor.

Return Values

No value is returned.

1386

DCE Security Service

dce_aud_close(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_open(3sec).

1387

DCE 1.2.2 Application Development Reference

dce_aud_commit(3sec)

dce_aud_commit

Purpose Writes the audit record in the audit trail file. Used by client/server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_commit(
dce_aud_trail_t at,
dce_aud_rec_tard,
unsigned32options,
unsigned16format,
unsigned32outcome,
unsigned32*status);

Parameters
Input

at Designates an audit trail file to which the completed audit record will
be written. The audit trail file must have been previously opened by a
successful call to thedce_aud_open()function.

ard Designates an audit record descriptor that was returned by a previously
successful call to one of thedce_aud_start_* () functions. The content
of this record buffer will be appended to the audit trail specified byat.

options Bitwise OR of option values described below. A value of 0 (zero) for
optionsresults in the default operation (normal writing to the file without
flushing to stable storage). The possible option value is

aud_c_evt_commit_sync
Flushes the audit record to stable storage before the
function returns.

aud_c_evt_always_log
Unconditionally logs the audit record to the audit trail.

1388

DCE Security Service

dce_aud_commit(3sec)

aud_c_evt_always_alarm
Unconditionally displays the audit record on the console.

format Event’s tail format used for the event-specific information. This format
can be configured by the user. With this format version number, the
servers and audit analysis tools can accommodate changes in the formats
of the event specific information, or use different formats dynamically.

outcome The event outcome to be stored in the header. The possible event-
outcome values are as follows:

aud_c_esl_cond_success
The event completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access
denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is
pending, being one in a series of connected events, where
the application desires to record the real outcome only
after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success)
is not known. This outcome exists only between a
dce_aud_start() (all varieties of this routine) call and
the nextdce_aud_commit()call. You can also use0 to
specify this outcome.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or not. If the routine did not
complete successfully, the reason for the failure is given.

Description

The dce_aud_commit() function determines whether the event should be audited
given the event outcome. If it should be audited, the function completes the audit

1389

DCE 1.2.2 Application Development Reference

dce_aud_commit(3sec)

record identified byard and writes it to the audit trail designated byat. If any of the
aud_c_evt_always_logor aud_c_evt_always_alarmoptions is selected, the event is
always audited (logged or an alarm message is sent to the standard output).

If the aud_c_evt_commit_syncoption is selected, the function attempts to flush the
audit record to stable storage. If the stable storage write cannot be performed, the
function either continues to try until the stable-storage write is completed or returns
an error status.

Upon successful completion,dce_aud_commit()calls dce_aud_discard()internally
to release the memory of the audit record that is being committed.

The caller should not change the outcome between thedce_aud_start() and
dce_aud_commit() calls arbitrarily. In this case, the outcome can be made more
specific, for example, fromaud_c_esl_cond_unknownto aud_c_esl_cond_success
or from aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_wrong_protection_level
Client used the wrong protection level.

aud_s_dmn_disabled
The daemon is disabled for logging.

aud_s_log_access_denied
The client’s access to the Audit log was denied.

1390

DCE Security Service

dce_aud_commit(3sec)

aud_s_cannot_gettime
The audit library cannot backup a trail file due to failure of the
utc_gettime() call.

aud_s_cannot_getgmtime
The audit library cannot backup a trail file due to failure of the
utc_gmtime() call.

aud_s_rename_trail_file_rc
Cannot rename the audit trail file.

aud_s_cannot_reopen_trail_file_rc
Internally, the audit trail file was being reopened and the reopening of
the file failed.

aud_s_rename_trail_index_file_rc
Internally, the audit trail index file was being renamed and the renaming
of the file failed.

aud_s_cannot_reopen_trail_index_file_rc
Internally, the audit trail index file was being reopened and the reopening
of the file failed.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_invalid_outcome
The event outcome parameter that was provided is invalid.

aud_s_outcomes_inconsistent
The event outcome parameter is inconsistent with the outcome parameter
provided in thedce_aud_start()call.

aud_s_trl_write_failure
The audit record cannot be written to stable storage.

aud_s_ok The call was successful.

1391

DCE 1.2.2 Application Development Reference

dce_aud_commit(3sec)

Status codes passed fromdce_aud_discard()

Status codes passed fromrpc_binding_inq_auth_caller()

Status codes passed fromdce_acl_is_client_authorized()

Status codes passed fromaudit_pickle_dencode_ev_info()(RPC idl compiler)

Related Information

Functions:dce_aud_open(3sec), dce_aud_put_ev_info(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1392

DCE Security Service

dce_aud_discard(3sec)

dce_aud_discard

Purpose Discards an audit record (releases the memory). Used by client/server applications and
trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_discard(
dce_aud_rec_tard,
unsigned32*status);

Parameters
Input

ard Designates an audit record descriptor that was returned by a previously
successful call to one of thedce_aud_start_*() functions or the
dce_aud_next()function.

Output

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_discard() function releases the memory used by the audit record
descriptor and the associated audit record that is to be discarded.

Return Values

No value is returned.

1393

DCE 1.2.2 Application Development Reference

dce_aud_discard(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Status codes passed fromdce_aud_free_header()

Related Information

Functions:dce_aud_open(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1394

DCE Security Service

dce_aud_free_ev_info(3sec)

dce_aud_free_ev_info

Purpose Frees the memory allocated for an event information stucture returned from calling
dce_aud_get_ev_info(). Used by the audit trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_free_ev_info(
dce_aud_ev_info_t *event_info,
unsigned32 *status);

Parameters
Input

event_info Designates an event-specific information item returned from a previous
successful call to thedce_aud_get_ev_info()function.

Output

status The status code returned by this routine.

Description

The dce_aud_free_ev_info() function frees the memory allocated for an
event information stucture returned by a previous successful call to the
dce_aud_get_ev_info()function.

Return Values

No value is returned.

1395

DCE 1.2.2 Application Development Reference

dce_aud_free_ev_info(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_get_ev_info(3sec), dce_aud_next(3sec).

1396

DCE Security Service

dce_aud_free_header(3sec)

dce_aud_free_header

Purpose Frees the memory allocated to a designated audit record header structure. Used by the
audit trail analysis and examination tools

Synopsis
#include <dce/audit.h>

void dce_aud_free_header(
dce_aud_hdr_t *header,
unsigned32 *status);

Parameters
Input

ard Designates a pointer to an audit record header structure that was returned
by a previous successful call to thedce_aud_get_header()function.

Output

status The status code returned by this routine.

Description

The dce_aud_free_header()frees the memory allocated to a designated audit record
header structure. The designated audit record header is usually obtained from an audit
record by callingdce_aud_get_header().

Return Values

No value is returned.

1397

DCE 1.2.2 Application Development Reference

dce_aud_free_header(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_get_header(3sec), dce_aud_next(3sec), dce_aud_open(3sec).

1398

DCE Security Service

dce_aud_get_ev_info(3sec)

dce_aud_get_ev_info

Purpose Returns a pointer to an event information stucture (dce_aud_ev_info_t). Used by the
audit trail analysis and examination tools

Synopsis
#include <dce/audit.h>

void dce_aud_get_ev_info(
dce_aud_rec_tard,
dce_aud_ev_info_t **event_info,
unsigned32 *status);

Parameters
Input

ard Designates an audit record descriptor that was returned by a previously
successful call to thedce_aud_next()function.

Output

event_info Returns an event-specific information item of the designated audit
record. Returns NULL if there are no more information items.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_get_ev_info()function returns a pointer to an event information
structure. The designated record is usually obtained from an audit trail by calling
dce_aud_open()and dce_aud_next(). If there is more than one item of event-
specific information in the audit record, then one item is returned through one call to
dce_aud_get_ev_info(). The order in which the items are returned is the same as the

1399

DCE 1.2.2 Application Development Reference

dce_aud_get_ev_info(3sec)

order in which they were included in the audit record throughdce_aud_put_ev_info()
calls. This function allocates the memory to hold the human-readable representation
of the audit record and returns the address of this memory.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_next(3sec), dce_aud_open(3sec).

1400

DCE Security Service

dce_aud_get_header(3sec)

dce_aud_get_header

Purpose Gets the header of a specified audit record. Used by the audit trail analysis and
examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_get_header(
dce_aud_rec_tard,
dce_aud_hdr_t **header,
unsigned32 *status);

Parameters
Input

ard Designates an audit record descriptor that was returned by a previously
successful call to thedce_aud_next()function.

Output

header Returns the header information of the designated audit record.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_get_header()function gets the header information of a designated
audit record. The designated record is usually obtained from an audit trail by calling
dce_aud_open()anddce_aud_next().

1401

DCE 1.2.2 Application Development Reference

dce_aud_get_header(3sec)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_next(3sec), dce_aud_open(3sec).

1402

DCE Security Service

dce_aud_length(3sec)

dce_aud_length

Purpose Gets the length of a specified audit record. Used by client/server applications and trail
analysis and examination tools

Synopsis
#include <dce/audit.h>

unsigned32 dce_aud_length(
dce_aud_rec_tard,
unsigned32 *status);

Parameters
Input

ard Designates an audit record descriptor that was returned by a previously
successful call todce_aud_next(), or one of thedce_aud_start_* ()
functions.

Output

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_length() function gets the length of a designated audit record. The
designated record (in binary format) may be obtained from an audit trail by calling
the dce_aud_open()anddce_aud_next()functions.

Applications can use this function to know how much space an audit record will use
before it is committed. This function can also be used by audit trail analysis and
examination tools to determine the space that a previously committed audit record
uses before it is read.

1403

DCE 1.2.2 Application Development Reference

dce_aud_length(3sec)

Return Values

The size of the specified audit record in number of bytes.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_ok The call was successful.

Status codes passed fromidl_es_encode_dyn_buffer()

Status codes passed fromaudit_pickle_dencode_ev_info()
(RPC IDL compiler)

Status codes passed fromidl_es_handle_free()

Status codes passed fromrpc_sm_client_free()

Related Information

Functions:dce_aud_next(3aud), dce_aud_open(3aud),
dce_aud_put_ev_info(3aud), dce_aud_start(3aud),
dce_aud_start_with_name(3aud), dce_aud_start_with_pac(3aud),
dce_aud_start_with_server_binding(3aud).

1404

DCE Security Service

dce_aud_next(3sec)

dce_aud_next

Purpose Reads the next audit record from a specified audit trail file into a buffer. Used by the
trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_next(
dce_aud_trail_t *at,
char *predicate,
unsigned16format,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

at A pointer to the descriptor of an audit trail file previously opened for
reading by the functiondce_aud_open().

predicate Criteria for selecting the audit records that are to be read from the audit
trail file. A predicate statement consists of an attribute and its value,
separated by any of the following operators:= (equal to),< (less than),
<= (less than or equal to),> (greater than), and>= (greater than or equal
to):

• attribute=value

• attribute>value

• attribute>=value

• attribute<value

• attribute<=value

1405

DCE 1.2.2 Application Development Reference

dce_aud_next(3sec)

Attribute names are case sensitive, and no space is allowed within a
predicate expression. Multiple predicates are delimited by a comma, in
the following form:

attribute1=value1,attribute2>value2, ...

No space is allowed between predicates. Note that when multiple
predicates are defined, the values are logically ANDed together.

The possible attribute names, their values, and allowable operators are
as follows:

SERVER The UUID of the server principal that generated the
record. The attribute value must be a UUID string.
Operator allowed:= (equal to).

EVENT The audit event number. The attribute value must be a
hexadecimal number. Operator allowed:= (equal to).

OUTCOME
The event outcome of the record. The possible attribute
values are SUCCESS, FAILURE , PENDING, or
DENIAL . Operator allowed:= (equal to).

STATUS The authorization status of the client. The possible
attribute values areDCE for DCE authorization (PAC
based), and NAME for name-based authorization.
Operator allowed:= (equal to).

CLIENT The UUID of the client principal. The attribute value must
be a UUID string. Operator allowed:= (equal to).

TIME The time the record was generated. The attribute value
must be a null-terminated string that expresses an absolute
time. Operators allowed:<= (less than or equal to),< (less
than),>= (greater than or equal to), and> (greater than).

CELL The UUID of the client’s cell. The attribute value must
be a UUID string. Operator allowed:= (equal to).

GROUP The UUID of one of the client’s group(s). The attribute
value must be a UUID string. Operator allowed:= (equal
to).

1406

DCE Security Service

dce_aud_next(3sec)

ADDR The address of the client. The attribute is typically the
string representation of an RPC binding handle. Operator
allowed:= (equal to).

FORMAT The format version number of the audit event record. The
attribute value must be an integer. Operators allowed:=
(equal to),< (less than), and> (greater than).

format Event’s tail format used for the event-specific information. This format
can be configured by the user. With this format version number,
the servers and audit analysis tools can accomodate changes in the
formats of the event specification information, or use different formats
dynamically.

Output

ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given. See
‘‘Errors’’ for a list of the possible status codes and their meanings.

Description

The dce_aud_next()function attempts to read the next record from the audit trail
file specified by the audit trail descriptor,at. This function also defines the predicate
to be used to search for the next record and returns a matching record if one exists.
The dce_aud_next()function can be used to search for successive records in the trail
that match the defined predicate. By default, if no predicate is explicitly defined, the
function returns the next record from the audit trail.

If no record satisfies the predicate specified for the call, a value of zero (NULL) is
returned throughard.

The value returned throughard can be supplied as an input parameter to the functions
dce_aud_get_header(), dce_aud_length(), dce_aud_discard(), dce_aud_print(),
dce_aud_get_event(), anddce_aud_get_ev_info().

Storage allocated by this function must be explicitly freed by a call to
dce_aud_discard()with ard as the input parameter.

1407

DCE 1.2.2 Application Development Reference

dce_aud_next(3sec)

If the function successfully reads an audit trail record, the cursor associated with the
audit trail descriptorat will be advanced to the next record in the audit trail. The
calling routine does not need to set or move the cursor explicitly.

If no appropriate record can be found in the audit trail, anard value of NULL is
returned and the cursor is advanced to the end of the audit trail. If a call is unsuccessful,
the position of the cursor does not change.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successfully completed.

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid.

aud_s_trail_file_corrupted
The trail file is corrupted.

aud_s_index_file_corrupted
The index trail file is corrupted.

aud_s_cannot_allocate_memory
The malloc() call failed.

Status codes passed fromidl_es_decode_buffer()

Status codes passed fromidl_es_handle_free()

Status codes passed fromaudit_pickle_dencode_ev_info()
(RPC IDL compiler)

1408

DCE Security Service

dce_aud_next(3sec)

Related Information

Functions:dce_aud_next(3sec), dce_aud_get_header(3sec), dce_aud_length(3sec),
dce_aud_get_ev_info(3sec), dce_aud_open(3sec), dce_aud_discard(3sec),
dce_aud_print(3sec), dce_aud_get_event(3sec).

1409

DCE 1.2.2 Application Development Reference

dce_aud_open(3sec)

dce_aud_open

Purpose Opens a specified audit trail file for read or write. Used by client/server applications
and trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_open(
unsigned32flags,
char *description,
unsigned32first_evt_number,
unsigned32num_of_evts,
dce_aud_trail_t *at,
unsigned32 *status);

Parameters
Input

flags Specifies the mode of opening. The flags parameter is set to the bitwise
OR of the following values:

• aud_c_trl_open_read

• aud_c_trl_open_write

• aud_c_trl_ss_wrap

description A character string specifying an audit trail file to be opened. If
description is NULL, the default audit trail file is opened. When the
audit trail file is opened for write, the default audit trail is an RPC
interface to a local audit daemon.

first_evt_num
The lowest assigned audit event number used by the calling server.

num_of_evtsThe number of audit events defined for the calling server.

1410

DCE Security Service

dce_aud_open(3sec)

Output

at A pointer to an audit trail descriptor. When the audit trail descriptor is
no longer needed, it must be released by calling thedce_aud_close()
function.

status Returns the status code from this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_open()function opens the audit trail file specified by thedescription
parameter. Ifdescription is NULL, the function uses the default audit trail which is
an RPC interface to the local audit daemon.

This function must be invoked after the server has finished registering with RPC and
before callingrpc_server_listen().

If the flags parameter is set toaud_c_trl_open_read, the specified file (description
cannot be null in this case) is opened for reading audit records, using the
dce_aud_next()function. If flags is set toaud_c_trl_open_write, the specified file
or the default audit trail device is opened and initialized for appending audit records
using thedce_aud_commit()function. Only one of theaud_c_trl_open_readand
aud_c_trl_open_write flags may be specified in any call todce_aud_open(). If
the flags parameter is set toaud_c_trl_ss_wrap, the audit trail operation is set
to wrap mode. Theaud_c_trl_ss_wrap flag has meaning only if you specify the
aud_c_trl_open_write flag.

If the audit trail specified is a file and the calling server does not have the read and
write permissions to the file, a NULL pointer is returned inat, and status is set to
aud_s_cannot_open_trail_file_rc. The same values will be returned if the default
audit trail file is used (that is, through an audit daemon) and if the calling server is
not authorized to use the audit daemon to log records.

Return Values

No value is returned.

1411

DCE 1.2.2 Application Development Reference

dce_aud_open(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

aud_s_trl_invalid_open_flags
The flags argument must include eitheraud_c_trl_open_read or
aud_c_trl_open_write flag, but not both.

aud_s_cannot_open_dmn_binding_file
The local audit daemon trail file is designated, but the daemon’s binding
file cannot be opened.

Status codes passed fromsec_login_get_current_context()
When the local audit daemon trail file is designated, a login context is
needed for making secure audit logging RPC to the audit daemon.

aud_s_cannot_open_dmn_identity_file
The local audit daemon trail file is designated, but the daemon’s identity
file cannot be opened.

Status codes passed fromrpc_binding_set_auth_info()
When the local audit daemon trail file is designated,dce_aud_open()
sets authentication information in the RPC binding handle for making
secure audit logging RPC to the audit daemon. This is done by calling
rpc_binding_set_auth_info().

aud_s_cannot_open_trail_file_rc
Cannot open a local trail file.

aud_s_cannot_allocate_memory
Memory allocation failed.

aud_s_cannot_init_trail_mutex
Audit trail mutex initialization failed.

Status codes passed fromrpc_server_inq_bindings()
When filtering is turned on,dce_aud_open()gets the caller’s RPC
bindings to be used for registering an RPC interface in receiving filter
update notification from the local audit daemon. This is done by calling
rpc_server_inq_bindings().

1412

DCE Security Service

dce_aud_open(3sec)

Status codes passed fromrpc_binding_to_string_binding()
When filtering is turned on, the caller’s RPC bindings are converted to
string bindings before they are stored in a file. This is done by calling
rpc_binding_to_string_binding().

aud_s_cannot_mkdir
Cannot create a directory for storing the bindings file for the filter update
notification interface.

Related Information

Functions:dce_aud_commit(3sec), dce_aud_next(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1413

DCE 1.2.2 Application Development Reference

dce_aud_prev(3sec)

dce_aud_prev

Purpose Reads the previous audit record from a specified audit trail file into a buffer. Used by
the trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_prev(
dce_aud_trail_t* at,
char *predicate,
unsigned16format,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

at A pointer to the descriptor of an audit trail file previously opened for
reading by the functiondce_aud_open().

predicate Criteria for selecting the audit records that are to be read from the audit
trail file. A predicate statement consists of an attribute and its value,
separated by any of the following operators:= (equal to),< (less than),
<= (less than or equal to),> (greater than), and >= (greater than or equal
to).

• attribute=value

• attribute>value

• attribute>=value

• attribute<value

• attribute<=value

1414

DCE Security Service

dce_aud_prev(3sec)

Attribute names are case sensitive, and no space is allowed within a
predicate expression. Multiple predicates are delimited by a comma, in
the following form:

attribute=value1,attribute>value2, ...

No space is allowed between predicates. Note that when multiple
predicates are defined, the values are logically ANDed together.

The possible attribute names, their values, and allowable operators are
as follows:

SERVER The UUID of the server principal that generated the
record. The attribute value must be a UUID string.
Operator allowed:= (equal to).

EVENT The audit event number. The attribute value must be a
hexadecimal number. Operator allowed:= (equal to).

OUTCOME
The event outcome of the record. The possible attribute
values are: SUCCESS, FAILURE , PENDING, or
DENIAL . Operator allowed:= (equal to).

STATUS The authorization status of the client. The possible
attribute values areDCE for DCE authorization (PAC
based) and NAME for name-based authorization.
Operator allowed:= (equal to).

TIME The time the record was generated. The attribute value
must be a null terminated string that expresses an absolute
time. Operators allowed:<= (less than or equal to),< (less
than),>= (greater than or equal to), and> (greater than).

CELL The UUID of the client’s cell. The attribute value must
be a UUID string. Operator allowed:= (equal to).

GROUP The UUID of one of the client’s group(s). The attribute
value must be a UUID string. Operator allowed:= (equal
to).

ADDR The address of the client. The attribute is typically the
string representation of an RPC binding handle. Operator
allowed:= (equal to).

1415

DCE 1.2.2 Application Development Reference

dce_aud_prev(3sec)

FORMAT The format version number of the audit event record. The
attribute value must be an integer. Operators allowed:=
(equal to),< (less than), and> (greater than).

format Event’s tail format used for the event-specific information. This format
can be configured by the user. With this format version number, the
servers and audit analysis tools can accommodate changes in the
formats of the event specification information, or use different formats
dynamically.

Output

ard A pointer to the audit record descriptor containing the returned record.

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given. See
‘‘Errors’’ for a list of the possible status codes and their meanings.

Description

The dce_aud_prev()function attempts to read the previous record from the audit trail
file specified by the audit trail descriptor,at. This function also defines the predicate to
be used to search for the previous record and returns a matching record if one exists.
dce_aud_prev()can be used to search for previous records in the trail file that match
the defined predicate. By default, if no predicate is explicitly defined, the function
returns the previous record read from the audit trail.

If no record satisfies the predicate specified for the call, a value of zero (NULL) is
returned inard.

The value returned inard can be supplied as an input parameter to the functions:
dce_aud_get_header(), dce_aud_length(), dce_aud_discard(), dce_aud_print(),
dce_aud_get_event(), anddce_aud_get_ev_info().

Storage allocated by this function must be explicitly freed by a call to
dce_aud_discard()with ard as the input parameter.

If the function successfully reads an audit trail record, the cursor associated with the
audit trail descriptorat will be moved to the previous record in the audit trail file. The
calling routine does not need to set or move the file cursor explicitly.

1416

DCE Security Service

dce_aud_prev(3sec)

If no appropriate record can be found in the audit trail, anard value of NULL is
returned and the cursor is set back to the beginning of the audit trail. If a call is
unsuccessful, the position of the cursor does not change.

Return Value

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successfully completed

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid

aud_s_trail_file_corrupted
The audit trail is corrupted

aud_s_index_file_corrupted
The index trail file is corrupted

aud_s_cannot_allocate_memory
The malloc() call failed

Status codes passed fromidl_es_decode_buffer()

Status codes passed fromidl_es_handle_free()

Status codes passed fromaudit_pickle_dencode_ev_info()
(RPC IDL compiler)

Related Information

Functions:dce_aud_next(3sec), dce_aud_get_header(3sec), dce_aud_length(3sec),
dce_aud_get_ev_info(3sec), dce_aud_open(3sec), dce_aud_discard(3sec),
dce_aud_print(3sec), dce_aud_get_event(3sec).

1417

DCE 1.2.2 Application Development Reference

dce_aud_print(3sec)

dce_aud_print

Purpose Formats an audit record into human-readable form. Used by audit trail examination
and analysis tools.

Synopsis
#include <dce/audit.h>

void dce_aud_print(
dce_aud_rec_tard,
unsigned32options,
char ** buffer,
unsigned32 *status);

Parameters
Input

ard An audit record descriptor. This descriptor can be obtained from an
opened audit trail by callingdce_aud_next()or it can be a new record
established by calling one of thedce_aud_start_* () functions.

options The options governing the transformation of the binary audit record
information into a character string. The value of theoptionsparameter
is the bitwise OR of any selected combination of the following option
values:

aud_c_evt_all_info
Includes all the optional information (that is, groups,
address, and event specific information).

aud_c_evt_groups_info
Includes the groups’ information.

aud_c_evt_address_info
Includes the address information.

1418

DCE Security Service

dce_aud_print(3sec)

aud_c_evt_specific_info
Includes the event specific information.

Output

buffer Returns the pointer to a character string converted from the audit record
specified byard.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_print() function transforms the audit record specified byard into a
character string and places it in a buffer. The buffer is allocated usingmalloc(), and
must later be freed by the caller. (This function allocates the memory to hold the
human-readable text of the audit record and returns the address of this memory in the
buffer parameter.)

Theoptionsparameter is set to the bitwise OR of flag values defined in thedce/audit.h
header file. A value of 0 (zero) for options will result in default operation, that is, no
group, address, and event-specific information is included in the output string.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_record_descriptor
The audit record descriptor is invalid.

aud_s_cannot_allocate_memory
The malloc() call failed.

aud_s_ok The call was successful.

1419

DCE 1.2.2 Application Development Reference

dce_aud_print(3sec)

Status codes passed fromsec_login_get_current_context()

Status codes passed fromsec_login_inquire_net_info()

Related Information

Functions:dce_aud_next(3sec), dce_aud_open(3sec), dce_aud_put_ev_info(3sec),
dce_aud_start(3sec), dce_aud_start_with_name(3sec),
dce_aud_start_with_pac(3sec), dce_aud_start_with_server_binding(3sec).

1420

DCE Security Service

dce_aud_put_ev_info(3sec)

dce_aud_put_ev_info

Purpose Adds event-specific information to a specified audit record buffer. Used by client/
server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_put_ev_info(
dce_aud_rec_tard,
dce_aud_ev_info_tinfo,
unsigned32 *status);

Parameters
Input

ard A pointer to an audit record descriptor initialized by one of the
dce_aud_start_* () functions.

info A data structure containing an event-specific information item that is to
be appended to the tail of the audit record identified byard. The possible
formats of the event-specific information are listed in thesec_intro(3sec)
reference page of this book.

Output

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_put_ev_info() function adds event-specific information to an audit
record. The event-specific information is included in an audit record by calling
dce_aud_put_ev_info() one or more times. The order of the information items

1421

DCE 1.2.2 Application Development Reference

dce_aud_put_ev_info(3sec)

included by multiple calls is preserved in the audit record, so that they may be read
in the same order by thedce_aud_get_ev_info()function. This order is also observed
by the dce_aud_print() function. Theinfo parameter is a pointer to an instance of
the self-descriptivedce_aud_ev_info_tstructure.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_record_descriptor
The input audit record descriptor is invalid.

aud_s_evt_tail_info_exceeds_limit
The tail portion of the audit trail record has exceeded its limit of 4K.

aud_s_ok The call was successful.

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1422

DCE Security Service

dce_aud_reset(3sec)

dce_aud_reset

Purpose Resets the cursors and the file pointers of the specified audit trail file. Used by the
trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_reset(
dce_aud_trail_t *at,
unsigned32 *status);

Parameters
Input

at A pointer to the descriptor of an audit trail file previously opened by
the functiondce_aud_open().

Output

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given. For
a list of the possible status codes and their meanings, see ‘‘Errors’’.

Description

The dce_aud_reset()function resets the cursors and the file pointers of the specified
audit trail file. The function is used to explicitly reset the current cursors and file
pointers to the beginning of the audit trail file.

dce_aud_open()must be called to specify the desired audit trail file. Otherwise,
dce_aud_reset()will reset the audit trail which is currently set in the value ofat.

If the call is successful, the file cursors are set to the beginning of the file.

1423

DCE 1.2.2 Application Development Reference

dce_aud_reset(3sec)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.
The possible status codes and their meanings are:

aud_s_ok The call was successful

aud_s_invalid_trail_descriptor
The audit trail descriptor is invalid

Related Information

Functions:dce_aud_rewind(3sec), dce_aud_clean(3sec), dce_aud_open(3sec).

1424

DCE Security Service

dce_aud_rewind(3sec)

dce_aud_rewind

Purpose Rewinds the specified audit trail file. Used by the trail analysis and examination tools.

Synopsis
#include <dce/audit.h>

void dce_aud_rewind(
dce_aud_trail_t *at,
unsigned32 *status);

Parameters
Input

at A pointer to the descriptor of an audit trail file previously opened for
writing by the functiondce_aud_open().

Output

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given. For
a list of the possible status codes and their meanings, see ‘‘Errors’’.

Description

The dce_aud_rewind() function rewinds the specified audit trail file. This function
can be used to instantly clean up the audit trail file if it is no longer needed.

dce_aud_open()must be called to specify the desired audit trail file, and the specified
audit trail file must be opened with theaud_c_trl_open_write flag. Otherwise, the
routine will rewind the audit trail which is currently set in the value ofat.

If the call is successful, the file cursors are set to the beginning of the file.

1425

DCE 1.2.2 Application Development Reference

dce_aud_rewind(3sec)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

aud_s_invalid_trail_descriptor
The Audit Trail descriptor is invalid

aud_s_trl_invalid_open_flag
The Audit Trail is opened with open flag

aud_s_rewind_trail_file
The ftruncate() call failed on trail file

aud_s_rewind_index_file
The ftruncate() call failed on index file

Related Information

Functions:dce_aud_clean(3sec), dce_aud_open(3sec).

1426

DCE Security Service

dce_aud_set_trail_size_limit(3sec)

dce_aud_set_trail_size_limit

Purpose Sets a limit to the audit trail size. Used by client/server applications.

Synopsis
#include <dce/audit.h>

void dce_aud_set_trail_size_limit(
dce_aud_trail_t at,
unsigned32file_size_limit_value,
unsigned32* status);

Parameters
Input

at A pointer to the descriptor of an audit trail file previously opened for
reading by the functiondce_aud_open().

file_size_limit_value
The desired maximum size of the audit trail file, in bytes.

Output

status Returns the status code of this routine. This status code indicates whether
the routine completed successfully or not. If the routine did not complete
successfully, the reason for the failure is given.

Description

The dce_aud_set_trail_size_limit()function can be used by an application that links
with libaudit to set the maximum size of the audit trail. This function must be called
immediately after callingdce_aud_open().

For added flexibility, the environment variableDCEAUDITTRAILSIZE can also be
used to set the maximum trail size limit.

1427

DCE 1.2.2 Application Development Reference

dce_aud_set_trail_size_limit(3sec)

If none of these methods are used for setting the trail size, then a hardcoded limit of
2 megabytes will be assumed.

If set, the value of the environment variableDCEAUDITTRAILSIZE overrides the
value set by this function. Any of the values set byDCEAUDITTRAILSIZE or this
function overrides the hardcoded default.

When the size limit is reached, the current trail file is copied to another file. The
name of this new file is the original filename appended by a timestamp. For example,
if the name of the original trail file iscentral_trail , its companion trail file is named
central_trail.md_index. These two files will be copied to the following locations:

central_trail.1994-09-26-16-38-15

central_trail.1994-09-26-16-38-15.md_index

When a trail file is copied to a new file by the audit library because it has reached
the size limit, a serviceability message is issued to the console notifying the user that
an audit trail file (and its companion index file) is available to be backed up. Once
the backup is performed, it is advisable to remove the old trail file, so as to prevent
running out of disk space.

Auditing will then continue, using the original name of the file, (in our example,
central_trail).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_invalid_trail_descriptor
The audit trail descriptorat is null.

aud_s_ok The call is successful.

1428

DCE Security Service

dce_aud_set_trail_size_limit(3sec)

Related Information

Functions:dce_aud_open(3sec).

1429

DCE 1.2.2 Application Development Reference

dce_aud_start(3sec)

dce_aud_start

Purpose Determines whether a specified event should be audited given the client binding
information and the event outcome. Used by client/server applications

Synopsis
#include <dce/audit.h>

void dce_aud_start(
unsigned32event,
rpc_binding_handle_t binding,
unsigned32options,
unsigned32outcome,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

event Specifies the event to be audited. This is a 32-bit event number. The
eventfield in the audit record header will be set to this number.

binding Specifies the client’s RPC binding handle from which the client
identification information is retrieved to set theclient, cell, num_groups,
groups, andaddr fields in the audit record header.

options Specifies the optional header information desired (aud_c_evt_all_info,
aud_c_evt_group_info, or aud_c_evt_address_info).

It can also be used to specify whether the audit records are always logged
(aud_c_evt_always_log) or that an alarm message is always sent to the
standard output (aud_c_evt_always_alarm). If any of these two options
is selected, the filter is bypassed.

The value of theoptions parameter is the bitwise OR of any selected
combination of the following option values:

1430

DCE Security Service

dce_aud_start(3sec)

aud_c_evt_all_info
Includes all optional information (groups and address) in
the audit record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record
header.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event
must be logged.

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome The event outcome to be stored in the header. The following event
outcome values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access
denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is
pending, being one in a series of connected events, where
the application desires to record the real outcome only
after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success)
is still unknown. This outcome exists only between a
dce_aud_start() (all varieties of this routine) call and
the nextdce_aud_commit()call. You can also use0 to
specify this outcome.

1431

DCE 1.2.2 Application Development Reference

dce_aud_start(3sec)

Output

ard Returns a pointer to an audit record buffer. If the event does not need to
be audited because it is not selected by the filters, or if the environment
variableDCEAUDITOFF has been set, a NULL pointer is returned. If
the function is called withoutcomeset toaud_c_esl_cond_unknown,
it is possible that the function cannot determine whether the event
should be audited. In this case, the audit record descriptor is still
allocated and its address is returned to the caller. Anoutcomeother
than aud_c_esl_cond_unknownmust be provided when calling the
dce_aud_commit()function.

status The status code returned by this function. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_start()function determines if an audit record should be generated for
the specified event. The decision is based on the event filters, an environment variable
(DCEAUDITOFF), the client’s identity provided in thebinding parameter, and the
event outcome (if it is provided in theoutcomeparameter). If this event needs to be
audited, the function allocates an audit record descriptor and returns a pointer to it, (that
is, ard). If the event does not need to be audited, a NULLard is returned. If an internal
error(s) has occurred, a NULL pointer is returned inard. If the aud_c_evt_always_log
or aud_c_evt_always_alarmoption is selected, an audit record descriptor will always
be created and returned.

The dce_aud_start()function is designed to be used by RPC applications. Non-RPC
applications that use the DCE authorization model (that is, DCE ACL and PAC)
must usedce_aud_start_with_pac(). Non-RPC applications that do not use the DCE
authorization model must usedce_aud_start_with_name().

This function obtains the client identity information from the RPC binding handle and
records it in the newly-created audit record descriptor.

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info() function. This function can be called multiple times
after calling dce_aud_start() and before callingdce_aud_commit(). A completed
audit record will be appended to an audit trail file or sent to the audit daemon
(depending on the value of thedescription parameter used in the previous call to
dce_aud_open) by calling dce_aud_commit().

1432

DCE Security Service

dce_aud_start(3sec)

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome, and
records an outcome-action table withard. If the outcome is specified when calling
this function and the outcome does not require any action according to filters, then
this function returns a NULLard.

If the outcomeis not specified in thedce_aud_start()call, dce_aud_start()returns a
NULL ard if no action is required for all possible outcomes.

The caller should not change the outcome between thedce_aud_start() and
dce_aud_commit() calls arbitrarily. In this case, the outcome can be made more
specific, for example, fromaud_c_esl_cond_unknownto aud_c_esl_cond_success
or from aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

This function can be called with theoutcome parameter taking a value of
zero or the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success, aud_c_esl_cond_failure, aud_c_esl_cond_denial, and
aud_c_esl_cond_pending. The outcomeparameter used in thedce_aud_commit()
function should take one value from the same set of constants.

If dce_aud_start() used a nonzero value foroutcome, then the constant used
for outcome in the dce_aud_commit() call should have been selected in the
dce_aud_start()call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

1433

DCE 1.2.2 Application Development Reference

dce_aud_start(3sec)

Status codes passed fromrpc_binding_to_string_binding()

Status codes passed fromrpc_string_free()

Status codes passed fromdce_aud_start_with_name()

Status codes passed fromsec_cred_get_initiator()

Status codes passed fromsec_cred_get_v1_pac()

Status codes passed fromdce_aud_start_with_pac()

Status codes passed fromsec_cred_get_delegate()

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec),
dce_aud_put_ev_info(3sec), dce_aud_start_with_name(3sec),
dce_aud_start_with_pac(3sec), dce_aud_start_with_server_binding(3sec).

1434

DCE Security Service

dce_aud_start_with_name(3sec)

dce_aud_start_with_name

Purpose Determines whether a specified event should be audited given the client/server name
and the event outcome. Used by non-RPC based client/server applications that do not
use the DCE authorization model

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_name(
unsigned32event,
unsigned_char_t *client,
unsigned_char_t *address,
unsigned32options,
unsigned32outcome,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

event Specifies the event to be audited. This is a 32-bit event number. The
eventfield in the audit record header will be set to this number.

client Specifies the principal name of the remote client/server.

address Specifies the address of the remote client/server. The address could be
in any format of the underlying transport protocol.

options Specifies the optional header information desired (aud_c_evt_all_info,
aud_c_evt_group_info, aud_c_evt_address_info).

It can also be used to specify any of two options: to always log an audit
record (aud_c_evt_always_log) or to always send an alarm message
to the standard output (aud_c_evt_always_alarm). If any of these two
options is selected, the filter is bypassed. The value of theoptions

1435

DCE 1.2.2 Application Development Reference

dce_aud_start_with_name(3sec)

parameter is the bitwise OR of any selected combination of the following
option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in
the audit record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record
header.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event
must be logged.

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome The event outcome to be stored in the header. The following event
outcome values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access
denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is
pending, being one in a series of connected events, where
the application desires to record the real outcome only
after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success)
is still unknown. This outcome exists only between a
dce_aud_start() (all varieties of this routine) call and

1436

DCE Security Service

dce_aud_start_with_name(3sec)

the nextdce_aud_commit()call. You can also use0 to
specify this outcome.

Output

ard Returns a pointer to an audit record buffer. If the event does not need to
be audited because it is not selected by the filters or if the environment
variableDCEAUDITOFF has been set, a NULL pointer is returned. If
the function is called withoutcomeset toaud_c_esl_cond_unknown,
the function may not be able to determine whether the event should be
audited. In this case, the audit record descriptor is still allocated and its
address is returned to the caller. Anoutcomemust be provided prior to
logging the record with thedce_aud_commit()function.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_name()function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in the input
parameters, and the event outcome (if it is provided in theoutcomeparameter). If this
event needs to be audited, the function allocates an audit record descriptor and returns
a pointer to it, (that is,ard). If the event does not need to be audited, NULL is returned
in theard parameter. If either theaud_c_evt_always_logor aud_c_evt_always_alarm
option is selected, an audit record descriptor will always be created and returned.

The dce_aud_start_with_name() function is designed to be used by non-RPC
applications that do not use the DCE authorization model (that is, DCE PAC and
ACL). RPC applications must usedce_aud_start(). Non-RPC applications that use
the DCE authorization model must usedce_aud_start_with_pac().

This function records the input identity parameters in the newly created audit record
descriptor.

Event-specific information can be added to the record by using the
dce_aud_put_ev_info() function, which can be called multiple times after
calling any of the dce_aud_start_* and before callingdce_aud_commit(). A
completed audit record can either be appended to an audit trail file or sent to the
audit daemon by callingdce_aud_commit().

1437

DCE 1.2.2 Application Development Reference

dce_aud_start_with_name(3sec)

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome, and
records an outcome-action table withard. If the outcome is specified when calling
this function and the outcome does not require any action according to filters, then
this function returns a NULLard.

If the outcome is not specified in the dce_aud_start_with_name() call,
dce_aud_start_with_name()returns a NULL ard if no action is required for all
possible outcomes.

The caller should not change the outcome between thedce_aud_start_with_name()
anddce_aud_commit()calls arbitrarily. In this case, the outcome can be made more
specific, for example, fromaud_c_esl_cond_unknownto aud_c_esl_cond_success
or from aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

This function can be called with theoutcome parameter taking a value of
zero or the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success, aud_c_esl_cond_failure, aud_c_esl_cond_denial, and
aud_c_esl_cond_pending. The outcomeparameter used in thedce_aud_commit()
function should take one value from the same set of constants.

If dce_aud_start_with_name()used a nonzero value foroutcome, then the constant
used foroutcomein the dce_aud_commit() call should have been selected in the
dce_aud_start_with_name()call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

1438

DCE Security Service

dce_aud_start_with_name(3sec)

Status codes passed fromsec_rgy_site_open()

Status codes passed fromsec_id_parse_name()

Status codes passed fromdce_aud_start_with_pac()

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec),
dce_aud_put_ev_info(3sec), dce_aud_start(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1439

DCE 1.2.2 Application Development Reference

dce_aud_start_with_pac(3sec)

dce_aud_start_with_pac

Purpose Determines whether a specified event must be audited given the client’s privilege
attribute certificate (PAC) and the event outcome. Used by non-RPC based client/
server applications that use the DCE authorization model

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_pac(
unsigned32event,
sec_id_pac_t *pac,
unsigned_char_t *address,
unsigned32options,
unsigned32outcome,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

event Specifies the event to be audited. This is a 32-bit event number. The
eventfield in the audit record header will be set to this number.

pac Specifies the client’s PAC from which the client’s identification
information is retrieved to set theclient, cell, num_groups, andgroups
fields in the audit record header.

address Specifies the client’s address. The address can be in any format that is
native to the underlying transport protocol.

options Specifies the optional header information desired (aud_c_evt_all_info,
aud_c_evt_group_info, aud_c_evt_address_info). It can also be
used to specify any of two options: to always log an audit record
(aud_c_evt_always_log) or to always send an alarm message to the

1440

DCE Security Service

dce_aud_start_with_pac(3sec)

standard output (aud_c_evt_always_alarm). If any of these two
options is selected, the filter is bypassed.

The value of theoptions parameter is the bitwise OR of any selected
combination of the following option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in
the audit record header.

aud_c_evt_groups_info
Includes the groups’ information in the audit record
header.

aud_c_evt_address_info
Includes the client address information in the audit record
header.

aud_c_evt_always_log
Bypasses the filter and indicates that the event must be
logged.

aud_c_evt_always_alarm
Bypasses the filter and indicates that an alarm message
must be sent to the system console for the event.

outcome The event outcome to be stored in the header. The following event
outcome values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access
denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is
pending, being one in a series of connected events, where
the application desires to record the real outcome only
after the last event.

1441

DCE 1.2.2 Application Development Reference

dce_aud_start_with_pac(3sec)

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success)
is still unknown. This outcome exists only between a
dce_aud_start() (all varieties of this routine) call and
the nextdce_aud_commit()call. You can also use0 to
specify this outcome.

Output

ard Returns a pointer to an audit record buffer. If the event does not need to
be audited because it is not selected by the filters, or if the environment
variableDCEAUDITOFF has been set, a NULL pointer is returned. If
the function is called withoutcomeset toaud_c_esl_cond_unknown, it
is possible that the function cannot determine whether the event should
be audited. In this case, the audit record descriptor is still allocated and
its address is returned to the caller. Anoutcomemust be provided prior
to logging the record with thedce_aud_commit()function.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_pac() function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in thepac
parameter, and the event outcome (if it is provided in theoutcomeparameter). If this
event needs to be audited, the function allocates an audit record descriptor and returns
a pointer to it, (that is,ard). If the event does not need to be audited, NULL is returned
in theard parameter. If either theaud_c_evt_always_logor aud_c_evt_always_alarm
option is selected, then an audit record descriptor will always be created and returned.

The dce_aud_start_with_pac() function is designed to be used by non-RPC
applications that use the DCE authorization model (that is, DCE PAC and ACL).
RPC applications must usedce_aud_start(). Non-RPC applications that do not use
the DCE authorization model must usedce_aud_start_with_name().

This function obtains the client’s identity information from the client’s privilege
attribute certificate (PAC) and records it in the newly created audit record descriptor.

1442

DCE Security Service

dce_aud_start_with_pac(3sec)

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info()function. This function can be called multiple times after
calling any of thedce_aud_start_* functions and before callingdce_aud_commit().
A completed audit record can either be appended to an audit trail file or sent to the
audit daemon by calling thedce_aud_commit()function.

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome, and
records an outcome-action table withard. If the outcome is specified when calling
this function and the outcome does not require any action according to filters, then
this function returns a NULLard.

If the outcome is not specified in the dce_aud_start_with_pac() call,
dce_aud_start_with_pac() returns a NULL ard if no action is required for
all possible outcomes.

The caller should not change the outcome between thedce_aud_start_with_pac()
anddce_aud_commit()calls arbitrarily. In this case, the outcome can be made more
specific, for example, fromaud_c_esl_cond_unknownto aud_c_esl_cond_success
or from aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

This function can be called with theoutcome parameter taking a value of
zero or the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success, aud_c_esl_cond_failure, aud_c_esl_cond_denial, and
aud_c_esl_cond_pending. The outcomeparameter used in thedce_aud_commit()
function should take one value from the same set of constants.

If dce_aud_start_with_pac()used a nonzero value foroutcome, then the constant
used foroutcomein the dce_aud_commit()call should have been selected in the
dce_aud_start_with_pac()call.

Return Values

No value is returned.

1443

DCE 1.2.2 Application Development Reference

dce_aud_start_with_pac(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Status codes passed fromsec_rgy_site_open()

Status codes passed fromsec_rgy_properties_get_info()

Status codes passed fromuuid_create_nil()

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec),
dce_aud_put_ev_info(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_server_binding(3sec).

1444

DCE Security Service

dce_aud_start_with_server_binding(3sec)

dce_aud_start_with_server_binding

Purpose Determines whether a specified event must be audited given the server binding
information and the event outcome. Used by client/server applications

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_server_binding(
unsigned32event,
rpc_binding_handle_t binding,
unsigned32options,
unsigned32outcome,
dce_aud_rec_t *ard,
unsigned32 *status);

Parameters
Input

event Specifies the event to be audited. This is a 32-bit event number. The
eventfield in the audit record header will be set to this number.

binding Specifies the server’s RPC binding handle from which the server
identification information is retrieved to set the client, cell, and addr
fields in the audit record header. Note that when an application client
issues an audit record, the server identity is represented in theclient
field of the record.

options This parameter can be used to specify the optional header
information desired (aud_c_evt_all_info, aud_c_evt_group_info,
aud_c_evt_address_info). It can also be used to specify any of
two options: to always log an audit record (aud_c_evt_always_log)
or to always send an alarm message to the standard output
(aud_c_evt_always_alarm). If any of these two options is selected,
the filter is bypassed.

1445

DCE 1.2.2 Application Development Reference

dce_aud_start_with_server_binding(3sec)

The value of theoptions parameter is the bitwise OR of any selected
combination of the following option values:

aud_c_evt_address_info
Includes the server address information in the audit record
header.

aud_c_evt_always_log
Bypasses the filter and indicates that the event must be
logged.

aud_c_evt_always_alarm
Bypasses the filter and indicates that an alarm message
must be sent to the system console for the event.

outcome The event outcome to be stored in the header. The following event
outcome values are defined:

aud_c_esl_cond_success
The event was completed successfully.

aud_c_esl_cond_denial
The event failed because of access denial.

aud_c_esl_cond_failure
The event failed because of reasons other than access
denial.

aud_c_esl_cond_pending
The event is in an intermediate state, and the outcome is
pending, being one in a series of connected events, where
the application desires to record the real outcome only
after the last event.

aud_c_esl_cond_unknown
The event outcome (denial, failure, pending, or success)
is still unknown. This outcome exists only between a
dce_aud_start() (all varieties of this routine) call and
the nextdce_aud_commit()call. You can also use0 to
specify this outcome.

Output

ard Returns a pointer to an audit record buffer. If the event does not need to
be audited because it is not selected by the filters, or if the environment
variableDCEAUDITOFF has been set, a NULL pointer is returned. If

1446

DCE Security Service

dce_aud_start_with_server_binding(3sec)

the function is called withoutcomeset toaud_c_esl_cond_unknown, it
is possible that the function cannot determine whether the event should
be audited. In this case, the audit record descriptor is still allocated and
its address is returned to the caller. Anoutcomemust be provided prior
to logging the record with thedce_aud_commit()function.

status The status code returned by this routine. This status code indicates
whether the routine was completed successfully or not. If the routine
was not completed successfully, the reason for the failure is given.

Description

The dce_aud_start_with_server_binding()function determines if an audit record
must be generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the server’s identity provided in thebinding
parameter, and the event outcome (if it is provided in theoutcomeparameter). If this
event needs to be audited, the function allocates an audit record descriptor and returns a
pointer to it (that is,ard). If the event does not need to be audited, NULL is returned in
the ard parameter. If theaud_c_evt_always_logor aud_c_evt_always_alarmoption
is selected, an audit record descriptor will always be created and returned.

The dce_aud_start_with_server_binding()function is designed to be used by RPC
applications. Non-RPC applications that use the DCE authorization model must use
the dce_aud_start_with_pac()function. Non-RPC applications that do not use the
DCE authorization model must use thedce_aud_start_with_name()function.

This function obtains the server identity information from the RPC binding handle
and records it in the newly created audit record descriptor.

Event-specific information can be added to the record by calling the
dce_aud_put_ev_info() function. The dce_aud_put_ev_info() function can
be called multiple times after calling any of thedce_aud_start_* functions and
before callingdce_aud_commit(). A completed audit record can either be appended
to an audit trail file or sent to the audit daemon by callingdce_aud_commit().

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome, and
records an outcome-action table withard. If the outcome is specified when calling
this function and the outcome does not require any action according to filters, then
this function returns a NULLard.

1447

DCE 1.2.2 Application Development Reference

dce_aud_start_with_server_binding(3sec)

If the outcomeis not specified in thedce_aud_start_with_server_binding()call,
dce_aud_start_with_server_binding()returns a NULLard if no action is required
for all possible outcomes.

The caller should not change the outcome between the
dce_aud_start_with_server_binding() and dce_aud_commit() calls
arbitrarily. In this case, the outcome can be made more specific, for example,
from aud_c_esl_cond_unknown to aud_c_esl_cond_success or from
aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

This function can be called with theoutcome parameter taking a value of 0
(zero) or the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success, aud_c_esl_cond_failure, aud_c_esl_cond_denial, and
aud_c_esl_cond_pending. The outcomeparameter used in thedce_aud_commit()
function should take one value from the same set of constants.

If dce_aud_start_with_server_binding()used a nonzero value foroutcome, then the
constant used foroutcomein the dce_aud_commit()call should have been selected
in the dce_aud_start_with_server_binding()call.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

1448

DCE Security Service

dce_aud_start_with_server_binding(3sec)

Status codes passed fromrpc_binding_inq_auth_info()

Status codes passed fromrpc_binding_to_string_binding()

Status codes passed fromdce_aud_start_with_name()

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec),
dce_aud_put_ev_info(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec).

1449

DCE 1.2.2 Application Development Reference

dce_aud_start_with_uuid(3sec)

dce_aud_start_with_uuid

Purpose Determines whether a specified event should be audited given the client/server UUID
and the event outcome. Used by client/server applications which already know the
UUIDs of their clients and wish to avoid the overhead of the audit library acquiring
them

Synopsis
#include <dce/audit.h>

void dce_aud_start_with_uuid(
unsigned32event,
uuid_t server_uuid,
uuid_t client_uuid,
uuid_ trealm_uuid,
unsigned_char_t *address,
unsigned3 2options,
unsigned32outcome,
dce_aud_rec_t* ard,
unsigned32 *status);

Parameters
Input

event Specifies the event to be audited. This is a 32-bit event number. The
eventfield in the audit record header will be set to this number.

server_uuid Specifies the calling application’s principal uuid.

client_uuid Specifies the remote client/server’s principal uuid.

realm_uuid Specifies the remote client/server’s cell uuid.

address Specifies the remote client/server’s address. The address could be in any
format of the underlying transport protocol.

1450

DCE Security Service

dce_aud_start_with_uuid(3sec)

options Specifies the optional header information desired (aud_c_evt_all_info,
aud_c_evt_group_info, aud_c_evt_address_info).

It can also be used to specify any of two options: to always log an audit
record (aud_c_evt_always_log) or to always send an alarm message
to the standard output (aud_c_evt_always_alarm). If any of these two
options is selected, the filter is bypassed. The value of theoptions
parameter is the bitwise OR of any selected combination of the following
option values:

aud_c_evt_all_info
Includes all optional information (groups and address) in
the audit record header.

aud_c_evt_groups_info
Includes the groups information in the audit record header.

aud_c_evt_address_info
Includes the client address information in the audit record
header.

aud_c_evt_always_log
Bypasses the filter mechanism and indicates that the event
must be logged.

aud_c_evt_always_alarm
Bypasses the filter mechanism and indicates that an alarm
message must be sent to the system console for the event.

outcome The event outcome to be stored in the header. The following event
outcome values are defined:

aud_c_esl_cond_unknown
The event outcome (denial, failure, or success) is still
unknown.

aud_c_esl_cond_success
The event completed successfully.

aud_c_esl_cond_denial
The event failed due to access denial.

aud_c_esl_cond_failure
The event failed due to reasons other than access denial.

1451

DCE 1.2.2 Application Development Reference

dce_aud_start_with_uuid(3sec)

aud_c_esl_cond_pending
The event outcome is pending, being one in a series of
connected events, where the application desires to record
the real outcome only after the last event.

Output

ard Returns a pointer to an audit record buffer. If the event does not need to
be audited because it is not selected by the filters, or if the environment
variableDCEAUDITOFF has been set, a NULL pointer is returned. If
the function is called withoutcomeset toaud_c_esl_cond_unknown,
it is possible that the function cannot determine whether the event
should be audited. In this case, the audit record descriptor is still
allocated and its address is returned to the caller. Anoutcome, different
from unknown, must be provided prior to logging the record with the
dce_aud_commit()function.

status The status code returned by this routine. This status code indicates
whether the routine completed successfully or not. If the routine did
not complete successfully, the reason for the failure is given.

Description

The dce_aud_start_with_uuid() function determines if an audit record must be
generated for the specified event. The decision is based on the event filters, an
environment variable (DCEAUDITOFF), the client’s identity provided in the input
parameters, and the event outcome (if it is provided in theoutcomeparameter). If this
event needs to be audited, the function allocates an audit record descriptor and returns
a pointer to it, (that is,ard). If the event does not need to be audited, NULL is returned
in theard parameter. If either theaud_c_evt_always_logor aud_c_evt_always_alarm
option is selected, an audit record descriptor will always be created and returned.

The dce_aud_start_with_uuid()function is designed to be used by RPC applications
that know their client’s identity in UUID form. Otherwise, RPC applications should use
dce_aud_start(). Non-RPC applications that use the DCE authorization model should
usedce_aud_start_with_pac(). Thedce_aud_start_with_name()function should be
used by non-RPC applications that do not use the DCE authorization model.

This function records the input identity parameters in the newly-created audit record
descriptor.

1452

DCE Security Service

dce_aud_start_with_uuid(3sec)

Event-specific information can be added to the record by using the
dce_aud_put_ev_info() function, which can be called multiple times after
calling any of the dce_aud_start_* and before callingdce_aud_commit(). A
completed audit record can either be appended to an audit trail file or sent to the
audit daemon by callingdce_aud_commit().

This function searches for all relevant filters (for the specified subject and outcome,
if these are specified), summarizes the actions for each possible event outcome, and
records an outcome-action table withard. If the outcome is specified when calling
this function and the outcome does not require any action according to filters, then
this function returns a NULLard.

If the outcome is not specified in the dce_aud_start_with_uuid() call,
dce_aud_start_with_uuid() returns a NULL ard if no action is required for all
possible outcomes.

The caller should not change the outcome between thedce_aud_start_with_uuid()
anddce_aud_commit()calls arbitrarily. In this case, the outcome can be made more
specific, for example, fromaud_c_esl_cond_unknownto aud_c_esl_cond_success
or from aud_c_esl_cond_pendingto aud_c_esl_cond_success.

An outcome change fromaud_c_esl_cond_successto aud_c_esl_cond_denial
is not logically correct because the outcomeaud_c_esl_cond_successmay have
caused a NULLard to be returned in this function. If the final outcome can
be aud_c_esl_cond_success, then it should be specified in this function, or use
aud_c_esl_cond_unknown.

This function can be called with theoutcome parameter taking a value of
zero or the union (logical OR) of selected values from the set of constants
aud_c_esl_cond_success, aud_c_esl_cond_failure, aud_c_esl_cond_denial, and
aud_c_esl_cond_pending. The outcomeparameter used in thedce_aud_commit()
function should take one value from the same set of constants.

If dce_aud_start_with_uuid() used a nonzero value foroutcome, then the constant
used foroutcomein the dce_aud_commit()call should have been selected in the
dce_aud_start_with_uuid()call.

Return Values

No value is returned.

1453

DCE 1.2.2 Application Development Reference

dce_aud_start_with_uuid(3sec)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

aud_s_ok The call was successful.

Status codes passed fromdce_aud_start_with_pac()

Related Information

Functions:dce_aud_commit(3sec), dce_aud_open(3sec),
dce_aud_put_ev_info(3sec), dce_aud_start(3sec),
dce_aud_start_with_name(3sec), dce_aud_start_with_pac(3sec),
dce_aud_start_with_server_binding(3sec).

1454

Index

A
abbreviations in routine names, 493
Absolute Time, 1142
access control list

permissions for RPC NSI
routines, 528

ACL
permissions for RPC NSI

routines, 528
Add Time, 1145
aliases, 991
Any Time, 1148
Any Zone, 1152
API, 990
API overview, 490, 1289
application program interface, 990
Application Programming Interface,

490, 1289
ASCII Any Time, 1154
ASCII GMT Time, 1156
ASCII Local Time, 1158
ASCII Relative Time, 1160
atomic modification, 994
attribute

priority, 375, 383
scheduling, 373, 381
scheduling policy, 377, 386
stacksize, 379, 388
type, 1097

types, 1042
value, 1123
value assertion, 987

attributes object
creating, 369

Audit
Application Programming

Interface, 1289
Audit event information types, 1292

B
base object, 1010
BDC package, 1036
Binary Relative Time, 1162
Binary Time, 1165
binding

string, 523
binding handle, 506, 523

client, 506
concurrency control, 508
fully bound, 506
partially bound, 506
server, 506

binding information, 506
binding parameter, 529
binding vector, 508

Index–1

Index

boolean32 data type, 510
Bound Time, 1167
broadcasting a wake-up, 396

C
calls

sec_rgy_unix_getpwnam, 2182
cancel

asynchronous delivery and
exception handlers, 459

delivery, 390
enabling and disabling

asynchronous delivery
of, 459

enabling and disabling delivery
of, 461

obtaining noncancelable versions
of cancelable routines,
461

possible dangers of disabling,
461

requesting delivery of, 474
sending to a thread, 390

cancelability
asynchronous, 459
general, 461

CDS, 1042
ACL permissions for NSI

routines, 528
Cell Directory Service, 1042
cell name, 514
cell-relative name, 514
character string

unsigned, 528

characteristics of created condition
variable
specifying, 408

characteristics of created mutex
specifying, 448

characteristics of created object
specifying, 369

class
instance, 1100

class definition, 1114
cleanup routine

establishing, 394
executing, 392

client, 887, 910
context - reclaiming memory,

887, 910
memory, 897, 901, 919, 924

client binding handle, 506
client entry point vector, 519
commands

dced, 492
idl, 490
management, 492
programmer, 492
rpccp, 492

Compare Interval Time, 1170
Compare Midpoint Times, 1174
concurrency control, 508, 520
condition variable

creating, 400
definition of, 400
definition of predicate, 400
deleting, 398
waiting for, 406
waiting for a specified time, 404

condition variable attributes object
creating, 408
deleting, 410

context
setting, 470

Index–2

Index

context handle
destroying, 910
rpc_sm_destroy_client_context

routine, 887
control program

RPC, 492
creating

a condition variable, 400
a mutex, 440
condition variable attributes

object, 408
mutex attributes object, 448
thread attributes object, 369

creating a thread, 412
inherit scheduling attribute, 373,

381
priority attribute, 375, 383
scheduling policy attribute, 377,

386
stacksize attribute, 379, 388

creating thread-specific data key value,
434

D
daemon

DCE host, 492
data

generating key value for, 434
uses for, 434

data structure
pthread_once_t, 456

data structures
client entry point vector, 519
interface identifier, 517
interface identifier vector, 517
manager entry point vector, 518

protocol sequence vector, 521
statistics vector, 522
UUID vector, 528

data types
boolean32, 510
rpc_binding_handle_t, 508
rpc_binding_vector_t, 509
rpc_codeset_mgmt_t*O, 512
rpc_cs_c_set_t*O, 510
rpc_ep_inq_handle_t, 514
rpc_if_handle_t, 516
rpc_if_id_t, 517
rpc_if_id_vector_t, 518
rpc_mgr_epv_t, 519
rpc_ns_handle_t, 519
rpc_protseq_vector_t, 522
rpc_stats_vector_t, 523
unsigned_char_t, 528
unsigned_char_t *, 521
uuid_vector_t, 528

data types and structures, 505
DCE Audit Application Programming

Interface, 1289
DCE host

daemon, 492
DCE RPC Application Programming

Interface, 490
DCE RPC management commands, 492
DCE RPC runtime routines, 492
DCE RPC runtime services, 492
DCE status codes, 531
dce_aud_close(), 1386
dce_aud_commit(), 1388
dce_aud_discard(), 1393
dce_aud_free_ev_info(), 1395
dce_aud_free_header(), 1397
dce_aud_get_ev_info(), 1399
dce_aud_get_header(), 1401
dce_aud_length(), 1403
dce_aud_next(), 1405

Index–3

Index

dce_aud_open(), 1410
dce_aud_prev(), 1414
dce_aud_print(), 1418
dce_aud_reset(), 1423
dce_aud_rewind(), 1425
dce_aud_set_trail_size_limit(), 1427
dce_aud_start(), 1430
dce_aud_start_with_name(), 1435
dce_aud_start_with_pac(), 1440
dce_aud_start_with_server_binding(),

1445
dce_aud_start_with_uuid, 1450
dced command, 492
delaying execution of a thread, 416
delete permission, 529
deleting

condition variable attributes
object, 410

mutex attributes object, 450
deleting a condition variable, 398
deleting a mutex, 438
deleting a thread, 418
delivery of cancel

requesting, 474
delivery of cancels

enabling and disabling, 461
enabling and disabling

asynchronous delivery
of, 459

destination, 1113
destination values, 1080
Directory

context, 981, 987, 1001, 1007
Information Tree, 981, 1007
session, 1005
System Agent, 981

disabling asynchronous delivery of
cancels, 459

disabling memory, 889, 911
DS package, 1024

DS_C_ATTRIBUTE_LIST, 982
DS_C_AVA, 987
DS_C_CONTEXT, 981, 987, 991, 994,

998, 1001, 1005, 1007
DS_C_ENTRY_MOD_LIST, 994
DS_C_NAME, 981, 987, 991, 994, 998,

1001, 1005, 1007
DS_C_SESSION, 981, 984, 987, 991,

994, 998, 1001, 1005, 1007
DS_DEFAULT_SESSION, 984
DS_feature, 1015
DS_FILE_DESCRIPTOR, 985
DSA, 981
dynamic endpoint, 506

E
enabling asynchronous delivery of

cancels, 459
enabling memory, 891, 912
endpoint, 506

dynamic, 506
well-known, 506

endpoint map inquiry handle, 514
endpoint portion of a string binding,

526
entry point vector

client, 519
manager, 518

environment variables
RPC_DEFAULT_ENTRY, 505
RPC_DEFAULT_ENTRY

_SYNTAX, 505
error codes, 531
error termination of a thread, 412
exception codes, 531

Index–4

Index

exceptions, 531
for RPC applications, 531
rpc_x_nomemory, 912

expiration time
obtaining, 424

F
fast mutex, 454
freeing memory, 893, 914
frequently used routine parameters, 529
fully bound binding handle, 506

G
GDS package, 1046
Get Time, 1178
Get User Time, 1180
global mutex

locking, 436
unlocking, 475

global name, 514
Greenwich Mean Time, 1182
Greenwich Mean Time Zone, 1184
gss_accept_sec_context, 1455
gss_acquire_cred, 1462
gss_compare_name, 1465
gss_context_time, 1467
gss_delete_sec_context, 1469
gss_display_name, 1471
gss_display_status, 1473
gss_import_name, 1476
gss_indicate_mechs, 1478

gss_init_sec_context, 1480
gss_inquire_cred, 1486
gss_process_context_token, 1489
gss_release_buffer, 1491
gss_release_cred, 1492
gss_release_name, 1494
gss_release_oid_set, 1496
gss_seal, 1497
gss_sign, 1499
gss_unseal, 1501
gss_verify, 1504
gssdce_add_oid_set_member, 1506
gssdce_create_empty_oid_set, 1508
gssdce_cred_to_login_context, 1510
gssdce_extract_creds_from_sec_context,

1512
gssdce_login_context_to_cred, 1514
gssdce_register_acceptor_identity, 1517
gssdce_set_cred_context_ownership,

1520
gssdce_test_oid_set_member, 1522

H
handle

binding, 506
endpoint map inquiry, 514
IDL encoding service, 514
interface, 515
name service, 519

Index–5

Index

I
identifier

comparing, 420
interface, 517

IDL base types, 490
idl command, 490
IDL compiler, 490
IDL encoding service handle, 514
IDL-to-C mappings, 490
idl_ macros, 490
idl_void_p_t type, 883, 889, 893, 903,

908, 911, 914
idlbase.h, 492
immediate subordinates, 991
inherit scheduling attribute

obtaining, 373
usefulness, 381

initialization
one-time, 456

initializing a condition variable, 400
insert permission, 529
interface

C workspace, 1125
Interface Definition Language compiler,

490
interface handle, 515
interface identifier, 517
interface identifier data structure, 517
interface identifier vector data structure,

517
interface specification, 515
ip protocol sequence, 521

K
key value

generating for thread-specific
data, 434

obtaining thread-specific data for,
430

setting thread-specific data for,
470

L
leaf entry, 981
local representation, 1115, 1123
Local Time, 1188
Local Zone, 1190
locking a global mutex, 436
locking a mutex, 442, 444

M
macros

idl_, 491
Make Any Time, 1192
Make ASCII Relative Time, 1195
Make ASCII Time, 1197
Make Binary Relative Time, 1199
Make Binary Time, 1201
Make Greenwich Mean Time, 1203
Make Local Time, 1205
Make Relative Time, 1207
management commands, 492

Index–6

Index

manager entry point vector, 518
manager entry point vector data type,

518
MDUP package, 1050
memory

allocating, 883, 903
disabling, 889, 911
enabling, 891, 912
freeing, 893, 908, 914
insufficient, 912
management, 895, 897, 899,

916, 919, 921
reclaiming client resources, 887,

910
rpc_sm_allocate routine, 883
rpc_sm_destroy_client_context

routine, 887
rpc_sm_disable_allocate routine,

889
rpc_sm_enable_allocate routine,

891
rpc_sm_free routine, 893
rpc_sm_get_thread_handle

routine, 895
rpc_sm_set_client_alloc_free

routine, 897
rpc_sm_set_thread_handle

routine, 899
rpc_sm_swap_client_alloc_free

routine, 901
setting client, 897, 919
swapping memory, 901, 924

modify_entry, 994
Multiply a Relative Time by a Real

Factor, 1210
Multiply Relative Time by an Integer

Factor, 1213
mutex

creating, 440
definition of, 440

deleting, 438
fast, 454
locking, 442, 444
recursive, 454
unlocking, 446

mutex attributes object
creating, 448
deleting, 450

N
name

cell, 514
cell-relative, 514
global, 514

name parameter, 530
name service handle, 519

concurrency control, 520
name service interface operations, 492
name syntaxes

valid, 531
name_syntax parameter, 530
ncacn_ip_tcp protocol sequence, 521
ncadg_ip_udp protocol sequence, 521
network address portion of a string

binding, 525
Network Computing Architecture, 520
new primitive routines, 354
non-portable routines, 354
nonlocal representation, 1115, 1123
nonreentrant library packages

calling, 436
normal termination of a thread, 412,

422
np suffix, 354
NSI

Index–7

Index

ACL permissions for routines,
528

NSI operations, 492

O
object

public copy, 1105
object UUID portion of a string binding,

524
OM

attribute names, 1026, 1048
class names, 1025, 1048

P
parameters

frequently used routine, 529
partial outcome qualifier, 992
partially bound binding handle, 506
permissions (ACL) for NSI routines,

528
Point Time, 1215
POSIX threads, 492
predicate, 400

definition of, 400
priority

obtaining for thread, 426
setting for thread, 463, 466

priority attribute, 375, 383
priority inversion

avoiding, 442

private object, 981, 987, 1005, 1013,
1095, 1103, 1113, 1117, 1120,
1122

processor
causing thread to release control

of, 477
programmer commands, 492
protocol sequence, 520
protocol sequence portion of a string

binding, 525
protocol sequence vector data structure,

521
protocol sequences

valid, 520
pthread_create(), 412
pthread_once_t data structure, 456
public object, 1079, 1103, 1113

R
RDN, 981
read permission, 529
reclaiming client resources, 887, 910
recursive mutex, 454
Relative Distinguished Name, 981
Relative Time, 1217
routines

Audit API support, 1289
DCE RPC runtime, 492
RPC runtime, 493

RPC
ACL permissions for NSI

routines, 528
Application Programming

Interface, 490
control program, 492

Index–8

Index

data types and structures, 505
exceptions, 531
management commands, 492
name service interface operations,

492
runtime routines, 492
runtime services, 492
structures and data types, 505

rpc_binding_handle_t data type, 508
rpc_binding_vector_t data type, 509
rpc_codeset_mgmt_t data type, 512
rpc_cs_c_set_t data type, 510
RPC_DEFAULT_ENTRY, 505
RPC_DEFAULT_ENTRY _SYNTAX

environment variable, 531
RPC_DEFAULT_ENTRY environment

variable, 530
RPC_DEFAULT_ENTRY_SYNTAX,

505
rpc_ep_inq_handle_t data type, 514
rpc_if_handle_t data type, 516
rpc_if_id_t data type, 517
rpc_if_id_vector_t data type, 518
rpc_mgr_epv_t data type, 519
rpc_ns_handle_t data type, 519
rpc_protseq_vector_t data type, 522
rpc_sm_allocate routine, 883
rpc_sm_destroy_client_context routine,

887
rpc_sm_disable_allocate routine, 889
rpc_sm_enable_allocate routine, 891
rpc_sm_free routine, 893
rpc_sm_get_thread_handle routine, 895
rpc_sm_set_client_alloc_free routine,

897
rpc_sm_set_thread_handle routine, 899
rpc_sm_swap_client_alloc_free routine,

901
rpc_stats_vector_t data type, 523
rpc_x_no_memory exception, 912

rpccp command, 492
runtime routines, DCE RPC, 492
runtime services, DCE RPC, 492

S
SA package, 1054
scheduling policy

obtaining for thread, 428
setting for thread, 466

scheduling policy attribute, 386
obtaining, 377

sec_rgy_unix_getpwnam, 2182
selecting

thread attributes object, 371
server binding handle, 506
server threads

memory management, 895, 899,
916, 921

service control attribute, 987
service interface, 1125
service interface (xom), 1078
services, DCE RPC runtime, 492
setting client memory, 897, 919
signal

examine and change blocked,
484

examine and change
synchronous, 479

examine pending signals, 482
waiting for asynchronous, 486

signaling a wake-up, 402
Span Time, 1219
specification

interface, 515
stack

changing minimum size of, 388

Index–9

