
DCE 1.2.2 Application Development Reference

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:

DCE 1.2.2 Application Development Reference, (Volume 1)
ISBN 1–85912–103–9
Document Number F205A

DCE 1.2.2 Application Development Reference, (Volume 2)
ISBN 1–85912–108–X
Document Number F205B

DCE 1.2.2 Application Development Reference, (Volume 3)
ISBN 1–85912–159–4
Document Number F205C

Published in the U.K. by The Open Group, 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xxi

The Open Group xxi

The Development of Product Standards. xxii

Open Group Publications xxiii

Versions and Issues of Specifications. xxv

Corrigenda. xxv

Ordering Information xxv

This Book xxvi

Audience xxvi

Applicability xxvi

Purpose. xxvi

Document Usage xxvi

Related Documents. xxvii

Typographic and Keying Conventions. xxviii

Pathnames of Directories and Files in DCE
Documentation. xxix

Problem Reporting. xxix

Trademarks. xxx

Chapter 1. DCE Routines. 1
dce_intro 2
dce_attr_intro. 4
dce_cf_intro 7
dce_db_intro 11
dce_msg_intro. 17

i

DCE 1.2.2 Application Development Reference

dce_server_intro 20
dce_svc_intro. 23
dced_intro. 27
DCE_SVC_INTRO 40
dce_assert. 42
dce_attr_sch_bind. 44
dce_attr_sch_bind_free. 46
dce_attr_sch_create_entry. 48
dce_attr_sch_cursor_alloc. 50
dce_attr_sch_cursor_init 52
dce_attr_sch_cursor_release. 54
dce_attr_sch_cursor_reset. 56
dce_attr_sch_delete_entry. 58
dce_attr_sch_get_acl_mgrs. 60
dce_attr_sch_lookup_by_id. 62
dce_attr_sch_lookup_by_name. 64
dce_attr_sch_scan. 66
dce_attr_sch_update_entry. 69
dce_cf_binding_entry_from_host. 72
dce_cf_dced_entry_from_host. 74
dce_cf_find_name_by_key. 77
dce_cf_free_cell_aliases 80
dce_cf_get_cell_aliases. 82
dce_cf_get_cell_name. 84
dce_cf_get_csrgy_filename. 86
dce_cf_get_host_name. 89
dce_cf_prin_name_from_host. 91
dce_cf_profile_entry_from_host 93
dce_cf_same_cell_name. 95
dce_db_close. 97
dce_db_delete. 99
dce_db_delete_by_name. 101
dce_db_delete_by_uuid 103
dce_db_fetch 105
dce_db_fetch_by_name 107
dce_db_fetch_by_uuid. 110
dce_db_free 113
dce_db_header_fetch. 115
dce_db_inq_count. 117
dce_db_iter_done. 119
dce_db_iter_next 121
dce_db_iter_next_by_name. 123
dce_db_iter_next_by_uuid. 125
dce_db_iter_start 127

ii

Contents

dce_db_lock 129
dce_db_open. 131
dce_db_std_header_init 136
dce_db_store. 138
dce_db_store_by_name. 141
dce_db_store_by_uuid. 144
dce_db_unlock. 147
dce_error_inq_text. 149
dce_msg_cat_close. 151
dce_msg_cat_get_msg. 153
dce_msg_cat_open. 155
dce_msg_define_msg_table. 157
dce_msg_get 160
dce_msg_get_cat_msg. 162
dce_msg_get_default_msg. 164
dce_msg_get_msg. 166
dce_msg_translate_table. 168
dce_pgm_printf 170
dce_pgm_fprintf 170
dce_pgm_sprintf 170
dce_printf 172
dce_fprintf. 172
dce_sprintf. 172
dce_server_disable_service. 175
dce_server_enable_service. 177
dce_server_inq_attr 179
dce_server_inq_server. 181
dce_server_inq_uuids. 183
dce_server_register. 185
dce_server_sec_begin. 188
dce_server_sec_done. 190
dce_server_unregister. 192
dce_server_use_protseq 194
dce_svc_components. 196
dce_svc_debug_routing 198
dce_svc_debug_set_levels. 200
dce_svc_define_filter. 202
dce_svc_filter. 206
dce_svc_log_close. 208
dce_svc_log_get 210
dce_svc_log_open. 212
dce_svc_log_rewind 214
dce_svc_printf. 216
dce_svc_register 220

iii

DCE 1.2.2 Application Development Reference

dce_svc_routing 223
dce_svc_set_progname. 225
dce_svc_table. 227
dce_svc_unregister. 230
dced_binding_create 232
dced_binding_free. 236
dced_binding_from_rpc_binding 238
dced_binding_set_auth_info 242
dced_entry_add 245
dced_entry_get_next 248
dced_entry_remove 251
dced_hostdata_create. 253
dced_hostdata_delete. 257
dced_hostdata_read 259
dced_hostdata_write 262
dced_initialize_cursor. 264
dced_inq_id 266
dced_inq_name 269
dced_keytab_add_key. 272
dced_keytab_change_key. 275
dced_keytab_create 278
dced_keytab_delete 281
dced_keytab_get_next_key. 283
dced_keytab_initialize_cursor. 285
dced_keytab_release_cursor. 287
dced_keytab_remove_key. 289
dced_list_get 291
dced_list_release. 294
dced_object_read. 296
dced_object_read_all. 300
dced_objects_release. 303
dced_release_cursor 306
dced_secval_start. 308
dced_secval_status. 310
dced_secval_stop. 312
dced_secval_validate. 314
dced_server_create. 316
dced_server_delete. 319
dced_server_disable_if. 322
dced_server_enable_if. 325
dced_server_modify_attributes. 328
dced_server_start. 330
dced_server_stop. 333
DCE_SVC_DEBUG 337

iv

Contents

DCE_SVC_DEBUG_ATLEAST 339
DCE_SVC_DEBUG_IS 341
DCE_SVC_DEFINE_HANDLE 343
DCE_SVC_LOG 345
svcroute 347

Chapter 2. DCE Threads. 353
thr_intro 354
datatypes 360
atfork 365
exceptions. 367
pthread_attr_create. 369
pthread_attr_delete. 371
pthread_attr_getinheritsched. 373
pthread_attr_getprio 375
pthread_attr_getsched. 377
pthread_attr_getstacksize. 379
pthread_attr_setinheritsched. 381
pthread_attr_setprio 383
pthread_attr_setsched. 386
pthread_attr_setstacksize. 388
pthread_cancel. 390
pthread_cleanup_pop. 392
pthread_cleanup_push. 394
pthread_cond_broadcast. 396
pthread_cond_destroy. 398
pthread_cond_init. 400
pthread_cond_signal 402
pthread_cond_timedwait 404
pthread_cond_wait. 406
pthread_condattr_create 408
pthread_condattr_delete 410
pthread_create. 412
pthread_delay_np. 416
pthread_detach. 418
pthread_equal. 420
pthread_exit 422
pthread_get_expiration_np. 424
pthread_getprio 426
pthread_getscheduler. 428
pthread_getspecific. 430
pthread_join 432
pthread_keycreate. 434

v

DCE 1.2.2 Application Development Reference

pthread_lock_global_np 436
pthread_mutex_destroy. 438
pthread_mutex_init. 440
pthread_mutex_lock 442
pthread_mutex_trylock. 444
pthread_mutex_unlock. 446
pthread_mutexattr_create. 448
pthread_mutexattr_delete. 450
pthread_mutexattr_getkind_np. 452
pthread_mutexattr_setkind_np. 454
pthread_once. 456
pthread_self 458
pthread_setasynccancel. 459
pthread_setcancel. 461
pthread_setprio 463
pthread_setscheduler. 466
pthread_setspecific. 470
pthread_signal_to_cancel_np. 472
pthread_testcancel. 474
pthread_unlock_global_np. 475
pthread_yield 477
sigaction 479
sigpending. 482
sigprocmask 484
sigwait. 486

Chapter 3. DCE Remote Procedure Call. 489
rpc_intro 490
cs_byte_from_netcs 533
cs_byte_local_size. 537
cs_byte_net_size. 541
cs_byte_to_netcs. 545
dce_cs_loc_to_rgy. 549
dce_cs_rgy_to_loc. 552
idl_es_decode_buffer. 555
idl_es_decode_incremental. 557
idl_es_encode_dyn_buffer. 560
idl_es_encode_fixed_buffer. 563
idl_es_encode_incremental. 566
idl_es_handle_free. 570
idl_es_inq_encoding_id 572
rpc_binding_copy. 574
rpc_binding_free 576

vi

Contents

rpc_binding_from_string_binding. 578
rpc_binding_inq_auth_caller 581
rpc_binding_inq_auth_client 586
rpc_binding_inq_auth_info. 591
rpc_binding_inq_object 596
rpc_binding_reset. 598
rpc_binding_server_from_client 601
rpc_binding_set_auth_info. 606
rpc_binding_set_object. 613
rpc_binding_to_string_binding. 615
rpc_binding_vector_free 617
rpc_cs_binding_set_tags. 619
rpc_cs_char_set_compat_check. 622
rpc_cs_eval_with_universal. 625
rpc_cs_eval_without_universal. 628
rpc_cs_get_tags 631
rpc_ep_register 635
rpc_ep_register_no_replace. 641
rpc_ep_resolve_binding 646
rpc_ep_unregister. 651
rpc_if_id_vector_free 654
rpc_if_inq_id 656
rpc_mgmt_ep_elt_inq_begin 659
rpc_mgmt_ep_elt_inq_done 664
rpc_mgmt_ep_elt_inq_next. 666
rpc_mgmt_ep_unregister. 670
rpc_mgmt_inq_com_timeout 673
rpc_mgmt_inq_dflt_protect_level. 675
rpc_mgmt_inq_if_ids 678
rpc_mgmt_inq_server_princ_name. 681
rpc_mgmt_inq_stats 684
rpc_mgmt_is_server_listening. 687
rpc_mgmt_set_authorization_fn 690
rpc_mgmt_set_cancel_timeout. 694
rpc_mgmt_set_com_timeout 696
rpc_mgmt_set_server_stack_size. 699
rpc_mgmt_stats_vector_free. 701
rpc_mgmt_stop_server_listening. 703
rpc_network_inq_protseqs. 706
rpc_network_is_protseq_valid. 708
rpc_ns_binding_export. 710
rpc_ns_binding_import_begin. 714
rpc_ns_binding_import_done. 717
rpc_ns_binding_import_next 719

vii

DCE 1.2.2 Application Development Reference

rpc_ns_binding_inq_entry_name. 723
rpc_ns_binding_lookup_begin. 726
rpc_ns_binding_lookup_done. 729
rpc_ns_binding_lookup_next. 731
rpc_ns_binding_select. 736
rpc_ns_binding_unexport. 738
rpc_ns_entry_expand_name. 742
rpc_ns_entry_inq_resolution 745
rpc_ns_entry_object_inq_begin. 748
rpc_ns_entry_object_inq_done. 750
rpc_ns_entry_object_inq_next. 752
rpc_ns_group_delete. 755
rpc_ns_group_mbr_add 757
rpc_ns_group_mbr_inq_begin. 760
rpc_ns_group_mbr_inq_done. 763
rpc_ns_group_mbr_inq_next. 765
rpc_ns_group_mbr_remove. 768
rpc_ns_import_ctx_add_eval. 771
rpc_ns_mgmt_binding_unexport 775
rpc_ns_mgmt_entry_create. 780
rpc_ns_mgmt_entry_delete. 782
rpc_ns_mgmt_entry_inq_if_ids. 785
rpc_ns_mgmt_free_codesets. 788
rpc_ns_mgmt_handle_set_exp_age. 790
rpc_ns_mgmt_inq_exp_age. 794
rpc_ns_mgmt_read_codesets. 796
rpc_ns_mgmt_remove_attribute. 799
rpc_ns_mgmt_set_attribute. 802
rpc_ns_mgmt_set_exp_age. 805
rpc_ns_profile_delete. 808
rpc_ns_profile_elt_add. 810
rpc_ns_profile_elt_inq_begin. 814
rpc_ns_profile_elt_inq_done 819
rpc_ns_profile_elt_inq_next 821
rpc_ns_profile_elt_remove. 824
rpc_object_inq_type 827
rpc_object_set_inq_fn. 830
rpc_object_set_type 833
rpc_protseq_vector_free 836
rpc_rgy_get_codesets. 838
rpc_rgy_get_max_bytes 841
rpc_server_inq_bindings 844
rpc_server_inq_if 846
rpc_server_listen 848

viii

Contents

rpc_server_register_auth_ident. 852
rpc_server_register_auth_info. 855
rpc_server_register_if. 861
rpc_server_unregister_if 865
rpc_server_use_all_protseqs. 868
rpc_server_use_all_protseqs_if. 871
rpc_server_use_protseq. 874
rpc_server_use_protseq_ep. 877
rpc_server_use_protseq_if. 880
rpc_sm_allocate 883
rpc_sm_client_free. 885
rpc_sm_destroy_client_context. 887
rpc_sm_disable_allocate 889
rpc_sm_enable_allocate 891
rpc_sm_free 893
rpc_sm_get_thread_handle. 895
rpc_sm_set_client_alloc_free. 897
rpc_sm_set_thread_handle. 899
rpc_sm_swap_client_alloc_free. 901
rpc_ss_allocate. 903
rpc_ss_bind_authn_client. 905
rpc_ss_client_free. 908
rpc_ss_destroy_client_context. 910
rpc_ss_disable_allocate. 911
rpc_ss_enable_allocate. 912
rpc_ss_free 914
rpc_ss_get_thread_handle. 916
rpc_ss_set_client_alloc_free 919
rpc_ss_set_thread_handle. 921
rpc_ss_swap_client_alloc_free. 924
rpc_string_binding_compose. 927
rpc_string_binding_parse. 929
rpc_string_free. 932
rpc_tower_to_binding. 934
rpc_tower_vector_free. 936
rpc_tower_vector_from_binding 938
uuid_compare. 940
uuid_create 942
uuid_create_nil 944
uuid_equal. 946
uuid_from_string 948
uuid_hash. 950
uuid_is_nil. 952
uuid_to_string. 954

ix

DCE 1.2.2 Application Development Reference

wchar_t_from_netcs 956
wchar_t_local_size. 960
wchar_t_net_size. 964
wchar_t_to_netcs. 968

Chapter 4. DCE Directory Service. 973
xds_intro 974
decode_alt_addr 977
dsX_extract_attr_values 979
ds_add_entry. 981
ds_bind 984
ds_compare 987
ds_initialize 990
ds_list. 991
ds_modify_entry 994
ds_modify_rdn. 998
ds_read 1001
ds_remove_entry 1005
ds_search. 1007
ds_shutdown 1011
ds_unbind. 1013
ds_version. 1015
encode_alt_addr 1017
gds_decode_alt_addr. 1019
gds_encode_alt_addr. 1021
xds_intro 1023
xds.h 1024
xdsbdcp.h. 1036
xdscds.h 1042
xdsdme.h 1044
xdsgds.h 1046
xdsmdup.h. 1050
xdssap.h 1054
xmhp.h 1058
xmsga.h 1073
xom_intro 1077
omX_extract 1081
omX_fill 1086
omX_fill_oid 1088
omX_object_to_string. 1090
omX_string_to_object. 1092
om_copy 1095
om_copy_value 1097

x

Contents

om_create. 1100
om_delete. 1103
om_get 1105
om_instance 1111
om_put 1113
om_read 1117
om_remove 1120
om_write 1122
xom.h 1125

Chapter 5. DCE Distributed Time Service. 1135
dts_intro 1136
utc_abstime 1142
utc_addtime 1145
utc_anytime 1148
utc_anyzone 1152
utc_ascanytime 1154
utc_ascgmtime. 1156
utc_asclocaltime 1158
utc_ascreltime. 1160
utc_binreltime. 1162
utc_bintime 1165
utc_boundtime. 1167
utc_cmpintervaltime 1170
utc_cmpmidtime 1174
utc_gettime 1178
utc_getusertime 1180
utc_gmtime 1182
utc_gmtzone 1184
utc_localtime 1188
utc_localzone. 1190
utc_mkanytime 1192
utc_mkascreltime. 1195
utc_mkasctime. 1197
utc_mkbinreltime 1199
utc_mkbintime. 1201
utc_mkgmtime. 1203
utc_mklocaltime 1205
utc_mkreltime. 1207
utc_mulftime 1210
utc_multime 1213
utc_pointtime 1215
utc_reltime 1217

xi

DCE 1.2.2 Application Development Reference

utc_spantime 1219
utc_subtime 1222

Chapter 6. DCE Security Service. 1225
sec_intro 1226
audit_intro. 1289
pkc_intro 1297
crypto_intro 1300
policy_intro 1309
pkc_trustlist_intro. 1326
gssapi_intro 1328
dce_acl_copy_acl. 1342
dce_acl_inq_acl_from_header. 1344
dce_acl_inq_client_creds. 1346
dce_acl_inq_client_permset 1348
dce_acl_inq_permset_for_creds. 1350
dce_acl_inq_prin_and_group.3sec. 1353
dce_acl_is_client_authorized. 1355
dce_acl_obj_add_any_other_entry. 1358
dce_acl_obj_add_foreign_entry. 1360
dce_acl_obj_add_group_entry. 1362
dce_acl_obj_add_id_entry. 1364
dce_acl_obj_add_obj_entry. 1366
dce_acl_obj_add_unauth_entry. 1368
dce_acl_obj_add_user_entry. 1370
dce_acl_obj_free_entries. 1372
dce_acl_obj_init 1374
dce_acl_register_object_type. 1376
dce_acl_resolve_by_name. 1382
dce_acl_resolve_by_uuid. 1384
dce_aud_close. 1386
dce_aud_commit 1388
dce_aud_discard 1393
dce_aud_free_ev_info. 1395
dce_aud_free_header. 1397
dce_aud_get_ev_info. 1399
dce_aud_get_header. 1401
dce_aud_length 1403
dce_aud_next. 1405
dce_aud_open. 1410
dce_aud_prev. 1414
dce_aud_print. 1418
dce_aud_put_ev_info. 1421

xii

Contents

dce_aud_reset. 1423
dce_aud_rewind 1425
dce_aud_set_trail_size_limit 1427
dce_aud_start. 1430
dce_aud_start_with_name. 1435
dce_aud_start_with_pac 1440
dce_aud_start_with_server_binding. 1445
dce_aud_start_with_uuid. 1450
gss_accept_sec_context 1455
gss_acquire_cred. 1462
gss_compare_name 1465
gss_context_time. 1467
gss_delete_sec_context. 1469
gss_display_name. 1471
gss_display_status. 1473
gss_import_name. 1476
gss_indicate_mechs 1478
gss_init_sec_context 1480
gss_inquire_cred 1486
gss_process_context_token. 1489
gss_release_buffer. 1491
gss_release_cred. 1492
gss_release_name. 1494
gss_release_oid_set 1496
gss_seal 1497
gss_sign 1499
gss_unseal. 1501
gss_verify. 1504
gssdce_add_oid_set_member. 1506
gssdce_create_empty_oid_set. 1508
gssdce_cred_to_login_context. 1510
gssdce_extract_creds_from_sec_context. . . . 1512
gssdce_login_context_to_cred. 1514
gssdce_register_acceptor_identity. 1517
gssdce_set_cred_context_ownership. 1520
gssdce_test_oid_set_member. 1522
pkc_add_trusted_key. 1524
pkc_append_to_trustlist 1526
pkc_ca_key_usage.class. 1528
pkc_check_cert_against_trustlist. 1529
pkc_constraints.class. 1531
pkc_copy_trustlist. 1533
pkc_crypto_generate_keypair. 1535
pkc_crypto_get_registered_algorithms. 1537

xiii

DCE 1.2.2 Application Development Reference

pkc_crypto_lookup_algorithm. 1539
pkc_crypto_register_signature_alg. 1541
pkc_crypto_sign 1543
pkc_crypto_verify_signature 1545
pkc_delete_trustlist. 1547
pkc_display_trustlist 1549
pkc_free 1551
pkc_free_keyinfo 1553
pkc_free_trustbase. 1555
pkc_free_trustlist 1557
pkc_generic_key_usage.class. 1559
pkc_get_key_certifier_count 1561
pkc_get_key_certifier_info. 1563
pkc_get_key_count. 1566
pkc_get_key_data. 1568
pkc_get_key_trust_info. 1570
pkc_get_registered_policies 1574
pkc_init_trustbase. 1576
pkc_init_trustlist 1579
pkc_key_policies.class. 1581
pkc_key_policy.class 1583
pkc_key_usage.class. 1585
pkc_lookup_element_in_trustlist 1587
pkc_lookup_key_in_trustlist 1589
pkc_lookup_keys_in_trustlist. 1593
pkc_name_subord_constraint.class. 1595
pkc_name_subord_constraints.class. 1598
pkc_name_subtree_constraint.class. 1600
pkc_name_subtree_constraints.class. 1603
pkc_pending_revocation.class. 1605
pkc_plcy_delete_keyinfo 1607
pkc_plcy_delete_trustbase. 1609
pkc_plcy_establish_trustbase. 1611
pkc_plcy_get_key_certifier_count. 1613
pkc_plcy_get_key_certifier_info 1615
pkc_plcy_get_key_count 1618
pkc_plcy_get_key_data. 1620
pkc_plcy_get_key_trust 1622
pkc_plcy_get_registered_policies. 1625
pkc_plcy_lookup_policy 1627
pkc_plcy_register_policy 1629
pkc_plcy_retrieve_keyinfo. 1632
pkc_retrieve_keyinfo 1635
pkc_retrieve_keylist 1638

xiv

Contents

pkc_revocation.class 1640
pkc_revocation_list.class. 1642
pkc_revoke_certificate. 1645
pkc_revoke_certificates. 1647
pkc_trust_list.class. 1649
pkc_trust_list_element.class 1651
pkc_trusted_key.class. 1653
rdacl_get_access. 1656
rdacl_get_manager_types. 1659
rdacl_get_mgr_types_semantics. 1662
rdacl_get_printstring 1665
rdacl_get_referral. 1669
rdacl_lookup 1672
rdacl_replace 1675
rdacl_test_access. 1678
rdacl_test_access_on_behalf. 1681
rsec_pwd_mgmt_gen_pwd. 1684
rsec_pwd_mgmt_str_chk. 1687
sec_acl_bind 1690
sec_acl_bind_auth. 1692
sec_acl_bind_to_addr. 1695
sec_acl_calc_mask. 1698
sec_acl_get_access. 1700
sec_acl_get_error_info. 1702
sec_acl_get_manager_types. 1704
sec_acl_get_mgr_types_semantics. 1707
sec_acl_get_printstring. 1710
sec_acl_lookup 1714
sec_acl_release 1717
sec_acl_release_handle. 1719
sec_acl_replace 1721
sec_acl_test_access 1724
sec_acl_test_access_on_behalf. 1726
sec_attr_trig_query. 1729
sec_attr_trig_update 1733
sec_attr_util_alloc_copy 1737
sec_attr_util_free 1739
sec_attr_util_inst_free. 1741
sec_attr_util_inst_free_ptrs. 1743
sec_attr_util_sch_ent_free. 1744
sec_attr_util_sch_ent_free_ptrs. 1746
sec_cred_free_attr_cursor. 1748
sec_cred_free_cursor. 1750
sec_cred_free_pa_handle. 1752

xv

DCE 1.2.2 Application Development Reference

sec_cred_get_authz_session_info. 1754
sec_cred_get_client_princ_name. 1756
sec_cred_get_deleg_restrictions. 1758
sec_cred_get_delegate. 1760
sec_cred_get_delegation_type. 1763
sec_cred_get_extended_attrs. 1765
sec_cred_get_initiator. 1767
sec_cred_get_opt_restrictions. 1769
sec_cred_get_pa_data. 1771
sec_cred_get_req_restrictions. 1773
sec_cred_get_tgt_restrictions. 1775
sec_cred_get_v1_pac. 1777
sec_cred_initialize_attr_cursor. 1779
sec_cred_initialize_cursor. 1781
sec_cred_is_authenticated. 1783
sec_id_gen_group. 1785
sec_id_gen_name. 1788
sec_id_parse_group 1791
sec_id_parse_name. 1794
sec_key_mgmt_change_key 1797
sec_key_mgmt_delete_key. 1800
sec_key_mgmt_delete_key_type. 1803
sec_key_mgmt_free_key. 1806
sec_key_mgmt_garbage_collect 1808
sec_key_mgmt_gen_rand_key. 1811
sec_key_mgmt_get_key 1814
sec_key_mgmt_get_next_key. 1817
sec_key_mgmt_get_next_kvno. 1819
sec_key_mgmt_initialize_cursor 1822
sec_key_mgmt_manage_key. 1825
sec_key_mgmt_release_cursor. 1828
sec_key_mgmt_set_key 1830
sec_login_become_delegate. 1833
sec_login_become_impersonator. 1837
sec_login_become_initiator. 1839
sec_login_certify_identity. 1843
sec_login_cred_get_delegate. 1847
sec_login_cred_get_initiator 1850
sec_login_cred_init_cursor. 1852
sec_login_disable_delegation. 1854
sec_login_export_context. 1856
sec_login_free_net_info 1858
sec_login_get_current_context. 1860
sec_login_get_expiration. 1863

xvi

Contents

sec_login_get_groups. 1866
sec_login_get_pwent. 1869
sec_login_import_context. 1873
sec_login_init_first. 1875
sec_login_inquire_net_info. 1877
sec_login_newgroups. 1880
sec_login_purge_context. 1884
sec_login_refresh_identity. 1887
sec_login_release_context. 1890
sec_login_set_context. 1892
sec_login_set_extended_attrs. 1895
sec_login_setup_first. 1897
sec_login_setup_identity 1900
sec_login_valid_and_cert_ident. 1904
sec_login_valid_from_keytable. 1909
sec_login_validate_first 1914
sec_login_validate_identity. 1917
sec_pk_data_free. 1922
sec_pk_data_zero_and_free. 1923
sec_psm_close. 1924
sec_psm_decrypt_data. 1926
sec_psm_encrypt_data. 1929
sec_psm_gen_pub_key. 1932
sec_psm_open. 1934
sec_psm_put_pub_key. 1936
sec_psm_sign_data. 1939
sec_psm_update_pub_key. 1942
sec_psm_verify_data. 1945
sec_pwd_mgmt_free_handle. 1948
sec_pwd_mgmt_gen_pwd. 1950
sec_pwd_mgmt_get_val_type. 1952
sec_pwd_mgmt_setup. 1954
sec_rgy_acct_add. 1956
sec_rgy_acct_admin_replace. 1960
sec_rgy_acct_delete 1964
sec_rgy_acct_get_projlist. 1967
sec_rgy_acct_lookup. 1971
sec_rgy_acct_passwd. 1975
sec_rgy_acct_rename. 1978
sec_rgy_acct_replace_all. 1981
sec_rgy_acct_user_replace. 1985
sec_rgy_attr_cursor_alloc. 1989
sec_rgy_attr_cursor_init 1991
sec_rgy_attr_cursor_release. 1994

xvii

DCE 1.2.2 Application Development Reference

sec_rgy_attr_cursor_reset. 1996
sec_rgy_attr_delete. 1998
sec_rgy_attr_get_effective. 2001
sec_rgy_attr_lookup_by_id. 2005
sec_rgy_attr_lookup_by_name. 2010
sec_rgy_attr_lookup_no_expand. 2013
sec_rgy_attr_sch_aclmgr_strings. 2017
sec_rgy_attr_sch_create_entry. 2021
sec_rgy_attr_sch_cursor_alloc. 2024
sec_rgy_attr_sch_cursor_init. 2026
sec_rgy_attr_sch_cursor_release. 2029
sec_rgy_attr_sch_cursor_reset. 2031
sec_rgy_attr_sch_delete_entry. 2033
sec_rgy_attr_sch_get_acl_mgrs. 2035
sec_rgy_attr_sch_lookup_by_id 2038
sec_rgy_attr_sch_lookup_by_name. 2040
sec_rgy_attr_sch_scan. 2042
sec_rgy_attr_sch_update_entry. 2045
sec_rgy_attr_test_and_update. 2048
sec_rgy_attr_update 2052
sec_rgy_auth_plcy_get_effective. 2056
sec_rgy_auth_plcy_get_info 2058
sec_rgy_auth_plcy_set_info 2061
sec_rgy_cell_bind. 2064
sec_rgy_cursor_reset. 2066
sec_rgy_login_get_effective 2068
sec_rgy_login_get_info. 2072
sec_rgy_pgo_add. 2076
sec_rgy_pgo_add_member. 2079
sec_rgy_pgo_delete 2082
sec_rgy_pgo_delete_member. 2085
sec_rgy_pgo_get_by_eff_unix_num 2088
sec_rgy_pgo_get_by_id 2092
sec_rgy_pgo_get_by_name. 2096
sec_rgy_pgo_get_by_unix_num 2099
sec_rgy_pgo_get_members. 2103
sec_rgy_pgo_get_next. 2107
sec_rgy_pgo_id_to_name. 2111
sec_rgy_pgo_id_to_unix_num. 2114
sec_rgy_pgo_is_member. 2116
sec_rgy_pgo_name_to_id. 2119
sec_rgy_pgo_name_to_unix_num. 2121
sec_rgy_pgo_rename. 2123
sec_rgy_pgo_replace. 2126

xviii

Contents

sec_rgy_pgo_unix_num_to_id. 2129
sec_rgy_pgo_unix_num_to_name. 2131
sec_rgy_plcy_get_effective. 2134
sec_rgy_plcy_get_info. 2137
sec_rgy_plcy_set_info. 2140
sec_rgy_properties_get_info 2143
sec_rgy_properties_set_info 2146
sec_rgy_site_bind. 2149
sec_rgy_site_bind_query. 2152
sec_rgy_site_bind_update. 2155
sec_rgy_site_binding_get_info. 2158
sec_rgy_site_close. 2161
sec_rgy_site_get 2163
sec_rgy_site_is_readonly. 2165
sec_rgy_site_open. 2167
sec_rgy_site_open_query. 2170
sec_rgy_site_open_update. 2173
sec_rgy_unix_getgrgid. 2176
sec_rgy_unix_getgrnam 2179
sec_rgy_unix_getpwnam. 2182
sec_rgy_unix_getpwuid 2185
sec_rgy_wait_until_consistent. 2188

Index Index–1

xix

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

xxi

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xxii

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

xxiii

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides
These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

xxiv

Preface

are intended to communicate the findings to the outside world so as
to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

xxv

Preface

This Book

The DCE 1.2.2 Application Development Referenceprovides complete and detailed
reference information to help application programmers use the correct syntax for
Distributed Computing Environment (DCE) calls when writing UNIX applications for
a distributed computing environment.

Audience

This document is written for application programmers who want to write Distributed
Computing Environment applications for a UNIX environment.

Applicability

This document applies to the OSF
®

DCE Version 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this document is to assist application programmers when writing
UNIX applications for a distributed computing environment. After reading this manual,
application programmers should be able to use the correct syntax for DCE calls.

Document Usage

This document consists of six chapters and is organized into three volumes.

• Volume 1 (Document Number 205A, ISBN 1–85912–103–9)
includes:

— DCE Routines (Chapter 1)

xxvi

Preface

— DCE Threads (Chapter 2)

— DCE Remote Procedure Call (beginning of Chapter 3)

• Volume 2 (Document Number 205B, ISBN 1–85912–108–X)
includes:

— DCE Remote Procedure Call (Chapter 3, continued)

— DCE Directory Service (Chapter 4)

— DCE Distributed Time Service (Chapter 5)

— DCE Security Service (beginning of Chapter 6)

• Volume 3 (Document Number 205C, ISBN 1–85912–159–4)
includes:

— DCE Security Service (Chapter 6, continued)

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1–85912–182–9

• DCE 1.2.2 Command Reference
Document Number F212, ISBN 1–85912–138–1

• DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1–85912– 187–X

• DCE 1.2.2 Application Development Guide—Core Components
Document Number F203A, ISBN 1–85912–192–6 (Volume 1)
Document Number F203B, ISBN 1–85912–154–3 (Volume 2)

• DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1–85912–197–7

• DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1–85912–113–6

xxvii

Preface

• DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1–85912–118–7

• DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1–85912–123–3 (Volume 1)
Document Number F209B, ISBN 1–85912–128–4 (Volume 2)

• DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1–85912–133–0

• DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1–85912–158–6

• DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1–85912–163–3

• DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1–85912–143–8 (Volume 1)
Document Number F213B, ISBN 1–85912–148–9 (Volume 2)

• DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1–85912–153–5

• DCE 1.2.2 File-Access FVT User’s Guide
Document Number F210, ISBN 1–85912–189–6

• DCE 1.2.2 Release Notes
Document Number F218, ISBN 1–85912–168–3

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

xxviii

Preface

{ } Braces enclose a list from which y ou must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

< Ctrl- x > or ^ x
The notation< Ctrl- x > or ^ x followed by the name of a key indicates
a control character sequence. For example,< Ctrl-C> means that you
hold down the control key while pressing< C>.

< Return> The notation< Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—IntroductionandDCE 1.2.2 Testing Guide.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

xxix

Preface

Trademarks

Motif ®, OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the “X Device”
TM

are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

xxx

Preface

NetWare is a registered trademark of Novell, Inc.

xxxi

Chapter 1
DCE Routines

1

DCE 1.2.2 Application Development Reference

dce_intro(3dce)

dce_intro

Purpose Introduction to the DCE routines

Description

The DCE routines provide several facilities that are applicable across more than one
DCE component. They can be divided into the following major areas:

DCE Attribute Interface Routines
These routines allow applications to define and access attribute types
(schema entries) in a schema of your choice. They are based on the
extended registry attribute (ERA) interface, which defines and accesses
attribute types in the register database schema.

For more information about the individual attribute interface routines,
see thedce_attr_intro(3dce) reference page.

DCE Configuration Routines
These routines return information based on the contents of the local DCE
configuration file, which is created during the DCE cell-configuration
or machine-configuration process.

For more information about the various individual configuration
routines, see thedce_config_intro(3dce)reference page.

DCE Backing Store Routines
These routines allow you to maintain typed data between program
invocations. The backing store routines can be used in servers, in clients
or in standalone programs that do not involve remote procedure calls
(RPCs).

For more information about the individual backing store routines, see
the dce_db_intro(3dce)reference page.

DCE Messaging Interface Routines
These routines give you access to message catalogs, to specific message
texts and message IDs, and to in-memory message tables.

2

DCE Routines

dce_intro(3dce)

For more information about the individual messaging interface routines,
see thedce_msg_intro(3dce)reference page.

DCE Server Routines
These routines are used by servers to register themselves with DCE. This
includes RPC runtime, the local endpoint mapper, and the namespace.
Routines are also available to set up DCE security so that servers can
receive and invoke authenticated RPCs.

For more information about the individual server routines, see the
dce_server_intro(3dce)reference page.

DCE Serviceability Routines
These routines are intended for use by servers that export the
serviceability interface defined inservice.idl. There are also a set of
DCE serviceability macros can be used for diagnostic purposes, and to
create a serviceability handle.

For more information about the individual serviceability
routines, see thedce_svc_intro(3dce) reference page. For more
information about the individual DCE serviceability macros, see the
DCE_SVC_INTRO(3dce)reference page.

DCE Host Daemon Application Programming Interface
These routines give management applications remote access to various
data, servers, and services on DCE hosts.

For more information about the individual host daemon application
programming interface routines, see thedced_intro(3dce) reference
page.

3

DCE 1.2.2 Application Development Reference

dce_attr_intro(3dce)

dce_attr_intro

Purpose Introduction to the DCE attribute interface routines

Description

The DCE attribute interface API allows applications to define and access attributes
types (schema entries) in a schema of your choice. It is based on the extended registry
attribute (ERA) interface, which defines and accesses attribute types in the registry
database schema. Except for the binding methods, the two APIs are similar.

Note however, that the extended registry attribute API provides routines to create
attribute types in the registry schema, to create and manipulate attribute instances, and
to attach those instances to objects. The DCE attribute interface in its current state
provides calls only to create attribute types.

The DCE Attribute Interface Routines

The DCE attribute interface consists of the following routines:

dce_attr_sch_bind()
Returns an opaque handle of typedce_attr_sch_handle_tto a schema
object specified by name and sets authentication and authorization
parameters for the handle.

dce_attr_sch_bind_free()
Releases an opaque handle of typedce_attr_sch_handle_t.

dce_attr_sch_create_entry()
Creates a schema entry in a schema bound to withdce_attr_sch_bind().

dce_attr_sch_update_entry()
Updates a schema entry in a schema bound to withdce_attr_sch_bind().

dce_attr_sch_delete_entry()
Deletes a schema entry in a schema bound to withdce_attr_sch_bind().

dce_attr_sch_scan()
Reads a specified number of schema entries.

4

DCE Routines

dce_attr_intro(3dce)

dce_attr_sch_cursor_init()
Allocates resources to and initializes a cursor used with
dce_attr_sch_scan(). The dce_attr_sch_cursor_init() routine
makes a remote call that also returns the current number of schema
entries in the schema.

dce_attr_sch_cursor_alloc()
Allocates resources to a cursor used withdce_attr_sch_scan(). The
dce_attr_sch_cursor_alloc()routine is a local operation.

dce_attr_sch_cursor_release()
Releases states associated with a cursor created by
dce_attr_sch_cursor_alloc()or dce_attr_sch_cursor_init().

dce_attr_sch_cursor_reset()
Reinitializes a cursor used withdce_attr_sch_scan(). The reset cursor
can then be reused without releasing and reallocating.

dce_attr_sch_lookup_by_id()
Reads a schema entry identified by attribute type UUID.

dce_attr_sch_lookup_by_name()
Reads a schema entry identified by attribute name.

dce_attr_sch_get_acl_mgrs()
Retrieves the manager types of the ACLs protecting objects dominated
by a named schema.

dce_attr_sch_aclmgr_strings()
Returns printable ACL strings associated with an ACL manager
protecting a schema object.

Data Types and Structures

dce_attr_sch_handle_t
An opaque handle to a schema object. Usedce_attr_sch_bind() to
acquire the handle.

dce_attr_component_name_t
A pointer to a character string used to further specify a schema object.

dce_bind_auth_info_t
An enumeration that defines whether or not the binding is authenticated.
This data type is defined exactly as thesec_attr_bind_auth_info_tdata
type in the ERA interface. See thesec_intro(3sec)reference page for
more information onsec_attr_bind_auth_info_t.

5

DCE 1.2.2 Application Development Reference

dce_attr_intro(3dce)

dce_attr_schema_entry_t
A structure that defines a complete attribute entry for the schema catalog.
This data type is defined exactly as thesec_attr_schema_entry_tdata
type in the ERA interface. See thesec_intro(3sec)reference page for
more information onsec_attr_schema_entry_t.

dce_attr_cursor_t
A structure that provides a pointer into a database and is used for
multiple database operations. This cursor must minimally represent
the object indicated bydce_attr_sch_handle_t. The cursor may
additionally represent an entry within that schema.

dce_attr_schema_entry_parts_t
A 32-bit bitset containing flags that specify the schema entry fields that
can be modified on a schema entry update operation. This data type
is defined exactly as thesec_attr_schema_entry_parts_tdata type in
the ERA interface. See thesec_intro(3sec)reference page for more
information onsec_attr_schema_entry_parts_t.

6

DCE Routines

dce_cf_intro(3dce)

dce_cf_intro

Purpose Introduction to the DCE configuration routines

Description

The DCE configuration routines return information based on the contents of the local
DCE configuration file, which is created during the DCE cell-configuration or machine-
configuration process. A configuration file is located on each DCE machine; it contains
the host’s name, the primary name of the cell in which the host is located, and any
aliases for that cell name.

The configuration routines can also be used to get the following additional information
corollary to the host name:

• The host’s principal name

• Binding information to the host

The configuration file on machines that belong to internationalized DCE cells also
contains the pathname to the code set registry object file on the host.

The security service component on each DCE machine must be able to find out, by
strictly local means, its machine’s host name, the host machine’s principal name, and
its cell’s name. The DCE configuration routines exist primarily to enable security
components to do these things. But because this information can be useful to DCE
applications as well, these routines are made available as part of the general application
programming interface.

Note thathost nameas used throughout this section refers to theDCE host name(that
is, the machine’s/.../cellname/ host_directory/ hostnameentry in the CDS namespace),
and not, for example, its Domain Name Service (DNS) host name, which could be
quite different from the DCE name.

The DCE configuration routines are as follows:

dce_cf_binding_entry_from_host()
Returns the host binding entry name.

7

DCE 1.2.2 Application Development Reference

dce_cf_intro(3dce)

dce_cf_dced_entry_from_host()
Returns thedced entry name on a host.

dce_cf_find_name_by_key()
Returns a string tagged by key (this is a lower-level utility routine that
is used by the others).

dce_cf_free_cell_aliases()
Frees a list of cell aliases for a cell.

dce_cf_get_cell_aliases()
Returns a list of cell aliases for a cell.

dce_cf_get_cell_name()
Returns the primary cell name for the local cell.

dce_cf_get_csrgy_filename()
Returns the pathname of the local code set registry object file.

dce_cf_get_host_name()
Returns the host name relative to a local cell.

dce_cf_prin_name_from_host()
Returns the host’s principal name.

dce_cf_profile_entry_from_host
Returns the host’s profile entry.

dce_cf_same_cell_name()
Indicates whether or not two cell names refer to the same cell.

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

The format of the configuration file is as follows:

Each of the entries is tagged with its own identifier, which must be the first nonblank
token on a line that does not begin with a# (number sign) comment character. The
second token on a line is assumed to be the name associated with the tag that was
detected in front of it.

8

DCE Routines

dce_cf_intro(3dce)

For example,cellname and hostname are tags, identifying the cell name and host
name, respectively, for the machine on which the configuration file is located. A
sample configuration file could have the following contents, which would identify the
hostbrazil in the osf.org cell:

cellname /.../osf.org

hostname hosts/brazil

Text characterized by the following is ignored:

• Garbage lines (lines that do not conform to the previously described format)

• Leading and trailing spaces in lines

• Additional tokens appearing on a line after the second token

The configuration file should be writable only by privileged users, and readable by
all.

Output

The DCE configuration routines return names without global or cell-relative prefixes,
such as the following:

host_directory/hostname

or

principalname

wherehost_directoryis usuallyhosts.

However, the DCE Name Service Interface (NSI) routines require names passed to
them to be expressed either in a cell-relative form or as global names. Cell-relative
names have the following form:

9

DCE 1.2.2 Application Development Reference

dce_cf_intro(3dce)

/.:/host_directory/hostname

Global names, with the global root prefix/.../ and the cell name, have the following
form:

/.../cellname/host_directory/hostname

Therefore, an application must add either the cell-relative prefix (/.:/) or correct
global prefix (/.../cellname) to any name it receives from a DCE configuration routine
before it passes the name to an NSI routine. (NSI routines all have names beginning
with rpc_ns_.) For example, the namehost_directory/hostnamewould become the
following, if expressed in cell-relative form:

/.:/hosts/hostname

The cell-relative form of the nameprincipalnamewould be

/.:/sec/principals/principalname

where hostname and principalname are the host’s name and principal name,
respectively.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce),
dce_cf_dced_entry_from_host(3dce), dce_cf_find_name_by_key(3dce),
dce_cf_free_cell_aliases(3dce), dce_cf_get_cell_aliases(3dce),
dce_cf_get_cell_name(3dce), dce_cf_get_csrgy_filename(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce),
dce_cf_profile_entry_from_host(3dce), dce_cf_same_cell_name(3dce).

Books:DCE 1.2.2 Application Development Guide—Core Components, DCE 1.2.2
Command Reference.

10

DCE Routines

dce_db_intro(3dce)

dce_db_intro

Purpose Introduction to the DCE backing store interface

Description

The DCE backing store interface allows you to maintain typed data between program
invocations. For example, you might store application-specific configuration data in a
backing store, and then retrieve it from the backing store when the application restarts.
The backing store routines can be used in servers, in clients or in standalone programs
that do not involve remote procedure calls (RPCs). A program can have more than
one backing store open at the same time.

Sometimes the backing store is called a database. For instance, the associated IDL file
is dce/database.idl, and the name of the backing store routines begin withdce_db_.
The backing store is, however, not a full-fledged database in the conventional sense,
and it has no support for SQL or for any other query system.

Backing Store Data

The backing store interface provides for the tagged storage and retrieval of typed data.
The tag (or retrieval key) can be either a UUID or a standard C string. For a specific
backing store, the data type must be specified at compile time, and is established
through the IDL encoding services. Each backing store can contain only a single data
type.

Each data item (also called a data object or data record) consists of the data stored
by a single call to a storage routine (dce_db_store(), dce_db_store_by_name(), or
dce_db_store_by_uuid()). Optionally, data items can have headers. If a backing store
has been created to use headers, then every data item must have a header. For a
description of the data item header, see the section in this reference page entitled
Data Types and Structures.

Encoding and Decoding in the Backing Store

When an RPC sends data between a client and a server, it serializes the user’s data
structures by using the IDL encoding services (ES), described in theDCE 1.2.2
Application Development Guide.

11

DCE 1.2.2 Application Development Reference

dce_db_intro(3dce)

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler,
idl , writes the routine that encodes and decodes the data.

This routine is passed todce_db_open(), remembered in the handle, and used by the
store and fetch routines:

• dce_db_fetch()

• dce_db_fetch_by_name()

• dce_db_fetch_by_uuid()

• dce_db_header_fetch()

• dce_db_store()

• dce_db_store_by_name()

• dce_db_store_by_uuid()

Memory Allocation

When fetching data, the encoding services allocate memory for the data structures that
are returned. These services accept a structure, and userpc_sm_allocate()to provide
additional memory needed to hold the data.

The backing store library does not know what memory has been allocated, and
therefore cannot free it. For fetch calls that are made from a server stub, this is not a
problem, since the memory is freed automatically when the server call terminates. For
fetch calls that are made from a nonserver, the programmer is responsible for freeing
the memory.

Programs that call the fetch or store routines, such asdce_db_fetch(), outside of a
server operation (for instance, if a server does some backing store initialization, or in
a standalone program) must callrpc_sm_enable_allocate()first.

The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be indexed
either by name, or by UUID, while the restricted versions accept only the matching
type. It is advantageous to use the restricted versions when they are appropriate,
because they provide type checking by the compiler, as well as visual clarity of
purpose.

The backing store routines are as follows, listed in alphabetical order:

12

DCE Routines

dce_db_intro(3dce)

dce_db_close()
Frees the handle returned bydce_db_open(). It closes any open files
and releases all other resources associated with the backing store.

dce_db_delete()
Deletes an item from a backing store that is indexed by name or
by UUID. The key’s type must match the flag that was used in
dce_db_open().

dce_db_delete_by_name()
Deletes an item only from a backing store that is indexed by name.

dce_db_delete_by_uuid()
Deletes an item only from a backing store that is indexed by UUID.

dce_db_fetch()
Retrieves data from a backing store that is indexed by name or by UUID.
The key’s type must match the flag that was used indce_db_open().

dce_db_fetch_by_name()
Retrieves data only from a backing store that is indexed by name.

dce_db_fetch_by_uuid()
Retrieves data only from a backing store that is indexed by UUID.

dce_db_free()
Releases the data supplied from a backing store.

dce_db_header_fetch()
Retrieves a header from a backing store.

dce_db_inq_count()
Returns the number of items in a backing store.

dce_db_iter_done()
Terminates and iteration operation initiated bydce_db_iter_start(). It
should be called when iteration is done.

dce_db_iter_next()
Returns the key for the next item from a backing store that is indexed
by name or by UUID. Thedb_s_no_morereturn value indicates that
there are no more items.

13

DCE 1.2.2 Application Development Reference

dce_db_intro(3dce)

dce_db_iter_next_by_name()
Returns the key for the next item only from a backing store that is
indexed by name. Thedb_s_no_morereturn value indicates that there
are no more items.

dce_db_iter_next_by_uuid()
Returns the key for the next item only from a backing store that is
indexed by UUID. Thedb_s_no_morereturn value indicates that there
are no more items.

dce_db_iter_start()
Prepares for the start of iteration.

dce_db_lock()
Locks a backing store. A lock is associated with an open
backing store’s handle. The storage routines,dce_db_store(),
dce_db_store_by_name(), and dce_db_store_by_uuid(), all acquire
the lock before updating.

dce_db_open()
Creates a new backing store or opens an existing one. The backing store
is identified by a filename. Flags allow you to

• Create a new backing store, or open an existing one.

• Create a new backing store indexed by name, or indexed by UUID.

• Open an existing backing store read/write, or read-only.

• Use the standard data item header, or not.

The routine returns a handle by which subsequent routines can reference
the opened backing store.

dce_db_std_header_init()
Initializes a standard backing store header retrieved by
dce_db_header_fetch(). It only places the values into the header, and
does not write into the backing store.

dce_db_store()
Stores a data item into a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open().

dce_db_store_by_name()
Stores a data item only into a backing store that is indexed by name.

14

DCE Routines

dce_db_intro(3dce)

dce_db_store_by_uuid()
Stores a data item only into a backing store that is indexed by UUID.

dce_db_unlock()
Unlocks a backing store.

Data Types and Structures

dce_db_handle_t
An opaque handle to a backing store. Usedce_db_open()to acquire
the handle.

dce_db_header_t
The data structure that defines a standard backing store header for data
items. Usedce_db_header_fetch()to retrieve it from a backing store
anddce_db_std_header_init()to initialize it.

dce_db_convert_func_t
An opaque pointer to the data conversion function to be used when
storing or retrieving data. This function is specified as an argument to
dce_db_open()at open time. It converts between native format and on-
disk (serialized) format. It is generated from the IDL file by the IDL
compiler.

Cautions

You can not use conformant arrays in objects stored to a backing store. This is because
the idl-generated code that encodes (pickles) the structure has no way to predict or
detect the size of the array. When the object is fetched, there will likely be insufficient
space provided for the structure, and the array’s data will destroy whatever is in
memory after the structure.

Files

database.idl

database.h

db.h

15

DCE 1.2.2 Application Development Reference

dce_db_intro(3dce)

dbif.h

Related Information

Books:DCE 1.2.2 Application Development Guide

16

DCE Routines

dce_msg_intro(3dce)

dce_msg_intro

Purpose Introduction to the DCE messaging interface

Description

All DCE message texts are assigned a unique message ID. This is a 32-bit number,
with the special value of all-bits-zero reserved to indicate success. All other numbers
are divided into a technology/component that identifies the message catalog, and an
index into the catalog.

All messages for a given component are stored in a single message catalog generated
by the sams utility when the component is built. (The messages may also be
compiled into the application code, rendering the successful retrieval of message text
independent of whether or not the message catalogs were correctly installed.)

In typical use, a message is first retrieved from a message catalog, allowing localization
to occur. If this fails, the default message is retrieved from an in-memory table.
If this fails, a fallback text identifying the message number is generated. The two
most useful routines,dce_error_inq_text() anddce_msg_get(), and the DCEprintf
routines follow these rules. The rest of this API gives direct access for special needs.

The dce_msg_cat_* () routines provide a DCE abstraction to standard message
catalog routines, mapping DCE message IDs to message catalog names. They offer a
convenient way of opening and accessing a message catalog simply by supplying the
ID of a message contained in it, rather than the name of the catalog itself. Once opened,
the catalog is accessed by means of an opaque handle (thedce_msg_cat_handle_t
typedef).

The DCE Messaging Routines

The messaging routines are as follows, listed in alphabetical order:

dce_error_inq_text()
Retrieves from the installed DCE component message catalogs the
message text associated with an error status code returned by a DCE
library routine.

17

DCE 1.2.2 Application Development Reference

dce_msg_intro(3dce)

dce_fprintf()
Functions much likedce_printf(), except that it prints the message and
its arguments on the specified stream.

dce_msg_cat_close()
Closes the message catalog (which was opened with
dce_msg_cat_open()).

dce_msg_cat_get_msg()
Retrieves the text for a specified message.

dce_msg_cat_open()
Opens the message catalog that contains the specified message,
and returns a handle that can be used in subsequent calls to
dce_msg_cat_get_msg().

dce_msg_define_msg_table()
Registers an in-memory table containing the messages.

dce_msg_get()
Retrieves the text for a specified message. A convenience form of the
dce_msg_get_msg()routine.

dce_msg_get_cat_msg()
A convenience form of thedce_msg_cat_get_msg()routine. Unlike
dce_msg_cat_get_msg(), dce_msg_get_cat_msg()does not require the
message catalog to be explicitly opened.

dce_msg_get_default_msg()
Retrieves a message from the application’s in-memory tables.

dce_msg_get_msg()
Retrieves the text for a specified message.

dce_msg_translate_table()
The dce_msg_translate_table()routine overwrites the specified in-
memory message table with the values from the equivalent message
catalogs.

dce_pgm_fprintf()
Equivalent todce_fprintf() , except that it prepends the program name
and appends a newline.

18

DCE Routines

dce_msg_intro(3dce)

dce_pgm_printf()
Equivalent todce_printf(), except that it prepends the program name
and appends a newline.

dce_pgm_sprintf()
Equivalent todce_sprintf(), except that it prepends the program name
and appends a newline.

dce_printf() Retrieves the message text associated with the specified message ID,
and prints the message and its arguments on the standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID,
and prints the message and its arguments into an allocated string that is
returned.

Data Types and Structures

dce_error_string_t
An array of characters big enough to hold any error text returned by
dce_error_inq_text().

dce_msg_cat_handle_t
An opaque handle to a DCE message catalog. (Usedce_msg_cat_open()
to get a handle.)

Files

dce/dce_msg.h

Related Information

Books:DCE 1.2.2 Application Development Guide

19

DCE 1.2.2 Application Development Reference

dce_server_intro(3dce)

dce_server_intro

Purpose Introduction to the DCE server routines

Description

The routines described on this reference page are used by servers to register themselves
with DCE. This includes registering with the RPC runtime, the local endpoint mapper,
and the namespace. Routines are also available to set up DCE security so that servers
can receive and invoke authenticated RPCs.

The DCE Server Routines

The server routines are as follows, listed in alphabetical order:

dce_server_disable_service()
Unregisters an individual interface of a DCE server from the RPC
runtime, and marks the server’s endpoints as disabled in thedced’s
endpoint mapper service.

dce_server_enable_service()
Registers an individual interface (application service) of a DCE server
with the RPC runtime, and marks the server’s endpoints as enabled in
the dced’s endpoint mapper service.

dce_server_inq_attr()
Obtains application-specific attribute data from thedced server
configuration data.

dce_server_inq_server()
Obtains the server configuration datadced used to start the server.

dce_server_inq_uuids()
Obtains the UUIDs thatdcedused in itssrvrconf andsrvrexecfacilities
to identify the server’s configuration and execution data.

dce_server_register()
Registers a DCE server by establishing a server’s binding information,
registering its services (represented by interface IDs) with the RPC

20

DCE Routines

dce_server_intro(3dce)

runtime, and entering its endpoints in thedced’s endpoint mapper
service.

dce_server_sec_begin()
Prepares a server to receive and generate authenticated RPCs.

dce_server_sec_done()
Releases the resources previously set up by a call to
dce_server_sec_begin().

dce_server_unregister()
Unregisters a DCE server by unregistering a servers services (interfaces)
from the RPC runtime, and removing the server’s endpoints from the
dced’s endpoint mapper service.

dce_server_use_protseq()
Registers a protocol sequence to use for the server.

Data Types and Structures

dce_server_handle_t
An opaque data structure containing information the runtime uses to
establish the server with DCE.

dce_server_register_data_t
A structure that contains an interface handle (generated by IDL), a
default EPV, and a count and array ofdce_server_type_ts for services
that use RPC object types.

dce_server_type_t
A structure containing a manager type UUID and an RPC entry-point
vector (EPV) that specified which routines implement the IDL interface
for the specific type.

server_t Seedced_intro(3dce)for a complete description ofserver_t.

21

DCE 1.2.2 Application Development Reference

dce_server_intro(3dce)

Files

dce/dced.h

dce/dced_base.idl

Related Information

Books:DCE 1.2.2 Application Development Guide

22

DCE Routines

dce_svc_intro(3dce)

dce_svc_intro

Purpose Introduction to the DCE serviceability interface

Description

The routines listed below are intended to be used by servers that export the
serviceability interface defined inservice.idl. The complete list of these remote
serviceability implementation calls is as follows (the remote operation name is given
in the left column, and the corresponding implementation routine is given in the right
column).

Remote Operation Implementation Routine

dce_svc_set_route dce_svc_routing

dce_svc_set_dbg_route dce_svc_debug_routing

dce_svc_set_dbg_levels dce_svc_debug_set_levels

dce_svc_inq_components dce_svc_components

dce_svc_inq_table dce_svc_table

dce_svc_filter_control dce_svc_filter

dce_svc_inq_stats dce_svc_inq_stats

These routines perform all the necessary processing (except for checking clients’
authorization) that must be done by the application manager to implement the remote
serviceability operations.

Note that most of these routines have little meaning except as implementations
of remote operations. However, thedce_svc_routing(), dce_svc_filter(),
dce_svc_debug_routing()anddce_svc_debug_set_levels()routines can conceivably
be used by servers as purely local operations (for example, in order to allow routing
and debug levels to be set via command line flags when the server is invoked).

The dce_svc_log_routines provide read access toBINFILE format logs which are
created and written by the DCE serviceability routines; seesvcroute(5) for further

23

DCE 1.2.2 Application Development Reference

dce_svc_intro(3dce)

information. Thedce_svc_log_handle_ttypedef is an opaque pointer to a handle for
an opened log file.

Applications that use the serviceability interface can install a routine that will be
effectively hooked into the operation of the interface. If a filter is installed, it will
be called whenever one of the serviceability output routines (dce_svc_printf()) is
about to output a message; whenever this happens, the filter will receive a group of
parameters that describe the message that is about to be output and the circumstances
that provoked the action. The filter can then allow the message output to proceed, or
suppress the message.

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. Thedce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

The DCE Serviceability Routines

The serviceability routines are as follows, listed in alphabetical order:

dce_assert() Adds runtime ‘‘can’t happen’’ assertions to programs (such as,
programming errors).

dce_svc_components()
Returns an array containing the names of all components in the program
that have been registered with thedce_svc_register()routine.

dce_svc_debug_routing()
Specifies both the level of an applications’s serviceability debug
messaging, and where the messages are routed.

dce_svc_debug_set_levels()
Sets serviceability debugging message level(s) for a component.

dce_svc_define_filter()
Lets applications define serviceability filtering routines.

dce_svc_filter()
Controls the behavior of the serviceability message filtering routine, if
one exists.

dce_svc_log_close()
Closes an open binary format serviceability log and releases all internal
state associated with the handle.

24

DCE Routines

dce_svc_intro(3dce)

dce_svc_log_get()
Reads the next entry from a binary format serviceability log.

dce_svc_log_open()
Opens the specified file for reading.

dce_svc_log_rewind()
Rewinds the current reading position of the specified (byhandle) log
file to the first record.

dce_svc_printf()
Provides the normal call for writing or displaying serviceability
messages.

dce_svc_register()
Registers a serviceability handle and subcomponent table.

dce_svc_routing()
Specifies how normal (non-debug) serviceability messages are routed.

dce_svc_set_progname()
If not called, the application’s generated serviceability messages will be
identified by its process ID.

dce_svc_table()
Returns the serviceability subcomponent table registered with the
specified component.

dce_svc_unregister()
Destroys a serviceability handle, releasing all allocated resources
associated with the handle.

Data Types and Structures

dce_svc_filter_proc_t
The prototype of a serviceability filtering routine.

dce_svc_filterctl_proc_t
The prototype of a serviceability filter-control routine.

dce_svc_handle_t
An opaque handle to generate serviceability messages. (Use
dce_svc_register()or DCE_DEFINE_SVC_HANDLE to obtain one.)

dce_svc_log_handle_t
An opaque handle to an open serviceability binary format log file. (Use
dce_svc_log_open()to obtain one.)

25

DCE 1.2.2 Application Development Reference

dce_svc_intro(3dce)

dce_svc_log_prolog_t
A structure containing data about a serviceability binary format log
entry.

dce_svc_prolog_t
A structure containing the initial message parameters passed to the
filtering routine.

Files

dce/service.idl

dce/dce_svc.h

Related Information

Books:DCE 1.2.2 Application Development Guide

26

DCE Routines

dced_intro(3dce)

dced_intro

Purpose Introduction to the DCE host daemon routines

Description

This introduces the DCE host daemon application programming interface: the
dced API. This API gives management applications remote access to various data,
servers, and services on DCE hosts. Servers manage their own configuration in
the local dced by using the routines starting withdce_server, introduced in the
dce_server_intro(3dce)reference page.

The dced API Naming Conventions

All of the dcedAPI routine names begin with thedced_prefix. This API contains some
specialized routines that operate on services represented by the following keywords
in the routine names:

hostdata The host data management service stores host-specific data such as the
host name, the host’s cell name, and other data, and it provides access
to these data items.

server The server control service configures, starts, and stops servers, among
other things. Applications must distinguish two general states of server
control: server configuration (srvrconf) and server execution (srvrexec).

secval The security validation service maintains a host’s principal identity and
ensures applications that the DCE security daemon is genuine.

keytab The key table management service remotely manages key tables.

Thedcedalso provides the endpoint mapper service which has its own API, described
with the RPC API. These routines begin withrpc_ep and rpc_mgmt_ep.

Since some of thedceddaemon’s services require the same operations (but on different
data types), thedcedAPI also contains generic routines that may operate on more than
one of the preceding services. For example, you use the routinedced_object_read()
to read a data item (object) from thehostdata, srvrconf, srvrexec, or keytab services.

27

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

dced Binding Routines

A binding must be established to adced service on a particular host before you can
use any otherdcedroutines. The resources of thedcedbinding should also be released
when an application is finished with the service.

dced_binding_create()
Establishes adced binding to a host service.

dced_binding_from_rpc_binding()
Establishes adcedbinding to adced service on the host specified in an
already-established RPC binding handle to any server.

dced_binding_set_auth_info()
Sets authentication, authorization, and protection level information for
a dced binding handle.

dced_binding_free()
Releases the resources of adced binding handle.

Generic Entry Routines

All data maintained bydced is managed as entries. Most of the services ofdcedhave
lists of entries traversed with a cursor that describe where the actual data is maintained.

dced_entry_add()
Adds akeytab or hostdata entry.

dced_entry_remove()
Removes ahostdata or keytab data entry fromdced.

dced_initialize_cursor()
Obtains a list of data entries fromdcedand sets a cursor at the beginning
of the list.

dced_entry_get_next()
Obtains the next data entry from a list of entries.

dced_release_cursor()
Releases the resources associated with a cursor which traverses a
service’s list of entries.

dced_list_get()
Returns the list of data entries maintained by a DCE host service.

dced_list_release()
Releases the resources of a list of entries.

28

DCE Routines

dced_intro(3dce)

dced_inq_id()
Obtains the UUID associated with an entry name.

dced_inq_name()
Obtains the name associated with an entry UUID.

Generic Routines to Read Data Objects

These routines obtain the actual data for items to which entries refer (objects).

dced_object_read()
Reads one data item of adced service, based on the entry UUID.

dced_object_read_all()
Reads all the data of adced service’s entry list.

dced_objects_release()
Releases the resources allocated for data obtained.

Host Data Management Routines

dced_hostdata_create()
Creates ahostdata item and the associated entry.

dced_hostdata_read()
Reads ahostdata item.

dced_hostdata_write()
Replaces an existinghostdata item.

dced_hostdata_delete()
Deletes ahostdata item from a specific host and removes the associated
entry.

Server Configuration Control Routines

dced_server_create()
Creates a DCE server’s configuration data.

dced_server_modify_attributes()
Modifies a DCE server’s configuration data.

dced_server_delete()
Deletes a DCE server’s configuration data.

dced_server_start()
Starts a DCE-configured server.

29

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

Server Execution Control Routines

dced_server_disable_if()
Disables a service provided by a server.

dced_server_enable_if()
Re-enables a service provided by a server.

dced_server_stop()
Stops a DCE-configured server.

Security Validation Routines

dced_secval_start()
Starts a host’s security validation service.

dced_secval_validate()
Validates that the DCE security daemon (secd) used by a specific host
is legitimate.

dced_secval_status()
Returns a status parameter of TRUE if the security validation service is
activated and FALSE if not.

dced_secval_stop()
Stops a host’s security validation service.

Key Table Management Routines

dced_keytab_create()
Creates a key table with a list of keys in a new file.

dced_keytab_delete()
Deletes a key table file and removes the associated entry.

dced_keytab_initialize_cursor()
Obtains a list of keys from a key table and sets a cursor at the beginning
of the list.

dced_keytab_get_next_key()
Returns a key from a cached list, and advances the cursor.

dced_keytab_release_cursor()
Releases the resources associated with a cursor that traverses a key table.

dced_keytab_add_key()
Adds a key to a key table.

30

DCE Routines

dced_intro(3dce)

dced_keytab_change_key()
Changes a key in both a key table and in the security registry.

dced_keytab_remove_key()
Removes a key from a key table.

Data Types and Structures

The following data types used with thedced API are defined indce/dced_base.idl
and are shown here in alphabetical order.

dced_attr_list_t
This data structure specifies the configuration attributes to use when you
start a server viadced. The structure consists of the following:

count An unsigned32 number representing the number of
attributes in the list.

list An array of configuration attributes where each
element is of typesec_attr_t . This data type is
described in thesec_intro(3sec) reference page. For
dced, the list[i].attr_id field can have values of
either dced_g_uuid_fileattr specifying plain text or
dced_g_uuid_binfileattr specifying binary data.

dced_binding_handle_t
A dced binding handle is an opaque pointer that refers to information
that includes adced service (hostdata, srvrconf, srvrexec , secval, or
keytab) and RPC binding information for a specific DCE host daemon.

dced_cursor_t
The entry list cursor is an opaque pointer used to keep track of a location
in an entry list between calls that traverse the list.

dced_entry_t
An entry is the structure that contains information about a data item
(or object) maintained by adced service. The actual data is maintained
elsewhere. Each entry consists of the following structure members:

id A unique identifer of typeuuid_t thatdced maintains for
every data item it maintains

name The name for the data item. The data type is
dced_string_t .

31

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

description A brief description the data item (of typedced_string_t)
for the convenience of human users.

storage_tag A string of typedced_string_t describing the location of
the actual data. This is implementation-specific and may
be a file (with a pathname) on the host system or a storage
identifier for thedced process.

dced_entry_list_t
An entry list is a uniform way to list the data items adced service
maintains. The entry list structure contains a list of all the entries for a
given service. For example, the complete list of all entries of hostdata,
server configuration data, server execution data, and keytab data are
each maintained in separate entry lists. The structure consists of the
following:

count An unsigned32number representing the number of entries
in the list.

list An array of entries where each element is of type
dced_entry_t.

dced_key_t A key consists of the following structure members:

principal A dced_string_t type string representing the principal for
the key.

version An unsigned32number representing the version number
of the key.

authn_service
An unsigned32 number representing the authentication
service used.

passwd A pointer to a password. This is of typesec_passwd_rec_t
.

See also the security introduction reference page,sec_intro(3sec).

dced_key_list_t
A key list contains all the keys for a given key table and consists of the
following structure elements:

count An unsigned32number representing the number of keys
in the list.

32

DCE Routines

dced_intro(3dce)

list An array of keys where each element is of type
dced_key_t.

dced_keytab_cursor_t
The keytab cursor is an opaque pointer used to keep track of a location
in a key list between calls that traverse the list.

dced_opnum_list_t
A list of operation numbers is used in theservice_t structure. This
structure consists of the following fields:

count An unsigned32 number representing the number of
operations in the list.

list An array of UUIDs where each element is of typeuuid_t.

dced_service_type_t
The dced service type distinguishes the services provided by
dced. It is an enumerated type used mainly in a parameter of the
dced_binding_from_rpc_binding() routine. It can have one of the
following values:

dced_e_service_type_hostdata
The host data management service.

dced_e_service_type_srvrconf
The server configuration management service.

dced_e_service_type_srvrexec
The server execution management service.

dced_e_service_type_secval
The security validation service.

dced_e_service_type_keytab
The key table management service.

dced_e_service_type_null
A NULL service type used internally.

dced_string_t
This data type is a character string from the Portable Character Set
(PCS).

dced_string_list_t
A list of strings with the following format:

33

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

count An unsigned32number representing the number of strings
in the list.

list An array of strings where each element is of type
dced_string_t.

dced_tower_list_t
A list of protocol towers used in theservice_tstructure. This structure
consists of the following fields:

count An unsigned32 number representing the number of
protocol towers in the list.

list An array of pointers where each element is a pointer to
a protocol tower of the typesec_attr_twr_set_p_t. This
data type is described in thesec_intro(3sec)reference
page.

server_fixedattr_t
This structure is a field in theserver_tstructure. It contains the following
fields:

startupflags
This field is of type unsigned32 and can be any
combination of the following bits:

server_c_startup_at_boot
This means thatdcedshould start the server
whendced is started.

server_c_startup_auto
This means that the server can be started
automatically ifdced determines there is a
need.

server_c_startup_explicit
This meansdced can start the server if it
receives an explicit command to do so via
dced_server_start()or thedcecpoperation
server start.

server_c_startup_on_failure
This means that the server should be
restarted by dced if it exits with an
unsuccesful exit status.

34

DCE Routines

dced_intro(3dce)

Several bits are also reserved for vendor-specific startup
and include the following:

server_c_startup_vendor1

server_c_startup_vendor2

server_c_startup_vendor3

server_c_startup_vendor4

flags This represents the execution state of the server and is the
unsigned32type. This field is maintained only bydced
and should not be modified. Valid values to check for are
self-explanatory and include the following:

server_c_exec_notrunning

server_c_exec_running

Several bits are also reserved for vendor-specific execution
states and include:

server_c_exec_vendor1

server_c_exec_vendor2

server_c_exec_vendor3

server_c_exec_vendor4

program This is the full path name of the server and is of type
dced_string_t .

arguments This is a list of arguments for the server and is of type
dced_string_list_t .

prerequisites
This is an advisory field that means this server is a client
of other prerequisite servers whose IDs are in a list of
type uuid_list_t. The UUIDs should be theid fields from
the server_t structures of the relevent servers.

keytables This is a list of keytab entry UUIDs representing the key
tables for this server and is of typeuuid_list_t.

posix_uid This is a POSIX execution attribute for the user ID. It is
of type unsigned32.

35

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

posix_gid This is a POSIX execution attribute for the group ID. It
is of typeunsigned32.

posix_dir This is a POSIX execution attribute for the directory in
which the server started when it is invoked. It is of type
dced_string_t.

server_t The DCE host daemon describes a server as follows:

id Each server has a unique ID of typeuuid_t.

name Each server’s name is of typedced_string_t.

entryname The server’s entry name is a hint as to where the server
appears in the namespace. This is of typedced_string_t.

services Each server offers a list of services specified in a list
of type service_list_t. This structure has the following
members:

count An unsigned32 number representing the
number of services in the list.

list A pointer to an array of services where each
element is of typeservice_t .

fixed This is a set of attributes common to all DCE
implementations. The data type isserver_fixedattr_t.

attributes This field is of typedced_attr_list_t and contains a list of
attributes representing the behavior specific to a particular
server or host.

prin_names This field is a list of principal names for the server and is
of type dced_string_list_t.

exec_data Data about an executing server is maintained in a tagged
union (namedtagged_union) with a discriminator of type
unsigned32 named execstate representing the server’s
execution state.

The union has the following two execution states:

server_c_exec_notrunning
For the case where the server is not
running, the union member has no value.
For example:

36

DCE Routines

dced_intro(3dce)

if(server->exec_data.execstate ==

server_c_exec_notrunning)

server->exec_data.tagged_union

= NULL;

server_c_exec_running
For the case where the server is running,
and the value of the union member is
a srvrexec_data_t data type named
running_data . A srvrexec_data_t
structure contains the following members:

instance Each instance of a server on a
host is identified with a UUID
(type uuid_t).

posix_pid Each server has a POSIX
process ID of type
unsigned32.

service_t This structure describes each service offered by a server. Theserver_t
structure, described earlier, contains an array of these structures. The
service_tstructure contains the following fields:

ifspec An interface specification of typerpc_if_id_t, generated
by an idl compilation of the interface definition
representing the service. This data type is described in
the rpc_intro(3rpc) reference page.

ifname An interface name of typedced_string_t.

annotation An annotation about the purpose of the interface (type
dced_string_t). This field is for user display purposes
only.

flags The flag field is of typeunsigned32 and currently has
only one bit field defined,service_c_disabled. If this flag
is set, it indicates that the service is not currently available
for the server. Also, thedced endpoint mapper will not
map an endpoint to a disabled service. Several values are
also reserved for vendor-specific use:

37

DCE 1.2.2 Application Development Reference

dced_intro(3dce)

service_c_vendor1

service_c_vendor2

service_c_vendor3

service_c_vendor4

entryname The entry name (typedced_string_t) is a hint as to where
this service appears in the namespace. If the value is
NULL, the value in theentryname field of the server_t
structure is used.

objects This is a list of objects supported by the service. The list
is of typeuuid_list_t.

operations This is a list of operation numbers of type
dced_opnum_list_t. This field is not currently
used.

towers This is a list of protocol towers of typedced_tower_list_t,
specifying the endpoints where this server can be reached.

srvrexec_stop_method_t
The server execution stop method is an enumerated type with one of
the following values:

srvrexec_stop_rpc
Stops the running server gracefully by letting
the server complete all outstanding remote
procedure calls. This causesdced to invoke the
rpc_mgmt_server_stop_listening() routine in that
server.

srvrexec_stop_soft
This uses a system-specific mechanism such as the
SIGTERM signal. It stops the running server with a
mechanism that the server can ignore or intercept in
order to do application-specific cleanup.

srvrexec_stop_hard
This uses a system-specific mechanism such as the
SIGKILL signal. It stops the running server immediately
with a mechanism that the server cannot intercept.

38

DCE Routines

dced_intro(3dce)

srvrexec_stop_error
This uses a system-specific mechanism such as the
SIGABRT signal. The local operating system captures
the server’s state before stopping it, and the server can
also intercept it.

uuid_list_t
A list of UUIDs in the following format:

count An unsigned32 number representing the number of
UUIDs in the list.

list A pointer to an array of UUIDs where each element is of
type uuid_t.

Files

dce/dced_base.h

dce/dced.h

dce/dced_data.h

dce/rpctypes.idl

dce/passwd.idl

dce/sec_attr_base.idl

Related Information

Functions:dced_* API.

Books:DCE 1.2.2 Application Development Guide

39

DCE 1.2.2 Application Development Reference

DCE_SVC_INTRO(3dce)

DCE_SVC_INTRO

Purpose Introduction to the DCE serviceability macros

Description

The DCE_SVC_DEFINE_HANDLE macro is used to create a serviceability handle.
This can be useful in a library that has no explicit initialization routine in which a
call to dce_svc_register()could be added. The remaining macros can be compiled
out of production code, or left in to aid diagnostics, depending on whether or not
DCE_DEBUG (normally found indce/dce.h) is defined.

The DCE Serviceability Macros

The serviceability macros are as follows, listed in alphabetical order:

DCE_SVC_DEBUG()
Used to generate debugging output.

DCE_SVC_DEBUG_ATLEAST()
Can be used to test the debug level of a subcomponent for a specified
handle. Tests whether the debug level is at least at the specified level.

DCE_SVC_DEBUG_IS()
Can be used to test the debug level of a subcomponent for a specified
handle. Tests for an exact match with the specified level.

DCE_SVC_DEFINE_HANDLE()
Registers a serviceability message table.

DCE_SVC_LOG()
Generates debugging output based on a message defined in an
application’ssamsfile.

40

DCE Routines

DCE_SVC_INTRO(3dce)

Files

dce/service.idl

dce/dce_svc.h

Related Information

Books:DCE 1.2.2 Application Development Guide

41

DCE 1.2.2 Application Development Reference

dce_assert(3dce)

dce_assert

Purpose Inserts program diagnostics

Synopsis
#define
DCE_ASSERT #include <dce/assert.h>

voiddce_assert(
dce_svc_handle_thandle,
int expression);

Parameters
Input

handle A registered serviceability handle.

expression An expression the truth of which is to be tested.

Description

The dce_assertmacro is used to add runtime ‘‘can’t happen’’ assertions to programs
(that is, programming errors). On execution, whenexpressionevaluates to 0 (that is,
to FALSE), thendce_svc_printf() is called with parameters to generate a message
identifying the expression, source file and line number. The message is generated with
a severity level ofsvc_c_sev_fatal, with thesvc_c_action_abortflag specified (which
will cause the program to abort when the assertion fails and the message is generated).
See thedce_svc_register(3dce)reference page for more information.

The handle parameter should be a registered serviceability handle; it can also be
NULL, in which case an internal serviceability handle will be used.

Assertion-checking can be enabled or disabled at compile time. The header filedce/
assert.hcan be included multiple times. IfDCE_ASSERTis defined before the header

42

DCE Routines

dce_assert(3dce)

is included, assertion checking is performed. If it is not so defined, then the assertion-
checking code is not compiled in. The system default is set indce/dce.h.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_register(3dce).

43

DCE 1.2.2 Application Development Reference

dce_attr_sch_bind(3dce)

dce_attr_sch_bind

Purpose Returns an opaque handle to a schema object

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_bind(
dce_attr_component_name_tschema_name,
dce_bind_auth_info_t * auth_info,
dce_attr_sch_handle_t *h,
error_status_t * status);

Parameters
Input

schema_name
A pointer to a value of typedce_attr_component_name_tthat specifies
the name of the schema object to bind to.

auth_info A value of typedce_bind_auth_info_t that defines the authentication
and authorization parameters to use with the binding handle. If set to
NULL, the default authentication and authorization parameters are used.

Output

h An opaque handle of typedce_attr_sch_handle_tto the named schema
object for use withdce_attr_schoperations.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

44

DCE Routines

dce_attr_sch_bind(3dce)

Description

The dce_attr_sch_bind() routine returns an opaque handle of type
dce_attr_sch_handle_t to a named schema object. The returned handle can
then be used for subsequentdce_attr_schoperations performed on the object.

Permissions Required

The dce_attr_sch_update_entry()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_name

sec_login_s_no_current_context

rpc_s_entry_not_found

rpc_s_no_more_bindings

dce_attr_s_unknown_auth_info_type

dce_attr_s_no_memory

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_bind_free(3dce).

45

DCE 1.2.2 Application Development Reference

dce_attr_sch_bind_free(3dce)

dce_attr_sch_bind_free

Purpose Releases an opaque handle of typedce_attr_sch_handle_tto a schema object

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_bind_free(
dce_attr_sch_handle_t *h,
error_status_t * status);

Parameters
Input

h An opaque handle of typedce_attr_sch_handle_t.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_bind_free() routine releases an opaque handle of type
dce_attr_sch_handle_t . The handle was returned with thedce_attr_sch_bind()
routine and used to performdce_attr_schoperations.

Permissions Required

Thedce_attr_sch_bind_free()routine requires appropriate permissions on the schema
object. These permissions are managed by the target server.

46

DCE Routines

dce_attr_sch_bind_free(3dce)

Files

/usr/include/dce/dce_attr_sch.idl
The idl file from which dce/dce_attr_sch.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

Related Information

Functions:dce_attr_intro(3dce), dce_attr_sch_bind(3dce).

47

DCE 1.2.2 Application Development Reference

dce_attr_sch_create_entry(3dce)

dce_attr_sch_create_entry

Purpose Creates a schema entry in a schema bound to by a previousdce_attr_sch_bind()

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_create_entry(
dce_attr_sch_handle_th,
dce_attr_schema_entry_t *schema_entry,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

schema_entry
A pointer to adce_attr_schema_entry_tthat contains the schema entry
values for the schema in which the entry is to be created.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_create_entry()routine creates schema entries that define attribute
types in the schema object bound to byh.

48

DCE Routines

dce_attr_sch_create_entry(3dce)

Permissions Required

The dce_attr_sch_create_entry()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions:dce_attr_intro(3dce), dce_attr_sch_delete_entry(3dce),
dce_attr_sch_update(3dce).

49

DCE 1.2.2 Application Development Reference

dce_attr_sch_cursor_alloc(3dce)

dce_attr_sch_cursor_alloc

Purpose Allocates resources to a cursor used withdce_attr_sch_scan()

Synopsis
#include
<dce/dce_attr_sch.h>

voiddce_rgy_attr_cursor_alloc(
dce_attr_cursor_t * cursor,
error_status_t * status);

Parameters
Output

cursor A pointer to adce_attr_cursor_t.

status A pointer to the completion status. On successful completion, the call
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_alloc()routine allocates resources to a cursor used with
the dce_attr_sch_scan()routine. This routine, which is a local operation, does not
initialize cursor.

The dce_attr_sch_cursor_init() routine, which makes a remote call, allocates and
initializes the cursor. In addition,dce_attr_sch_cursor_init()returns the total number
of entries found in the schema as an output parameter;dce_attr_sch_cursor_alloc()
does not.

Permissions Required

The dce_attr_sch_cursor_alloc()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

50

DCE Routines

dce_attr_sch_cursor_alloc(3dce)

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_no_memory

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_cursor_init(3dce),
dce_attr_sch_cursor_release(3dce), dce_attr_sch_scan(3dce).

51

DCE 1.2.2 Application Development Reference

dce_attr_sch_cursor_init(3dce)

dce_attr_sch_cursor_init

Purpose Initializes and allocates a cursor used withdce_attr_sch_scan()

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_rgy_attr_cursor_init(
dce_attr_sch_handle_th,
unsigned32 *cur_num_entries,
dce_attr_cursor_t * cursor,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

Output

cur_num_entries
A pointer to an unsigned 32-bit integer that specifies the total number
of entries contained in the schema at the time of this call.

cursor A pointer to adce_attr_cursor_t that is initialized to the first entry in
the the schema.

status A pointer to the completion status. On successful completion, the call
returnserror_status_ok. Otherwise, it returns an error.

52

DCE Routines

dce_attr_sch_cursor_init(3dce)

Description

The dce_attr_sch_cursor_init() routine initializes and allocates a cursor used with
the dce_attr_sch_scan()routine. This call makes remote calls to initialize the cursor.
To limit the number of remote calls, use thedce_attr_sch_cursor_alloc()routine to
allocatecursor, but not initialize it. If the cursor input todce_attr_sch_scan()has not
been initialized,dce_attr_sch_scan()routine will initialize it; if it has been initialized,
dce_attr_sch_scan()advances it.

Unlike the dce_attr_sch_cursor_alloc() routine, the dce_attr_sch_cursor_init()
routine supplies the total number of entries found in the schema as an output parameter.

Permissions Required

None.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_binding

dce_attr_s_no_memory

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_cursor_allocate(3dce),
dce_attr_sch_cursor_release(3dce), dce_attr_sch_scan(3dce).

53

DCE 1.2.2 Application Development Reference

dce_attr_sch_cursor_release(3dce)

dce_attr_sch_cursor_release

Purpose Releases states associated with a cursor that has been allocated with either
dce_attr_sch_cursor_init()or dce_attr_sch_cursor_alloc()

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_cursor_init(
dce_attr_cursor_t * cursor,
error_status_t * status);

Parameters
Input/Output

cursor A pointer to adce_attr_cursor_t. As an input parameter,cursor must
have been initialized to the first entry in a schema. As an output
parameter,cursor is uninitialized with all resources released.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_init() routine releases the resources allocated to
a cursor that has been allocated by eitherdce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc(). This call is a local operation and makes no remote
calls.

Permissions Required

None.

54

DCE Routines

dce_attr_sch_cursor_release(3dce)

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce),
dce_attr_sch_cursor_init(3dce), dce_attr_sch_cursor_reset(3dce),
dce_attr_sch_scan(3dce).

55

DCE 1.2.2 Application Development Reference

dce_attr_sch_cursor_reset(3dce)

dce_attr_sch_cursor_reset

Purpose Resets a cursor that has been allocated with eitherdce_attr_sch_cursor_init() or
dce_attr_sch_cursor_alloc()

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_cursor_reset(
dce_attr_cursor_t * cursor,
error_status_t * status);

Parameters
Input/Output

cursor A pointer to adce_attr_cursor_t. As an input parameter, an initialized
cursor. As an output parameter,cursor is reset to the first attribute in
the schema.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_cursor_reset() routine resets a dce_attr_cursor_t that
has been allocated by either thedce_attr_sch_cursor_init() routine or the
dce_attr_sch_cursor_alloc()routine. The reset cursor can then be used to process
a new dce_attr_sch_scanquery by reusing the cursor instead of releasing and
reallocating it. This is a local operation and makes no remote calls.

Permissions Required

None.

56

DCE Routines

dce_attr_sch_cursor_reset(3dce)

Files

/usr/include/dce/dce_attr_sch.idl
The idl file from which dce/dce_attr_sch.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce),
dce_attr_sch_cursor_init(3dce), dce_attr_sch_scan(3dce).

57

DCE 1.2.2 Application Development Reference

dce_attr_sch_delete_entry(3dce)

dce_attr_sch_delete_entry

Purpose Deletes a schema entry

Synopsis
#include
<dce/dce_attr_sch.h>

voiddce_attr_sch_delete_entry(
dce_attr_sch_handle_th,
uuid_t * attr_id,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

attr_id A pointer to auuid_t that identifies the schema entry to be deleted in
the schema bound to byh.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_delete_entry()routine deletes a schema entry. Because this is
a radical operation that invalidates any existing attributes of this type on objects
dominated by the schema, access to this operation should be severely limited.

58

DCE Routines

dce_attr_sch_delete_entry(3dce)

Permissions Required

Thedce_attr_sch_delete_entry()routine requires requires appropriate permissions on
the schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions:dce_attr_intro(3dce), dce_attr_sch_create_entry(3dce),
dce_attr_sch_update_entry(3dce).

59

DCE 1.2.2 Application Development Reference

dce_attr_sch_get_acl_mgrs(3dce)

dce_attr_sch_get_acl_mgrs

Purpose Retrieves the manager types of the ACLs protecting the objects dominated by a named
schema

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_get_acl_mgrs(
dce_attr_sch_handle_th,
unsigned32size_avail,
unsigned32 *size_used,
unsigned32 *num_acl_mgr_types,
uuid_t acl_mgr_types[],
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

size_avail An unsigned 32-bit integer containing the allocated length of the
acl_manager_types[] array.

Output

size_used An unsigned 32-bit integer containing the number of output entries
returned in theacl_mgr_types[] array.

num_acl_mgr_types
An unsigned 32-bit integer containing the number of types returned in
the acl_mgr_types[] array. This may be greater thansize_usedif there
was not enough space allocated bysize_availfor all the manager types
in the acl_manager_types[] array.

60

DCE Routines

dce_attr_sch_get_acl_mgrs(3dce)

acl_mgr_types[]
An array of the length specified insize_availto contain UUIDs (of type
uuid_t) identifying the types of ACL managers protecting the target
object.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_get_acl_mgrs()routine returns a list of the manager types
protecting the schema object identified byh.

ACL editors and browsers can use this operation to determine the ACL manager types
protecting a selected schema object.

Permissions Required

The dce_attr_sch_get_acl_mgrs()routine requires appropriate permissions on the
schema object for which the ACL manager types are to be returned. These permissions
are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_not_implemented

error_status_ok

Related Information

Functions:dce_attr_intro(3dce).

61

DCE 1.2.2 Application Development Reference

dce_attr_sch_lookup_by_id(3dce)

dce_attr_sch_lookup_by_id

Purpose Reads a schema entry identified by UUID

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_lookup_by_id(
dce_attr_sch_handle_th,
uuid_t * attr_id,
dce_attr_schema_entry_t *schema_entry,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

attr_id A pointer to auuid_t that identifies a schema entry.

Output

schema_entry
A dce_attr_schema_entry_tthat contains an entry identified byattr_id.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_lookup_by_id()routine reads a schema entry identified byattr_id.
This routine is useful for programmatic access.

62

DCE Routines

dce_attr_sch_lookup_by_id(3dce)

After a successful call, free the resources allocated by this routine for theschema_entry
parameter by using thesec_attr_util_sch_ent_free_ptrs()routine.

Permissions Required

The dce_attr_sch_lookup_by_id()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions:dce_attr_intro(3dce), dce_attr_sch_lookup_by_name(3dce),
dce_attr_sch_scan(3dce).

63

DCE 1.2.2 Application Development Reference

dce_attr_sch_lookup_by_name(3dce)

dce_attr_sch_lookup_by_name

Purpose Reads a schema entry identified by name

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_lookup_by_name(
dce_attr_sch_handle_th,
char * attr_name,
dce_attr_schema_entry_t *schema_entry,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

attr_name A pointer to a character string that identifies the schema entry.

Output

schema_entry
A dce_attr_schema_entry_tthat contains the schema entry identified
by attr_name.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_lookup_by_name()routine reads a schema entry identified by
name. This routine is useful for use with an interactive editor.

64

DCE Routines

dce_attr_sch_lookup_by_name(3dce)

After a successful call, free the resources allocated by this routine for theattr
parameter by using thesec_attr_util_inst_free_ptrs()routine.

Permissions Required

Thedce_attr_sch_lookup_by_name()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions:dce_attr_intro(3dce), dce_attr_sch_lookup_by_id(3dce),
dce_attr_sch_scan(3dce).

65

DCE 1.2.2 Application Development Reference

dce_attr_sch_scan(3dce)

dce_attr_sch_scan

Purpose Reads a specified number of schema entries

Synopsis
#include
<dce/dce_attr_base.h>

voiddce_attr_sch_scan(
dce_attr_sch_handle_th,
dce_attr_cursor_t * cursor,
unsigned32num_to_read,
unsigned32 *num_read,
dce_attr_schema_entry_tschema_entries[] ,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

num_to_read
An unsigned 32-bit integer specifying the size of theschema_entries[]
array and the maximum number of entries to be returned.

Input/Output

cursor A pointer to adce_attr_cursor_t. As input cursor must be allocated
and can be initialized. Ifcursor is not initialized,dce_attr_sch_scan
will initialize it. As output, cursor is positioned at the first schema entry
after the returned entries.

Output

num_read A pointer to an unsigned 32-bit integer specifying the number of entries
returned inschema_entries[].

66

DCE Routines

dce_attr_sch_scan(3dce)

schema_entries[]
A dce_attr_schema_entry_t that contains an array of the returned
schema entries.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_attr_sch_scan()routine reads schema entries. The read begins at the entry
at which the inputcursor is positioned and ends after the number of entries specified
in num_to_read.

The inputcursor must have been allocated by either thedce_attr_sch_cursor_init()
or the dce_attr_sch_cursor_alloc()routine. If the inputcursor is not initialized,
dce_attr_sch_scan()initializes it; if cursor is initialized,dce_attr_sch_scan()simply
advances it.

To read all entries in a schema, make successivedce_attr_sch_scan()calls. When all
entries have been read, the routine returns the messageno_more_entries.

This routine is useful as a browser.

Permissions Required

The dce_attr_sch_scan()routine requires requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

67

DCE 1.2.2 Application Development Reference

dce_attr_sch_scan(3dce)

dce_attr_s_bad_binding

dce_attr_s_bad_cursor

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_cursor_alloc(3dce),
dce_attr_sch_cursor_init(3dce), dce_attr_sch_cursor_release(3dce).

68

DCE Routines

dce_attr_sch_update_entry(3dce)

dce_attr_sch_update_entry

Purpose Updates a schema entry

Synopsis
#include
<dce/dce_attr_sch.h>

voiddce_attr_sch_update_entry(
dce_attr_sch_handle_th,
dce_attr_schema_entry_parts_tmodify_parts,
dce_attr_schema_entry_t *schema_entry,
error_status_t * status);

Parameters
Input

h An opaque handle bound to a schema object. Usedce_attr_sch_bind()
to acquire the handle.

modify_parts
A value of type dce_attr_schema_entry_parts_tthat identifies the
fields in the schema bound to byh that can be modified.

schema_entry
A pointer to adce_attr_schema_entry_tthat contains the schema entry
values for the schema entry to be updated.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

69

DCE 1.2.2 Application Development Reference

dce_attr_sch_update_entry(3dce)

Description

The dce_attr_sch_update_entry() routine modifies schema entries. Only those
schema entry fields set to be modified in thedce_attr_schema_entry_parts_tdata
type can be modified.

Some schema entry components can never be modified. Instead, in order to make any
changes to these components, the schema entry must be deleted (which deletes all
attribute instances of that type) and recreated. The schema entry components that can
never be modified are as follows:

• Attribute name

• Reserved flag

• Apply defaults flag

• Intercell action flag

• Trigger types

• Comment

Fields that are arrays of structures (such asacl_mgr_set and trig_binding) are
completely replaced by the new input array. This operation cannot be used to add
a new element to the existing array.

Permissions Required

The dce_attr_sch_update_entry()routine requires appropriate permissions on the
schema object. These permissions are managed by the target server.

Files

/usr/include/dce/dce_attr_base.idl
The idl file from which dce/dce_attr_base.hwas derived.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

70

DCE Routines

dce_attr_sch_update_entry(3dce)

dce_attr_s_bad_binding

error_status_ok

Related Information

Functions:dce_attr_intro(3dce) , dce_attr_sch_create_entry(3dce),
dce_attr_sch_delete_entry(3dce).

71

DCE 1.2.2 Application Development Reference

dce_cf_binding_entry_from_host(3dce)

dce_cf_binding_entry_from_host

Purpose Returns the host binding entry name

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_binding_entry_from_host(
char * hostname,
char ** entry_name,
error_status_t * status);

Parameters
Input

hostname Specifies the name of the host. Note that host names are case sensitive.
If NULL, the configuration file is searched for the host name, and that
name, if found, is used.

Output

entry_name The binding entry name associated with the specified host.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Thedce_cf_binding_entry_from_host()routine returns the binding entry name string
associated with thehostnamepassed to it. Ifhostnameis NULL, the binding entry
name associated with the name returned bydce_cf_get_host_name()is returned.

72

DCE Routines

dce_cf_binding_entry_from_host(3dce)

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions:dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce).

Books:DCE 1.2.2 Administration Guide.

73

DCE 1.2.2 Application Development Reference

dce_cf_dced_entry_from_host(3dce)

dce_cf_dced_entry_from_host

Purpose Returns thedced entry name on a host

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_dced_entry_from_host(
char * hostname,
char ** entry_name,
error_status_t * status);

Parameters
Input

hostname Specifies the name of the host. Note that host names are case sensitive.
If this value is NULL, the value returned bydce_cf_get_host_name()
is used.

Output

entry_name The dced entry name associated with the specified host. Storage for
this name is dynamically allocated; release it withfree() when you no
longer need it.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_dced_entry_from_host()routine returns the name entered into the DCE
namespace for a DCE host daemon (dced) on the host specified by thehostname
parameter. If thehostnameparameter is NULL, thedced name associated with the

74

DCE Routines

dce_cf_dced_entry_from_host(3dce)

name returned bydce_cf_get_host_name()is returned. The string name is of the form
/.:/hosts/ hostname/config, and specifies the entry point into thedced namespace on
the host. This is the location in the DCE namespace at whichdced stores the objects
associated with the host services it provides (thehostdata, srvrconf, srvrexec, secval,
and keytab services, as well as ACL editing). It is also an actual name in the DCE
namespace that you can import if you want to create your own RPC binding todced.

You can use thedced entry name returned by this routine as input to
the dced_binding_create() routine, input to sec_acl_* routines, or to
rpc_ns_binding_import_ * routines to establish a binding to adced host
service.

If using dced_binding_create(), you append a service name to the entry returned by
this routine. If usingsec_acl_* routines, you append the service and the object name.
If using rpc_ns_binding_import_* , you use only the entry returned by the routine.

You can also use the returned string to name objects thatdcedmaintains, for example,
when editing these objects’ ACLs withdcecp. For example, the string name/.:/hosts/
vineyard/config/srvrconf/dtsd names the server configuration data for the DTS server
on the hostvineyard.

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

75

DCE 1.2.2 Application Development Reference

dce_cf_dced_entry_from_host(3dce)

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce),
dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce),
dced_binding_create(3dce).

Books:DCE 1.2.2 Application Development Guide—Core Components, DCE 1.2.2
Command Reference.

76

DCE Routines

dce_cf_find_name_by_key(3dce)

dce_cf_find_name_by_key

Purpose Returns a string tagged by a character string key

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_find_name_by_key(
FILE * fp,
char * key,
char ** name,
error_status_t * status);

Parameters
Input

fp A file pointer to a correctly formatted text file opened for reading.

key A character string key that will be used to findname.

Input/Output

name A pointer to a string (char **) in which a string containing the name
found will be placed. The name string will be allocated bymalloc().

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_find_name_by_key()routine searches a text file for the first occurrence
of a string tag identical to the string passed inkey. The tag string, in order to be found,

77

DCE 1.2.2 Application Development Reference

dce_cf_find_name_by_key(3dce)

must be the first nonwhitespace string on an uncommented line. If the tag string is
found, dce_cf_find_name_by_key()allocates (by a call tomalloc()) a buffer for the
next string found on the same line as the tag string, copies this second string into the
buffer, and returns its address in thenameinput parameter.

The name of the DCE configuration file is in the constantdce_cf_c_db_name; in
turn, this constant is defined in the header file<dce_cf.h>.

Cautions

The memory for a returned name string is allocated bymalloc(), and
must be freed by the original caller of the configuration routine that called
dce_cf_find_name_by_key().

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation completed succesfully.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No match forkey in the file.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce).

78

DCE Routines

dce_cf_find_name_by_key(3dce)

Books:DCE 1.2.2 Administration Guide.

79

DCE 1.2.2 Application Development Reference

dce_cf_free_cell_aliases(3dce)

dce_cf_free_cell_aliases

Purpose Frees a list of cell name aliases for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

voiddce_cf_free_cell_aliases(
char ** cell_alias_list,
error_status_t * status);

Parameters
Input

cell_alias_list
The address of a cell alias list, which is a null-terminated array of
pointers to the cell alias names for the local cell.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Thedce_cf_free_cell_aliases()routine frees the list of aliases for the local cell that the
dce_cf_free_cell_aliases()routine allocated. The routine frees the memory allocated
to hold the array of pointers to cell alias string buffers, and also frees the string buffers.

80

DCE Routines

dce_cf_free_cell_aliases(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok

dce_cf_e_file_open

dce_cf_e_no_mem

dce_cf_e_no_match

Related Information

Functions:dce_cf_get_cell_aliases(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce),
dce_cf_same_cell_name(3dce).

Books:DCE 1.2.2 Application Development Guide—Core Components, DCE 1.2.2
Command Reference.

81

DCE 1.2.2 Application Development Reference

dce_cf_get_cell_aliases(3dce)

dce_cf_get_cell_aliases

Purpose Returns a list of aliases for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

voiddce_cf_get_cell_aliases(
char *** cell_alias_list,
error_status_t * status);

Parameters
Input

None.

Output

cell_alias_list
The address of a string pointer array. This routine sets this address to
point to the address of an allocated null-terminated array of pointers to
the cell alias names for the local cell. If no aliases exist, the routine
returns NULL in this parameter.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_get_cell_aliases()routine retrieves the local cell’s cell name aliases. If
cell aliases are found, the routine returns the address of an allocated list of cell alias
names in thecell_alias_list parameter. If no aliases exist for the cell, the routine
returns NULL.

82

DCE Routines

dce_cf_get_cell_aliases(3dce)

Use the dce_cf_free_cell_aliases()routine to free the memory allocated by the
dce_cf_get_cell_aliases()routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok

dce_cf_e_file_open

dce_cf_e_no_mem

dce_cf_e_no_match

Related Information

Functions:dce_cf_free_cell_aliases(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_same_cell_name(3dce).

Books:DCE 1.2.2 Application Development Guide—Core Components, DCE 1.2.2
Command Reference.

83

DCE 1.2.2 Application Development Reference

dce_cf_get_cell_name(3dce)

dce_cf_get_cell_name

Purpose Returns the primary name for the local cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

voiddce_cf_get_cell_name(
char ** cellname,
error_status_t * status);

Parameters
Input

None.

Output

cellname The address of a string pointer. This pointer will be set by the function
to point to an allocated buffer that contains the cell name.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_get_cell_name()routine retrieves the primary name for the local cell. If
the name is found,dce_cf_get_cell_name()returns an allocated (by a call tomalloc())
copy of it in thecellnameinput parameter. Usefree() to free the allocated copy when
you no longer need it.

84

DCE Routines

dce_cf_get_cell_name(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok

dce_cf_e_file_open

dce_cf_e_no_mem

dce_cf_e_no_match

Related Information

Functions:dce_cf_free_cell_aliases(3dce), dce_cf_get_cell_aliases(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce).

Books:DCE 1.2.2 Administration Guide.

85

DCE 1.2.2 Application Development Reference

dce_cf_get_csrgy_filename(3dce)

dce_cf_get_csrgy_filename

Purpose Returns the pathname of the code set registry file on a host

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_get_csrgy_filename(
char ** csrgy_filename,
error_status_t * status);

Parameters
Input

None.

Input/Output

csrgy_filename
The address of a string pointer. This pointer will be set by the function
to point to a buffer that contains the pathname to the code set registry
file.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Thedce_cf_get_csrgy_filename()routine is a DCE function that returns the pathname
of a code set registry file that has been created on a given host with thecsrc utility.
DCE RPC routines for code set interoperability use this routine when they need to

86

DCE Routines

dce_cf_get_csrgy_filename(3dce)

locate a host’s code set registry file in order to map between unique code set identifiers
and their operating system-specific local code set names, or to obtain supported code
sets for a client or server. User-written code set interoperability routines can also use
the routine.

The dce_cf_get_csrgy_filename()routine searches the DCE configuration file for the
name of the local host’s code set registry file, allocates a buffer for it (by a call to
malloc()), copies the name into the buffer, and returns its address in thecsrgy_filename
input parameter.

Cautions

The memory for a returned name string is allocated bymalloc(), and must be freed
by the caller ofdce_cf_get_csrgy_filename().

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation successfully completed.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

87

DCE 1.2.2 Application Development Reference

dce_cf_get_csrgy_filename(3dce)

Related Information

Functions:dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce),
rpc_rgy_get_codesets(3rpc).

Commands:csrc(8dce).

Books:DCE 1.2.2 Administration Guide.

88

DCE Routines

dce_cf_get_host_name(3dce)

dce_cf_get_host_name

Purpose Returns the host name relative to the local cell root

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_get_host_name(
char ** hostname,
error_status_t * status);

Parameters
Input

None.

Input/Output

hostname The address of a string pointer. This pointer will be set by the function
to point to a buffer that contains the host name.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_get_host_name()routine searches the DCE configuration file for
the local host’s name relative to the local cell’s root. If the name is found,
dce_cf_get_host_name()allocates (by a call tomalloc()) a buffer for it, copies the
name into the buffer, and returns its address in thehostnameinput parameter.

89

DCE 1.2.2 Application Development Reference

dce_cf_get_host_name(3dce)

Cautions

The memory for a returned name string is allocated bymalloc(), and must be freed
by the caller ofdce_cf_get_host_name().

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation successfully completed.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce),
dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_prin_name_from_host(3dce).

Books:DCE 1.2.2 Administration Guide.

90

DCE Routines

dce_cf_prin_name_from_host(3dce)

dce_cf_prin_name_from_host

Purpose Returns the host’s principal name

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_prin_name_from_host(
char * hostname,
char ** prin_name,
error_status_t * status);

Parameters
Input

hostname The name of the host. Note that host names are case sensitive. If NULL,
the configuration file is searched for the host name, and that name, if
found, is used.

Output

prin_name The principal name associated with the specified host.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_prin_name_from_host() routine returns the principal name
associated with the hostname passed to it. If hostname is NULL,
dce_cf_prin_name_from_host() returns the principal name associated with
the name returned bydce_cf_get_host_name().

91

DCE 1.2.2 Application Development Reference

dce_cf_prin_name_from_host(3dce)

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce),
dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce).

Books:DCE 1.2.2 Administration Guide.

92

DCE Routines

dce_cf_profile_entry_from_host(3dce)

dce_cf_profile_entry_from_host

Purpose Returns the host profile entry

Synopsis
#include <stdio.h>

#include <dce/dce_cf.h>

voiddce_cf_profile_entry_from_host(
char * hostname,
char ** prof_name,
error_status_t * status);

Parameters
Input

hostname Specifies the name of the host. Note that host names are case sensitive.
If NULL, the configuration file is searched for the host name, and that
name, if found, is used.

Output

prof_name The profile entry associated with the specified host.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_cf_profile_entry_from_host() routine returns the profile entry string
associated with thehostnamepassed to it. Ifhostnameis NULL, the profile entry
associated with the name returned bydce_cf_get_host_name()is returned.

93

DCE 1.2.2 Application Development Reference

dce_cf_profile_entry_from_host(3dce)

Files

dcelocal/dce_cf.db
The machine’s local DCE configuration file (wheredcelocalis usually
something like/opt/dcelocal).

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok
Operation completed successfully.

dce_cf_e_file_open
File open error.

dce_cf_e_no_mem
No memory available.

dce_cf_e_no_match
No host name entry in the DCE configuration file.

Related Information

Functions:dce_cf_binding_entry_from_host(3dce),
dce_cf_find_name_by_key(3dce), dce_cf_get_cell_name(3dce),
dce_cf_get_host_name(3dce), dce_cf_prin_name_from_host(3dce).

Books:DCE 1.2.2 Administration Guide.

94

DCE Routines

dce_cf_same_cell_name(3dce)

dce_cf_same_cell_name

Purpose Indicates whether or not two cell names refer to the same cell

Synopsis
#include <stdio.h>
#include <dce/dce_cf.h>

voiddce_cf_same_cell_name(
char * cell_name1,
char * cell_name2,
boolean result,
error_status_t * status);

Parameters
Input

cell_name1 A character string that specifies the name of a cell.

cell_name2 A character string that specifies the name of a cell to compare with
cell_name1. If this value is NULL, the routine determines whether or
not the cell name specified incell_name1is the name of the local cell.

Output

result A boolean value that indicates whether or not the specified cell names
match, when two cell names are given, and indicates whether or not the
specified cell name is the name of the local cell, when only one cell
name is given. A value of TRUE indicates that the cell names refer to
the same cell.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

95

DCE 1.2.2 Application Development Reference

dce_cf_same_cell_name(3dce)

Description

The dce_cf_same_cell_name ()routine, when given the names of two cells as input
parameters, compares the cell names to determine whether or not they refer to the
same call. Theresult parameter is set to TRUE if they do, and to FALSE if they do
not.

If only one cell name is specified as an input parameter, thedce_cf_same_cell_name()
routine determines whether or not the specified cell name is the same as the local cell’s
primary name (which it retrieves by callingdce_cf_get_cell_name()). You can use
the routine in this way to determine whether a given cell name is the primary name
of your local cell.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cf_st_ok

dce_cf_e_no_match

Related Information

Functions:dce_cf_free_cell_aliases(3dce), dce_cf_get_cell_aliases(3dce),
dce_cf_get_cell_name(3dce).

Books:DCE 1.2.2 Application Development Guide—Core Components, DCE 1.2.2
Command Reference.

96

DCE Routines

dce_db_close(3dce)

dce_db_close

Purpose Closes an open backing store

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_close(
dce_db_handle_t *handle,
error_status_t * status);

Parameters
Input

handle A handle identifying the backing store to be closed.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

Thedce_db_close()routine closes a backing store that was opened bydce_db_open().
It also frees the storage used by the handle, and sets the handle’s value to NULL.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

97

DCE 1.2.2 Application Development Reference

dce_db_close(3dce)

Related Information

Functions:dce_db_open(3dce).

98

DCE Routines

dce_db_delete(3dce)

dce_db_delete

Purpose Deletes an item from a backing store

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_delete(
dce_db_handle_thandle,
void * key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A pointer to a string or UUID that is the key to the item in the backing
store. The datatype ofkeymust match the key method that was selected
in the flags parameter todce_db_open()when the backing store was
created.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error code.

Description

The dce_db_delete()routine deletes an item from the backing store that is identified
by the handle parameter, which was obtained fromdce_db_open(). It is a general
deletion routine, interpreting thekey parameter according to the type of index with
which the backing store was created.

99

DCE 1.2.2 Application Development Reference

dce_db_delete(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variableerrno may indicate
further information about the error.

db_s_bad_index_type
The key’s type is wrong, or the backing store is not by name or by
UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Deletion is not allowed
during iteration.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_delete_by_name(3dce), dce_db_delete_by_uuid(3dce),
dce_db_open(3dce).

100

DCE Routines

dce_db_delete_by_name(3dce)

dce_db_delete_by_name

Purpose Deletes an item from a string-indexed backing store

Synopsis
#include <dce/dce.h> #include <dce/dbif.h>

void dce_db_delete_by_name(
dce_db_handle_thandle,
char * key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A NULL-terminated string that is the key to the item in the backing
store.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variableerrno may indicate
further information about the error.

101

DCE 1.2.2 Application Development Reference

dce_db_delete_by_name(3dce)

db_s_bad_index_type
The backing store is not indexed by name.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Deletion is not allowed
during iteration.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_delete(3dce), dce_db_delete_by_uuid(3dce),
dce_db_open(3dce).

102

DCE Routines

dce_db_delete_by_uuid(3dce)

dce_db_delete_by_uuid

Purpose Deletes an item from a UUID-indexed backing store

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_delete_by_uuid(
dce_db_handle_thandle,
uuid_t * key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A pointer to a UUID that is the key to the item in the backing store.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error code.

Description

The dce_db_delete_by_uuid()routine deletes an item from the backing store that is
identified by thehandleparameter, which was obtained fromdce_db_open(). It is a
specialized deletion routine for backing stores that are indexed by UUID, as selected
by the db_c_index_by_uuidbit in the flags parameter todce_db_open()when the
backing store was created.

103

DCE 1.2.2 Application Development Reference

dce_db_delete_by_uuid(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_del_failed
The deletion did not occur. The global variableerrno may indicate
further information about the error.

db_s_bad_index_type
The backing store is not indexed by UUID.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Deletion is not allowed
during iteration.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_delete(3dce), dce_db_delete_by_name(3dce),
dce_db_open(3dce).

104

DCE Routines

dce_db_fetch(3dce)

dce_db_fetch

Purpose Retrieves data from a backing store

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_fetch(
dce_db_handle_thandle,
void * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A string or UUID that is the key to the item in the backing store. The
datatype ofkeymust match the key method that was selected in theflags
parameter todce_db_open()when the backing store was created.

Output

data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_fetch()routine retrieves data from the backing store that is identified
by the handle parameter, which was obtained fromdce_db_open(). It is a general

105

DCE 1.2.2 Application Development Reference

dce_db_fetch(3dce)

retrieval routine, interpreting thekey parameter according to the type of index with
which the backing store was created.

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch(), it may be necessary to free some memory, if
the call was made outside of an RPC, on the server side. This is done by
calling rpc_sm_client_free(). (Inside an RPC the memory is allocated through
rpc_sm_allocate(), and is automatically freed.)

Programs that calldce_db_fetch()outside of a server operation (for instance, if a
server does some backing store initialization, or in a standalone program) must call
rpc_sm_enable_allocate()first. Indeed, every thread that callsdce_db_fetch()must
do rpc_sm_allocate(), but in the server side of an RPC, this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance
is not necessarily an error.)

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch_by_name(3dce), dce_db_fetch_by_uuid(3dce),
dce_db_free(3dce), dce_db_open(3dce).

106

DCE Routines

dce_db_fetch_by_name(3dce)

dce_db_fetch_by_name

Purpose Retrieves data from a string-indexed backing store

Synopsis
#include <dce/dce.h> #include <dce/dbif.h>

void dce_db_fetch_by_name(
dce_db_handle_thandle,
char * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A null-terminated string that is the key to the item in the backing store.

Output

data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_fetch_by_name() routine retrieves data from the string-indexed
backing store that is identified by thehandle parameter, which was obtained from
dce_db_open(). It is a specialized retrieval routine for backing stores that are indexed
by string, as selected by thedb_c_index_by_namebit in the flags parameter to
dce_db_open()when the backing store was created.

107

DCE 1.2.2 Application Development Reference

dce_db_fetch_by_name(3dce)

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch_by_name(), it may be necessary to free some memory,
if the call was made outside of an RPC, on the server side. This is done by
calling rpc_sm_client_free(). (Inside an RPC the memory is allocated through
rpc_sm_allocate(), and is automatically freed.)

Programs that calldce_db_fetch_by_name()outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must callrpc_sm_enable_allocate()first. Indeed, every thread that calls
dce_db_fetch_by_name()must dorpc_sm_allocate(), but in the server side of an
RPC, this is already done.

Examples

This example shows the use of the user-defined data type as thedata parameter.

extern dce_db_handle_t db_h;

uuid_t key_uuid;

my_data_type_t my_data;

error_status_t status;

/* set key_uuid = xxx; */

dce_db_fetch_by_name(db_h, &key_uuid, &my_data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance
is not necessarily an error.)

108

DCE Routines

dce_db_fetch_by_name(3dce)

db_s_bad_index_type
The backing store is not indexed by name.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch(3dce), dce_db_fetch_by_uuid(3dce), dce_db_free(3dce),
dce_db_open(3dce).

109

DCE 1.2.2 Application Development Reference

dce_db_fetch_by_uuid(3dce)

dce_db_fetch_by_uuid

Purpose Retrieves data from a UUID-indexed backing store

Synopsis
#include <dce/dce.h> #include <dce/dbif.h>

void dce_db_fetch_by_uuid(
dce_db_handle_thandle,
uuid_t * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A UUID that is the key to the item in the backing store.

Output

data A pointer to the returned data.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_fetch_by_uuid() routine retrieves data from the UUID-indexed
backing store that is identified by thehandle parameter, which was obtained from
dce_db_open(). It is a specialized retrieval routine for backing stores that are indexed
by UUID, as selected by thedb_c_index_by_uuid bit in the flags parameter to
dce_db_open()when the backing store was created.

110

DCE Routines

dce_db_fetch_by_uuid(3dce)

The data parameter is shown as a pointer to an arbitrary data type. In actual use it
will be the address of the backing-store-specific data type.

Notes

After calling dce_db_fetch_by_uuid(), it may be necessary to free some memory,
if the call was made outside of an RPC, on the server side. This is done by
calling rpc_sm_client_free(). (Inside an RPC the memory is allocated through
rpc_sm_allocate(), and is automatically freed.)

Programs that calldce_db_fetch_by_uuid() outside of a server operation (for
instance, if a server does some backing store initialization, or in a standalone
program) must callrpc_sm_enable_allocate()first. Indeed, every thread that calls
dce_db_fetch_by_uuid()must do rpc_sm_allocate(), but in the server side of an
RPC, this is already done.

Examples

This example shows the use of the user-defined data type as thedata parameter.

extern dce_db_handle_t db_h;

uuid_t key_uuid;

my_data_type_t my_data;

error_status_t status;

/* set key_uuid = xxx; */

dce_db_fetch_by_uuid(db_h, &key_uuid, &my_data, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_key_not_found
The specified key was not found in the backing store. (This circumstance
is not necessarily an error.)

111

DCE 1.2.2 Application Development Reference

dce_db_fetch_by_uuid(3dce)

db_s_bad_index_type
The backing store is not indexed by UUID.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch(3dce), dce_db_fetch_by_name(3dce), dce_db_free(3dce),
dce_db_open(3dce).

112

DCE Routines

dce_db_free(3dce)

dce_db_free

Purpose Releases the data supplied from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_free(
dce_db_handle_thandle,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

data The data area to be released.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_free() routine is designed to free the data area previously returned
via a call to any of the routinesdce_db_fetch(), dce_db_fetch_by_name(), or
dce_db_fetch_by_uuid().

113

DCE 1.2.2 Application Development Reference

dce_db_free(3dce)

Notes

In the current implementation, thedce_db_free()routine does not perform any action.
For servers that execute properly, this is of little consequence because their allocated
memory is automatically cleaned up when a remote procedure call finishes. For
completeness, and for compatibility with future releases, the use ofdce_db_free()
is recommended.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch(3dce), dce_db_fetch_by_name(3dce),
dce_db_fetch_by_uuid(3dce).

114

DCE Routines

dce_db_header_fetch(3dce)

dce_db_header_fetch

Purpose Retrieves the header from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_header_fetch(
dce_db_handle_thandle,
void * key,
dce_db_header_t *hdr,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A string or UUID that is the backing store key.

Output

hdr A pointer to a caller-supplied header structure to be filled in by the
library.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_header_fetch()routine returns a pointer to a copy of the header of
the object in the backing store that is identified by thehandleparameter, which was
obtained fromdce_db_open(). The caller must free the copy’s storage. It was allocated

115

DCE 1.2.2 Application Development Reference

dce_db_header_fetch(3dce)

(as with other fetch routines) throughrpc_ss_alloc(). Thekeyparameter is interpreted
according to the type of index with which the backing store was created.

The hdr parameter is shown as a pointer to an arbitrary data type. In actual use it will
be the address of the backing-store-specific data type.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_key_not_found
The key was not found in the backing store.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch(3dce), dce_db_std_header_init(3dce).

116

DCE Routines

dce_db_inq_count(3dce)

dce_db_inq_count

Purpose Returns the number of items in a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_inq_count(
dce_db_handle_thandle,
unsigned32 *count,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

count A pointer to the number of items in the backing store.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_inq_count()routine returns the number of items in the backing store
that is identified by thehandleparameter, which was obtained fromdce_db_open().
It performs identically on backing stores that are indexed by UUID and those that are
indexed by string. The count of items can be helpful when iterating through a backing
store.

117

DCE 1.2.2 Application Development Reference

dce_db_inq_count(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Determining the count is
not allowed during iteration.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_iter_next(3dce).

118

DCE Routines

dce_db_iter_done(3dce)

dce_db_iter_done

Purpose Frees the state associated with iteration

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_iter_done(
dce_db_handle_thandle,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok.

Description

The dce_db_iter_done()routine frees the state that permits iteration. It should be
called after an iteration through a backing store is finished.

The iteration state is established bydce_db_iter_start(). The routines for performing
iteration over the items aredce_db_iter_next(), dce_db_iter_next_by_name(), and
dce_db_iter_next_by_uuid().

119

DCE 1.2.2 Application Development Reference

dce_db_iter_done(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_iter_next(3dce), dce_db_iter_next_by_name(3dce),
dce_db_iter_next_by_uuid(3dce), dce_db_iter_start(3dce).

120

DCE Routines

dce_db_iter_next(3dce)

dce_db_iter_next

Purpose During iteration, returns the next key from a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_iter_next(
dce_db_handle_thandle,
void ** key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

key A pointer to the string or UUID that is the key to the item in the backing
store.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_iter_next()routine retrieves the next key from the backing store that is
identified by thehandleparameter. An iterator established by thedce_db_iter_start()
routine maintains the identity of the current key. Use one of thedce_db_fetch()
routines to retrieve the actual data.

121

DCE 1.2.2 Application Development Reference

dce_db_iter_next(3dce)

The iteration functions scan sequentially through a backing store, in no particular order.
The dce_db_iter_start() routine initialized the process, adce_db_iter_next()routine
retrieves successive keys, for which the data can be retrieved withdce_db_fetch(),
and the dce_db_iter_done() routine finishes the process. The iteration can also
use thedce_db_iter_next_by_name()anddce_db_iter_next_by_uuid()routines; the
fetching can use thedce_db_fetch_by_name()anddce_db_fetch_by_uuid()routines.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch(3dce), dce_db_fetch_by_name(3dce),
dce_db_fetch_by_uuid(3dce), dce_db_iter_done(3dce),
dce_db_iter_next_by_name(3dce), dce_db_iter_next_by_uuid(3dce),
dce_db_iter_start(3dce).

122

DCE Routines

dce_db_iter_next_by_name(3dce)

dce_db_iter_next_by_name

Purpose During iteration, returns the next key from a backing store indexed by string

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_iter_next_by_name(
dce_db_handle_thandle,
char ** key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

key The string that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_iter_next_by_name()routine retrieves the next key from the backing
store that is identified by thehandle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by_name()routine to retrieve the actual data.

123

DCE 1.2.2 Application Development Reference

dce_db_iter_next_by_name(3dce)

This iteration routine is the same asdce_db_iter_next(), except that it only works
with backing stores indexed by name, and returns an error if the backing store index
is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_no_more
All the keys in the backing store have been accessed; there are no more
iterations remaining to be done.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_fetch_by_uuid(3dce), dce_db_iter_done(3dce),
dce_db_iter_next(3dce), dce_db_iter_next_by_uuid(3dce),
dce_db_iter_start(3dce).

124

DCE Routines

dce_db_iter_next_by_uuid(3dce)

dce_db_iter_next_by_uuid

Purpose During iteration, returns the next key from a backing store indexed by UUID

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_iter_next_by_uuid(
dce_db_handle_thandle,
uuid_t ** key,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

key The UUID that is the key to the item in the backing store.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_iter_next_by_uuid() routine retrieves the next key from the backing
store that is identified by thehandle parameter. An iterator established by the
dce_db_iter_start() routine maintains the identity of the current key. Use the
dce_db_fetch_by_uuid()routine to retrieve the actual data.

125

DCE 1.2.2 Application Development Reference

dce_db_iter_next_by_uuid(3dce)

This iteration routine is the same asdce_db_iter_next(), except that it only works
with backing stores indexed by UUID, and returns an error if the backing store index
is the wrong type.

The iteration routine returns a pointer to a private space associated with the handle.
Each call to the iteration routine reuses the space, instead of using allocated space.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_iter_done(3dce), dce_db_iter_next(3dce),
dce_db_iter_next_by_name(3dce), dce_db_iter_start(3dce).

126

DCE Routines

dce_db_iter_start(3dce)

dce_db_iter_start

Purpose Prepares a backing store for iteration

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_iter_start(
dce_db_handle_thandle,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok.

Description

The dce_db_iter_start() routine prepares the backing store that is identified by the
handleparameter for iterative retrieval of all its keys in succession.

A given handle can support only a single instance of iteration at one time.

To avoid the possibility that another thread will write to the backing store during an
iteration, always use thedce_db_lock()routine before callingdce_db_iter_start().

127

DCE 1.2.2 Application Development Reference

dce_db_iter_start(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_iter_not_allowed
The function was called while an iteration was already in progress. The
concept of nested iterations is not supported.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_iter_done(3dce), dce_db_iter_next(3dce),
dce_db_iter_next_by_name(3dce), dce_db_iter_next_by_uuid(3dce),
dce_db_lock(3dce), dce_db_open(3dce), dce_db_unlock(3dce).

128

DCE Routines

dce_db_lock(3dce)

dce_db_lock

Purpose Applies an advisory lock on a backing store

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_lock(
dce_db_handle_thandle,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_lock()routine acquires the lock associated with the handle.

There is an advisory lock associated with each handle. The routines for storing and
deleting backing stores apply the lock before updating a backing store. This routine
provides a means to apply the lock for other purposes, such as iteration.

Advisory locks allow cooperating threads to perform consistent operations on backing
stores, but do not guarantee consistency; that is, threads may still access backing stores
without using advisory locks, possibly resulting in inconsistencies.

129

DCE 1.2.2 Application Development Reference

dce_db_lock(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_already_locked
An attempt was made to lock a backing store, but it was already locked.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_delete(3dce), dce_db_delete_by_name(3dce),
dce_db_delete_by_uuid(3dce), dce_db_store(3dce),
dce_db_store_by_name(3dce), dce_db_store_by_uuid(3dce),
dce_db_unlock(3dce).

130

DCE Routines

dce_db_open(3dce)

dce_db_open

Purpose Opens an existing backing store or creates a new one

Synopsis
#include <dce/dce.h> #include
<dce/dbif.h>

voiddce_db_open(
const char * name,
const char * backend_type,
unsigned32flags,
dce_db_convert_func_tconvert,
dce_db_handle_t *handle,
error_status_t * status);

Parameters
Input

name The filename of the backing store to be opened or created.

backend_type
Either of the strings,bsd4.4-hashor bsd4.4-btree, or a null pointer,
which defaults to hash. This parameter specifies the backing store
backend type for licensees adding multiple backends.

flags The manner of opening, as specified by any of the following bits:

db_c_index_by_name
The backing store is to be indexed by name. Either this
or db_c_index_by_uuid, but not both, must be selected.

db_c_index_by_uuid
The backing store is to be indexed by UUID. Either this
or db_c_index_by_name, but not both, must be selected.

131

DCE 1.2.2 Application Development Reference

dce_db_open(3dce)

db_c_std_header
The first field of each item (which is defined as a
union in dce_db_header_t) is the standard backing store
header, with the casedce_db_header_stdselected. The
selection for header cannot have bothdb_c_std_header
and db_c_acl_uuid_header. If neither header flag is
specified, no header is used.

db_c_acl_uuid_header
The first field of each item (the union) is an ACL UUID,
with the casedce_db_header_acl_uuidselected. The
selection for header cannot have bothdb_c_std_header
and db_c_acl_uuid_header. If neither header flag is
specified, no header is used.

db_c_readonly
An existing backing store is to be opened in read-only
mode. Read/write is the default.

db_c_create
Creates an empty backing store if one of the given name
does not already exist. It is an error to try to create an
existing backing store.

convert The function, generated by the IDL compiler, that is called to perform
serialization.

Output

handle A pointer to a handle that identifies the backing store being used.

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_open()routine opens the specified backing store. Theflags parameter
must specify whether the backing store is to be indexed by name or by UUID. If all
of a server’s objects have entries in the CDS namespace, then it is probably best to
use a UUID index. If the server provides a junction or another name-based lookup
operation, then it is probably best to use a name index.

132

DCE Routines

dce_db_open(3dce)

The IDL code in /usr/include/dce/database.idldefines the backing store header
(selected by theflags parameter) that is placed on each item, the possible header
types, and the form of the function for serializing headers.

Notes

Backing stores are also called databases. For instance, the associated IDL header is
dce/database.idl, and the name of the backing store routines begin withdce_db_.
Nevertheless, backing stores are not databases in the conventional sense, and have no
support for SQL or for any other query system.

Examples

Standardized use of the backing store library is encouraged. The following is the
skeleton IDL interface for a server’s backing store:

interface XXX_db

{

import "dce/database.idl";

typedef XXX_data_s_t {

dce_db_header_t header;

/* server-specific data */

} XXX_data_t;

void XXX_data_convert(

[in] handle_t h,

[in, out] XXX_data_t *data,

[out] error_status_t *st

);

}

This interface should be compiled with the following ACF:

interface XXX_db

{

[encode, decode] XXX_data_convert();

133

DCE 1.2.2 Application Development Reference

dce_db_open(3dce)

}

A typical call to dce_db_open(), using the preceding IDL example, follows:

dce_db_open("XXX_db", NULL,

db_c_std_header | db_c_index_by_uuid,

(dce_db_convert_func_t)XXX_data_convert,

&handle, &st);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_bad_index_type
The index type inflags is specified neither by name nor by UUID, or
else it is specified as both.

db_s_bad_header_type
The header type inflags is specified as both standard header and ACL
header.

db_s_index_type_mismatch
An existing backing store was opened with the wrong index type.

db_s_open_already_exists
The backing store file specified for creation already exists.

db_s_no_name_specified
No filename is specified.

db_s_open_failed_eacces
The server does not have permission to open the backing store file.

db_s_open_failed_enoent
The specified directory or backing store file was not found.

db_s_open_failed
The underlying database-open procedure failed. The global variable
errno may provide more specific information.

134

DCE Routines

dce_db_open(3dce)

error_status_ok
The call was successful.

Related Information

Functions:dce_db_close(3dce).

135

DCE 1.2.2 Application Development Reference

dce_db_std_header_init(3dce)

dce_db_std_header_init

Purpose Initializes a standard backing store header

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_std_header_init(
dce_db_handle_thandle,
dce_db_header_t *hdr,
uuid_t * uuid,
uuid_t * acl_uuid,
uuid_t * def_object_acl,
uuid_t * def_container_acl,
unsigned32ref_count,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

hdr Pointer to the object header part of the users’ structure.

uuid The UUID to be placed into the header. Can be NULL.

acl_uuid The UUID of the ACL protecting this object, to be placed into the
header. Can be NULL.

def_object_acl
The UUID of the default object ACL, to be placed into the header. Can
be NULL.

136

DCE Routines

dce_db_std_header_init(3dce)

def_container_acl
The UUID of the default container ACL, to be placed into the header.
Can be NULL.

ref_count The reference count to be placed into the header.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_std_header_init()routine initializes the fields of the standard header for
a data object whose backing store is identified by the handle parameter. The fields
are only set in memory and should be stored to the backing store by one of the store
routines. The handle was obtained fromdce_db_open(), which must have been called
with the db_c_std_headerflag.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_bad_header_type
The header type is notdce_db_header_std.

error_status_ok
The call was successful.

Related Information

Functions:dce_db_header_fetch(3dce).

137

DCE 1.2.2 Application Development Reference

dce_db_store(3dce)

dce_db_store

Purpose Stores data into a backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_store(
dce_db_handle_thandle,
void * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A string or UUID that is the backing store key. The datatype ofkey
must match the key method that was selected in theflags parameter to
dce_db_open()when the backing store was created.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

138

DCE Routines

dce_db_store(3dce)

Description

The dce_db_store() routine stores the data structure pointed to bydata into the
backing store. The conversion function that was specified in the call todce_db_open()
serializes the structure so that it can be written to disk.

If the keyvalue is the same as a key already stored, the newdatareplaces the previously
stored data associated with that key.

Notes

Because thedce_db_store()routine uses the encoding services, and they in turn use
rpc_sm_allocate(), all programs that calldce_db_store()outside of a server operation
(for instance, if a server does some backing store initialization, or in a standalone
program) must callrpc_sm_enable_allocate()first. Indeed, every thread that calls
dce_db_store()must dorpc_sm_enable_allocate(), but in the server side of an RPC,
this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_bad_index_type
The key’s type is wrong, or else the backing store is not by name or by
UUID.

db_s_readonly
The backing store was opened with thedb_c_readonlyflag, and cannot
be written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variableerrno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Storing is not allowed
during iteration.

error_status_ok
The call was successful.

139

DCE 1.2.2 Application Development Reference

dce_db_store(3dce)

Related Information

Functions:dce_db_fetch(3dce), dce_db_open(3dce),
dce_db_store_by_name(3dce), dce_db_store_by_uuid(3dce).

140

DCE Routines

dce_db_store_by_name(3dce)

dce_db_store_by_name

Purpose Stores data into a string-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_store_by_name(
dce_db_handle_thandle,
char * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A null-terminated string that is the backing store key.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_store_by_name()routine stores the data structure pointed to bydata
into the backing store. The conversion function that was specified in the call to
dce_db_open()serializes the structure so that it can be written to disk.

141

DCE 1.2.2 Application Development Reference

dce_db_store_by_name(3dce)

This routine is specialized for storage into backing stores that are indexed by string,
as selected by thedb_c_index_by_namebit in the flagsparameter todce_db_open()
when the backing store was created.

If the keyvalue is the same as a key already stored, the newdatareplaces the previously
stored data associated with that key.

Notes

Because thedce_db_store_by_name()routine uses the encoding services, and they in
turn userpc_sm_allocate(), all programs that calldce_db_store_by_name()outside
of a server operation (for instance, if a server does some backing store initialization,
or in a standalone program) must callrpc_sm_enable_allocate()first. Indeed, every
thread that callsdce_db_store_by_name()must dorpc_sm_enable_allocate(), but
in the server side of an RPC, this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_bad_index_type
The backing store is not indexed by name.

db_s_readonly
The backing store was opened with thedb_c_readonlyflag, and cannot
be written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variableerrno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Storing is not allowed
during iteration.

error_status_ok
The call was successful.

142

DCE Routines

dce_db_store_by_name(3dce)

Related Information

Functions:dce_db_open(3dce), dce_db_store(3dce), dce_db_store_by_uuid(3dce).

143

DCE 1.2.2 Application Development Reference

dce_db_store_by_uuid(3dce)

dce_db_store_by_uuid

Purpose Stores data into a UUID-indexed backing store

Synopsis
#include <dce/dce.h>
#include <dce/dbif.h>

voiddce_db_store_by_uuid(
dce_db_handle_thandle,
uuid_t * key,
void * data,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

key A UUID that is the backing store key.

data A pointer to the data structure to be stored.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_store_by_uuid()routine stores the data structure pointed to bydata
into the backing store. The conversion function that was specified in the call to
dce_db_open()serializes the structure so that it can be written to disk.

144

DCE Routines

dce_db_store_by_uuid(3dce)

This routine is specialized for storage into backing stores that are indexed by UUID,
as selected by thedb_c_index_by_uuidbit in the flagsparameter todce_db_open()
when the backing store was created.

If the keyvalue is the same as a key already stored, the newdatareplaces the previously
stored data associated with that key.

Notes

Because thedce_db_store_by_uuid()routine uses the encoding services, and they in
turn userpc_sm_allocate(), all programs that calldce_db_store_by_uuid()outside
of a server operation (for instance, if a server does some backing store initialization,
or in a standalone program) must callrpc_sm_enable_allocate()first. Indeed, every
thread that callsdce_db_store_by_uuid()must dorpc_sm_enable_allocate(), but in
the server side of an RPC, this is already done.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_bad_index_type
The backing store is not indexed by UUID.

db_s_readonly
The backing store was opened with thedb_c_readonlyflag, and cannot
be written to.

db_s_store_failed
The data could not be stored into the backing store for some reason. The
global variableerrno may contain more information about the error.

db_s_iter_not_allowed
The function was called while an iteration, begun by
dce_db_iter_start(), was in progress. Storing is not allowed
during iteration.

error_status_ok
The call was successful.

145

DCE 1.2.2 Application Development Reference

dce_db_store_by_uuid(3dce)

Related Information

Functions:dce_db_open(3dce), dce_db_store(3dce),
dce_db_store_by_name(3dce).

146

DCE Routines

dce_db_unlock(3dce)

dce_db_unlock

Purpose Releases the backing store lock

Synopsis
#include

<dce/dce.h> #include <dce/dbif.h>

voiddce_db_unlock(
dce_db_handle_thandle,
error_status_t * status);

Parameters
Input

handle A handle, returned fromdce_db_open(), that identifies the backing store
being used.

Output

status A pointer to the completion status. On successful completion, the routine
returnserror_status_ok. Otherwise, it returns an error.

Description

The dce_db_unlock()routine releases the lock associated with the handle.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

db_s_not_locked
An attempt was made to unlock a backing store, but it was not locked.

147

DCE 1.2.2 Application Development Reference

dce_db_unlock(3dce)

error_status_ok
The call was successful.

Related Information

Functions:dce_db_lock(3dce).

148

DCE Routines

dce_error_inq_text(3dce)

dce_error_inq_text

Purpose Retrieves message text associated with a DCE error code

Synopsis
#include <dce/dce_error.h>

void dce_error_inq_text(
error_status_t status_to_convert,
dce_error_string_t error_text,
int * status);

Parameters
Input

status_to_convert
DCE status code for which text message is to be retrieved.

Output

error_text The message text associated with thestatus_to_convert.

status Returns the status code from this operation. The status code is set to 0
on success, and to -1 on failure.

Description

The dce_error_inq_text() routine retrieves from the installed DCE component
message catalogs the message text associated with an error status code returned by a
DCE library routine.

All DCE message texts are assigned a unique 32-bit message ID. The special value
of all-bits-zero is reserved to indicate success.

The dce_error_inq_text() routine uses the message ID as a series of indices into
the correct DCE component’s message catalog; the text found by this indexing is the

149

DCE 1.2.2 Application Development Reference

dce_error_inq_text(3dce)

message that explains the status code that was returned by the DCE or DCE application
routine.

All messages for a given component are stored in a single message catalog generated
by the sams utility when the component is built. (The messages may also be
compiled into the component code, rendering the successful retrieval of message text
independent of whether or not the message catalogs were correctly installed.)

If the user sets theirLANG variable and has the correct message catalog files
installed, the user can receive translated messages. That is, the text string returned
by dce_error_inq_text() is dependant on the current locale.

Examples

The following code fragment shows howdce_error_inq_text() can be used to retrieve
the message text describing the status code returned by a DCE RPC library routine:

dce_error_string_t error_string;

error_status_t status;

int print_status;

rpc_server_register_if(application_v1_0_s_ifspec, &type_uuid,

(rpc_mgr_epv_t)&manager_epv, &status);

if (status != rpc_s_ok) {

dce_error_inq_text(status, error_string, &print_status);

fprintf(stderr," Server: %s: %s\n", caller, error_string);

}

150

DCE Routines

dce_msg_cat_close(3dce)

dce_msg_cat_close

Purpose DCE message catalog close routine

Synopsis
#include
<dce/dce_msg.h>

voiddce_msg_cat_close(
dce_msg_cat_handle_thandle,
error_status_t * status);

Parameters
Input

handle The handle returned bydce_msg_cat_open()to the catalog that is to
be closed.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_cat_close()routine closes the message catalog which was opened with
dce_msg_cat_open(). On error, it fills instatuswith an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

151

DCE 1.2.2 Application Development Reference

dce_msg_cat_close(3dce)

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_cat_get_msg(3dce), dce_msg_cat_open(3dce),
dce_msg_get(3dce), dce_msg_get_cat_msg(3dce), dce_msg_get_msg(3dce).

152

DCE Routines

dce_msg_cat_get_msg(3dce)

dce_msg_cat_get_msg

Purpose DCE message text retrieval routine

Synopsis
#include
<dce/dce_msg.h>

unsigned char * dce_msg_cat_get_msg(
dce_msg_cat_handle_thandle,
unsigned32message,
error_status_t * status);

Parameters
Input

message The ID of the message to be retrieved.

handle A handle returned bydce_msg_cat_open()to an opened message
catalog.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Once the catalog has been opened with thedce_msg_cat_open()routine, the
dce_msg_cat_get_msg()routine can be used to retrieve the text for a specifiedmessage
(which is a 32-bit DCE message ID as described indce_error_inq_text(3dce)). The
space allocated for the message should not be freed. The output pointer is useable until
a call to thedce_msg_cat_get_msg()or dce_msg_cat_close()routine. If the specified

153

DCE 1.2.2 Application Development Reference

dce_msg_cat_get_msg(3dce)

message cannot be found in the catalog, the routine returns a NULL and fills instatus
with the appropriate error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_cat_close(3dce), dce_msg_cat_open(3dce),
dce_msg_get(3dce), dce_msg_get_cat_msg(3dce), dce_msg_get_msg(3dce).

154

DCE Routines

dce_msg_cat_open(3dce)

dce_msg_cat_open

Purpose DCE message catalog open routine

Synopsis
#include
<dce/dce_msg.h>

dce_msg_cat_handle_tdce_msg_cat_open(
unsigned32message_ID,
error_status_t * status);

Parameters
Input

message_IDThe ID of the message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_cat_open()routine opens the message catalog that contains the
specified message_ID. It returns a handle that can be used in subsequent calls
to dce_msg_cat_get_msg(). On error, it returns NULL and fills instatus with an
appropriate error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

155

DCE 1.2.2 Application Development Reference

dce_msg_cat_open(3dce)

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_cat_close(3dce), dce_msg_cat_get_msg(3dce),
dce_msg_get(3dce), dce_msg_get_cat_msg(3dce), dce_msg_get_msg(3dce).

156

DCE Routines

dce_msg_define_msg_table(3dce)

dce_msg_define_msg_table

Purpose Adds a message table to in-memory table

Synopsis
#include <dce/dce_msg.h>

void dce_msg_define_msg_table(
dce_msg_table_t *table,
unsigned32count,
error_status_t * status);

Parameters
Input

table A message table structure (defined in a header file generated bysams
during compilation (see theEXAMPLES section).

count The number of elements contained in the table.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

All messages for a given component are stored in a single message catalog generated
by thesamsutility when the component (application) is built.

However, the messages may also be compiled directly into the component code, thus
rendering the successful retrieval of message text independent of whether or not the
message catalogs were correctly installed. Generation of in-memory message tables is
specified by theincatalog flag in thesamsfile in which the message text is defined

157

DCE 1.2.2 Application Development Reference

dce_msg_define_msg_table(3dce)

(see sams(1dce)for more information onsams files). If the messages have been
generated at compile time with this option specified, thedce_msg_define_msg_table()
routine can be called by the application to register an in-memory table containing the
messages.

The table parameter to the call should identify a message table structure defined in a
header file generated bysamsduring compilation (see theEXAMPLES section). The
countparameter specifies the number of elements contained in the table. If an error is
detected during the call, the routine will return an appropriate error code in thestatus
parameter.

Examples

The following code fragment shows how an application (whose serviceability
component name isapp) would set up an in-memory message table:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>

#include "dce appmsg.h" /* defines app_msg_table */

error_status_t status;

The following call adds the message table to the in-memory table. Note that you must
include <dce/dce_msg.h>. You also have to link indceappmsg.o and dceappsvc.o
(object files produced by compilingsams-generated.c files), which contain the code
for the messages and the table, respectively.

dce_msg_define_msg_table(app_msg_table,

sizeof(app_msg_table) / sizeof(app_msg_table[0]),

&status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

158

DCE Routines

dce_msg_define_msg_table(3dce)

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_get(3dce), dce_msg_get_default_msg(3dce),
dce_msg_get_msg(3dce).

159

DCE 1.2.2 Application Development Reference

dce_msg_get(3dce)

dce_msg_get

Purpose Retrieves text of specified DCE message

Synopsis
#include
<dce/dce_msg.h>

unsigned char * dce_msg_get(
unsigned32message);

Parameters
Input

message ID of message to be retrieved.

Description

The dce_msg_get()routine is a convenience form of thedce_msg_get_msg()routine.
Like dce_msg_get_msg(), dce_msg_get()retrieves the text for a specifiedmessage
(which is a 32-bit DCE message ID as described indce_msg_intro(3dce)). However,
dce_msg_get()does not return a status code; it either returns the specified message
successfully or fails (aborts the program) with an assertion error if the message could
not be found or memory could not be allocated.

The routine implicitly determines the correct message catalog in which to access the
specified message, and opens it; the caller only has to call this routine.

The routine first searches the appropriate message catalog for the message, and then
(if it cannot find the catalog) searches the in-memory message table, if it exists.

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller usingfree().

160

DCE Routines

dce_msg_get(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

msg_s_bad_id
A message ID with an invalid technology or component was specified.

msg_s_no_cat_open
Could not open the message catalog for the specified message ID.

msg_s_no_cat_perm
Local file permissions prevented the program from opening the message
catalog for the specified message ID.

msg_s_no_catalog
The message catalog for the specified message ID does not exist.

msg_s_no_default
Could not find the default message for the specified status code in the
internal tables.

msg_s_no_memory
Could not allocate memory for message table, string copy, or other
internal requirement.

msg_s_not_found
Could not find the text for the specified status code in either the in-core
message tables or the message catalogs.

msg_s_ok_text
The operation was performed successfully.

Related Information

Functions:dce_msg_define_msg_table(3dce), dce_msg_get_default_msg(3dce),
dce_msg_get_msg(3dce).

161

DCE 1.2.2 Application Development Reference

dce_msg_get_cat_msg(3dce)

dce_msg_get_cat_msg

Purpose Opens message catalog and retrieves message

Synopsis
#include
<dce/dce_msg.h>

unsigned char * dce_msg_get_cat_msg(
unsigned32message,
error_status_t * status);

Parameters
Input

message ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_get_cat_msg() routine is a convenience form of the
dce_msg_cat_get_msg()routine. The difference between it and the latter
routine is thatdce_msg_get_cat_msg()does not require the message catalog to be
explicitly opened; it determines the correct catalog from themessageparameter
(which is a 32-bit DCE message ID as described indce_error_inq_text(3dce)),
opens it, and returns a pointer to the message. If the message catalog is inaccessible,
the routine returns an error. (See the routinedce_msg_get()for a description of
the return value.) The space allocated for the message should not be freed. The

162

DCE Routines

dce_msg_get_cat_msg(3dce)

output pointer is useable until a call to anotherdce_msg...routine or a call to the
dce_error_inq_text() routine.

The routine will fail if the message catalog is not correctly installed.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_cat_close(3dce), dce_msg_cat_get_msg(3dce),
dce_msg_cat_open(3dce), dce_msg_get(3dce), dce_msg_get_msg(3dce).

163

DCE 1.2.2 Application Development Reference

dce_msg_get_default_msg(3dce)

dce_msg_get_default_msg

Purpose Retrieves DCE message from in-memory tables

Synopsis
#include <dce/dce_msg.h>

unsigned char * dce_msg_get_default_msg(
unsigned32message,
error_status_t * status);

Parameters
Input

message ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_get_default_msg()routine retrieves a message from the application’s
in-memory tables. It returns a pointer to static space that should not be freed.
If the specified message(which is a 32-bit DCE message ID as described in
dce_error_inq_text(3dce)) cannot be found in the in-memory tables, the routine
returns NULL and fills instatuswith the appropriate error code.

This routine should be used only for message strings that will never have to be
translated (seedce_msg_translate_table(3dce)).

All messages for a given component are stored in a single message catalog generated
by the sams utility when the component is built. Messages may also be compiled

164

DCE Routines

dce_msg_get_default_msg(3dce)

directly into the component code, thus rendering the successful retrieval of message
text independent of whether or not the message catalogs were correctly installed.
Generation of in-memory message tables is specified by theincatalog flag in the
samsfile in which the message text is defined. (Seesams(1dce)for more information
on samsfiles.) If the messages have been generated at compile time with this option
specified, thedce_msg_define_msg_table()routine can be called by the application
to set up an in-memory table containing the messages.

Examples

The following code fragment shows howdce_msg_get_default_msg()might be called
to retrieve the in-memory copy of a message defined by a DCE application (whose
serviceability component name isapp):

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>

#include "dce appmsg.h" /* test_msg is defined in this file */

unsigned char *my_msg;

error_status_t status;

<. . .>

my_msg = dce_msg_get_default_msg(test_msg, &status);

printf("Message is: %s\n", my_msg);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_define_msg_table(3dce), dce_msg_get(3dce),
dce_msg_get_msg(3dce).

165

DCE 1.2.2 Application Development Reference

dce_msg_get_msg(3dce)

dce_msg_get_msg

Purpose Retrieves a DCE message from its ID

Synopsis
#include
<dce/dce_msg.h>

unsigned char * dce_msg_get_msg(
unsigned32message,
error_status_t * status);

Parameters
Input

message ID of message to be retrieved.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_get_msg()routine retrieves the text for a specifiedmessage(which is
a 32-bit DCE message ID as described indce_error_inq_text(3dce)). The routine
implicitly determines the correct message catalog in which to access the message, and
opens it; the caller only has to call the routine.

The routine first searches the appropriate message catalog for the message, and then
(if it cannot find the catalog) searches the in-memory message table. If the message
cannot be found in either of these places, the routine returns a default string and fills
in statuswith an error code. This routine thus always returns a string, even if there is
an error (except formsg_sno_memory).

166

DCE Routines

dce_msg_get_msg(3dce)

The message, if found, is returned in allocated space to which the routine returns a
pointer. The pointed-to space must be freed by the caller usingfree(). If memory cannot
be allocated, the routine returns NULL and fills instatuswith themsg_s_no_memory
error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_get_msg(3dce).

Related Information

Functions:dce_msg_define_msg_table(3dce), dce_msg_get(3dce),
dce_msg_get_default_msg(3dce).

167

DCE 1.2.2 Application Development Reference

dce_msg_translate_table(3dce)

dce_msg_translate_table

Purpose Translates all in-memory messages in a table

Synopsis
#include <dce/dce_msg.h>

void dce_msg_translate_table(
dce_msg_table_t *table,
unsigned32count,
error_status_t * status);

Parameters
Input

table A message table structure (defined in a header file generated bysams
during compilation (see theEXAMPLES section), the contents of which
are to be translated.

count The number of elements contained in the table.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_msg_translate_table()routine overwrites the specified in-memory message
table (that is, updates the in-memory table with the contents of a message table, which
has changed for some reason; for example, because of a change in locale).

If any in-memory message is not found in the message catalog, all in-memory
messages are left unchanged.

168

DCE Routines

dce_msg_translate_table(3dce)

Examples

The following code fragment shows howdce_msg_translate_table()might be
called (in an application whose serviceability component name isapp) to translate
a DCE application’s in-memory message table, set up by an earlier call to
dce_msg_define_msg_table():

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>

#include "dce appmsg.h"

char *loc_return;

error_status_t status;

<. . .>

dce_msg_translate_table(app_msg_table,

sizeof(app_msg_table) / sizeof(app_msg_table[0]),

&status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Related Information

Functions:dce_msg_define_msg_table(3dce).

169

DCE 1.2.2 Application Development Reference

dce_pgm_printf(3dce)

dce_pgm_printf, dce_pgm_fprintf, dce_pgm_sprintf

Purpose Formatted DCE message output routines

Synopsis
#include <dce/dce.h>

int dce_pgm_printf(
unsigned32messageid,
. . .);

int dce_pgm_fprintf(
FILE * stream,
unsigned32messageid,
. . .);

unsigned char *dce_pgm_sprintf(
unsigned32messageid,
. . .);

Parameters
Input

messageid The message ID, defined in the message’scodefield in thesamsfile.

stream An open file pointer.

. . . Any format arguments for the message string.

Description

The dce_pgm_printf() routine is equivalent todce_printf(), except that it prefixes
the program name to the message (in the standard style of DCE error messages), and
appends a newline to the end of the message. The routinedce_printf() does neither.
This allows clients (which do not usually use the serviceability interface) to produce

170

DCE Routines

dce_pgm_printf(3dce)

error (or other) messages which automatically include the originating application’s
name. Note that the application should calldce_svc_set_progname()first to set the
desired application name. Otherwise, the default program name will bePID#nnnn,
wherennnn is the process ID of the application making the call.

The dce_pgm_sprintf() routine is similarly equivalent todce_sprintf(), and the
dce_pgm_fprintf() routine is similarly equivalent todce_fprintf() .

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Related Information

Functions:dce_fprintf(3dce), dce_msg_get_msg(3dce), dce_printf(3dce),
dce_sprintf(3dce), dce_svc_set_progname(3dce).

171

DCE 1.2.2 Application Development Reference

dce_printf(3dce)

dce_printf, dce_fprintf , dce_sprintf

Purpose Formatted DCE message output routines

Synopsis
#include <dce/dce.h>

int dce_printf(
unsigned32messageid,
. . .);

int dce_fprintf(
FILE * stream,
unsigned32messageid,
. . .);

unsigned char *dce_sprintf(
unsigned32messageid,
. . .);

Parameters
Input

messageid The message ID, defined in the message’scodefield in thesamsfile.

stream An open file pointer.

. . . Any format arguments for the message string.

Description

The dce_printf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments on the standard output. The
routine determines the correct message catalog and, if necessary, opens it. If the
message catalog is inaccessible, and the message exists in an in-memory table, then

172

DCE Routines

dce_printf(3dce)

this message is printed. If neither the catalog nor the default message is available, a
default message is printed.

The dce_fprintf() routine functions much likedce_printf(), except that it prints the
message and its arguments on the specified stream.

The dce_sprintf() routine retrieves the message text associated with the specified
messageid, and prints the message and its arguments into an allocated string that is
returned. The routine determines the correct message catalog and, if necessary, opens
it. If the message catalog is inaccessible, and the message exists in an in-memory
table, then this message is printed. If neither the catalog nor the default message is
available, a default message is printed. Thedce_pgm_printf() routine is equivalent to
dce_printf(), except that it prefixes the program name to the message (in the standard
style of DCE error messages), and appends a newline to the end of the message. For
more information, see thedce_pgm_printf(3dce)reference page.

Examples

Assume that the following message is defined in an application’ssamsfile:

start

code arg_msg

text "This message has exactly %d, not %d argument(s)"

action "None required"

explanation "Test message with format arguments"

end

The following code fragment shows howdce_sprintf() might be called to write the
message (with some argument values) into a string:

unsigned char *my_msg;

my_msg = dce_sprintf(arg_msg, 2, 8);

puts(my_msg);

free(my_msg);

Of course,dce_printf() could also be called to print the message and arguments:

173

DCE 1.2.2 Application Development Reference

dce_printf(3dce)

dce_printf(arg_msg, 2, 8);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_msg_get(3dce).

Notes

The final formatted string generated bydce_sprintf() must not exceed 1024 bytes.

Related Information

Functions:dce_msg_get_msg(3dce), dce_svc_set_progname(3dce).

174

DCE Routines

dce_server_disable_service(3dce)

dce_server_disable_service

Purpose Disables an individual service of a server

Synopsis
#include
<dce/dced.h>

voiddce_server_disable_service(
dce_server_handle_tserver_handle,
rpc_if_handle_t interface,
error_status_t * status);

Parameters
Input

server_handle
An opaque handle returned bydce_server_register().

interface Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok.

Description

The dce_server_disable_service()routine disables an individual service that a server
provides by unregistering the service’s interface from the RPC runtime and marking
the server’s endpoints as disabled in the localdced’s endpoint mapper service.

175

DCE 1.2.2 Application Development Reference

dce_server_disable_service(3dce)

For dced to recognize all of a server’s services, a server should register all
its application services using thedce_server_register() routine. If it later
becomes necessary for the server to disable an interface, it can use the
dce_server_disable_service()routine rather than unregistering the entire server.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:dce_server_enable_service(3dce), dce_server_register(3dce),
rpc_intro(3rpc) .

Books:DCE 1.2.2 Application Development Guide.

176

DCE Routines

dce_server_enable_service(3dce)

dce_server_enable_service

Purpose Enables an individual service for a server

Synopsis
#include
<dce/dced.h>

voiddce_server_enable_service(
dce_server_handle_tserver_handle,
rpc_if_handle_t interface,
error_status_t * status);

Parameters
Input

server_handle
An opaque handle returned bydce_server_register().

interface Specifies an opaque variable containing information the runtime uses to
access interface specification data.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok.

Description

The dce_server_enable_service()routine enables an individual service that a server
provides by registering the service’s interface with the RPC runtime, and registering
the endpoints in the endpoint map. If thedce_server_c_no_endpointsflag was set
with the dce_server_register()call prior to callibng this routine, the endpoints are
not registered in the endpoint map.

177

DCE 1.2.2 Application Development Reference

dce_server_enable_service(3dce)

A server commonly registers all its services with DCE at once by using
the dce_server_register() routine. If necessary, a server can use the
dce_server_disable_service()routine to disable individual services and then
reenable them by usingdce_server_enable_service(). However, suppose a server
needs its services registered in a certain order, or it require application-specific
activities between the registration of services. If a server requires this kind of control
as services are registered, you can set theserver->services.list[i].flagsfield of the
server_t structure toservice_c_disabledfor individual services prior to calling
dce_server_register(). Then, the server can calldce_server_enable_service()for
each service when needed.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:dce_server_disable_service(3dce), dce_server_register(3dce).

Books:DCE 1.2.2 Application Development Guide.

178

DCE Routines

dce_server_inq_attr(3dce)

dce_server_inq_attr

Purpose Obtains fromdced the value of an attribute known to the server

Synopsis
#include
<dce/dced.h>

voiddce_server_inq_attr(
uuid_t attribute_uuid,
sec_attr_t * value,
error_status_t * status);

Parameters
Input

attribute_uuid
The UUID dced uses to identify an attribute.

Output

value Returns the attribute.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_inq_attr()routine obtains an attribute from the environment created
by dced when it started the server. Each server maintains among other things, a list
of attributes that are used to describe application-specific behavior.

179

DCE 1.2.2 Application Development Reference

dce_server_inq_attr(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_server_attr_not_found

dced_s_not_started_by_dced

Related Information

Functions:dce_server_inq_server(3dce), dce_server_inq_uuids(3dce),
dced_intro(3dce), sec_intro(3sec).

Books:DCE 1.2.2 Application Development Guide.

180

DCE Routines

dce_server_inq_server(3dce)

dce_server_inq_server

Purpose Obtains the server configuration datadced used to start the server

Synopsis
#include
<dce/dced.h>

voiddce_server_inq_server(
server_t ** server,
error_status_t * status);

Parameters
Output

server Returns the structure that describes the server’s configuration.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_inq_server()routine obtains the server configuration data (srvrconf)
maintained bydced and used bydced to start the server. This routine is commonly
called prior to registering the server to obtain the server data used as input to
dce_server_register().

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

181

DCE 1.2.2 Application Development Reference

dce_server_inq_server(3dce)

error_status_ok

dced_s_not_started_by_dced

dced_s_data_unavailable

Related Information

Functions:dce_server_register(3dce), dced_intro(3dce).

Books:DCE 1.2.2 Application Development Guide.

182

DCE Routines

dce_server_inq_uuids(3dce)

dce_server_inq_uuids

Purpose Obtains the UUIDs thatdced associates with the server’s configuration and execution
data

Synopsis
#include
<dce/dced.h>

voiddce_server_inq_uuids(
uuid_t * conf_uuid,
uuid_t * exec_uuid,
error_status_t * status);

Parameters
Output

conf_uuid Returns the UUID thatdced uses to identify the server’s configuration
data. If a NULL value is input, no value is returned.

exec_uuid Returns the UUID thatdced uses to identify the executing server. If a
NULL value is input, no value is returned.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedce_server_inq_uuids()routine obtains the UUIDs thatdceduses in itssrvrconf
and srvrexec services to identify the server’s configuration and execution data. The
server can then usedced API routines to access the data and perform other server
management functions.

183

DCE 1.2.2 Application Development Reference

dce_server_inq_uuids(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_not_started_by_dced

Related Information

Functions:dce_server_inq_server(3dce), dced_intro(3dce), dced_* (3dce).

Books:DCE 1.2.2 Application Development Guide.

184

DCE Routines

dce_server_register(3dce)

dce_server_register

Purpose Registers a server with DCE

Synopsis
#include
<dce/dced.h>

voiddce_server_register(
unsigned32flags,
server_t * server,
dce_server_register_data_t *data,
dce_server_handle_t *server_handle,
error_status_t * status);

Parameters
Input

flags Specifies options for server registration. Combinations of the following
values may be used:

dce_server_c_no_protseqs

dce_server_c_no_endpoints

dce_server_c_ns_export

server Specifies the server data, commonly obtained fromdced by calling
dce_server_inq_server(). The server_t structure is described in
sec_intro(3sec).

data Specifies the array of data structures that contain the additional
information required for the server to service requests for specific remote
procedures. Each structure of the array includes the following:

• An interface handle (ifhandle) of type rpc_if_handle_t

• An entry point vector (epv) of type rpc_mgr_epv_t

185

DCE 1.2.2 Application Development Reference

dce_server_register(3dce)

• A number (num_types) of typeunsigned32representing the number
in the following array

• An array of server types (types) of type dce_server_type_t

Thedce_server_type_tstructure contains a UUID (type) of typeuuid_t
representing the object type, and a manager entry point vector (epv) of
type rpc_mgr_epv_t representing the set of procedures implemented
for the object type.

Output

server_handle
Returns a server handle, which is a pointer to an opaque data structure
containing information about the server.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

By default, thedce_server_register()routine registers a DCE server by establishing a
server’s binding information for all valid protocol sequences, registering all the servers
services with the RPC runtime, and entering the server’s endpoints indced’s endpoint
mapper service.

Prior to calling the dce_server_register() routine, the server obtains the server
configuration data fromdced by calling dce_server_inq_server(). The server must
also set up an array of registration data, where the size of the array represents all
the server’s services that are currently registered in the server configuration data of
dced (server->services.count). If the memory for the array is dynamically allocated,
it must not be freed until after the correspondingdce_server_unregister()routine is
called.

You can modify the behavior ofdce_server_register()Depending on the values of
the flagsparameter. If the flag has the valuedce_server_c_ns_export, the the binding
information is also exported to the namespace. The namespace entry is determined for
each service by theserver->services.list[i].entrynameparameter. If this parameter has
no value, the default value for the entire server is used (server->entryname). If the flag
has the valuedce_server_c_no_endpoints, the binding information is not registered
with the endpoint map. Your application can userpc_ep_register()to register specific
binding information. If the flag has the valuedce_server_c_no_protseqs, specific
protocol sequences are used rather than all valid protocol sequences. Use of this flag

186

DCE Routines

dce_server_register(3dce)

requires that the server first calldce_server_use_protseq()at least once for a valid
protocol sequence.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

rpc_s_no_memory

Related Information

Functions:dce_server_inq_server(3dce), dce_server_sec_begin(3dce),
dce_server_unregister(3dce), dced_intro(3dce), rpc_server_listen(3rpc).

Books:DCE 1.2.2 Application Development Guide.

187

DCE 1.2.2 Application Development Reference

dce_server_sec_begin(3dce)

dce_server_sec_begin

Purpose Establishes a server to receive fully authenticated RPCs and to act as a client to do
authenticated RPCs

Synopsis
#include
<dce/dced.h>

voiddce_server_sec_begin(
unsigned32flags,
error_status_t * status);

Parameters
Input

flags Flags are set to manage keys and setup a login context. Valid values
include the following:

dce_server_c_manage_key

dce_server_c_login

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_server_sec_begin()routine prepares a server to receive authenticated RPCs.
It also sets up all that is required for the application, when behaving as a client to
other servers, to do authenticated RPCs as a client. When authentication is required,
this call must precede all other RPC and DCE server initialization calls, including

188

DCE Routines

dce_server_sec_begin(3dce)

dce_server_register(). When your application is finished listening for RPCs, it should
call thedce_server_sec_done()routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_need_one_server_prin

dced_s_not_started_by_dced

dced_s_no_server_keyfile

dced_s_cannot_create_key_mgmt_thr

dced_s_cannot_detach_key_mgmt_thr

Related Information

Functions:dce_server_register(3dce), dce_server_sec_done(3dce),
rpc_server_listen(3rpc).

Books:DCE 1.2.2 Application Development Guide.

189

DCE 1.2.2 Application Development Reference

dce_server_sec_done(3dce)

dce_server_sec_done

Purpose Releases resources established for a server to receive (and when acting as a client, to
send) fully authenticated RPCs

Synopsis
#include
<dce/dced.h>

voiddce_server_sec_done(
error_status_t * status);

Parameters
Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok.

Description

The dce_server_sec_done()routine releases the resources previously set up by a call
to dce_server_sec_begin(). Thedce_server_sec_begin()routine sets all that is needed
for a server to receive authenticated RPCs and it also sets up all that is required for
the application to do authenticated RPCs as a client. If this routine is used, it must
follow all other server DCE and RPC initialization and cleanup calls.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

190

DCE Routines

dce_server_sec_done(3dce)

Related Information

Functions:dce_server_sec_begin(3dce), rpc_server_listen(3rpc).

Books:DCE 1.2.2 Application Development Guide.

191

DCE 1.2.2 Application Development Reference

dce_server_unregister(3dce)

dce_server_unregister

Purpose Unregisters a DCE server

Synopsis
#include
<dce/dced.h>

voiddce_server_unregister(
dce_server_handle_t *server_handle,
error_status_t * status);

Parameters
Input

server_handle
An opaque handle returned bydce_server_register().

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok.

Description

The dce_server_unregister()routine unregisters a DCE server by unregistering a
server’s services (interfaces) from the RPC runtime. When a server has stopped
listening for remote procedure calls, it should call this routine.

The flags set with the correspondingdce_server_register()routine are part of the
server handle’s information used to determine what action to take or not take. These
actions include removing the server’s endpoints from thedced’s endpoint mapper
service and unexporting binding information from the namespace.

192

DCE Routines

dce_server_unregister(3dce)

Use thedce_server_disable_service()routine to disable specific application services
rather than unregistering the whole server.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:dce_server_disable_service(3dce), dce_server_register(3dce),
rpc_server_listen(3rpc).

Books:DCE 1.2.2 Application Development Guide.

193

DCE 1.2.2 Application Development Reference

dce_server_use_protseq(3dce)

dce_server_use_protseq

Purpose Tells DCE to use the specified protocol sequence for receiving RPCs

Synopsis
#include
<dce/dced.h>

voiddce_server_use_protseq(
dce_server_handle_tserver_handle,
unsigned char * protseq,
error_status_t * status);

Parameters
Input

server_handle
An opaque handle. Use the value of NULL.

protseq Specifies a string identifier for the protocol sequence to register with
the RPC runtime. (For a list of string identifiers, see the table of valid
protocol sequences in theintro(3rpc) reference page.)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully. The only status code is
error_status_ok.

Description

The dce_server_use_protseq()routine registers an individual protocol sequence
with DCE. Typical servers use all valid protocol sequences, the default behavior
for the dce_server_register()call, and so most servers do not need to call this
dce_server_use_protseq()routine. However, this routine may be called prior to

194

DCE Routines

dce_server_use_protseq(3dce)

dce_server_register(), to restrict the protocol sequences used. A server must register
at least one protocol sequence with the RPC runtime to receive remote procedure call
requests. A server can call this routine multiple times to register additional protocol
sequences.

Errors

A representative list of errors that might be returned is not shown here. Refer to
the DCE 1.2.2 Problem Determination Guidefor complete descriptions of all error
messages.

Related Information

Functions:dce_server_register(3dce), rpc_intro(3rpc) ,
rpc_server_use_protseq(3rpc).

Books:DCE 1.2.2 Application Development Guide.

195

DCE 1.2.2 Application Development Reference

dce_svc_components(3dce)

dce_svc_components

Purpose Returns registered component names

Synopsis
#include
<dce/dce.h>#include <dce/svcremote.h>

void dce_svc_components(
dce_svc_stringarray_t * table,
error_status_t * status);

Parameters
Output

table An array containing the names of all components that have been
registered with thedce_svc_register()routine.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_componentsroutine returns an array containing the names of all
components in the program that have been registered with thedce_svc_register()
routine.

Examples

The following code fragment shows how thedce_svc_components()routine should
be used in a DCE application’s implementation of the serviceability remote interface.
The function defined below is the implementation of theapp_svc_inq_components

196

DCE Routines

dce_svc_components(3dce)

operation defined in the application’s serviceability.epv file. Clients call this function
remotely, and the function, when called, first checks the caller’s authorization and then
(if the client is authorized to perform the operation) calls thedce_svc_components()
routine to perform the actual operation.

/*****

* app_svc_inq_components -- remote request for list of all

* components registered by dce_svc_register().

*****/

static void

app_svc_inq_components(

handle_t h,

dce_svc_stringarray_t *table,

error_status_t *st)

{

int ret;

/* Check the client’s permissions here, if insufficient, */

/* deny the request. Otherwise, proceed with operation */

dce_svc_components(table, st);

}

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.
Seedce_svc_register(3dce).

Files

dce/service.idl

197

DCE 1.2.2 Application Development Reference

dce_svc_debug_routing(3dce)

dce_svc_debug_routing

Purpose Specifies how debugging messages are routed

Synopsis
#include <dce/dce.h> #include <dce/svcremote.h>

void dce_svc_debug_routing(
unsigned char * where,
error_status_t * status);

Parameters
Input

where A four-field routing string, the format of which is described in
svcroute(5dce).

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_debug_routing()routine specifies both the level of an applications’s
serviceability debug messaging, and where the messages are routed. Thewhere
parameter is a four-field routing string, as described insvcroute(5dce). All four fields
are required.

The routine is used to specify the disposition of serviceability debug messages. If
called before the component is registered (withdce_svc_register()), the disposition
is stored until it is needed. In case of error, thestatusparameter is filled in with an
error code.

198

DCE Routines

dce_svc_debug_routing(3dce)

To set only the debugging level for a component, use thedce_svc_debug_set_levels()
routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_debug_set_levels(3dce).

Files: svcroute(5dce).

199

DCE 1.2.2 Application Development Reference

dce_svc_debug_set_levels(3dce)

dce_svc_debug_set_levels

Purpose Sets the debugging level for a component

Synopsis
#include <dce/dce.h> #include <dce/svcremote.h>

void dce_svc_debug_set_levels(
unsigned char * where,
error_status_t * status);

Parameters
Input

where A multifield string consisting of the component name separated by
a colon from a comma-separated list of subcomponent/level pairs, as
described insvcroute(5dce).

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_debug_set_levels()routine sets serviceability debugging message
level(s) for a component. Thewhereparameter is a multifield string consisting of the
component name separated by a colon from a comma-separated list of subcomponent/
level pairs, as described insvcroute(5dce). The subcomponents are specified by
codes defined in the component’ssamsfile; the levels are specified by single digits
(1 through 9).

200

DCE Routines

dce_svc_debug_set_levels(3dce)

If the routine is called before the component is registered (withdce_svc_register()),
the disposition is stored until it is needed. In case of error, thestatusparameter is
filled in with an error code.

To set both the debug level and routing for a component, use the
dce_svc_debug_routing()routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_debug_routing(3dce).

Files: svcroute(5dce).

201

DCE 1.2.2 Application Development Reference

dce_svc_define_filter(3dce)

dce_svc_define_filter

Purpose DCE serviceability filtering routines

Synopsis
#include <stdarg.h> #include <dce/dce.h> #include

<pthread.h> #include <dce/svcfilter.h>

void dce_svc_define_filter(
dce_svc_handle_thandle,
dce_svc_filter_proc_tfilter_function,
dce_svc_filterctl_proc_tfilter_ctl_function,
error_status_t * status);

Description

The serviceability interface provides a hook into the message-output mechanism that
allows applications to decide at the time of messaging whether the given message
should be output or not. The application defines its own routine to perform whatever
checking is desired, and installs the routine (thefilter_functionparameter) with a call
to dce_svc_define_filter().

The filter routine to be installed must have the signature defined by the
dce_svc_filter_proc_t typedef. Once installed, the routine will be automatically
invoked every time a serviceability routine is called to output a message. The
filter receives aprolog argument which contains all the pertinent information about
the message. If the filter returns TRUE, the message is output per the original
serviceability call. If the filter returns FALSE, the message is not output. The
information in theprolog allows such decisions to be made on the basis of severity
level, subcomponent, message index, and so on. For details, see the header filedce/
svcfilter.h.

In addition, an application that installs a message-filtering routine must also define
a routine that can be called remotely to alter the operation of the filter routine. This
procedure must have the signature defined by thedce_svc_filterctl_proc_t typedef.
The routine will be invoked with an opaque byte array parameter (and its length), which

202

DCE Routines

dce_svc_define_filter(3dce)

it is free to interpret in an appropriate manner. The remote-control routine is installed
by the same call todce_svc_define_filter()(as thefilter_ctl_functionparameter) in
which the filter itself is installed. Seedce_svc_filter(3dce).

Examples

The following code fragment consists of example versions of an application’s routines
to filter serviceability messages, alter the behavior of the filter routine, and install the
two routines.

/*****

* Filter routine-- this is the routine that’s hooked into

* the serviceability mechanism when you install

* it by calling dce_svc_define_filter().

*****/

boolean app_filter(prolog, args)

dce_svc_prolog_t prolog;

va_list args;

{

if (filter_setting) {

printf("The value of filter_setting is TRUE\n");

printf("The progname is %s\n", prolog->progname);

if (prolog->attributes & svc_c_sev_notice)

printf("This is a Notice-type message\n");

switch (prolog->table_index) {

case app_s_server:

printf("Server subcomponent\n");

break;

case app_s_refmon:

printf("Refmon subcomponent\n");

break;

case app_s_manager:

printf("Manager subcomponent\n");

break;

}

}

return 1;

}

203

DCE 1.2.2 Application Development Reference

dce_svc_define_filter(3dce)

/*****

* Filter Control routine-- this is the entry point for

* the remote-control call to modify the filter

* routine’s behavior.

*****/

void app_filter_control(arg_size, arg, status)

idl_long_int arg_size;

idl_byte *arg;

error_status_t *status;

{

if (strncmp(arg, "Toggle", arg_size) != 0)

return;

else {

filter_setting = (filter_setting == FALSE) ? TRUE : FALSE;

if (filter_setting)

printf(" FILTER IS TURNED ON\n");

else

printf(" FILTER IS TURNED OFF\n");

}

return;

}

/*****

* install_filters-- calls dce_svc_define_filter()

* to install the above 2 routines.

*****/

void install_filters()

{

unsigned32 status;

filter_setting = TRUE;

dce_svc_define_filter(app_svc_handle, app_filter,

dce_svc_filterctl_proc_t) app_filter_control, &status);

}

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

204

DCE Routines

dce_svc_define_filter(3dce)

Related Information

Functions:dce_svc_register(3dce), DCE_SVC_DEFINE_HANDLE(3dce).

205

DCE 1.2.2 Application Development Reference

dce_svc_filter(3dce)

dce_svc_filter

Purpose Controls behavior of serviceability filter

Synopsis
#include <dce/dce.h> #include <dce/svcremote.h>

void dce_svc_filter(
dce_svc_string_tcomponent,
idl_long_int arg_size,
idl_byte * argument,
error_status_t * status);

Parameters
Input

component The name of the serviceability-registered component, defined in the
componentfield of thesamsfile.

arg_size The number of characters contained inargument.

argument A string value to be interpreted by the target component’s filter control
routine.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_filter() routine controls the behavior of the serviceability message
filtering routine, if one exists.

206

DCE Routines

dce_svc_filter(3dce)

Along with the filter routine itself, the application also installs a filter control routine,
whose purpose is to permit the behavior of the filter to be altered dynamically while
the application is running. Thedce_svc_filter() routine is the interface’s call-in to
such an installed filter control.

If an application has installed a serviceability filtering routine, and if filter
remote control is desired, the application’s filter routine (installed by the call to
dce_svc_define_filter()) should be coded so that its operation can be switched to the
various desired alternatives by the values of static variables to which it has access.
These variables should also be accessible to the filter control routine. The filter
control routine thus receives fromdce_svc_filter()an argument string (which it uses
to set the variables), the meaning of whose contents are entirely application-defined.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Files

dce/service.idl

207

DCE 1.2.2 Application Development Reference

dce_svc_log_close(3dce)

dce_svc_log_close

Purpose Closes an open log file

Synopsis
#include <dce/dce.h> #include <pthread.h> #include <dce/svclog.h>

void dce_svc_log_close(
dce_svc_log_handle_thandle,
error_status_t * status);

Parameters
Input

handle The handle (returned bydce_svc_log_open()) of the log file to be closed.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_log_close()routine closes an open binary format serviceability log and
releases all internal state associated with the handle.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

208

DCE Routines

dce_svc_log_close(3dce)

Related Information

Functions:dce_svc_log_get(3dce), dce_svc_log_open(3dce),
dce_svc_log_rewind(3dce).

209

DCE 1.2.2 Application Development Reference

dce_svc_log_get(3dce)

dce_svc_log_get

Purpose Reads the next record from a binary log file

Synopsis
#include <dce/dce.h> #include <pthread.h> #include <dce/svclog.h>

void dce_svc_log_get(
dce_svc_log_handle_thandle,
dce_svc_log_prolog_t *prolog,
error_status_t * status);

Parameters
Input

handle The handle (returned bydce_svc_log_open()) of the log file to be read.

Output

prolog A pointer to a structure containing information read from the log file
record.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Thedce_svc_log_get()routine reads the next entry from a binary format serviceability
log, and fills inprolog with a pointer to a private data area containing the data read.
The contents of theprolog structure are defined indce/svclog.h.

210

DCE Routines

dce_svc_log_get(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_log_close(3dce), dce_svc_log_open(3dce),
dce_svc_log_rewind(3dce).

211

DCE 1.2.2 Application Development Reference

dce_svc_log_open(3dce)

dce_svc_log_open

Purpose Opens binary log file

Synopsis
#include <dce/dce.h> #include <pthread.h> #include <dce/svclog.h>

void dce_svc_log_open(
const char * name,
dce_svc_log_handle_t *handle,
error_status_t * status);

Parameters
Input

name The pathname of the log file to be opened.

Output

handle A filled-in handle to the opened log file specified byname.

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_log_open()routine opens the binary log file specified byname for
reading. If the call is successful,handle is filled in with a handle to be used with
the otherdce_svc_log_calls. On error,statuswill contain an error code.

212

DCE Routines

dce_svc_log_open(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_log_close(3dce), dce_svc_log_get(3dce),
dce_svc_log_rewind(3dce).

213

DCE 1.2.2 Application Development Reference

dce_svc_log_rewind(3dce)

dce_svc_log_rewind

Purpose Rewinds binary log file to first record

Synopsis
#include
<dce/dce.h> #include <pthread.h> #include <dce/svclog.h>

void dce_svc_log_rewind(
dce_svc_log_handle_thandle,
error_status_t * status);

Parameters
Input

handle The handle (returned bydce_svc_log_open()) of the log file to be
rewound.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_log_rewind() routine rewinds the current reading position of the
specified (byhandle) binary log file to the first record.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

214

DCE Routines

dce_svc_log_rewind(3dce)

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_log_close(3dce), dce_svc_log_get(3dce),
dce_svc_log_open(3dce).

215

DCE 1.2.2 Application Development Reference

dce_svc_printf(3dce)

dce_svc_printf

Purpose Generates a serviceability message

Synopsis
#include
<dce/dce.h>

voiddce_svc_printf(
DCE_SVC(dce_svc_handle_thandlechar * argtypes),
const unsigned32table_index,
const unsigned32attributes,
const unsigned32messageID,
. . .);

Parameters
Input

handle The caller’s serviceability handle.

argtypes Format string for the message.

table_index The message’s subcomponent name (defined in thesamsfile).

attributes Any routing, severity, action, or debug attributes that are to associated
with the generated message, OR’d together.

messageID The message ID, defined in the message’scodefield in thesamsfile.

. . . Any format arguments for the message string.

Description

Thedce_svc_printf()routine is the normal call for writing or displaying serviceability
messages. It cannot be called with a literal text argument. Instead, the message text
is retrieved from a message catalog or an in-core message table. These are generated

216

DCE Routines

dce_svc_printf(3dce)

by thesamsutility, which in turn outputs sets of tables from which the messages are
extracted for output.

There are two main ways in which to call the routine. If a message has been defined
in the samsfile with both sub-componentand attributes specified, then thesams
output will include a convenience macro for the message that can be passed as the
single argument todce_svc_printf(), for example:

dce_svc_printf(SIGN_ON_MSG);

The convenience macro’s name will be generated from the uppercase version of the
message’scodevalue (as specified in thesamsfile), with the string_MSG appended.

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its long
form. An example of this form of the call looks as follows:

dce_svc_printf(DCE_SVC(app_svc_handle, ""), app_subcomponent,\

svc_c_sev_error | svc_c_route_stderr, messageID);

DCE_SVC() is a macro thatmustbe passed as the first argument todce_svc_printf()
if a convenience macro is not being used. It takes two arguments:

• The caller’s serviceability handle

• A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. It is a character string consisting of the argument types as they would be
passed to aprintf() call. If the message is to be routed to a binary file, the format
is extended to include a%b specifier; using%b in a different routing will give
unpredictable results. The%b specifier takes two arguments: an integer size, and a
buffer pointer.

The remaining arguments passed todce_svc_printf() are as follows:

• Subcomponent table index

This symbol is declared in thesub-componentlist coded in Part II of thesams
file; its value is used to index into the subtable of messages in which the desired
message is located.

217

DCE 1.2.2 Application Development Reference

dce_svc_printf(3dce)

• Message attribute(s)

This argument consists of one or more attributes to be applied to the message that
is to be printed. Note that youmustspecify at least one severity here. Multiple
attributes are OR’d together, as shown in the following example.

There are four categories of message attributes:

Routing The available routing attribute constants are as follows:

• svc_c_route_stderr

• svc_c_route_nolog

However, most routing is done either by passing specially-
formatted strings to dce_svc_routing() or by environment
variable values. Note that usingsvc_c_route_nologwithout using
svc_c_route_stderrwill result in no message being generated.

Severity The available severity attribute constants are as follows:

• svc_c_sev_fatal

• svc_c_sev_error

• svc_c_sev_warning

• svc_c_sev_notice

• svc_c_sev_notice_verbose

Action The available message action attribute constants are as follows:

• svc_c_action_abort

• svc_c_action_exit_bad

• svc_c_action_exit_ok

• svc_c_action_brief

• svc_c_action_none

Note that svc_c_action_brief is used to suppress the standard
prolog.

Debug Level
Nine different debug levels can be specified
(svc_c_debug1...svc_c_debug9or svc_c_debug_off).

218

DCE Routines

dce_svc_printf(3dce)

• Message ID

This argument consists of the message’scode, as declared in thesamsfile.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

This routine has no return value.

Related Information

Functions:dce_svc_register(3dce), DCE_SVC_DEFINE_HANDLE(3dce).

219

DCE 1.2.2 Application Development Reference

dce_svc_register(3dce)

dce_svc_register

Purpose Registers a serviceability message table

Synopsis
#include
<dce/dce.h>

dce_svc_handle_t dce_svc_register(
dce_svc_subcomp_t *table,
const idl_char * component_name,
error_status_t * status);

Parameters
Input

table A message table structure (defined in a header file generated bysams
during compilation).

component_name
The serviceability name of the component, defined in thecomponent
field of thesamsfile.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

Thedce_svc_register()routine registers a serviceability message table. An application
must call either it (or theDCE_SVC_DEFINE_HANDLE() macro) in order to set
up its table(s) and obtain the serviceability handle it must have in order to use the
serviceability interface.

220

DCE Routines

dce_svc_register(3dce)

Two parameters are required for the call:table is a pointer to the application’s
serviceability table, defined in a file calleddceappsvc.hgenerated by thesamsutility.
component_nameis a string whose value isapp, which is defined in thecomponent
field of thesamsfile in which the serviceability messages are defined.

On error, this routine returns NULL and fills instatuswith an error code.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

The following serviceability status codes are defined:

svc_s_assertion_failed
A programmer-developed compile-time assertion failed.

svc_s_at_end
No more data is available.

svc_s_bad_routespec
Seesvcroute(5dce)for information on routing specification format.

svc_s_cantopen
Permission denied or file does not exist; consulterrno.

svc_s_no_filter
Attempted to send data to the filter-control handle for a component that
does not have a filter registered.

svc_s_no_memory
Could not allocate memory for message table, string copy or other
internal requirement.

svc_s_no_stats
The definition of the return value has not been specified.

svc_s_ok Operation performed.

svc_s_unknown_component
Could not find the service handle for a component.

221

DCE 1.2.2 Application Development Reference

dce_svc_register(3dce)

Related Information

Functions:dce_svc_debug_routing(3dce), dce_svc_debug_set_levels(3dce),
dce_svc_define_filter(3dce), dce_svc_routing(3dce), dce_svc_unregister(3dce).

222

DCE Routines

dce_svc_routing(3dce)

dce_svc_routing

Purpose Specifies routing of serviceability messages

Synopsis
#include <dce/dce.h> #include <dce/svcremote.h>

void dce_svc_routing(
unsigned char * where,
error_status_t * status);

Parameters
Input

where A three-field routing string, as described insvcroute(5).

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_routing() routine specifies how normal (non-debug) serviceability
messages are routed. Thewhereparameter is a three-field routing string, as described
in svcroute(5). For convenience, the first field of the routing specifier (which indicates
the message severity type to which the routing is to be applied) may be an* (asterisk)
to indicate that all messages, whatever their severity, should be routed as specified.

If the routine is called before the component is registered (with thedce_svc_register()
routine), the routing is stored until it is needed. In case of error, thestatusparameter
is filled in with an error code.

223

DCE 1.2.2 Application Development Reference

dce_svc_routing(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Files

dce/service.idl

224

DCE Routines

dce_svc_set_progname(3dce)

dce_svc_set_progname

Purpose Sets an application’s program name

Synopsis
#include <dce/dce.h>

void dce_svc_set_progname(
char *program_name,
error_status_t * status);

Parameters
Input

program_name
A string containing the name that is to be included in the text of all
serviceability messages that the application generates during the session.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

This function sets the application’sprogram name, which is included in serviceability
messages. This allows serviceability messages from more than one application to be
written to the same file and still be distinguishable as to their separate origins.

If dce_svc_set_progname()is not called, the application’s generated serviceability
messages will be identified by its process ID.

225

DCE 1.2.2 Application Development Reference

dce_svc_set_progname(3dce)

Examples

Suppose an application sets its program name to bedemo_program , as follows:

dce_svc_set_progname("demo_program", &status);

Serviceability messages generated by the program will as a result look like the
following:

1994-04-05-20:13:34.500+00:00I-- --- demo_program NOTICE app

main.c 123 0xa444e208 message text

If the application does not set its program name, its generated serviceability messages
will have the following form:

1994-04-05-20:13:34.500+00:00I-- --- PID#9467 NOTICE app

main.c 123 0xa444e208 message text

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.
Seedce_svc_register(3dce).

Related Information

Functions:dce_printf(3dce) , dce_svc_printf(3dce), DCE_SVC_DEBUG(3dce).

226

DCE Routines

dce_svc_table(3dce)

dce_svc_table

Purpose Returns a registered component’s subcomponent table

Synopsis
#include <dce/dce.h> #include

<dce/svcremote.h>

voiddce_svc_table(
dce_svc_string_tcomponent,
dce_svc_subcomparray_t *table,
error_status_t * status);

Parameters
Input

component The name of the serviceability-registered component, defined in the
componentfield of the application’ssamsfile.

Output

table An array of elements, each of which describes one of the component’s
serviceability subcomponents (as defined in itssamsfile).

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_tableroutine returns the serviceability subcomponent table registered
with the specified component. The returned table consists of an array of elements,
each of which describes one subcomponent. Each element consists of four fields,
which contain the subcomponent name, its description, its message catalog ID, and
the current value of its debug message level.

227

DCE 1.2.2 Application Development Reference

dce_svc_table(3dce)

The first three of these values are specified in thesamsfile which is processed during
the application’s compilation, and from which the application’s message catalogs and
other serviceability and message files are generated.

Examples

The following code fragment shows how the remote operation might be called from
an application’s client side, and how the results might be printed out:

#include <dce/rpc.h>

#include <dce/service.h>

handle_t svc_bind_handle;

dce_svc_string_t component;

dce_svc_subcomparray_t subcomponents_table;

error_status_t remote_status;

int i;

dce_svc_inq_table(svc_bind_handle, component, &subcomponents_table,

&remote_status);

fprintf(stdout, "Subcomponent table size received is: %d...\n",

subcomponents_table.tab_size);

fprintf(stdout, "Subcomponent table contents are:\n");

for (i = 0; i < subcomponents_table.tab_size; i++)

{

fprintf(stdout, "Name: %s\n",

subcomponents_table.table[i].sc_name);

fprintf(stdout, "Desc: %s\n",

subcomponents_table.table[i].sc_descr);

fprintf(stdout, "Msg Cat ID: 0x%8.8lx\n",

(long) subcomponents_table.table[i].sc_descr_msgid);

fprintf(stdout, "Active debug level: %d\n\n",

subcomponents_table.table[i].sc_level);

}

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

228

DCE Routines

dce_svc_table(3dce)

Seedce_svc_register(3dce).

Files

dce/service.idl

229

DCE 1.2.2 Application Development Reference

dce_svc_unregister(3dce)

dce_svc_unregister

Purpose Destroys a serviceability handle

Synopsis
#include
<dce/dce.h>

voiddce_svc_unregister(
dce_svc_handle_thandle,
error_status_t * status);

Parameters
Input

handle The application’s serviceability handle, originally returned
by a call to dce_svc_register(), or filled in by the
DCE_SVC_DEFINE_HANDLE() macro.

Output

status Returns the status code from this operation. The status code is a value
that indicates whether the routine completed successfully and if not,
why not.

Description

The dce_svc_unregister()routine destroys a serviceability handle. Calling it closes
any open serviceability message routes and frees all allocated resources associated
with the handle.

The handle parameter is the serviceability handle that was originally returned by
the call todce_svc_register(), or filled in by theDCE_SVC_DEFINE_HANDLE()
macro. On error, the routine fills instatuswith an error code.

230

DCE Routines

dce_svc_unregister(3dce)

Note that it is not usually necessary to call this routine, since the normal process exit
will perform the required cleanup.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

Seedce_svc_register(3dce).

Related Information

Functions:dce_svc_register(3dce).

231

DCE 1.2.2 Application Development Reference

dced_binding_create(3dce)

dced_binding_create

Purpose Establishes adced binding to one of the host services of a remote (or the local)dced

Synopsis
#include
<dce/dced.h>

voiddced_binding_create(
dced_string_t service,
unsigned32binding_flags,
dced_binding_handle_t *dced_bh,
error_status_t * status);

Parameters
Input

service A character string that specifies a host daemon service name and an
optional remote host. A service name is specified with one of the
following: hostdata, srvrconf, srvrexec , secval, or keytab. The format
of a complete service and host specification is one of the following:

service_name
A service at the local host. Pre-existing defined values
include

dced_c_service_hostdata

dced_c_service_srvrconf

dced_c_service_srvrexec

dced_c_service_secval

dced_c_service_keytab

service_name@hosts/host_name
A service at a host anywhere in the local namespace.

232

DCE Routines

dced_binding_create(3dce)

/.:/hosts/host_name/config/service_name
A complete specification forservice_name@host, where
the host is anywhere in the local namespace.

/.../cell /hosts/host_name/config/ service_name
A service at a host anywhere in the global namespace.

binding_flags
The only valid flag value for this parameter is
dced_c_binding_syntax_default.

Output

dced_bh Returns adced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the
host service, and a local cache.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedcedon each DCE host maintains the host services and provides a remote interface
to them. The host services include the following:

• endpoint mapper

• host data management (hostdata)

• server management, including server configuration (srvrconf) and server
execution (srvrexec)

• security validation (secval)

• key table management (keytab)

The dced_binding_create() routine establishes a dced binding to adced service
and it (or dced_binding_from_rpc_binding())must be the firstdced API routine
called before an application can access one of the host services with otherdced
API routines. When an application is finished with the service, it should call the
dced_binding_free() routine to free resources. To establish adced binding to your
local host’sdced, you can use the service name by itself, and do not need to specify
a host.

233

DCE 1.2.2 Application Development Reference

dced_binding_create(3dce)

To access the endpoint map directly, userpc_mgmt_ep_elt_inq_begin() and
associated routines.

Examples

The following example establishes adced binding to the server configuration service
on the hostpatrick .

dced_binding_handle_t dced_bh;

error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",

dced_c_binding_syntax_default,

&dced_bh,

&status);

.

. /* Other routines including dced API routines. */

.

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

234

DCE Routines

dced_binding_create(3dce)

error_status_ok

dce_cf_e_no_mem

dced_s_invalid_arg

dced_s_no_memory

dced_s_unknown_service

rpc_s_entry_not_found

rpc_s_incomplete_name

rpc_s_invalid_object

rpc_s_name_service_unavailable

rpc_s_no_memory

rpc_s_no_more_bindings

rpc_s_no_ns_permission

Related Information

Functions:dced_binding_free(3dce), dced_binding_from_rpc_binding(3dce).

Books:DCE 1.2.2 Application Development Guide.

235

DCE 1.2.2 Application Development Reference

dced_binding_free(3dce)

dced_binding_free

Purpose Releases the resources associated with adced binding handle

Synopsis
#include
<dce/dced.h>

voiddced_binding_free(
dced_binding_handle_tdced_bh,
error_status_t * status);

Parameters
Input

dced_bh Specifies adced binding handle to free for adced service on a specific
host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_binding_free()routine frees resources used by adced binding handle and
referenced information. Use this routine when your application is finished with a host
service to break the communication between your application and thedced . Thedced
binding handle and referenced information is created with thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

236

DCE Routines

dced_binding_free(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce).

Books:DCE 1.2.2 Application Development Guide.

237

DCE 1.2.2 Application Development Reference

dced_binding_from_rpc_binding(3dce)

dced_binding_from_rpc_binding

Purpose Establishes adced binding to one of the host services on the host specified in an
existing RPC binding handle

Synopsis
#include
<dce/dced.h>

voiddced_binding_from_rpc_binding(
dced_service_type_tservice,
handle_t rpc_bh,
dced_binding_handle_t *dced_bh,
error_status_t * status);

Parameters
Input

service A variable that specifies one of the host services. A valid variable name
includes one of the following:

dced_e_service_type_hostdata

dced_e_service_type_srvrconf

dced_e_service_type_srvrexec

dced_e_service_type_secval

dced_e_service_type_keytab

rpc_bh An RPC binding handle to some server.

Output

dced_bh Returns adced binding handle which is a pointer to an opaque data
structure containing information about an RPC binding, the host, the
host service, and a local cache.

238

DCE Routines

dced_binding_from_rpc_binding(3dce)

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedcedon each DCE host maintains the host services and provides a remote interface
to the services. Thedced_binding_from_rpc_binding() routine establishes adced
binding to adced service, and it (ordced_binding_create()) must be the firstdced
API routine called before an application can access one of the host services with
other dced routines. When an application is finished with the service, it should call
the dced_binding_free()routine to free resources.

Prior to using the RPC binding in this routine, make a copy of the binding by using
the rpc_binding_copy() routine. This is necessary if the application needs to continue
using the RPC binding, because otherwise thedced binding takes over the RPC
binding.

The RPC binding may be obtained from a call to specific RPC runtime
routines such as the routinesrpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc) , or rpc_ns_binding_lookup_next(3rpc).

Examples

This example obtains an RPC binding from a string binding, and it later makes a copy
of the RPC binding for use in thedced_binding_from_rpc_binding() call.

handle_t rpc_bh, binding_handle;

dced_binding_handle_t dced_bh;

dced_service_type_t service_type;

error_status_t status;

unsigned_char_t string_binding[STRINGLEN];

.

.

.

rpc_binding_from_string_binding(string_binding, &binding_handle,

&status);

.

.

239

DCE 1.2.2 Application Development Reference

dced_binding_from_rpc_binding(3dce)

.

rpc_binding_copy(binding_handle, &rpc_bh, &status);

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);

.

. /* Other routines including dced API routines. */

.

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_no_memory

dced_s_unknown_service

ept_s_cant_perform_op

ept_s_database_invalid

ept_s_invalid_context

ept_s_invalid_entry

rpc_s_comm_failure

rpc_s_fault_context_mismatch

rpc_s_invalid_arg

rpc_s_invalid_binding

rpc_s_no_more_elements

rpc_s_wrong_kind_of_binding

Related Information

Functions:dced_binding_create(3dce), dced_binding_free(3dce),
rpc_binding_copy(3rpc), rpc_binding_from_string_binding(3rpc) ,
rpc_ns_binding_import_next(3rpc), rpc_ns_binding_lookup_next(3rpc).

240

DCE Routines

dced_binding_from_rpc_binding(3dce)

Books:DCE 1.2.2 Application Development Guide.

241

DCE 1.2.2 Application Development Reference

dced_binding_set_auth_info(3dce)

dced_binding_set_auth_info

Purpose Sets authentication and authorization information for adced binding handle

Synopsis
#include
<dce/dced.h>

voiddced_binding_set_auth_info(
dced_binding_handle_tdced_bh,
unsigned32protect_level,
unsigned32authn_service,
rpc_auth_identity_handle_t authn_identity,
unsigned32authz_service,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for which to set the authentication
and authorization information.

protect_levelSpecifies the protection level fordced API calls that will use thedced
binding handledced_bh.

authn_service
Specifies the authentication service to use fordced API calls that will
use thedced binding handledced_bh.

authn_identity
Specifies a handle for the data structure that contains the calling
application’s authentication and authorization credentials appropriate for
the selectedauthn_serviceandauthz_serviceservices.

Specify NULL to use the default security login context for the current
address space.

242

DCE Routines

dced_binding_set_auth_info(3dce)

authz_service
Specifies the authorization service to be implemented bydced for the
host service accessed.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_binding_set_auth_info() routine sets up thedced binding handle so
it can be used for authenticated calls that include authorization information. The
rpc_binding_set_auth_info() routine performs in the same way as this one. See
it for details of the parameters and values. Prior to calling this routine, the
application must have established a validdced binding handle by calling either the
dced_binding_create()or dced_binding_from_rpc_binding() routine.

Examples

This example establishes adcedbinding to a host’s key table service, and then it calls
dced_binding_set_auth_info()so that the application is authorized to access remote
key tables by using additional calls to the key table service.

dced_binding_handle_t dced_bh;

error_status_t status;

dced_binding_create((dced_string_t)"keytab@hosts/patrick",

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_binding_set_auth_info(dced_bh,

rpc_c_protect_level_default,

rpc_c_authn_pkt_privacy,

NULL,

rpc_c_authz_dce,

&status);

.

. /* Other routines including dced API routines. */

243

DCE 1.2.2 Application Development Reference

dced_binding_set_auth_info(3dce)

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

ept_s_not_registered

rpc_s_authn_authz_mismatch

rpc_s_binding_incomplete

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_mgmt_op_disallowed

rpc_s_rpcd_comm_failure

rpc_s_unknown_authn_service

rpc_s_unsupported_protect_level

rpc_s_wrong_kind_of_binding

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
rpc_binding_set_auth_info(3rpc) .

Books:DCE 1.2.2 Application Development Guide.

244

DCE Routines

dced_entry_add(3dce)

dced_entry_add

Purpose Adds akeytab or hostdata entry to a host’sdced for an existing file on that host

Synopsis
#include
<dce/dced.h>

voiddced_entry_add(
dced_binding_handle_tdced_bh,
dced_entry_t * entry,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

Input/Output

entry Specifies the data entry to add to the service.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_entry_add()routine adds a data entry to adced service. The data it refers
to must already exist in a file on thedced’s host. You can only addhostdata or
keytab entries.

A service’s data entries do not contain the actual data. Instead, they contain a UUID,
a name for the entry, a brief description of the item, and a storage tag that describes
the location of the actual data. In the cases of thehostdata andkeytab services, the

245

DCE 1.2.2 Application Development Reference

dced_entry_add(3dce)

data for each entry is stored in a file. Thedced uses this two-level scheme so that it
can manipulate different kinds of data in the same way and so names are independent
of local file system requirements.

The hostdata and keytab services each have their respective routines to create new
data and at the same time, add a new entry to the appropriate service. These routines
aredced_hostdata_create()anddced_keytab_create().

Prior to calling thedced_entry_add()routine, the application must have established
a valid dced binding handle for thehostdata or keytab service by calling either the
dced_binding_create()or dced_binding_from_rpc_binding() routine.

Examples

The following example shows how to add a printer configuration file to thehostdata
service. The example creates adced binding to the localhostdata service, an entry
data structure is filled in with the storage tag containing the full path of the existing
configuration file, and finally, thedced_entry_add()routine is called.

dced_binding_handle_t dced_bh;

error_status_t status;

dced_entry_t entry;

dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,

&dced_bh,

&status);

uuid_create(&(entry.id), &status);

entry.name = (dced_string_t)("NEWERprinter");

entry.description = (dced_string_t)("Configuration for a new printer.");

entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

dced_entry_add(dced_bh, &entry, &status);

.

.

.

246

DCE Routines

dced_entry_add(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_import_cant_access

dced_s_no_support

rpc_s_b inding_has_no_auth

sec_acl_invalid_permission

uuid_s_no_address

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_remove(3dce), dced_hostdata_create(3dce),
dced_keytab_create(3dce).

Books:DCE 1.2.2 Application Development Guide.

247

DCE 1.2.2 Application Development Reference

dced_entry_get_next(3dce)

dced_entry_get_next

Purpose Obtains one data entry from a list of entries of adced service

Synopsis
#include
<dce/dced.h>

voiddced_entry_get_next(
dced_cursor_tcursor,
dced_entry_t ** entry,
error_status_t * status);

Parameters
Input/Output

cursor Specifies the entry list’s cursor that points to an entry, and returns the
cursor advanced to the next entry in the list.

Output

entry Returns a pointer to an entry.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedced_entry_get_next()routine obtains a pointer to a data entry, and advances the
cursor to the next entry in the list. This routine is commonly used in a loop to traverse
a host service’s entry list. The data is obtained in an undetermined order. Prior to
using this routine, the application must calldced_initialize_cursor() to obtain a list
of entries and to establish the beginning of the cursor. When the application is finished
traversing the entry list, it should calldced_release_cursor()to release resources.

248

DCE Routines

dced_entry_get_next(3dce)

A data entry does not contain the actual data, but it contains the name, identity,
description, and storage location of the data. In the cases ofhostdata and keytab
services, the data for each entry is stored in a file. In the cases ofsrvrconf and
srvrexec services, data is stored in memory. Thedced uses this two-level scheme so
that it can manipulate different kinds of data in the same way.

Prior to using the dced_entry_get_next() routine, the application must have
established a validdced binding handle by calling either thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

Examples

In the followin g example, adced binding is obtained from a service type
and an existing rpc binding handle. After establishing an entry list cursor, the
dced_entry_get_next()routine obtains an entry, one at a time, and the name and
description of each entry is displayed until the entry list is exausted.

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh, &status);

dced_initialize_cursor(dced_bh, &cursor, &status);

for(; ;) { /* forever loop */

dced_entry_get_next(cursor, &entry, &status);

if(status != error_status_ok) break;

display(entry->name, entry->description); /* application specific */

}

dced_release_cursor(&cursor, &status);

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

249

DCE 1.2.2 Application Development Reference

dced_entry_get_next(3dce)

error_status_ok

dced_s_no_more_entries

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_initialize_cursor(3dce), dced_release_cursor(3dce).

Books:DCE 1.2.2 Application Development Guide.

250

DCE Routines

dced_entry_remove(3dce)

dced_entry_remove

Purpose Removes ahostdata or keytab data entry from adced service’s list of entries

Synopsis
#include
<dce/dced.h>

voiddced_entry_remove(
dced_binding_handle_tdced_bh,
uuid_t * entry_uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

entry_uuid Specifies the UUID of the entry to be removed from the service.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_entry_remove()routine removes an entry from thehostdata or keytab
service entry list ofdced. It does not remove the actual data stored in the file, but
makes it inaccessible from a remote host by way of thedced’s user interfaces which
include thedced API and the DCE control program,dcecp. Each host service that
maintains data also maintains a list of data entries. A data entry contains a name, a
UUID, a brief description, and a storage tag indicating the location of the actual data.

251

DCE 1.2.2 Application Development Reference

dced_entry_remove(3dce)

To delete both the data and entry for thehostdata, keytab, or srvrconf services,
use dced_hostdata_delete(), dced_keytab_delete(), or dced_server_delete(),
respectively. (Thesrvrexecservice is maintained only bydcedand thesecvalservice
does not maintain data, so you cannot remove data for these services.)

Applications commonly obtain an entry by traversing the entry list using the
dced_entry_get_next()routine with its associated cursor routines.

Prior to calling the dced_entry_remove() routine, the application must have
established a validdced binding handle to thehostdata or keytab service by calling
either thedced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_del_failed

db_s_key_not_found

db_s_readonly

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_hostdata_delete(3dce), dced_initialize_cursor(3dce),
dced_keytab_delete(3dce), dced_server_delete(3dce).

Books:DCE 1.2.2 Application Development Guide.

252

DCE Routines

dced_hostdata_create(3dce)

dced_hostdata_create

Purpose Creates ahostdata item and the associated entry indced on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_hostdata_create(
dced_binding_handle_tdced_bh,
dced_entry_t * entry,
dced_attr_list_t * data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for the host data service on a specific
host.

Input/Output

entry Specifies the hostdata entry to create. You supply a name
(entry->name), description (entry->description), and file name
(entry->storage_tag), in the form of dced strings. You can supply a
UUID (entry->id) for dced to use or you can use a NULL value and
dced will generate a new UUID for the entry.

Input

data Specifies the data created and written to a file on the host. The
dced_attr_list_t consists of a count of the number of attributes, and an
array of attributes of typesec_attr_t. The reference OSF implementation
has one attribute for ahostdata item (file contents). However some
vendors may provide multiple attributes.

253

DCE 1.2.2 Application Development Reference

dced_hostdata_create(3dce)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_create()routine creates a new host data item in a file on the host
to which thedced binding handle refers, and it generates the associatedhostdata
entry in the host’sdced.

If data that you want to add to the host data service already exists on the host (in a
file), you can add it to the service by callingdced_entry_add(), which only creates
the new data entry fordced.

Prior to calling the dced_hostdata_create()routine, the application must have
established a validdced binding handle to thehostdata service by calling either
the dced_binding_create()or dced_binding_from_rpc_binding() routine.

Examples

The following example creates a binding to the host data service on the local host,
creates the entry data, and fills in the data structure for one attribute to a hypothetical
printer configuration. The attribute represents a plain-text file containing one string of
data.

dced_binding_handle_t dced_bh;

error_status_t status;

dced_entry_t entry;

dced_attr_list_t data;

int num_strings, str_size;

sec_attr_enc_str_array_t *attr_array;

dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,

&dced_bh,

&status);

/*Create an Entry. */

uuid_create(&entry.id, &status);

254

DCE Routines

dced_hostdata_create(3dce)

entry.name = (dced_string_t)("NEWERprinter");

entry.description = (dced_string_t)("Configuration for a new printer.");

entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

/* create the attributes */

data.count = 1;

num_strings = 1;

data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr_t));

data.list->attr_id = dced_g_uuid_fileattr;

data.list->attr_value.attr_encoding = sec_attr_enc_printstring_array;

str_size = sizeof(sec_attr_enc_str_array_t) +

num_strings * sizeof(sec_attr_enc_printstring_p_t);

attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);

data.list->attr_value.tagged_union.string_array = attr_array;

attr_array->num_strings = num_strings;

attr_array->strings[0]=

(dced_string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

255

DCE 1.2.2 Application Development Reference

dced_hostdata_create(3dce)

error_status_ok

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_import_already_exists

dced_s_unknown_attr_type

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_add(3dce), dced_hostdata_read(3dce).

Books:DCE 1.2.2 Application Development Guide.

256

DCE Routines

dced_hostdata_delete(3dce)

dced_hostdata_delete

Purpose Deletes ahostdata item from a specific host and removes the associated entry from
dced

Synopsis
#include
<dce/dced.h>

voiddced_hostdata_delete(
dced_binding_handle_tdced_bh,
uuid_t * entry_uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thehostdataservice on a specific
host.

entry_uuid Specifies the UUID of thehostdataentry (and associated data) to delete.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_hostdata_delete()routine deletes ahostdata item (a file) from a specific
host, and removes the associated entry from the host data service of that host’sdced.

If you want to only make the data inaccessible remotely but not delete it, use the
dced_entry_remove()routine which only removes the data’shostdata entry.

257

DCE 1.2.2 Application Development Reference

dced_hostdata_delete(3dce)

Prior to calling the dced_hostdata_delete()routine, the application must have
established a validdced binding handle for thehostdata service by calling either
the dced_binding_create()or dced_binding_from_rpc_binding() routine.

Warnings

Do not delete the standardhostdata items such ascell_name, cell_aliases, host_name,
post_processors, or dce_cf.db. This will cause operational problems for the host.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_del_failed

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_cant_remove_storage_file

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_remove(3dce), dced_hostdata_read(3dce).

Books:DCE 1.2.2 Application Development Guide.

258

DCE Routines

dced_hostdata_read(3dce)

dced_hostdata_read

Purpose Reads ahostdata item maintained bydced on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_hostdata_read(
dced_binding_handle_tdced_bh,
uuid_t * entry_uuid,
uuid_t * attr_uuid,
sec_attr_t ** data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thehostdataservice on a specific
host.

entry_uuid Specifies thehostdata entry UUID associated with the data to read.

attr_uuid Specifies the UUID associated with an attribute of the data. The
attribute is either plain text (dced_g_uuid_fileattr) or binary
(dced_g_uuid_binfileattr). Some vendors may allow other attributes.

Output

data Returns the data for the item. See thesec_intro(3sec)reference page
for details on thesec_attr_t data type.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

259

DCE 1.2.2 Application Development Reference

dced_hostdata_read(3dce)

Description

The dced_hostdata_read()routine returns ahostdata item maintained bydced on a
specific host. The standard data items include the cell name, a list of cell aliases, the
host name, a list of UUID-program pairs (post_processors), and the DCE configuration
database, among other items.

For programming convenience, the following global variables are defined for the
entry_uuidof some standard data items:

dced_g_uuid_cell_name

dced_g_uuid_cell_aliases

dced_g_uuid_host_name

dced_g_uuid_hostdata_post_proc

dced_g_uuid_dce_cf_db

dced_g_uuid_pe_site

dced_g_uuid_svc_routing

Other host-specific data items may also be maintained by thehostdata service.
The UUIDs for these are established when the data item is created (see
dced_hostdata_create()). After the application reads host data and when it is
done with the data, it should call thedced_objects_release()routine to release the
resources allocated.

Eachhostdata item for a specific host is stored in a local file. The name of an item’s
storage file is indicated in the storage tag field of eachdced hostdataentry.

You can also use thedced_object_read()routine to read the text of ahostdata item.
You might use this routine if your application needs to read data for other host services
(srvrconf, srvrexec, or keytab) in addition to data for thehostdata service.

Prior to calling the dced_hostdata_read() routine, the application must have
established a validdced binding handle to thehostdata service by calling either the
dced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

260

DCE Routines

dced_hostdata_read(3dce)

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_invalid_attr_type

dced_s_no_memory

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_object_read(3dce), dced_objects_release(3dce).

Books:DCE 1.2.2 Application Development Guide.

261

DCE 1.2.2 Application Development Reference

dced_hostdata_write(3dce)

dced_hostdata_write

Purpose Replaces an existinghostdata item maintained bydced on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_hostdata_write(
dced_binding_handle_tdced_bh,
uuid_t * entry_uuid,
dced_attr_list_t * data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for the host data service on a specific
host.

entry_uuid Specifies thehostdata entry UUID to associate with the data to be
written.

data Specifies the data to write. Thedced_attr_list_t consists of a count of
the number of attributes, and an array of attributes of typesec_attr_t.
The reference OSF implementation has one attribute for a hostdata item
(file contents). However some vendors may require multiple attributes.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

262

DCE Routines

dced_hostdata_write(3dce)

Description

The dced_hostdata_write() routine replaces existing data for ahostdata item
maintained bydced on a specific host. If theentry_uuid is not one maintained by
dced, an error is returned and a new entry isnot created. Usedced_hostdata_create()
to create a new entry.

Prior to calling the dced_hostdata_write() routine, the application must have
established a validdced binding handle to thehostdata service by calling either
the dced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_cant_open_storage_file

dced_s_no_postprocessors

dced_s_postprocessor_file_fail

dced_s_postprocessor_spawn_fail

dced_s_unknown_attr_type

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_hostdata_create(3dce), dced_hostdata_read(3dce).

Books:DCE 1.2.2 Application Development Guide.

263

DCE 1.2.2 Application Development Reference

dced_initialize_cursor(3dce)

dced_initialize_cursor

Purpose Sets a cursor to the start of a cached list of data entries for adced service

Synopsis
#include
<dce/dced.h>

voiddced_initialize_cursor(
dced_binding_handle_tdced_bh,
dced_cursor_t * cursor,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

Output

cursor Returns the cursor used to traverse the list of data entries, one at a time.
The cursor is an opaque data structure that is used to keep track of the
entries between invocations of thedced_entry_get_next()routine.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_initialize_cursor() routine sets a cursor at the start of a DCE host
service’s list of data entries. The cursor is then used in subsequent calls to
dced_entry_get_next()to obtain individual data entries. When the application is
finished traversing the entry list, it should calldced_release_cursor()to free the
resources allocated for the cursor.

264

DCE Routines

dced_initialize_cursor(3dce)

The valid services for this routine that have entry lists includehostdata, srvrconf,
srvrexec, andkeytab.

If a service’s entry list is small, it may be more efficient to obtain the entire list
using thedced_list_get()routine, rather than using cursor routines. This is because
dced_list_get()guarantees that the list is obtained with one remote procedure call.
However, your application is scalable if you use the cursor routines. This is because
when an entry list is very large, it may be more efficient (or even necessary) to obtain
the list in chunks with more than one remote procedure call.

Prior to calling the dced_initialize_cursor() routine, the application must have
established a validdced binding handle by calling either thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_get_next(3dce), dced_list_get(3dce), dced_release_cursor(3dce).

Books:DCE 1.2.2 Application Development Guide.

265

DCE 1.2.2 Application Development Reference

dced_inq_id(3dce)

dced_inq_id

Purpose Obtains the entry UUID thatdced associates with a name

Synopsis
#include <dce/dced.h>

void dced_inq_id(
dced_binding_handle_tdced_bh,
dced_string_t name,
uuid_t * uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

name Specifies the name for which to obtain theuuid.

Output

uuid returns the UUID associated with thenameinput.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_inq_id() routine obtains the UUID associated with a name in a service of a
specific host’sdced. Applications and administrators use strings maintained bydced
to identify data, butdced and its API must associate each data entry with a UUID.
This routine is valid for thehostdata, srvrconf , srvrexec, andkeytab services.

266

DCE Routines

dced_inq_id(3dce)

Prior to calling this routine, the application must have established a
valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example establishes adced binding to a host’s server configuration
service. The example then obtains the UUID of some known server in order to read
the server’s configuration data.

dced_binding_handle_t dced_bh;

server_t conf;

dced_string_t server_name;

uuid_t srvrconf_id;

error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);

dced_object_read(dced_bh, &srvrconf_id, (void**)&(conf), &status);

.

.

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

267

DCE 1.2.2 Application Development Reference

dced_inq_id(3dce)

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_not_found

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_inq_name(3dce).

Books:DCE 1.2.2 Application Development Guide.

268

DCE Routines

dced_inq_name(3dce)

dced_inq_name

Purpose Obtains the entry name thatdced associates with a UUID

Synopsis
#include <dce/dced.h>

void dced_inq_name(
dced_binding_handle_tdced_bh,
uuid_t * uuid,
dced_string_t * name,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

uuid Specifies the UUID for which to obtain thename.

Output

name Returns the name associated with theuuid input.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_inq_name()routine obtains the name associated with a UUID in a service
of a specific host’sdced.

A name is a label for each data entry to help applications and administrators identify
all data maintained bydced. The dced requires UUIDs to keep track of the data
it maintains. But it also maintains a mapping of UUIDs to names so that other
applications and administrators can more easily access the data by using a recognizable

269

DCE 1.2.2 Application Development Reference

dced_inq_name(3dce)

name rather than a cumbersome UUID. A name is a label forhostdata items,srvrconf
andsrvrexec servers, andkeytab tables.

Prior to calling this routine, the application must have established a
valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example establishes adcedbinding handle to the local host data service,
reads an entry, and usesdced_inq_name()to get the name associated with the attribute
ID.

dced_binding_handle_t dced_bh;

uuid_t entry_uuid;

sec_attr_t *data_ptr;

error_status_t status;

.

.

.

dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_hostdata_read(dced_bh,

&entry_uuid,

&dced_g_uuid_fileattr,

&data_ptr,

&status);

dced_inq_name(dced_bh, data_ptr->sec_attr.attr_id, &name, &status);

.

.

.

270

DCE Routines

dced_inq_name(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

dced_s_not_found

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_inq_id(3dce).

Books:DCE 1.2.2 Application Development Guide.

271

DCE 1.2.2 Application Development Reference

dced_keytab_add_key(3dce)

dced_keytab_add_key

Purpose Adds a key (server password) to a specified key table on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_keytab_add_key(
dced_binding_handle_tdced_bh,
uuid_t * keytab_uuid,
dced_key_t * key,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

keytab_uuid Specifies the UUID thatdced uses to identify the key table to which
the key is to be added.

Input/Output

key Specifies the key to be added. Some fields are completed bydced. See
dced_intro(3dce).

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

272

DCE Routines

dced_keytab_add_key(3dce)

Description

The dced_keytab_add_key()routine adds a key to a server’s key table (file) on
a specific host, without changing the key in the security registry. (Servers use
sec_key_mgmt_set_key(3sec)to do this for their own local key table.)

Most management applications use thedced_keytab_change_key()routine to
remotely change a key because it also changes the key in the security registry.

Managing the same key in multiple key tables is a more complex process. The security
registry needs a copy of a server’s key, so that during the authentication process, it
can encrypt tickets that only a server with that key can later decrypt. Part of updating
a key in the security registry also includes automatic version number updating. When
servers share the same principle identity they use the same key. If these servers are on
different hosts, then the key must be in more than one key table. (Even if the servers
are on the same host, it is possible for their keys to be in different key tables, although
this is not a recommended key management practice.) When the same keys in different
tables need changing, one (perhaps the master server or busiest one) is changed using
dced_keytab_change_key()which also causes an automatic version update. However,
all other copies of the key must be changed using thedced_keytab_add_key()routine
so that the version number does not change again.

Prior to callingdced_keytab_add_key()the application must have established a valid
dcedbinding handle to thekeytab service by calling either thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

273

DCE 1.2.2 Application Development Reference

dced_keytab_add_key(3dce)

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_key_v0_not_allowe

dced_s_key_version_mismatch

dced_s_need_privacy

dced_s_random_key_not_allowed

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_ve rsion_exists

sec_key_mgmt_e_unauthorized

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_keytab_change_key(3dce), sec_key_mgmt_set_key(3sec).

Books:DCE 1.2.2 Application Development Guide.

274

DCE Routines

dced_keytab_change_key(3dce)

dced_keytab_change_key

Purpose Changes a key (server password) in both a key table and in the security registry

Synopsis
#include
<dce/dced.h>

voiddced_keytab_change_key(
dced_binding_handle_tdced_bh,
uuid_t * keytab_uuid,
dced_key_t * key,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

keytab_uuid Specifies the UUIDdceduses to identify the key table in which the key
is to be changed.

Input/Output

key Specifies the new key. Some fields are modified bydced.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_change_key()routine updates a key in both the key table on a
specific host and in the security registry. Managembent applications change keys

275

DCE 1.2.2 Application Development Reference

dced_keytab_change_key(3dce)

remotely with this routine. (Servers can change their own keys locally with the
sec_key_mgmt_change_key()routine.)

The security registry needs a copy of a server’s current key, so that during the
authentication process, it can encrypt tickets that only a server with that key can
later decrypt. When a management application callsdced_keytab_change_key(),
dced first tries to make the modification in the security registry, and, if successful,
it then modifies the key in the key table. The old key is not really replaced, but
a new version and key is established for all new authenticated communication.
The old version is maintained in the key table (and registry too) for a time, so
that existing clients with valid tickets can still communicate with the server. The
old key is removed depending on the local cell’s change policy and whether the
server callssec_key_mgmt_garbage_collect()to purge its old keys explicitly, or calls
sec_key_mgmt_manage_key()to purge them implicitly.

When more than one server shares the same principal identity, the servers use the
same key. If you need to change the same key in more than one key table, use
decd_keytab_change_key()for one change and then use thedced_keytab_add_key()
routine for all others.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

276

DCE Routines

dced_keytab_change_key(3dce)

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_key_version_mismatch

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_authn_unavailable

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_version_exists

sec_key_mgmt_e_not_implemented

sec_key_mgmt_e_unauthorized

sec_rgy_object_not_found

sec_rgy_server_unavailable

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_keytab_add_key(3dce), sec_key_mgmt_change_key(3sec).

Books:DCE 1.2.2 Application Development Guide.

277

DCE 1.2.2 Application Development Reference

dced_keytab_create(3dce)

dced_keytab_create

Purpose Creates a key table with a list of keys (server passwords) in a new file on a specific
host

Synopsis
#include
<dce/dced.h>

voiddced_keytab_create(
dced_binding_handle_tdced_bh,
dced_entry_t * keytab_entry,
dced_key_list_t * keys,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

Input/Output

keytab_entrySpecifies thekeytab entry to create fordced .

keys Specifies the list of keys to be written to the key table file.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_create()routine creates a new key table file on a specific host,
and it generates the associatedkeytab service entry indced. This routine is used by

278

DCE Routines

dced_keytab_create(3dce)

management applications to remotely create a key table. Servers typically create their
own key table locally using thesec_key_mgmt_set_key()routine. However, if several
servers on different hosts share the same principal, each host requires a local copy of
the key table.

If a key table that you want to add to thekeytab service already exists on the host,
you can add it to the service by callingdced_entry_add(). This routine creates a new
keytab service entry by associating the existing key table file with a new UUID in
dced.

Prior to calling the dced_keytab_create() routine, the application must have
established a validdced binding handle to thekeytab service by calling either the
dced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

279

DCE 1.2.2 Application Development Reference

dced_keytab_create(3dce)

error_status_ok

db_s_bad_header_type

db_s_bad_index_type

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_import_already_exists

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_key_unsupported

sec_key_mgmt_e_key_version_exists

sec_key_mgmt_e_unauthorized

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_add(3dce), sec_key_mgmt_set_key(3sec).

Books:DCE 1.2.2 Application Development Guide.

280

DCE Routines

dced_keytab_delete(3dce)

dced_keytab_delete

Purpose Deletes a key table file from a specific host

Synopsis
#include
<dce/dced.h>

voiddced_keytab_delete(
dced_binding_handle_tdced_bh,
uuid_t * keytab_uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

keytab_uuid Specifies the UUID of thekeytab entry and associated key table to be
deleted.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_delete()routine deletes a key table (file) from a specific host and
removes the associated entry from thekeytab service of that host’sdced. A key
table is a file containing a list of server keys (passwords). This routine is used by
management applications to remotely delete a key table.

281

DCE 1.2.2 Application Development Reference

dced_keytab_delete(3dce)

To remove individual keys from a remote key table, use the
dced_keytab_remove_key()routine. If you only want to make the key table
inaccessible remotely (viadced), but not to delete it, use thedced_entry_remove()
routine. This routine only removes the key table’skeytab entry fromdced.

Prior to calling the dced_keytab_delete() routine, the application must have
established a validdced binding handle to thekeytab service by calling either the
dced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_del_failed

db_s_iter_not_allowed

db_s_key_not_found

dced_s_bad_binding

dced_s_cant_remove_storage_file

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_remove(3dce), dced_keytab_remove_key(3dce).

Books:DCE 1.2.2 Application Development Guide.

282

DCE Routines

dced_keytab_get_next_key(3dce)

dced_keytab_get_next_key

Purpose Returns a key from a cached list and advances the cursor in the list

Synopsis
#include
<dce/dced.h>

voiddced_keytab_get_next_key(
dced_keytab_cursor_tcursor,
dced_key_t ** key,
error_status_t * status);

Parameters
Input/Output

cursor Specifies the cursor that points to a key, and returns the cursor advanced
to the next key in the list.

Output

key Returns the current key to which thecursor points.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_get_next_key()routine obtains the current key to which the key-
list cursor points. This routine is commonly used in a loop to traverse a key table’s
keys. The keys are returned in an undetermined order. Prior to using this routine in the
loop, the application must calldced_keytab_initialize_cursor()to obtain the key list
and establish the beginning of the cursor. When the application is finished traversing
the key list, it should calldced_keytab_release_cursor()to release the resources
allocated.

283

DCE 1.2.2 Application Development Reference

dced_keytab_get_next_key(3dce)

Management applications usedced_keytab_get_next_key()to remotely access a
server’s individual keys. Servers usesec_key_mgmt_get_next_key()to access their
own local keys individually.

You can also use thedced_object_read()routine to read an entire key table. You
might usedced_object_read()if your application needs to bind to and read data for
other host services (srvrconf, srvrexec, or hostdata) in addition to data for thekeytab
service.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_no_more_entries

Related Information

Functions:dced_keytab_initialize_cursor(3dce),
dced_keytab_release_cursor(3dce), dced_object_read(3dce),
sec_key_mgmt_get_next_key(3sec).

Books:DCE 1.2.2 Application Development Guide.

284

DCE Routines

dced_keytab_initialize_cursor(3dce)

dced_keytab_initialize_cursor

Purpose Obtains a list of keys from a key table and sets a cursor at the beginning of the list

Synopsis
#include
<dce/dced.h>

voiddced_keytab_initialize_cursor(
dced_binding_handle_tdced_bh,
uuid_t * keytab_uuid,
dced_keytab_cursor_t *cursor,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

keytab_uuid Specifies thekeytab entry dced associates with a key table.

Output

cursor Returns the cursor that is used to traverse the list of keys.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_initialize_cursor()routine obtains the complete list of keys from a
remote key table and sets a cursor at the beginning of the cached list keys. In order to
minimize the security risks of keys exposed to the network, the entire set of keys are
encrypted and transferred in one remote procedure call rather than individually or in

285

DCE 1.2.2 Application Development Reference

dced_keytab_initialize_cursor(3dce)

chunks. The cursor is then used in subsequent calls todced_keytab_get_next_key()to
obtain individual keys. When the application is finished traversing the key list, it should
call dced_keytab_release_cursor()to release the resources previously allocated.

Management applications use dced_keytab_initialize_cursor() and
its associated routines to remotely access server keys. Servers use
sec_key_mgmt_initialize_cursor() and its associated routines to manage
their own keys locally.

Prior to calling thedced_keytab_initialize_cursor() routine, the application must
have established a validdced binding handle to thekeytab service by calling either
the dced_binding_create()or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_unauthorized

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_keytab_get_next_key(3dce), dced_keytab_release_cursor(3dce),
sec_key_mgmt_initialize_cursor(3sec).

Books:DCE 1.2.2 Application Development Guide.

286

DCE Routines

dced_keytab_release_cursor(3dce)

dced_keytab_release_cursor

Purpose Releases the resources of a cursor that traverses a key table’s list of keys (server
passwords)

Synopsis
#include
<dce/dced.h>

voiddced_keytab_release_cursor(
dced_keytab_cursor_t *cursor,
error_status_t * status);

Parameters
Input/Output

cursor Specifies the cursor for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_release_cursor()routine releases the cursor and resources
initially set by the dced_keytab_initialize_cursor() routine and used by the
dced_keytab_get_next_key()routine.

Prior to calling this routine, the application must have first established
a valid dced binding handle by calling eitherdced_binding_create() or
dced_binding_from_rpc_binding() , and then the application must have called the
dced_keytab_initialize_cursor()routine.

287

DCE 1.2.2 Application Development Reference

dced_keytab_release_cursor(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

Related Information

Functions:dced_keytab_get_next_key(3dce),
dced_keytab_initialize_cursor(3dce).

Books:DCE 1.2.2 Application Development Guide.

288

DCE Routines

dced_keytab_remove_key(3dce)

dced_keytab_remove_key

Purpose Removes a key (server password) from a specified key table on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_keytab_remove_key(
dced_binding_handle_tdced_bh,
uuid_t * keytab_uuid,
dced_key_t * key,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thekeytab service on a specific
host.

keytab_uuid Specifies the UUIDdcedmaintains to identify the key table from which
the key is to be removed.

key Specifies the key to be removed from the key table.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_keytab_remove_key()routine removes a key from a key table (file) on a
specific host. The key table is specified with akeytab entry UUID from the host’s
dced . Management applications usedced_keytab_remove_key()to remotely remove

289

DCE 1.2.2 Application Development Reference

dced_keytab_remove_key(3dce)

server keys from key tables. Typically, servers delete their own keys from their local
key tables implicitly by callingsec_key_mgmt_manage_key(), or explicitly by calling
sec_key_mgmt_delete_key(). Applications can delete an entire key table file using
the dced_keytab_delete()routine.

Prior to calling this routine, the application must have established a validdced
binding handle to thekeytab service by calling either thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dced_s_bad_binding

dced_s_need_privacy

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_unauthorized

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_keytab_delete(3dce), sec_key_mgmt_delete_key(3sec).

Books:DCE 1.2.2 Application Development Guide.

290

DCE Routines

dced_list_get(3dce)

dced_list_get

Purpose Returns the list of data entries maintained by adced service on a specific host

Synopsis
#include <dce/dced.h>

void dced_list_get(
dced_binding_handle_tdced_bh,
dced_entry_list_t * list,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

Output

list Returns a list of data entries for the service.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedced_list_get()routine obtains all the data entries for adcedservice on a specific
host. The list of data entries obtained is not the actual data. Each entry contains a
UUID, name, description, and storage tag that describes where the data is located
(for example, a filename or memory location). Call thedced_list_release()routine
when your application is finished with the entry list to release resources allocated
with dced_list_get()routine.

If a service’s entry list is small, it may be efficient to obtain the entire list
using thedced_list_get() routine, because this guarantees that the list is obtained

291

DCE 1.2.2 Application Development Reference

dced_list_get(3dce)

with one remote procedure call. However, to make your application scalable, use
the dced_initialize_cursor() , dced_entry_get_next(), and dced_release_cursor()
routines, because if an entry list is very large, it may be more efficient (or even
necessary) to obtain the list in chunks with more than one remote procedure call.

Prior to calling this routine, the application must have established a
valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

In the following example, adced binding is obtained from a service type and an
existing RPC binding handle. The list of entries for the service is obtained with the
dced_list_get()routine and each entry’s name and description are displayed.

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++)

display(&entries); /* application specific */

dced_list_release(dced_bh, &entries, &status);

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

292

DCE Routines

dced_list_get(3dce)

error_status_ok

dced_s_bad_binding

dced_s_no_memory

dced_s_no_support

sec_acl_invalid_permission

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_initialize_cursor(3dce), dced_list_release(3dce).

Books:DCE 1.2.2 Application Development Guide.

293

DCE 1.2.2 Application Development Reference

dced_list_release(3dce)

dced_list_release

Purpose Releases the resources for a list of entries of adced service

Synopsis
#include
<dce/dced.h>

voiddced_list_release(
dced_binding_handle_tdced_bh,
dced_entry_list_t * list,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

InputOutput

list Specifies a list of data entries for the service.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedced_list_release()routine releases the resources allocated for a list of data entries
previously retrieved by thedced_list_get()routine.

Prior to calling this routine, the application must have first established a
valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called thedced_list_get()routine.

294

DCE Routines

dced_list_release(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_list_get(3dce).

Books:DCE 1.2.2 Application Development Guide.

295

DCE 1.2.2 Application Development Reference

dced_object_read(3dce)

dced_object_read

Purpose Reads a data item of adced service on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_object_read(
dced_binding_handle_tdced_bh,
uuid_t * entry_uuid,
void ** data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

entry_uuid Specifies the UUID of thedced service’s data entry associated with the
data item.

Output

data Returns the data read. The data returned is one of the following
structures, depending on the service:

Service Data Type Returned

hostdata sec_attr_t

srvrconf server_t

srvrexec server_t

keytab dced_key_list_t

296

DCE Routines

dced_object_read(3dce)

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_object_read()routine reads the data for a specified entry of adcedservice.
When the application is done with the data, it should call thedced_objects_release()
routine with a value of 1 for thecountparameter.

The valid services for which you can read data includehostdata , srvrconf,
srvrexec, andkeytab. These host services each have a list of data entries maintained
by dced. The entries do not contain the actual data, but contain the data’s
identity and an indicator of the location of the data item. Thehostdata service
also has thedced_hostdata_read()routine to read data, and thekeytab service
has a series of routines that traverse over the keys in a key table. (See the
dced_keytab_initialize_cursor()routine.) Thesecvaland endpoint services do not
have data items to read with this routine.

Applications can also read the data for all entries of a service using one call to
dced_objects_read_all().

Prior to reading the actual data, an application commonly obtains the entries to read
using the series of cursor routines that begin withdced_entry_initialize_cursor().

Prior to calling thedced_object_read()routine, the application must have established
a valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine.

Examples

The following example creates adced binding to adced service based on a service
type and host in an RPC binding handle. The example then obtains the service’s entry
list and reads the data associated with each entry.

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh,

&status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++) {

dced_object_read(dced_bh, &entries.list[i].id, &data, &status);

297

DCE 1.2.2 Application Development Reference

dced_object_read(3dce)

.

.

.

dced_objects_release(dced_bh, 1, data, &status);

}

.

.

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

298

DCE Routines

dced_object_read(3dce)

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

dced_s_not_found

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_unauthorized

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_hostdata_read(3dce), dced_initialize_cursor(3dce),
dced_keytab_initialize_cursor(3dce), dced_objects_read_all(3dce),
dced_objects_release(3dce).

Books:DCE 1.2.2 Application Development Guide.

299

DCE 1.2.2 Application Development Reference

dced_object_read_all(3dce)

dced_object_read_all

Purpose Reads all the data for a service ofdced on specific host

Synopsis
#include
<dce/dced.h>

voiddced_object_read_all(
dced_binding_handle_tdced_bh,
unsigned32 *count,
void ** data_list,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

Output

count Returns the count of the number of data items read.

data_list Returns the list of data items read. The data returned is an array of one
of the following types, depending on the service:

Service Data Type of Array Returned

hostdata sec_attr_t

srvrconf server_t

srvrexec server_t

keytab dced_key_list_t

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

300

DCE Routines

dced_object_read_all(3dce)

Description

The dced_object_read_all()routine reads all the data for a specified host service
on a specific host. When the application is done with the data, it should call the
dced_objects_release()routine. Applications can also read individual data objects for
a service using thedced_object_read()routine.

The valid services for which you can read data includehostdata , srvrconf, srvrexec,
andkeytab.

Prior to calling the dced_object_read_all() routine, the application must have
established a validdced binding handle by calling either thedced_binding_create()
or dced_binding_from_rpc_binding() routine.

Examples

The following example reads and displays all the data for a particulardced service.

dced_binding_handle_t dced_bh;

dced_string_t host_service;

void *data_list;

unsigned32 count;

error_status_t status;

dced_binding_create(host_service, dced_c_binding_syntax_default,

&dced_bh, &status);

dced_object_read_all(dced_bh, &count, &data_list, &status);

display(host_service, count, &data_list); /* application specific */

dced_objects_release(dced_bh, count, data_list, &status);

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

301

DCE 1.2.2 Application Development Reference

dced_object_read_all(3dce)

error_status_ok

db_s_bad_index_type

db_s_key_not_found

dce_cf_e_file_open

dce_cf_e_no_match

dce_cf_e_no_mem

dced_s_bad_binding

dced_s_need_privacy

dced_s_no_memory

dced_s_no_support

dced_s_not_found

rpc_s_binding_has_no_auth

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

sec_key_mgmt_e_authn_invalid

sec_key_mgmt_e_key_unavailable

sec_key_mgmt_e_unauthorized

sec_s_no_memory

uuid_s_bad_version

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_object_read(3dce), dced_objects_release(3dce).

Books:DCE 1.2.2 Application Development Guide.

302

DCE Routines

dced_objects_release(3dce)

dced_objects_release

Purpose Releases the resources allocated for data read from adced service

Synopsis
#include
<dce/dced.h>

voiddced_objects_release(
dced_binding_handle_tdced_bh,
unsigned32count,
void * data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for adced service on a specific host.

count Specifies the number of data items previously read and now to be
released.

Input/Output

data Specifies the data for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_objects_release()routine releases the resources allocated when data for
dced is read. Applications should calldced_objects_release()when finished with
data allocated by the followingdced API routines:

303

DCE 1.2.2 Application Development Reference

dced_objects_release(3dce)

• dced_object_read_all()

• dced_object_read()

• dced_hostdata_read()

If the data being released was read by usingdced_object_read_all() , the count
returned from this routine is used as input to thedced_objects_release()routine. If the
data being released was read by usingdced_object_read()or dced_hostdata_read(),
the countvalue required as input for thedced_objects_release()routine is1.

Examples

In the following example, a binding is created to adced service on some host for a
service that stores data, and the service’s entry list is obtained. For each entry, the
data is read, displayed, and released.

dced_binding_handle_t dced_bh;

dced_entry_list_t entries;

unsigned32 i;

void *data;

error_status_t status;

dced_binding_create(host_service, dced_c_binding_syntax_default,

&dced_bh, &status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++) {

dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);

display(host_service, 1, &data); /* application specific */

dced_objects_release(dced_bh, 1, data, &status);

.

.

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

304

DCE Routines

dced_objects_release(3dce)

error_status_ok

dced_s_bad_binding

dced_s_no_support

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_hostdata_read(3dce), dced_object_read(3dce), dced_object_read_all(3dce).

Books:DCE 1.2.2 Application Development Guide.

305

DCE 1.2.2 Application Development Reference

dced_release_cursor(3dce)

dced_release_cursor

Purpose Releases the resources of a cursor which traverses adced service’s list of entries

Synopsis
#include
<dce/dced.h>

voiddced_release_cursor(
dced_cursor_t * cursor,
error_status_t * status);

Parameters
Input/Output

cursor Specifies the cursor for which resources are released.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_release_cursor()routine releases the resources of a cursor initially set by
the dced_initilalize_cursor() routine and used by thedced_entry_get_next()routine.

Prior to calling this routine, the application must have first established a
valid dced binding handle by calling either thedced_binding_create() or
dced_binding_from_rpc_binding() routine, and then the application must have
called thedced_initialize_cursor() routine.

306

DCE Routines

dced_release_cursor(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

Related Information

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_entry_get_next(3dce), dced_initialize_cursor(3dce).

Books:DCE 1.2.2 Application Development Guide.

307

DCE 1.2.2 Application Development Reference

dced_secval_start(3dce)

dced_secval_start

Purpose Starts the security validation service of a specific host’sdced

Synopsis
#include
<dce/dced.h>

voiddced_secval_start(
dced_binding_handle_tdced_bh,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thesecvalservice on a specific
host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_secval_start()routine starts the security validation service of a specific
host’sdced. This routine is typically used by management applications.

The security validation service (secval) has two major functions:

• Maintains a login context for the host’sself identity.

• Validates and certifies to applications (usually login programs) that the DCE
security daemon (secd) is legitimate.

308

DCE Routines

dced_secval_start(3dce)

The secval program is commonly started by default whendced starts. See the
dced_secval_stop()routine for a discussion of when to use the combination of
dced_secval_stop()anddced_secval_start().

Prior to calling this routine, the application must have established a validdced
binding handle to thesecvalservice by calling either thedced_binding_create()or
dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_sv_already_enabled

sec_acl_invalid_permission

Related Information

Commands:dced(8dce), the secval(8dce)object ofdcecp.

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_secval_stop(3dce).

Books:DCE 1.2.2 Application Development Guide.

309

DCE 1.2.2 Application Development Reference

dced_secval_status(3dce)

dced_secval_status

Purpose Indicates whether or not a specific host’s security validation service ofdced is running

Synopsis
#include
<dce/dced.h>

voiddced_secval_status(
dced_binding_handle_tdced_bh,
boolean32 *secval_active,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thesecvalservice on a specific
host.

Output

secval_active
Returns a value of TRUE if the security validation service is running
and FALSE if it is not running.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_secval_status()routine sets a parameter to TRUE or FALSE depending on
whether the security validation service has been activated or deactivated.

310

DCE Routines

dced_secval_status(3dce)

Prior to calling this routine, the application must have established a validdced
binding handle to thesecvalservice by calling either thedced_binding_create()or
dced_binding_from_rpc_binding() routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

Related Information

Commands:dced(8dce), the secval(8dce)object ofdcecp.

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_secval_start(3dce), dced_secval_stop(3dce).

Books:DCE 1.2.2 Application Development Guide.

311

DCE 1.2.2 Application Development Reference

dced_secval_stop(3dce)

dced_secval_stop

Purpose Stops the security validation service of a specific host’sdced

Synopsis
#include
<dce/dced.h>

voiddced_secval_stop(
dced_binding_handle_tdced_bh,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thesecvalservice on a specific
host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_secval_stop()routine stops the security validation service (secval) of a
specific host’sdced. This routine is typically used by management applications.

The secvalservice is commonly started by default whendcedstarts. The main use of
dced_secval_stop()anddced_secval_start()is to force a refresh of the host principal
credentials. This is the only way to force certain registry changes made by the host
principal (such asgroupsetmembership) to be seen by processes running on the host.

You can easily stop and then start thesecvalservice with the following operations:

312

DCE Routines

dced_secval_stop(3dce)

dcecp -c secval deactivate

dcecp -c secval activate

It is not a good idea to remove the machine principalself credentials for an extended
period of time because processes running asself will fail in their attempts to perform
authenticated operations.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_sv_not_enabled

sec_acl_invalid_permission

Related Information

Commands:dced(8dce), the secval(8dce)object ofdcecp.

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_secval_start(3dce).

Books:DCE 1.2.2 Application Development Guide.

313

DCE 1.2.2 Application Development Reference

dced_secval_validate(3dce)

dced_secval_validate

Purpose Validates that thesecdused by a specific host is legitimate

Synopsis
#include
<dce/dced.h>

voiddced_secval_validate(
dced_binding_handle_tdced_bh,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedced binding handle for thesecvalservice on a specific
host.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_secval_validate()routine validates and certifies for a specific host that the
DCE security daemon (secd)is legitimate. Typically, a login program uses the security
validation service when it uses the security service’s login API (routines that begin
with sec_login). However, if a management application trusts some remote host, it
can usedced_secval_validate()to validatesecd, without logging in to the host.

314

DCE Routines

dced_secval_validate(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

ept_s_not_registered

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_rpcd_comm_failure

rpc_s_wrong_kind_of_binding

sec_login_s_no_current_context

Related Information

Commands:dced(8dce), the secval(8dce)object ofdcecp.

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_secval_start(3dce), sec_login_* (3sec)API.

Books:DCE 1.2.2 Application Development Guide.

315

DCE 1.2.2 Application Development Reference

dced_server_create(3dce)

dced_server_create

Purpose Creates a DCE server’s configuration data for the host’sdced

Synopsis
#include <dce/dced.h>

void dced_server_create(
dced_binding_handle_tdced_bh,
server_t * conf_data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrconf service on a specific
host.

Input/Output

conf_data Specifies the configuration data for the server. Thedced_intro(3dce)
reference page describes theserver_t structure.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_server_create()routine creates a server’s configuration data. This routine
is used by management installation applications to remotely (or locally) establish the
data used to control how a DCE server starts. However, this routine does not create
the program or start it. Since this activity is typically part of a server’s installation,
you can also usedcecp’s server createoperation.

316

DCE Routines

dced_server_create(3dce)

Management applications use thedced_object_read()routine to read the configuration
data.

Prior to callingdced_server_create(), the application must have established a valid
dced binding handle to thesrvrconf service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding().

Examples

The following example shows how to fill in some of the fields of aserver_t structure
and then create the configuration indced.

dced_binding_handle_t dced_bh;

server_t conf;

error_status_t status;

dced_binding_create("srvrconf@hosts/katharine",

dced_c_binding_syntax_default,

&dced_bh,

&status);

/* setup a server_t structure */

uuid_create(&conf.id, &status);

conf.name = (dced_string_t)"application";

conf.entryname = (dced_string_t)"/.:/development/new_app";

conf.services.count = 1;

/* service_t structure(s) */

conf.services.list = malloc(conf.services.count * sizeof(service_t));

rpc_if_inq_id(application_v1_0_c_ifspec,

&(conf.services.list[0].ifspec), &status);

conf.services.list[0].ifname = (dced_string_t)"application";

conf.services.list[0].annotation = (dced_string_t)"A new application";

conf.services.list[0].flags = 0;

/* server_fixedattr_t structure */

conf.fixed.startupflags = server_c_startup_explicit |

server_c_startup_on_failure;

conf.fixed.flags = 0;

conf.fixed.program = (dced_string_t)"/usr/users/bin/new_app";

dced_server_create(dced_bh, &conf, &status);

.

317

DCE 1.2.2 Application Development Reference

dced_server_create(3dce)

.

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_header_type

db_s_bad_index_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_already_exists

dced_s_bad_binding

dced_s_name_missing

sec_acl_invalid_permission

Related Information

dcecp objects:server(8dce).

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_object_read(3dce).

Books:DCE 1.2.2 Application Development Guide.

318

DCE Routines

dced_server_delete(3dce)

dced_server_delete

Purpose Deletes a DCE server’s configuration data fromdced

Synopsis
#include <dce/dced.h>

void dced_server_delete(
dced_binding_handle_tdced_bh,
uuid_t * conf_uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrconf service on a specific
host.

conf_uuid Specifies the UUID thatdceduses to identify the server’s configuration
data to be deleted.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_server_delete()routine deletes a server’s configuration data from the
server’sdced. This routine removes a server from DCE control by making it incapable
of starting viadced. The routine does not delete the program from disk nor does it
affect the server if the server is currently running.

319

DCE 1.2.2 Application Development Reference

dced_server_delete(3dce)

Prior to usingdced_server_delete(), the server configuration data must be created by
an administrator using thedcecp server createoperation or by an application using
dced_server_create().

Prior to calling dced_server_delete(), the application must have established a valid
dced binding handle to thesrvrconf service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding().

Examples

In the following example, adcedbinding is created to the server configuration service
on a host, and then an inquiry is made as to the UUID associated with a particular
server. Thedced_server_delete()routine is then used to delete the configuration.

dced_binding_handle_t dced_bh;

dced_string_t server_name;

uuid_t srvrconf_id;

error_status_t status;

name_server(&server_name); /* application specific */

dced_binding_create("srvrconf@hosts/katharine",

dced_c_binding_syntax_default, &dced_bh, &status);

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);

dced_server_delete(dced_bh, &srvrconf_id, &status);

dced_binding_free(dced_bh, &status);

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

320

DCE Routines

dced_server_delete(3dce)

error_status_ok

db_s_bad_index_type

db_s_del_failed

db_s_iter_not_allowed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects:server(8dce).

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_server_create(3dce), dced_server_modify_attributes(3dce).

Books:DCE 1.2.2 Application Development Guide.

321

DCE 1.2.2 Application Development Reference

dced_server_disable_if(3dce)

dced_server_disable_if

Purpose Disables a service (RPC interface) provided by a specific server on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_server_disable_if(
dced_binding_handle_tdced_bh,
uuid_t * exec_uuid,
rpc_if_id_t * interface,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrexecservice on a specific
host.

exec_uuid Specifies the UUID thatdced uses to identify the running server.

interface Specifies the RPC interface identifier that represents the service to be
disabled. The interface identifier is generated whenidl compiles an
interface definition file. The interface identifier is anrpc_if_id_tstructure
that contains the interface UUID (uuid) of type uuid_t, and numbers
of type unsigned16 representing the major (vers_major) and minor
(vers_minor) version numbers for the interface.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

322

DCE Routines

dced_server_disable_if(3dce)

Description

The dced_server_disable_if()routine disables a service provided by a server on a
specific host. A service is represented by an RPC interface identifier. Management
applications use this routine to remotely disable an interface so it is inaccessible by
clients, without completely stopping the entire server.

When a server starts and initializes itself, it must call thedce_server_register()routine
to enable all of its services. The server can then disable its own individual services by
using dce_server_disable_service(). This routine unregisters the service’s interface
from the RPC runtime and marks the interface as disabled in the endpoint map. As
an alternative, a management application can usedced_server_disable_if()to disable
individual services. However, this routine only affects the endpoint map indced by
marking the interface as disabled and does not affect the server’s runtime.

A management application can reenable a service again by calling the
dced_server_enable_if() routine. (Servers reenable their own services using
the dce_server_enable_if()routine.)

Prior to callingdced_server_disable_if(), the application must have established a valid
dced binding handle to thesrvrexec service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding() .

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

323

DCE 1.2.2 Application Development Reference

dced_server_disable_if(3dce)

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects:server(8dce).

Functions:dce_server_disable_if(3dce), dce_server_enable_if(3dce),
dce_server_register(3dce), dced_binding_create(3dce),
dced_binding_from_rpc_binding(3dce), dced_server_enable_if(3dce).

Books:DCE 1.2.2 Application Development Guide.

324

DCE Routines

dced_server_enable_if(3dce)

dced_server_enable_if

Purpose Enables a service (RPC interface) of a specific server on a specific host

Synopsis
#include
<dce/dced.h>

voiddced_server_enable_if(
dced_binding_handle_tdced_bh,
uuid_t * exec_uuid,
rpc_if_id_t * interface,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrexecservice on a specific
host.

exec_uuid Specifies the UUID thatdced uses to identify the running server.

interface Specifies the RPC interface identifier that represents the service to
be enabled. The interface identifier is generated whenidl compiles
an interface definition file. The interface identifier is a structure
that contains the interface UUID (interface->uuid), and the major
(interface->vers_major) and minor (interface->vers_minor) version
numbers for the interface.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

325

DCE 1.2.2 Application Development Reference

dced_server_enable_if(3dce)

Description

The dced_server_enable_if()routine enables a service (or reenables a previously
disabled service) that a specific server provides. Management applications use this
routine. A service is represented by an RPC interface identifier.

When a server starts and initializes itself, it typically calls thedce_server_register()
routine to enable all of its services. The services can then be disabled and
reenabled, as needed. A server enables and disables its own services by using
the routines dce_server_enable_service()and dce_server_disable_service(). A
management application enables and disables a remote server’s service using the
routinesdced_server_enable_if()anddced_server_disable_if().

The dce_server* routines affect both the RPC runtime and the local endpoint map
by registering (or unregistering) with the runtime and setting a flag for the interface
in the the endpoint map as enabled (or disabled). Thedced_server_enable_if()and
dced_server_disable_if()routines affect only the remote endpoint map by setting the
flag.

Prior to callingdced_server_enable_if(), the application must have established a valid
dced binding handle to thesrvrexec service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding().

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

326

DCE Routines

dced_server_enable_if(3dce)

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects:server(8dce).

Functions:dce_server_disable_if(3dce), dce_server_enable_if(3dce),
dce_server_register(3dce), dced_binding_create(3dce),
dced_binding_from_rpc_binding(3dce), dced_server_disable_if(3dce).

Books:DCE 1.2.2 Application Development Guide.

327

DCE 1.2.2 Application Development Reference

dced_server_modify_attributes(3dce)

dced_server_modify_attributes

Purpose Modifies attributes for a DCE server’s configuration data

Synopsis
#include
<dce/dced.h>

voiddced_server_modify_attributes(
dced_binding_handle_tdced_bh,
uuid_t * conf_uuid,
dced_attr_list_t * data,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrconf service on a specific
host.

conf_uuid Specifies the UUID thatdced uses to identify a server’s configuration
data to be modified.

data Specifies the attributes to be modified.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_server_modify_attributes() routine replaces a server’s attributes of its
configuration data maintained bydced on a specific host. This routine is typically
called after a configuration is created with thedced_server_create()routine.

328

DCE Routines

dced_server_modify_attributes(3dce)

A server’s configuration is manipulated in aserver_t data structure, and the
dced_server_modify_attributes() routine affects only theattributes member of
this structure. To change other server configuration data, you must first delete the
configuration by usingdced_server_delete(), and then create the configuration again
by usingdced_server_create().

Prior to calling dced_server_modify_attributes() , the application must have
established a validdced binding handle to thesrvrconf service by calling either
dced_binding_create()or dced_binding_from_rpc_binding() .

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_index_type

db_s_iter_not_allowed

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_not_found

sec_acl_invalid_permission

Related Information

dcecp Objects:server(8dce).

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_object_read(3dce).

Books:DCE 1.2.2 Application Development Guide

329

DCE 1.2.2 Application Development Reference

dced_server_start(3dce)

dced_server_start

Purpose Starts a DCE-configured server on a specified host

Synopsis
#include <dce/dced.h>

void dced_server_start(
dced_binding_handle_tdced_bh,
uuid_t * conf_uuid,
dced_attr_list_t * attributes,
uuid_t * exec_uuid,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrconf service on a specific
host.

conf_uuid Specifies the UUID thatdced uses to identify the server to start. If the
value input is that of a server that is already running,dced starts a new
instance.

attributes Specifies the configuration attributes to use to start the server. If the
value is NULL, the default configuration defined indced is used.

Input/Output

exec_uuid Specifies a new UUID fordced to use to identify the running server.
If a nil UUID is input, a new UUID is created and returned. If the
value input is that of a server that is already running,dced starts a new
instance and returns a new value.

330

DCE Routines

dced_server_start(3dce)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dced_server_start()routine starts DCE-configured servers on a specific remote
host (or the local host). The configuration data is stored in an object in thesrvrconf
service ofdced. When the server starts,dceduses the server configuration object and
creates a server execution object in thesrvrexec service. A server execution object
consists of data that describes the executing server.

Management applications create the configuration data by using the
dced_server_create()and thedced_object_read()routine to read the configuration
or execution data.

Prior to calling dced_server_start(), the application must have established a valid
dced binding handle to thesrvrconf service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding().

Examples

The following example starts a configured server using a nil UUID as input for the
executing server.

dced_binding_handle_t conf_bh;

dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;

error_status_t status;

dced_binding_create("srvrconf@hosts/patrick",

dced_c_binding_syntax_default,

&conf_bh,

&status);

dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);

uuid_create_nil(&srvrexec_id, &status);

dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id,

&status);

331

DCE 1.2.2 Application Development Reference

dced_server_start(3dce)

.

.

.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

db_s_bad_header_type

db_s_iter_not_allowed

db_s_key_not_found

db_s_readonly

db_s_store_failed

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

dced_s_sc_cant_fork

dced_s_sc_invalid_attr_type

dced_s_sc_open_file_failed

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

Commands:server(8dce).

Functions:dced_binding_create(3dce), dced_binding_from_rpc_binding(3dce),
dced_server_create(3dce), dced_server_stop(3dce).

Books:DCE 1.2.2 Application Development Guide.

332

DCE Routines

dced_server_stop(3dce)

dced_server_stop

Purpose Stops a DCE-configured server running on a specific host

Synopsis
#include <dce/dced.h>

void dced_server_stop(
dced_binding_handle_tdced_bh,
uuid_t * exec_uuid,
srvrexec_stop_method_tmethod,
error_status_t * status);

Parameters
Input

dced_bh Specifies thedcedbinding handle for thesrvrexecservice on a specific
host.

exec_uuid Specifies a UUID thatdced uses to identify the running server. If the
value input isdced_g_uuid_all_servers, dced attempts to stop all the
DCE servers running on that host.

method Specifies the methoddceduses to stop a server. A method is represented
by one of the following values:

srvrexec_stop_rpc
Uses the rpc_mgmt_stop_server_listening() routine.
This is the cleanest way to stop a server, because it waits
for outstanding remote procedure calls to finish before
making the server’srpc_server_listen()routine return.

srvrexec_stop_soft
Uses a soft local host mechanism (such as theTERM
signal in UNIX)

333

DCE 1.2.2 Application Development Reference

dced_server_stop(3dce)

srvrexec_stop_hard
Uses a hard local host mechanism (such as theKILL
signal in UNIX)

srvrexec_stop_error
Uses a mechanism that saves the program state (such as
the ABORT signal in UNIX)

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Thedced_server_stop()routine stops DCE-configured servers on specific hosts. When
the server is completely stopped and no longer a running process,dced deletes the
associated execution data it maintained.

Administrators use thedcecp operations server create and server start to
configure and start a server, and management applications use the associated
dced_server_create()anddced_server_start()routines.

Prior to calling dced_server_stop(), the application must have established a valid
dced binding handle to thesrvrexec service by calling eitherdced_binding_create()
or dced_binding_from_rpc_binding().

Cautions

Using the valuedced_g_uuid_all_serversfor the exec_uuidparameter causesdced
to shutdown all serversincluding itself.

Examples

The following example obtainsdced binding handles to the server configuration and
execution services ofdcedon the hostpatrick . The example then checks to see if the
server is running by seeing ifdced has a UUID and entry for the executing server.
However, the server may be in the process of starting up or stopping, so the example
also checks to be sure the instance UUID of the running server matches the UUID of
the configuration for that server. If there is a match, the server is running. Finally, the

334

DCE Routines

dced_server_stop(3dce)

example stops the server by callingdced_server_stop()with the srvrexec_stop_rpc
parameter.

dced_binding_handle_t conf_bh, exec_bh;

dced_string_t server_name;

void *data;

server_t *exec_ptr;

uuid_t srvrconf_id, srvrexec_id;

error_status_t status;

.

.

.

dced_binding_create("srvrconf@hosts/patrick",

dced_c_binding_syntax_default,

&conf_bh,

&status);

dced_binding_create("srvrexec@hosts/patrick",

dced_c_binding_syntax_default,

&exec_bh,

&status);

/* is server running? */

dced_inq_id(exec_bh, server_name, &srvrexec_id, &status);

/* also check to be sure server is not coming up or going down */

dced_object_read(exec_bh, &srvrexec_id, &data, &status);

exec_ptr = (server_t*)data;

dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);

if(uuid_equal(&srvrconf_id,

&exec_ptr->exec_data.tagged_union.running_data.instance,

&status)) {

dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_rpc, &status);

}

dced_objects_release(exec_bh, 1, data, &status);

dced_binding_free(conf_bh, &status);

dced_binding_free(exec_bh, &status);

335

DCE 1.2.2 Application Development Reference

dced_server_stop(3dce)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

error_status_ok

dced_s_bad_binding

dced_s_no_support

dced_s_not_found

rpc_s_binding_incomplete

rpc_s_comm_failure

rpc_s_invalid_binding

rpc_s_mgmt_op_disallowed

rpc_s_unknown_if

rpc_s_wrong_kind_of_binding

sec_acl_invalid_permission

uuid_s_bad_version

Related Information

dcecp Objects:server(8dce).

Functions:dced_binding_create(3dce), dce d_binding_from_rpc_binding(3dce),
dced_server_create(3dce) dced_server_start(3dce),
rpc_mgmt_stop_server_listening(3rpc).

Books:DCE 1.2.2 Application Development Guide.

336

DCE Routines

DCE_SVC_DEBUG(3dce)

DCE_SVC_DEBUG

Purpose Macro to output a serviceability debug message

Synopsis
#include <dce/dce.h>

DCE_SVC_DEBUG((
dce_svc_handle_thandle,
const unsigned32table_index,
unsigned32debug_level,
char * format,
...));

Parameters
Input

handle The caller’s serviceability handle.

table_index The message’s subcomponent name (defined in thesamsfile).

debug_level Serviceability debug level for the message.

format The message string.

. . . Format arguments, if any.

Description

The DCE_SVC_DEBUG macro is used to generate debugging output. Because it is
a macro that takes a variable number of arguments, the entire parameter list must be
enclosed in two sets of parentheses. Thehandle and table_indexparameters are as
described fordce_svc_printf().

337

DCE 1.2.2 Application Development Reference

DCE_SVC_DEBUG(3dce)

In contrast to the normal operation of the serviceability interface,DCE_SVC_DEBUG
requires the caller to specify the message as a string literal in the call, rather than by
defining it in the application’ssamsfile specifying the message by a message ID.

The debug_levelargument indicates the level of detail associated with this message
and must be in the rangesvc_c_debug1to svc_c_debug9.

Thus the value ofdebug_levelassociates the message with one of nine levels, and
whether or not the message is actually generated at run time will depend on what
debugging level has been set for the application. The level can be set by the application
itself by a call todce_svc_debug_set_levels()or dce_svc_debug_routing(). The level
can also be set by the value of an environment variable or a serviceability routing file.
Seesvcroute(5dce)for further information.

The significance of the various levels is application-defined, but in general the higher
levels (numbers) imply more detail in debugging output.

The format and . . . parameters are passed directly tofprintf() or its equivalent.

Related Information

Functions: dce_svc_debug_routing(3dce), dce_svc_debug_set_levels(3dce),
dce_svc_printf(3dce), dce_svc_routing(3dce).

Files: svcroute(5dce).

338

DCE Routines

DCE_SVC_DEBUG_ATLEAST(3dce)

DCE_SVC_DEBUG_ATLEAST

Purpose Macro to test a component’s serviceability debug level

Synopsis
#include
<dce/dce.h>

DCE_SVC_DEBUG_ATLEAST(
dce_svc_handle_thandle,
const unsigned32table_index,
unsigned32debug_level);

Parameters
Input

handle The caller’s serviceability handle.

table_index The subcomponent name (defined in thesamsfile) whose debug level
is being tested.

debug_level The debug level being tested.

Description

If serviceability debug code was enabled (by definingDCE_DEBUG)during
compilation, the DCE_SVC_DEBUG_ATLEAST and DCE_SVC_DEBUG_IS
macros can be used to test the debug level of a subcomponent (specified by
table_index) for the specifiedhandle. DCE_SVC_DEBUG_ATLEAST tests whether
the debug level is at least at the specified level.DCE_SVC_DEBUG_IS tests for an
exact match with the specified level. In either case, the specified level should be a
number between 1 and 9.

339

DCE 1.2.2 Application Development Reference

DCE_SVC_DEBUG_ATLEAST(3dce)

Related Information

Functions:DCE_SVC_DEBUG(3dce), DCE_SVC_DEBUG_IS(3dce),
DCE_SVC_LOG(3dce).

340

DCE Routines

DCE_SVC_DEBUG_IS(3dce)

DCE_SVC_DEBUG_IS

Purpose Macro to test a component’s serviceability debug level

Synopsis
#include
<dce/dce.h>

DCE_SVC_DEBUG_IS(
dce_svc_handle_thandle,
const unsigned32table_index,
unsigned32debug_level);

Parameters
Input

handle The caller’s serviceability handle.

table_index The name of the subcomponent name (defined in thesamsfile) whose
debug level is to be tested.

debug_level The serviceability debug level being tested.

Description

If serviceability debug code was enabled (by definingDCE_DEBUG)during
compilation, the DCE_SVC_DEBUG_ATLEAST and DCE_SVC_DEBUG_IS
macros can be used to test the debug level of a subcomponent (specified by
table_index) for the specifiedhandle. DCE_SVC_DEBUG_ATLEAST tests whether
the debug level is at least at the specified level.DCE_SVC_DEBUG_IS tests for an
exact match with the specified level. In either case, the specified level should be a
number between 1 and 9.

341

DCE 1.2.2 Application Development Reference

DCE_SVC_DEBUG_IS(3dce)

Related Information

Functions:DCE_SVC_DEBUG(3dce), DCE_SVC_DEBUG_ATLEAST(3dce),
DCE_SVC_LOG(3dce).

342

DCE Routines

DCE_SVC_DEFINE_HANDLE(3dce)

DCE_SVC_DEFINE_HANDLE

Purpose Macro to create a serviceability handle

Synopsis
#include
<dce/dce.h>

DCE_SVC_DEFINE_HANDLE(
dce_svc_handle_thandle,
dce_svc_subcomp_t *table,
const idl_char * component_name);

Parameters
Input

table A message table structure (defined in a header file generated bysams
during compilation).

component_name
The serviceability name of the component, defined in thecomponent
field of thesamsfile.

Output

handle A serviceability handle structure that will be filled in by the macro.

Description

There are two ways to register a serviceability table preparatory to using the
serviceability interface in an application. The first is to create a global variable using
the DCE_SVC_DEFINE_HANDLE macro. The first parameter is the serviceability
handle, the second is a pointer to the component’s message table, and the third is
the name of the serviceability component (application). The macro creates a skeleton

343

DCE 1.2.2 Application Development Reference

DCE_SVC_DEFINE_HANDLE(3dce)

variable that will be completed the first time the handle is used. This can be useful
when writing library code that has no explicit initialization routine.

The second method is to call thedce_svc_register()routine.

Related Information

Functions:dce_svc_register(3dce).

344

DCE Routines

DCE_SVC_LOG(3dce)

DCE_SVC_LOG

Purpose Macro to output a binary form of a serviceability debug message

Synopsis
#include <dce/dce.h>

DCE_SVC_LOG((
dce_svc_handle_thandle,
const unsigned32table_index,
unsigned32debug_level,
const unsigned32messageid,
char * format,
. . .));

Parameters
Input

handle The caller’s serviceability handle.

table_index The message’s subcomponent name (defined in thesamsfile).

debug_level Serviceability debug level for the message.

messageid A message ID, defined in the message’scodefield in thesamsfile.

format A message format specifier string (used ifmessageidcannot be found).

. . . Any format arguments for the message string.

Description

TheDCE_SVC_LOG macro is used to generate debugging output based on a message
defined in an application’ssamsfile (in this respect it is unlikeDCE_SVC_DEBUG,
in which the message is specified as a literal string parameter). Because it is a macro
that takes a variable number of arguments, the entire parameter list must be enclosed

345

DCE 1.2.2 Application Development Reference

DCE_SVC_LOG(3dce)

in two sets of parentheses. Thehandleand table_indexparameters are as described
for dce_svc_printf().

The message can be specified in either one of two ways: bymessageid, identifying a
message defined in the normal way in the application’ssamsfile; or as a string literal
paramater (format). The format string is used only if the specifiedmessageidcannot
be found.

DCE_SVC_LOG generates a record in the serviceability binary format, not a
conventional serviceability message as such. The complete message text is not
normally written; instead, only the message ID (themessageidspecified in the
macro parameter), and its format arguments (if any) are written. When the binary
log is read (seesvcdumplog(8dce)), the text of the message is reconstructed from
the application’s installed message catalog. However, if the original message was
generated from theformat argument, then the entire message text is written to the
binary record.

The debug_levelargument indicates the level of detail associated with the message
and must be in the rangesvc_c_debug1to svc_c_debug9.

Thus the value ofdebug_levelassociates the message with one of nine levels, and
whether or not the message is actually generated at run time will depend on what
debugging level has been set for the application. The level can be set by the application
itself by a call todce_svc_debug_set_levels()or dce_svc_debug_routing(). The level
can also be set by the value of an environment variable or a serviceability routing file.
Seesvcroute(5dce)for further information.

The significance of the various levels is application-defined, but in general the higher
levels (numbers) imply more detail in debugging output.

Related Information

Functions: DCE_SVC_DEBUG(3dce), DCE_SVC_DEBUG_ATLEAST(3dce),
DCE_SVC_DEBUG_IS(3dce).

346

DCE Routines

svcroute(5dce)

svcroute

Purpose Routing control file for DCE serviceability messages

Description

The filesvc/routing specifies routing for serviceability messages. The default location
for svc/routing is the DCE local data directory (typically/opt/dcelocal/var). The
environment variableDCE_SVC_ROUTING_FILE , if set, specifies a different
location for the file.

The file consists of a series of text lines. Blank lines and lines that begin with a#
(number sign) character are ignored when the file’s contents are interpreted. All other
lines must consist of either three or four fields, each separated by a: (colon). Leading
whitespace is ignored.

Lines consisting of three fields specify routing for nondebug serviceability messages.
Their format is as follows:

sev:out_form:dest[;out_form:dest. . .] [GOESTO:{ sev| comp}]

The sev(severity) field specifies one of the following message severities:

FATAL Fatal error exit: An unrecoverable error (such as database corruption) has
occurred and will probably require manual intervention to be corrected.
The program usually terminates immediately after such an error.

ERROR Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred. The
program will continue operation, although some functions or services
may no longer be available. This severity level may also be used to
indicate that a particular request or action could not be completed.

WARNING Correctible error: An error occurred that was automatically corrected
(for example, a configuration file was not found, and default values
were used instead). This severity level may also be used to indicate a
condition thatmaybe an error if the effects are undesirable (for example,
removing all files as a side-effect of removing a nonempty directory).
This severity level may also be used to indicate a condition that, if not

347

DCE 1.2.2 Application Development Reference

svcroute(5dce)

corrected, will eventually result in an error (for example, a printer’s
running low on paper).

NOTICE Informational notice: A significant routine major event has occurred; for
example, a server has started.

NOTICE_VERBOSE
Verbose information notice: A significant routine event has occurred;
for example, a directory entry was removed.

The out_form(output form) field specifies how the messages of a given severity level
should be processed, and must be one of the following:

BINFILE Write these messages as a binary log entry to the specified file.

TEXTFILE Write these messages as human-readable text.

FILE Equivalent toTEXTFILE .

DISCARD Do not record messages of this severity level.

STDOUT Write these messages as human-readable text to standard output.

STDERR Write these messages as human-readable text to standard error.

Files written asBINFILE s can be read and manipulated with a set of log file functions
(for more information, seedce_svc_log_open()and dce_svc_log_get()), or by the
svcdumplogcommand (seesvcdumplog(1dce)).

The out_formspecifier may be followed by a two-number specifier of the form

.gens.count

where

gens is an integer that specifies the number of files (that is, generations) that
should be kept

count is an integer specifying how many entries (that is, messages) should be
written to each file

The multiple files are named by appending a dot to the simple specified name,dest,
followed by the current generation number. When the number of entries in a file
reaches the maximum specified bycount, the file is closed, the generation number
is incremented, and the next file is opened. When the maximum generation number
files have been created and filled, the generation number is reset to 1, and a new file
with that number is created and written to (thus overwriting the already-existing file

348

DCE Routines

svcroute(5dce)

with the same name), and so on, as long as messages are being written. Thus the files
wrap around to their beginning, and the total number of log files never exceedsgens,
although messages continue to be written as long as the program continues writing
them. Note that when a program starts, the generation starts at 1.

The dest (destination) field specifies where the message should be sent, and is
a pathname. The field can be left blank if theout_form specified isDISCARD,
STDOUT, or STDERR. The field can also contain a%ld string in the filename
which, when the file is written, will be replaced by the process ID of the program that
wrote the message(s). Filenames maynot contain colons or periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as semicolon-separatedout_form:deststrings.

For example, the following strings specify that

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files
located in the/tmp directory. No more than 50 files should be written, and there
should be no more than 100 messages written to each file. The files will have
names of the form/tmp/logprocess_id.n, whereprocess_idis the process ID of
the program originating the messages, andn is the generation number of the file
(expressed with only as many digits as needed).

FATAL:TEXTFILE:/dev/console

WARNING:DISCARD:–

NOTICE:STDERR:-;BINFILE.50.100:/tmp/log%ld

The GOESTO specifier allows messages for the severity whose routing specification
it appears in to be routed to the same destination (and in the same output form)
as those for the other, specified, severity level (or component name). For example,
the following specification means thatWARNING messges should show up in three
places: twice tostderr, and then once to the file/tmp/foo:

WARNING:STDERR:;GOESTO: FATAL

FATAL:STDERR:;FILE:/tmp/foo

349

DCE 1.2.2 Application Development Reference

svcroute(5dce)

Note that aGOESTO specification should be the last element in a multidestination
route specification.

Routing Serviceability Messages by Environment Variable

Serviceability message routing can also be specified by the values of certain
environment variables. If environment variables are used, the routings they specify
will override any conflicting routes specified by the routing file.

The routes are specified on the basis of severity level by putting the desired routing
instructions in their corresponding environment variables:

• SVC_FATAL

• SVC_ERROR

• SVC_WARNING

• SVC_NOTICE

• SVC_NOTICE_VERBOSE

Each variable should contain a single string in the format

out_form:dest[;out_form:dest. . .]

whereout_formanddesthave the same meanings and form as in the preceding syntax
line. Multiple routings can be specified with semicolon-separated additional substrings
specifying the additional routes, as shown.

Setting Serviceability Debug Message Levels

Nine serviceability debug message levels (specified respectively by single digits from
1 to 9) are available. The precise meaning of each level varies with the application or
DCE component in question, but the general notion is that ascending to a higher level
(for example, from2 to 3) increases the level of informational detail in the messages.

Setting debug messaging at a certain level means that all levels up to and including
the specified level are enabled. For example, if the debug level is set at4, then the1,
2, and3 levels are enabled as well.

The general format for the debug level specifier string is

component:sub_comp.level,sub_comp.level,. . .

where

350

DCE Routines

svcroute(5dce)

component is the three-character serviceability component code for the program
whose debug message levels are being specified.

sub_comp.level
is a serviceability subcomponent name, followed (after a dot) by a
debug level (expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

If there are multiple subcomponents and it is desired to set the debug level to be
the same for all of them, then the following form will do this (where* specifies all
subcomponents):

component:*. level

Routing Serviceability Debug Messages

Routing for serviceability debug messages can be specified in either of the two
following ways:

• By the contents of theSVC_COMP_DBG environment variable (whereCOMP
is the code of the component, converted to upper case, whose debug message
routing is to be set).

• By the contents of the/svc/routing routing file.

The routing is specified by the contents of a specially-formatted string that is either
included in the value of the environment variable or the contents of the routing file.

The general format for the debug routing specifier string is

component:sub_comp.level,. . .:out_form:dest[;out_form:dest. . .] \
[GOESTO:{ sev | component}]

wherecomponent, sub_comp.level, out_form, dest, and sevhave the same meanings
as defined earlier in this reference page.

For example, consider the following string value:

hel:*.4:STDERR:-;TEXTFILE:/tmp/hel_debug_log_%ld

This value, when assigned to theSVC_HEL_DBG environment variable, would set
the debug level and routing for allhel subcomponents. A debug level of4 is specified,
and all debug messages of that level or lower will be written both to standard error,

351

DCE 1.2.2 Application Development Reference

svcroute(5dce)

and in text form to the file/tmp/hel_debug_log_process_ID, whereprocess_IDis the
process ID of the program writing the messages.

352

Chapter 2
DCE Threads

353

DCE 1.2.2 Application Development Reference

thr_intro(3thr)

thr_intro

Purpose Introduction to DCE Threads

Description

DCE Threads is a set of routines that you can call to create a multithreaded
program. Multithreading is used to improve the performance of a program. Routines
implemented by DCE Threads that are not specified by Draft 4 of the POSIX 1003.4a
standard are indicated by an_np suffix on the name. These routines are new primitives.

The threads routines sort alphabetically in the reference pages; however, the tables in
this introduction list the routines in the following functional groups:

• Threads routines

• Routines that implicitly initialize threads package

• Attributes object routines

• Mutex routines

• Condition variable routines

• Thread-specific data routines

• Threads cancellation routines

• Threads priority and scheduling routines

• Cleanup routines

• The atfork() routine

• Signal handling routines

Threads Routines

Routine Description

pthread_create() Creates a thread

354

DCE Threads

thr_intro(3thr)

pthread_delay_np() Causes a thread to wait for a period of
time

pthread_detach() Marks a thread for deletion

pthread_equal() Compares one thread identifier to
another thread identifier

pthread_exit() Terminates the calling thread

pthread_join() Causes the calling thread to wait for the
termination of a specified thread

pthread_once() Calls an initialization routine to be
executed only once

pthread_self() Obtains the identifier of the current
thread

pthread_yield() Notifies the scheduler that the current
thread will release its processor to other
threads of the same or higher priority

The following DCE Threads routines will, when called, implicitly perform any
necessary initialization of the threads package. Thus any application using DCE
Threads should call one of the following routines before calling any other threads
routines, in order to ensure that the package is properly initialized.

Routines that Implicitly Perform Threads Initialization

Routine Description

pthread_attr_create() Creates a thread attributes object

pthread_create() Creates a thread

pthread_self() Obtains the identifier of the current
thread

pthread_setprio() Changes the scheduling priority
attribute

pthread_getprio() Obtains the scheduling priority attribute

pthread_setscheduler() Changes the scheduling policy attribute

pthread_getscheduler() Obtains the scheduling policy attribute

355

DCE 1.2.2 Application Development Reference

thr_intro(3thr)

pthread_once() Calls an initialization routine to be
executed only once

pthread_keycreate() Generates a unique thread-specific data
key value

pthread_mutexattr_create() Creates a mutex attributes object

pthread_mutex_init() Creates a mutex

pthread_condattr_create() Creates a condition variable attributes
object

pthread_cond_init() Creates a condition variable

pthread_testcancel() Requests delivery of a pending cancel

pthread_setcancel() Enables or disables the current thread’s
general cancelability

pthread_setasynccancel() Enables or disables the current thread’s
asynchronous cancelability

pthread_delay_np() Causes a thread to wait for a period of
time

Attributes Object Routines

Routine Description

pthread_attr_create() Creates a thread attributes object

pthread_attr_delete() Deletes a thread attributes object

pthread_attr_getinheritsched() Obtains the inherit scheduling attribute

pthread_attr_getprio() Obtains the scheduling priority attribute

pthread_attr_getsched() Obtains the scheduling policy attribute

pthread_attr_getstacksize() Obtains the stacksize attribute

pthread_attr_setinheritsched() Changes the inherit scheduling attribute

pthread_attr_setprio() Changes the scheduling priority
attribute

pthread_attr_setsched() Changes the scheduling policy attribute

pthread_attr_setstacksize() Changes the stacksize attribute

356

DCE Threads

thr_intro(3thr)

pthread_condattr_create() Creates a condition variable attributes
object

pthread_condattr_delete() Deletes a condition variable attributes
object

pthread_mutexattr_create() Creates a mutex attributes object

pthread_mutexattr_delete() Deletes a mutex attributes object

pthread_mutexattr_getkind_np() Obtains the mutex type attribute

pthread_mutexattr_setkind_np() Changes the mutex type attribute

Mutex Routines

Routine Description

pthread_lock_global_np() Locks a global mutex

pthread_mutex_destroy() Deletes a mutex

pthread_mutex_init() Creates a mutex

pthread_mutex_lock() Locks a mutex and waits if the mutex is
already locked

pthread_mutex_trylock() Locks a mutex and returns if the mutex
is already locked

pthread_mutex_unlock() Unlocks a mutex

pthread_unlock_global_np() Unlocks a global mutex

Condition Variable Routines

Routine Description

pthread_cond_broadcast() Wakes all threads waiting on a
condition variable

pthread_cond_destroy() Deletes a condition variable

pthread_cond_init() Creates a condition variable

pthread_cond_signal() Wakes one thread waiting on a
condition variable

357

DCE 1.2.2 Application Development Reference

thr_intro(3thr)

pthread_cond_timedwait() Causes a thread to wait for a specified
period of time for a condition variable
to be signaled or broadcast

pthread_cond_wait() Causes a thread to wait for a condition
variable to be signaled or broadcast

pthread_get_expiration_np() Obtains a value representing a desired
expiration time

Thread-Specific Data

Routine Description

pthread_getspecific() Obtains the thread-specific data
associated with the specified key

pthread_keycreate() Generates a unique thread-specific data
key value

pthread_setspecific() Sets the thread-specific data associated
with the specified key

Threads Cancellation Routines

Routine Description

pthread_cancel() Allows a thread to request termination

pthread_setasynccancel() Enables or disables the current thread’s
asynchronous cancelability

pthread_setcancel() Enables or disables the current thread’s
general cancelability

pthread_signal_to_cancel_np() Cancels a thread if a signal is received
by the process

pthread_testcancel() Requests delivery of a pending cancel

Threads Priority and Scheduling Routines

Routine Description

pthread_getprio() Obtains the current priority of a thread

358

DCE Threads

thr_intro(3thr)

pthread_getscheduler() Obtains the current scheduling policy of
a thread

pthread_setprio() Changes the current priority of a thread

pthread_setscheduler() Changes the current scheduling policy
and priority of a thread

Cleanup Routines

Routine Description

pthread_cleanup_pop() Removes a cleanup handler from the
stack

pthread_cleanup_push() Establishes a cleanup handler

The atfork() Routine

Routine Description

atfork() Arranges for fork cleanup handling

Signal Handling Routines

Routine Description

sigaction() Specifies action to take on receipt of
signal

sigpending() Examines pending signals

sigprocmask() Sets the current signal mask

sigwait() Causes thread to wait for asynchronous
signal

359

DCE 1.2.2 Application Development Reference

datatypes(3thr)

datatypes

Purpose Data types used by DCE Threads

Description

The DCE Threads data types can be divided into two broad categories: primitive
system and application level.

Primitive System Data Types

The first category consists of types that represent structures used by (and internal to)
DCE Threads. These types are defined as being primitive system data types.

• pthread_attr_t

• pthread_cond_t

• pthread_condattr_t

• pthread_key_t

• pthread_mutex_t

• pthread_mutexattr_t

• pthread_once_t

• pthread_t

Although applications must know about these types, passing them in and receiving
them from various DCE Threads routines, the structures themselves are opaque: they
cannot be directly modified by applications, and they can be manipulated only (and
only in some cases) through specific DCE Threads routines. (Thepthread_key_t type
is somewhat different from the others in this list, in that it is essentially a handle to
a thread-private block of memory requested by a call topthread_keycreate().)

Application Level Data Types

The second category of DCE Threads data consists of types used to describe objects
that originate in the application:

• pthread_addr_t

360

DCE Threads

datatypes(3thr)

• pthread_destructor_t

• pthread_initroutine_t

• pthread_startroutine_t

• sigset_t

All of the above types, with the exception of the last, are various kinds of memory
addresses that must be passed by callers of certain DCE Threads routines. These types
are extensions to POSIX. They permit DCE Threads to be used on platforms that are
not fully ANSI C compliant. While being extensions to permit the use of compilers
that are not ANSI C compatible, they are fully portable data types.

The last data type,sigset_t, exhibits properties of both primitive system and application
level data types. While objects of this type originate in the application, the data type
is opaque. A set of functions is provided to manipulate objects of this type.

For further information, see the following descriptions, listed in sorted order.

Data Type Descriptions

Following are individual descriptions of each of the DCE Threads data types. The
descriptions include the routines where the data type is modified, such as, created,
changed or deleted/destroyed, but not the routines referencing or using them that do
not change them.

• pthread_addr_t

A miscellaneous data type representing an address value that must be passed by
the caller of various threads routines. Usually thepthread_addr_t value is the
address of an area which contains various parameters to be made accessible to
an implicitly called routine. For example, when thepthread_create() routine is
called, one of the parameters passed is apthread_addr_t value that contains an
address which will be passed to thestart_routinewhich the thread is being created
to execute; presumably the routine will extract necessary parameters from the area
referenced by this address.

• pthread_attr_t

Threads attribute object, used to specify the attributes of a thread when it
is created by a call topthread_create(). The object is created by a call to
pthread_attr_create(), then modified as desired by calls to

— pthread_attr_setinheritsched()

361

DCE 1.2.2 Application Development Reference

datatypes(3thr)

— pthread_attr_setprio()

— pthread_attr_setsched()

— pthread_attr_setstacksize()

(Note that there are_getversions of these four calls, which can be used to retrieve
the respective values.)

• pthread_cond_t

Data type representing a threads condition variable. The variable is created by a
call to pthread_cond_init(), and destroyed by a call topthread_cond_destroy().

• pthread_condattr_t

Data type representing a threads condition variable attributes object.
Created by a call topthread_condattr_create(). The range of possible
modifications to a condition variable attributes object is not great: creation (via
pthread_condattr_create()) and deletion (viapthread_condattr_delete()) are
all. The object is created with default values.

• pthread_destructor_t

Data type, passed in a call topthread_keycreate(), representing the address of
a procedure to be called to destroy a data value associated with a unique thread-
specific data key value when the thread terminates.

• pthread_initroutine_t

Data type representing the address of a procedure that performs a one-time
initialization for a thread. It is passed in a call topthread_once(). The
pthread_once() routine, when called, executes the initialization routine. The
specified routine isguaranteed to be executed only once, even though the
pthread_once()call occurs in multithreaded code.

• pthread_key_t

Data type representing a thread-specific data key, created by a call to
pthread_keycreate(). The key is an address of memory. Associating a static
block of memory with a specific thread in this way is an alternative to using
stack memory for the thread. The key is destroyed by the application-supplied
procedure specified by the routine specified using thepthread_destructor_t data
type in the call topthread_keycreate().

• pthread_mutex_t

362

DCE Threads

datatypes(3thr)

Data type representing a mutex object. It is created by a call to
pthread_mutex_init() and destroyed by a call topthread_mutex_destroy().
Care should be taken not to attempt to destroy a locked object.

• pthread_mutexattr_t

Data type representing an attributes object which defines the characteristics of a
mutex. Created by a call topthread_mutexattr_create(); modified by calls to
pthread_mutexattr_setkind_np() (which allows you to specify fast, recursive,
or nonrecursive mutexes); passed topthread_mutex_init() to create the mutex
with the specified atttributes. The only other modification allowed is to destroy
the mutex attributes object, withpthread_mutexattr_delete().

• pthread_once_t

A data structure that defines the characteristics of the one-time initialization
routine executed by callingpthread_once(). The structure is opaque to the
application, and cannot be modified by it, but it must be explicitly declared by the
client code, and initialized by a call topthread_once_init(). Thepthread_once_t
type must not be an array.

• pthread_startroutine_t

Data type representing the address of the application routine or other routine,
whatever it is, that a new thread is created to execute as its start routine.

• pthread_t

Data type representing a thread handle, created by a call topthread_create().
The thread handle is used thenceforth to identify the thread to calls such as
pthread_cancel(), pthread_detach(), pthread_equal()(to which two handles are
passed for comparison).

• sigset_t

Data type representing a set of signals. It is always an integral or structure type.
If a structure, it is intended to be a simple structure, such as, a set of arrays as
opposed to a set of pointers. It is opaque in that a set of functions called the
sigsetopsprimitives is provided to manipulate signal sets. They operate on signal
set data objects addressable by the application, not on any objects known to the
system.

The primitives aresigemptyset()andsigfillset() which initialize the set as either
empty or full, sigaddset()and sigdelset()which add or delete signals from the
set, andsigismember()which permits the application to check if a object (signal)

363

DCE 1.2.2 Application Development Reference

datatypes(3thr)

of type sigset_tis a member of the signal set. Applications must call at least one
of the initialization primitives at least once for each object of typesigset_tprior
to any other use of that object (signal set).

The object, or objects, represented by this data type when used bysigaction() is
(are) used in conjunction with asigaction structure by thesigaction function to
describe an action to be taken with (a) specifiedsigset_t-type object(s).

364

DCE Threads

atfork(3thr)

atfork

Purpose Arranges for fork cleanup handling

Synopsis
#include <pthread.h>

void atfork(
void (*user_state)(),
void (*pre_fork)(),
void (*parent_fork)(),
void (*child_fork)());

Parameters

user_state Pointer to the user state that is passed to each routine.

pre_fork Routine to be called before performing the fork.

parent_fork Routine to be called in the parent after the fork.

child_fork Routine to be called in the child after the fork.

Description

The atfork() routine allows you to register three routines to be executed at different
times relative to a fork. The different times and/or places are as follows:

• Just prior to the fork in the parent process.

• Just after the fork in the parent process.

• Just after the fork in the created (child) process.

Use these routines to clean up just prior tofork (), to set up afterfork (), and to perform
locking relative tofork (). You are allowed to provide one parameter to be used in
conjunction with all the routines. This parameter must beuser_state.

365

DCE 1.2.2 Application Development Reference

atfork(3thr)

Return Values

The atfork () routine does not return a value. Instead, an exception is raised if there
is insufficient table space to record the handler addresses.

Related Information

Functions:fork(2) .

366

DCE Threads

exceptions(3thr)

exceptions

Purpose Exception handling in DCE Threads

Description

DCE Threads provides the following two ways to obtain information about the status
of a threads routine:

• The routine returns a status value to the thread.

• The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the preceding
two methods of receiving status. These two methods cannot be used together in the
same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be reported to the
thread by setting the external variableerrno to an error code and returning a function
value of−1. The threads reference pages document this status value-returning interface.
However, an alternative to status values is provided by DCE Threads in the exception-
returning interface.

Access to exceptions from the C language is defined by the macros in the
exc_handling.hfile. The exc_handling.hheader file is included automatically when
you includepthread_exc.h.

To use the exception-returning interface, replace#include <pthread.h> with the
following include statement:

#include <dce/pthread_exc.h>

The following example shows the syntax for handling exceptions:

TRY

try_block

367

DCE 1.2.2 Application Development Reference

exceptions(3thr)

[CATCH (exception_name)

handler_block]...

[CATCH_ALL

handler_block]

ENDTRY

368

DCE Threads

pthread_attr_create(3thr)

pthread_attr_create

Purpose Creates a thread attributes object

Synopsis
#include <pthread.h>

int pthread_attr_create(
pthread_attr_t * attr);

Parameters

attr Thread attributes object created.

Description

The pthread_attr_create() routine creates a thread attributes object that is used to
specify the attributes of threads when they are created. The attributes object created
by this routine is used in calls topthread_create().

The individual attributes (internal fields) of the attributes object are set to default
values. (The default values of each attribute are discussed in the descriptions of the
following services.) Use the following routines to change the individual attributes:

• pthread_attr_setinheritsched()

• pthread_attr_setprio()

• pthread_attr_setsched()

• pthread_attr_setstacksize()

When an attributes object is used to create a thread, the values of the individual
attributes determine the characteristics of the new thread. Attributes objects perform
in a manner similar to additional parameters. Changing individual attributes does not
affect any threads that were previously created using the attributes object.

369

DCE 1.2.2 Application Development Reference

pthread_attr_create(3thr)

Return Values

If the function fails, -1 is returned anderrno may be set to one of the following
values:

Return Error Description

−1 [ENOMEM] Insufficient memory exists to create the
thread attributes object.

−1 [EINVAL] The value specified byattr is invalid.

Related Information

Functions:pthread_attr_delete(3thr), pthread_attr_setinheritsched(3thr),
pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr),
pthread_attr_setstacksize(3thr), pthread_create(3thr).

370

DCE Threads

pthread_attr_delete(3thr)

pthread_attr_delete

Purpose Deletes a thread attributes object

Synopsis
#include <pthread.h>

int pthread_attr_delete(
pthread_attr_t * attr);

Parameters

attr Thread attributes object deleted.

Description

The pthread_attr_delete() routine deletes a thread attributes object and gives
permission to reclaim storage for the thread attributes object. Threads that were created
using this thread attributes object are not affected by the deletion of the thread attributes
object.

The results of calling this routine are unpredictable if the value specified by theattr
parameter refers to a thread attributes object that does not exist.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified by
attr is invalid.

371

DCE 1.2.2 Application Development Reference

pthread_attr_delete(3thr)

Related Information

Functions:pthread_attr_create(3thr).

372

DCE Threads

pthread_attr_getinheritsched(3thr)

pthread_attr_getinheritsched

Purpose Obtains the inherit scheduling attribute

Synopsis
#include <pthread.h>

int pthread_attr_getinheritsched(
pthread_attr_t attr);

Parameters

attr Thread attributes object whose inherit scheduling attribute is obtained.

Description

The pthread_attr_getinheritsched() routine obtains the value of the inherit
scheduling attribute in the specified thread attributes object. The inherit scheduling
attribute specifies whether threads created using the attributes object inherit the
scheduling attributes of the creating thread, or use the scheduling attributes stored in
the attributes object that is passed topthread_create().

The default value of the inherit scheduling attribute is
PTHREAD_INHERIT_SCHED .

Return Values

On successful completion, this routine returns the inherit scheduling attribute value.

If the function fails,errno may be set to one of the following values:

373

DCE 1.2.2 Application Development Reference

pthread_attr_getinheritsched(3thr)

Return Error Description

Inherit scheduling
attribute

Successful completion.

−1 [EINVAL] The value specified by
attr is invalid.

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_setinheritsched(3thr),
pthread_create(3thr).

374

DCE Threads

pthread_attr_getprio(3thr)

pthread_attr_getprio

Purpose Obtains the scheduling priority attribute

Synopsis
#include <pthread.h>

int pthread_attr_getprio(
pthread_attr_t attr);

Parameters

attr Thread attributes object whose priority attribute is obtained.

Description

The pthread_attr_getprio() routine obtains the value of the scheduling priority of
threads created using the thread attributes object specified by theattr parameter.

Return Values

On successful completion, this routine returns the scheduling priority attribute value.

If the function fails,errno may be set to one of the following values:

Return Error Description

Scheduling priority
attribute

Successful completion.

−1 [EINVAL] The value specified by
attr is invalid.

375

DCE 1.2.2 Application Development Reference

pthread_attr_getprio(3thr)

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_setprio(3thr) ,
pthread_create(3thr).

376

DCE Threads

pthread_attr_getsched(3thr)

pthread_attr_getsched

Purpose Obtains the value of the scheduling policy attribute

Synopsis
#include <pthread.h>

int pthread_attr_getsched(
pthread_attr_t attr);

Parameters

attr Thread attributes object whose scheduling policy attribute is obtained.

Description

The pthread_attr_getsched()routine obtains the scheduling policy of threads created
using the thread attributes object specified by theattr parameter. The default value of
the scheduling attribute isSCHED_OTHER.

Return Values

On successful completion, this routine returns the value of the scheduling policy
attribute.

If the function fails,errno may be set to one of the following values:

Return Error Description

Scheduling policy
attribute

Successful completion.

−1 [EINVAL] The value specified by
attr is invalid.

377

DCE 1.2.2 Application Development Reference

pthread_attr_getsched(3thr)

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_setsched(3thr),
pthread_create(3thr).

378

DCE Threads

pthread_attr_getstacksize(3thr)

pthread_attr_getstacksize

Purpose Obtains the value of the stacksize attribute

Synopsis
#include <pthread.h>

long pthread_attr_getstacksize(
pthread_attr_t attr);

Parameters

attr Thread attributes object whose stacksize attribute is obtained.

Description

The pthread_attr_getstacksize()routine obtains the minimum size (in bytes) of the
stack for a thread created using the thread attributes object specified by theattr
parameter.

Return Values

On successful completion, this routine returns the stacksize attribute value.

If the function fails,errno may be set to one of the following values:

Return Error Description

Stacksize attribute Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

379

DCE 1.2.2 Application Development Reference

pthread_attr_getstacksize(3thr)

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_setstacksize(3thr),
pthread_create(3thr).

380

DCE Threads

pthread_attr_setinheritsched(3thr)

pthread_attr_setinheritsched

Purpose Changes the inherit scheduling attribute

Synopsis
#include <pthread.h>

int pthread_attr_setinheritsched(
pthread_attr_t attr,
int inherit);

Parameters

attr Thread attributes object to be modified.

inherit New value for the inherit scheduling attribute. Valid values are as
follows:

PTHREAD_INHERIT_SCHED
This is the default value. The created thread inherits the
current priority and scheduling policy of the thread calling
pthread_create().

PTHREAD_DEFAULT_SCHED
The created thread starts execution with the priority and
scheduling policy stored in the thread attributes object.

Description

The pthread_attr_setinheritsched() routine changes the inherit scheduling attribute
of thread creation. The inherit scheduling attribute specifies whether threads created
using the specified thread attributes object inherit the scheduling attributes of the
creating thread, or use the scheduling attributes stored in the thread attributes object
that is passed topthread_create().

381

DCE 1.2.2 Application Development Reference

pthread_attr_setinheritsched(3thr)

The first thread in an application that is not created by an explicit call to
pthread_create() has a scheduling policy ofSCHED_OTHER. (See the
pthread_attr_setprio() and pthread_attr_setsched()routines for more information
on valid priority values and valid scheduling policy values, respectively.)

Inheriting scheduling attributes (instead of using the scheduling attributes stored in the
attributes object) is useful when a thread is creating several helper threads—threads
that are intended to work closely with the creating thread to cooperatively solve the
same problem. For example, inherited scheduling attributes ensure that helper threads
created in a sort routine execute with the same priority as the calling thread.

Return Values

If the function fails, -1 is returned, anderrno may be set to one of the following
values:

Return Error Description

−1 [EINVAL] The value specified by
attr is invalid.

−1 [EINVAL] The value specified by
inherit is invalid.

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_getinheritsched(3thr),
pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr), pthread_create(3thr).

382

DCE Threads

pthread_attr_setprio(3thr)

pthread_attr_setprio

Purpose Changes the scheduling priority attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setprio(
pthread_attr_t * attr,
int priority);

Parameters

attr Thread attributes object modified.

priority New value for the priority attribute. The priority attribute depends on
scheduling policy. Valid values fall within one of the following ranges:

• PRI_OTHER_MIN <= priority <= PRI_OTHER_MAX (use with
the SCHED_OTHER policy)

• PRI_FIFO_MIN <= priority <= PRI_FIFO_MAX (use with the
SCHED_FIFO policy)

• PRI_RR_MIN <= priority <= PRI_RR_MAX (use with the
SCHED_RR policy)

• PRI_FG_MIN_NP <= priority <= PRI_FG_MAX_NP (use with
the SCHED_FG_NPpolicy)

• PRI_BG_MIN_NP <= priority <= PRI_BG_MAX_NP (use with
the SCHED_BG_NPpolicy)

The default priority is the midpoint betweenPRI_OTHER_MIN and
PRI_OTHER_MAX . To specify a minimum or maximum priority, use the
appropriate symbol; for example,PRI_FIFO_MIN or PRI_FIFO_MAX . To
specify a value between the minimum and maximum, use an appropriate arithmetic
expression. For example, to specify a priority midway between the minimum and

383

DCE 1.2.2 Application Development Reference

pthread_attr_setprio(3thr)

maximum for the Round Robin scheduling policy, specify the following concept
using your programming language’s syntax:

pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX + 1)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you attempt to use it.

Description

The pthread_attr_setprio() routine sets the execution priority of threads that are
created using the attributes object specified by theattr parameter.

By default, a created thread inherits the priority of the thread callingpthread_create().
To specify a priority using this routine, scheduling inheritance must be
disabled at the time the thread is created. Before calling this routine and
pthread_create(), call pthread_attr_setinheritsched() and specify the value
PTHREAD_DEFAULT_SCHED for the inherit parameter.

An application specifies priority only to express the urgency of executing the thread
relative to other threads. Priority is not used to control mutual exclusion when
accessing shared data.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is invalid.

−1 [ERANGE] One or more parameters supplied have an invalid
value.

−1 [EPERM] The caller does not have the appropriate privileges
to set the priority of the specified thread.

384

DCE Threads

pthread_attr_setprio(3thr)

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_getprio(3thr) ,
pthread_attr_setinheritsched(3thr), pthread_create(3thr).

385

DCE 1.2.2 Application Development Reference

pthread_attr_setsched(3thr)

pthread_attr_setsched

Purpose Changes the scheduling policy attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setsched(
pthread_attr_t * attr,
int scheduler);

Parameters

attr The thread attributes object modified.

scheduler The new value for the scheduling policy attribute. Valid values are as
follows:

SCHED_FIFO
First In, First Out—The highest-priority thread runs until
it blocks. If there is more than one thread with the same
priority, and that priority is the highest among other
threads, the first thread to begin running continues until it
blocks.

SCHED_RR
Round Robin—The highest-priority thread runs until it
blocks; however, threads of equal priority, if that priority
is the highest among other threads, are timesliced.
Timeslicing is a process in which threads alternate
making use of available processors.

SCHED_OTHER
Default—All threads are timesliced.SCHED_OTHER
ensures that all threads, regardless of priority, receive
some scheduling so that no thread is completely denied
execution time. (However,SCHED_OTHER threads

386

DCE Threads

pthread_attr_setsched(3thr)

can be denied execution time bySCHED_FIFO or
SCHED_RR threads.)

SCHED_FG_NP
Foreground—Same asSCHED_OTHER. Threads are
timesliced and priorities can be modified dynamically by
the scheduler to ensure fairness.

SCHED_BG_NP
Background—Ensures that all threads, regardless
of priority, receive some scheduling. However,
SCHED_BG_NP can be denied execution by
SCHED_FIFO or SCHED_RR threads.

Description

The pthread_attr_setsched()routine sets the scheduling policy of a thread that is
created by using the attributes object specified by theattr parameter. The default
value of the scheduling attribute isSCHED_OTHER.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is invalid.

−1 [EINVAL] The value specified byscheduleris invalid.

−1 [EPERM] The caller does not have the appropriate privileges to
set the scheduling policy attribute in the specified
threads attribute object.

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_getsched(3thr),
pthread_attr_setinheritsched(3thr), pthread_create(3thr).

387

DCE 1.2.2 Application Development Reference

pthread_attr_setstacksize(3thr)

pthread_attr_setstacksize

Purpose Changes the stacksize attribute of thread creation

Synopsis
#include <pthread.h>

int pthread_attr_setstacksize(
pthread_attr_t * attr,
long stacksize);

Parameters

attr Thread attributes object modified.

stacksize New value for the stacksize attribute. Thestacksizeparameter specifies
the minimum size (in bytes) of the stack needed for a thread.

Description

Thepthread_attr_setstacksize()routine sets the minimum size (in bytes) of the stack
needed for a thread created using the attributes object specified by theattr parameter.
Use this routine to adjust the size of the writable area of the stack. The default value
of the stacksize attribute is machine specific.

A thread’s stack is fixed at the time of thread creation. Only the main or initial thread
can dynamically extend its stack.

Most compilers do not check for stack overflow. Ensure that your thread stack is large
enough for anything that you call from the thread.

Return Values

If the function fails,errno may be set to one of the following values:

388

DCE Threads

pthread_attr_setstacksize(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

−1 [EINVAL] The value specified bystacksizeis
invalid.

Related Information

Functions:pthread_attr_create(3thr), pthread_attr_getstacksize(3thr),
pthread_create(3thr).

389

DCE 1.2.2 Application Development Reference

pthread_cancel(3thr)

pthread_cancel

Purpose Allows a thread to request that it or another thread terminate execution

Synopsis
#include <pthread.h>

int pthread_cancel(
pthread_t thread);

Parameters

thread Thread that receives a cancel request.

Description

The pthread_cancel() routine sends a cancel to the specified thread. A cancel is a
mechanism by which a calling thread informs either itself or the called thread to
terminate as quickly as possible. Issuing a cancel does not guarantee that the canceled
thread receives or handles the cancel. The canceled thread can delay processing the
cancel after receiving it. For instance, if a cancel arrives during an important operation,
the canceled thread can continue if what it is doing cannot be interrupted at the point
where the cancel is requested.

Because of communications delays, the calling thread can only rely on the fact that a
cancel eventually becomes pending in the designated thread (provided that the thread
does not terminate beforehand). Furthermore, the calling thread has no guarantee that
a pending cancel is to be delivered because delivery is controlled by the designated
thread.

Termination processing when a cancel is delivered to a thread is similar to
pthread_exit(). Outstanding cleanup routines are executed in the context of the target
thread, and a status of−1 is made available to any threads joining with the target
thread.

390

DCE Threads

pthread_cancel(3thr)

This routine is preferred in implementing Ada’sabort statement and any other
language (or software-defined construct) for requesting thread cancellation.

The results of this routine are unpredictable if the value specified inthread refers to
a thread that does not currently exist.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The specified thread is invalid.

−1 [ERSCH] The specified thread does not refer to a
currently existing thread.

Related Information

Functions:pthread_exit(3thr), pthread_join(3thr) , pthread_setasynccancel(3thr),
pthread_setcancel(3thr), pthread_testcancel(3thr).

391

DCE 1.2.2 Application Development Reference

pthread_cleanup_pop(3thr)

pthread_cleanup_pop

Purpose Removes the cleanup handler at the top of the cleanup stack and optionally executes
it

Synopsis
#include <pthread.h>

void pthread_cleanup_pop(
int execute);

Parameters

execute Integer that specifies whether the cleanup routine that is popped should
be executed or just discarded. If the value is nonzero, the cleanup routine
is executed.

Description

The pthread_cleanup_pop() routine removes the routine specified in
pthread_cleanup_push() from the top of the calling thread’s cleanup stack
and executes it if the value specified inexecuteis nonzero.

This routine andpthread_cleanup_push()are implemented as macros and must be
displayed as statements and in pairs within the same lexical scope. You can think of
the pthread_cleanup_push()macro as expanding to a string whose first character is
a { (left brace) andpthread_cleanup_popas expanding to a string containing the
corresponding} (right brace).

Return Values

This routine must be used as a statement.

392

DCE Threads

pthread_cleanup_pop(3thr)

Related Information

Functions:pthread_cleanup_push(3thr).

393

DCE 1.2.2 Application Development Reference

pthread_cleanup_push(3thr)

pthread_cleanup_push

Purpose Establishes a cleanup handler

Synopsis
#include <pthread.h>

void pthread_cleanup_push(
void routine,
pthread_addr_t arg);

Parameters

routine Routine executed as the cleanup handler.

arg Parameter executed with the cleanup routine.

Description

The pthread_cleanup_push()routine pushes the specified routine onto the calling
thread’s cleanup stack. The cleanup routine is popped from the stack and executed
with the arg parameter when any of the following actions occur:

• The thread callspthread_exit().

• The thread is canceled.

• The thread callspthread_cleanup_pop()and specifies a nonzero value for the
executeparameter.

This routine andpthread_cleanup_pop()are implemented as macros and must be
displayed as statements and in pairs within the same lexical scope. You can think of
the pthread_cleanup_push()macro as expanding to a string whose first character is
a { (left brace) andpthread_cleanup_pop()as expanding to a string containing the
corresponding} (right brace).

394

DCE Threads

pthread_cleanup_push(3thr)

Return Values

This routine must be used as a statement.

Related Information

Functions:pthread_cancel(3thr), pthread_cleanup_pop(3thr), pthread_exit(3thr),
pthread_testcancel(3thr).

395

DCE 1.2.2 Application Development Reference

pthread_cond_broadcast(3thr)

pthread_cond_broadcast

Purpose Wakes all threads that are waiting on a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_broadcast(
pthread_cond_t *cond);

Parameters

cond Condition variable broadcast.

Description

The pthread_cond_broadcast() routine wakes all threads waiting on a condition
variable. Calling this routine implies that data guarded by the associated mutex has
changed so that it might be possible for one or more waiting threads to proceed. If
any one waiting thread might be able to proceed, callpthread_cond_signal().

Call this routine when the associated mutex is either locked or unlocked.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bycond is invalid.

396

DCE Threads

pthread_cond_broadcast(3thr)

Related Information

Functions:pthread_cond_destroy(3thr), pthread_cond_init(3thr),
pthread_cond_signal(3thr), pthread_cond_timedwait(3thr),
pthread_cond_wait(3thr).

397

DCE 1.2.2 Application Development Reference

pthread_cond_destroy(3thr)

pthread_cond_destroy

Purpose Deletes a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_destroy(
pthread_cond_t *cond);

Parameters

cond Condition variable deleted.

Description

The pthread_cond_destroy() routine deletes a condition variable. Call this routine
when a condition variable is no longer referenced. The effect of calling this routine is
to give permission to reclaim storage for the condition variable.

The results of this routine are unpredictable if the condition variable specified incond
does not exist.

The results of this routine are also unpredictable if there are threads waiting for the
specified condition variable to be signaled or broadcast when it is deleted.

Return Values

If the function fails,errno may be set to one of the following values:

398

DCE Threads

pthread_cond_destroy(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bycond is invalid.

−1 [EBUSY] A thread is currently executing a
pthread_cond_timedwait() routine or
pthread_cond_wait() on the condition variable
specified incond.

Related Information

Functions:pthread_cond_broadcast(3thr), pthread_cond_init(3thr),
pthread_cond_signal(3thr), pthread_cond_timedwait(3thr),
pthread_cond_wait(3thr).

399

DCE 1.2.2 Application Development Reference

pthread_cond_init(3thr)

pthread_cond_init

Purpose Creates a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t attr);

Parameters

cond Condition variable that is created.

attr Condition variable attributes object that defines the characteristics of the
condition variable created. If you specifypthread_condattr_default,
default attributes are used.

Description

The pthread_cond_init() routine creates and initializes a condition variable. A
condition variable is a synchronization object used in conjunction with a mutex. A
mutex controls access to shared data; a condition variable allows threads to wait for
that data to enter a defined state. The state is defined by a Boolean expression called
a predicate.

A condition variable is signaled or broadcast to indicate that a predicate might have
become true. The broadcast operation indicates that all waiting threads need to resume
and reevaluate the predicate. The signal operation is used when any one waiting thread
can continue.

If a thread that holds a mutex determines that the shared data is not in the correct state
for it to proceed (the associated predicate is not true), it waits on a condition variable
associated with the desired state. Waiting on the condition variable automatically

400

DCE Threads

pthread_cond_init(3thr)

releases the mutex so that other threads can modify or examine the shared data. When
a thread modifies the state of the shared data so that a predicate might be true, it
signals or broadcasts on the appropriate condition variable so that threads waiting for
that predicate can continue.

It is important that all threads waiting on a particular condition variable at any time
hold thesamemutex. If they do not, the behavior of the wait operation is unpredictable
(an implementation can use the mutex to control internal access to the condition
variable object). However, it is legal for a client to store condition variables and
mutexes and later reuse them in different combinations. The client must ensure that
no threads use the condition variable with the old mutex. At any time, an arbitrary
number of condition variables can be associated with a single mutex, each representing
a different predicate of the shared data protected by that mutex.

Condition variables are not owned by a particular thread. Any associated storage is
not automatically deallocated when the creating thread terminates.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EAGAIN] The system lacks the necessary resources to
initialize another condition variable.

−1 [EINVAL] Invalid attributes object.

−1 [ENOMEM] Insufficient memory exists to initialize the
condition variable.

Related Information

Functions:pthread_cond_broadcast(3thr), pthread_cond_destroy(3thr),
pthread_cond_signal(3thr), pthread_cond_timedwait(3thr),
pthread_cond_wait(3thr).

401

DCE 1.2.2 Application Development Reference

pthread_cond_signal(3thr)

pthread_cond_signal

Purpose Wakes one thread that is waiting on a condition variable

Synopsis
#include <pthread.h>

int pthread_cond_signal(
pthread_cond_t *cond);

Parameters

cond Condition variable signaled.

Description

Thepthread_cond_signal()routine wakes one thread waiting on a condition variable.
Calling this routine implies that data guarded by the associated mutex has changed so
that it is possible for a single waiting thread to proceed. Call this routine when any
thread waiting on the specified condition variable might find its predicate true, but
only one thread needs to proceed.

The scheduling policy determines which thread is awakened. For policies
SCHED_FIFO andSCHED_RR a blocked thread is chosen in priority order.

Call this routine when the associated mutex is either locked or unlocked.

Return Values

If the function fails,errno may be set to one of the following values:

402

DCE Threads

pthread_cond_signal(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bycond is
invalid.

Related Information

Functions:pthread_cond_broadcast(3thr), pthread_cond_destroy(3thr),
pthread_cond_init(3thr), pthread_cond_timedwait(3thr),
pthread_cond_wait(3thr).

403

DCE 1.2.2 Application Development Reference

pthread_cond_timedwait(3thr)

pthread_cond_timedwait

Purpose Causes a thread to wait for a condition variable to be signaled or broadcast

Synopsis
#include <pthread.h>

int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
struct timespec *abstime);

Parameters

cond Condition variable waited on.

mutex Mutex associated with the condition variable specified incond.

abstime Absolute time at which the wait expires, if the condition has not been
signaled or broadcast. (See thepthread_get_expiration_np() routine,
which you can use to obtain a value for this parameter.)

Description

The pthread_cond_timedwait() routine causes a thread to wait until one of the
following occurs:

• The specified condition variable is signaled or broadcast.

• The current system clock time is greater than or equal to the time specified by
the abstimeparameter.

This routine is identical topthread_cond_wait() except that this routine can return
before a condition variable is signaled or broadcast—specifically, when a specified
time expires.

404

DCE Threads

pthread_cond_timedwait(3thr)

If the current time equals or exceeds the expiration time, this routine returns
immediately, without causing the current thread to wait.

Call this routine after you lock the mutex specified inmutex. The results of this routine
are unpredictable if this routine is called without first locking the mutex.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bycond, mutex, or
abstimeis invalid.

−1 [EAGAIN] The time specified byabstimeexpired.

−1 [EDEADLK] A deadlock condition is detected.

Related Information

Functions:pthread_cond_broadcast(3thr), pthread_cond_destroy(3thr),
pthread_cond_init(3thr), pthread_cond_signal(3thr), pthread_cond_wait(3thr),
pthread_get_expiration_np(3thr).

405

DCE 1.2.2 Application Development Reference

pthread_cond_wait(3thr)

pthread_cond_wait

Purpose Causes a thread to wait for a condition variable to be signaled or broadcast

Synopsis
#include <pthread.h>

int pthread_cond_wait(
pthread_cond_t *cond,
pthread_mutex_t *mutex);

Parameters

cond Condition variable waited on.

mutex Mutex associated with the condition variable specified incond.

Description

The pthread_cond_wait() routine causes a thread to wait for a condition variable to
be signaled or broadcast. Each condition corresponds to one or more predicates based
on shared data. The calling thread waits for the data to reach a particular state (for
the predicate to become true).

Call this routine after you have locked the mutex specified inmutex. The results of
this routine are unpredictable if this routine is called without first locking the mutex.

This routine automatically releases the mutex and causes the calling thread to
wait on the condition. If the wait is satisfied as a result of some thread calling
pthread_cond_signal()or pthread_cond_broadcast(), the mutex is reacquired and
the routine returns.

A thread that changes the state of storage protected by the mutex in such a way that
a predicate associated with a condition variable might now be true must call either
pthread_cond_signal()or pthread_cond_broadcast()for that condition variable. If
neither call is made, any thread waiting on the condition variable continues to wait.

406

DCE Threads

pthread_cond_wait(3thr)

This routine might (with low probability) return when the condition variable has not
been signaled or broadcast. When a spurious wakeup occurs, the mutex is reacquired
before the routine returns. (To handle this type of situation, enclose this routine in a
loop that checks the predicate.)

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bycondor
mutexis invalid.

−1 [EDEADLK] A deadlock condition is detected.

Related Information

Functions:pthread_cond_broadcast(3thr), pthread_cond_destroy(3thr),
pthread_cond_init(3thr), pthread_cond_signal(3thr),
pthread_cond_timedwait(3thr).

407

DCE 1.2.2 Application Development Reference

pthread_condattr_create(3thr)

pthread_condattr_create

Purpose Creates a condition variable attributes object

Synopsis
#include <pthread.h>

int pthread_condattr_create(
pthread_condattr_t *attr);

Parameters

attr Condition variable attributes object that is created.

Description

The pthread_condattr_create() routine creates a condition variable attributes object
that is used to specify the attributes of condition variables when they are created. The
condition variable attributes object is initialized with the default value for all of the
attributes defined by a given implementation.

When a condition variable attributes object is used to create a condition variable,
the values of the individual attributes determine the characteristics of the new object.
Attributes objects act like additional parameters to object creation. Changing individual
attributes does not affect objects that were previously created using the attributes
object.

Return Values

The created condition variable attributes object is returned to theattr parameter.

If the function fails,errno may be set to one of the following values:

408

DCE Threads

pthread_condattr_create(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is invalid.

−1 [ENOMEM] Insufficient memory exists to create the
condition variable attributes object.

Related Information

Functions:pthread_cond_init(3thr), pthread_condattr_delete(3thr).

409

DCE 1.2.2 Application Development Reference

pthread_condattr_delete(3thr)

pthread_condattr_delete

Purpose Deletes a condition variable attributes object

Synopsis
#include <pthread.h>

int pthread_condattr_delete(
pthread_condattr_t *attr);

Parameters

attr Condition variable attributes object deleted.

Description

The pthread_condattr_delete() routine deletes a condition variable attributes
object. Call this routine when a condition variable attributes object created by
pthread_condattr_create() is no longer referenced.

This routine gives permission to reclaim storage for the condition variable attributes
object. Condition variables that are created using this attributes object are not affected
by the deletion of the condition variable attributes object.

The results of calling this routine are unpredictable if the handle specified by theattr
parameter refers to an attributes object that does not exist.

Return Values

If the function fails,errno may be set to one of the following values:

410

DCE Threads

pthread_condattr_delete(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

Related Information

Functions:pthread_condattr_create(3thr).

411

DCE 1.2.2 Application Development Reference

pthread_create(3thr)

pthread_create

Purpose Creates a thread object and thread

Synopsis
#include <pthread.h>

int pthread_create(
pthread_t * thread,
pthread_attr_t attr,
pthread_startroutine_t start_routine,
pthread_addr_t arg);

Parameters

thread Handle to the thread object created.

attr Thread attributes object that defines the characteristics of the thread
being created. If you specifypthread_attr_default, default attributes
are used.

start_routine Function executed as the new thread’s start routine.

arg Address value copied and passed to the thread’s start routine.

Description

Thepthread_create()routine creates a thread object and a thread. Athreadis a single,
sequential flow of control within a program. It is the active execution of a designated
routine, including any nested routine invocations. A thread object defines and controls
the executing thread.

Creating a Thread

Calling this routine sets into motion the following actions:

• An internal thread object is created to describe the thread.

412

DCE Threads

pthread_create(3thr)

• The associated executable thread is created with attributes specified by theattr
parameter (or with default attributes ifpthread_attr_default is specified).

• The threadparameter receives the new thread.

• The start_routinefunction is called. This may occur before this routine returns
successfully.

Thread Execution

The thread is created in the ready state and therefore might immediately begin
executing the function specified by thestart_routineparameter. The newly created
thread begins running beforepthread_create() completes if the new thread follows
theSCHED_RR or SCHED_FIFO scheduling policy or has a priority higher than the
creating thread, or both. Otherwise, the new thread begins running at its turn, which
with sufficient processors might also be beforepthread_create()returns.

The start_routineparameter is passed a copy of thearg parameter. The value of the
arg parameter is unspecified.

The thread object exists until thepthread_detach() routine is called or the thread
terminates, whichever occurs last.

The synchronization between the caller ofpthread_create() and the newly created
thread is through the use of thepthread_join() routine (or any other mutexes or
condition variables they agree to use).

Terminating a Thread

A thread terminates when one of the following events occurs:

• The thread returns from its start routine.

• The thread exits (within a routine) as the result of calling thepthread_exit()
routine.

• The thread is canceled.

When a Thread Terminates

The following actions are performed when a thread terminates:

• If the thread terminates by returning from its start routine or calling
pthread_exit(), the return value is copied into the thread object. If the start
routine returns normally and the start routine is a procedure that does not return
a value, then the result obtained bypthread_join() is unpredictable. If the thread
has been cancelled, a return value of−1 is copied into the thread object. The

413

DCE 1.2.2 Application Development Reference

pthread_create(3thr)

return value can be retrieved by other threads by calling thepthread_join()
routine.

• A destructor for each thread-specific data point is removed from the list of
destructors for this thread and then is called. This step destroys all the thread-
specific data associated with the current thread.

• Each cleanup handler that has been declared bypthread_cleanup_push()and
not yet removed bypthread_cleanup_pop()is called. The most recently pushed
handler is called first.

• A flag is set in the thread object indicating that the thread has terminated. This
flag must be set in order for callers ofpthread_join() to return from the call.

• A broadcast is made so that all threads currently waiting in a call topthread_join()
can return from the call.

• The thread object is marked to indicate that it is no longer needed by the thread
itself. A check is made to determine if the thread object is no longer needed by
other threads; that is, ifpthread_detach()has been called. If that routine is called,
then the thread object is deallocated.

Return Values

Upon successful completion, this routine stores the identifier of the created thread at
thread and returns 0. Otherwise, a value of -1 is returned and no thread is created,
the contents ofthread are undefined, anderrno may be set to one of the following
values:

Return Error Description

0 Successful completion.

−1 [EAGAIN] The system lacks the necessary resources to
create another thread.

−1 [ENOMEM] Insufficient memory exists to create the
thread object. This is not a temporary
condition.

414

DCE Threads

pthread_create(3thr)

Related Information

Functions:pthread_attr_create(3thr), pthread_cancel(3thr),
pthread_detach(3thr), pthread_exit(3thr), pthread_join(3thr) .

415

DCE 1.2.2 Application Development Reference

pthread_delay_np(3thr)

pthread_delay_np

Purpose Causes a thread to wait for a specified period

Synopsis
#include <pthread.h>

int pthread_delay_np(
struct timespec *interval);

Parameters

interval Number of seconds and nanoseconds that the calling thread waits before
continuing execution. The value specified must be greater than or equal
to 0 (zero).

Description

The pthread_delay_np() routine causes a thread to delay execution for a specified
period of elapsed wall clock time. The period of time the thread waits is at least as
long as the number of seconds and nanoseconds specified in theinterval parameter.

Specifying an interval of 0 (zero) seconds and 0 (zero) nanoseconds is allowed and
can result in the thread giving up the processor or delivering a pending cancel.

The struct timespecstructure contains two fields, as follows:

• The tv_secfield is an integer number of seconds.

• The tv_nsecfield is an integer number of nanoseconds.

This routine is a new primitive.

416

DCE Threads

pthread_delay_np(3thr)

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byinterval is
invalid.

Related Information

Functions:pthread_yield(3thr).

417

DCE 1.2.2 Application Development Reference

pthread_detach(3thr)

pthread_detach

Purpose Marks a thread object for deletion

Synopsis
#include <pthread.h>

int pthread_detach(
pthread_t * thread);

Parameters

thread Thread object marked for deletion.

Description

The pthread_detach() routine indicates that storage for the specified thread is
reclaimed when the thread terminates. This includes storage for thethreadparameter’s
return value. Ifthreadhas not terminated when this routine is called, this routine does
not cause it to terminate.

Call this routine when a thread object is no longer referenced. Additionally, call this
routine for every thread that is created to ensure that storage for thread objects does
not accumulate.

You cannot join with a thread after the thread has been detached.

The results of this routine are unpredictable if the value ofthread refers to a thread
object that does not exist.

Return Values

If the function fails,errno may be set to one of the following values:

418

DCE Threads

pthread_detach(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bythread is
invalid.

−1 [ESRCH] The value specified bythread does
not refer to an existing thread.

Related Information

Functions:pthread_cancel(3thr), pthread_create(3thr), pthread_exit(3thr),
pthread_join(3thr) .

419

DCE 1.2.2 Application Development Reference

pthread_equal(3thr)

pthread_equal

Purpose Compares one thread identifier to another thread identifier.

Synopsis
#include <pthread.h>

boolean32 pthread_equal(
pthread_t * thread1,
pthread_t * thread2);

Parameters

thread1 The first thread identifier to be compared.

thread2 The second thread identifier to be compared.

Description

This routine compares one thread identifier to another thread identifier. (This routine
does not check whether the objects that correspond to the identifiers currently exist.)
If the identifiers have values indicating that they designate the same object, 1 (true)
is returned. If the values do not designate the same object, 0 (false) is returned.

This routine is implemented as a C macro.

Return Values

Possible return values are as follows:

420

DCE Threads

pthread_equal(3thr)

Return Error Description

0 Values of thread1 and thread2 do not
designate the same object.

1 Values of thread1 and thread2 designate the
same object.

Related Information

Functions:pthread_create(3thr)

421

DCE 1.2.2 Application Development Reference

pthread_exit(3thr)

pthread_exit

Purpose Terminates the calling thread

Synopsis
#include <pthread.h>

void pthread_exit(
pthread_addr_t status);

Parameters

status Address value copied and returned to the caller ofpthread_join().

Description

The pthread_exit() routine terminates the calling thread and makes a status value
available to any thread that callspthread_join() and specifies the terminating thread.

An implicit call to pthread_exit() is issued when a thread returns from the start
routine that was used to create it. The function’s return value serves as the thread’s
exit status. If the return value is−1, an error exit is forced for the thread instead of a
normal exit. The process exits when the last running thread callspthread_exit(), with
an undefined exit status.

Restrictions

The pthread_exit() routine does not work in the main (initial) thread because DCE
Threads relies on information at the base of thread stacks; this information does not
exist in the main thread.

Return Values

No value is returned.

422

DCE Threads

pthread_exit(3thr)

Related Information

Functions:pthread_create(3thr), pthread_detach(3thr), pthread_join(3thr) .

423

DCE 1.2.2 Application Development Reference

pthread_get_expiration_np(3thr)

pthread_get_expiration_np

Purpose Obtains a value representing a desired expiration time

Synopsis
#include <pthread.h>

int pthread_get_expiration_np(
struct timespec *delta,
struct timespec *abstime);

Parameters

delta Number of seconds and nanoseconds to add to the current system time.
The result is the time when a timed wait expires.

abstime Value representing the expiration time.

Description

The pthread_get_expiration_np() routine adds a specified interval to the current
absolute system time and returns a new absolute time. This new absolute time is used
as the expiration time in a call topthread_cond_timedwait(). This routine is a new
primitive.

The struct timespecstructure contains two fields, as follows:

• The tv_secfield is an integer number of seconds.

• The tv_nsecfield is an integer number of nanoseconds.

Return Values

If the function fails,errno may be set to one of the following values:

424

DCE Threads

pthread_get_expiration_np(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bydelta is
invalid.

Related Information

Functions:pthread_cond_timedwait(3thr).

425

DCE 1.2.2 Application Development Reference

pthread_getprio(3thr)

pthread_getprio

Purpose Obtains the current priority of a thread

Synopsis
#include <pthread.h>

int pthread_getprio(
pthread_t thread);

Parameters

thread Thread whose priority is obtained.

Description

The pthread_getprio() routine obtains the current priority of a thread. The current
priority is different from the initial priority of the thread if thepthread_setprio()
routine is called.

The exact effect of different priority values depends upon the scheduling policy
assigned to the thread.

Return Values

The current priority value of the thread specified inthread is returned. (See the
pthread_setprio() reference page for valid values.)

If the function fails,errno may be set to one of the following values:

426

DCE Threads

pthread_getprio(3thr)

Return Error Description

Priority value Successful completion.

−1 [EINVAL] The value specified bythread is invalid.

−1 [ESRCH] The value specified bythreaddoes not
refer to an existing thread.

Related Information

Functions:pthread_attr_setprio(3thr) , pthread_setprio(3thr),
pthread_setscheduler(3thr).

427

DCE 1.2.2 Application Development Reference

pthread_getscheduler(3thr)

pthread_getscheduler

Purpose Obtains the current scheduling policy of a thread

Synopsis
#include <pthread.h>

int pthread_getscheduler(
pthread_t thread);

Parameters

thread Thread whose scheduling policy is obtained.

Description

Thepthread_getscheduler()routine obtains the current scheduling policy of a thread.
The current scheduling policy of a thread is different from the initial scheduling policy
if the pthread_setscheduler()routine is called.

Return Values

The current scheduling policy value of the thread specified inthread is returned. (See
the pthread_setscheduler()reference page for valid values.)

If the function fails,errno may be set to one of the following values:

428

DCE Threads

pthread_getscheduler(3thr)

Return Error Description

Current scheduling
policy

Successful completion.

−1 [EINVAL] The value specified bythread is
invalid.

−1 [ESRCH] The value specified bythread does
not refer to an existing thread.

Related Information

Functions:pthread_attr_setscheduler(3thr), pthread_setscheduler(3thr).

429

DCE 1.2.2 Application Development Reference

pthread_getspecific(3thr)

pthread_getspecific

Purpose Obtains the thread-specific data associated with the specified key

Synopsis
#include <pthread.h>

int pthread_getspecific(
pthread_key_t key,
pthread_addr_t *value);

Parameters

key Context key value that identifies the data value obtained. This key value
must be obtained frompthread_keycreate().

value Address of the current thread-specific data value associated with the
specified key.

Description

The pthread_getspecific()routine obtains the thread-specific data associated with the
specified key for the current thread.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The key value is invalid.

430

DCE Threads

pthread_getspecific(3thr)

Related Information

Functions:pthread_keycreate(3thr), pthread_setspecific(3thr).

431

DCE 1.2.2 Application Development Reference

pthread_join(3thr)

pthread_join

Purpose Causes the calling thread to wait for the termination of a specified thread

Synopsis
#include <pthread.h>

int pthread_join(
pthread_t thread,
pthread_addr_t *status);

Parameters

thread Thread whose termination is awaited by the caller of this routine.

status Status value of the terminating thread when that thread calls
pthread_exit().

Description

The pthread_join() routine causes the calling thread to wait for the termination of a
specified thread. A call to this routine returns after the specified thread has terminated.

Any number of threads can call this routine. All threads are awakened when the
specified thread terminates.

If the current thread calls this routine to join with itself, an error is returned.

The results of this routine are unpredictable if the value forthread refers to a thread
object that no longer exists.

Return Values

If the thread terminates normally, the exit status is the value that is is optionally
returned from the thread’s start routine.

432

DCE Threads

pthread_join(3thr)

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bythread is invalid.

−1 [ESRCH] The value specified bythreaddoes not
refer to a currently existing thread.

−1 [EDEADLK] A deadlock is detected.

Related Information

Functions:pthread_create(3thr), pthread_detach(3thr), pthread_exit(3thr).

433

DCE 1.2.2 Application Development Reference

pthread_keycreate(3thr)

pthread_keycreate

Purpose Generates a unique thread-specific data key value

Synopsis
#include <pthread.h>

int pthread_keycreate(
pthread_key_t *key,
void (*destructor) (void *value));

Parameters

key Value of the new thread-specific data key.

destructor Procedure to be called to destroy a data value associated with the created
key when the thread terminates.

Description

The pthread_keycreate() routine generates a unique thread-specific data key value.
This key value identifies a thread-specific data value, which is an address of memory
generated by the client containing arbitrary data of any size.

Thread-specific data allows client software to associate information with the current
thread.

For example, thread-specific data can be used by a language runtime library that needs
to associate a language-specific thread-private data structure with an individual thread.
The thread-specific data routines also provide a portable means of implementing
the class of storage called thread-private static, which is needed to support parallel
decomposition in the FORTRAN language.

This routine generates and returns a new key value. Each call to this routine within
a process returns a key value that is unique within an application invocation. Calls
to pthread_keycreate()must occur in initialization code guaranteed to execute only

434

DCE Threads

pthread_keycreate(3thr)

once in each process. Thepthread_once()routine provides a way of specifying such
code.

When multiple facilities share access to thread-specific data, the facilities must agree
on the key value that is associated with the context. The key value must be created
only once and needs to be stored in a location known to each facility. (It may be
desirable to encapsulate the creation of a key, and the setting and getting of context
values for that key, within a special facility created for that purpose.)

When a thread terminates, thread-specific data is automatically destroyed. For each
thread-specific data currently associated with the thread, thedestructor routine
associated with the key value of that context is called. The order in which per-thread
context destructors are called at thread termination is undefined.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bykeyis invalid.

−1 [EAGAIN] An attempt was made to allocate a
key when the key namespace is
exhausted. This is not a temporary
condition.

−1 [ENOMEM] Insufficient memory exists to create
the key.

Related Information

Functions:pthread_getspecific(3thr), pthread_setspecific(3thr).

435

DCE 1.2.2 Application Development Reference

pthread_lock_global_np(3thr)

pthread_lock_global_np

Purpose Locks the global mutex

Synopsis

#include <pthread.h>

void pthread_lock_global_np();

Description

The pthread_lock_global_np()routine locks the global mutex. If the global mutex is
currently held by another thread when a thread calls this routine, the thread waits for
the global mutex to become available.

The thread that has locked the global mutex becomes its current owner and remains
the owner until the same thread has unlocked it. This routine returns with the global
mutex in the locked state and with the current thread as the global mutex’s current
owner.

Use the global mutex when calling a library package that is not designed to run
in a multithreaded environment. (Unless the documentation for a library function
specifically states that it is compatible with multithreading, assume that it is not
compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to
be reentrant uses the same lock. This prevents dependencies among threads calling
library functions and those functions calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global
mutex can relock it without deadlocking. (The locking thread must call

436

DCE Threads

pthread_lock_global_np(3thr)

pthread_unlock_global_np()as many times as it called this routine to allow another
thread to lock the global mutex.)

This routine is a new primitive.

Return Values

No value is returned.

Related Information

Functions:pthread_mutex_lock(3thr), pthread_mutex_unlock(3thr),
pthread_mutexattr_setkind_np(3thr), pthread_unlock_global_np(3thr).

437

DCE 1.2.2 Application Development Reference

pthread_mutex_destroy(3thr)

pthread_mutex_destroy

Purpose Deletes a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

Parameters

mutex Mutex to be deleted.

Description

The pthread_mutex_destroy() routine deletes a mutex and must be called when a
mutex object is no longer referenced. The effect of calling this routine is to reclaim
storage for the mutex object.

It is illegal to delete a mutex that has a current owner (in other words, is locked).

The results of this routine are unpredictable if the mutex object specified in themutex
parameter does not currently exist.

Return Values

If the function fails,errno may be set to one of the following values:

438

DCE Threads

pthread_mutex_destroy(3thr)

Return Error Description

0 Successful completion.

−1 [EBUSY] An attempt was made to
destroy a mutex that is
locked.

−1 [EINVAL] The value specified by
mutexis invalid.

Related Information

Functions:pthread_mutex_init(3thr) , pthread_mutex_lock(3thr),
pthread_mutex_trylock(3thr) , pthread_mutex_unlock(3thr).

439

DCE 1.2.2 Application Development Reference

pthread_mutex_init(3thr)

pthread_mutex_init

Purpose Creates a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutexattr_t attr);

Parameters

mutex Mutex that is created.

attr Attributes object that defines the characteristics of the created mutex. If
you specifypthread_mutexattr_default, default attributes are used.

Description

The pthread_mutex_init() routine creates a mutex and initializes it to the unlocked
state. If the thread that called this routine terminates, the created mutex is not
automatically deallocated, because it is considered shared among multiple threads.

Return Values

If an error condition occurs, this routine returns−1, the mutex is not initialized, the
contents ofmutexare undefined, anderrno may be set to one of the following values:

440

DCE Threads

pthread_mutex_init(3thr)

Return Error Description

0 Successful completion.

−1 [EAGAIN] The system lacks the necessary
resources to initialize another
mutex.

−1 [EINVAL] The value specified byattr is
invalid.

−1 [ENOMEM] Insufficient memory exists to
initialize the mutex.

Related Information

Functions:pthread_mutex_lock(3thr), pthread_mutex_trylock(3thr) ,
pthread_mutex_unlock(3thr), pthread_mutexattr_create(3thr),
pthread_mutexattr_getkind_np(3thr), pthread_mutexattr_setkind_np(3thr).

441

DCE 1.2.2 Application Development Reference

pthread_mutex_lock(3thr)

pthread_mutex_lock

Purpose Locks an unlocked mutex

Synopsis
#include <pthread.h>

int pthread_mutex_lock(
pthread_mutex_t *mutex);

Parameters

mutex Mutex that is locked.

Description

The pthread_mutex_lock() routine locks a mutex. If the mutex is locked when a
thread calls this routine, the thread waits for the mutex to become available.

The thread that has locked a mutex becomes its current owner and remains the owner
until the same thread has unlocked it. This routine returns with the mutex in the locked
state and with the current thread as the mutex’s current owner.

If you specified a fast mutex in a call topthread_mutexattr_setkind_np(), a
deadlock can result if the current owner of a mutex calls this routine in an attempt
to lock the mutex a second time. If you specified a recursive mutex in a call
to pthread_mutexattr_setkind_np(), the current owner of a mutex can relock the
same mutex without blocking. If you specify a nonrecursive mutex in a call to
pthread_mutexattr_setkind_np(), an error is returned and the thread does not block
if the current owner of a mutex calls this routine in an attempt to lock the mutex a
second time.

The preemption of a lower-priority thread that locks a mutex possibly results in
the indefinite blocking of higher-priority threads waiting for the same mutex. The
execution of the waiting higher-priority threads is blocked for as long as there is a

442

DCE Threads

pthread_mutex_lock(3thr)

sufficient number of runnable threads of any priority between the lower-priority and
higher-priority values. Priority inversion occurs when any resource is shared between
threads with different priorities.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bymutexis
invalid.

−1 [EDEADLK] A deadlock condition is detected.

Related Information

Functions:pthread_mutex_destroy(3thr), pthread_mutex_init(3thr) ,
pthread_mutex_trylock(3thr) , pthread_mutex_unlock(3thr),
pthread_mutexattr_setkind_np(3thr).

443

DCE 1.2.2 Application Development Reference

pthread_mutex_trylock(3thr)

pthread_mutex_trylock

Purpose Locks a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_trylock(
pthread_mutex_t *mutex);

Parameters

mutex Mutex that is locked.

Description

The pthread_mutex_trylock() routine locks a mutex. If the specified mutex is locked
when a thread calls this routine, the calling thread does not wait for the mutex to
become available.

When a thread calls this routine, an attempt is made to lock the mutex immediately.
If the mutex is successfully locked, 1 is returned and the current thread is then the
mutex’s current owner.

If the mutex is locked by another thread when this routine is called, 0 (zero) is
returned and the thread does not wait to acquire the lock. If a fast mutex is owned by
the current thread, 0 is returned. If a recursive mutex is owned by the current thread,
1 is returned and the mutex is relocked. (To unlock a recursive mutex, each call to
pthread_mutex_trylock() must be matched by a call to thepthread_mutex_unlock()
routine.)

Return Values

If the function fails,errno may be set to one of the following values:

444

DCE Threads

pthread_mutex_trylock(3thr)

Return Error Description

1 Successful completion.

0 The mutex is locked; therefore, it was not
acquired.

−1 [EINVAL] The value specified bymutexis invalid.

Related Information

Functions:pthread_mutex_destroy(3thr), pthread_mutex_init(3thr) ,
pthread_mutex_lock(3thr), pthread_mutex_unlock(3thr),
pthread_mutexattr_setkind_np(3thr).

445

DCE 1.2.2 Application Development Reference

pthread_mutex_unlock(3thr)

pthread_mutex_unlock

Purpose Unlocks a mutex

Synopsis
#include <pthread.h>

int pthread_mutex_unlock(
pthread_mutex_t *mutex);

Parameters

mutex Mutex that is unlocked.

Description

The pthread_mutex_unlock() routine unlocks a mutex. If no threads are waiting
for the mutex, the mutex unlocks with no current owner. If one or more threads are
waiting to lock the specified mutex, this routine causes one thread to return from its call
to pthread_mutex_lock(). The scheduling policy is used to determine which thread
acquires the mutex. For theSCHED_FIFO and SCHED_RR policies, a blocked
thread is chosen in priority order.

The results of calling this routine are unpredictable if the mutex specified inmutex
is unlocked. The results of calling this routine are also unpredictable if the mutex
specified inmutexis currently owned by a thread other than the calling thread.

Return Values

If the function fails,errno may be set to one of the following values:

446

DCE Threads

pthread_mutex_unlock(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bymutexis
invalid.

Related Information

Functions:pthread_mutex_destroy(3thr), pthread_mutex_init(3thr) ,
pthread_mutex_lock(3thr), pthread_mutex_trylock(3thr) ,
pthread_unlock_global_np(3thr), pthread_mutexattr_setkind_np(3thr).

447

DCE 1.2.2 Application Development Reference

pthread_mutexattr_create(3thr)

pthread_mutexattr_create

Purpose Creates a mutex attributes object

Synopsis
#include <pthread.h>

int pthread_mutexattr_create(
pthread_mutexattr_t * attr);

Parameters

attr Mutex attributes object created.

Description

The pthread_mutexattr_create() routine creates a mutex attributes object used to
specify the attributes of mutexes when they are created. The mutex attributes object
is initialized with the default value for all of the attributes defined by a given
implementation.

When a mutex attributes object is used to create a mutex, the values of the individual
attributes determine the characteristics of the new object. Attributes objects act like
additional parameters to object creation. Changing individual attributes does not affect
any objects that were previously created using the attributes object.

Return Values

The created mutex attributes object is returned to theattr parameter.

If the function fails,errno may be set to one of the following values:

448

DCE Threads

pthread_mutexattr_create(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

−1 [ENOMEM] Insufficient memory exists to create
the mutex attributes object.

Related Information

Functions:pthread_create(3thr), pthread_mutex_init(3thr) ,
pthread_mutexattr_delete(3thr), pthread_mutexattr_getkind_np(3thr),
pthread_mutexattr_setkind_np(3thr).

449

DCE 1.2.2 Application Development Reference

pthread_mutexattr_delete(3thr)

pthread_mutexattr_delete

Purpose Deletes a mutex attributes object

Synopsis
#include <pthread.h>

int pthread_mutexattr_delete(
pthread_mutexattr_t * attr);

Parameters

attr Mutex attributes object deleted.

Description

The pthread_mutexattr_delete() routine deletes a mutex attributes object. Call
this routine when a mutex attributes object is no longer referenced by the
pthread_mutexattr_create() routine.

This routine gives permission to reclaim storage for the mutex attributes object.
Mutexes that were created using this attributes object are not affected by the deletion
of the mutex attributes object.

The results of calling this routine are unpredictable if the attributes object specified
in the attr parameter does not exist.

Return Values

If the function fails,errno may be set to one of the following values:

450

DCE Threads

pthread_mutexattr_delete(3thr)

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

Related Information

Functions:pthread_mutexattr_create(3thr).

451

DCE 1.2.2 Application Development Reference

pthread_mutexattr_getkind_np(3thr)

pthread_mutexattr_getkind_np

Purpose Obtains the mutex type attribute used when a mutex is created

Synopsis
#include <pthread.h>

int pthread_mutexattr_getkind_np(
pthread_mutexattr_t attr);

Parameters

attr Mutex attributes object whose mutex type is obtained.

Description

The pthread_mutexattr_getkind_np() routine obtains the mutex type attribute that
is used when a mutex is created. See thepthread_mutexattr_setkind_np() reference
page for information about mutex type attributes.

This routine is a new primitive.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

Mutex type attribute Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

452

DCE Threads

pthread_mutexattr_getkind_np(3thr)

Related Information

Functions:pthread_mutex_init(3thr) , pthread_mutexattr_create(3thr),
pthread_mutexattr_setkind_np(3thr).

453

DCE 1.2.2 Application Development Reference

pthread_mutexattr_setkind_np(3thr)

pthread_mutexattr_setkind_np

Purpose Specifies the mutex type attribute

Synopsis
#include <pthread.h>

int pthread_mutexattr_setkind_np(
pthread_mutexattr_t * attr,
int kind);

Parameters

attr Mutex attributes object modified.

kind New value for the mutex type attribute. Thekind parameter
specifies the type of mutex that is created. Valid values are
MUTEX_FAST_NP (default), MUTEX_RECURSIVE_NP , and
MUTEX_NONRECURSIVE_NP .

Description

The pthread_mutexattr_setkind_np() routine sets the mutex type attribute that is
used when a mutex is created.

A fast mutex is locked and unlocked in the fastest manner possible. A fast mutex can
only be locked (obtained) once. All subsequent calls topthread_mutex_lock() cause
the calling thread to block until the mutex is freed by the thread that owns it. If the
thread that owns the mutex attempts to lock it again, the thread waits for itself to
release the mutex (causing a deadlock).

A recursive mutex can be locked more than once by the same thread without
causing that thread to deadlock. In other words, a single thread can make
consecutive calls topthread_mutex_lock() without blocking. The thread must

454

DCE Threads

pthread_mutexattr_setkind_np(3thr)

then call pthread_mutex_unlock() the same number of times as it called
pthread_mutex_lock() before another thread can lock the mutex.

A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives an
error. Thus, nonrecursive mutexes are more informative than fast mutexes because fast
mutexes block in such a case, leaving it up to you to determine why the thread no
longer executes. Also, if someone other than the owner tries to unlock a nonrecursive
mutex, an error is returned.

Never use a recursive mutex with condition variables because the implicit unlock
performed for apthread_cond_wait() or pthread_cond_timedwait() might not
actually release the mutex. In that case, no other thread can satisfy the condition
of the predicate.

This routine is a new primitive.

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified byattr is
invalid.

−1 [EPERM] The caller does not have the
appropriate privileges.

−1 [ERANGE] One or more parameters supplied
have an invalid value.

Related Information

Functions:pthread_mutex_init(3thr) , pthread_mutexattr_create(3thr),
pthread_mutexattr_getkind_np(3thr).

455

DCE 1.2.2 Application Development Reference

pthread_once(3thr)

pthread_once

Purpose Calls an initialization routine executed by one thread, a single time

Synopsis
#include <pthread.h>

int pthread_once(
pthread_once_t *once_block,
pthread_initroutine_t init_routine);

Parameters

once_block Address of a record that defines the one-time initialization code. Each
one-time initialization routine must have its own uniquepthread_once_t
data structure.

init_routine Address of a procedure that performs the initialization. This routine is
called only once, regardless of the number of times it and its associated
once_blockare passed topthread_once().

Description

The pthread_once()routine calls an initialization routine executed by one thread, a
single time. This routine allows you to create your own initialization code that is
guaranteed to be run only once, even if called simultaneously by multiple threads or
multiple times in the same thread.

For example, a mutex or a thread-specfic data key must be created exactly once.
Calling pthread_once()prevents the code that creates a mutex or thread-specific data
from being called by multiple threads. Without this routine, the execution must be
serialized so that only one thread performs the initialization. Other threads that reach
the same point in the code are delayed until the first thread is finished.

456

DCE Threads

pthread_once(3thr)

This routine initializes the control record if it has not been initialized and then
determines if the client one-time initialization routine has executed once. If it has
not executed, this routine calls the initialization routine specified ininit_routine. If the
client one-time initialization code has executed once, this routine returns.

The pthread_once_t data structure is a record that allows client initialization
operations to guarantee mutual exclusion of access to the initialization routine, and
that each initialization routine is executed exactly once.

The client code must declare a variable of typepthread_once_t to use the client
initialization operations. This variable must be initialized using thepthread_once_init
macro, as follows:

static pthread_once_t myOnceBlock = pthread_once_init;

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

−1 [EINVAL] The value specified by a parameter is
invalid.

0 Successful completion.

457

DCE 1.2.2 Application Development Reference

pthread_self(3thr)

pthread_self

Purpose Obtains the identifier of the current thread

Synopsis

#include <pthread.h>

pthread_t pthread_self();

Description

The pthread_self() routine allows a thread to obtain its own identifier. For example,
this identifier allows a thread to set its own priority.

This value becomes meaningless when the thread object is deleted; that is, when the
thread terminates its execution andpthread_detach() is called.

Return Values

Returns the identifier of the calling thread topthread_t.

Related Information

Functions:pthread_create(3thr), pthread_setprio(3thr),
pthread_setscheduler(3thr).

458

DCE Threads

pthread_setasynccancel(3thr)

pthread_setasynccancel

Purpose Enables or disables the current thread’s asynchronous cancelability

Synopsis
#include <pthread.h>

int pthread_setasynccancel(
int state);

Parameters

state State of asynchronous cancelability set for the calling thread. On return,
receives the prior state of asynchronous cancelability. Valid values are
as follows:

CANCEL_ON
Asynchronous cancelability is enabled.

CANCEL_OFF
Asynchronous cancelability is disabled.

Description

The pthread_setasynccancel()routine enables or disables the current thread’s
asynchronous cancelability and returns the previous asynchronous cancelability state.

When general cancelability is set toCANCEL_OFF , a cancel cannot be delivered
to the thread, even if a cancelable routine is called or asynchronous cancelability is
enabled. When general cancelability is set toCANCEL_ON , cancelability depends
on the state of the thread’s asynchronous cancelability.

When general cancelability is set toCANCEL_ON and asynchronous cancelability
is set to CANCEL_OFF , the thread can only receive a cancel at specific
cancellation points (for example, condition waits, thread joins, and calls to the
pthread_testcancel() routine). If both general cancelability and asynchronous

459

DCE 1.2.2 Application Development Reference

pthread_setasynccancel(3thr)

cancelability are set toCANCEL_ON , the thread can be canceled at any point in its
execution.

When a thread is created, the default asynchronous cancelability state is
CANCEL_OFF .

If you call this routine to enable asynchronous cancels, call it in a region of code where
asynchronous delivery of cancels is disabled by a previous call to this routine. Do not
call threads routines in regions of code where asynchronous delivery of cancels is
enabled. The previous state of asynchronous delivery can be restored later by another
call to this routine.

Return Values

On successful completion, the previous state of asynchronous cancelability is returned.
If the function fails, -1 is returned. Following are the possible return values and the
possible corresponding values (if any) forerrno:

Return Error Description

CANCEL_ON Asynchronous cancelability was on.

CANCEL_OFF Asynchronous cancelability was off.

−1 [EINVAL] The specified state is notCANCEL_ON or
CANCEL_OFF .

Related Information

Functions:pthread_cancel(3thr), pthread_setcancel(3thr),
pthread_testcancel(3thr).

460

DCE Threads

pthread_setcancel(3thr)

pthread_setcancel

Purpose Enables or disables the current thread’s general cancelability

Synopsis
#include <pthread.h>

int pthread_setcancel(
int state);

Parameters

state State of general cancelability set for the calling thread. On return,
receives the prior state of general cancelability. Valid values are as
follows:

CANCEL_ON
General cancelability is enabled.

CANCEL_OFF
General cancelability is disabled.

Description

The pthread_setcancel()routine enables or disables the current thread’s general
cancelability and returns the previous general cancelability state.

When general cancelability is set toCANCEL_OFF , a cancel cannot be delivered
to the thread, even if a cancelable routine is called or asynchronous cancelability is
enabled.

When a thread is created, the default general cancelability state isCANCEL_ON .

461

DCE 1.2.2 Application Development Reference

pthread_setcancel(3thr)

Possible Dangers of Disabling Cancelability

The most important use of cancels is to ensure that indefinite wait operations are
terminated. For example, a thread waiting on some network connection, which may
take days to respond (or may never respond), is normally made cancelable.

However, when cancelability is disabled, no routine is cancelable. Waits must be
completed normally before a cancel can be delivered. As a result, the program stops
working and the user is unable to cancel the operation.

When disabling cancelability, be sure that no long waits can occur or that it is necessary
for other reasons to defer cancels around that particular region of code.

Return Values

On successful completion, the previous state of general cancelability is returned. If
the function fails,−1 is returned. Following are the possible return values and the
possible corresponding values (if any) forerrno:

Return Error Description

CANCEL_ON Asynchronous cancelability was on.

CANCEL_OFF Asynchronous cancelability was off.

−1 [EINVAL] The specified state is notCANCEL_ON or
CANCEL_OFF .

Related Information

Functions:pthread_cancel(3thr), pthread_setasynccancel(3thr),
pthread_testcancel(3thr).

462

DCE Threads

pthread_setprio(3thr)

pthread_setprio

Purpose Changes the current priority of a thread

Synopsis
#include <pthread.h>

int pthread_setprio(
pthread_t thread,
int priority);

Parameters

thread Thread whose priority is changed.

priority New priority value of the thread specified inthread. The priority value
depends on scheduling policy. Valid values fall within one of the
following ranges:

• PRI_OTHER_MIN <= priority <= PRI_OTHER_MAX

• PRI_FIFO_MIN <= priority <= PRI_FIFO_MAX

• PRI_RR_MIN <= priority <= PRI_RR_MAX

• PRI_FG_MIN_NP <= priority <= PRI_FG_MAX_NP

• PRI_BG_MIN_NP <= priority <= PRI_BG_MAX_NP

If you create a new thread without specifying a threads attributes object that contains
a changed priority attribute, the default priority of the newly created thread is
the midpoint betweenPRI_OTHER_MIN and PRI_OTHER_MAX (the midpoint
between the minimum and the maximum for theSCHED_OTHER policy).

When you call this routine to specify a minimum or maximum priority, use the
appropriate symbol; for example,PRI_FIFO_MIN or PRI_FIFO_MAX . To specify
a value between the minimum and maximum, use an appropriate arithmetic expression.
For example, to specify a priority midway between the minimum and maximum

463

DCE 1.2.2 Application Development Reference

pthread_setprio(3thr)

for the Round Robin scheduling policy, specify the following concept using your
programming language’s syntax:

pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX + 1)/2

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it.

Description

The pthread_setprio() routine changes the current priority of a thread. A thread can
change its own priority using the identifier returned bypthread_self().

Changing the priority of a thread can cause it to start executing or be preempted by
another thread. The effect of setting different priority values depends on the scheduling
priority assigned to the thread. The initial scheduling priority is set by calling the
pthread_attr_setprio() routine.

Note thatpthread_attr_setprio() sets the priority attribute that is used to establish
the priority of a new thread when it is created. However,pthread_setprio() changes
the priority of an existing thread.

Return Values

If successful, this routine returns the previous priority. If the function fails,errno may
be set to one of the following values:

464

DCE Threads

pthread_setprio(3thr)

Return Error Description

Previous priority Successful completion.

−1 [EINVAL] The value specified bythread is
invalid.

−1 [ENOTSUP] An attempt is made to set the
priority to an unsupported value.

−1 [ESRCH] The value specified bythread does
not refer to an existing thread.

−1 [EPERM] The caller does not have the
appropriate privileges to set the
priority of the specified thread.

Related Information

Functions:pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr),
pthread_create(3thr), pthread_self(3thr), pthread_setscheduler(3thr).

465

DCE 1.2.2 Application Development Reference

pthread_setscheduler(3thr)

pthread_setscheduler

Purpose Changes the current scheduling policy and priority of a thread

Synopsis
#include <pthread.h>

int pthread_setscheduler(
pthread_t thread,
int scheduler,
int priority);

Parameters

thread Thread whose scheduling policy is to be changed.

scheduler New scheduling policy value for the thread specified inthread. Valid
values are as follows:

SCHED_FIFO
(First In, First Out) The highest-priority thread runs until
it blocks. If there is more than one thread with the same
priority, and that priority is the highest among other
threads, the first thread to begin running continues until it
blocks.

SCHED_RR
(Round Robin) The highest-priority thread runs until
it blocks; however, threads of equal priority, if that
priority is the highest among other threads, are timesliced.
Timeslicing is a process in which threads alternate using
available processors.

SCHED_OTHER
(Default) All threads are timesliced.SCHED_OTHER
ensures that all threads, regardless of priority, receive
some scheduling, and thus no thread is completely denied

466

DCE Threads

pthread_setscheduler(3thr)

execution time. (However,SCHED_OTHER threads
can be denied execution time bySCHED_FIFO or
SCHED_RR threads.)

SCHED_FG_NP
(Foreground) Same asSCHED_OTHER. Threads are
timesliced and priorities can be modified dynamically by
the scheduler to ensure fairness.

SCHED_BG_NP
(Background) LikeSCHED_OTHER, ensures that all
threads, regardless of priority, receive some scheduling.
However, SCHED_BG_NP can be denied execution by
any of the other scheduling policies.

priority New priority value of the thread specified inthread. The priority attribute
depends on scheduling policy. Valid values fall within one of the
following ranges:

• PRI_OTHER_MIN <= priority <= PRI_OTHER_MAX

• PRI_FIFO_MIN <= priority <= PRI_FIFO_MAX

• PRI_RR_MIN <= priority <= PRI_RR_MAX

• PRI_FG_MIN_NP <= priority <= PRI_FG_MAX_NP

• PRI_BG_MIN_NP <= priority <= PRI_BG_MAX_NP

If you create a new thread without specifying a threads attributes object that contains
a changed priority attribute, the default priority of the newly created thread is
the midpoint betweenPRI_OTHER_MIN and PRI_OTHER_MAX (the midpoint
between the minimum and the maximum for theSCHED_OTHER policy).

When you call this routine to specify a minimum or maximum priority, use the
appropriate symbol; for example,PRI_FIFO_MIN or PRI_FIFO_MAX . To specify
a value between the minimum and maximum, use an appropriate arithmetic expression.
For example, to specify a priority midway between the minimum and maximum
for the Round Robin scheduling policy, specify the following concept using your
programming language’s syntax:

pri_rr_mid = (PRI_RR_MIN + PRI_RR_MAX)/2

467

DCE 1.2.2 Application Development Reference

pthread_setscheduler(3thr)

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it.

Description

Thepthread_setscheduler()routine changes the current scheduling policy and priority
of a thread. Call this routine to change both the priority and scheduling policy of a
thread at the same time. To change only the priority, call thepthread_setprio() routine.

A thread changes its own scheduling policy and priority by using the identifier returned
by pthread_self(). Changing the scheduling policy or priority, or both, of a thread
can cause it to start executing or to be preempted by another thread.

This routine differs from pthread_attr_setprio() and pthread_attr_setsched()
because those routines set the priority and scheduling policy attributes that are used
to establish the priority and scheduling policy of a new thread when it is created. This
routine, however, changes the priority and scheduling policy of an existing thread.

Return Values

If successful, the previous scheduling policy value is returned. If the function fails,
errno may be set to one of the following values:

Return Error Description

Previous policy Successful completion.

−1 [EINVAL] The value specified bythread is invalid.

−1 [ENOTSUP] An attempt is made to set the priority to an
unsupported value.

−1 [ESRCH] The value specified bythreaddoes not
refer to an existing thread.

−1 [EPERM] The caller does not have the appropriate
privileges to set the scheduling policy of
the specified thread.

468

DCE Threads

pthread_setscheduler(3thr)

Related Information

Functions:pthread_attr_setprio(3thr) , pthread_attr_setsched(3thr),
pthread_create(3thr), pthread_self(3thr), pthread_setprio(3thr).

469

DCE 1.2.2 Application Development Reference

pthread_setspecific(3thr)

pthread_setspecific

Purpose Sets the thread-specific data associated with the specified key for the current thread

Synopsis
#include <pthread.h>

int pthread_setspecific(
pthread_key_t key,
pthread_addr_t value);

Parameters

key Context key value that uniquely identifies the context value
specified in value. This key value must have been obtained from
pthread_keycreate().

value Address containing data to be associated with the specified key for the
current thread; this is the thread-specific data.

Description

The pthread_setspecific()routine sets the thread-specific data associated with the
specified key for the current thread. If a value has already been defined for the key in
this thread, the new value is substituted for it.

Different threads can bind different values to the same key. These values are typically
pointers to blocks of dynamically allocated memory that are reserved for use by the
calling thread.

Return Values

If the function fails,−1 is returned, anderrno may be set to the following value:

470

DCE Threads

pthread_setspecific(3thr)

Return Error Description

−1 [EINVAL] The key value is invalid.

Related Information

Functions:pthread_getspecific(3thr), pthread_keycreate(3thr).

471

DCE 1.2.2 Application Development Reference

pthread_signal_to_cancel_np(3thr)

pthread_signal_to_cancel_np

Purpose Cancels the specified thread

Synopsis
#include <pthread.h>

int pthread_signal_to_cancel_np(
sigset_t *sigset,
pthread_t * thread);

Parameters

sigset Signal mask containing a list of signals that, when received by the
process, cancels the specified thread.

thread The thread canceled if a valid signal is received by the process.

Description

The pthread_signal_to_cancel_np()routine requests that the specified thread be
canceled if one of the signals specified in the signal mask is received by the process.
The set of legal signals is the same as that for thesigwait() service. Thesigset
parameter is not validated. If it is invalid, this routine returns successfully but neither
the specified thread nor the previously specified thread is canceled if a signal occurs.

Note that the address of the specified thread is saved in a per-process global variable.
Therefore, any subsequent call to this routine by your application or any library
function will supercede the thread specified in the previous call, and that thread will
not be canceled if one of the signals specified for it is delivered to the process. In
other words, take care when you call this routine; if another thread calls it after you
do, the expected result of this routine will not occur.

472

DCE Threads

pthread_signal_to_cancel_np(3thr)

Return Values

If the function fails,errno may be set to one of the following values:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified bythread is
invalid.

Related Information

Functions:pthread_cancel(3thr).

473

DCE 1.2.2 Application Development Reference

pthread_testcancel(3thr)

pthread_testcancel

Purpose Requests delivery of a pending cancel to the current thread

Synopsis

#include <pthread.h>

void pthread_testcancel();

Description

The pthread_testcancel()routine requests delivery of a pending cancel to the current
thread. The cancel is delivered only if a cancel is pending for the current thread and
general cancel delivery is not currently disabled. (A thread disables delivery of cancels
to itself by calling thepthread_setcancel()routine.)

This routine, when called within very long loops, ensures that a pending cancel is
noticed within a reasonable amount of time.

Return Values

No value is returned.

Related Information

Functions:pthread_cancel(3thr), pthread_setasynccancel(3thr),
pthread_setcancel(3thr).

474

DCE Threads

pthread_unlock_global_np(3thr)

pthread_unlock_global_np

Purpose Unlocks a global mutex

Synopsis

#include <pthread.h>

void pthread_unlock_global_np();

Description

The pthread_unlock_global_np() routine unlocks the global mutex when each call
to pthread_lock_global_np()is matched by a call to this routine. For example, if you
called pthread_lock_global_np() three times,pthread_unlock_global_np()unlocks
the global mutex when you call it the third time. If no threads are waiting for the global
mutex, it becomes unlocked with no current owner. If one or more threads are waiting
to lock the global mutex, one thread returns from its call topthread_lock_global_np().
The scheduling policy is used to determine which thread acquires the global mutex. For
the policiesSCHED_FIFO and SCHED_RR, a blocked thread is chosen in priority
order.

The results of calling this routine are unpredictable if the global mutex is already
unlocked. The results of calling this routine are also unpredictable if the global mutex
is owned by a thread other than the calling thread.

This routine is a new primitive.

Return Values

No value is returned.

475

DCE 1.2.2 Application Development Reference

pthread_unlock_global_np(3thr)

Related Information

Functions:pthread_lock_global_np(3thr), pthread_mutex_lock(3thr),
pthread_mutex_unlock(3thr), pthread_mutexattr_setkind_np(3thr).

476

DCE Threads

pthread_yield(3thr)

pthread_yield

Purpose Notifies the scheduler that the current thread is willing to release its processor

Synopsis

#include <pthread.h>

void pthread_yield();

Description

The pthread_yield() routine notifies the scheduler that the current thread is willing
to release its processor to other threads of the same priority. (A thread releases its
processor to a thread of a higher priority without calling this routine.)

If the current thread’s scheduling policy (as specified in a call to the
pthread_attr_setsched()or pthread_setscheduler()routine) is SCHED_FIFO or
SCHED_RR, this routine yields the processor to other threads of the same or a
higher priority. If no threads of the same priority are ready to execute, the thread
continues.

This routine allows knowledge of the details of an application to be used to increase
fairness. It increases fairness of access to the processor by removing the current thread
from the processor. It also increases fairness of access to shared resources by removing
the current thread from the processor as soon as it is finished with the resource.

Call this routine when a thread is executing code that denies access to other threads
on a uniprocessor if the scheduling policy isSCHED_FIFO.

Use pthread_yield() carefully because misuse causes unnecessary context
switching, which increases overhead without increasing fairness. For example, it is
counterproductive for a thread to yield while it has a needed resource locked.

477

DCE 1.2.2 Application Development Reference

pthread_yield(3thr)

Return Values

No value is returned.

Related Information

Functions:pthread_attr_setsched(3thr), pthread_setscheduler(3thr).

478

DCE Threads

sigaction(3thr)

sigaction

Purpose Examines and changes synchronous signal actions (POSIX software signal facilities)

Synopsis

#include <signal.h>

struct sigaction {
void (*sa_handler);
sigset_t sa_mask;
int sa_flags;

};

int sigaction(sig, act, oact)
int sig;
const struct sigaction *act;
struct sigaction *oact;

Parameters

sig Synchronous signal to examine or change.

act Points to asigactionstructure that describes the action to be taken upon
receipt of the signal indicated by the value of theact parameter.

oact Points to asigaction structure in which the signal action data in effect
at the time of thesigaction() function call is returned.

479

DCE 1.2.2 Application Development Reference

sigaction(3thr)

Description

ThesigactionPOSIX service allows for per-thread handlers to be installed for catching
synchronous signals. It is called in a multithreaded process to establish thread specific
actions for such signals. This call is the POSIX equivalent of thesigaction() system
call with the following exceptions or modifications:

• The sigaction() routine only modifies behavior for individual threads.

• The sigaction() routine only works for synchronous signals. Attempting to set a
signal action for an asynchronous signal is an error. This is true even in a single-
threaded process.

Any multithreaded application using DCE Threads will need to use thesigwait()
function for dealing with asynchronous signals. Thesigwait() function can be
used to synchronously wait for delivery of asynchronously generated signals.

• The SA_RESTART flag is always set by the underlying system in POSIX mode
so that interrupted system calls will fail with return value of−1 and theEINTR
error in errno instead of getting restarted.

The system’sSA_RESTART flag has the opposite meaning of theSA_RESTART
flag in thesa_flagsfield and is always set in the underlying system call resulting
from sigaction() regardless of whetherSA_RESTART was indicated insa_flags.

• The signal mask is manipulated using the POSIX § 3.3.3sigsetops()functions.
They aresigemptyset(), sigfillset(), sigaddset(), sigdelset(), andsigismember().

The sigaction() function can be used to inquire about the current handling of a given
signal by specifying a null pointer foract, since the action is unchanged unless this
parameter is not a null pointer. In order for the signal action in effect at the time of
the sigaction() call to be returned, theoact parameter must not be a null pointer.

Return Values

Possible return values are as follows:

Return Error Description

0 Successful completion.

−1 [EFAULT] Either act or oact points to memory
which is not a valid part of the
process address space.

480

DCE Threads

sigaction(3thr)

A new signal handler is not
installed.

−1 [EINVAL] The value specified bysig is
invalid. A new signal handler is not
installed.

−1 [EINVAL] An attempt is made to ignore or
supply a handler forSIGKILL or
SIGSTOP. A new signal handler is
not installed.

Related Information

Functions:setjmp(3), siginterrupt(3) , sigpending(3thr), sigprocmask(3thr),
sigsetops(3), sigsuspend(3), sigvec(2), tty(4).

481

DCE 1.2.2 Application Development Reference

sigpending(3thr)

sigpending

Purpose Examines pending signals (POSIX software signal facilities)

Synopsis

#include <signal.h>

int sigpending(sigset_t *set;

Parameters

set Points to a location in which the signals that are blocked from delivery
and pending at the time of thesigpending() function call are returned.

Description

The sigpending() function stores the set of signals that are blocked from delivery and
pending for the calling process in the space pointed to by the argumentset.

The sigpending() function may be called by any thread in a multithreaded process to
determine which signals are in the pending set for that thread. Since DCE Threads
supports the{_POSIX_THREADS_PER_PROCESS_SIGNALS_1}option, signals
pending upon the thread are those that are pending upon the process.

Return Values

Possible return values are as follows:

482

DCE Threads

sigpending(3thr)

Return Error Description

0 Successful completion.

−1 [EFAULT] The setargument points to memory that is
not a valid part of the process address space.

Related Information

Functions:sigprocmask(3thr), sigsetops(3).

483

DCE 1.2.2 Application Development Reference

sigprocmask(3thr)

sigprocmask

Purpose Examines and changes blocked signals (POSIX software signal facilities)

Synopsis

#include <signal.h>

int sigprocmask(int how const sigset_t *set sigset_t *oset);

Parameters

how The manner in which the values inset are changed as defined by one
of the described argument values.

set A set of signals that will be used to change the current thread’s signal
mask according to the value in thehow parameter.

oset Points to a location in which the signal mask in effect at the time of the
sigprocmask() function call is returned.

Description

The sigprocmask() function is used to examine or change (or both) the signal mask
of the calling process. If the value of the argumentset is not NULL, it points to a
set of signals to be used to change the currently blocked set according to thehow
parameter as follows:

SIG_BLOCK
The resulting signal set is the union of the current set and the signal set
pointed to by the argumentset.

484

DCE Threads

sigprocmask(3thr)

SIG_UNBLOCK
The resulting signal set is the intersection of the current set and the and
the complement of the signal set pointed to by the argumentset.

SIG_SETMASK
The resulting signal set is the signal set pointed to by the argumentset.

If the argumentoset is not NULL, the previous mask is stored in the space pointed
to by oset.

Thesigprocmask()function can be used to inquire about the currently blocked signals
by specifying a null pointer forset, since the value of the argumenthow is not
significant and the signal mask of the process is unchanged unless this parameter is
not a null pointer. In order for the signal mask in effect at the time of thesigprocmask()
call to be returned, theosetargument must not be a null pointer.

If there are any pending unblocked signals after the call to thesigprocmask()function,
at least one of those signals shall be delivered before thesigprocmask() function
returns. As a system restriction, the SIGKILL and SIGSTOP signals cannot be blocked.

If the sigprocmask() function fails, the signal mask of the process is not changed by
this function call.

Return Values

Possible return values are as follows:

Return Error Description

0 Successful completion.

−1 [EINVAL] The value specified by thehow parameter is
not equal to one of the defined values. The
signal mask of the process remains
unchanged.

Related Information

Functions:sigaction(3thr), sigpending(3thr), sigsetops(3), sigsuspend(3).

485

DCE 1.2.2 Application Development Reference

sigwait(3thr)

sigwait

Purpose Causes a thread to wait for an asynchronous signal

Synopsis
#include <pthread.h>

int sigwait(
sigset_t *set);

Parameters

set Set of pending signals upon which the calling thread will wait.

Description

This routine causes a thread to wait for an asynchronous signal. It atomically chooses
a pending signal fromset, atomically clears it from the system’s set of pending signals
and returns that signal number. If no signal inset is pending at the time of the call,
the thread is blocked until one or more signals becomes pending. The signals defined
by setmay be unblocked during the call to this routine and will be blocked when the
thread returns from the call unless some other thread is currently waiting for one of
those signals.

A thread must block the signals it waits for usingsigprocmask() prior to calling this
function.

If more than one thread is using this routine to wait for the same signal, only one of
these threads will return from this routine with the signal number.

A call to sigwait() is a cancellation point.

486

DCE Threads

sigwait(3thr)

Return Values

Possible return values are as follows:

Return Error Description

Signal number Successful completion.

−1 [EINVAL] One or more of the values specified
by set is invalid.

−1 [EINVAL] One or more of the values specified
by set is not blocked.

−1 [EINVAL] There are no values specified inset.

Related Information

Functions:pause(3), pthread_cancel(3thr), pthread_setasynccancel(3thr),
sigpending(3), sigprocmask(3), sigsetops(3).

487

Chapter 3
DCE Remote Procedure Call

489

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_intro

Purpose Introduction to the DCE RPC API runtime

Description

This introduction gives general information about the DCE RPC application
programming interface (API) and an overview of the following parts of the DCE
RPC API runtime:

• Runtime services

• Environment variables

• Data types and structures

• Permissions required

• Frequently used routine arguments

General Information

The following subsections contain topics, beyond those directly related to the RPC
API, that application programmers need to know.

IDL-to-C Mappings
The Interface Definition Language (IDL) compiler converts an interface
definition into output files. Therpc_intro(1rpc) reference page in the
DCE 1.2.2 Command Referencecontains a summary of theidl command,
which invokes the IDL compiler.

Additional information about the IDL compiler appears in the following
table, which shows the IDL base types and the IDL-to-C mappings.

The following table lists the IDL base data type specifiers. Where
applicable, the table shows the size of the corresponding transmittable
type and the type macro emitted by the IDL compiler for resulting
declarations.

490

DCE Remote Procedure Call

rpc_intro(3rpc)

Base Data Type Specifiers—rpc_intro(3rpc)

Specifier Type Macro

(sign) (size) (type) Size Emitted by idl

small int 8 bits idl_small_int

short int 16 bits idl_short_int

long int 32 bits idl_long_int

hyper int 64 bits idl_hyper_int

unsigned small int 8 bits idl_usmall_int

unsigned short int 16 bits idl_ushort_int

unsigned long int 32 bits idl_ulong_int

unsigned hyper int 64 bits idl_uhyper_int

float 32 bits idl_short_float

double 64 bits idl_long_float

char 8 bits idl_char

boolean 8 bits idl_boolean

byte 8 bits idl_byte

void — idl_void_p_t

handle_t — —

Note that you can use theidl_ macros in the code you write for an
application to ensure that your type declarations are consistent with those
in the stubs, even when the application is ported to another platform.
The idl_ macros are especially useful when passing constant values to
RPC calls. For maximum portability, all constants passed to RPC calls
declared in your network interfaces should be cast to the appropriate
type because the size of integer constants (like the size of theint data
type) is unspecified in the C language.

The idl_ macros are defined indce/idlbase.h, which is included by
header files that the IDL compiler generates.

491

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

Management Commands for Programmers
In addition to theidl command for programmers, DCE RPC provides
two management commands for the RPC control program and the DCE
host daemon, as follows:

• The rpccp control program accesses the RPC control program
(RPCCP). This program provides a set of commands for accessing
the operations of the RPC Name Service Interface (NSI). RPCCP
also supports showing the elements of the local endpoint map and
removing elements from it.

You can manage the name service with RPCCP commands or with
DCE RPC runtime routines. For example, suppose you want to
obtain the members of a group. You can give theshow group
command to RPCCP or you can write an application program that
calls the following DCE RPC runtime routines:

— rpc_ns_group_mbr_inq_begin()

— rpc_ns_group_mbr_inq_next()

— rpc_ns_group_mbr_inq_done()

• The dced command starts the DCE host daemon. The daemon
maintains the local endpoint map for RPC servers and looks up
endpoints for RPC clients.

See theDCE 1.2.2 Command Referencefor more information about
these two management commands.

Overview of DCE RPC Runtime Services

The RPC runtime services consist of RPC routines that perform a variety of operations.

Note that the RPC API is thread safe and synchronous cancel safe (in the context
of POSIX threads). However, the RPC API is not asynchronous cancel safe. For
more information about threads and their cancellation, see theDCE 1.2.2 Application
Development Guide—Core Components.

The rest of this overview consists of the following items:

• An explanation of abbreviations in the names of the RPC runtime routines

• An alphabetical list of DCE RPC runtime routines. With each routine name is its
description and the type of application program that most likely calls the routine.

492

DCE Remote Procedure Call

rpc_intro(3rpc)

An alphabetical list of abbreviations in the names of the DCE RPC routines follows.
The list can help you remember the names more easily. For example, consider
the routine namerpc_mgmt_ep_elt_inq_begin(). Use the next list to expand the
name to ‘‘RPC management endpoint element inquiry begin,’’ which summarizes the
description ‘‘Creates an inquiry context for viewing the elements in a local or remote
endpoint map. (Management).’’

auth authentication, authorization

com communications

cs character/code set interoperability

dce distributed computing environment

dflt default

elt element

ep endpoint

exp expiration

fn function

id identifier

idl_es IDL encoding services

if interface

inq inquiry

mbr member

mgmt management

ns name service

protseq protocol sequence

rgy DCE character and code set registry

rpc remote procedure call

stats statistics

An alphabetical list of the RPC runtime routines follows. With each routine name is
its description and the type of application program that most likely calls the routine.

493

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

cs_byte_from_netcs()
Converts international character data from a network code set to a local
code set. (Client, server).

cs_byte_local_size()
Calculates the necessary buffer size for a code set conversion from a
network code set to a local code set. (Client, server).

cs_byte_net_size()
Calculates the necessary buffer size for a code set conversion from a
local code set to a network code set. (Client, server).

cs_byte_to_netcs()
Converts international character data from a local code set to a network
code set. (Client, server).

dce_cs_loc_to_rgy()
Maps a local name for a code set to a code set value in the code set
registry. (Client, server).

dce_cs_rgy_to_loc()
Maps a code set value in the code set registry to a the local name for a
code set. (Client, server).

idl_es_decode_buffer()
Returns a buffer decoding handle. (Client, server).

idl_es_decode_incremental()
Returns an incremental decoding handle. (Client, server).

idl_es_encode_dyn_buffer()
Returns a dynamic buffer encoding handle. (Client, server).

idl_es_encode_fixed_buffer()
Returns a fixed buffer encoding handle. (Client, server).

idl_es_encode_incremental()
Returns an incremental encoding handle. (Client, server).

idl_es_handle_free()
Frees an IDL encoding services handle. (Client, server).

idl_es_inq_encoding_id()
Identifies an application encoding operation. (Client, server).

494

DCE Remote Procedure Call

rpc_intro(3rpc)

rpc_binding_copy()
Returns a copy of a binding handle. (Client or server).

rpc_binding_free()
Releases binding handle resources. (Client or server).

rpc_binding_from_string_binding()
Returns a binding handle from a string representation of a binding
handle. (Client or management).

rpc_binding_inq_auth_client()
Returns authentication and authorization information from the binding
handle for an authenticated client. (Server).

rpc_binding_inq_auth_info()
Returns authentication and authorization information from a server
binding handle. (Client).

rpc_binding_inq_object()
Returns the object UUID from a binding handle. (Client or server).

rpc_binding_reset()
Resets a server binding handle so the host remains specified, but the
server instance on that host is unspecified. (Client or management).

rpc_binding_server_from_client()
Converts a client binding handle to a server binding handle. (Server).

rpc_binding_set_auth_info()
Sets authentication and authorization information into a server binding
handle. (Client).

rpc_binding_set_object()
Sets the object UUID value into a server binding handle. (Client).

rpc_binding_to_string_binding()
Returns a string representation of a binding handle. (Client, server, or
management).

rpc_binding_vector_free()
Frees the memory used to store a vector and binding handles. (Client or
server).

rpc_cs_binding_set_tags()
Places code set tags into a server binding handle. (Client).

495

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_cs_char_set_compat_check()
Evaluates character set compatibility between a client and a server.
(Client).

rpc_cs_eval_with_universal()
Evaluates a server’s supported character sets and code sets during the
server binding selection process. (Client).

rpc_cs_eval_without_universal()
Evaluates a server’s supported character sets and code sets during the
server binding selection process. (Client).

rpc_cs_get_tags()
Retrieves code set tags from a binding handle. (Client, server).

rpc_ep_register()
Adds to, or replaces, server address information in the local endpoint
map. (Server).

rpc_ep_register_no_replace()
Adds to server address information in the local endpoint map. (Server).

rpc_ep_resolve_binding()
Resolves a partially bound server binding handle into a fully bound
server binding handle. (Client or management).

rpc_ep_unregister()
Removes server address information from the local endpoint map.
(Server).

rpc_if_id_vector_free()
Frees a vector and the interface identifier structures it contains. (Client,
server, or management).

rpc_if_inq_id()
Returns the interface identifier for an interface specification. (Client or
server).

rpc_mgmt_ep_elt_inq_begin()
Creates an inquiry context for viewing the elements in a local or remote
endpoint map. (Management).

rpc_mgmt_ep_elt_inq_done()
Deletes the inquiry context for viewing the elements in a local or remote
endpoint map. (Management).

496

DCE Remote Procedure Call

rpc_intro(3rpc)

rpc_mgmt_ep_elt_inq_next()
Returns one element at a time from a local or remote endpoint map.
(Management).

rpc_mgmt_ep_unregister()
Removes server address information from a local or remote endpoint
map. (Management).

rpc_mgmt_inq_com_timeout()
Returns the communications timeout value in a binding handle. (Client).

rpc_mgmt_inq_dflt_protect_level()
Returns the default protection level for an authentication service. (Client
or server).

rpc_mgmt_inq_if_ids()
Returns a vector of interface identifiers of interfaces a server offers.
(Client, server, or management).

rpc_mgmt_inq_server_princ_name()
Returns a server’s principal name. (Client, server, or management).

rpc_mgmt_inq_stats()
Returns RPC runtime statistics. (Client, server, or management).

rpc_mgmt_is_server_listening()
Tells whether a server is listening for remote procedure calls. (Client,
server, or management).

rpc_mgmt_set_authorization_fn()
Establishes an authorization function for processing remote calls to a
server’s management routines. (Server).

rpc_mgmt_set_cancel_timeout()
Sets the lower bound on the time to wait before timing out after
forwarding a cancel. (Client).

rpc_mgmt_set_com_timeout()
Sets the communications timeout value in a binding handle. (Client).

rpc_mgmt_set_server_stack_size()
Specifies the stack size for each server thread. (Server).

rpc_mgmt_stats_vector_free()
Frees a statistics vector. (Client, server, or management).

497

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_mgmt_stop_server_listening()
Tells a server to stop listening for remote procedure calls. (Client, server,
or management).

rpc_network_inq_protseqs()
Returns all protocol sequences supported by both the RPC runtime and
the operating system. (Client or server).

rpc_network_is_protseq_valid()
Tells whether the specified protocol sequence is supported by both the
RPC runtime and the operating system. (Client or server).

rpc_ns_binding_export()
Establishes a name service database entry with binding handles or object
UUIDs for a server. (Server).

rpc_ns_binding_import_begin()
Creates an import context for an interface and an object in the name
service database. (Client).

rpc_ns_binding_import_done()
Deletes the import context for searching the name service database.
(Client).

rpc_ns_binding_import_next()
Returns a binding handle of a compatible server (if found) from the
name service database. (Client).

rpc_ns_binding_inq_entry_name()
Returns the name of an entry in the name service database from which
the server binding handle came. (Client).

rpc_ns_binding_lookup_begin()
Creates a lookup context for an interface and an object in the name
service database. (Client).

rpc_ns_binding_lookup_done()
Deletes the lookup context for searching the name service database.
(Client).

rpc_ns_binding_lookup_next()
Returns a list of binding handles of one or more compatible servers (if
found) from the name service database. (Client).

498

DCE Remote Procedure Call

rpc_intro(3rpc)

rpc_ns_binding_select()
Returns a binding handle from a list of compatible server binding
handles. (Client).

rpc_ns_binding_unexport()
Removes the binding handles for an interface, or object UUIDs, from
an entry in the name service database. (Server).

rpc_ns_entry_expand_name()
Expands the name of a name service entry. (Client, server, or
management).

rpc_ns_entry_object_inq_begin()
Creates an inquiry context for viewing the objects of an entry in the
name service database. (Client, server, or management).

rpc_ns_entry_object_inq_done()
Deletes the inquiry context for viewing the objects of an entry in the
name service database. (Client, server, or management).

rpc_ns_entry_object_inq_next()
Returns one object at a time from an entry in the name service database.
(Client, server, or management).

rpc_ns_group_delete()
Deletes a group attribute. (Client, server, or management).

rpc_ns_group_mbr_add()
Adds an entry name to a group; if necessary, creates the entry. (Client,
server, or management).

rpc_ns_group_mbr_inq_begin()
Creates an inquiry context for viewing group members. (Client, server,
or management).

rpc_ns_group_mbr_inq_done()
Deletes the inquiry context for a group. (Client, server, or management).

rpc_ns_group_mbr_inq_next()
Returns one member name at a time from a group. (Client, server, or
management).

rpc_ns_group_mbr_remove()
Removes an entry name from a group. (Client, server, or management).

499

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_ns_import_ctx_add_eval()
Adds an evaluation routine to an import context. (Client).

rpc_ns_mgmt_binding_unexport()
Removes multiple binding handles, or object UUIDs, from an entry in
the name service database. (Management).

rpc_ns_mgmt_entry_create()
Creates an entry in the name service database. (Management).

rpc_ns_mgmt_entry_delete()
Deletes an entry from the name service database. (Management).

rpc_ns_mgmt_entry_inq_if_ids()
Returns the list of interfaces exported to an entry in the name service
database. (Client, server, or management).

rpc_ns_mgmt_free_codesets()
Frees a code sets array that has been allocated in memory. (Client).

rpc_ns_mgmt_handle_set_exp_age()
Sets a handle’s expiration age for local copies of name service data.
(Client, server, or management).

rpc_ns_mgmt_inq_exp_age()
Returns the application’s global expiration age for local copies of name
service data. (Client, server, or management).

rpc_ns_mgmt_read_codesets()
Reads the code sets attribute associated with an RPC server entry in the
name service database. (Client).

rpc_ns_mgmt_remove_attribute()
Removes an attribute from an RPC server entry in the name service
database. (Server, management).

rpc_ns_mgmt_set_attribute()
Adds an attribute to an RPC server entry in the name service database.
(Server, management).

rpc_ns_mgmt_set_exp_age()
Modifies the application’s global expiration age for local copies of name
service data. (Client, server, or management).

rpc_ns_profile_delete()
Deletes a profile attribute. (Client, server, or management).

500

DCE Remote Procedure Call

rpc_intro(3rpc)

rpc_ns_profile_elt_add()
Adds an element to a profile. If necessary, creates the entry. (Client,
server, or management).

rpc_ns_profile_elt_inq_begin()
Creates an inquiry context for viewing the elements in a profile. (Client,
server, or management).

rpc_ns_profile_elt_inq_done()
Deletes the inquiry context for a profile. (Client, server, or management).

rpc_ns_profile_elt_inq_next()
Returns one element at a time from a profile. (Client, server, or
management).

rpc_ns_profile_elt_remove()
Removes an element from a profile. (Client, server, or management).

rpc_object_inq_type()
Returns the type of an object. (Server).

rpc_object_set_inq_fn()
Registers an object inquiry function. (Server).

rpc_object_set_type()
Assigns the type of an object. (Server).

rpc_protseq_vector_free()
Frees the memory used by a vector and its protocol sequences. (Client
or server).

rpc_rgy_get_codesets()
Gets supported code sets information from the local host. (Client,
server).

rpc_rgy_get_max_bytes()
Gets the maximum number of bytes that a code set uses to encode one
character. (Client, server).

rpc_server_inq_bindings()
Returns binding handles for communication with a server. (Server).

rpc_server_inq_if()
Returns the manager entry point vector registered for an interface.
(Server).

501

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_server_listen()
Tells the RPC runtime to listen for remote procedure calls. (Server).

rpc_server_register_auth_info()
Registers authentication information with the RPC runtime. (Server).

rpc_server_register_if()
Registers an interface with the RPC runtime. (Server).

rpc_server_unregister_if()
Unregisters an interface from the RPC runtime. (Server).

rpc_server_use_all_protseqs()
Tells the RPC runtime to use all supported protocol sequences for
receiving remote procedure calls. (Server).

rpc_server_use_all_protseqs_if()
Tells the RPC runtime to use all the protocol sequences and endpoints
specified in the interface specification for receiving remote procedure
calls. (Server).

rpc_server_use_protseq()
Tells the RPC runtime to use the specified protocol sequence for
receiving remote procedure calls. (Server).

rpc_server_use_protseq_ep()
Tells the RPC runtime to use the specified protocol sequence combined
with the specified endpoint for receiving remote procedure calls.
(Server).

rpc_server_use_protseq_if()
Tells the RPC runtime to use the specified protocol sequence combined
with the endpoints in the interface specification for receiving remote
procedure calls. (Server).

rpc_sm_allocate()
Allocates memory within the RPC stub memory management scheme.
(Usually server, possibly client).

rpc_sm_client_free()
Frees memory allocated by the current memory allocation and freeing
mechanism used by the client stubs. (Client).

502

DCE Remote Procedure Call

rpc_intro(3rpc)

rpc_sm_destroy_client_context()
Reclaims the client memory resources for a context handle, and sets the
context handle to NULL. (Client).

rpc_sm_disable_allocate()
Releases resources and allocated memory within the RPC stub memory
management scheme. (Client).

rpc_sm_enable_allocate()
Enables the stub memory management environment. (Client).

rpc_sm_free()
Frees memory allocated by therpc_sm_allocate() routine. (Usually
server, possibly client).

rpc_sm_get_thread_handle()
Gets a thread handle for the stub memory management environment.
(Usually server, possibly client).

rpc_sm_set_client_alloc_free()
Sets the memory allocation and freeing mechanism used by the client
stubs. (Client).

rpc_sm_set_thread_handle()
Sets a thread handle for the stub memory management environment.
(Usually server, possibly client).

rpc_sm_swap_client_alloc_free()
Exchanges the current memory allocation and freeing mechanism used
by the client stubs with one supplied by the client. (Client).

rpc_string_binding_compose()
Combines the components of a string binding into a string binding.
(Client or server).

rpc_string_binding_parse()
Returns, as separate strings, the components of a string binding. (Client
or server).

rpc_string_free()
Frees a character string allocated by the runtime. (Client, server, or
management).

503

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

uuid_compare()
Compares two UUIDs and determines their order. (Client, server, or
management).

uuid_create()
Creates a new UUID. (Client, server, or management).

uuid_create_nil()
Creates a nil UUID. (Client, server, or management).

uuid_equal()
Determines if two UUIDs are equal. (Client, server, or management).

uuid_from_string()
Converts a string UUID to its binary representation. (Client, server, or
management).

uuid_hash()
Creates a hash value for a UUID. (Client, server, or management).

uuid_is_nil()
Determines if a UUID is nil. (Client, server, or management).

uuid_to_string()
Converts a UUID from a binary representation to a string representation.
(Client, server, or management).

wchar_t_from_netcs()
Converts international character data from a network code set to a local
code set. (Client, server).

wchar_t_local_size()
Calculates the necessary buffer size for a code set conversion from a
network code set to a local code set. (Client, server).

wchar_t_net_size()
Calculates the necessary buffer size for a code set conversion from a
local code set to a network code set. (Client, server).

wchar_t_to_netcs()
Converts international character data from a local code set to a network
code set. (Client, server).

Environment Variables

The RPC NSI routines use the following environment variables:

504

DCE Remote Procedure Call

rpc_intro(3rpc)

• RPC_DEFAULT_ENTRY

Designates the default entry in the name service database that the import and
lookup routines use as the starting point to search for binding information for a
compatible server. Normally, the starting entry is a profile.

An application that uses a default entry name must define this environment
variable. The RPC runtime does not provide a default.

For example, suppose that a client application needs to search the name
service database for a server binding handle. The application can use the
rpc_ns_binding_import_begin() routine as part of the search. If so, the
application must specify, to the routine’sentry_nameparameter, the name of
the entry in the name service database at which to begin the search. If the
search is to begin at the entry that theRPC_DEFAULT_ENTRY environment
variable specifies, then the application must specify the value NULL to parameter
entry_namein rpc_ns_binding_import_begin().

• RPC_DEFAULT_ENTRY_SYNTAX

Specifies the syntax of the name provided in theRPC_DEFAULT_ENTRY
environment variable. In addition, provides the syntax for those RPC NSI routines
that allow a default value for the name syntax argument.

If the RPC_DEFAULT_ENTRY_SYNTAX environment variable is not defined,
the RPC runtime uses therpc_c_ns_syntax_dcename syntax.

(For the valid name syntaxes in this reference page and for the valid syntax
values, see the table in the description of the frequently used routine argument
name_syntax, which appears later in this reference page.)

Optionally, each application defines either or both of the first two environment
variables. The application can change the value of either one, or both, at any time
during runtime.

RPC Data Types and Structures

The following subsections contain the data types and structures used by client, server,
and management application programs.

Much of the information in this section is derived from theDCE 1.2.2 Application
Development Guide. You may want to refer to the appropriate volume of this book
as you read this section. For example, this section contains a brief description of a
binding handle. TheDCE 1.2.2 Application Development Guide—Core Components
explains binding handles in detail. It also explains concepts related to binding handles,
such as binding information and string bindings.

505

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

Binding Handle
A binding handle is a pointer-size opaque variable containing
information the RPC runtime uses to manage binding information.
The RPC runtime uses binding information to establish a client/server
relationship that allows the execution of remote procedure calls.

Based on the context where it is created, a binding handle is considered
a server binding handle or a client binding handle.

A server binding handle is a reference to the binding information
necessary for a client to establish a relationship with a specific server.
Many RPC API runtime routines return a server binding handle that you
can use to make a remote procedure call.

A server binding handle refers to several components of binding
information. One is the network address of a server’s host system.
Each server instance has one or more transport addresses (endpoints). A
well-known endpoint is a stable address on the host, while a dynamic
endpoint is an address that the RPC runtime requests for the server. Some
transport protocols provide fewer well-known endpoints than dynamic
endpoints.

If binding information contains an endpoint, the corresponding binding
handle is a fully bound binding handle. If the information lacks an
endpoint, the binding handle is a partially bound binding handle.

The RPC runtime creates and provides a client binding handle to a called
remote procedure as thehandle_t parameter. The client binding handle
contains information about the calling client. A client binding handle
cannot be used to make a remote procedure call. A server uses the
client binding handle. Therpc_binding_server_from_client() routine
converts a client binding handle to a server binding handle. You can use
the resulting server binding handle to make a remote procedure call.

For an explanation of making a remote procedure call with a partially
bound binding handle, see theDCE 1.2.2 Application Development
Guide—Core Components. For an explanation of failures associated with
such a call, see the explanation of status coderpc_s_wrong_boot_time
in the DCE 1.2.2 Problem Determination Guide.

Binding information can contain an object UUID. The default object
UUID associated with a binding handle is a nil UUID. Clients can obtain

506

DCE Remote Procedure Call

rpc_intro(3rpc)

a nonnil UUID in various ways, such as from a string representation of
binding information (a string binding), or by importing it.

The following table contains the RPC runtime routines that operate on
binding handles. The table also specifies the type of binding handle,
client or server, allowed.

Client and Server Binding Handles

Routine Input
Argument

Output
Argument

rpc_binding_copy() Server Server

rpc_binding_free() Server None

rpc_binding_from_string_binding() None Server

rpc_binding_inq_auth_client() Client None

rpc_binding_inq_auth_info() Server None

rpc_binding_inq_object() Server or client None

rpc_binding_reset() Server None

rpc_binding_server_from_client() Client Server

rpc_binding_set_auth_info() Server None

rpc_binding_set_object() Server None

rpc_binding_to_string_binding() Server or client None

rpc_binding_vector_free() Server None

rpc_ns_binding_export() Server None

rpc_ns_binding_import_next() None Server

rpc_ns_binding_inq_entry_name() Server None

rpc_ns_binding_lookup_next() None Server

rpc_ns_binding_select() Server Server

rpc_server_inq_bindings() None Server

If the input argument type is only a client or only a server, the
routines return the status coderpc_s_wrong_kind_of_binding when
an application provides the incorrect binding handle type.

507

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

An application can share a single binding handle across multiple threads
of execution. The RPC runtime, instead of the application, manages
binding handle concurrency control across concurrent remote procedure
calls that use a single binding handle. However, the client application
has responsibility for binding handle concurrency control for operations
that read or modify a binding handle.

The related routines are as follows:

• rpc_binding_free()

• rpc_binding_reset()

• rpc_binding_set_auth_info()

• rpc_binding_set_object()

• rpc_ep_resolve_binding()

• rpc_mgmt_set_com_timeout()

For example, suppose an application shares a binding handle across two
threads of execution and it resets the binding handle endpoint in one of
the threads (by callingrpc_binding_reset()). The binding handle in the
other thread is then also reset. Similarly, freeing the binding handle in
one thread (by callingrpc_binding_free()) frees the binding handle in
the other thread.

If you do not want this effect, your application can create a copy of
a binding handle by callingrpc_binding_copy(). An operation on one
binding handle then has no effect on the second binding handle.

Clients and servers can access and set object UUIDs by using
rpc_binding_inq_object() and rpc_binding_set_object().

Routines requiring a binding handle as an argument show a data type of
rpc_binding_handle_t. Binding handle arguments are passed by value.

Binding Vector
The binding vector data structure contains a list of binding handles over
which a server application can receive remote procedure calls.

The binding vector contains a count member (count), followed by an
array of binding handle (binding_h) elements.

The C language representation of a binding vector is as follows:

508

DCE Remote Procedure Call

rpc_intro(3rpc)

typedef struct {

unsigned32 count;

rpc_binding_handle_t binding_h[1];

} rpc_binding_vector_t;

The RPC runtime creates binding handles when a server application
registers protocol sequences. To obtain a binding vector, a server
application calls therpc_server_inq_bindings()routine.

A client application obtains a binding vector of compatible
servers from the name service database by calling the routine
rpc_ns_binding_lookup_next().

In both routines, the RPC runtime allocates memory for the binding
vector. An application calls therpc_binding_vector_free() routine to
free the binding vector.

An application, when it is finished with an individual binding handle in a
binding vector, frees the binding handle by callingrpc_binding_free().
This routine also sets the corresponding pointer in the binding vector to
NULL.

Note that you should not decrement thecountfield in a binding vector
structure when you call therpc_binding_free() routine to free an
individual binding handle.

The following routines require a binding vector and show an argument
data type ofrpc_binding_vector_t:

• rpc_binding_vector_free()

• rpc_ep_register()

• rpc_ep_register_no_replace()

• rpc_ep_unregister()

• rpc_ns_binding_export()

• rpc_ns_binding_lookup_next()

• rpc_ns_binding_select()

• rpc_server_inq_bindings()

509

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

Boolean Routines that require a Boolean-valued argument or return a Boolean
value show a data type ofboolean32. DCE RPC provides the integer
constants TRUE (1) and FALSE (0) for use as Boolean values.

Code Set A code set is a mapping of the members of a character set to specific
numeric code values. Different code sets use different numeric code
values to represent the same character. In general, operating systems
use string names to refer to the code sets that the system supports. It is
common for different operating systems to use different string names to
refer to the same code set.

Distributed applications that run in a network of heterogeneous operating
systems need to be able to identify the character sets and code sets
that client and server machines are using to avoid losing data during
communications between each other.

DCE RPC supports transparent automatic conversion for characters that
are members of the DCE Portable Character Set (DCE PCS) and which
are encoded in the ASCII and U.S. EBCDIC code sets. The RPC runtime
automatically converts DCE PCS characters encoded in ASCII or U.S.
EBCDIC, if necessary, when they are passed over the network between
client and server.

DCE RPC applications that need to transfer character data that is outside
the DCE PCS character set and ASCII and U.S. EBCDIC encodings
(international characters) can use special IDL constructs and a set of
DCE RPC routines to set up their applications so that they can pass this
international character data with minimal or no loss between client and
server applications. An example of such an application would be one
that used European, Chinese, or Japanese characters mapped to EUC,
Big5, or SJIS encodings. Together, the IDL constructs and the DCE
RPC routines provide a method of automatic code set conversion for
applications that transfer international character data in heterogeneous
code set environments.

DCE provides a mechanism to uniquely identify a code set; this
mechanism is the code set registry. The code set registry assigns a
unique identifier to each character set and code set. Because the registry
provides code set identifiers that are consistent across a network of
heterogeneous operating systems, it provides a method for clients and
servers in a heterogeneous environment to use to identify code sets
without having to rely on operating system-specific string names.

510

DCE Remote Procedure Call

rpc_intro(3rpc)

The code set data structure contains a 32-bit hexadecimal value (c_set)
that uniquely identifies the code set followed by a 16-bit decimal value
(c_max_bytes) that indicates the maximum number of bytes this code
set uses to encode one character in this code set.

The value forc_setis one of the registered values in the code set registry.

The following routines require a code set value:

• cs_byte_from_netcs()

• cs_byte_local_size()

• cs_byte_net_size()

• cs_byte_to_netcs()

• dce_cs_loc_to_rgy()

• dce_cs_rgy_to_loc()

• rpc_cs_get_tags()

• rpc_cs_binding_set_tags()

• rpc_rgy_get_max_bytes()

• wchar_t_from_netcs()

• wchar_t_local_size()

• wchar_t_net_size()

• wchar_t_to_netcs()

In these routines, the code set value shows a data type ofunsigned32.

The RPC stub buffer sizing routines*_net_size()and*_local_sizeuse
the value ofc_max_bytesto calculate the size of a buffer for code set
conversion.

The C language representation of a code set structure is as follows:

typedef struct {

long c_set;

short c_max_bytes;

} rpc_cs_c_set_t;

511

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

The code set data structure is a member of the code sets array.

Code Sets Array
The code sets array contains the list of the code sets that a client or
server supports. The structure consists of a version number member
(version), followed by a count member (count), followed by an array of
code set data structures (rpc_cs_c_set_t). This array is declared to be
a conformant array so that its size will be determined at runtime. The
countmember indicates the number of code sets contained in the array.

The first element in the code sets array represents the client or server
process’s local code set.

The second element through thenth element represents one or more
intermediate code sets that the process can use to transmit character
data over the network. Client or server processes can convert into
an intermediate code set when their host system does not provide a
converter for the other’s local code set but does provide a converter for
the intermediate code set.

DCE RPC routines for character/code sets compatibility evaluation and
code set conversion support one intermediate code set, which is the
ISO 10646 Universal character/code set. Consequently, DCE requires
host systems running applications that transfer international characters
to provide converters for this code set.

System administrators for machines in internationalized DCE cells (that
is, cells of machines that run applications that use the DCE character/
code sets compatibility evaluation and conversion functionality) and who
want to use other intermediate code sets can run thecsrc utility and
specify that their intermediate code set(s) be used in preference to ISO
10646.

The remaining elements in the array represent other code sets that the
process’s host supports (that is, code sets for which the system provides
converters).

The C language representation of a code set structure is as follows:

typedef struct rpc_codeset_mgmt_t {

unsigned32 version;

long count;

512

DCE Remote Procedure Call

rpc_intro(3rpc)

[size_is(count)] rpc_cs_c_set_t codesets[];

} rpc_codeset_mgmt_t, *rpc_codeset_mgmt_p_t;

Client and server applications and DCE RPC routines for automatic
code set conversion obtain a code sets array by calling the routine
rpc_rgy_get_codesets(). Server applications user the code sets array as
input to therpc_ns_mgmt_set_attribute()routine, which registers their
supported code sets in the name service database. Client applications
look up a server’s supported code sets in the name service database by
calling the routinerpc_ns_mgmt_read_codesets()and then use their
code sets array to evaluate their supported code sets against the code
sets that the server supports.

The following DCE RPC routines require a code sets array and show
an argument data type ofrpc_codeset_mgmt_t:

• rpc_ns_mgmt_read_codesets()

• rpc_rgy_get_codesets()

Server applications that userpc_ns_mgmt_set_attribute() to register
their supported code sets in the name service database also specify the
code sets array, but show an argument data type ofvoid.

Conversion Type
The conversion type data structure is an enumerated type that RPC
stub buffer sizing routines return to indicate whether character data
conversion is necessary and whether or not existing storage is sufficient
for the stub to store the results of the conversion. The conversion type
can be one of the following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in a single storage
area.

idl_cs_new_buffer_convert
The converted data must be written to a new storage area.

The C language representation of a conversion type structure is as
follows:

513

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

typedef enum {

idl_cs_no_convert,

idl_cs_in_place_convert,

idl_cs_new_buffer_convert,

} idl_cs_convert_t;

Endpoint Map Inquiry Handle
An endpoint map inquiry handle is a pointer-size opaque variable
containing information the RPC runtime uses to access the elements in a
local or remote endpoint map. The description of therpc_ep_register()
routine lists the contents of an element.

The following routines require an endpoint map inquiry handle and show
an argument data type ofrpc_ep_inq_handle_t:

• rpc_mgmt_ep_elt_inq_begin()

• rpc_mgmt_ep_elt_inq_done()

• rpc_mgmt_ep_elt_inq_next()

Global Name
The NSI uses global names for the names of name service entries.
A global name includes both a cell name and a cell-relative name
composed of a directory pathname and a leaf name. For a description
of global names, see theDCE 1.2.2 Administration Guide—Introduction.
The cell name is assigned to a cell root at its creation. When you specify
only a cell-relative name to an NSI operation, the NSI automatically
expands the name into a global name by inserting the local cell name.
Thus, the name of a member in a group or in a profile element is always
stored as a global name. When returning the name of a name service
entry or a member, NSI operations return global names.

For example, even when you specify a cell-relative name as the
member_name parameter to routine rpc_ns_group_mbr_add(),
when you read that group member (by calling
rpc_ns_group_mbr_inq_next()), you will receive the corresponding
global name.

IDL Encoding Service Handle
An IDL encoding service handle is a pointer-size opaque variable
that points to functions that control how data encoding or decoding

514

DCE Remote Procedure Call

rpc_intro(3rpc)

is performed. The following routines return an IDL encoding service
handle and show an argument data type ofidl_es_handle_t:

• idl_es_encode_incremental()

• idl_es_decode_buffer()

• idl_es_decode_incremental()

• idl_es_encode_dyn_buffer()

• idl_es_encode_fixed_buffer()

The idl_es_handle_free() and idl_es_inq_encoding_id() routines
require an IDL encoding service handle.

Note that in order to use the IDL encoding services, you must include a
header file that has been generated for an application that has used the
encodeanddecodeACF attributes on one or more of its operations.

Interface Handle and Specification
An interface handle is a pointer-size opaque variable containing
information the RPC runtime uses to access the interface specification
data structure.

The DCE IDL compiler automatically creates an interface specification
data structure from each IDL file and creates a global variable of type
rpc_if_handle_t for the interface specification.

The DCE IDL compiler places an interface handle declaration in the
generatedinterface-name.h file. The compiler generates this header file
for each interface.

Routines requiring the interface handle as an argument show a data type
of rpc_if_handle_t.

The form of each interface handle name is as follows:

• For the client:

if-name_vmajor-version_minor-version_c_ifspec

• For the server:

if-name_vmajor-version_minor-version_s_ifspec

where

515

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

• The if-namevariable is the interface identifier specified in the IDL
file.

• The major-versionvariable is the interface’s major-version number
specified in the IDL file.

• The minor-versionvariable is the interface’s minor-version number
specified in the IDL file.

An example isnotes_v1_2_c_ifspec

The maximum combined length of the interface identifier and interface
version number is 19 characters.

Since the major-version and minor-version numbers must each be at
least 1 character, the interface name can be no more than 17 characters.
This limits the interface handle name to 31 or fewer characters.

No concurrency control is required for interface handles.

The following routines require an interface handle and show an argument
data type ofrpc_if_handle_t:

• rpc_ep_register()

• rpc_ep_register_no_replace()

• rpc_ep_resolve_binding()

• rpc_ep_unregister()

• rpc_if_inq_id()

• rpc_ns_binding_export()

• rpc_ns_binding_import_begin()

• rpc_ns_binding_lookup_begin()

• rpc_ns_binding_unexport()

• rpc_server_inq_if()

• rpc_server_register_if()

• rpc_server_unregister_if()

• rpc_server_use_all_protseqs_if()

• rpc_server_use_protseq_if()

516

DCE Remote Procedure Call

rpc_intro(3rpc)

Interface Identifier
The interface identifier (id) data structure contains the interface UUID
and major-version and minor-version numbers of an interface. The
interface identifier is a subset of the data contained in the interface
specification structure.

The C language representation of an interface identifier structure is as
follows:

typedef struct {

uuid_t uuid;

unsigned16 vers_major;

unsigned16 vers_minor;

} rpc_if_id_t;

Routines that require an interface identifier structure show a data type
of rpc_if_id_t . In those routines, the application is responsible for
providing memory for the structure.

The rpc_if_inq_id() routine returns the interface identifier from an
interface specification. The following routines require an interface
identifier:

• rpc_mgmt_ep_elt_inq_begin()

• rpc_mgmt_ep_elt_inq_next()

• rpc_mgmt_ep_unregister()

• rpc_ns_mgmt_binding_unexport()

• rpc_ns_profile_elt_add()

• rpc_ns_profile_elt_inq_begin()

• rpc_ns_profile_elt_inq_next()

• rpc_ns_profile_elt_remove()

Interface Identifier Vector
The interface identifier vector data structure contains a list of interfaces
offered by a server. The interface identifier vector contains a count
member (count), followed by an array of pointers to interface identifiers
(rpc_if_id_t).

517

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

The C language representation of an interface identifier vector is as
follows:

typedef struct {

unsigned32 count;

rpc_if_id_t *if_id[1];

} rpc_if_id_vector_t;

The interface identifier vector is a read-only vector. To obtain a vector
of the interface identifiers registered by a server with the RPC runtime,
an application calls therpc_mgmt_inq_if_ids() routine. To obtain a
vector of the interface identifiers exported by a server to a name service
database, an application calls therpc_ns_mgmt_entry_inq_if_ids()
routine.

The RPC runtime allocates memory for the interface identifier vector.
The application calls therpc_if_id_vector_free() routine to free the
interface identifier vector.

Manager Entry Point Vector
The manager entry point vector (EPV) is an array of pointers to remote
procedures.

The DCE IDL compiler automatically generates a manager EPV data
type, into the header file generated by the IDL compiler, for use in
constructing manager EPVs. The data type is named as follows:

if-name_vmajor-version_minor-version_epv_t

where

• The if-namevariable is the interface identifier specified in the IDL
file.

• The major-versionvariable is the interface’s major-version number
specified in the IDL file.

• The minor-versionvariable is the interface’s minor-version number
specified in the IDL file.

By default, the DCE IDL compiler automatically creates and initializes
a manager EPV. DCE IDL creates this EPV assuming that a manager

518

DCE Remote Procedure Call

rpc_intro(3rpc)

routine of the same name exists for each procedure in the interface (as
specified in the IDL file).

The DCE IDL compiler can define a client entry point vector with
addresses of local routines. Client applications can call these routines.
For more information about client entry point vectors, see the
explanation of the−cepv argument in theidl(1rpc) reference page.

If the server offers multiple implementations of the same interface,
the server must create additional manager EPVs, one for each
implementation. Each EPV must contain exactly one entry point
(address of a function) for each procedure defined in the IDL file.
The server application declares and initializes one manager EPV
variable of typeif-name_vmajor-version_minor-version_epv_t for each
implementation of the interface.

The rpc_server_register_if()and rpc_server_inq_if() routines use the
manager EPV data type and show the manager EPV argument as having
an rpc_mgr_epv_t data type.

Name Service Handle
A name service handle is a pointer-size opaque variable containing
information the RPC runtime uses to return the following RPC data
from the name service database:

• Server binding handles

• UUIDs of resources offered by a server

• Profile members

• Group members

The following routines require a name service handle and show an
argument data type ofrpc_ns_handle_t:

• rpc_ns_binding_import_begin()

• rpc_ns_binding_import_next()

• rpc_ns_binding_import_done()

• rpc_ns_binding_lookup_begin()

• rpc_ns_binding_lookup_next()

• rpc_ns_binding_lookup_done()

519

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

• rpc_ns_entry_object_inq_begin()

• rpc_ns_entry_object_inq_next()

• rpc_ns_entry_object_inq_done()

• rpc_ns_group_mbr_inq_begin()

• rpc_ns_group_mbr_inq_next()

• rpc_ns_group_mbr_inq_done()

• rpc_ns_profile_elt_inq_begin()

• rpc_ns_profile_elt_inq_next()

• rpc_ns_profile_elt_inq_done()

• rpc_ns_mgmt_handle_set_exp_age()

The scope of a name service handle is from a*_begin() routine through
the corresponding*_done() routine.

Applications have responsibility for concurrency control of name service
handles across threads.

Protocol Sequence
A protocol sequence is a character string identifying the network
protocols used to establish a relationship between a client and server.
The protocol sequence contains a set of options that the RPC runtime
must know about. The following options are in this set:

• The RPC protocol used for communications (choices arencacnand
ncadg).

• The format used in the network address supplied in the binding
(choice isip).

• The transport protocol used for communications (choices aretcp
andudp).

Because only certain combinations of these options are valid (are useful
for interoperation), RPC provides predefined strings that represent the
valid combinations. RPC applications use only these strings.

The following table contains predefined strings representing valid
protocol sequences. In the descriptions NCA is an abbreviation of
Network Computing Architecture.

520

DCE Remote Procedure Call

rpc_intro(3rpc)

Valid Protocol Sequences

Protocol Sequence Description

ncacn_ip_tcp NCA Connection over Internet
Protocol: Transmission Control Protocol

ip or ncadg_ip_udp NCA Datagram over Internet Protocol:
User Datagram Protocol

A server application can use a particular protocol sequence only if the
operating system software supports that protocol. A server chooses to
accept remote procedure calls over some or all of the supported protocol
sequences.

Client and server applications can determine if a protocol sequence
is supported by both the RPC runtime and the operating system. The
applications make this determination by calling the following routines:

• rpc_network_inq_protseqs()

• rpc_network_is_protseq_valid()

The following routines allow server applications to register protocol
sequences with the runtime:

• rpc_server_use_all_protseqs()

• rpc_server_use_all_protseqs_if()

• rpc_server_use_protseq()

• rpc_server_use_protseq_ep()

• rpc_server_use_protseq_if()

Those routines requiring a protocol sequence argument show a data type
of unsigned_char_t *.

A client can use the protocol sequence strings to construct a string
binding using therpc_string_binding_compose()routine.

Protocol Sequence Vector
The protocol sequence vector data structure contains a list of protocol
sequences over which the RPC runtime can send or receive remote
procedure calls. The protocol sequence vector contains a count member

521

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

(count), followed by an array of pointers to protocol sequence strings
(protseq).

The C language representation of a protocol sequence vector is as
follows:

typedef struct {

unsigned32 count;

unsigned_char_t *protseq[1];

} rpc_protseq_vector_t;

The protocol sequence vector is a read-only vector. To obtain
a protocol sequence vector, a server application calls the
rpc_network_inq_protseqs() routine. The RPC runtime allocates
memory for the protocol sequence vector. The server application calls
the rpc_protseq_vector_free() routine to free the protocol sequence
vector.

Statistics Vector
The statistics vector data structure contains statistics from the RPC
runtime on a per address space basis. The statistics vector contains a
count member (count), followed by an array of statistics. Each array
element contains anunsigned32value. The following list describes the
statistics indexed by the specified constant:

rpc_c_stats_calls_in
The number of remote procedure calls received by the
runtime.

rpc_c_stats_calls_out
The number of remote procedure calls initiated by the
runtime.

rpc_c_stats_pkts_in
The number of network packets received by the runtime.

rpc_c_stats_pkts_out
The number of network packets sent by the runtime.

The C language representation of a statistics vector is as follows:

522

DCE Remote Procedure Call

rpc_intro(3rpc)

typedef struct {

unsigned32 count;

unsigned32 stats[1];

} rpc_stats_vector_t;

To obtain runtime statistics, an application calls the
rpc_mgmt_inq_stats() routine. The RPC runtime allocates
memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free()routine to free the statistics vector.

String Binding
A string binding contains the character representation of a binding
handle.

String bindings are a convenient way of representing portions of
a binding handle. However, you cannot use string bindings directly
to make remote procedure calls. You must first call the routine
rpc_binding_from_string_binding() , which converts a string binding
to a binding handle.

A string binding does not contain all the information from a binding
handle. For example, a call torpc_binding_to_string_binding() does
not translate the authentication information sometimes associated with
a binding handle into the resulting string binding.

You can begin the development of a distributed application by having its
servers communicate their binding information to clients by using string
bindings. This communication allows a server to establish a client/server
relationship without using the local endpoint map or the name service
database.

In this case, the server calls none of therpc_ep_register(),
rpc_ep_register_no_replace(), andrpc_ns_binding_export() routines.
Instead, the server calls only routinerpc_server_inq_bindings()
to obtain a vector of binding handles. The server obtains
binding handles one at a time from the vector and calls routine
rpc_binding_to_string_binding() to convert each binding handle into
a string binding. The resulting string binding is always fully bound and
may contain a nonnil object UUID. The server then makes some or all
of its string bindings available to clients. One way is placing the string
bindings in a file to be read by clients or users or both. Another way

523

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

is delivering the string bindings to clients or users by means of a file,
mail, or paper.

You can continue the distributed application’s development by changing
the application so that servers use the local endpoint map and the name
service database to communicate their binding information.

To find the server, a client obtains a string binding containing a
protocol sequence that the client runtime supports and, optionally, an
object UUID that the client requires. The client then calls routine
rpc_binding_from_string_binding() to convert the string binding into
a server binding handle.

Other useful routines for working with string bindings are
rpc_string_binding_compose(), which creates a string binding from
its component parts, andrpc_string_binding_parse(), which separates
a string binding into its component parts.

The two formats of a string binding follow. The four fields represent the
object UUID, RPC protocol sequence, network address, and endpoint
and network options of the binding. A delimiter character such as@ (at
sign) or: (colon) separates each field. A string binding does not contain
any whitespace.

object-uuid@ rpc-prot-seq: nw-addr [endpoint, opt ...]

or

object-uuid@ rpc-prot-seq: nw-addr [endpoint= endpoint, opt ...]

object-uuid This field specifies the UUID of the object operated
on by the remote procedure that is called with this
string binding. The RPC runtime, at the server, maps the
object’s type to a manager entry point vector (EPV) to
invoke the correct manager routine. The explanation of
the routinerpc_server_register_if() discusses mapping
object UUIDs to manager EPVs.

This field is optional. If you do not provide it the RPC
runtime assumes a nil UUID.

524

DCE Remote Procedure Call

rpc_intro(3rpc)

@ This symbol is the delimiter character for the object UUID
field. If you specify an object UUID you must follow it
with this symbol.

rpc-protocol-sequence
This field specifies the protocol sequence used for making
remote procedure calls. The valid protocol sequences are
as follows:

ncacn_ip_tcp

ncacn_dnet_nsp

ncacn_osi_dna

ncadg_ip_udp

ncadg_dds

More information about these valid protocol sequences
appears in the preceding table.

This field is required.

: This symbol is the delimiter character for the RPC
protocol sequence field.

nw-addr This field specifies the address (addr) of a host on a
network (nw) that receives remote procedure calls made
with this string binding. The format and content of the
network address depends on the value ofrpc-protocol-
sequenceas follows:

ncacn_ip_tcpandncadg_ip_udp

Specify an Internet address using the common Internet
address notation or host name.

Two examples with common Internet address notation are
128.10.2.30and#126.15.1.28. The second example shows
the use of the optional# (number sign) character.

An example with a host name isko.

If the specified host name is multihomed, the
binding handle that is returned from the routine

525

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

rpc_binding_from_string_binding() contains a host
address. It is the first host address returned from the
system library call that translates a host name to a host
address for the network address format in the protocol
sequence. To control the host address used, specify the
network address using the common Internet address
notation instead of a host name.

The network address field is optional. If you do not supply
this field, the string binding refers to your local host.

[This symbol is the delimiter character specifying that one
endpoint and zero or more options follow. If the string
binding contains at least one endpoint, this symbol is
required.

endpoint This field specifies the endpoint, or address of a specific
server instance on a host, to receive remote procedure calls
made with this string binding. Optionally the keyword
endpoint= can precede the endpoint specifier.

The format and content of the endpoint depends on the
specified protocol sequence as follows:

ncacn_ip_tcpandncadg_ip_udp

The endpoint field is optional. For more information about
endpoints, see the information on binding handles in this
reference page.

, This symbol is the delimiter character specifying that
option data follows. If an option follows, this delimiter
is required.

option This field specifies any options. Each option is specified
asoption name=option value.

The format and content of the option depends on the
specified protocol sequence as follows:

ncacn_ip_tcpandncadg_ip_udp

There are no Internet options.

The option field is optional.

526

DCE Remote Procedure Call

rpc_intro(3rpc)

] This symbol is the delimiter character specifying that one
endpoint and zero or more options precede. If the string
binding contains at least one endpoint, this symbol is
required.

The \ (backslash) character is treated as an escape character for all string
binding fields.

Examples of valid string bindings follow. In each exampleobj-uuid
represents a UUID in string form. In other words, the symbolobj-uuid
can represent the UUID 308fb580-1eb2-11ca-923b-08002b1075a7.

obj-uuid @ncacn_ip_tcp:16.20.16.27[2001]

obj-uuid @ncacn_ip_tcp:16.20.16.27[endpoint=2001]

String UUID
A string UUID contains the character representation of a UUID. A string
UUID consists of multiple fields of hexadecimal characters. Each field
has a fixed length, and dashes separate the fields. An example of a string
UUID follows:

989c6e5c-2cc1-11ca-a044-08002b1bb4f5

When you supply a string UUID as an input argument to an RPC runtime
routine, you can enter the alphabetic hexadecimal characters in either
uppercase or lowercase letters. The RPC runtime routines that return
a string UUID always return the hexadecimal characters in lowercase
letters.

The following routines require a string UUID:

• rpc_string_binding_compose()

• uuid_from_string()

The following routines return a string UUID:

• rpc_string_binding_parse()

• uuid_to_string()

527

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

Unsigned Character String
DCE RPC treats all characters in strings as unsigned characters.
Those routines with character string arguments show a data type of
unsigned_char_t *.

UUID Vector
The UUID vector data structure contains a list of UUIDs. The UUID
vector contains a count member (count), followed by an array of pointers
to UUIDs.

The C language representation of a UUID vector is as follows:

typedef struct

{

unsigned32 count;

uuid_t *uuid[1];

} uuid_vector_t;

An application constructs a UUID vector to contain object UUIDs to be
exported or unexported from the name service database. The following
routines require a UUID vector and show an argument data type of
uuid_vector_t:

• rpc_ep_register()

• rpc_ep_register_no_replace()

• rpc_ep_unregister()

• rpc_ns_binding_export()

• rpc_ns_binding_unexport()

• rpc_ns_mgmt_binding_unexport()

Permissions Required

To use the NSI routines to access entries in a Cell Directory Service (CDS) database,
you need access control list (ACL) permissions. Depending on the NSI operation,
you need ACL permissions to the parent directory or the CDS object entry (the name
service entry) or both.

The ACL permissions are as follows:

• To create an entry, you need insert permission to the parent directory.

528

DCE Remote Procedure Call

rpc_intro(3rpc)

• To read an entry, you need read permission to the CDS object entry.

• To write to an entry, you need write permission to the CDS object entry.

• To delete an entry, you need delete permission either to the CDS object entry or
to the parent directory.

• To test an entry, you need either test permission or read permission to the CDS
object entry.

Note that write permission does not imply read permission.

To find the ACL permissions for the NSI routines whose names begin withrpc_ns,
see these routines’ reference pages.

The non-NSI routines whose names do not begin withrpc_ns do not need ACL
permissions, so their reference pages do not specify any.

Frequently Used Routine Parameters

A few parameters are common to many of the DCE RPC routines. These parameters
are described fully here and again briefly on the specific routine reference pages.

binding Used as an input or output parameter.

Returns a binding handle for making remote procedure calls to a server.

A client obtains a binding handle by calling one of the following
routines:

• rpc_binding_copy()

• rpc_binding_from_string_binding()

• rpc_ns_binding_import_next()

• rpc_ns_binding_select()

Creating a binding handle establishes a relationship between a client and
a server. However, the relationship does not involve any communications
between the client and server. The communications occur when a client
makes a remote procedure call.

As an input parameter to a remote procedure call,binding specifies
a binding handle that refers to binding information. The client’s RPC
runtime uses this binding information to make a remote procedure call
to a server.

529

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

Server manager routines can extract client information from a client
binding handle by using the following routines:

• rpc_binding_inq_auth_client()

• rpc_binding_inq_object()

• rpc_binding_to_string_binding()

• rpc_string_binding_parse()

name Used as an input/output parameter.

When used as an input parameter, the value of this parameter depends
on the syntax selected in thename_syntaxparameter. If it is allowed by
the called routine, the value NULL specifies that the routine uses the
name specified in theRPC_DEFAULT_ENTRY environment variable.
Specifying NULL also has the called routine use the name syntax that the
environment variableRPC_DEFAULT_ENTRY_SYNTAX specifies.

For aname_syntaxvalue ofrpc_c_ns_syntax_dce, use the DCE naming
rules to specify parametername.

As an output parameter, returns an entry in the name service database
in the form of a character string that includes a terminating null
character. The value of this parameter depends on the syntax selected
in name_syntax.

For a name_syntaxvalue of rpc_c_ns_syntax_dce, name is returned
using the DCE naming syntax.

The DCE RPC runtime allocates memory for the returned string. The
application is responsible for calling therpc_string_free() routine to
deallocate the string.

If an application does not want a returned name string, the application
usually specifies NULL for this parameter. The one exception is routine
rpc_ns_entry_expand_name(); it always returns a name string.

name_syntaxUsed as an input parameter, an integer value that specifies the syntax
of an entry name. When allowed by the called routine, a value of
rpc_c_ns_syntax_defaultspecifies that the routine uses the syntax
specified in the RPC_DEFAULT_ENTRY_SYNTAX environment
variable. The following table lists the valid syntaxes that applications
can use in DCE RPC for entries in the name service database.

530

DCE Remote Procedure Call

rpc_intro(3rpc)

Valid Name Syntaxes

Constant Value Description

rpc_c_ns_syntax_default 0 Default syntax

rpc_c_ns_syntax_dce 3 DCE

The name_syntaxparameter tells routines how to parse the entry name
specified in an inputnameparameter or specifies the syntax to use when
returning an entry name as an outputnameparameter.

If the RPC_DEFAULT_ENTRY_SYNTAX environment variable is not
defined, the RPC runtime uses therpc_c_ns_syntax_dcename syntax.

string Used as an input or output parameter.

Returns a character string, which always includes the terminating null
character\0. The DCE RPC runtime allocates memory for the returned
string. The application calls therpc_string_free() routine to deallocate
the memory occupied by the string.

If there is no data for the requested string, the routine returns
the string \0. For example, if the string binding passed to routine
rpc_string_binding_parse() does not contain an object UUID, the
routine returns\0 as the value of the object UUID string. The application
must call the rpc_string_free() routine to deallocate the memory
occupied by this string.

If an application does not require a returned output string, the application
specifies NULL for this parameter.

status Each routine in the RPC API returns a DCE status code indicating
whether the routine completed successfully or, if not, why not. A return
value of rpc_s_ok indicates success. All other return values signify
routine failure. The status codes listed for each RPC runtime routine are
the most likely, but not necessarily all, the status codes that the routine
can return.

The status code argument has a data type ofunsigned32.

To translate a DCE status code to a text message, call the routine
dce_error_inq_text().

Note that RPC exceptions are equivalent to RPC status codes. To
identify the status code that corresponds to a given exception, replace

531

DCE 1.2.2 Application Development Reference

rpc_intro(3rpc)

the _x_ string of the exception with the string_s_; for example, the
exception rpc_x_already_listening is equivalent to the status code
rpc_s_already_listening.

For more information about the RPC status codes, see theDCE 1.2.2
Problem Determination Guide.

uuid Used as an input or output parameter.

When you need to specify a nil UUID to auuid input parameter in any
of the DCE RPC routines, you can supply the value NULL.

Related Information

Books:DCE 1.2.2 Application Development—Introduction and Style Guide, DCE
1.2.2 Application Development Guide—Core Components, DCE 1.2.2 Application
Development Guide—Directory Services, DCE 1.2.2 Command Reference, DCE 1.2.2
Problem Determination Guide.

532

DCE Remote Procedure Call

cs_byte_from_netcs(3rpc)

cs_byte_from_netcs

Purpose Converts international character data from a network code set to a local code set prior
to unmarshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_from_netcs(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
idl_byte *network_data,
unsigned32network_data_length,
unsigned32local_buffer_size,
idl_byte * local_data,
unsigned32 *local_data_length,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain code
set conversion information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
that was used to transmit character data over the network. In general,
the networkcode set is the code set that the client application’s code
sets evaluation routine has determined to be compatible for this client
and server. When the caller is the client stub, this value is the receiving
tag. When the caller is the server stub, this value is the sending tag.

533

DCE 1.2.2 Application Development Reference

cs_byte_from_netcs(3rpc)

network_data
A pointer to the international character data that has been received, in
the network code set encoding.

network_data_length
The number ofidl_byte data elements to be converted. For a varying
array or a conformant varying array, this value is the local value of the
length_is variable. For a conformant array, this value is the local value
of the size_isvariable. For a fixed array, the value is the array size
specified in the interface definition.

local_buffer_size
A pointer to the buffer size to be allocated to contain the converted data,
in units of cs_byte. The value specified in this parameter is the local
buffer size returned from thecs_byte_local_size()routine.

Output

local_data A pointer to the converted data, incs_byteformat.

local_data_length
The length of the converted data, in units ofcs_byte. NULL is specified
if a fixed array or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_from_netcs()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The cs_byte_from_netcs()routine is one of the DCE RPC stub code set conversion
routines that RPC stubs use before they marshall or unmarshall data to convert
international character data to and from local and network code sets.

Client and server stubs call thecs_byte_*_netcs() routines when thecs_byte type
has been specified as the local data type using thecs_char attribute in the attribute
configuration file for the application. (Thecs_bytetype is equivalent to theidl_byte
type.)

Client and server stubs call thecs_byte_from_netcs()routine before they unmarshall
the international character data received from the network. The routine takes a binding

534

DCE Remote Procedure Call

cs_byte_from_netcs(3rpc)

handle, a code set value that identifies the code set used to transfer international
character data over the network, the address of the network data, inidl_byte format,
that may need to be converted, and the data length, in units ofidl_byte.

The routine compares the sending code set to the local code set currently in use. If the
routine finds that code set conversion is necessary, (because the local code set differs
from the code set specified to be used on the network), it determines which host code
set converter to call to convert the data and then invokes that converter.

The routine then returns the converted data, incs_byte format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units ofcs_byte.

Applications can specify local data types other thancs_byte and wchar_t (the
local data types for which DCE RPC supplies stub code set conversion routines)
with the cs_char ACF attribute. In this case, the application must also supply
local_type_to_netcs()and local_type_from_netcs() stub conversion routines for this
type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok
Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If
this error occurs in the server stub, an exception is raised to the client
application.

When running the host converter, the following errors can occur:

• rpc_s_ss_invalid_char_input

535

DCE 1.2.2 Application Development Reference

cs_byte_from_netcs(3rpc)

• rpc_s_ss_short_conv_buffer

When invoked from the server stub, the routine calls thedce_cs_loc_to_rgy()routine
and the host converter routines. If these routines return an error, an exception is raised
to the client application.

Related Information

Functions:cs_byte_local_size(3rpc), cs_byte_net_size(3rpc),
cs_byte_to_netcs(3rpc), dce_cs_loc_to_rgy(3rpc), wchar_t_from_netcs(3rpc),
wchar_t_to_netcs(3rpc).

536

DCE Remote Procedure Call

cs_byte_local_size(3rpc)

cs_byte_local_size

Purpose Calculates the necessary buffer size for code set conversion from a network code set
to a local code set prior to unmarshalling; used by client and server stubs but not
directly by applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_local_size(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
unsigned32network_buffer_size,
idl_cs_convert_t *conversion_type,
unsigned32 *local_buffer_size,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain buffer
size evaluation information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
used to transmit character data over the network. In general, thenetwork
code set is the code set that the client application’s code sets evaluation
routine has determined to be compatible for this client and server. When
the caller is the client stub, this value is the receiving tag. When the
caller is the server stub, this value is the sending tag.

537

DCE 1.2.2 Application Development Reference

cs_byte_local_size(3rpc)

network_buffer_size
The size, in units ofidl_byte, of the buffer that is allocated for the
international character data. For a conformant or conformant varying
array, this value is the network value of thesize_is variable for the
array; that is, the value is the size of the unmarshalled string if no
conversion is done.

Output

conversion_type
A pointer to the enumerated type defined indce/idlbase.hthat indicates
whether data conversion is necessary and whether or not the existing
buffer is sufficient for storing the results of the conversion. The
conversion type can be one of the following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in the current
buffer.

idl_cs_new_buffer_convert
The converted data must be written to a new buffer.

local_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units ofcs_byte. This value is to be used as the local
value of thesize_isvariable for the array, and is nonNULL only if a
conformant or conformant varying array is to be unmarshalled. A value
of NULL in this parameter indicates that a fixed or varying array is to
be unmarshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_local_size()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

538

DCE Remote Procedure Call

cs_byte_local_size(3rpc)

The cs_byte_local_size()routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant varying
array is to be marshalled or unmarshalled); the RPC stub then allocates a buffer of
that size before it calls one of the code set conversion routines.

Client and server stubs call the twocs_byte_*_size routines when thecs_byte type
(which is internally equivalent toidl_byte) has been specified as the local data type
using thecs_charattribute in the attribute configuration file for the application. The
cs_byte_local_size()routine is used to evaluate buffer size requirements prior to
unmarshalling data received over the network.

Applications do not callcs_byte_local_size()routine directly. Client and server stubs
call the routine before they unmarshall any data. The stubs pass the routine a binding
handle and a code set value that identifies the code set that was used to transfer
international character data over the network. The stubs also specify the network
storage size of the data, in units ofidl_byte, if a conformant or conformant varying
array is to be unmarshalled, or they specify NULL if a fixed or varying array is to be
marshalled.

When called from a client stub, thecs_byte_local_size()routine determines the value
of conversion_typefrom the client and server’s code set tag information stored in
the binding handle by a code sets evaluation routine or a tag-setting routine. If the
conversion type specified in the handle isidl_cs_new_buffer_convert, the routine sets
theconversion_typeparameter to this value and, if a conformant or conformant varying
array is to be unmarshalled, calculates a new buffer size by multiplying the value of
network_buffer_sizeby the maximum number of bytes required to represent the code
set specified innetwork_code_set_value. The routine returns the new buffer size in the
local_buffer_sizeparameter. The size is specified in units ofcs_byte, which is the local
representation used for international character data (and is equivalent to theidl_byte
data type). For fixed and varying arrays, the routine assumes thatnetwork_buffer_size
is sufficient to store the converted data.

If the handle information specifiesidl_cs_convert_in_placeor idl_cs_no_convert,
the routine assumes thatnetwork_buffer_sizecan store the converted data (or that no
conversion is necessary) and returnsidl_cs_convert_in_place(or idl_cs_no_convert)
in the conversion_typeparameter. If a conformant or conformant varying array is
to be unmarshalled. the routine also returns the value ofnetwork_buffer_sizein
local_buffer_size

539

DCE 1.2.2 Application Development Reference

cs_byte_local_size(3rpc)

In cases in which the binding handle does not contain the results of character and
code sets evaluation, or in which thecs_byte_local_size()routine is being called from
the server stub, it determines the value ofconversion_typeitself using the local code
set value and the code set value passed in thenetwork_code_set_valueparameter and
returns the appropriateconversion_typevalue. If a conformant or conformant varying
array is to be unmarshalled, and the routine finds that a new buffer is required to hold
the converted data, it also calculates the size of this new buffer (by multiplying the
value ofnetwork_buffer_sizeby the maximum number of bytes required to represent
the code set specified innetwork_code_set_value) and returns the results, in units of
cs_byte, in local_buffer_size.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to
evaluate the code set. If this error occurs in the server stub, an exception
is raised to the client application.

When invoked from the server stub, this routine calls the routinesdce_cs_loc_to_rgy()
and rpc_rgy_get_max_bytes(). If either of these routines returns an error, the
cs_byte_local_size()routine raises an exception to the client application.

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_net_size(3rpc),
cs_byte_to_netcs(3rpc), dce_cs_loc_to_rgy(3rpc), rpc_rgy_get_max_bytes(3rpc).
wchar_t_local_size(3rpc), wchar_t_net_size(3rpc).

540

DCE Remote Procedure Call

cs_byte_net_size(3rpc)

cs_byte_net_size

Purpose Calculates the necessary buffer size for code set conversion from a local code set to a
network code set prior to marshalling; used by client and server stubs but not directly
by applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_net_size(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
unsigned32local_buffer_size,
idl_cs_convert_t *conversion_type,
unsigned32 *network_buffer_size,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain buffer
size evaluation information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
to be used to transmit character data over the network. In general, the
networkcode set is the code set that the client application’s code sets
evaluation routine has determined to be compatible for this client and
server. When the caller is the client stub, this value is the sending tag.
When the caller is the server stub, this value is the receiving tag.

541

DCE 1.2.2 Application Development Reference

cs_byte_net_size(3rpc)

local_buffer_size
The size, in units ofcs_byte, of the buffer that is allocated for the
international character data. For a conformant or conformant varying
array, this value is the local value of thesize_isvariable for the array;
that is, the value is the size of the marshalled string if no conversion is
done.

Output

conversion_type
A pointer to the enumerated type defined indce/idlbase.hthat indicates
whether data conversion is necessary and whether or not existing storage
is sufficient for storing the results of the conversion. The conversion type
can be one of the following values:

idl_cs_no_convert
No code set conversion is required.

idl_cs_in_place_convert
Code set conversion can be performed in the current
buffer.

idl_cs_new_buffer_convert
The converted data must be written to a new buffer.

network_buffer_size
A pointer to the buffer size that needs to be allocated to contain the
converted data, in units ofidl_byte. This value is to be used as the
network value of thesize_isvariable for the array, and is non-NULL
only if a conformant or conformant varying array is to be marshalled. A
value of NULL in this parameter indicates that a fixed or varying array
is to be marshalled.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_net_size()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

542

DCE Remote Procedure Call

cs_byte_net_size(3rpc)

The cs_byte_net_size()routine is one of the four DCE RPC buffer sizing routines
that RPC stubs use before they marshall or unmarshall data to determine whether
or not the buffers allocated for code set conversion need to be enlarged to hold the
converted data. The buffer sizing routines determine the type of conversion required
and calculate the size of the necessary buffer (if a conformant or conformant varying
array is to be marshalled or marshalled). The RPC stub then allocates a buffer of that
size before it calls one of the code set conversion routines.

Client and server stubs call the twocs_byte_*_size routines when thecs_byte type
(which is internally equivalent toidl_byte) has been specified as the local data type
using the cs_char attribute in the attribute configuration file for the application.
The cs_byte_net_size()routine is used to evaluate buffer size requirements prior to
marshalling data to be sent over the network.

Applications do not call thecs_byte_net_size()routine directly. Client and server
stubs call the routine before they marshall any data. The stubs pass the routine a
binding handle and a code set value that identifies the code set to be used to transfer
international character data over the network. The stubs also specify the local storage
size of the data, in units ofcs_byte.

When called from a client stub, thecs_byte_net_size()routine determines the value
of conversion_typefrom the client and server’s code set tag information set up the
binding handle by a code sets evaluation routine or a tag-setting routine. If the
conversion type specified in the handle isidl_cs_new_buffer_convert, the routine
sets theconversion_typeparameter to this value and, if a conformant or conformant
varying array is to be marshalled, calculates a new buffer size by multiplying the value
of local_buffer_sizeby the maximum number of bytes required to represent the code
set specified innetwork_code_set_value(the sending tag parameter).

The routine returns the new buffer size in thenetwork_buffer_sizeparameter. The
size is specified in units ofidl_byte, which is the network representation used for
international character data (and is internally equivalent to thecs_byte type). For
fixed and varying arrays, the routine assumes thatlocal_buffer_sizeis sufficient to
store the converted data.

If the binding handle information specifiesidl_cs_convert_in_place or
idl_cs_no_convert, the routine assumes thatlocal_buffer_sizecan store the converted
data (or that no conversion is necessary) and returnsidl_cs_convert_in_place
(or idl_cs_no_convert) in the conversion_typeparameter. If a conformant or
conformant varying array is to be marshalled, the routine also returns the value of
local_buffer_sizein network_buffer_size.

543

DCE 1.2.2 Application Development Reference

cs_byte_net_size(3rpc)

In cases in which the binding handle does not contain the results of character and
code sets evaluation, or in which thecs_byte_net_size()routine is being called from
the server stub, it determines the value ofconversion_typeitself using the local code
set value and the code set value passed in thenetwork_code_set_valueparameter and
returns the appropriateconversion_typevalue. If a conformant or conformant varying
array is to be marshalled, and the routine finds that a new buffer is required to hold the
converted data, it also calculates the size of this new buffer (by multiplying the value
of local_buffer_sizeby the maximum number of bytes required to represent the code
set specified innetwork_code_set_value) and returns the results, in units ofidl_byte,
in network_buffer_size.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain the information necessary to
evaluate the code set. If this error occurs in the server stub, an exception
is raised to the client application.

When invoked from the server stub, this routine calls the routinesdcs_cs_loc_to_rgy()
and rpc_rgy_get_max_bytes(). If either of these routines returns an error, the
cs_byte_net_size()routine raises an exception to the client application.

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_local_size(3rpc),
cs_byte_to_netcs(3rpc), dcs_cs_loc_to_rgy(3rpc), rpc_rgy_get_max_bytes(3rpc),
wchar_t_local_size(3rpc), wchar_t_net_size(3rpc).

544

DCE Remote Procedure Call

cs_byte_to_netcs(3rpc)

cs_byte_to_netcs

Purpose Converts international character data from a local code set to a network code set prior
to marshalling; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void cs_byte_to_netcs(
rpc_binding_handle_t binding,
unsigned32network_code_set_value,
idl_byte * local_data,
unsigned32local_data_length,
idl_byte *network_data,
unsigned32 *network_data_length,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain code
set conversion information. When called from the client stub, this
value is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routine.

network_code_set_value
The registered hexadecimal integer value that represents the code set
to be used to transmit character data over the network. In general, the
networkcode set is the code set that the client application’s code sets
evaluation routine has determined to be compatible for this client and
server. When the caller is the client stub, this value is the sending tag.
When the caller is the server stub, this value is the receiving tag.

local_data A pointer to the international character data to be transmitted, in the
local code set encoding.

545

DCE 1.2.2 Application Development Reference

cs_byte_to_netcs(3rpc)

local_data_length
The number ofcs_byte data elements to be converted. For a varying
array or a conformant varying array, this value is the local value of the
length_is variable. For a conformant array, this value is the local value
of the size_isvariable. For a fixed array, the value is the array size
specified in the interface definition.

Output

network_data
A pointer to the converted data, inidl_byte format.

network_data_length
A pointer to the length of the converted data, in units ofidl_byte. NULL
is specified if a fixed or varying array is to be converted.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The cs_byte_to_netcs()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The cs_byte_to_netcs()routine is one of the DCE RPC stub code set conversion
routines that RPC stubs use before they marshall or unmarshall data to convert
international character data to and from local and network code sets.

Client and server stubs call thecs_byte_*_netcs() routines when thecs_byte type
has been specified as the local data type using thecs_char attribute in the attribute
configuration file for the application. (Thecs_bytetype is equivalent to theidl_byte
type.)

Client and server stubs call thecs_byte_to_netcs()routine before they marshall any
data. The routine takes a binding handle, a code set value that identifies the code set
to be used to transfer international character data over the network, the address of the
data to be converted, and the length of the data to be converted, in units ofidl_byte.

The routine compares the code set specified as the network code set to the local code
set currently in use. If the routine finds that code set conversion is necessary, (because
the local code set differs from the code set specified to be used on the network), it

546

DCE Remote Procedure Call

cs_byte_to_netcs(3rpc)

determines which host code set converter to call to convert the data and then invokes
that converter.

The routine then returns the converted data, inidl_byte format. If the data is a
conformant or conformant varying array, the routine also returns the length of the
converted data, in units ofidl_byte.

Applications can specify local data types other thancs_byte and wchar_t (the
local data types for which DCE RPC supplies stub code set conversion routines)
with the cs_char ACF attribute. In this case, the application must also supply
local_type_to_netcs()and local_type_from_netcs() stub conversion routines for this
type.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_incompatible_codesets
The binding handle does not contain code set evaluation information. If
this error occurs in the server stub, an exception is raised to the client
application.

When running the host converter, the following errors can occur:

• rpc_s_ss_invalid_char_input

• rpc_s_ss_short_conv_buffer

When invoked from the server stub, the routine calls thedce_cs_loc_to_rgy()routine
and the host converter routines. If these routines return an error, an exception is raised
to the client application.

547

DCE 1.2.2 Application Development Reference

cs_byte_to_netcs(3rpc)

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_local_size(3rpc),
cs_byte_net_size(3rpc), dce_cs_loc_to_rgy(3rpc), wchar_t_from_netcs(3rpc),
wchar_t_to_netcs(3rpc).

548

DCE Remote Procedure Call

dce_cs_loc_to_rgy(3rpc)

dce_cs_loc_to_rgy

Purpose Maps a local name for a code set to a code set value in the code set registry; used by
client and server applications

Synopsis
#include <dce/rpc.h>

void dce_cs_loc_to_rgy(
idl_char * local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

Parameters
Input

local_code_set_name
A string that specifies the name that the local host’s locale environment
uses to refer to the code set. The string is a maximum of 32 bytes: 31
character data bytes plus a terminating NULL character.

Output

rgy_code_set_value
The registered integer value that uniquely identifies the code set specified
by local_code_set_name.

rgy_char_sets_number
The number of character sets that the specified code set encodes.
Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify
the character set(s) that the specified code set encodes. Specifying

549

DCE 1.2.2 Application Development Reference

dce_cs_loc_to_rgy(3rpc)

NULL prevents this routine from returning this parameter. The routine
dynamically allocates this value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_cs_loc_to_rgy()routine is a DCE function that maps operating system-
specific names for character/code set encodings to their unique identifiers in the code
set registry.

The routine is currently used by the DCE RPC routines for character and code set
interoperability, which permit DCE RPC clients and servers to transfer international
character data in a heterogeneous character set and code sets environment.

The dce_cs_loc_to_rgy()routine takes as input a string that holds the host-specific
local name of a code set and returns the corresponding integer value that uniquely
identifies that code set, as registered in the host’s code set registry. If the integer
value does not exist in the registry, the routine returns the statusdce_cs_c_unknown.
The routine also returns the number of character sets that the code set encodes and
the registered integer values that uniquely identify those character sets. Specifying
NULL in the rgy_char_sets_numberand rgy_char_sets_value[] parameters prevents
the routine from performing the additional search for these values. Applications that
want only to obtain a code set value from the code set registry can specify NULL
for these parameters in order to improve the routine’s performance. If the value is
returned from the routine, application developers should free the array after it is used,
since the array is dynamically allocated.

The DCE RPC code sets compatibility evaluation routines
rpc_cs_eval_with_universal(), rpc_cs_eval_without_universal(), and
rpc_cs_character_set_compat_check()use this routine to obtain registered
integer values for a client and server’s supported character sets in order to ensure
that the server supports a character set that is compatible with the client. The DCE
RPC stub support routines for code set conversion can use this routine to obtain the
registered code set value that corresponds to the code set they are currently using;
that is, the local code set specified in their host’s locale environment. The stub
routines for code set conversion then compare their local code set value to the code
set value specified in the sending tag for the call to determine whether code set
conversion is necessary.

550

DCE Remote Procedure Call

dce_cs_loc_to_rgy(3rpc)

In general, programmers who are developing RPC applications that transfer
international characters do not need to call this routine directly; the DCE RPC
routines provided for code sets evaluation and the DCE RPC stub support routines
for code set conversion call this routine on the client or server application’s behalf.

However, programmers who are developing their own stub support routines for code
set conversion may want to include this routine in their conversion code to map their
current locale information to a code set value in order to perform local-to-sending tag
code set comparison.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cs_c_ok

dce_cs_c_cannot_allocate_memory

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_unknown

dce_cs_c_not_found

Related Information

Commands:csrc(8dce).

Functions:dce_cs_rgy_to_loc(3rpc), rpc_cs_char_set_compat_check(3rpc),
rpc_cs_eval_with_universal(3rpc), rpc_cs_eval_without_universal(3rpc),
rpc_rgy_get_code_sets(3rpc).

551

DCE 1.2.2 Application Development Reference

dce_cs_rgy_to_loc(3rpc)

dce_cs_rgy_to_loc

Purpose Maps a code set value in the code set registry to the local name for a code set; used
by client and server applications

Synopsis
#include <dce/rpc.h>

void dce_cs_rgy_to_loc(
unsigned32 *rgy_code_set_value,
idl_char ** local_code_set_name,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

Parameters
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output

local_code_set_name
A string that specifies the name that the local host’s locale environment
uses to refer to the code set. The string is a maximum of 32 bytes: 31
character data bytes and a terminating NULL character.

rgy_char_sets_number
The number of character sets that the specified code set encodes.
Specifying NULL in this parameter prevents the routine from returning
this value.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify
the character set(s) that the specified code set encodes. Specifying NULL

552

DCE Remote Procedure Call

dce_cs_rgy_to_loc(3rpc)

in this parameter prevents the routine from returning this value. The
routine dynamically allocates this value.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The dce_cs_rgy_to_loc()routine is a DCE function that maps a unique identifier for
a code set in the code set registry to the operating system-specific name for the code
set, if it exists in the code set registry.

The routine is currently used by the DCE RPC routines for character and code set
interoperability, which permit DCE applications to transfer international characters in
a heterogeneous character and code sets environment.

The dce_cs_rgy_to_loc()routine takes as input a registered integer value of a code
set and returns a string that holds the operating system-specific, or local name, of the
code set.

If the local code set name does not exist in the registry, the routine returns the status
dce_cs_c_unknownand returns an undefined string.

The routine also returns the number of character sets that the code set encodes and
the registered integer values that uniquely identify those character sets. Specifying
NULL in the rgy_char_sets_numberand rgy_char_sets_value[] parameters prevents
the routine from performing the additional search for these values. Applications that
want only to obtain a local code set name from the code set registry can specify NULL
for these parameters in order to improve the routine’s performance. If the value is
returned from the routine, application developers should free thergy_char_sets_value
array after it is used.

In general, client and server applications that use the DCE RPC character and code
set interoperablity features do not need to call this routine directly; the DCE RPC
stub support routines provided for code set conversion call this routine on the client
or server application’s behalf to obtain the string name that matches the name of the
host code set converter that they will call to perform the actual code set conversion.

However, application programmers who are developing their own RPC stub support
routines for code set conversion may want to include this routine in their conversion
code to map code set values sent in code set tags into the local names for the code
sets so that they can locate the correct operating system code set converter.

553

DCE 1.2.2 Application Development Reference

dce_cs_rgy_to_loc(3rpc)

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

dce_cs_c_ok

dce_cs_c_cannot_allocate_memory

dce_cs_c_cannot_open_file

dce_cs_c_cannot_read_file

dce_cs_c_unknown

dce_cs_c_not_found

Related Information

Commands:csrc(8dce).

Functions:dce_cs_loc_to_rgy(3rpc), rpc_cs_char_set_compat_check(3rpc),
rpc_cs_eval_with_universal(3rpc), rpc_cs_eval_without_universal(3rpc),
rpc_rgy_get_code_sets(3rpc).

554

DCE Remote Procedure Call

idl_es_decode_buffer(3rpc)

idl_es_decode_buffer

Purpose Returns a buffer decoding handle to the IDL encoding services

Synopsis
void idl_es_decode_buffer(

idl_byte *encoded_data_buffer,
idl_ulong_int buffer_size,
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input

encoded_data_buffer
The address of the buffer that contains the data to be decoded.

buffer_size The number of bytes of data in the buffer to be decoded.

Output

es_handle Returns the address of an IDL encoding services handle for use by a
client or server decoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network. Client and server
applications can use the IDL encoding services to create persistent storage for their

555

DCE 1.2.2 Application Development Reference

idl_es_decode_buffer(3rpc)

data. Encoding flattens complex data types into a byte stream for storage on disk,
while decoding restores the flattened data to complex form.

The idl_es_decode_buffer()routine belongs to a set of routines that return handles
to the IDL encoding services for use by client and server encoding and decoding
operations. The information in the handle controls the way in which the IDL encoding
services manage memory when encoding or decoding data.

The idl_es_decode_buffer()routine returns a buffer decoding handle, which directs
the IDL encoding services to decode data from a single application-supplied buffer of
encoded data.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Function:idl_es_decode_incremental(3rpc).

556

DCE Remote Procedure Call

idl_es_decode_incremental(3rpc)

idl_es_decode_incremental

Purpose Returns an incremental decoding handle to the IDL encoding services; used by client
and server applications

Synopsis
void idl_es_decode_incremental(

idl_void_p_t state,
idl_es_read_fn_tread_fn,
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input/Output

state Specifies the address of an application-provided data structure that
coordinates the actions of successive calls to theread_fn routine. The
state data structure acts as a communications channel between the
application and theread_fnroutine.

Input

read_fn Specifies the address of a user-provided routine that generates a buffer
of encoded data for decoding by the IDL encoding services. The IDL
encoding services call theread_fnroutine repeatedly until all of the data
has been decoded.

The following C definition foridl_es_read_fn_tillustrates the prototype
for the read_fnroutine:

557

DCE 1.2.2 Application Development Reference

idl_es_decode_incremental(3rpc)

typedef void (*idl_es_read_fn_t)

(

idl_void_p_t state, /* in/out */

idl_byte **buffer, /* in */

idl_ulong_int *size, /* in */

);

The idl_es_decode_incremental()routine passes the specifiedstate
parameter value as input to theread_fnroutine. Thestatedata structure
is the communications path between the application and theread_fn
routine. For example, the application can use thestate parameter to
pass in an open file pointer from which theread_fn routine is to read
encoded data.

Thebufferparameter specifies the address of the data to be decoded; this
address must be 8-byte aligned. Thesizeparameter specifies the size of
the buffer to be decoded, and must be a multiple of 8 bytes unless it
represents the size of the last buffer to be decoded.

The read_fnroutine should return an exception on error.

Output

es_handle Returns the address of an IDL encoding services handle for use by a
client or server decoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network. Client and server
applications can use the IDL encoding services to create persistent storage for their
data. Encoding flattens complex data types into a byte stream for storage on disk,
while decoding restores the flattened data to complex form.

The idl_es_decode_incremental()routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and

558

DCE Remote Procedure Call

idl_es_decode_incremental(3rpc)

decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_decode_incremental()routine returns an incremental decoding handle,
which directs the IDL encoding services to decode data by calling the user-supplied
read_fnroutine, which generates a small buffer of encoded data for the IDL encoding
services to decode. The routine passes the buffer address and size to the IDL encoding
services, which then decode the buffer. The IDL encoding services call theread_fn
routine repeatedly until there is no more data to decode.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions:idl_es_decode_buffer(3rpc), idl_es_encode_incremental(3rpc).

559

DCE 1.2.2 Application Development Reference

idl_es_encode_dyn_buffer(3rpc)

idl_es_encode_dyn_buffer

Purpose Returns a dynamic buffer encoding handle to the IDL encoding services; used by
client and server applications

Synopsis
void idl_es_encode_dyn_buffer(

idl_byte ** encoded_data_buffer,
idl_ulong_int * buffer_size,
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input

None.

Output

encoded_data_buffer
The address to which the IDL encoding services will write the address
of the buffer that contains the encoded data, when the encoding process
is complete. When the application no longer needs the buffer, it
should release the memory resource. See theDCE 1.2.2 Application
Development Guide—Core Componentsfor an explanation of how to
manage memory when using the IDL encoding services.

buffer_size The address to which the IDL encoding services will write the size of
the buffer that contains the encoded data, when the encoding process is
complete.

es_handle Returns the address of an IDL encoding services handle for use by a
client or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

560

DCE Remote Procedure Call

idl_es_encode_dyn_buffer(3rpc)

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network. Client and server
applications can use the IDL encoding services to create persistent storage for their
data. Encoding flattens complex data types into a byte stream for storage on disk,
while decoding restores the flattened data to complex form.

The idl_es_encode_dyn_buffer()routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_encode_dyn_buffer()routine returns a dynamic buffer encoding handle,
which directs the IDL encoding services to store the encoded data in a chain of small
buffers, build an additional single buffer that contains the encoded data, and pass that
buffer’s address to the application. Dynamic buffering is the most expensive style of
IDL encoding services buffering, since two copies of the encoded data exist (one in
the chain of buffers, and one in the single buffer).

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

561

DCE 1.2.2 Application Development Reference

idl_es_encode_dyn_buffer(3rpc)

Related Information

Functions:idl_es_encode_fixed_buffer(3rpc), idl_es_encode_incremental(3rpc).

562

DCE Remote Procedure Call

idl_es_encode_fixed_buffer(3rpc)

idl_es_encode_fixed_buffer

Purpose Returns a fixed buffer encoding handle to the IDL encoding services

Synopsis
void idl_es_encode_fixed_buffer(

idl_byte *data_buffer,
idl_ulong_int data_buffer_size,
idl_ulong_int * encoded_buffer_size,
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input

data_buffer The address of the application-supplied buffer. This address must be
8-byte aligned.

data_buffer_size
The size of the application-supplied buffer. The size must be a multiple
of 8 bytes.

Output

encoded_buffer_size
Returns the address to which the IDL encoding services write the size
of the encoded buffer when they have completed encoding the data.

es_handle Returns the address of an IDL encoding services handle for use by a
client or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

563

DCE 1.2.2 Application Development Reference

idl_es_encode_fixed_buffer(3rpc)

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network.

Client and server applications can use the IDL encoding services to create persistent
storage for their data. Encoding flattens complex data types into a byte stream for
storage on disk, while decoding restores the flattened data to complex form.

The idl_es_encode_fixed_buffer()routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_encode_fixed_buffer()routine returns a fixed buffer encoding handle,
which directs the IDL encoding services to encode data into a single buffer that the
application has provided. The fixed buffer encoding style is useful for applications
that need only one buffer for their encoding and decoding process. The buffer that the
application allocates must be large enough to hold all of the encoded data, and must
also allocate 56 bytes for each encoding operation that the application has defined
(this space is used to hold per-operation header information.)

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_bad_buffer
Bad buffer operation.

rpc_s_no_memory
Insufficient memory available to complete operation.

564

DCE Remote Procedure Call

idl_es_encode_fixed_buffer(3rpc)

Related Information

Functions:idl_es_encode_dyn_buffer(3rpc), idl_es_encode_incremental(3rpc).

565

DCE 1.2.2 Application Development Reference

idl_es_encode_incremental(3rpc)

idl_es_encode_incremental

Purpose Returns an incremental encoding handle to the IDL encoding services; used by client
and server applications

Synopsis
void idl_es_encode_incremental(

idl_void_p_t state,
idl_es_allocate_fn_tallocate_fn,
idl_es_write_fn_t write_fn,
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input/Output

state Specifies the address of an application-provided data structure that
coordinates the actions of theallocate_fn and write_fn routines. The
state data structure acts as a communications channel between the
application and theallocate_fnandwrite_fn routines.

Input

allocate_fn Specifies the address of a user-provided routine that allocates an empty
buffer. The encoding stub uses the allocated buffer to store encoded data.

The following C definition for idl_es_allocate_fn_t illustrates the
prototype for the buffer allocation routine:

566

DCE Remote Procedure Call

idl_es_encode_incremental(3rpc)

typedef void (*idl_es_allocate_fn_t)

(

idl_void_p_t state, /* in/out */

idl_byte **buffer, /* out */

idl_ulong_int *size, /* in/out */

);

The idl_es_encode_incremental()routine passes the specifiedstate
parameter value as input to theallocate_fn buffer allocation routine.
When the IDL encoding services call theallocate_fnroutine, the value
at the address indicated bysize represents the buffer size that the IDL
encoding services have requested the routine to allocate. When the
allocate_fnbuffer allocation routine allocates the buffer, it writes the
actual size of the allocated buffer to this parameter; the value must be
a multiple of eight bytes. Thebuffer parameter specifies the address of
the allocated buffer; this address must be 8-byte aligned.

The allocate_fnroutine should return an exception on error.

write_fn Specifies the address of a user-provided routine that writes the contents
of a buffer that contains data that has been encoded by the IDL encoding
services. The IDL encoding services will call this routine when the buffer
allocated byallocate_fnis full, or when all of the application’s encoding
operation parameters have been encoded.

The following C definition for idl_es_write_fn_t illustrates the
prototype for thewrite_fn routine:

typedef void (*idl_es_write_fn_t)

(

idl_void_p_t state, /* in/out */

idl_byte *buffer, /* in */

idl_ulong_int size, /* in */

);

The idl_es_encode_incremental()routine passes the specifiedstate
parameter value as input to thewrite_fn routine. Thebuffer parameter
value is the address of the data that the IDL encoding services have
encoded. Thesizeparameter value is the size, in bytes, of the encoded
data.

567

DCE 1.2.2 Application Development Reference

idl_es_encode_incremental(3rpc)

The write_fn routine should return an exception on error.

Output

es_handle Returns the address of an IDL encoding services handle for use by a
client or server encoding operation.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network. Client and server
applications can use the IDL encoding services to create persistent storage for their
data. Encoding flattens complex data types into a byte stream for storage on disk,
while decoding restores the flattened data to complex form.

The idl_es_encode_incremental()routine belongs to a set of routines that return
handles to the IDL encoding services for use by client and server encoding and
decoding operations. The information in the handle controls the way in which the
IDL encoding services manage memory when encoding or decoding data.

The idl_es_encode_incremental()routine returns an incremental encoding handle,
which directs the IDL encoding services to encode data into a chain of small buffers
that the user-providedallocate_fnroutine manages. The user-providedwrite_fnroutine
writes the encoded data in these buffers back for access by the application.

The statedata structure is the communications path between the application and the
allocate_fnand write_fn routines. For example, the application can build a cache of
pre-allocated memory to store encoded data, and store pointers to that pre-allocated
memory in thestatedata structure. When invoked by the IDL encoding services to
allocate a buffer, theallocate_fnroutine can search thestatedata structure for a free
memory location to use.

Return Values

None.

568

DCE Remote Procedure Call

idl_es_encode_incremental(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_no_memory
Insufficient memory available to complete operation.

Related Information

Functions:idl_es_decode_incremental(3rpc), idl_es_encode_dyn_buffer(3rpc),
idl_es_encode_fixed_buffer(3rpc).

569

DCE 1.2.2 Application Development Reference

idl_es_handle_free(3rpc)

idl_es_handle_free

Purpose Frees an IDL encoding services handle

Synopsis

void idl_es_handle_free(
idl_es_handle_t *es_handle,
error_status_t *status);

Parameters
Input/Output

es_handle The address of the handle whose resources are to be freed. The handle
is made NULL by this operation.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The idl_es_handle_freeroutine frees an IDL encoding services handle that has been
allocated by one of the IDL encoding services handle-returning routines.

Return Values

None.

570

DCE Remote Procedure Call

idl_es_handle_free(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:idl_es_decode_buffer(3rpc), idl_es_decode_incremental(3rpc),
idl_es_encode_dyn_buffer(3rpc), idl_es_encode_fixed_buffer(3rpc),
idl_es_encode_incremental(3rpc).

571

DCE 1.2.2 Application Development Reference

idl_es_inq_encoding_id(3rpc)

idl_es_inq_encoding_id

Purpose Identifies an operation within an interface that has been called to encode data using
the IDL encoding services

Synopsis
void idl_es_inq_encoding_id(

idl_es_handle_tes_handle,
rpc_if_id_t * if_id,
idl_ulong_int * op_num,
error_status_t *status);

Parameters
Input

es_handle A encoding services handle returned by one of the IDL encoding services
handle-returning routines.

Output

if_id Returns the interface UUID and version number assigned to the interface
that defines the operation that encoded the data. This information is
stored in the IDL encoding services handle that is associated with the
encoded data.

op_num Returns the operation number assigned to the operation that encoded the
data. Operations are numbered in the order in which they appear in the
interface definition, starting with zero (0). The operation number for the
operation that encoded the data is stored in the IDL encoding services
handle that is associated with the encoded data.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

572

DCE Remote Procedure Call

idl_es_inq_encoding_id(3rpc)

Description

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into a byte stream and decoding data types
in output parameters from a byte stream without invoking the RPC runtime. Encoding
and decoding operations are analogous to marshalling and unmarshalling, except that
the data is stored locally, and is not transmitted over the network. Client and server
applications can use the IDL encoding services to create persistent storage for their
data. Encoding flattens complex data types into a byte stream for storage on disk,
while decoding restores the flattened data to complex form.

The idl_es_inq_encoding_id()routine returns the identity of an operation within an
application that has been invoked to encode data using the IDL encoding services.
Applications can use this routine to determine the identity of an encoding operation,
for example, before calling their decoding operations.

Return Values

None.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_unknown_if
Interface identifier and operation number unavailable.

Related Information

Functions:idl_es_decode_buffer(3rpc), idl_es_decode_incremental(3rpc),
idl_es_encode_dyn_buffer(3rpc), idl_es_encode_fixed_buffer(3rpc),
idl_es_encode_incremental(3rpc).

573

DCE 1.2.2 Application Development Reference

rpc_binding_copy(3rpc)

rpc_binding_copy

Purpose Returns a copy of a binding handle; used by client or server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_copy(
rpc_binding_handle_t source_binding,
rpc_binding_handle_t *destination_binding,
unsigned32 *status);

Parameters
Input

source_binding
Specifies the server binding handle whose referenced binding
information is copied.

Output

destination_binding
Returns the server binding handle that refers to the copied binding
information.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_copy() routine copies the server binding information referenced by
the binding handle specified in thesource_bindingparameter. This routine returns a
new server binding handle for the copied binding information. The new server binding
handle is returned in thedestination_bindingparameter.

574

DCE Remote Procedure Call

rpc_binding_copy(3rpc)

Use the rpc_binding_copy() routine if you want a change (made to binding
information by one thread)not to affect the binding information used by other threads.
The explanation of binding handles in therpc_intro(3rpc) reference page has more
detail about this use of routinerpc_binding_copy().

After calling this routine, operations performed on thesource_bindingbinding handle
do not affect the binding information referenced by thedestination_bindingbinding
handle. Similarly, operations performed on thedestination_bindingbinding handle do
not affect the binding information referenced by thesource_bindingbinding handle.

If you want the changes made to binding information by one thread to affect
the binding information used by other threads, your program must share a single
binding handle across the threads. In this case the application controls binding handle
concurrency.

When an application is finished using the binding handle specified by the
destination_bindingparameter, the application calls therpc_binding_free() routine
to release the memory used by thedestination_bindingbinding handle and its
referenced binding information.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_free(3rpc).

575

DCE 1.2.2 Application Development Reference

rpc_binding_free(3rpc)

rpc_binding_free

Purpose Releases binding handle resources; used by client or server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_free(
rpc_binding_handle_t *binding,
unsigned32 *status);

Parameters
Input/Output

binding Specifies the server binding handle to free.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_binding_free() routine frees the memory used by a server binding handle and
its referenced binding information. Use this routine when your application is finished
using a server binding handle that was dynamically created during program execution.

If the free-binding operation succeeds, thebindingparameter returns the value NULL.

An application can dynamically create binding handles by calling any of the following
routines:

• rpc_binding_copy()

• rpc_binding_from_string_binding()

• rpc_ns_binding_import_next()

576

DCE Remote Procedure Call

rpc_binding_free(3rpc)

• rpc_ns_binding_select()

• rpc_server_inq_bindings()

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_copy(3rpc), rpc_binding_from_string_binding(3rpc) ,
rpc_binding_vector_free(3rpc), rpc_ns_binding_import_next(3rpc),
rpc_ns_binding_lookup_next(3rpc), rpc_ns_binding_select(3rpc),
rpc_server_inq_bindings(3rpc).

577

DCE 1.2.2 Application Development Reference

rpc_binding_from_string_binding(3rpc)

rpc_binding_from_string_binding

Purpose Returns a binding handle from a string representation; used by client or management
applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_from_string_binding(
unsigned_char_t *string_binding,
rpc_binding_handle_t *binding,
unsigned32 *status);

Parameters
Input

string_binding
Specifies a string representation of a binding handle.

Output

binding Returns the server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

Therpc_binding_from_string_binding() routine creates a server binding handle from
a string representation of a binding handle.

The string_bindingparameter does not need to contain an object UUID. In this case,
the returnedbinding contains a nil UUID.

If the provided string_binding parameter does not contain an endpoint field, the
returnedbinding parameter is a partially bound server binding handle.

578

DCE Remote Procedure Call

rpc_binding_from_string_binding(3rpc)

If the providedstring_bindingparameter does contain an endpoint field, the returned
bindingparameter is a fully bound server binding handle with a well-known endpoint.

If the providedstring_bindingparameter does not contain a host address field, the
returnedbinding parameter refers to the local host.

To create a string binding, call therpc_string_binding_compose()routine or call the
rpc_binding_to_string_binding() routine or provide a character string constant.

When an application finishes using thebinding parameter, the application calls the
rpc_binding_free() routine to release the memory used by the binding handle.

The rpc_intro(3rpc) reference page contains an explanation of partially and fully
bound binding handles.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_endpoint_format
Invalid endpoint format.

rpc_s_invalid_rpc_protseq
Invalid protocol sequence.

rpc_s_invalid_string_binding
Invalid string binding.

rpc_s_protseq_not_supported
Protocol sequence not supported on this host.

uuid_s_bad_version
Bad UUID version.

579

DCE 1.2.2 Application Development Reference

rpc_binding_from_string_binding(3rpc)

uuid_s_invalid_string_uuid
Invalid format for a string UUID.

Related Information

Functions:rpc_binding_copy(3rpc), rpc_binding_free(3rpc),
rpc_binding_to_string_binding(3rpc), rpc_string_binding_compose(3rpc).

580

DCE Remote Procedure Call

rpc_binding_inq_auth_caller(3rpc)

rpc_binding_inq_auth_caller

Purpose Returns authentication and authorization information from the binding handle for an
authenticated client; used by server applications

Synopsis
#include <dce/rpc.h>
#include <dce/id_base.h>

void rpc_binding_inq_auth_caller(
rpc_binding_handle_t binding_handle,
rpc_authz_cred_handle_t *privs,
unsigned_char_p_t *server_princ_name,
unsigned32 *protect_level,
unsigned32 *authn_svc,
unsigned32 *authz_svc,
unsigned32 *status);

Parameters
Input

binding_handle
Specifies the client binding handle from which to return the
authentication and authorization information.

Output

privs Returns an opaque handle to the authorization information for the client
that made the remote procedure call onbinding_handle.

The data referenced by this parameter are read-only and should not be
modified by the server. If the server wants to preserve any of the returned
data, it must copy the data into server-allocated memory.

581

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_caller(3rpc)

server_princ_name
Returns a pointer to the server principal name specified by the client that
made the remote procedure call onbinding_handle. The content of the
returned name and its syntax are defined by the authentication service
in use.

Specifying NULL prevents the routine from returning this parameter. In
this case, the caller does not have to call therpc_string_free() routine.

protect_levelReturns the protection level requested by the client that made the remote
procedure call onbinding. The protection level determines the degree to
which authenticated communications between the client and the server
are protected.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypt each remote procedure call
argument value.

582

DCE Remote Procedure Call

rpc_binding_inq_auth_caller(3rpc)

authn_svc Returns the authentication service requested by the client that made the
remote procedure call onbinding.

Specifying NULL prevents the routine from returning this parameter.

The possible authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

authz_svc Returns the authorization service requested by the client that made the
remote procedure call onbinding_handle.

Specifying NULL prevents the routine from returning this parameter.

The possible authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the
authn_svcparameter isrpc_c_authn_none.

rpc_c_authz_name
Server performs authorization based on the client principal
name.

rpc_c_authz_dce
Server performs authorization by using the client’s DCE
privilege attribute certificate (PAC) sent to the server with
each remote procedure call made withbinding_handle.
Generally, access is checked against DCE access control
lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok The routine completed successfully.

583

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_caller(3rpc)

rpc_s_invalid_binding
The routine did not complete because of an invalid binding
handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind
of binding was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has
no authentication information.

Description

The rpc_binding_inq_auth_caller() routine returns authentication and authorization
information associated with the client identified bybinding_handle. The calling server
manager routine can use the returned data for authorization purposes.

If the client is part of a delegation chain, the call returns the authentication and
authorization information for each member of the chain, the initiator and all subsequent
delegates. You can use thesec_cred_get_initiator()or sec_cred_get_delegate()calls
to obtain the authorization information for a specific member of the chain.

The RPC runtime allocates memory for the returnedserver_princ_nameparameter.
The server is responsible for calling therpc_string_free() routine for the returned
parameter string.

For applications in which the client side uses the Interface Definition Language (IDL)
auto_handleor implicit_handle attributes, the server side needs to be built with the
IDL explicit_handle attribute specified in the attribute configuration file (ACF). Using
explicit_handle providesbinding_handleas the first parameter to each server manager
routine.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

584

DCE Remote Procedure Call

rpc_binding_inq_auth_caller(3rpc)

rpc_s_invalid_binding

rpc_s_wrong_kind_of_binding

rpc_s_binding_has_no_auth

sec_login_s_default_use

sec_login_s_context_invalid

error_status_ok

Related Information

Functions:rpc_binding_inq_auth_info(3rpc), rpc_binding_set_auth_info(3rpc),
rpc_string_free(3rpc), sec_cred_get_initiator(3sec), sec_cred_get_delegate(3sec).

585

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_client(3rpc)

rpc_binding_inq_auth_client

Purpose Returns authentication and authorization information from the binding handle for an
authenticated client; used by server applications

Synopsis
#include <dce/rpc.h>
#include <dce/id_base.h>

void rpc_binding_inq_auth_client(
rpc_binding_handle_t binding,
rpc_authz_handle_t *privs,
unsigned_char_t **server_princ_name,
unsigned32 *protect_level,
unsigned32 *authn_svc,
unsigned32 *authz_svc,
unsigned32 *status);

Parameters
Input

binding Specifies the client binding handle from which to return the
authentication and authorization information.

Output

privs Returns a handle to the authorization information for the client that made
the remote procedure call onbinding.

The server must cast this handle to the data type specified byauthz_svc.
The following table shows how to cast the return value:

586

DCE Remote Procedure Call

rpc_binding_inq_auth_client(3rpc)

Casts for Authorization Information

For authz_svc value: privs contains this
data:

Use this cast:

rpc_c_authz_none A NULL value. None

rpc_c_authz_name The calling client’s
principal name.

(unsigned_char_t *)

rpc_c_authz_dce The calling client’s
privilege attribute
certificate.

(sec_id_pac_t *)

Note thatrpc_c_authz_noneis valid only if the authn_svcparameter
is rpc_c_authn_none.

The data referenced by this parameter are read-only and should not be
modified by the server. If the server wants to preserve any of the returned
data, it must copy the data into server-allocated memory.

Specifying NULL prevents the routine from returning this parameter.

server_princ_name
Returns a pointer to the server principal name specified by the client that
made the remote procedure call onbinding. The content of the returned
name and its syntax are defined by the authentication service in use.

Specifying NULL prevents the routine from returning this parameter. In
this case, the caller does not have to call therpc_string_free() routine.

protect_levelReturns the protection level requested by the client that made the remote
procedure call onbinding. The protection level determines the degree to
which authenticated communications between the client and the server
are protected.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_protect_level_none
Performs no protection.

587

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_client(3rpc)

rpc_c_protect_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypt each remote procedure call
argument value.

authn_svc Returns the authentication service requested by the client that made the
remote procedure call onbinding.

Specifying NULL prevents the routine from returning this parameter.

The possible authentication services are as follows:

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

authz_svc Returns the authorization service requested by the client that made the
remote procedure call onbinding.

Specifying NULL prevents the routine from returning this parameter.

The possible authorization services are as follows:

588

DCE Remote Procedure Call

rpc_binding_inq_auth_client(3rpc)

rpc_c_authz_none
Server performs no authorization. This is valid only if the
authn_svcparameter isrpc_c_authn_none.

rpc_c_authz_name
Server performs authorization based on the client principal
name.

rpc_c_authz_dce
Server performs authorization by using the client’s DCE
privilege attribute certificate (PAC) sent to the server with
each remote procedure call made withbinding. Generally,
access is checked against DCE access control lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok The routine completed successfully.

rpc_s_invalid_binding
The routine did not complete because of an invalid binding
handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind
of binding was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has
no authentication information.

Description

The rpc_binding_inq_auth_client() routine returns authentication and authorization
information associated with the client identified bybinding. The calling server manager
routine can use the returned data for authorization purposes.

Note: This call is provided only for compatibility with pre-DCE Version 1.1
applications. Applications based on DCE Version 1.1 and later releases of
DCE should use therpc_binding_inq_auth_caller() call.

589

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_client(3rpc)

The RPC runtime allocates memory for the returnedserver_princ_nameparameter.
The server is responsible for calling therpc_string_free() routine for the returned
parameter string.

For applications in which the client side uses the Interface Definition Language (IDL)
auto_handle or implicit_handle attributes, the server side needs to be built with
the IDL explicit_handle attribute specified in the attribute configuration file (ACF).
Using explicit_handle providesbindingas the first parameter to each server manager
routine.

Return Values

No value is returned.

Related Information

Functions:rpc_binding_inq_auth_info(3rpc), rpc_binding_set_auth_info(3rpc),
rpc_string_free(3rpc).

590

DCE Remote Procedure Call

rpc_binding_inq_auth_info(3rpc)

rpc_binding_inq_auth_info

Purpose Returns authentication and authorization information from a server binding handle;
used by client applications

Synopsis
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_inq_auth_info(
rpc_binding_handle_t binding,
unsigned_char_t **server_princ_name,
unsigned32 *protect_level,
unsigned32 *authn_svc,
rpc_auth_identity_handle_t *auth_identity,
unsigned32 *authz_svc,
unsigned32 *status);

Parameters
Input

binding Specifies the server binding handle from which to return the
authentication and authorization information.

Output

server_princ_name
Returns a pointer to the expected principal name of the server referenced
by binding. The content of the returned name and its syntax are defined
by the authentication service in use.

Specifying NULL prevents the routine from returning this parameter. In
this case, the caller does not have to call therpc_string_free() routine.

protect_levelReturns the protection level used for remote procedure calls made
with binding. The protection level determines the degree to which

591

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_info(3rpc)

authenticated communications between the client and the server are
protected.

Note that the returned level may be different from the level specified for
protect_levelon the call torpc_binding_set_auth_info(). If the RPC
runtime or the RPC protocol in the bound protocol sequence does not
support a specified level, the level is automatically upgraded to the next
higher supported level.

Specifying NULL prevents the routine from returning this parameter.

The possible protection levels are as follows:

rpc_c_protect_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_protect_level_none
Performs no protection.

rpc_c_protect_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypt each remote procedure call
parameter value.

authn_svc Returns the authentication service used for remote procedure calls made
with binding.

Specifying NULL prevents the routine from returning this argument.

The possible authentication services are as follows:

592

DCE Remote Procedure Call

rpc_binding_inq_auth_info(3rpc)

rpc_c_authn_none
No authentication.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

rpc_c_authn_default
DCE default authentication service.

auth_identity
Returns a handle for the data structure that contains the client’s
authentication and authorization credentials. This parameter must be
cast as appropriate for the authentication and authorization services
established viarpc_binding_set_auth_info().

When using therpc_c_authn_dce_secretauthentication service and any
authorization service, this value must be asec_login_handle_tobtained
from one of the following routines:

• sec_login_setup_identity()

• sec_login_get_current_context()

• sec_login_newgroups()

See the sec_login_setup_identity(3sec),
sec_login_get_current_context(3sec), and
sec_login_newgroups(3sec)reference pages for more information.

Specifying NULL prevents the routine from returning this parameter.

authz_svc Returns the authorization service used for remote procedure calls made
with binding.

Specifying NULL prevents the routine from returning this parameter.

The possible authorization services are as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if the
authn_svcparameter isrpc_c_authn_none.

593

DCE 1.2.2 Application Development Reference

rpc_binding_inq_auth_info(3rpc)

rpc_c_authz_name
Server performs authorization based on the client principal
name.

rpc_c_authz_dce
Server performs authorization using the client’s DCE
privilege attribute certificate (PAC) sent to the server with
each remote procedure call made withbinding. Generally,
access is checked against DCE access control lists (ACLs).

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

rpc_s_ok The routine completed successfully.

rpc_s_invalid_binding
The routine did not complete because of an invalid binding
handle.

rpc_s_wrong_kind_of_binding
The routine did not complete because of the wrong kind
of binding was specified for the operation.

rpc_s_binding_has_no_auth
The routine completed successfully, but the binding has
no authentication information.

Description

The rpc_binding_inq_auth_info() routine returns authentication and authorization
information associated with the specified server binding handle. The calling client
associates the authentication and authorization data with the server binding handle by
a prior call to therpc_binding_set_auth_info()routine.

The RPC runtime allocates memory for the returnedserver_princ_nameparameter.
The caller is responsible for calling therpc_string_free() routine for the returned
parameter string.

594

DCE Remote Procedure Call

rpc_binding_inq_auth_info(3rpc)

Return Values

No value is returned.

Related Information

Functions:rpc_binding_set_auth_info(3rpc), rpc_string_free(3rpc).

595

DCE 1.2.2 Application Development Reference

rpc_binding_inq_object(3rpc)

rpc_binding_inq_object

Purpose Returns the object UUID from a binding handle; used by client or server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_inq_object(
rpc_binding_handle_t binding,
uuid_t * object_uuid,
unsigned32 *status);

Parameters
Input

binding Specifies a client or server binding handle.

Output

object_uuid Returns the object UUID found in thebinding parameter. The object
UUID is a unique identifier for an object for which a remote procedure
call can be made.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_inq_object() routine obtains the object UUID associated with a
client or server binding handle. If no object UUID has been associated with the
binding handle, this routine returns a nil UUID.

596

DCE Remote Procedure Call

rpc_binding_inq_object(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

Related Information

Functions:rpc_binding_set_object(3rpc).

597

DCE 1.2.2 Application Development Reference

rpc_binding_reset(3rpc)

rpc_binding_reset

Purpose Resets a server binding handle; used by client or management applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_reset(
rpc_binding_handle_t binding,
unsigned32 *status);

Parameters
Input

binding Specifies the server binding handle to reset.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_reset() routine disassociates a server instance from the server
binding handle specified in thebinding parameter. This routine removes the endpoint
portion of the server address in the binding handle as well as any other server instance
information in the binding handle. The host portion of the server address remains
unchanged. The result is a partially bound server binding handle. This binding handle
can rebind to another server instance on the previous host when it is later used to make
a remote procedure call. Therpc_intro(3rpc) reference page contains an explanation
of partially and fully bound binding handles.

This routine does not affect any authentication information for thebindingparameter.

598

DCE Remote Procedure Call

rpc_binding_reset(3rpc)

Suppose that a client can be serviced by any compatible server instance on the host
specified in the binding handle. Then, the client can call therpc_binding_reset()
routine before making a remote procedure call using the binding handle specified in
binding.

When the client makes the next remote procedure call using the reset server
binding handle inbinding, the client’s RPC runtime uses a well-known endpoint
from the client’s interface specification, if any. Otherwise, the client’s RPC runtime
automatically communicates with the DCE host daemon (dced) on the specified remote
host, to obtain the endpoint of a compatible server from the local endpoint map. If a
compatible server is located, the RPC runtime updatesbinding with a new endpoint.

However, if a compatible server is not located, the client’s remote procedure
call fails. If the failed call uses a connection protocol (ncacn), it receives the
rpc_s_endpoint_not_foundstatus code. If the failed call uses a datagram protocol
(ncadg), it receives therpc_s_comm_failurestatus code.

If a server application wants to be available to clients making a remote procedure call
on a reset binding handle, it registers all binding handles by callingrpc_ep_register()
or rpc_ep_register_no_replace(). If, however, the IDL-generated file contains
endpoint address information, then the application does not have to call either of
these two routines.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

599

DCE 1.2.2 Application Development Reference

rpc_binding_reset(3rpc)

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc).

600

DCE Remote Procedure Call

rpc_binding_server_from_client(3rpc)

rpc_binding_server_from_client

Purpose Converts a client binding handle to a server binding handle; used by server applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_server_from_client(
rpc_binding_handle_t client_binding,
rpc_binding_handle_t *server_binding,
unsigned32 *status);

Parameters
Input

client_binding
Specifies the client binding handle to convert to a server binding handle.

Output

server_binding
Returns a server binding handle.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

When a remote procedure call arrives at a server, the RPC runtime creates a
client binding handle to refer to information about the calling client (client binding
information). The RPC runtime passes the client binding handle to the called remote
procedure as the first input argument (which uses thehandle_t type).

The rpc_binding_server_from_client() routine converts client binding information
into server binding information corresponding to the client’s system. When calling

601

DCE 1.2.2 Application Development Reference

rpc_binding_server_from_client(3rpc)

this routine, the called remote procedure specifies the client binding handle, and the
routine returns a partially bound server binding handle (that is, the newly constructed
server binding information contains a network address for the client’s system, but
lacks an endpoint).

The server binding information also lacks authentication information, but the called
procedure can add it by callingrpc_binding_set_auth_info(). The object UUID from
the client binding information remains.

The rpc_binding_server_from_client() routine is relevant when a called remote
procedure (the first remote procedure) needs to make its own remote procedure
call (a nested procedure call) to a second remote procedure offered by a server
on the system of the client that called the first remote procedure (that is, the
original client). The partially bound server binding handle returned by the
rpc_binding_server_from_client() routine ensures that a nested call requests the
second remote procedure on the original client’s system.

In a multithreaded RPC application, the second remote procedure can belong to a
server that shares the original client’s address space (that is, the server and client can
operate jointly as a server/client instance). If the original client belongs to a server/
client instance and the application requires the nested call to execute in that instance,
the application must guarantee that the nested remote procedure call uses one of the
instances’ endpoints.

An application can provide this guarantee by meeting any of the following conditions:

• The interface possesses its own well-known endpoints, and the server
elects to use these interface-specific endpoints (by calling the routine
rpc_server_use_protseq_if()or rpc_server_use_all_protseqs_if()).

• The server uses server-specific endpoints, and the interface is offered by only one
server/client instance per system.

To use server-specific endpoints, a server either requests dynamic endpoints
(by calling rpc_server_use_protseq() or rpc_server_use_all_protseqs())
or specifies its own well-known endpoints (by calling the routine
rpc_server_use_protseq_ep()). The server must also register its server-
specific endpoints in the local endpoint map (by callingrpc_ep_register()).

• The original client sets an object UUID into the server binding information of the
first call (by calling rpc_binding_set_object()); the object UUID identifies the
server/client instance.

602

DCE Remote Procedure Call

rpc_binding_server_from_client(3rpc)

The client can obtain the object UUID from the list of object UUIDs used to
register the endpoints of the server/client instance. The client must select an object
UUID that belongs exclusively to its instance.

Server binding information containing an object UUID impacts the selection of a
manager for a remote procedure call; see theDCE 1.2.2 Application Development
Guide—Core Componentsfor a description of manager selection. The object
UUID can either identify a particular resource offered by the companion server
or, used as an instance UUID, the object UUID can identify the original client’s
server/client instance.

The object UUID is passed in the first remote procedure call as part
of the client binding information and is retained in the server binding
information. This server binding information is newly constructed by the
rpc_binding_server_from_client() routine. When the second remote procedure
call arrives at the original client’s system, the DCE host daemon uses the object
UUID to look for associated endpoints in the local endpoint map. To ensure that
the object UUID is associated with the endpoints of the original server/client
instance, the server must complete the following steps:

1. Obtain the UUID (for example, by callinguuid_create()).

2. Specify the UUID as part of registering endpoints for the interface
of the second remote procedure (by callingrpc_ep_register() or
rpc_ep_register_no_replace()).

If the second remote procedure call will be routed to a manager of a nonnil
type, then the server must also do the following:

• Specify the type for the manager that implements that interface (by calling
rpc_server_register_if()).

• Set the object UUID to the same type as the manager (by calling
rpc_object_set_type()).

• The first remote procedure call contains a distinct call argument used by the
original client to pass server information that identifies its server/client instance.

The first remote procedure call uses this information to route the second
remote procedure call to the original server/client instance. For example, server
information can be as follows:

— A fully bound string binding that identifies the client’s server/client instance.

603

DCE 1.2.2 Application Development Reference

rpc_binding_server_from_client(3rpc)

If the first remote procedure receives this string binding, calling the
rpc_binding_server_from_client routine is unnecessary. Instead, the first
remote procedure requests a server binding handle for the string binding (by
calling rpc_binding_from_string_binding()).

— An object UUID that is associated in the endpoint map with one or more
endpoints of the original server/client instance.

The client can obtain the object UUID from the list of object UUIDs used to
register the endpoints of the server/client instance. The client must select an
object UUID that belongs exclusively to its instance, and pass that UUID as
a call argument.

After calling therpc_binding_server_from_client() routine, add the object
UUID from the call argument to the newly constructed server binding
information (by callingrpc_binding_set_object()).

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_cant_getpeername
Cannot get peer name.

rpc_s_connection_closed
Connection closed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding.

604

DCE Remote Procedure Call

rpc_binding_server_from_client(3rpc)

Related Information

Functions:rpc_binding_free(3rpc), rpc_binding_set_object(3rpc),
rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

605

DCE 1.2.2 Application Development Reference

rpc_binding_set_auth_info(3rpc)

rpc_binding_set_auth_info

Purpose Sets authentication and authorization information for a server binding handle; used by
client applications

Synopsis
#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc_binding_set_auth_info(
rpc_binding_handle_t binding,
unsigned_char_t *server_princ_name,
unsigned32protect_level,
unsigned32authn_svc,
rpc_auth_identity_handle_t auth_identity,
unsigned32authz_svc,
unsigned32 *status);

Parameters
Input

binding Specifies the server binding handle for which to set the authentication
and authorization information.

server_princ_name
Specifies the principal name of the server referenced bybinding. The
content of the name and its syntax is defined by the authentication
service in use.

A client that does not know the server principal name can call the
rpc_mgmt_inq_server_princ_name() routine to obtain the principal
name of a server that is registered for the required authentication service.
Using a principal name obtained in this way means that the client is
interested in one-way authentication. In other words, it means that the
client does not care which server principal received the remote procedure

606

DCE Remote Procedure Call

rpc_binding_set_auth_info(3rpc)

call request. The server, though, still verifies that the client is who the
client claims to be.

protect_levelSpecifies the protection level for remote procedure calls made
using binding. The protection level determines the degree to which
authenticated communications between the client and the server are
protected by the authentication service specified byauthn_svc.

If the RPC runtime or the RPC protocol in the bound protocol sequence
does not support a specified level, the level is automatically upgraded
to the next higher supported level. The possible protection levels are as
follows:

rpc_c_protect_level_default
Uses the default protection level for the specified
authentication service.

rpc_c_protect_level_pkt_integ is the default protection
level for the DCE shared-secret key authentication service.

rpc_c_protect_level_none
Performs no authentication: tickets are not exchanged,
session keys are not established, client PACs or names
are not certified, and transmissions are in the clear. Note
that although uncertified PACs should not be trusted, they
may be useful for debugging, tracing, and measurement
purposes.

rpc_c_protect_level_connect
Performs protection only when the client establishes a
relationship with the server.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote
procedure call when the server receives the request.

This level does not apply to remote procedure calls
made over a connection-based protocol sequence (that is,
ncacn_ip_tcp). If this level is specified and the binding
handle uses a connection-based protocol sequence, the
routine usesrpc_c_protect_level_pkt instead.

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client.

607

DCE 1.2.2 Application Development Reference

rpc_binding_set_auth_info(3rpc)

rpc_c_protect_level_pkt_integ
Ensures and verifies that none of the data transferred
between client and server has been modified.

This is the highest protection level that is guaranteed to
be present in the RPC runtime.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous
levels and also encrypt each remote procedure call
argument value.

This is the highest protection level, but it may not be
available in the RPC runtime.

authn_svc Specifies the authentication service to use. The exact level of protection
provided by the authentication service is specified by theprotect_level
parameter. The supported authentication services are as follows:

rpc_c_authn_none
No authentication: no tickets are exchanged, no
session keys established, client PACs or names are not
transmitted, and transmissions are in the clear. Specify
rpc_c_authn_noneto turn authentication off for remote
procedure calls made usingbinding.

rpc_c_authn_dce_secret
DCE shared-secret key authentication.

rpc_c_authn_default
DCE default authentication service.

Note: The current default authentication service
is DCE shared-secret key. Specifying
rpc_c_authn_default is therefore equivalent to
specifyingrpc_c_authn_dce_secret.

rpc_c_authn_dce_public
DCE public key authentication (reserved for future use).

auth_identity
Specifies a handle for the data structure that contains the client’s
authentication and authorization credentials appropriate for the selected
authentication and authorization services.

608

DCE Remote Procedure Call

rpc_binding_set_auth_info(3rpc)

When using therpc_c_authn_dce_secretauthentication service and any
authorization service, this value must be asec_login_handle_tobtained
from one of the following routines:

• sec_login_setup_identity()

• sec_login_get_current_context()

• sec_login_newgroups()

Specify NULL to use the default security login context for the current
address space.

authz_svc Specifies the authorization service implemented by the server for the
interface of interest. The validity and trustworthiness of authorization
data, like any application data, is dependent on the authentication service
and protection level specified. The supported authorization services are
as follows:

rpc_c_authz_none
Server performs no authorization. This is valid only if
theauthn_svcparameter isrpc_c_authn_none, specifying
that no authentication is being performed.

rpc_c_authz_name
Server performs authorization based on the client
principal name. This value cannot be used ifauthn_svc
is rpc_c_authn_none.

rpc_c_authz_dce
Server performs authorization using the client’s DCE
privilege attribute certificate (PAC) sent to the server
with each remote procedure call made withbinding.
Generally, access is checked against DCE access control
lists (ACLs). This value cannot be used ifauthn_svcis
rpc_c_authn_none.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

609

DCE 1.2.2 Application Development Reference

rpc_binding_set_auth_info(3rpc)

Description

The rpc_binding_set_auth_info()routine sets up the specified server binding handle
so that it can be used to make authenticated remote procedure calls that include
authorization information.

Unless a client callsrpc_binding_set_auth_info()with the parameters to set establish
authentication and authorization methods, all remote procedure calls made on the
bindingbinding handle are unauthenticated. Some authentication services (authn_svc)
may need to communicate with the security service to perform this operation.
Otherwise, they may receive therpc_s_comm_failurestatus.

The authn_svcparameter specifies the authentication service to use. Since currently,
there is only one available authentication service (DCE shared-secret key), the
parameter currently functions to specify whether or not rpc calls will be authenticated
and client PACs certified. If authentication is chosen, theprotect_levelparameter
can specify a variety of protection levels, ranging from no authentication to the
highest level of authentication and encryption. If theprotect_level parameter is
set to rpc_c_protect_level_none, no authentication is performed, regardless of the
authentication service choosen.

Theauthz_svcparameter specifies the authorization service to use. If no authentication
has been chosen (authn_svcof rpc_c_authn_none), then no authorization (authz_svc
of rpc_c_authz_none) must be chosen as well. If authentication will be performed,
you have two choices for authorization: name-based authorization and DCE
authorization. The use of name based_authorization, which provides a server with a
client’s principal name, is not recommended. DCE authorization uses PACs, a trusted
mechanism for conveying client authorization data to authenticated servers. PACs are
designed to be used with the DCE ACL facility.

Whether the call actually wakes up in the server manager code or is rejected by the
runtime depends on following conditions:

• If the client specified no authentication, then none is attempted by the RPC
runtime. The call wakes up in the manager code whether the server specified
authentication or not. This permits both authenticated and unauthenticated clients
to call authenticated servers. When the manager receives an unauthenticated call,
it needs to make a decision about how to proceed.

• If the client specified DCE secret key authentication and the server specified no
authentication, then the runtime will fail the call, and it will never reach the
manager routine.

610

DCE Remote Procedure Call

rpc_binding_set_auth_info(3rpc)

• If both client and server specified DCE secret key authentication, then
authentication will be carried out by the RPC runtime transparently. Whether the
call reaches the server manager code or is rejected by the runtime depends on
whether the authentication succeeded.

Although the RPC runtime is responsible any authentication that is carried out, the fact
that the runtime will always permit unauthenticated clients to reach the manager code
means that a manager access function typically does need to make an authentication
check. When the manager access routine callsrpc_binding_inq_auth_client() it needs
to check for astatus of rpc_s_binding_has_no_auth. In this case, the client has
specified no authentication and the manager access function needs to make an access
decision based on this fact. Note that in such a case, no meaningful authentication or
authorization information is returned fromrpc_binding_inq_auth_client().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_unknown_authn_service
Unknown authentication service.

rpc_s_authn_authz_mismatch
Requested authorization service is not supported by the requested
authentication service.

rpc_s_unsupported_protect_level
Requested protection level is not supported.

611

DCE 1.2.2 Application Development Reference

rpc_binding_set_auth_info(3rpc)

Related Information

Functions:rpc_binding_inq_auth_client(3rpc), rpc_binding_inq_auth_info(3rpc),
rpc_mgmt_inq_dflt_protect_level(3rpc),
rpc_mgmt_inq_server_princ_name(3rpc), sec_login_get_current_context(3sec),
sec_login_newgroups(3sec), sec_login_setup_identity(3sec).

612

DCE Remote Procedure Call

rpc_binding_set_object(3rpc)

rpc_binding_set_object

Purpose Sets the object UUID value into a server binding handle; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_set_object(
rpc_binding_handle_t binding,
uuid_t * object_uuid,
unsigned32 *status);

Parameters
Input

binding Specifies the server binding into which parameterobject_uuidis set.
Supply NULL to specify a nil UUID for this parameter.

object_uuid Specifies the UUID of the object serviced by the server specified in the
bindingparameter. The object UUID is a unique identifier for an object
for which a remote procedure call can be made.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_set_object() routine associates an object UUID with a server
binding handle. This operation replaces the previously associated object UUID with
the UUID in theobject_uuidparameter.

To set the object UUID to the nil UUID, specify NULL or the nil UUID for the
object_uuidparameter.

613

DCE 1.2.2 Application Development Reference

rpc_binding_set_object(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_binding_inq_object(3rpc).

614

DCE Remote Procedure Call

rpc_binding_to_string_binding(3rpc)

rpc_binding_to_string_binding

Purpose Returns a string representation of a binding handle; used by client, server, or
management applications

Synopsis
#include <dce/rpc.h

void rpc_binding_to_string_binding(
rpc_binding_handle_t binding,
unsigned_char_t **string_binding,
unsigned32 *status);

Parameters
Input

binding Specifies a client or server binding handle to convert to a string
representation of a binding handle.

Output

string_binding
Returns a pointer to the string representation of the binding handle
specified in thebinding parameter.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_to_string_binding() routine converts a client or server binding
handle to its string representation.

615

DCE 1.2.2 Application Development Reference

rpc_binding_to_string_binding(3rpc)

The RPC runtime allocates memory for the string returned in thestring_binding
parameter. The application calls therpc_string_free() routine to deallocate that
memory.

If the binding handle in thebinding parameter contains a nil object UUID, the object
UUID field is not included in the returned string.

To parse the returnedstring_bindingparameter, callrpc_string_binding_parse().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_cant_getpeername
Cannot get peer name.

rpc_s_connection_closed
Connection closed.

rpc_s_invalid_binding
Invalid binding handle.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) ,
rpc_string_binding_parse(3rpc), rpc_string_free(3rpc).

616

DCE Remote Procedure Call

rpc_binding_vector_free(3rpc)

rpc_binding_vector_free

Purpose Frees the memory used to store a vector and binding handles; used by client or server
applications

Synopsis
#include <dce/rpc.h>

void rpc_binding_vector_free(
rpc_binding_vector_t ** binding_vector,
unsigned32 *status);

Parameters
Input/Output

binding_vector
Specifies the address of a pointer to a vector of server binding handles.
On return the pointer is set to NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_binding_vector_free() routine frees the memory used to store a vector of
server binding handles. The freed memory includes both the binding handles and the
vector itself.

A server obtains a vector of binding handles by callingrpc_server_inq_bindings(). A
client obtains a vector of binding handles by callingrpc_ns_binding_lookup_next().
Call rpc_binding_vector_free() if you have used either of these routines.

617

DCE 1.2.2 Application Development Reference

rpc_binding_vector_free(3rpc)

The rpc_binding_free() routine frees individual elements of the vector. If
an element is freed with this routine, the NULL element entry replaces it;
rpc_binding_vector_free() ignores such an entry.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_arg
Invalid argument.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_binding_free(3rpc), rpc_ns_binding_lookup_next(3rpc),
rpc_server_inq_bindings(3rpc).

618

DCE Remote Procedure Call

rpc_cs_binding_set_tags(3rpc)

rpc_cs_binding_set_tags

Purpose Places code set tags into a server binding handle; used by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_binding_set_tags(
rpc_binding_handle_t *binding,
unsigned32sending_tag,
unsigned32desired_receiving_tag,
unsigned16sending_tag_max_bytes,
error_status_t *status);

Parameters
Input/Output

binding On input, specifies the server binding handle to modify with tag
information. This handle is the binding handle returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select() routine.
On output, returns the server binding handle modified with code set
tag information. The server stub retrieves the tag information from the
binding handle and uses it to invoke the appropriate buffer sizing and
code set conversion routines.

Input

sending_tag Specifies the code set value for the code set in which client data to be
sent to the server is to be encoded. If the client is not sending any data,
set this value to the client’s current code set. This step prevents the code
set conversion routine from being invoked.

desired_receiving_tag
Specifies the code set value for the code set in which the client prefers
data to be encoded when sent back from the server. If the client is not
planning to receive any data from the server, set this value to the server’s

619

DCE 1.2.2 Application Development Reference

rpc_cs_binding_set_tags(3rpc)

current code set. This step prevents the code set conversion routine from
being invoked.

sending_tag_max_bytes
Specifies the maximum number of bytes that a code set requires to
encode one character. The value is thec_max_bytesvalue associated
with the code set value (c_set) used as thesending_tagvalue.

Output

status Returns the status code from this routine. This status code
indicates whether the routine completed successfully or, if not,
why not. The routine can also return status codes generated by the
rpc_rgy_get_codesets()routine.

Description

The rpc_cs_binding_set_tags()routine belongs to a set of DCE RPC routines for use
by client and server applications that are transferring international character data in
a heterogeneous character set and code sets environment. These routines are used
to enable automatic code set conversion between client and server for character
representations that are not part of the DCE portable character set.

Client applications use therpc_cs_binding_set_tags()routine to add code sets tag
information to the binding handle of a compatible server. The tag information specified
in the routine is usually obtained from a character and code sets evaluation routine
(which is typically a user-written routine).

The sending_tagvalue identifies the code set encoding that the client is using to send
international character data to the server. Thedesired_receiving_tagvalue indicates to
the server the code set that the client prefers the server to use when sending return
international character data. Thesending_tag_max_bytesvalue is the number of bytes
the sending code set uses to encode one character.

Client applications that use the rpc_cs_eval_with_universal() or
rpc_cs_eval_without_universal() routines do not need to call this routine
because these routines set tag information in the server binding handle as part of
their operation. Application developers who are writing their own character and code
sets evaluation routines need to include code that sets tags in a server binding handle.

The rpc_cs_binding_set_tags()routine provides this function and can be used in
user-written evaluation routines, or alone if the application does not need to perform

620

DCE Remote Procedure Call

rpc_cs_binding_set_tags(3rpc)

evaluation. In this case, the routine provides a short cut for application programmers
whose applications do not need to evaluate for character and code set compatibility.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok

rpc_s_no_memory

Related Information

Functions:rpc_cs_eval_with_universal(3rpc),
rpc_cs_eval_without_universal(3rpc), rpc_cs_get_tags(3rpc).

621

DCE 1.2.2 Application Development Reference

rpc_cs_char_set_compat_check(3rpc)

rpc_cs_char_set_compat_check

Purpose Evaluates character set compatibility between a client and a server; used by client
applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_char_set_compat_check(
unsigned32client_rgy_code_set_value,
unsigned32server_rgy_code_set_value,
error_status_t *status);

Parameters
Input

client_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set
that the client is using as its local code set.

server_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set
that the server is using as its local code set.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. The
routine can also return status codes from thedce_cs_rgy_to_loc()
routine.

622

DCE Remote Procedure Call

rpc_cs_char_set_compat_check(3rpc)

Description

The rpc_cs_char_set_compat_check()routine belongs to a set of DCE RPC routines
for use by client and server applications that are transferring international character
data in a heterogeneous character set and code sets environment.

The rpc_cs_char_set_compat_check()routine provides a method for determining
character set compatibility between a client and a server; if the server’s character set
is incompatible with that of the client, then connecting to that server is most likely
not acceptable, since massive data loss would result from such a connection.

The RPC routines that perform character and code sets evaluation use the
rpc_cs_char_set_compat_check()routine in their character sets and code sets
compatibility checking procedure. The routine takes the registered integer values that
represent the code sets that the client and server are currently using and calls the code
set registry to obtain the registered values that represent the character set(s) that the
specified code sets support. If both client and server support just one character set,
the routine compares client and server registered character set values to determine
whether or not the sets are compatible. If they are not, the routine returns the status
messagerpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines whether
at least two of the sets are compatible. If two or more sets match, the routine considers
the character sets compatible, and returns a success status code to the caller.

Client and server applications that use the DCE RPC code sets evaluation routines
rpc_cs_eval_with_universal()and rpc_cs_eval_without_universal()do not need to
call this routine explicitly because these DCE RPC routines call it on their behalf.

Client applications that do not use the DCE RPC code sets evaluation routines can
use therpc_cs_char_set_compat_check()routine in their code sets evaluation code
as part of their procedure for determining character and code set compatibility with a
server.

Permissions Required

No permissions are required.

Return Values

No value is returned.

623

DCE 1.2.2 Application Development Reference

rpc_cs_char_set_compat_check(3rpc)

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok

rpc_s_ss_no_compat_charsets

Related Information

Functions:rpc_cs_eval_with_universal(3rpc),
rpc_cs_eval_without_universal(3rpc), rpc_cs_get_tags(3rpc),
rpc_ns_mgmt_read_codesets(3rpc), rpc_rgy_get_codesets(3rpc).

624

DCE Remote Procedure Call

rpc_cs_eval_with_universal(3rpc)

rpc_cs_eval_with_universal

Purpose Evaluates a server’s supported character sets and code sets during the server binding
selection process; used indirectly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_eval_with_universal(
rpc_ns_handle_tbinding_handle,
idl_void_p_t eval_args,
idl_void_p_t *context);

Parameters
Input

binding_handle
The server binding handle.

eval_args An opaque data type that contains matching criteria that the routine uses
to perform character and code sets compatibility evaluation.

Input/Output

context An opaque data type that contains search context to perform character
and code sets compatibility evaluation. The routine returns the result of
the evaluation in a field withincontext.

Description

The rpc_cs_eval_with_universal()routine is a DCE RPC character and code sets
evaluation routine that can be added to an import context. The routine provides a
mechanism for a client application that is passing character data in a heterogeneous
character set and code sets environment to evaluate a server’s character and code sets
compatibility before establishing a connection with it.

625

DCE 1.2.2 Application Development Reference

rpc_cs_eval_with_universal(3rpc)

Client applications do not callrpc_cs_eval_with_universal()directly. Instead, they
add it to the import context created by therpc_ns_binding_import_begin()routine by
calling the routinerpc_ns_import_ctx_add_eval()and specifying the routine name
and the RPC server entry name to be evaluated. When the client application calls
the rpc_ns_binding_import_next() routine to import compatible binding handles for
servers, this routine callsrpc_cs_eval_with_universal(), which applies client-server
code sets compatibility checking as another criteria for compatible binding selection.

The rpc_cs_eval_with_universal() routine directs the routine
rpc_ns_binding_import_next() to reject servers with incompatible character
sets. If client and server character sets are compatible, but their supported code sets
are not, the routine establishes tags that direct the client and/or server stubs to convert
character data to the user-defined (if any) or default intermediate code set, which is
the ISO10646 (oruniversal) code set.

Note: Application programmers need not pay attention to the arguments
of this routine. Programmers only need to use the routine
rpc_ns_import_ctx_add_eval()to set the routine, for example:

rpc_ns_import_ctx_add_eval(

&import_context,

rpc_c_eval_type_codesets,

(void *) nsi_entry_name,

rpc_cs_eval_with_universal,

NULL,

&status);

Permissions Required

No permissions are required.

Return Values

No value is returned.

626

DCE Remote Procedure Call

rpc_cs_eval_with_universal(3rpc)

Related Information

Functions:rpc_cs_eval_without_universal(3rpc), rpc_cs_get_tags(3rpc),
rpc_ns_binding_import_begin(3rpc), rpc_ns_binding_import_done(3rpc),
rpc_ns_binding_import_next(3rpc), rpc_ns_import_ctx_add_eval(3rpc),
rpc_ns_mgmt_handle_set_exp_age(3rpc).

627

DCE 1.2.2 Application Development Reference

rpc_cs_eval_without_universal(3rpc)

rpc_cs_eval_without_universal

Purpose Evaluates a server’s supported character sets and code sets during the server binding
selection process; used indirectly by client applications

Synopsis
#include <dce/rpc.h>

void rpc_cs_eval_without_universal(
rpc_ns_handle_tbinding_handle,
idl_void_p_t eval_args,
idl_void_p_t *context);

Parameters
Input

binding_handle
The server binding handle.

eval_args An opaque data type that contains matching criteria that the routine uses
to perform code sets compatibility evaluation.

Input/Output

context An opaque data type that contains search context to perform character
and code sets compatibility evaluation. The routine returns the result of
the evaluation in a field withincontext.

Description

The rpc_cs_eval_without_universal()routine is a DCE RPC character and code sets
evaluation routine that can be added to an import context. The routine provides a
mechanism for a client application that is passing character data in a heterogeneous
character set and code sets environment to evaluate a server’s character and code sets
compatibility before establishing a connection with it.

628

DCE Remote Procedure Call

rpc_cs_eval_without_universal(3rpc)

Client applications do not callrpc_cs_eval_without_universal()directly. Instead, they
add it to the import context created by therpc_ns_binding_import_begin()routine by
calling the routinerpc_ns_import_ctx_add_eval()and specifying the routine name
and the RPC server entry name to be evaluated. When the client application calls
the rpc_ns_binding_import_next() routine to import compatible binding handles
for servers, this routine callsrpc_cs_eval_without_universal(), which applies client-
server code sets compatibility checking as another criteria for compatible binding
selection.

The rpc_cs_eval_without_universal() routine directs the routine
rpc_ns_binding_import_next() to reject servers with incompatible character
sets. The routine also directs therpc_ns_binding_import_next() routine to reject
servers whose supported code sets are incompatible with the client’s supported code
sets; that is, it does not resort to using an intermediate code set as a last resort.

Note: Application programmers need not pay attention to the arguments
of this routine. Programmers only need to use the routine
rpc_ns_import_ctx_add_eval()to set the routine, for example:

rpc_ns_import_ctx_add_eval(

&import_context,

rpc_c_eval_type_codesets,

(void *) nsi_entry_name,

rpc_cs_eval_without_universal,

NULL,

&status);

Permissions Required

No permissions are required.

Return Values

No value is returned.

629

DCE 1.2.2 Application Development Reference

rpc_cs_eval_without_universal(3rpc)

Related Information

Functions:rpc_cs_get_tags(3rpc), rpc_ns_binding_import_begin(3rpc),
rpc_ns_binding_import_done(3rpc), rpc_ns_binding_import_next(3rpc),
rpc_ns_import_ctx_add_eval(3rpc), rpc_ns_mgmt_handle_set_exp_age(3rpc).

630

DCE Remote Procedure Call

rpc_cs_get_tags(3rpc)

rpc_cs_get_tags

Purpose Retrieves code set tags from a binding handle; used by client and server applications

Synopsis
#include <dce/codesets_stub.h>

void rpc_cs_get_tags(
rpc_binding_handle_t binding,
boolean32server_side,
unsigned32 *sending_tag,
unsigned32 *desired_receiving_tag,
unsigned32 *receiving_tag,
error_status_t *status);

Parameters
Input

binding Specifies the target binding handle from which to obtain the code
set tag information. When called from the client stub, this value
is the binding handle of a compatible server returned by the
rpc_ns_binding_import_next() or rpc_ns_binding_select()routines.

server_side Indicates whether a client stub or a server stub is calling the routine.

desired_receiving_tag
(Server stub only) Specifies the code set value for the code set in which
the client prefers data to be encoded when sent back from the server.
The client stub passes this value in the RPC call. If the routine is
retrieving code set tags for an operation that does not specify a desired
receiving tag parameter (thecs_drtag ACF parameter attribute has not
been applied to one of the operation’s parameters), this value is NULL.

631

DCE 1.2.2 Application Development Reference

rpc_cs_get_tags(3rpc)

Output

sending_tag (Client stub only) Specifies the code set value for the code set in which
client data to be sent to the server is to be encoded. If the routine is
retrieving code set tags for an operation that does not specify a sending
tag parameter (thecs_stagACF parameter attribute has not been applied
to one of the operation’s parameters), this value is NULL.

desired_receving_tag
(Client stub only) Specifies the code set value for the code set in which
the client prefers to receive data sent back to it from the server. If the
routine is retrieving code set tags for an operation that does not specify
a desired receiving tag parameter (thecs_drtagACF parameter attribute
has not been applied to one of the operation’s parameters), this value is
NULL.

receiving_tag
(Server stub only) Specifies the code set value for the code set in which
the server is to encode data to be sent back to the client. If the routine is
retrieving code set tags for an operation that does not specify a receiving
tag parameter (thecs_rtagACF parameter attribute has not been applied
to one of the operation’s parameters), this value is NULL.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not. If code set
compatibility evaluation is performed, error values can also be returned
from the following routines:

• rpc_rgy_get_codesets()

• rpc_ns_binding_inq_entry_name()

• rpc_ns_mgmt_read_codesets().

Description

The rpc_cs_get_tags()routine belongs to a set of DCE RPC routines for use by
client and server applications that are transferring international character data in a
heterogeneous character set and code sets environment.

The rpc_cs_get_tags()routine is a DCE RPC routine that RPC stubs can use to
retrieve the code set values to be used to tag international character data to be sent
over the network. In general, the code set values to be used as tags are determined by a

632

DCE Remote Procedure Call

rpc_cs_get_tags(3rpc)

character and code sets evaluation routine, which is invoked from the client application
code. However, application programmers can use other methods to establish values
for code set tags.

RPC stubs call therpc_cs_get_tags()routine before they call the buffer sizing routines
*_net_size()and the code set conversion routines*_netcs(). The rpc_cs_get_tags()
routine provides the stubs with code set values to use as input to the buffer sizing
routines (to determine whether or not buffer storage needs to be allocated for
conversion) and as input to the code set conversion routines (to determine whether
conversion is necessary, and if so, which host code set converter to invoke).

Client and server stubs call therpc_cs_get_tags()routine before they marshall any
data. When called from the client stub, the boolean valueserver_sideis set to FALSE
to indicate that the client stub has invoked the routine. The binding handle is the handle
to a compatible server that is returned by the routinesrpc_ns_binding_import_next()
or rpc_ns_binding_select(). If the client has added a code sets evaluation routine to
the binding import procedure (by calling the routinerpc_ns_import_ctx_add_eval()),
the binding handle will contain the conversion method and the code set values to set
for the client’s sending tag and desired receiving tag. If the binding handle does not
contain the results of an evaluation, therpc_cs_get_tags()routine will perform the
character/code sets evaluation within the client stub and set the client code set tag
values itself.

On the client side, the output of the routine is the code set value that represents the
client’s sending tag and the code set value that represents the client’s desired receiving
tag. If the conversion method is ‘‘client makes it right’’ (CMIR), the sending tag and
desired receiving tags will be set to the code set value of the server’s local code set. If
the conversion method is ‘‘server makes it right’’ (SMIR), the sending tag and desired
receiving tag will be set to the client’s local code set value. If the conversion method
is ‘‘receiver makes it right’’ (RMIR), the sending tag is the client’s code set, and the
desired receiving tag is the server’s code set.

When called from the server stub, the boolean valueserver_sideis set to TRUE to
indicate that the server stub has invoked the routine.

The server stub specifies the code set value given in the client’s desired receiving
tag as input to the routine. Therpc_cs_get_tags()routine sets the code set value in
desired_receiving_tagto receiving_tagand returns this value as output to the server
stub. The server stub will then use the code set value inreceiving_tagas the code set
to use for data it sends back to the client.

Application programmers who want their applications to use therpc_cs_get_tags()
routine to retrieve code set tag information as part of the automatic code set conversion

633

DCE 1.2.2 Application Development Reference

rpc_cs_get_tags(3rpc)

process specify the routine name as the argument to the ACF attributecs_tag_rtnwhen
developing their internationalized RPC application.

Application programmers can also write their own code set tags retrieval routine
that RPC stubs can call; in this case, they specify the name of this routine as
the argument to the ACF attributecs_tag_rtn instead of specifying the DCE RPC
routinerpc_cs_get_tags(). Application programmers can also use the automatic code
conversion mechanism, but design their applications so that the code set tags are set
explicitly in the application instead of in the stubs.

Permissions Required

No permissions are required.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_ss_invalid_codeset_tag
The result of the client-side evaluation used an invalid code set tag.

Related Information

Functions:cs_byte_from_netcs(3rpc), cs_byte_local_size(3rpc),
cs_byte_net_size(3rpc), cs_byte_to_netcs(3rpc), wchar_t_from_netcs(3rpc),
wchar_t_local_size(3rpc), wchar_t_net_size(3rpc), wchar_t_to_netcs(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

634

DCE Remote Procedure Call

rpc_ep_register(3rpc)

rpc_ep_register

Purpose Adds to, or replaces, server address information in the local endpoint map; used by
server applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_register(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned_char_t *annotation,
unsigned32 *status);

Parameters
Input

if_handle Specifies an interface specification to register with the local endpoint
map.

binding_vec Specifies a vector of binding handles over which the server can receive
remote procedure calls.

object_uuid_vec
Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

Supply the value NULL to indicate there are no object UUIDs to register.

annotation Defines a character string comment applied to each cross product
element added to the local endpoint map. The string can be up to
64 characters long, including the NULL terminating character. Specify
NULL or the string\0 if there is no annotation string.

635

DCE 1.2.2 Application Development Reference

rpc_ep_register(3rpc)

The string is used by applications for informational purposes only. The
RPC runtime does not use this string to determine which server instance
a client communicates with, or for enumerating endpoint map elements.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ep_register() routine adds elements to, or replaces elements in, the local
host’s endpoint map.

Each element in the local endpoint map logically contains the following:

• Interface ID, consisting of an interface UUID and versions (major and minor)

• Binding information

• Object UUID (optional)

• Annotation (optional)

A server uses this routine, instead ofrpc_ep_register_no_replace(), when only a
single instance of the server runs on the server’s host. Use this routine if, at any time,
no more than one server instance offers the same interface UUID, object UUID, and
protocol sequence.

When local endpoint map elements are not replaced, obsolete elements accumulate
each time a server instance stops running without callingrpc_ep_unregister().
Periodically the DCE host daemon identifies these obsolete elements and removes
them. However, during the time between these removals the obsolete elements increase
the chance that a client will receive endpoints to nonexistent servers. The client
then wastes time trying to communicate with these servers before obtaining another
endpoint.

Using this routine to replace any existing local endpoint map elements reduces the
chance that a client will receive the endpoint of a nonexistent server instance.

Suppose an existing element in the local endpoint map matches the interface UUID,
binding information exclusive of the endpoint, and object UUID of an element this
routine provides. The routine changes the endpoint map according to the elements’
interface major and minor version numbers, as shown in the following table:

636

DCE Remote Procedure Call

rpc_ep_register(3rpc)

Existing Element Relationship Provided
Element

Routine’s Action

Major version
number

Not equal to Major version
number

Ignores minor
version number
relationship and
adds a new endpoint
map element. The
existing element
remains unchanged.

Major version
number

Equal to Major version
number

Acts according to
the minor version
number relationship.

Minor version
number

Equal to Minor version
number

Replaces the
endpoint of the
existing element
based on the
provided
information.

Minor version
number

Less than Minor version
number

Replaces the
existing element
based on the
provided
information.

Minor version
number

Greater than Minor version
number

Ignores the provided
information. The
existing element
remains unchanged.

For example, suppose under these circumstances that the existing interface version
number is 1.3 (major.minor) and the provided version number is 2.0. The routine adds
a new endpoint map element with interface version number 2.0 and does not change
the element with version number 1.3. However, if the existing interface version number
is 1.5 and the provided version number is 1.4, the routine does not change the endpoint
map.

A server program calls this routine to register endpoints that have been specified by
calling any of the following routines:

• rpc_server_use_all_protseqs()

637

DCE 1.2.2 Application Development Reference

rpc_ep_register(3rpc)

• rpc_server_use_protseq()

• rpc_server_use_protseq_ep()

A server that calls only the rpc_server_use_all_protseqs_if() or
rpc_server_use_protseq_if() routines does not need to call this routine. In
such cases, the client’s runtime uses an endpoint from the client’s interface
specification to fill in a partially bound binding handle. However, it is recommended
that you also register well-known endpoints that the server specifies (registering
endpoints from interface definitions is unnecessary).

If the server also exports to the name service database, the server calls this routine
with the sameif_handle, binding_vecand object_uuid_vecparameters as the server
uses when calling therpc_ns_binding_export() routine.

The rpc_ep_register() routine communicates with the DCE host daemon (dced),
which in turn communicates with the local endpoint map. The routine communicates
using one of the protocol sequences specified in one of the binding handles in
binding_vec. Attempting to register a binding that specifies a protocol sequence that
the DCE host daemon is not listening on results in the failure ofrpc_ep_register().
The routine indicates this failure by placing the valuerpc_s_comm_failureinto status.

For information about how the endpoint map service selects an element for an interface
ID and an object UUID, see the RPC information in theDCE 1.2.2 Application
Development Guide—Core Components. This guide explains how the endpoint map
service searches for the endpoint of a server that is compatible with a client. If the client
supplies a nonnil object UUID that is not in the endpoint map, or the client supplies
a nil object UUID, the search can succeed, but only if the server has registered a nil
object UUID using therpc_ep_register()or rpc_ep_register_no_replace()routines.
The object_uuid_vecparameter can contain both nil and nonnil object UUIDs for the
routine to place into endpoint map elements.

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

This routine creates a cross product from theif_handle, binding_vec and
object_uuid_vecparameters, and adds each element in the cross product as a separate
registration in the local endpoint map. If you supply NULL toobject_uuid_vec, the
corresponding elements in the cross product contain a nil object UUID.

For example, suppose thatif_handlehas the valueifhand, binding_vechas the values
b1, b2, b3, and object_uuid_vechas the valuesu1, u2, u3, u4. The resulting 12
elements in the cross product are as follows:

638

DCE Remote Procedure Call

rpc_ep_register(3rpc)

(ifhand,b1,u1) (ifhand,b1,u2) (ifhand,b1,u3) (ifhand,b1,u4)

(ifhand,b2,u1) (ifhand,b2,u2) (ifhand,b2,u3) (ifhand,b2,u4)

(ifhand,b3,u1) (ifhand,b3,u2) (ifhand,b3,u3) (ifhand,b3,u4)

(An annotation string is part of each of these 12 elements.)

Return Values

No value is returned.

Errors

rpc_s_ok Success.

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

639

DCE 1.2.2 Application Development Reference

rpc_ep_register(3rpc)

Related Information

Functions:rpc_ep_register_no_replace(3rpc), rpc_ep_resolve_binding(3rpc),
rpc_ep_unregister(3rpc), rpc_mgmt_ep_unregister(3rpc),
rpc_ns_binding_export(3rpc), rpc_server_inq_bindings(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

640

DCE Remote Procedure Call

rpc_ep_register_no_replace(3rpc)

rpc_ep_register_no_replace

Purpose Adds to server address information in the local endpoint map; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_register_no_replace(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned_char_t *annotation,
unsigned32 *status);

Parameters
Input

if_handle Specifies an interface specification to register with the local endpoint
map.

binding_vec Specifies a vector of binding handles over which the server can receive
remote procedure calls.

object_uuid_vec
Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

Supply the value NULL to indicate there are no object UUIDs to register.

annotation Defines a character string comment applied to each cross-product
element added to the local endpoint map. The string can be up to
64 characters long, including the NULL terminating character. Specify
NULL or the string\0 if there is no annotation string.

641

DCE 1.2.2 Application Development Reference

rpc_ep_register_no_replace(3rpc)

The string is used by applications for informational purposes only. The
RPC runtime does not use this string to determine which server instance
a client communicates with, or for enumerating endpoint map elements.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_ep_register_no_replace()routine adds elements to the local host’s endpoint
map. The routine does not replace existing elements. Otherwise, this routine is identical
to rpc_ep_register().

Each element in the local endpoint map logically contains the following:

• Interface ID, consisting of an interface UUID and versions (major and minor)

• Binding information

• Object UUID (optional)

• Annotation (optional)

A server uses this routine, instead ofrpc_ep_register(), when multiple instances of
the server run on the same host. Use this routine if, at any time, more than one server
instance offers the same interface UUID, object UUID, and protocol sequence.

Since this routine does not replace elements, calling servers must unregister (that is,
remove) themselves before they stop running. Otherwise, when local endpoint map
elements are not replaced, obsolete elements accumulate each time a server instance
stops running without callingrpc_ep_unregister(). Periodically the DCE host daemon
identifies obsolete elements and removes them from the local endpoint map. However,
during the time between these removals, the obsolete elements increase the chance
that a client will receive endpoints to nonexistent servers. The client then wastes time
trying to communicate with these servers before obtaining another endpoint.

A server program calls this routine to register endpoints that were specified by calling
any of the following routines:

• rpc_server_use_all_protseqs()

• rpc_server_use_protseq()

• rpc_server_use_protseq_ep()

642

DCE Remote Procedure Call

rpc_ep_register_no_replace(3rpc)

A server that calls only the rpc_server_use_all_protseqs_if() or
rpc_server_use_protseq_if() routine does not need to call this routine. In
such cases, the client’s runtime uses an endpoint from the client’s interface
specification to fill in a partially bound binding handle. However, it is recommended
that you also register well-known endpoints that the server specifies (registering
endpoints from interface definitions is unnecessary).

If the server also exports to the name service database, the server calls this routine
with the sameif_handle, binding_vecand object_uuid_vecparameters as the server
uses when calling therpc_ns_binding_export() routine.

The rpc_ep_register_no_replace()routine communicates with the DCE host daemon
(dced), which in turn communicates with the local endpoint map. The routine
communicates using one of the protocol sequences specified in one of the binding
handles inbinding_vec. Attempting to register a binding that specifies a protocol
sequence that the DCE host daemon is not listening on results in the failure of
rpc_ep_register_no_replace(). The routine indicates this failure by placing the value
rpc_s_comm_failure into status.

For information about how the endpoint map service selects an element for an interface
ID and an object UUID, see the RPC information in theDCE 1.2.2 Application
Development Guide—Core Components. This guide explains how the endpoint map
service searches for the endpoint of a server that is compatible with a client. If the client
supplies a nonnil object UUID that is not in the endpoint map, or the client supplies
a nil object UUID, the search can succeed, but only if the server has registered a nil
object UUID using therpc_ep_register_no_replace()or rpc_ep_register() routine.
The object_uuid_vecparameter can contain both nil and nonnil object UUIDs for the
routine to place into endpoint map elements.

For an explanation of how a server can establish a client/server relationship without
using the local endpoint map, see the explanation of a string binding in the
rpc_intro(3rpc) reference page.

This routine creates a cross-product from theif_handle, binding_vec and
object_uuid_vecparameters, and adds each element in the cross-product as a separate
registration in the local endpoint map. If you supply NULL toobject_uuid_vec,
the corresponding elements in the cross-product contain a nil object UUID. The
rpc_ep_register()routine’s reference page summarizes the contents of an element in
the local endpoint map.

643

DCE 1.2.2 Application Development Reference

rpc_ep_register_no_replace(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_comm_failure
Communications failure.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

644

DCE Remote Procedure Call

rpc_ep_register_no_replace(3rpc)

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_resolve_binding(3rpc),
rpc_ep_unregister(3rpc), rpc_mgmt_ep_unregister(3rpc),
rpc_ns_binding_export(3rpc), rpc_server_inq_bindings(3rpc),
rpc_server_use_all_protseqs(3rpc), rpc_server_use_all_protseqs_if(3rpc),
rpc_server_use_protseq(3rpc), rpc_server_use_protseq_ep(3rpc),
rpc_server_use_protseq_if(3rpc).

Books:DCE 1.2.2 Application Development Guide—Core Components.

645

DCE 1.2.2 Application Development Reference

rpc_ep_resolve_binding(3rpc)

rpc_ep_resolve_binding

Purpose Resolves a partially bound server binding handle into a fully bound server binding
handle; used by client and management applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_resolve_binding(
rpc_binding_handle_t binding,
rpc_if_handle_t if_handle,
unsigned32 *status);

Parameters
Input/Output

binding Specifies a partially bound server binding handle to resolve into a fully
bound server binding handle.

if_handle Contains a stub-generated data structure that specifies the interface of
interest.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls therpc_ep_resolve_binding()routine to resolve a partially bound
server binding handle into a fully bound server binding handle.

Resolving binding handles requires an interface UUID and an object UUID. The
object UUID can be a nil UUID. The RPC runtime requests the DCE host daemon’s
endpoint mapper service, on the host that thebinding parameter specifies, to look

646

DCE Remote Procedure Call

rpc_ep_resolve_binding(3rpc)

up an endpoint for a compatible server instance. The endpoint mapper service finds
the endpoint by looking in the local endpoint map for the interface UUID from the
if_handleparameter and for the object UUID in thebinding parameter.

The rpc_ep_resolve_binding() routine depends on whether the specified binding
handle is partially bound or fully bound. When the application specifies a partially
bound handle, the routine produces the following results:

• If no compatible server instances are registered in the local endpoint map, the
routine returns theept_s_not_registeredstatus code.

• If one compatible server instance is registered in the local endpoint map, the
routine returns a fully bound binding handle inbinding and therpc_s_ok status
code.

• If more than one compatible server instance is registered in the local endpoint
map, the routine randomly selects one. It then returns the corresponding fully
bound binding handle inbinding and therpc_s_ok status code.

When the application specifies a fully bound binding handle, the routine returns the
specified binding handle inbinding and therpc_s_ok status code. The routine makes
no request of the DCE host daemon.

In neither the partially bound case nor the fully bound case does the routine contact
a compatible server instance.

Using This Routine

For each server instance, the RPC runtime automatically provides routines (the
rpc_mgmt_* routines) that form an RPC management interface. If a server instance
registers any application-provided interfaces, the RPC runtime automatically registers
the RPC-provided management interface with the local endpoint map for that server
instance.

An application can callrpc_ep_resolve_binding()at any time with either a partially
bound or a fully bound handle. However, applications typically call this routine to
avoid calling a routine in the management interface with a partially bound handle.

An application can have a partially bound binding handle at the following times:

• After importing a binding handle.

• After resetting a binding handle.

• After converting a string binding without an endpoint to a binding handle.

647

DCE 1.2.2 Application Development Reference

rpc_ep_resolve_binding(3rpc)

If an application calls an application-provided remote procedure using a partially
bound handle, the RPC runtime automatically asks the DCE host daemon to resolve the
binding handle into a fully bound handle. This fully bound binding handle corresponds
to the RPC interface of the called remote procedure and the requested object, if any.
The application can then use this fully bound handle to make remote management
calls, so calling therpc_ep_resolve_binding()routine is unnecessary.

When a high proportion of all servers in an environment offers the same interface, the
interface is known as a pervasive one. The RPC management interface is a pervasive
interface in all environments that use DCE RPC.

Using this routine to unambiguously locate compatible server instances applies to
application-pervasive interfaces as well as to the RPC management interface.

Partially Bound Handles with a Nonnil Object UUID

If the application has a partially bound handle with a nonnil object UUID, the
application can decide not to call therpc_ep_resolve_binding()routine before calling
a procedure in the management interface. In this case the remote management call is
sent to a server instance, registered on the remote host, that offers that object UUID.

After completing the remote management call, the application has a fully bound handle
to that server instance. The server instance that the handle specifies probably offers
the nonmanagement interfaces of interest to the calling application. However, if you
want to be certain of obtaining a fully bound handle to a server instance that offers the
interfaces needed for later remote procedure calls, call therpc_ep_resolve_binding()
routine.

Partially Bound Handles with a Nil Object UUID

When an application makes a remote procedure or management call using a partially
bound handle with a nil object UUID, the DCE host daemon searches for a compatible
server instance. The search is based on the nil object UUID and the UUID of the
interface to which the call belongs.

All server instances that register any RPC interface automatically offer the RPC
management interface. When an application makes a remote management call using a
partially bound handle with a nil object UUID, the DCE host daemon on the remote
host cannot distinguish among server instances registered in the local endpoint map.

When the DCE host daemon cannot distinguish among these instances it selectsany
server instance. After completing the remote management call, the calling application
has a fully bound handle. However, the server instance that the handle represents
probably does not offer the nonmanagement interfaces that interest the application.

648

DCE Remote Procedure Call

rpc_ep_resolve_binding(3rpc)

The remote RPC management routines avoid this ambiguity. They do this by returning
the statusrpc_s_binding_incomplete if the provided binding handle is a partially
bound one with a nil object UUID.

An application wanting to contact servers that have exported and registered interfaces
with a nil object UUID calls routinerpc_ep_resolve_binding(). The application
obtains a fully bound binding handle for calling remote management procedures in
a server instance that also offers the remote procedures in the application-specific
interface.

Note that an application that wants to manage all the server instances on a host does not
call rpc_ep_resolve_binding(). Instead, the application obtains fully bound binding
handles for each server instance by calling the routinesrpc_mgmt_ep_elt_inq_* ().

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

ept_s_not_registered
No entries found.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

rpc_s_rpcd_comm_failure
Communications failure while trying to reach the endpoint map.

Related Information

Functions:rpc_binding_from_string_binding(3rpc) , rpc_binding_reset(3rpc),
rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),

649

DCE 1.2.2 Application Development Reference

rpc_ep_resolve_binding(3rpc)

rpc_mgmt_ep_elt_inq_begin(3rpc), rpc_mgmt_ep_elt_inq_done(3rpc),
rpc_mgmt_ep_elt_inq_next(3rpc).

650

DCE Remote Procedure Call

rpc_ep_unregister(3rpc)

rpc_ep_unregister

Purpose Removes server address information from the local endpoint map; used by server
applications

Synopsis
#include <dce/rpc.h>

void rpc_ep_unregister(
rpc_if_handle_t if_handle,
rpc_binding_vector_t *binding_vec,
uuid_vector_t *object_uuid_vec,
unsigned32 *status);

Parameters
Input

if_handle Specifies an interface specification to remove (that is, unregister) from
the local endpoint map.

binding_vec Specifies a vector of binding handles to remove.

object_uuid_vec
Specifies a vector of object UUIDs to remove. The server application
constructs this vector. This routine removes all local endpoint map
elements that match the specifiedif_handle parameter,binding_vec
parameter, and object UUIDs.

This is an optional parameter. The value NULL indicates there are no
object UUIDs to remove.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

651

DCE 1.2.2 Application Development Reference

rpc_ep_unregister(3rpc)

Description

The rpc_ep_unregister() routine removes elements from the local host’s endpoint
map. A server application calls this routine only if the server has registered endpoints
previously and the server wishes to remove that address information from the local
endpoint map.

A server program is able to remove its own local endpoint map elements (server
address information) based on either of the following:

• The interface specification.

• The interface specification and the object UUIDs of resources offered.

The server calls therpc_server_inq_bindings() routine to obtain the required
binding_vecparameter. To remove selected endpoints, the server can remove individual
elements frombinding_vecbefore calling this routine. (See the explanation of a
binding vector in therpc_intro(3rpc) reference page for more information about
removing a single element from a vector of binding handles.)

This routine creates a cross product from theif_handle, binding_vec and
object_uuid_vecparameters and removes each element in the cross product from the
local endpoint map. Therpc_ep_register() routine’s reference page summarizes the
contents of a cross product in the local endpoint map.

Servers must always call therpc_ep_unregister() routine to remove their endpoints
from the local endpoint map before they exit. Otherwise, stale information will be
in the local endpoint map. However, if a server prematurely removes endpoints (the
server is not in the process of exiting), clients that do not already have fully bound
binding handles to the server will not be able to send remote procedure calls to the
server.

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

652

DCE Remote Procedure Call

rpc_ep_unregister(3rpc)

ept_s_cant_access
Error reading endpoint database.

ept_s_cant_create
Error creating endpoint database.

ept_s_cant_perform_op
Cannot perform requested operation.

ept_s_database_invalid
Endpoint map database invalid.

ept_s_invalid_entry
Invalid database entry.

ept_s_update_failed
Update failed.

rpc_s_invalid_binding
Invalid binding handle.

rpc_s_no_bindings
No bindings.

rpc_s_wrong_kind_of_binding
Wrong kind of binding for operation.

Related Information

Functions:rpc_ep_register(3rpc), rpc_ep_register_no_replace(3rpc),
rpc_mgmt_ep_unregister(3rpc), rpc_ns_binding_unexport(3rpc),
rpc_server_inq_bindings(3rpc).

653

DCE 1.2.2 Application Development Reference

rpc_if_id_vector_free(3rpc)

rpc_if_id_vector_free

Purpose Frees a vector and the interface identifier structures it contains; used by client, server,
or management applications

Synopsis
#include <dce/rpc.h>

void rpc_if_id_vector_free(
rpc_if_id_vector_t ** if_id_vector,
unsigned32 *status);

Parameters
Input/Output

if_id_vector Specifies the address of a pointer to a vector of interface information.
On return the pointer is set to NULL.

Output

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

The rpc_if_id_vector_free() routine frees the memory used to store a vector of
interface identifiers. This includes memory used by the interface identifiers and the
vector itself. On return this routine sets theif_id_vectorparameter to NULL.

To obtain a vector of interface identifiers, callrpc_ns_mgmt_entry_inq_if_ids() or
rpc_mgmt_inq_if_ids(). Call rpc_if_id_vector_free() if you have used either of these
routines.

654

DCE Remote Procedure Call

rpc_if_id_vector_free(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

rpc_s_invalid_arg
Invalid argument.

Related Information

Functions:rpc_if_inq_id(3rpc) , rpc_mgmt_inq_if_ids(3rpc),
rpc_ns_mgmt_entry_inq_if_ids(3rpc).

655

DCE 1.2.2 Application Development Reference

rpc_if_inq_id(3rpc)

rpc_if_inq_id

Purpose Returns the interface identifier for an interface specification; used by client or server
applications

Synopsis
#include <dce/rpc.h>

void rpc_if_inq_id(
rpc_if_handle_t if_handle,
rpc_if_id_t * if_id,
unsigned32 *status);

Parameters
Input

if_handle Represents a stub-generated data structure that specifies the interface
specification to inquire about.

Output

if_id Returns the interface identifier. The application provides memory for the
returned data.

status Returns the status code from this routine. This status code indicates
whether the routine completed successfully or, if not, why not.

Description

An application calls therpc_if_inq_id() routine to obtain a copy of the interface
identifier from the provided interface specification.

The returned interface identifier consists of the interface UUID and interface version
numbers (major and minor) specified in the DCE IDL file’s interface specification.

656

DCE Remote Procedure Call

rpc_if_inq_id(3rpc)

Return Values

No value is returned.

Errors

The following describes a partial list of errors that might be returned. Refer to theDCE
1.2.2 Problem Determination Guidefor complete descriptions of all error messages.

rpc_s_ok Success.

Related Information

Functions:rpc_if_id_vector_free(3rpc), rpc_mgmt_inq_if_ids(3rpc),
rpc_ns_mgmt_entry_inq_if_ids(3rpc).

657

Index

A
abbreviations in routine names, 493
Absolute Time, 1142
access control list

permissions for RPC NSI
routines, 528

ACL
permissions for RPC NSI

routines, 528
Add Time, 1145
aliases, 991
Any Time, 1148
Any Zone, 1152
API, 990
API overview, 490, 1289
application program interface, 990
Application Programming Interface,

490, 1289
ASCII Any Time, 1154
ASCII GMT Time, 1156
ASCII Local Time, 1158
ASCII Relative Time, 1160
atomic modification, 994
attribute

priority, 375, 383
scheduling, 373, 381
scheduling policy, 377, 386
stacksize, 379, 388
type, 1097

types, 1042
value, 1123
value assertion, 987

attributes object
creating, 369

Audit
Application Programming

Interface, 1289
Audit event information types, 1292

B
base object, 1010
BDC package, 1036
Binary Relative Time, 1162
Binary Time, 1165
binding

string, 523
binding handle, 506, 523

client, 506
concurrency control, 508
fully bound, 506
partially bound, 506
server, 506

binding information, 506
binding parameter, 529
binding vector, 508

Index–1

Index

boolean32 data type, 510
Bound Time, 1167
broadcasting a wake-up, 396

C
calls

sec_rgy_unix_getpwnam, 2182
cancel

asynchronous delivery and
exception handlers, 459

delivery, 390
enabling and disabling

asynchronous delivery
of, 459

enabling and disabling delivery
of, 461

obtaining noncancelable versions
of cancelable routines,
461

possible dangers of disabling,
461

requesting delivery of, 474
sending to a thread, 390

cancelability
asynchronous, 459
general, 461

CDS, 1042
ACL permissions for NSI

routines, 528
Cell Directory Service, 1042
cell name, 514
cell-relative name, 514
character string

unsigned, 528

characteristics of created condition
variable
specifying, 408

characteristics of created mutex
specifying, 448

characteristics of created object
specifying, 369

class
instance, 1100

class definition, 1114
cleanup routine

establishing, 394
executing, 392

client, 887, 910
context - reclaiming memory,

887, 910
memory, 897, 901, 919, 924

client binding handle, 506
client entry point vector, 519
commands

dced, 492
idl, 490
management, 492
programmer, 492
rpccp, 492

Compare Interval Time, 1170
Compare Midpoint Times, 1174
concurrency control, 508, 520
condition variable

creating, 400
definition of, 400
definition of predicate, 400
deleting, 398
waiting for, 406
waiting for a specified time, 404

condition variable attributes object
creating, 408
deleting, 410

context
setting, 470

Index–2

Index

context handle
destroying, 910
rpc_sm_destroy_client_context

routine, 887
control program

RPC, 492
creating

a condition variable, 400
a mutex, 440
condition variable attributes

object, 408
mutex attributes object, 448
thread attributes object, 369

creating a thread, 412
inherit scheduling attribute, 373,

381
priority attribute, 375, 383
scheduling policy attribute, 377,

386
stacksize attribute, 379, 388

creating thread-specific data key value,
434

D
daemon

DCE host, 492
data

generating key value for, 434
uses for, 434

data structure
pthread_once_t, 456

data structures
client entry point vector, 519
interface identifier, 517
interface identifier vector, 517
manager entry point vector, 518

protocol sequence vector, 521
statistics vector, 522
UUID vector, 528

data types
boolean32, 510
rpc_binding_handle_t, 508
rpc_binding_vector_t, 509
rpc_codeset_mgmt_t*O, 512
rpc_cs_c_set_t*O, 510
rpc_ep_inq_handle_t, 514
rpc_if_handle_t, 516
rpc_if_id_t, 517
rpc_if_id_vector_t, 518
rpc_mgr_epv_t, 519
rpc_ns_handle_t, 519
rpc_protseq_vector_t, 522
rpc_stats_vector_t, 523
unsigned_char_t, 528
unsigned_char_t *, 521
uuid_vector_t, 528

data types and structures, 505
DCE Audit Application Programming

Interface, 1289
DCE host

daemon, 492
DCE RPC Application Programming

Interface, 490
DCE RPC management commands, 492
DCE RPC runtime routines, 492
DCE RPC runtime services, 492
DCE status codes, 531
dce_aud_close(), 1386
dce_aud_commit(), 1388
dce_aud_discard(), 1393
dce_aud_free_ev_info(), 1395
dce_aud_free_header(), 1397
dce_aud_get_ev_info(), 1399
dce_aud_get_header(), 1401
dce_aud_length(), 1403
dce_aud_next(), 1405

Index–3

Index

dce_aud_open(), 1410
dce_aud_prev(), 1414
dce_aud_print(), 1418
dce_aud_reset(), 1423
dce_aud_rewind(), 1425
dce_aud_set_trail_size_limit(), 1427
dce_aud_start(), 1430
dce_aud_start_with_name(), 1435
dce_aud_start_with_pac(), 1440
dce_aud_start_with_server_binding(),

1445
dce_aud_start_with_uuid, 1450
dced command, 492
delaying execution of a thread, 416
delete permission, 529
deleting

condition variable attributes
object, 410

mutex attributes object, 450
deleting a condition variable, 398
deleting a mutex, 438
deleting a thread, 418
delivery of cancel

requesting, 474
delivery of cancels

enabling and disabling, 461
enabling and disabling

asynchronous delivery
of, 459

destination, 1113
destination values, 1080
Directory

context, 981, 987, 1001, 1007
Information Tree, 981, 1007
session, 1005
System Agent, 981

disabling asynchronous delivery of
cancels, 459

disabling memory, 889, 911
DS package, 1024

DS_C_ATTRIBUTE_LIST, 982
DS_C_AVA, 987
DS_C_CONTEXT, 981, 987, 991, 994,

998, 1001, 1005, 1007
DS_C_ENTRY_MOD_LIST, 994
DS_C_NAME, 981, 987, 991, 994, 998,

1001, 1005, 1007
DS_C_SESSION, 981, 984, 987, 991,

994, 998, 1001, 1005, 1007
DS_DEFAULT_SESSION, 984
DS_feature, 1015
DS_FILE_DESCRIPTOR, 985
DSA, 981
dynamic endpoint, 506

E
enabling asynchronous delivery of

cancels, 459
enabling memory, 891, 912
endpoint, 506

dynamic, 506
well-known, 506

endpoint map inquiry handle, 514
endpoint portion of a string binding,

526
entry point vector

client, 519
manager, 518

environment variables
RPC_DEFAULT_ENTRY, 505
RPC_DEFAULT_ENTRY

_SYNTAX, 505
error codes, 531
error termination of a thread, 412
exception codes, 531

Index–4

Index

exceptions, 531
for RPC applications, 531
rpc_x_nomemory, 912

expiration time
obtaining, 424

F
fast mutex, 454
freeing memory, 893, 914
frequently used routine parameters, 529
fully bound binding handle, 506

G
GDS package, 1046
Get Time, 1178
Get User Time, 1180
global mutex

locking, 436
unlocking, 475

global name, 514
Greenwich Mean Time, 1182
Greenwich Mean Time Zone, 1184
gss_accept_sec_context, 1455
gss_acquire_cred, 1462
gss_compare_name, 1465
gss_context_time, 1467
gss_delete_sec_context, 1469
gss_display_name, 1471
gss_display_status, 1473
gss_import_name, 1476
gss_indicate_mechs, 1478

gss_init_sec_context, 1480
gss_inquire_cred, 1486
gss_process_context_token, 1489
gss_release_buffer, 1491
gss_release_cred, 1492
gss_release_name, 1494
gss_release_oid_set, 1496
gss_seal, 1497
gss_sign, 1499
gss_unseal, 1501
gss_verify, 1504
gssdce_add_oid_set_member, 1506
gssdce_create_empty_oid_set, 1508
gssdce_cred_to_login_context, 1510
gssdce_extract_creds_from_sec_context,

1512
gssdce_login_context_to_cred, 1514
gssdce_register_acceptor_identity, 1517
gssdce_set_cred_context_ownership,

1520
gssdce_test_oid_set_member, 1522

H
handle

binding, 506
endpoint map inquiry, 514
IDL encoding service, 514
interface, 515
name service, 519

Index–5

Index

I
identifier

comparing, 420
interface, 517

IDL base types, 490
idl command, 490
IDL compiler, 490
IDL encoding service handle, 514
IDL-to-C mappings, 490
idl_ macros, 490
idl_void_p_t type, 883, 889, 893, 903,

908, 911, 914
idlbase.h, 492
immediate subordinates, 991
inherit scheduling attribute

obtaining, 373
usefulness, 381

initialization
one-time, 456

initializing a condition variable, 400
insert permission, 529
interface

C workspace, 1125
Interface Definition Language compiler,

490
interface handle, 515
interface identifier, 517
interface identifier data structure, 517
interface identifier vector data structure,

517
interface specification, 515
ip protocol sequence, 521

K
key value

generating for thread-specific
data, 434

obtaining thread-specific data for,
430

setting thread-specific data for,
470

L
leaf entry, 981
local representation, 1115, 1123
Local Time, 1188
Local Zone, 1190
locking a global mutex, 436
locking a mutex, 442, 444

M
macros

idl_, 491
Make Any Time, 1192
Make ASCII Relative Time, 1195
Make ASCII Time, 1197
Make Binary Relative Time, 1199
Make Binary Time, 1201
Make Greenwich Mean Time, 1203
Make Local Time, 1205
Make Relative Time, 1207
management commands, 492

Index–6

Index

manager entry point vector, 518
manager entry point vector data type,

518
MDUP package, 1050
memory

allocating, 883, 903
disabling, 889, 911
enabling, 891, 912
freeing, 893, 908, 914
insufficient, 912
management, 895, 897, 899,

916, 919, 921
reclaiming client resources, 887,

910
rpc_sm_allocate routine, 883
rpc_sm_destroy_client_context

routine, 887
rpc_sm_disable_allocate routine,

889
rpc_sm_enable_allocate routine,

891
rpc_sm_free routine, 893
rpc_sm_get_thread_handle

routine, 895
rpc_sm_set_client_alloc_free

routine, 897
rpc_sm_set_thread_handle

routine, 899
rpc_sm_swap_client_alloc_free

routine, 901
setting client, 897, 919
swapping memory, 901, 924

modify_entry, 994
Multiply a Relative Time by a Real

Factor, 1210
Multiply Relative Time by an Integer

Factor, 1213
mutex

creating, 440
definition of, 440

deleting, 438
fast, 454
locking, 442, 444
recursive, 454
unlocking, 446

mutex attributes object
creating, 448
deleting, 450

N
name

cell, 514
cell-relative, 514
global, 514

name parameter, 530
name service handle, 519

concurrency control, 520
name service interface operations, 492
name syntaxes

valid, 531
name_syntax parameter, 530
ncacn_ip_tcp protocol sequence, 521
ncadg_ip_udp protocol sequence, 521
network address portion of a string

binding, 525
Network Computing Architecture, 520
new primitive routines, 354
non-portable routines, 354
nonlocal representation, 1115, 1123
nonreentrant library packages

calling, 436
normal termination of a thread, 412,

422
np suffix, 354
NSI

Index–7

Index

ACL permissions for routines,
528

NSI operations, 492

O
object

public copy, 1105
object UUID portion of a string binding,

524
OM

attribute names, 1026, 1048
class names, 1025, 1048

P
parameters

frequently used routine, 529
partial outcome qualifier, 992
partially bound binding handle, 506
permissions (ACL) for NSI routines,

528
Point Time, 1215
POSIX threads, 492
predicate, 400

definition of, 400
priority

obtaining for thread, 426
setting for thread, 463, 466

priority attribute, 375, 383
priority inversion

avoiding, 442

private object, 981, 987, 1005, 1013,
1095, 1103, 1113, 1117, 1120,
1122

processor
causing thread to release control

of, 477
programmer commands, 492
protocol sequence, 520
protocol sequence portion of a string

binding, 525
protocol sequence vector data structure,

521
protocol sequences

valid, 520
pthread_create(), 412
pthread_once_t data structure, 456
public object, 1079, 1103, 1113

R
RDN, 981
read permission, 529
reclaiming client resources, 887, 910
recursive mutex, 454
Relative Distinguished Name, 981
Relative Time, 1217
routines

Audit API support, 1289
DCE RPC runtime, 492
RPC runtime, 493

RPC
ACL permissions for NSI

routines, 528
Application Programming

Interface, 490
control program, 492

Index–8

Index

data types and structures, 505
exceptions, 531
management commands, 492
name service interface operations,

492
runtime routines, 492
runtime services, 492
structures and data types, 505

rpc_binding_handle_t data type, 508
rpc_binding_vector_t data type, 509
rpc_codeset_mgmt_t data type, 512
rpc_cs_c_set_t data type, 510
RPC_DEFAULT_ENTRY, 505
RPC_DEFAULT_ENTRY _SYNTAX

environment variable, 531
RPC_DEFAULT_ENTRY environment

variable, 530
RPC_DEFAULT_ENTRY_SYNTAX,

505
rpc_ep_inq_handle_t data type, 514
rpc_if_handle_t data type, 516
rpc_if_id_t data type, 517
rpc_if_id_vector_t data type, 518
rpc_mgr_epv_t data type, 519
rpc_ns_handle_t data type, 519
rpc_protseq_vector_t data type, 522
rpc_sm_allocate routine, 883
rpc_sm_destroy_client_context routine,

887
rpc_sm_disable_allocate routine, 889
rpc_sm_enable_allocate routine, 891
rpc_sm_free routine, 893
rpc_sm_get_thread_handle routine, 895
rpc_sm_set_client_alloc_free routine,

897
rpc_sm_set_thread_handle routine, 899
rpc_sm_swap_client_alloc_free routine,

901
rpc_stats_vector_t data type, 523
rpc_x_no_memory exception, 912

rpccp command, 492
runtime routines, DCE RPC, 492
runtime services, DCE RPC, 492

S
SA package, 1054
scheduling policy

obtaining for thread, 428
setting for thread, 466

scheduling policy attribute, 386
obtaining, 377

sec_rgy_unix_getpwnam, 2182
selecting

thread attributes object, 371
server binding handle, 506
server threads

memory management, 895, 899,
916, 921

service control attribute, 987
service interface, 1125
service interface (xom), 1078
services, DCE RPC runtime, 492
setting client memory, 897, 919
signal

examine and change blocked,
484

examine and change
synchronous, 479

examine pending signals, 482
waiting for asynchronous, 486

signaling a wake-up, 402
Span Time, 1219
specification

interface, 515
stack

changing minimum size of, 388

Index–9

Index

obtaining mimimum size of, 379
stacksize attribute, 388

obtaining, 379
statistics vector data structure, 522
status codes, 531
status parameter, 531
string, 1097

unsigned character, 528
string binding, 523

endpoint portion, 526
network address portion, 525
object UUID portion, 524
option portion, 526
protocol sequence portion, 525

string parameter, 531
string UUID, 527
structures and data types, 505
subclass, 1111
subobject, 1121
subobjects, 1079, 1096
Subtract Time, 1222
suffix

np, 354
superclass, 1100
swapping client memory, 901, 924
synchronization

mutex, 440
syntaxes

valid name, 531

T
target object, 987, 991, 1001, 1005
termination

waiting for, 432
termination of a thread

error, 412

events that cause, 412
normal, 412, 422
premature successful completion,

422
without returning from start

routine, 422
test permission, 529
thread

canceling, 390
canceling if signal is received by

process, 472
creating, 412
delaying execution of, 416
deleting, 418
error termination, 412
events that cause termination,

412
normal termination, 412, 422
obtaining current priority of, 426
obtaining current scheduling

policy of, 428
obtaining identifier of, 458
releasing processor, 477
setting current priority of, 463
setting current scheduling policy

and priority of, 466
thread-specific data of, 434
waiting for a mutex, 442
waiting for the termination of,

432
waking, 396, 402
yielding processor to another

thread, 477
thread attributes object

creating, 369
deleting, 371

thread creation
inherit scheduling attribute, 373,

381
priority attribute, 375, 383

Index–10

Index

scheduling policy attribute, 377,
386

stacksize attribute, 379, 388
thread-specific data, 430

generating key value for, 434
obtaining, 430
setting, 470
uses for, 434

threads, 492, 508
memory management, 895, 899,

916, 921
time

adding interval to current time,
424

obtaining expiration, 424

U
unlocking a global mutex, 475
unlocking a mutex, 446
unsigned character string, 528
unsigned_char_t * data type, 521
unsigned_char_t data type, 528
UUID

string, 527
uuid parameter, 532
UUID vector data structure, 528
uuid_vector_t data type, 528

V
value position, 1122
vector

client entry point, 519
manager entry point, 518

W
waiting for condition variable, 404, 406
waking a thread, 396, 402
well-known endpoint, 506
workspace, 990
write permission, 529

Y
yielding to another thread, 477

Index–11

