DCE 1.2.2 Application Development Guide—Directory
Services

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997
All Rights Reserved
The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:
DCE 1.2.2 Application Development Guide—Directory Services
ISBN 1-85912-197-7
Document Number F204
Published in the U.K. by The Open Group, 1997.
Any comments relating to the material contained in this document may be submitted to:
The Open Group
Apex Plaza
Forbury Road
Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.L.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.L.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . . « +« « « & 4 4 x x a aaaa o aawoXx

The Open Group . « =+ « + & + & + 2 =« « XX
The Development of Product Standards XXii
Open Group Publications+ .« .+ .« . . Xxxii
Versions and Issues of Specifications. XXV
Corrigenda. . « « « « & o« o« o« ww .= XXV
Ordering Information XXV
ThisBook . . .+ .« .« « « + & & & 4 . . XXV
Audience . . . v 4 0w e e e e e XX
Applicability . .+« .« .+ . .« 0 . 0 . . . XXV
Purpose . « + « + & 4w a a e e e woXX
DocumentUsage = . . . « « « & « & . X
Related Documents . . . + « & .« XXVl
Typographic and Keying Conventions. XXviii
Problem Reporting. XXX

Pathnames of Directories and Files in DCE
Documentation. . .+ « « « & « o« a2 o« . a XXX

Trademarks « « « « & & o« o« x awx XXX

Part 1. DCE Directory Service

Chapter 1. DCE Directory Service Overview.

1.1 Introduction to This Guide.
1.1.1 Use of This Guide
1.1.2 Directory Service Tools .

abhw W

DCE 1.2.2 Application Development Guide—Directory Services

Contents

1.2

1.3

1.4

15

1.6

Using the DCE Directory Service .
DCE Directory Service Concepts .

Structure of DCE Names .

1.4.1 DCE Name Prefixes .
1.4.2 Names of Cells

1.4.3 CDS Names .

1.4.4 GDS Names .

1.45 Junctions in DCE Names
1.4.6 Application Names

The Federated DCE Namespace .
1.5.1 The GDS Namespace
1.5.2 The CDS Namespace
153 Other Namespaces .

Programming Interfaces to the DCE Directory Service
1.6.1 The XDS Interface .

1.6.2 The RPC Name Service Interface

1.6.3 Namespace Junction Interfaces .

Part 2. CDS Application Programming

Chapter 2. Programming in the CDS Namespace

21

2.2

2.3

2.4

Initial Cell Namespace Organization .
2.1.1 The Cell Profile

2.1.2 The LAN Profile .

2.1.3 The CDS Clearinghouse.
2.1.4 The Hosts Directory .

2.1.5 The Subsystems Directoty
2.1.6 The/: DFS Alias .

2.1.7 The DFS and DCE Security Serwce Junctmns .

Recommended Use of the CDS Namespace.
221 Storing Data in CDS Entries.
2.2.2 Access Control for CDS Entries.

Valid Characters and Naming Rules for CDS.
2.3.1 Metacharacters . .
2.3.2 Additional Rules .

2.3.3 Maximum Name Sizes

Use of OIDs

Chapter 3. XDS and the DCE Cell Namespace .

3.1

Introduction to Accessing CDS with XDS.

10
11
12
13

14
15

15
16
18

20
20

21

25

25
28
28
28
29
29
30
30

31
31
34

38
41
42
44

48

51
51

DCE 1.2.2 Application Development Guide—Directory Services

Contents

3.2

3.3

3.4

3.5

3.6

3.1.1 Using the Reference Material in This Chapter .

3.1.2 What You Cannot Do with XDS .
3.13 Registering A Nonlocal Cell .

XDS Objects

3.2.1 Object Attrlbutes . .

3.2.2 Interface Objects and Dlrectory Objects
3.2.3 Directory Objects and Namespace Entries .
3.2.4 Values That an Object Can Contain.
3.25 Building a Name Obiject .

3.2.6 A Complete Object

3.2.7 Class Hierarchy . .

3.2.8 Class Hierarchy and Object Structur.e
3.2.9 Public and Private Objects and XOM .
3.2.10 XOM Objects and XDS Library Functions

Accessing CDS Using the XDS Step-by-Step Procedure.

3.3.1 Reading and Writing Existing CDS Entry
Attributes With XDS .
3.3.2 Creating New CDS Entry Attnbutes

Object-Handling Techniques . .
3.4.1 Using XOM to Access CDS .
3.4.2 Dynamic Creation of Objects

XDS/CDS Object Recipes.
3.5.1 Input XDS/CDS Object ReC|pes

3.5.2 Input Object Classes for XDS/CDS Operatlons .

Attribute and Data Type Translation .

Part 3. GDS Application Programming

Chapter 4. GDS API: Concepts and Overview .

4.1
4.2

4.3

Directory Service Interfaces

The X.500 Directory Information Model
42.1 Directory Objects. .
4.2.2 Attribute Types

4.2.3 Object Identifiers .

4.2.4 Object Entries

X.500 Naming Concepts .

43.1 Distinguished Names.

4.3.2 Relative Distinguished Names and Attrlbute
Value Assertions .

4.3.3 Multiple AVAs.

DCE 1.2.2 Application Development Guide—Directory Services

52
53
53

53

56
59
61

64
64
65
65
66

67

67
84

88
89
91

93
93
94

109

115
116

117
117
119
119
121

123
123

125
125

Contents

4.4

4.5

4.6

4.3.4 Aliases
4.3.5 Name Verlflcat|0n

Schemas

441 The GDS Standard Schema
4.4.2 The Structure Rule Table
4.4.3 The Object Class Table .
4.4.4 The Attribute Table

4.4.5 Defining Subclasses .

Abstract Syntax Notation 1
45.1 ASN.1 Types. . .
45.2 Basic Encoding Rules

GDS as a Distributed Service. .
4.6.1 The Directory Access Protocol
4.6.2 The Directory System Protocol .
4.6.3 Referral e e
4.6.4 Chaining .

4.6.5 The Directory User Agent Cache
4.6.6 GDS Configurations . .
4.6.7 GDS Security.

4.6.8 GDS API Logging

Chapter 5. XOM Programming

51

5.2

5.3
5.4
55

OM Objects . .

5.1.1 OM Object Attrlbutes
5.1.2 Object Identifiers .

5.1.3 C Naming Conventions .
5.14 Public Objects

5.15 Private Objects

5.1.6 Object Classes

Packages . .
521 The Dlrectory SerV|ce Package .

5.2.2 The Basic Directory Contents Package .

5.2.3 The Strong Authentication Package.
5.2.4 The GDS Package . .
5.2.5 The MHS Directory User Package .
5.2.6 Package Closure.

Workspaces
Storage Management .

OM Syntaxes for Attribute Values.
5.5.1 Enumerated Types
5.5.2 Object Types.

126
128

128
129
129
132
136
138

139
140
141

142
143
143
143
145
146
153
154
155

161

162
162
167
168
170
182
183

191
191
192
193
193
194
195

195
196

199
199
201

DCE 1.2.2 Application Development Guide—Directory Services

Contents

553 Strings+ + .+ o+ 201
5.5.4 Other Syntaxes 202
5.6 Service Interface Data Types . . .« o« w .. 202
5.6.1 The OM_descriptor Data Type . . e . 203
5.6.2 Data Types for XDS API Function CaIIs . - . 206
5.6.3 Data Types for XOM API Calls 207
5.7 OM Function Calls. . . « o« o« . . 208
5.7.1 Summary of OM Functlon Calls c e e e . 208
5.7.2 Using the OM Function Calls 209
5.8 XOM API Header Files 215
5.8.1 XOM Type Definitions and Symbollc Constant
Definitions. . . . -« o« . . 216
5.8.2 XOM API Macros. v w = w .. 216
Chapter 6. XDS Programming .« + « +« « &« « + « + « « =« 221
6.1 XDS Interface Management Functions 222
6.1.1 The ds_initialize() Function Call. 223
6.1.2 Theds_version() FunctionCall 224
6.1.3 The ds_shutdown() Function Call 226
6.2 Directory Connection Management Functions 226
6.2.1 A Directory Session . . . o« o« x . . 226
6.2.2 The ds_bind() Function CaII . 227
6.2.3 The ds_unbind() FunctonCall 229
6.2.4 Automatic Connection Management. 229
6.3 XDS Interface Class Definitions 229
6.3.1 Example: The DS_C_FILTER Class . e e . 230
6.3.2 The DS_C_CONTEXT Parameter 230
6.4 Directory Class Definitons 231
6.5 The GDS Package. 233
6.5.1 Authenticaton+ .+ 233
6.5.2 AccessControl+ 233
6.5.3 DUA Cache . . « o« .« . 235
6.5.4 Advanced Adm|n|strat|on Operatlons . e e . 235
6.6 Directory Operation Functonss. 236
6.7 Directory Read Operations 237
6.7.1 Reading an Entry from the Dlrectory . e e . 237
6.7.2 Step 1: Export Object Identifiers for Requwed
Directory Classes and Attributes. . . . 238
6.7.3 Step 2: Declare Local Variables. 239
6.7.4 Step 3: Build Public Objects. 240

DCE 1.2.2 Application Development Guide—Directory Services v

Contents

Chapter 7.

Vi

6.8

6.9

6.7.5 Step 4: Create an Entry-lnformation-SeIection
Parameter. .
6.7.6 Step 5: Perform the Read Operatlon

Directory Search Operations .

6.8.1 Searching the Directory . .

6.8.2 Step 1: Export Object Ident|f|ers

6.8.3 Step 2: Declare Local Variables .

6.8.4 Step 3: Build Public Objects for the name
Parameter to ds_search() .

6.8.5 Step 4: Specify the Portion of the DIT To Be
Searched . . e

6.8.6 Step 5: Create a Fllter

6.8.7 Step 6: Create an Entry- Informatlon Select|on
Parameter. . . .

6.8.8 Step 7: Perform the Search Operatlon .

Directory Modify Operations . .

6.9.1 Modifying Directory Entries . .

6.9.2 Step 1: Export Object Identifiers for Requwed
Directory Classes and Attributes.

6.9.3 Step 2: Declare Local Variables .

6.9.4 Step 3: Build Public Objects. .

6.9.5 Step 4: Create Descriptor Lists for Attrlbutes

6.9.6 Step 5: Perform the Operatians . .

6.10 Return Codes .

Sample Application Programs

7.1
7.2

7.3

7.4

General Programming Guidelines.

The example.c Program
7.2.1 The example.c Code.
7.2.2 Error Handling

The acl.c Program.

7.3.1 The acl.c Code . .
7.3.2 The acl.h Header File
7.3.3 The acl.h Code

The teldir.c Program . .

7.4.1 Predefined Static Publ|c Objects.

7.4.2 Partially Defined Static Public Objects .
7.4.3 Dynamically Defined Public Objects.
7.4.4 Main Program Procedural Steps.

7.4.5 The teldir.c Code. .

240
242

246
247
249
250

251

251
252

254
254

257
257

259
259
260
262
264

267

269
270

270
273
279

281
285
300
301

309
309
311
312
314
315

DCE 1.2.2 Application Development Guide—Directory Services

Contents

Chapter 8. Using Threads With The XDS/XOM API.
Overview of Sample Threads Program

8.1

8.2
8.3
8.4
8.5

8.1.1
8.1.2
8.1.3
8.14

User Interface
Input File Format.
Program Output .
Prerequisites .

Description of Sample Program

Detailed Description of Thread Specifics .
The thradd.c Code.

The thradd.h Header File .

Chapter 9. XDS/XOM Convenience Routines
String Handling

9.1

9.2

9.1.1
9.1.2

9.1.3

9.14
9.15

Strings Representlng GDS Attrlbute Informatlon.

Strings Representing Structured GDS Attribute

Information
Strings Representlng a Structured GDS Attrlbute
Value . .

Strings Representlng a Dlstmgwshed Name
Strings Representing Expressions

The acl2.c Program

9.2.1
9.2.2
9.2.3

The acl2.c Code . .
The acl2.h Header File

Example Strings .

Part 4. XDS/XOM Supplementary Information

Chapter 10. XDS Interface Description

10.1
10.2
10.3
10.4
10.5
10.6

10.7

XDS Conformance to Standards .
The XDS Functions . .
The XDS Negotiation Sequence .
The session Parameter

The context Parameter

The XDS Function Arguments . . .
10.6.1 Attribute and Attribute Value Assertlon .
10.6.2 The selection Parameter. .
10.6.3 The name Parametek

XDS Function Call Results

DCE 1.2.2 Application Development Guide—Directory Services

337

339
340
341
341
342

342
344
346
357

363

364
365

366

368
369
371

373
375
396
398

407
408
410
412
412
413

414
414
416
416

417

vii

Contents

10.7.1 The invoke_id Parameter 417
10.7.2 The result Parameter. 417
10.7.3 The DS_status Return Value,. 418

10.8 Synchronous Operations . . .« « « « « « . . 418
10.9 Security and XDS. . . . « s x s w .. 419
10.10 Other Features of the XDS Interface. 419
10.10.1 Automatic Connection Management. 420
10.10.2 Automatic Continuation and Referral Handling . . 420
10.10.3 Abandoning Operations. 421
Chapter 11. XDS Class Definitons . . .« .+ « +« « « « « . . 423
11.1 IntroductontoOMClasses 423
112 XDSErmors .« + &« v & v a o« w = ow . . 424
11.3 OM Class Hierarchy+ .« .« .« .« . . 426
114 DS_C_ABANDON_FAILED+ .+ . .+« . . 428
115 DS_C_ACCESS POINT . . . +« « + « « « . 429
116 DS_C_ADDRESS. . . .+ « « « + &« « & . 429
11.7 DS_C_ATTRIBUTE+ .« .+ .+« « .« . . 430
11.8 DS_C_ATTRIBUTE_LERROR. 431
11.9 DS_C_ATTRIBUTE_LIST. . . .+ .« .+ « .« . . 432
11.10 DS_C_ATTRIBUTE_PROBLEM 432
1111 DS _C AVA. . . . « o« o+ x« =« o« . . 433
11.12 DS_C_COMMON_RESULTS. 434
11.13 DS_C_COMMUNICATIONS_ERROR. 435
11.14 DS_C COMPARE_RESULT+ 435
1115 DS_C CONTEXT. . + & « &« & + &« « « . 436
11.16 DS_C_CONTINUATION_REF. . . .+ . . .+ . . 44
1117 DS_.C DS DN. . « & v &« & v & & & . . 442
1118 DS CDS RDN . . + « « &« & + & « & . 443
11.19 DS_C_ENTRY_INFO. . . « o« o« w =« . 443
11.20 DS_C_ENTRY_INFO_SELECTION 444
11.21 DS_C ENTRY_ MOD. . . « .« + « =« « . . 446
11.22 DS_C_ENTRY_MOD_LIST+ .« « .« . . 447
11.23 DS_.CERROR . . . + « « + & « & .« . 447

viii DCE 1.2.2 Application Development Guide—Directory Services

Contents

11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43
11.44
11.45

DS_C_EXT.
DS_C_FILTER.

DS_C_FILTER_ITEM .
DS_C_LIBRARY_ERROR.
DS_C_LIST_INFO.
DS_C_LIST_INFO_ITEM.
DS_C_LIST_RESULT.

DS_C_NAME .
DS_C_NAME_ERROR
DS_C_OPERATION_PROGRESS
DS_C_PARTIAL_OUTCOME_QUAL .
DS_C_PRESENTATION_ADDRESS .
DS_C_READ_RESULT
DS_C_REFERRAL
DS_C_RELATIVE_NAME.
DS_C_SEARCH_INFQ
DS_C_SEARCH_RESULT.
DS_C_SECURITY_ERROR
DS_C_SERVICE_ERROR
DS_C_SESSION .
DS_C_SYSTEM_ERROR.
DS_C_UPDATE_ERROR .

Chapter 12. Basic Directory Contents Package .

121
12.2
12.3
12.4
125
12.6
12.7
12.8
12.9

Selected Attribute Types .
Selected Object Classes .

OM Class Hierarchy
DS_C_FACSIMILE_PHONE_NBR
DS_C_POSTAL_ADDRESS .
DS_C_SEARCH_CRITERION
DS_C_SEARCH_GUIDE .
DS_C_TELETEX_TERM_IDENT.
DS_C_TELEX_NBR

DCE 1.2.2 Application Development Guide—Directory Services

450
451
452
455
456
457
457
458
459
460
461
463
464
464
465
465
466
467
468
468
470
470

473
474
485
487
487
488
489
490
491
492

Contents

Chapter 13. Strong Authentication Package .

Chapter 14.

Chapter 15.

Chapter 16.

Chapter 17.

131
13.2
13.3
13.4
135
13.6
13.7
13.8
13.9

SAP Attribute Types
SAP Object Classes
OM Class Hierarchy

DS_C_ALGORITHM_IDENT .

DS_C_CERT .
DS_C_CERT_LIST
DS_C_CERT_PAIR
DS_C_CERT_SUBLIST
DS_C_SIGNATURE

MHS Directory User Package

141
14.2
14.3
14.4
145
14.6

MDUP Attribute Types.
MDUP Object Classes
MDUP OM Class Hierarchy
MH_C_OR_ADDRESS
MH_C_OR_NAME.

DS_C_DL_SUBMIT_PERMS.

GDS Package

151
15.2
15.3
15.4
155
15.6
15.7

Distributed Management Environment Support .

16.1
16.2

GDSP Attribute Types.
GDSP Object Classes.
GDSP OM Class Hierarchy
DSX_C_GDS_ACL
DSX_C_GDS_ACL_ITEM.
DSX_C_GDS_CONTEXT.
DSX_C_GDS_SESSION .

DME Attribute Types .
DME Object Classes .

Information Syntaxes.

171

Syntax Templates .

495
496
498
499
499
500
502
502
503
504

507
508
511
512
513
532
533

535
536
540
541
541
543
544
548

553
554
555

557
557

DCE 1.2.2 Application Development Guide—Directory Services

Contents

17.2 Syntaxes
17.3 Strings.

17.4
175
17.6
17.7
17.8

Representation of String Values .

Relationship to ASN.1 Simple Types.
Relationship to ASN.1 Useful Types .

Relationship to ASN.1 Character String Types

Relationship to ASN.1 Type Constructors

Chapter 18.

Chapter 19.

XOM Service Interface
18.1 Standards Conformance .

18.2 XOM Data Types .
18.2.1 OM_boolean.
18.2.2 OM_descriptar
18.2.3 OM_enumeration.
18.2.4 OM_exclusions
18.2.5 OM_integer .
18.2.6 OM_modification.
18.2.7 OM_object

18.2.8 OM_object_identifier.

18.2.9 OM_private_object
18.2.10 OM_public_object
18.2.11 OM_return_code.
18.2.12 OM_string
18.2.13 OM_syntax
18.2.14 OM_type.
18.2.15 OM_type_list.
18.2.16 OM value . .
18.2.17 OM_value_length

18.2.18 OM_value_position .

18.2.19 OM_workspace .
18.3 XOM Functions
18.4 XOM Return Codes

Object Management Package
19.1 Class Hierarchy
19.2 Class Definitions .

DCE 1.2.2 Application Development Guide—Directory Services

19.2.1 OM_C_ENCODING .
19.2.2 OM_C_EXTERNAL .
19.2.3 OM_C_OBJECT.

558
559
561
561
562
562
563

565
565

566
568
569
571
571
572
572
573
573
576
576
577
577
579
580
581
581
583
583
583

584
586

589
589

590
590
592
594

Xi

Contents

Index . .+ + « + & & o« a2 o« x w2 x w w w w Index-1

Xii DCE 1.2.2 Application Development Guide—Directory Services

Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3—4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

A Federated DCE Namespace . .
GDS Namespace Entries and Directory Objects.
The Cell Namespace After Configuration

A Possible Namespace Structure

Valid Characters in CDS, GDS, and DNS Names
One Object Descriptor .

A Complete Object Represented.

A Three-Layer Compound Object

Directory Objects and XDS Interface Objects
Directory Objects and Namespace Entries .
The DS_C_READ_RESULT Object Structure
The DS_C_ENTRY_INFO Object Structure .
The DS_C_ATTRIBUTE Object Structure

The DS_C_ATTRIBUTE_LIST Object
DS_C_DS_DN Object Attributes.

The DS_C_ENTRY_MOD_LIST Object .

The DS_C_ENTRY_INFO_SELECTION Object.
XDS: Interface to GDS and CDS.

The Structure of the DIB.

Object Identifiers .

A Directory Entry Describing Organizational Person
A Distinguished Name in a Directory Information Tree .

An Alias in the Directory Information Tree
A Subtree Populated by Aliases .

SRT DIT Structure for the GDS Standard Schema .

DCE 1.2.2 Application Development Guide—Directory Services

16
17
27
33
40
54
55
56
58
60
77
80
83
97
100
104
107
117
118
120
122
124
127
128
131

Xiii

Contents

Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Figure 5-1.

Figure 5-2.

Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 7-1.
Figure 8-1.
Figure 8-2.

Xiv

A Partial Representation of the Object Class Table.
The Relationship Between Schemas and the DIT
The Relationship Between the DSA and the DUA .
An Example of a Referral

An Example of Chaining .

GDS Components .

The Internal Structure of an OM Object

Mapping the Class Definition of
DS_C_ENTRY_INFO_SELECTION

A Representation of a Public Object By Using a Descriptor List
A Descriptor List for the Public Object: country .

The Distinguished Name of “Peter Piper” in the DIT

Building a Distinguished Name

A Simplified View of the Structure of a Distinguished Name
Client-Generated and Service-Generated Objects .

The OM Class DS_C_ENTRY_INFO_SELECTION .

Comparison of Two Classes With/Without an Abstract OM Class .
Complete Description of Concrete OM Class DS_C_ATTRIBUTE .

Data Type OM_descriptor_struct.

Initializing Descriptors

An Object and a Subordinate Object

The Read Result.

Extracting Information Using om_get() .

Output from ds_read(): DS_C_READ_RESULT.

Subtree for the acl.h Sample Program

OM Class DS_C_FILTER.

OM Class DS_C_SEARCH_RESULT

A Sample Directory Tree.

OM Class DS_C_LIST_RESULT. e e
Entries With User Credentials Added to the Directory Tree.
Issuing XDS/XOM Calls from Within Different Threads .
Program Flow for the thradd Sample Program .

134
139
142
144
146
148
163

166
172
174
175
178
179
181
184
186
189
204
205
206
213
214
245
248
253
256
258
266
283
338
343

DCE 1.2.2 Application Development Guide—Directory Services

Contents

Figure 18-1. OM_String Elements.+ 578

DCE 1.2.2 Application Development Guide—Directory Services XV

Contents

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 2—4.
Table 2-5.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3—4.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4—-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 5-1.
Table 5-2.
Table 5-3.

XVi

Metacharacters and Their Meaning . . e
Summary of CDS, GDS, and DNS Characteristics .
Maximum Sizes of Directory Service Names

T61 Syntax « e e e e

Combinations of Diacritical Characters and Basic Letters .

Directory Service Functions With Their Required Input Objects.

CDS Attributes to OM Syntax Translation

OM Syntax to CDS Data Types Translation .
CDS Data Types to OM Syntax Translation .
Object Identifiers for Selected Attribute Types
Structure Rule Table Entries .

Object Class Table Entries . .

Object Identifiers for Selected Directory Classes
Attribute Table Entries . .

Syntax for the Simple ASN.1 Types .

Cache Attributes: Read Cache First .

Cache Attributes: Read DSA First .
Cache Attributes: Read DSAOnly
Cache Attributes: DSX_USEDSA is OM_FALSE
Cache Attributes: DSX_DUA_CACHE is OM_FALSE
Cache Attributes: Error

XDS_LOG Values. .

C Naming Conventions for XDS .

C Naming Conventions for XOM.

Comparison of Private and Public Objects

41

42

45

46

47

94
109
109
111
121
130
132
135
137
141
150
150
150
151
151
151
156
169
169
182

DCE 1.2.2 Application Development Guide—Directory Services

Contents

Table 5-4.
Table 5-5.
Table 6-1.

Table 6-2

Description of an OM Attribute By Using Syntax Enumg¢*) .
Description of an OM Attribute By Using Syntax Object(*) .

Representation of Values for Selected Attribute Types .

. Mapping of XDS API Functions to the Abstract Services
Table 10-1.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.

Table 11-10.

Table 11-11.

Table 11-12.

Table 11-13.

Table 11-14.

Table 11-15.

Table 11-16.

Table 11-17.

Table 11-18.

Table 11-19.

Table 11-20.

Table 11-21.

Table 11-22.

Table 11-23.

Table 11-24.

Table 11-25.

Table 11-26.

Table 11-27.

The XDS Interface Functions

OM Attributes of DS_C_ACCESS_POINT

OM Attributes of DS_C_ATTRIBUTE

OM Attributes of DS_C_ATTRIBUTE_ERRQR .

OM Attribute of DS_C_ATTRIBUTE_LIST

OM Attributes of DS_C_ATTRIBUTE_PROBLEM
OM Attributes of DS_C_COMMON_RESULTS .

OM Attributes of DS_C_COMPARE_RESULT

OM Attributes of DS_C_CONTEXT . .
OM Attributes of DS_C_CONTINUATION_REF.

OM Attribute of DS_C DS DN .

OM Attribute of DS_C_DS_RDN.

OM Attributes of DS_C_ENTRY_INEO .

OM Attributes of DS_C_ENTRY_INFO_SELECTION
OM Attribute of DS_C_ENTRY_MOD

OM Attribute of DS_C_ENTRY_MOD_LIST.

OM Attribute of DS_C _ERROR .

OM Attributes of DS_C_EXT.

OM Attributes of DS_C_FILTER.

OM Attributes of DS_C_FILTER_ITEM .

OM Attributes of DS_C_LIST_INFO.

OM Attributes of DS_C_LIST _INFO_ITEM .

OM Attributes of DS_C_LIST _RESULT .

OM Attribute of DS_C_NAME_ERROR .

OM Attributes of DS_C_OPERATION_PROGRESS.
OM Attributes of a DS_C_PARTIAL_OUTCOME_QUAL
OM Attributes of DS_C_PRESENTATION_ADDRESS .
OM Attribute of DS_C_READ_RESULT.

DCE 1.2.2 Application Development Guide—Directory Services

200
201
232
236
411
429
430
431
432
433
434
435
436
441
442
443
444
445
446
447
447
450
451
453
456
457
458
459
460
462
463
464

XVil

Contents

Table 11-28.
Table 11-29.
Table 11-30.

Table 12-1.

Table 12-2.

Table 12-3.

Table 12—4.

Table 12-5.

Table 12-6.

Table 12-7.

Table 12-8.

Table 12-9.
. Object Identifiers for SAP Attribute Types
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
1. Object Identifiers for GDSP Attribute Types.
Table 15-2.
Table 15-3.
Table 15-4.

Table 13-1

Table 15—

XVili

OM Attributes of DS_C_SEARCH_INFQ

OM Attributes of DS_C_SEARCH_RESULT.
OM Attributes of DS_C_SESSION

Object Identifiers for Selected Attribute Types

Representation of Values for Selected Attribute Types .

Object Identifiers for Selected Object Classes .
OM Attributes of DS_C_FACSIMILE_PHONE_NBR.
OM Attribute of DS_C_POSTAL_ADDRESS

OM Attributes of DS_C_SEARCH_CRITERION.
OM Attributes of DS_C_SEARCH_GUIRQE . .
OM Attributes of DS_C_TELETEX_TERM_IDENT .
OM Attributes of DS_C_TELEX_NBR

Representation of Values for SAP Attribute Types .
Object Identifiers for SAP Object Classes

OM Attributes of DS_C_ALGORITHM_IDENT .
OM Attributes of DS_C_CERT

OM Attributes of DS_C_CERT_LIST.

OM Attributes of DS_C_CERT_PAIR

OM Attributes of DS_C_CERT_SUBLIST

OM Attributes of DS_C_SIGNATURE

Object Identifiers for MDUP Attribute Types.
Representation of Values for MDUP Attribute Types
Obiject Identifiers for MDUP Object Classes.
Attributes Specific to MH_C_OR_ADDRESS

Forms of Originator/Recipient Address .

Attribute Specific to MH_C_OR_NAME .

OM Attributes of DS_C_DL_SUBMIT_PERNIS .

Representation of Values for GDSP Attribute Types
Obiject Identifier for GDSP Object Classes .
OM Attributes of DSX_C_GDS_ACL.

465
466
469
476
477
486
488
488
489
491
491
492
497
497
498
500
501
502
503
503
504
508
509
512
513
528
532
533
536
538
541
542

DCE 1.2.2 Application Development Guide—Directory Services

Contents

Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 16-1.
Table 16-2.
Table 16-3.
Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 18-1.
Table 18-2.
Table 18-3.
Table 19-1.
Table 19-2.
Table 19-3.

OM Attributes of DSX_C_GDS_ACL_ITEM .
OM Attributes of DSX_C_GDS_CONTEXT .
Default DSX_C_GDS_CONTEXT

OM Attributes of DSX_C_GDS_SESSION
Default DSX_C_GDS_SESSION.

Object Identifier for DME Attribute Type.

Representation of Values for DME Attribute Types .

Object Identifier for DME Object Class .
String Syntax ldentifiers .

Syntax for ASN.1 Simple Types .
Syntaxes for ASN.1 Useful Types
Syntaxes for ASN.1 Character String Types.
Syntaxes for ASN.1 Type Constructars .
XOM Service Interface Data Types .
Assigning Meanings to Values

XOM Service Interface Functions
Attributes Specific to OM_C_ENCODING
Attributes Specific to OM_C_EXTERNAL
Attribute Specific to OM_C_OBJECT

DCE 1.2.2 Application Development Guide—Directory Services

543
544
547
549
550
554
555
556
560
561
562
562
563
566
581
584
590
592
594

XiX

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers

and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term

the IT DialTone. The Open Group creates an environment where all elements involved

in technology development can cooperate to deliver less costly and more flexible IT

solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

DCE 1.2.2 Application Development Guide—Directory Services XXi

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this

by:
» consolidating, prioritizing, and communicating customer requirements to vendors

» conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

* managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

 adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

* licensing and promoting the Open Brand, represented by the “X" mark, that
designates vendor products which conform to Open Group Product Standards

» promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the

documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

XXii DCE 1.2.2 Application Development Guide—Directory Services

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X" mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

DCE 1.2.2 Application Development Guide—Directory Services XXiii

Preface

XXIiV

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes

Technology Specifications relating to OSF/1, DCE, OSF/Motif, and

CDE.

Technology Specifications (formerly AES Specifications) are often

candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation

Guides

This includes product documentation—programmer’'s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX

Documentation, designed for use as common product documentation
for the whole industry.

These provide information that is useful in the evaluation, procurement,

development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies

Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

DCE 1.2.2 Application Development Guide—Directory Services

Preface

are intended to communicate the findings to the outside world so as

to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

» A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

» A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/

extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Webldtp://www.opengroup.org/public/
pubs

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web ahttp://www.opengroup.org/public/pubs

DCE 1.2.2 Application Development Guide—Directory Services XXV

Preface

This Book

The DCE 1.2.2 Application Development Guigeovides information about how@to
program the application programming interfaces (APIs) provided for each OSF
Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating system and
C language experience who want to develop and write applications to run on DCE.

Applicability

This revision applies to the OSPCE Release 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The DCE 1.2.2 Application Development Guidensists of three books, as follows:

» DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1-85912— 187-X

» DCE 1.2.2 Application Development Guide—Core Components

XXVi DCE 1.2.2 Application Development Guide—Directory Services

Preface

— \Volume 1
Document Number F203A, ISBN 1-85912-192-6

Part 1. DCE Facilities
Part 2. DCE Threads
Part 3. DCE Remote Procedure Call

— \olume 2
Document Number F203B, ISBN 1-85912-154-3

Part 4. DCE Distributed Time Service
Part 5. DCE Security Service

* DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1-85912-197-7

— Part 1. DCE Directory Service

— Part 2. CDS Application Programming

— Part 3. GDS Application Programming

— Part 4. XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

» DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1-85912-182-9

 DCE 1.2.2 Command Reference
Document Number F212, ISBN 1-85912-138-1

» DCE 1.2.2 Application Development Reference
Document Number F205A, ISBN 1-85912-103-9 (Volume 1)
Document Number F205B, ISBN 1-85912-108-X (Volume 2)
Document Number F205C, ISBN 1-85912-159-4 (Volume 3)

* DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1-85912-113-6

DCE 1.2.2 Application Development Guide—Directory Services XXVii

Preface

» DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1-85912-118-7

» DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1-85912-123-3 (Volume 1)
Document Number F209B, ISBN 1-85912-128-4 (Volume 2)

* DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1-85912-133-0

* DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1-85912-158-6

» DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1-85912-163-3

» DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1-85912-143-8 (Volume 1)
Document Number F213B, ISBN 1-85912-148-9 (Volume 2)

» DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1-85912-153-5

* DCE 1.2.2 File-Access FVT User's Guide
Document Number F210, ISBN 1-85912-189-6

* DCE 1.2.2 Release Notes
Document Number F218, ISBN 1-85912-168-3

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

XXVili DCE 1.2.2 Application Development Guide—Directory Services

Preface

{} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.
<> Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl-x> or "X
The notation<Ctrl- x > or "x followed by the name of a key indicates

a control character sequence. For exam@kel-C means that you hold
down the control key while pressingC>.

<Return> The notationr<Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright

page.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—Introducti@nd theDCE 1.2.2 Testing Guide

DCE 1.2.2 Application Development Guide—Directory Services XXiX

Preface

Trademarks

XXX

Motif®, OSF/P, and UNIX® are registered trademarks and the IT DialTon@he
Open Group, and the “X Device” are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.
HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.
DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.
DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.
MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

DCE 1.2.2 Application Development Guide—Directory Services

Preface

NetWare is a registered trademark of Novell, Inc.

DCE 1.2.2 Application Development Guide—Directory Services XXXi

Part 1

DCE Directory Service

Chapter 1
DCE Directory Service Overview

This chapter provides an overview of the DCE Directory Service for application
programmers. The chapter begins with a description of this guide. It then introduces
DCE Directory Service concepts, following which the structure of DCE names and
the DCE namespace are described. The chapter then provides an overview of the
programming interfaces used to access the DCE Directory Service.

1.1 Introduction to This Guide

This guide describes how application developers can access the DCE Directory
Service. From the application programmer’s perspective, the directory service has three
main parts: the DCE Cell Directory Service (CDS), the DCE Global Directory Service
(GDS), and the X/Open Directory Service (XDS) and X/Open OSI-Abstract-Data
Manipulation (XOM) programming interfaces. This is reflected in the organization of
the book, as follows:

» Part 1. DCE Directory Service
» Part 2. CDS Application Programming

DCE 1.2.2 Application Development Guide—Directory Services 3

DCE Directory Service

1.11

» Part 3. GDS Application Programming
» Part 4. XDS/XOM Supplementary Information

Parts 2 and 3 contain conceptual material on CDS and GDS with descriptions of

programming tasks, including the use of programming interfaces. Chapters in each of
these parts (Chapter 3 of Part 2 and Chapter 7 of Part 3) contain annotated source
code for sample applications.

Part 4 consists mostly of tables of values for the data structures used by the XDS
and XOM application interfaces, which are the interfaces used to directly access the
directory service. These chapters supplement the reference pages for the XDS and
XOM function calls, which are located in theCE 1.2.2 Application Development
Reference

Use of This Guide

Before reading this guide, you should read BXeE 1.2.2 Introduction to OSF DCHt
contains overviews, along with illustrations, of all the DCE components and of DCE
as a whole. Many concepts and details are explained iD@I 1.2.2 Introduction to
OSF DCEthat are necessary to a full understanding of what is described here. Next,
read this chapter in its entirety.

Determine whether you will be programming primarily in the CDS namespace or the
GDS namespace and read Part 2 or Part 3 accordingly. At this point, you are ready
to begin programming and should proceed to Part 4. The main purpose of Part 4 is
to provide a convenient location to look up the details of object values and structures
needed when writing code.

If you do not find the information you need in either this guide or BfeE 1.2.2
Application Development Referencgee theDCE 1.2.2 Administration Guidand

the DCE 1.2.2 Command Referenceor example, information about the CDS as

a separate component is found in tB€E 1.2.2 Administration GuideAlthough

the DCE Security Service is documented in t€E 1.2.2 Application Development
Guide some information of interest to programmers (such as adding new principals
to the registry database) is also found in I€E 1.2.2 Administration Guide

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

1.1.2 Directory Service Tools

Both CDS and GDS have commands that allow system administrators to inspect and
alter the contents of the directory. This can be useful when developing applications
that access the DCE namespace.

For information on the CDS control progranmcdscp, see the DCE 1.2.2
Administration Guide—Core ComponentSor information on the CDS browser
(cdsbrowsel), which is a utility based on Mofff that allows you to inspect the CDS
namespace, see tiECE 1.2.2 Administration Guide—Core Components

For information on the GDS system administration commagu$sysadmgdsdirinfo,
gdsditadm, and gdscacheadm see theDCE 1.2.2 GDS Administration Guide and
Reference

1.2 Using the DCE Directory Service

The DCE Directory Service can be used in many ways. It is used by the DCE services
themselves to support the DCE environment. For example, cells are registered in
the global part of the directory service, enabling users from different cells to share
information and resources.

The directory service is also useful to DCE applications. The client and server sides
of an application can use it to find each other’s locations. The directory service can
also be used to store information that must be made available in a globally accessible,
well-known place.

For example, one DCE application could be a print service consisting of a client side
application that makes requests for jobs to be printed, and a server-side application
that prints jobs on an available printer. The directory service could be used as a central
place where the print clients could look up the location of a print server. It could also
be used to store information about printers; for example, what type of jobs a printer
can accept and whether it is currently up or down and lightly or heavily loaded.

In some ways, a directory service can be used in the same way that a file system
has traditionally been used; that is, for containing globally accessible information in a

DCE 1.2.2 Application Development Guide—Directory Services 5

DCE Directory Service

1.3

well-known place. An example is the use of configuration information stored in files
in a UNIX /etc directory.

However, the directory service differs in important ways. It can be replicated so
that information is available even if one server goes down. Replicas can be kept
automatically up-to-date so that, unlike multiple copies of a file on different machines,
the information in the replicas of the directory service can be kept current without
manual intervention.

The directory service can also provide security for data that is kept in a globally
accessible place. It supports access control lists (ACLs) that provide fine-grained
control over who is able to read, modify, create, and perform other operations on
its data.

As you learn about the directory service and how to access it, think about the ways
in which your application can best take advantage of the services it provides.

DCE Directory Service Concepts

This section provides a description of DCE Directory Service concepts that are
important to application developers. Concepts that are specific to GDS are covered in
more detail in Part 3. The following concepts are intended to convey general definitions
that are applicable to the directory service as a whole rather than specific to a particular
directory service component. For more detailed definitions, see the glossanfiG ke
1.2.2 Introduction to OSF DCE

* DCE namespace

The DCE namespace is the collection of names in a DCE environment. It can be
made up of several domains, in which different types of servers own the names
in different parts of the namespace. Typically, there are two high-level, or global,
domains to a DCE namespace: the GDS namespace and the Domain Name System
(DNS) namespace. At the next level is the CDS namespace, with names contained
in the cell’'s CDS server. A DCE environment always contains a cell namespace,
which is implemented by CDS. Parts of the DCE namespace may not be contained
in any of the directory services; for example, the DFS (Directory File Service)
namespace, also called tfilespace contains the names of files and directories

in DFS, and the security namespace contains principals and groups contained in
the security server.

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

The termDCE namespacis used when referring to names, but not the information
associated with them. For example, it would include the name of a printer in the
directory service, but not its associated location attribute, and it would include the
name of a DFS file, but not its contents.

 Cell namespace

All of the names found in a single DCE cell constitute the cell’'s namespace. This
includes names managed by the cell's CDS server and security server, names in
the cell's DFS if it has one, and any other names that reside within a particular
cell.

* Hierarchy

The DCE namespace is organized into a hierarchy; that is, each name except the
global root has a parent node and may itself have child nodes or leaves. The leaves
are calledobjectsor entries and, in the CDS and DFS namespace, the nodes are
calleddirectories

« Directory

The worddirectory has two meanings, which can be differentiated by their context.
The first is the node of a hierarchy as mentioned in the previous definition. The
second is a collection of objects managed by a directory service.

« Directory service

A directory service is software that manages names and their associated attributes.
A directory service can store information, be queried about information, and be
requested to change information. DCE contains two different directory services:
CDS and GDS. It also interacts with a third directory service, DNS, which is not
part of DCE.

» Junction

A junction is a point in the DCE namespace where two domains meet. For
example, the point where the DFS entries areuntedinto a CDS namespace

is a junction. DCE also has junctions between the global directory services and
CDS, and between CDS and the DCE Security Service.

» Object

The wordobjectcan have two meanings, depending on the context. Sometimes it
means an entry in a directory service. Sometimes it means a real object that an
entry in a directory service describes, such as a printer. In the context of XDS/

DCE 1.2.2 Application Development Guide—Directory Services 7

DCE Directory Service

XOM, the requested data is returned to the application in one or mtedace
objects, which are data structures that the application can manipulate.

Entry

An entry is a unit of information in a directory service. It consists of a name and
associated attributes. For example, an entry could consist of the name of a printer,
its capabilities, and its network address.

— Class

In GDS, each entry has a class associated with it. The class determines what
type of entry it is and what attributes may be associated with it.

— Link

A link is one type of object class. This type of object is a pointer to another
object; it is similar to a soft link in a UNIX file system. A CDS link is similar
to a GDS alias.

Attribute

If an object is like a complex data structure, then its attributes are analogous to the
separate member fields within that structure. Some of an object’s attributes may be
of significance only to the directory service that manages it. With attributes such
as these, a directory service implements objects that contain various kinds of data
about the directory itself, thus enabling the service to organize the entries into a
meaningful structure. For example, directory objects can contain attributes whose
values are other directory objects (calgdld directoriesor subdirectorie¥in the
directory. Or link objects can contain attributes whose values are the names and
internal identifiers of other directory entries, making a link object’s entry name
an alias of the other object to which its attributes indirectly refer.

— Type

Every attribute is characterized as being of a certain type. The attribute is
used to hold a certain kind of data, such as a zip code or the name of a cat.
Entries can also be classified by type; for entries, the term useldds

— Value
An attribute can have one or more values.
Object identifier

Directory attributes are uniquely identified by object identifiers (OIDs), which are
administered by the International Organization for Standardization (1ISO). In GDS,

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

OIDs are also used to identify object classes. When it creates new attribute types,
an application is responsible for tagging them with new, properly allocated OIDs
(see your directory service administrator for OID assignments). In CDS, attribute
types are identified by strings, which can be representations of OIDs.

* Name

A DCE name corresponds to an entry in some service participating in the DCE
namespace, usually a directory service.

— Global name

A global name is a name that contains a path through one of the global
namespaces (GDS or DNS).

— Local name

A local name is a name that uses the cell préfixo indicate the cell name
and therefore does not have a specific path through a global namespace. The
entry for a local name is always contained in the local cell.

» Access control list

Access to DCE namespace entries is determined by lists of entities that are
attached through the DCE Security Service to both the entries and the objects
when they are created. The lists, callectess control list§ACLS), specify the
privileges that an entity or group of entities has for the entry the ACL is associated
with. The security service provides servers with authenticated identification of
every entity that contacts them; it is then the server’s responsibility to check the
ACL attached to the object that the potential client wants to access, and perform
or refuse to perform the requested operation on the basis of what it finds there.
The ACLs are checked using security service library routines.

Objects in the GDS namespace have ACLs associated with them, but they are not
security service ACLs.

* Replication

The DCE Directory Service can keepplicas (copies) of its data on different
servers. This means that, if one server is unavailable, clients can still obtain
information from another server.

» Caching

Both the CDS and GDS components of the directory service support caching
of data on the client machine. When a client requests a piece of data from the

DCE 1.2.2 Application Development Guide—Directory Services 9

DCE Directory Service

1.4

10

directory service for the first time, the information must be obtained over the
network from a server. However, the data can thecdighed(stored) on the local
machine, and subsequent requests for the same data can be satisfied more quickly
by looking in the local cache instead of sending a request over the network. You
need to be aware of caching because in some cases you will want to bypass the
cache to ensure that the data you obtain is as up-to-date as possible.

Structure of DCE Names

The following subsections describe the structure of the names found in a DCE
environment. DCE names can consist of several different parts, which reflect the
federated nature of the DCE namespace. A DCE name has some combination of the
following elements. They must occur in this order, but most elements are optional.

* Prefix

* GDS cell name or DNS cell name

* GDS name or CDS name

* Junction

* Application name
A DCE name can be represented by a string that is a readable description of a
specific entry in the DCE namespace. The name is a string consisting of a series
of elements separated Wy(slash). The elements are read from left to right. Each
consecutive element adds further specificity to the entry being described, until finally

one arrives at the rightmost element, which is the simple name of the entry itself.
Thus, in appearance, DCE names are similar to UNIX filenames.

In the discussion that follows, a DCE narlements the single piece of a name string

enclosed between a consecutive pair of slashes. For example, consider the following
string:

/.../C=US/O=0SF/OU=DCE/hosts/abc/self

In it, the following two substrings are both elements:

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

O=0SF
abc

The entire name contains (counting theelement) a total of seven elements.

In GDS, an element is calledralative distinguished nam@&DN) and the entire name
is called adistinguished namé¢DN). In the preceding example, the attribute type
stands for the Organization type OID, which is 2.5.4.10.

1.4.1 DCE Name Prefixes

The leftmost element of any valid DCE name is a root prefix. The appearance and
meaning of each is as follows:

/... This is the global root It signifies that the immediately following
elements form the name of a global namespace entry. Usually, the
entry’s contents consist of binding information for a DCE cell (more
specifically, for some CDS server in the cell), and the name of the
global entry is the name of the cell.

/. This is thecell root It is an alias for the global prefix plus the name
of the local cell; that is, the cell in which the prefix is being used. It
signifies that the immediately following elements taken together form
the name of a cell namespace entry.

I This is thefilespace roatlt is an alias for the global prefix, the name
of the local cell, and the DFS junction.

DCE also supports a junction into the security service namespace, but there is no alias
for this junction.

A prefix by itself is a valid DCE name. For example, you can list the contents of the
/.: directory to see the top-level entries in the CDS namespace, and you can use a file
system command to list the contents of thelirectory to see the top-level entries in

the filespace.

DCE 1.2.2 Application Development Guide—Directory Services 11

DCE Directory Service

1.4.2

Names of Cells

After the global root prefix, the next section of a DCE name contains the name of the
cell in which the object’s name resides. The name of a cell can be expressed as either
a GDS name or a DNS name, depending on which global directory service (GDS or
DNS) the cell is registered in. The following subsections provide examples.

1.4.2.1 GDS Cell Names

GDS elements always consist of a substring in which an abbreviation or acronym in
capital letters is followed by & (equal sign), which is followed by a string value. As
you will learn in more detail in Chapter 2, these substrings represent pairs of attribute
types and attribute values.

For example, consider the following global DCE name:

/.../IC=DE/O=SNI/OU=DCE/subsys/druecker/docs

In it, the attribute= valueform of the leftmost elements after the. indicates that the
global part of the name is a GDS namespace entry, and that it ends af@Ut#eCE
element; therefore, the rest of the name is inthéC=DE/O=SNI/OU=DCE cell.

1.4.2.2 DNS Cell Names

12

If DNS is used as the global directory, a global name has a form like the following:

/...Ics.univ.edu/subsys/printers/docs

where the single element

cs.univ.edu

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

1.4.3

is the cell name; that is, the cell's name in the DNS namespace. The DNS name
consists of up to four domain names (depending on the name assigned to the cell),
separated by dots.

1.4.2.3 Discovering Your Local Cell's Name

A DCE cell consists of the machines that are configured into it; each DCE machine
belongs to one DCE cell. Your local cell is therefore the cell to which the machine
you are using belongs. Depending on the DCE name you are using, you can access
your own cell or other (foreign) cells. If the name you are accessing is global, then
its cell is explicitly named. If the name begins with the local cell prefix, then you are
accessing a name within your local cell. You can find out what cell you are in by
calling thedce_cf_get_cell_name(junction.

Using the global directory services, applications can access resources and services
in foreign cells; however, applications most frequently use resources from their local
cell. If this is not the case, the cell boundaries may not have been well chosen.

CDS Names

After the cell name or cell root prefix, the next part of a DCE name is often a CDS
name. For example, consider the following name:

/.../IC=DE/O=SNI/OU=DCE/subsys/druecker/docs

The CDS part of this name is

/subsys/druecker/docs

Another example is the name

/...Ics.univ.edu/subsys/printers/docs

DCE 1.2.2 Application Development Guide—Directory Services 13

DCE Directory Service

144

145

14

In this name, the CDS part is

/subsys/printers/docs

The following strings show equivalent names that use the cell root prefix, assuming
that the name is used from within the/C=DE/O=SNI/OU=DCE and/.../cs.univ.edu
cells, respectively:

/.:Isubsys/druecker/docs
/.:Isubsys/printers/docs

GDS Names

Some names fall entirely in the GDS namespace. These names are pure X.500 (and
therefore GDS) names, since each element consists of a type and an attribute. The
entries for these names are contained in a GDS server. The following is an example
of a pure GDS name:

/.../IC=US/L=Cambridge/CN=Kilroy

Junctions in DCE Names

Some junctions are implied in a DCE name; others can be seen. There is an implied
junction between the global prefix and either GDS or DNS. It occurs after the
global prefix. The junction between either of the global namespaces and the local
cell namespace is also implied. It occurs after the cell name. The junction between
the local cell namespace and either the DFS namespace or the security namespace is
shown by the symbaoffs or /sec respectively. The following are examples of visible
junctions in DCE names:

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

[.:[fslusr/snowpaws
/...Idce.osf.org/sec/principal/ziggy

1.4.6 Application Names

The part of a DCE name that occurs after a junction into a DCE application is the
application name. DFS and security names are the currently supported examples; in the
future, application programmers may also be able to create junctions in the namespace.

DFS names occur after the DFS junction. They are typeless and resemble UNIX file
system names. After the global and CDS parts of a DFS name have been resolved by
the appropriate directory services, the rest of the DFS name is handled within DFS.
In the equivalent examples that followysr/snowpawsis the DFS part of the DCE
name:

/...Idce.osf.org/fs/usr/snowpaws
[.:Ifslusr/snowpaws
[:/usr/snowpaws

Security names are similar to DFS names; first the parts of the name within the
DCE Directory Service are resolved, then the rest of the name is handled by the

security service. The entry is contained in the security registry database. Consider the
following:

/.:Isec/principal/ziggy

In this example, the security part of the DCE namépisncipal/ziggy.

1.5 The Federated DCE Namespace

The DCE namespace is a single hierarchy of names, but the names can be contained
in many different services. Because several services cooperate to make the DCE
namespace, it is a federated namespace.

DCE 1.2.2 Application Development Guide—Directory Services 15

DCE Directory Service

Figure 1-1 shows a typical DCE namespace and the different services in which names
reside.

Figure 1-1. A Federated DCE Namespace

root
GDS DNS
CDS CDS
DFS Sec Sec

The following sections describe the different domains of the DCE namespace.

151 The GDS Namespace

This section provides a brief overview of the main characteristics of the GDS
namespace regarded apart from the XDS interface used to access it. More detailed
information about GDS and XDS can be found in Part 3 and Part 4, respectively.

In a GDS name such as

/.../C=US/O=0SF/OU=DCE

the C=USandO=0SFelements do not refer to directory entries that are fundamentally
different from the one represented ®YU=DCE, unlike in CDS or the UNIX file
system.

Thus, in the name string

16 DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

/C=US/O=0SF/OU=DCE

the elemenC=US refers to a one-level-down country entry whose valug$then to

a two-levels-down organization entry whose valu®SF, and then to a three-levels-
down organization unit entry whose value XCE. Concatenating these elements
results in a valid path of entries from the directory root to EIN@E entry. The entry
itself is the namespace sign to a GDS directory object that contains binding information
for the/.../.C=US/O=0OSF/OU=DCEcell.

1511 An Example GDS Namespace

Figure 1-2 shows what a part of the DCE global namespace could look like. Levels in

the tree of entries are numbered; the global root is at Level 0. The GDS structure rules
as defined for DCE allow only country name entries at the next level under the root;

organization name and locality name entries can exist at the level below a country
name. An organizational unit name can be a child of an organizational name entry,
and a common name can be a child of a locality name. The details of the GDS rules
for the valid types and locations of entries in the directory tree can be found in the

DCE 1.2.2 Administration Guide

The object entryC=US/O=0SF/OU=DCEDbelongs to the Organizational Unit class.
One of the object’s values is the CDS server binding information that is used to reach
the cell from other DCE cells. The entire name is an attribute of the object that it
refers to, as is the CDS server binding information that it contains.

Figure 1-2. GDS Namespace Entries and Directory Objects

1.1

- Level O
\
C=Us - Level 1
"\
O=HP O=IBM O=0SF L=Cambridge - Level 2
OU=Apollo OU=West OU=Motif OU=DCE CN=Kilroy Level 3

DCE 1.2.2 Application Development Guide—Directory Services 17

DCE Directory Service

15.1.2 The GDS Schema

The schema defines the shape and format of entries in the GDS directory. It contains
four types of rules, which describe the following:

» The legal hierarchy of entries. What entries may be subordinate to other entries.
These rules are what prevents, for example, countries from being subordinate to
states.

» The allowable object classes, the mandatory and optional attributes of entries, and
which attributes are the naming attributes.

» The allowable attribute types, associating a unique OID and an attribute syntax
with each attribute type.

» The syntaxes of attributes that describe what attribute values look like, such as
strings, numbers, or OIDs.

By installing the proper schema, an entry of any particular object class can have the
two attributes needed to identify a cell. See EE 1.2.2 Administration Guidéor
a full description of how to set up a cell entry by using either GDS or DNS.

1.5.2 The CDS Namespace

The CDS namespace is the part of the DCE namespace that resides in the local cell's
CDS. DCE itself is made up of components that, like the applications that use them,
are distributed client/server applications. These components rely on CDS to make
themselves available as services to DCE applications. This requires that the structure
of the cell namespace be stable, known, and have parts that are not alterable by casual
users or applications.

15.2.1 The CDS Schema

The cell namespace’s hierarchy model is different from the GDS model, and the
CDS rules do not enforce any particular model; CDS allows entries containing any
kind of data to be created anywhere in the namespace. Thus, CDS offers a free-
form namespace in which entries and directories can be organized as desired, and
in which any entry or directory can contain any attributes. The CDS administrator

18 DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

can create additional directories, and applications can add name entries as needed;
applicationscannot create CDS directory entries. Because of this, and because the
cell namespace is so important to the operation of the cell, application developers and
system administrators have more responsibility in planning and regulating their use of
it.

The cell namespace has a structure similar to that of a UNIX file system. The CDS
namespace is a tree of entries that grows from the root downward. The name entries
are organized under directory entries, which can themselves be subentries of other
directories. The cell root (represented by the préfix can be thought of as the
location you get when you dereference the cell’'s global name. New directories and
new entries within the directories can be added anywhere in the tree, subject to the
restrictions mentioned previously.

1.5.2.2 CDS Entries and CDS Attributes

There are three different kinds of CDS entries that are of significance to application
programmers, as follows:

* Object
» Soft link

* Directory

The object entries are the most primitive form. These are where data is stored.
Directory entries contain other entries (that is, can have children) just like UNIX
file system directories. Soft link entries are essentially alias names for other directory
or object entries. Only object entries can be created by applications; soft links and
directories have to be created and manipulated withctlsep command.

Thus, any CDS entry is defined as a directory, a soft link, or an object entry by the
presence of a certain combination of attributes belonging to that kind of entry. You
can use thedscpcommand to get a display of all the attributes of any CDS entry.

The termattributeas applied to namespace entry objects has roughly the same meaning

in CDS and GDS. The main difference is that CDS does not restrict or control the
combinations of attributes attached to entries written in its namespace.

DCE 1.2.2 Application Development Guide—Directory Services 19

DCE Directory Service

153

1.6

16.1

1.6.2

20

Other Namespaces

For information about names contained in the DFS namespace (the filespace) and the
security hamespace, refer to the chapters on those components in this guide.

Programming Interfaces to the DCE Directory
Service

The following two subsections describe two programming interfaces for accessing the
DCE Directory Service.

The XDS Interface

The main programming interface to all services within the directory service is XDS/
XOM, as defined by X/Open. The calls correspond to the X.500 service requests,
including Read, List (enumerate children), Search, Add Entry, Modify Entry, Modify
RDN, and Remove Entry. XDS uses XOM to define and manipulate data structures
(calledobjects used as the parameters to these calls, and used to describe the directory
entries manipulated by the calls. XOM is extremely flexible, but also somewhat
complex. The interfaces are used in different ways, depending on which underlying
directory service is being addressed. For example, CDS entries are typeless, but GDS
entries are typed. This difference is reflected in the use of the interface.

The RPC Name Service Interface

The DCE Remote Procedure Call (RPC) facility supports an interface to the directory
service that is specific to RPC and is layered on top of directory service interfaces;
it is called the Name Service Independent (NSI) interface. NSI can manipulate three
object classes — entries, groups, and profiles — which were created to store RPC
binding information. NSI data is stored in CDS. Programming using this interface is
discussed in th®CE 1.2.2 Application Development Guide—Core Componants

DCE 1.2.2 Application Development—Introduction and Style Guaemes.

DCE 1.2.2 Application Development Guide—Directory Services

DCE Directory Service Overview

1.6.3 Namespace Junction Interfaces

For information about programming interfaces to names that occur in namespace
junctions, see the documentation for that component.

DCE 1.2.2 Application Development Guide—Directory Services 21

Part 2

CDS Application Programming

Part 2 describes DCE Directory Service application programming in the CDS
namespace. Chapter 2 describes the contents of the CDS namespace, where
applications should put their data, and what the valid CDS characters and names are.
Chapter 3 describes how to use the XDS programming interface to access data in the
CDS namespace.

Chapter 2
Programming in the CDS Namespace

This chapter provides information about writing applications that use the XDS/XOM
interface to access the portion of the DCE namespace contained in CDS.

The XDS/XOM interface provides generalized access to CDS. However, if you only

need to use CDS to store information related to RPC (for example, storing the location
of a server so that clients can find it), you should use the NSI interface of DCE RPC.
NSI implements RPC-specific use of the namespace. For information on using RPC
NSI, see theDCE 1.2.2 Application Development Guide—Core Components

For information on the details of accessing the CDS namespace through the XDS/
XOM interface, see Chapter 3.

2.1 Initial Cell Namespace Organization

The following subsections describe the organization of a cell's namespace after it has
initially been configured. (For more information on configuring a cell, seeDG&
1.2.2 Administration Guidg

DCE 1.2.2 Application Development Guide—Directory Services 25

CDS Application Programming

Every DCE cell is set up at configuration with the basic namespace structure necessary
for the other DCE components to be able to find each other and to be accessible to
applications. The vital parts of the namespace are protected from being accessed by
unauthorized entities by ACLs that are attached to the entries and directories.

Figure 2-1 shows what the cell namespace looks like after a cell has been configured
and before any additional directories or entries have been added to it by system
administrators or applications. In the figure, ovals represent directories, rectangles
represent simple entries, circles represent soft links, and triangles represent namespace
junctions.

All of the simple entries shown in the figure are created for use with RPC NSI routines;
that is, they all contain server-binding information and exist to enable clients to find
servers. These are referred toRBC entries

Note that only the name entries (those in boxes) and junction entries (those in
triangles) are RPC entries. The directories (entries indicated by ovals) are normal
CDS directories.

Some of the namespace entries in the figure are intended to be used (if desired)
directly by applications; namely,:/cell-profile, /.:/lan-profile, and, through the:

soft link alias,/.:/fs. The self and profile hame entries unddrostsalso fall into this
category. Others, such as those unlgsubsys/dce are for the internal use of the
DCE components themselves.

Each of the entries is explained in detail in the following subsections. SebGlie

1.2.2 Administration Guidéor detailed information on the contents of the initial DCE
cell namespace.

26 DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

Figure 2-1. The Cell Namespace After Configuration

Soft Link to DFS @ @ Cell Root
cell-profile

lan-profile
cdshostnamech

/ fs

sec

cds-serve

bak

DCE 1.2.2 Application Development Guide—Directory Services 27

CDS Application Programming

2.1.1

2.1.2

2.1.3

28

The Cell Profile

The /.:/cell-profile entry is an RPC profile entry that contains the default list of
namespace entries to be searched by clients trying to bind to certain basic services.
An RPC profile is a class of namespace entry used by the RPC NSI routines. When
a client imports bindings from such an entry, it imports, through the profile, from

an ordered list of RPC entries containing appropriate bindings. The list of entries is
keyed by their interface universal unique identifiers (UUIDs) so that only bindings to
servers offering the interface sought by the client are returned. The entries listed in
the profile exist independently in the namespace, and can be separately accessed in
the normal way. The profile is simply a way of organizing clients’ searches.

The main purpose aofell-profile is as a path of last resort for prospective clients. All
other profile entries in the cell namespace are required to haveethprofile entry

in their entry lists so that, if a client exhausts a particular profile’s list of entries, it
tries those ircell-profile.

The LAN Profile

The /.:/lan-profile entry is a local area network (LAN)-oriented default list of
services’ namespace entries that is used when servers’ relative positions in the network
topography are of importance to their prospective clients.

The CDS Clearinghouse

The /.:/cdshostname_ch entry is the namespace entry focdshostnanie
clearinghouse, wheredshostnamés the name of the host machine on which a CDS
server is installed.

A clearinghouseés the database managed by a CDS server; it is where CDS directory
replicas are physically stored. For more information about clearinghouses, see the
DCE 1.2.2 Administration GuideAll clearinghouse namespace entries reside at the
cell root, and there must be at least one in a DCE cell. The first clearinghouse’s name
must be in the form shown in Figure 2-1, but additional clearinghouses can be named
as desired.

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

214

2.1.5

The Hosts Directory

The/.:/hostsentry is a directory containing entries for all of the host machines in the
cell. Each host has a separate directory urests its directory has the same name
as the host. Four entries are created in each host’s directory:

» self

This entry contains bindings to the host's DCE daemalece), which is
responsible for, among other things, dynamically resolving the partial bindings
that it receives in incoming RPCs from clients attempting to reach servers resident
on this host.

* profile

This entry is the default profile entry for the host. This profile contains in its list
of entries at least thé:/cell-profile entry described in Section 2.1.1.

* cds-clerk
This entry contains bindings to the host’s resident CDS clerk.
* cds-server

This entry contains bindings to a CDS server.

The Subsystems Directory

The /.:/subsys entry is the directory for subsystems. Subdirectories bedolysys
are used to hold entries that contain location-independent information about services,
particularly RPC binding information for servers.

The dcedirectory is created below:/subsysat configuration. This directory contains
directories for the DCE Security Service and Directory File Service (DFS) components.
The functional difference between these two directories andstlaad secjunctions
described in Section 2.1.7 is that the latter two entries are the access points for the
components’ special databases, whereas the directories sulogys/dcecontain the
services’ binding information.

Subsystems that are added to DCE should place their system names in directories
created beneath tiie/subsysdirectory. Companies adding subsystems should conform
to the convention of creating a unique directory bekwbsysby using their trademark

DCE 1.2.2 Application Development Guide—Directory Services 29

CDS Application Programming

2.1.6

2.1.7

30

as a directory name. Use these directories for storage of location-independent
information about services. You should store server entries, groups and profiles for
the entire cell in the directories belasubsys For example, International Air Freight-
supplied subsystems should be placed.:isubsys/IAF.

The /: DFS Alias

The entry/: is created and set up as a soft link to thé&s entry, which is the DFS
database junction. The nameis equivalent td.:/fs. Note, however, that the nante

is well-known, whereas the namie/fs is not, so using: makes an application more
portable. A CDS soft link entry is an alias to some other CDS entry. A soft link is
created through thedscp command. The procedure is described in D@E 1.2.2
Administration Guide

The DFS and DCE Security Service Junctions

The /.:/fs entry is the DFS junction entry. This is the entry for a server that manages
the DFS file location database.

The /.:/secentry is the DCE Security Service junction entry. This is the entry for a
server that manages the security service database (also calleshigtey database

The /.:/fs and /.:/secroot entries in Figure 2-1 are junctions maintained by DCE
components. Thé.:/sec junction is the security service’s namespace of principal
identities and related information. The DFS'’s fileset location servers are reached
through the/.:/fs entry, making/.:/fs effectively the entry point into the cell's
distributed file system.

Note that/.:/sec and /.:/fs are both actually RPC group entries; the junctions are
implemented by the servers whose entries are members of the group entries. (See the
DCE 1.2.2 Administration Guidéor further details on the security service and DFS
junctions.)

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

2.2

2.2.1

Recommended Use of the CDS Namespace

CDS data is maintained in a loosely consistent manner. This means that, when the
writeable copy of a replicated name is updated, the read-only copies may not be

updated for some period of time, and applications reading from those nonsynchronized

copies can receive stale data. This is in contrast to distributed databases, which use
multiphase commit protocols that prevent readers from accessing potentially stale or

inconsistent data while the writes are being propagated to all copies of the data. It is

possible to specifically request data from the master copy, which is guaranteed to be
up-to-date, but replication advantages are then lost. This should only be done when it
is important to obtain current data.

Storing Data in CDS Entries

Some CDS entries may contain information that is immediately useful or meaningful

to applications. Other entries may contain RPC information that enables application
clients to reach application servers; that is, binding handles for servers, which are
stored and retrieved using the RPC NSI routines. In either case, the entry’s name should
be a meaningful identification label for the information that the entry contains. This

is because the namespace entry names are the main clue that users and applications
have to the available set of resources in the DCE cell. Using the CDS namespace to
store and retrieve binding information for distributed applications is the function of
DCE RPC NSI.

In general, applications can store data into CDS object entry attributes in any XDS-
expressible form they wish. Refer to Tables 3-3 and 3-4 in Chapter 3 for XDS-to-CDS
data type translations. If you add new attributes to/tim/dcelocal/etc/cds_attributes

file, together with a meaningful CDS syntax (that is, a data type identifier) and name,
then the attribute is displayed lmdscp showcommands when executed on objects
containing instances of that attribute.

There are three main questions to consider when using CDS to store data through
application calls to XDS:
1. Where in the CDS namespace should the new entries be placed?

You are free to create new directories as long as you do not disturb the
namespace’s configured structure. Keep in mind that CDS directories must be
created with theedscp command; they cannot be created by applications.

DCE 1.2.2 Application Development Guide—Directory Services 31

CDS Application Programming

32

Only two root-level directories are created at configuratibasts and subsys
Applications should not add entries under tieststree; the host’s default profile
should instead be set up by a system administrator. duiesys directory is
intended to be populated by directories (for examplgésubsys/dcg in which

the servers and other components of independent vendors’ distributed products
are accessed. Thus, the typical cell should usually have a series of root-level CDS
directories that represent a reasonable division of categories.

One obvious division could be between entries intended for RPC use (that is,

namespace entries that contain bindings for distributed applications), and entries
that contain data of other kinds. On the other hand, it may be very useful to add

supplementary data attributes to RPC entries in which various housekeeping or
administrative data can be held. In this way, for example, performance data for

printers can be associated with the print servers’ name entries. You can either add
new attributes to the server entries themselves, where, for example, the following

is the name of a server entry that receives the new attributes:

/.:lapplications/printers/prl

Or you can change the subtree structure so thaterawesare added to hold the
data, the server bindings are still held in separate wholly RPC entries, and each
group of entries is located under a directory named for the printer:

/.:lapplications/printers/prl — directory
/.:lapplications/printers/prl/server — server bindings
/.:lapplications/printers/prl/stats — extra data

In general, the same principals of logic and order that apply to the organization
of a file system apply to the organization of a namespace. For example, server
entries shouldhot be created directly at the namespace root because this is the
place for default profiles, clearinghouse entries, and directories.

Figure 2-2 illustrates some of the preceding suggestions, added to the initial
configuration namespace structure shown in Figure 2-1. In Figure 2-2, the vendor
of the xyz subsystem has set up agz directory under'.:/subsysin which the
system’s servers are exported. This cell also has:&pplications directory in
which theprinters directory contains separate directories for each installed printer
available on the system; the directory forl is illustrated in the figure. In the

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

prl directory, serveris an RPC entry containing exported binding handles, and
statsis an entry created and maintained through the XDS interface.

Figure 2-2. A Possible Namespace Structure

Soft Link to DFS @ @ Cell Root

cell-profile
lan-profile

‘ cdshostname_ch ‘

subsys fs sec

Xyz-server
Xyz-view

2. How should the entries be constructed?

DCE 1.2.2 Application Development Guide—Directory Services 33

CDS Application Programming

2.2.2

34

Because CDS allows you to add as many attributes as you wish to an object
entry, it is up to you to impose some restraint in doing this. In view of the XDS
overhead involved in reading and writing single CDS attributes, it makes sense
to combine multiple related attributes under single entries (that is, in the same
directory object) where they can be read and written in single catls teead()or
ds_modify_entry(). This way, for example, you only have to create one interface
input object (to pass tds_read() to read all the attributes, which you can do
with one call tods_read() You can then separate out the returned subobjects that
you are interested in and ignore the rest. Chapter 3 contains detailed discussions
of XDS programming techniques.

In any case, you should define object types for use in applications so that
namespace access operations can be standardized and kept efficient. A CDS object
type consists of a specific set of attributes that belong to an object of that type,
with no other attributes allowed. Note again that CDS, unlike GDS, does not force
you to do things this way. You could theoretically have hundreds of CDS object
entries, each of which would contain a different combination of attributes.

. Should a directory or an entry be created?

When you consider adding information to the namespace, you can choose between
creating a new directory, possibly with entries in it, or creating simply one or more
entries. When making your decision, take into consideration the following:

a. Directories cannot be created using XDS; they must be created using
administrative commands. Directories are more expensive; they take up more
space and take more time to access. However, they can contain entries and
can therefore be used to organize information in the namespace.

b. Entries can be created using XDS and they are cheaper to create and use than
directories. However, they must be created in existing directories, and cannot
themselves contain other entries.

Access Control for CDS Entries

Each object in the CDS namespace is automatically equipped with a mechanism by
which access to it can be regulated by the object’s owner or by another authority. For
each object, the mechanism is implemented by a separate list of the entities that can
access the object in some way; for example, to read it, write to it, delete it, and so
on. Associated with each entity in this list is a string that specifies which operations
are allowed for that entity on the object. The object’s list is automatically checked

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

by CDS whenever any kind of access is attempted on that object by any entity. If the
entity can be found in the object’s list, and if the kind of access the entity intends
is found among its permissions, then the operation is allowed to proceed by CDS;
otherwise, it is not allowed.

DCE permission lists are calledccess control list{ACLs). ACLs are one of the
features of the DCE Security Service used by CDS. ACLs are used to test the entities’
(that is, the principals’) authorization to do things to the objects they propose to do
them to. The authorization mechanism for all CDS objects is handled by CDS itself.
All that users of the CDS namespace have to do is make sure that ACLs on the CDS
objects that they create are set up with the appropriate permissions.

2.2.2.1 Creation of ACLs

Whenever you create a new entry in the CDS namespace, an ACL is created for it
implicitly, and its initial list of entries and their permission sets are determined by the
ACL templates associated with the CDS directory in which you create the entry.
Each CDS directory has the following two ACL templates associated with it:

« Initial Container

This template is used to generate the initial ACL for any directories created within
the directory.

« Initial Object
This template is used to generate ACLs for entries created within the directory.
Like other CDS objects, each CDS directory also has its own ACL, generated from
the parent directory’s Initial Container template when the child directory is created.

The Initial Container template also serves as a template for the child directories’ own
Initial Container templates.

DCE 1.2.2 Application Development Guide—Directory Services 35

CDS Application Programming

36

2.2.2.2 Manipulating ACLSs

There are two ways to manipulate ACLs: either throughdhbk edit command (see
the acl_edit(8secyeference page) or through the DCE ACL application interface (see
the sec_acl_*(3sec)reference pages).

2.2.2.3 Initializing ACLs

After creating a CDS directory by using tiedscpcommand, your first step is usually

to run theacl_edit command to set up the new directory’s ACLs the way you want
them. (The new directory will have inherited its ACLs and its templates from the
directory in which it was created, as explained in Section 2.2.2.1.) You may want to
modify not only the directory’s own ACLs, but also its two templates. To edit the
latter, you can specify thec option (for the Initial Container template) or th&®
option (for the Initial Object template); otherwise, you will edit the object ACL.

You can modify a directory’s ACL templates from an application, assuming that you
have control permission for the object, with the same combinatiseofacl_lookup()
andsec_acl_replace(xalls as for the object ACL. An option to these routines lets
you specify which of the three possible ACLs on a directory object you want the call
applied to. The ACLs themselves are in identical format.

The -e (entry) option toacl_edit can be used to make sure that you get the ACL for
the specified hamespace entry object, and not the ACL (if any) for the object that is
referenced bythe entry. This distinction has to be made cleaatb edit because it
finds the object (and hence the ACL) in question by looking it up in the namespace
and binding to its ACL manager. Essentially, theeoption tellsacl_edit whether it
should bind to the CDS ACL manager (if the entry ACL is wanted), or to the manager
responsible for the referenced object's ACL. This latter manager would be a part of
the server application whose binding information the entry contained.

An example of such an ambiguous name would be a CDS clearinghouse entry, such
as thecdshostnamech entry discussed previously. With the option, you would edit
the ACL on the namespace entry, as follows:

acl_edit -e /.:kdshostnamech

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

Without the-e option, you would edit the ACL on the clearinghouse itself, which you
presumably daot want to do.

Similarly, there is abind_to_entryparameter by which the caller gec_acl_bind()
can indicate whether the entry object’s ACL or the ACL to which the entry refers is
desired.

2224 Namespace ACLs at Cell Configuration

The ACLs attached to the CDS namespace at configuration are describ€dith.2.2
Administration Guide The following ACL permissions are defined for CDS objects.
The single letter in parentheses for each item represents the DCE notation for that
permission. These single letters are identical to the untokenized forms returned by
sec_acl_get_printstring()

* read ¢)

This permission allows a principal to look up an object entry and view its attribute
values.

o write (w)

This permission allows a principal to change an object's modifiable attributes,
except for its ACLs.

* insert {)

This permission allows a principal to create new entries in a CDS directory. It is
used with directory entries only.

* delete ()
This permission allows a principal to delete a nhame entry from the namespace.
* test ()

This permission allows a principal to test whether an attribute of an object has a
particular value, but does not permit it actually to see any of the attribute values
(in other words, read permission for the object is not granted). The test permission
allows an application to verify a particular CDS attribute’s value without reading
it.

* control)

DCE 1.2.2 Application Development Guide—Directory Services 37

CDS Application Programming

2.3

38

This permission allows a principal to modify the entries in the object's ACL. The
control permission is automatically granted to the creator of a CDS object.

» administer &)

This permission allows a principal to isswelscp commands that control the
replication of directories. It is used with directory entries only.

Detailed instructions on the mechanics of setting up ACLs on CDS objects can be
found in theDCE 1.2.2 Administration Guide

For CDS directories, read and test permissions are sufficient to allow ordinary

principals to access the directory and to read and test entries therein. Principals who
you want to be able to add entries in a CDS directory should have insert permission
for that directory. Entries created by the RPC NSI routines (for example, when a

server exports bindings for the first time) are automatically set up with the correct

permissions. However, if you are creating new CDS directories for RPC use, you

should be sure to grant prospective user principals insert permission to the directory
so that servers can create entries when they export their bindings. A general list of
the permissions required for the various RPC NSI operations can be found in the
rpc_intro(3rpc) andrpc_ns * (3rpc) (RPC NSI) reference pages.

Note that CDS names do not behave the same way as file system names. A principal
does not need to have access to an entire entry name path in order to have access to

an entry at the end of that path. For example, a principal can be granted read access
to the following entry:

/.:lapplications/utilities/pr2

and yet not have read access to thidities directory itself.

Valid Characters and Naming Rules for CDS

The following subsections discuss the valid character sets for DCE Directory Service
names as used by CDS interfaces. They also explain some characters that have special
meaning and describe some restrictions and rules regarding case matching, syntax,
and size limits.

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

The use of nhames in DCE often involves more than one directory service. For example,
CDS interacts with either GDS or DNS to find nhames outside the local cell.

Figure 2-3 details the valid characters in CDS names, and the valid characters in GDS
and DNS names as used by CDS interfaces.

Note: Because CDS, GDS, and DNS all have their own valid character sets and
syntax rules, the best way to avoid problems is to keep names short and
simple, consisting of a minimal set of characters common to all three services.
The recommended set is the letters A to Z, a to z, and the digits 0 to 9. In
addition to making directory service interoperations easier, use of this subset
decreases the probability that users in a heterogeneous hardware and software
environment will encounter problems creating and using names.

Although spaces are valid in both CDS and GDS names, a CDS simple name
containing a space must be enclosed in "™ (double quotes) when you enter it through
the CDS control program. Additional interface-specific rules are documented in the
modules where they apply.

DCE 1.2.2 Application Development Guide—Directory Services 39

CDS Application Programming

Figure 2-3. Valid Characters in CDS, GDS, and DNS Names

sp|lo [@ | P | |op

(8 H X h X
) 9 I Y i y
* J Z j z
+ : K [k {
, < L \ | |

> N A n _

/ ? 0] 0

Key:[] validin cDS, GDS, and DNS names
[] valid only in CDS and GDS names
Valid only in CDS names

40 DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

2.3.1 Metacharacters

Certain characters have special meaning to the directory services; these are known as
metacharactersTable 2-1 lists and explains the CDS, GDS, and DNS metacharacters.

Table 2-1. Metacharacters and Their Meaning
Directory
Service Character Meaning
CDSs / Separates elements of a name (simple names).
* When used in the rightmost simple name of a

name entered in adscp showor list command,
acts as a wildcard, matching zero or more
characters.

? When used in the rightmost simple name of a
name entered in adscp showor list command,
acts as a wildcard, matching exactly one character.

\ Used where necessary in front bf(asterisk) or?
(question mark) to escape the character (indicates
that the following character is not a
metacharacter).

GDS / Separates RDNs.

, Separates multiple attribute type/value pairs
(attribute value assertions) within an RDN.

= Separates an attribute type and value in an
attribute value assertion.

\ Used in front of/ (slash),, (comma), or= (equal
sign) to escape the character (indicates that th
following character is not a metacharacter).

D

DNS . Separates elements of a name.

Some metacharacters are not permitted as normal characters within a name. For
example, & (backslash) cannot be used as anything but an escape character in GDS.

DCE 1.2.2 Application Development Guide—Directory Services 41

CDS Application Programming

You can use other metacharacters as normal characters in a name, provided that you
escape them with the backslash metacharacter.

2.3.2 Additional Rules

Table 2-2 summarizes major points to remember about CDS, GDS, and DNS character
sets, metacharacters, restrictions, case-matching rules, internal storage of data, and
ordering of elements in a name. For additional details, see the documentation for each
technology.

Table 2-2. Summary of CDS, GDS, and DNS Characteristics

Characteristic | CDS GDS DNS

Character Set ([atoz, AtoZ,0t0 9 atoz,AtoZ,0to 9 atoz,AtoZ,0to 9
plus space and special| plus .:,’+-=()?/ |plus.-
characters shown in and space
Figure 2-3

Metacharacterg / * 2 \ [, =\

42 DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

Characteristic

CDS

GDS

DNS

Restrictions

Simple names cannot
contain slashes.

The first simple name
following the global cell
name (or /.: prefix)
cannot contain an equa|
sign.

When entering a name
as part of acdscp show
or list command, you
must use a backslash t
escape any asterisk or
guestion mark characte|
in the rightmost simple
name. Otherwise, the
character is interpreted
as a wildcard.

Relative distinguished
names cannot begin or
end with a slash.
Attribute types must
begin with an alphabeti
| character, can contain
only alphanumerics, an
cannot contain spaces.
An alternate method of
specifying attribute
btypes is by object
identifier, a sequence o
r digits separated by
(dots).
You must use backslas
to escape a slash, a
comma, and an equal
sign when using them
as anything other than
metacharacters.
Multiple consecutive

of slashes, commas,
equal signs and
backslashes are not
allowed.

Each attribute value
assertion contains
exactly one unescaped

equal sign.

unescaped occurrenceq

The first character mus

be alphabetic.

The first and last

characters cannot he
C (dot) or— (dash).

Cell names in DNS
Hmust contain at least on
dot; they must be more
than one level deep.

1

DCE 1.2.2 Application Development Guide—Directory Services

43

CDS Application Programming

Characteristic

CDS

GDS

DNS

Case-Matching
Rules

Case exact

Attribute types are
matched case
insensitive. The
case-matching rule for
an attribute value can b
case exact or case
insensitive, depending
on the rule defined for
its type at the DSA.

Case insensitive

Internal
Representation

Case exact

Depends on the
case-matching rule
defined at DSA. If the
rule says case
insensitive, alphabetic
characters are converte
to all lowercase
characters. Spaces are
removed regardless of
the case-matching rule.

Alphabetic characters
are converted to all
lowercase characters.

Ordering of
Name
Elements

Big endian (left to right
from root to lower-level
names).

Big endian (left to right
from root to lower-level

names).

Little endian (right to
left from root to
lower-level names).

2.3.3

Table 2-3 lists the maximum sizes for directory service names. Note that the limits

Maximum Name Sizes

are implementation specific, not architectural.

44

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

Table 2-3.

2.33.1

2.3.3.2

Maximum Sizes of Directory Service Names

Name Type

Maximum Characters
(Size)

CDS simple name (character string between tw
slashes)

0254

CDS full name (including global or local prefix, | 1023
cell name, and slashes separating simple names)
GDS relative distinguished name 64
GDS distinguished name 1024
DNS relative name (character string between tw&4
dots)

DNS fully qualified name (sum of all relative 255

names)

Note:

Valid Characters for GDS Attributes

T61 Syntax

Table 2-4 shows the T61 graphical character set.

This section describes the valid character sets for the GDS attributes.

The values of the country attributes are restricted to the ISO 3166 Alpha-2
code representation of country names. (For more information, se®@ie 1.2.2
Administration Guidg

The character set for all other naming attributes is the T61 graphical character set. It
is described in the next section.

The 1) entry in the table indicates that it is not recommended that you use the

codes in Column 2 Row 3, and Column 2 Row 4. Instead, use the appropriate

code in Column A.

DCE 1.2.2 Application Development Guide—Directory Services

45

CDS Application Programming

Table 2—-4. T61 Syntax

0O|1| 2| 3| 4] 5 6| 7| 8 9 A B C D H H
0 SPl 0| @ P p QK
1 '11]A|Qlalqg (- £ e
2 "12 |B|R |b | ¢ |2 d
3 nl3|lc|s|cls q3 |- a
4)| 4|D|T|d|t $| x| - H| f
5 %|5|E|U| el u ul -
6 & |6 |F|V|f|v # | O 191 ij
7 171Gl W|glw §| o Le| lo
8 (| 8|H|X|h|x +
9 YL LY |i]y
A * J|Z]] |z E| e
B + ;KT |k << [>> R
C <L L] Va| _
D -l=/M|] |m Vo | " T | ¢
E >N n Ya nin
F [1?]0]_|o n

The administration interface supports only characters smaller than 0x7e for names.
The XDS application programming interface (API) supports the full T61 range as
indicated in the preceding table.

46 DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

Some T61 alphabetical characters have a 2-byte representation. For example, a
lowercase lettea with an acute accent is represented by Oxc2 (the code for an acute
accent) followed by 0x61 (the code for a lowercage

Only certain combinations of diacritical characters and basic letters are valid. They
are shown in Table 2-5.

Table 2-5. Combinations of Diacritical Characters and Basic Letters

Name Repr. Code Valid Basic Letters Following

grave accent |° Oxcl a,AeEiloOuU

acute accent | a 0xc2 a,AcC,e EgilLLLn N
0,0,nR,s,5,uUvyY,zZ

circumflex A 0xc3 a,AcC,e E g,G, h HIl

accent Jd,0,0,5,S,u, U,w, W,y Y

tilde ~ Oxc4 a,Ai,l,n N,o O,u, U

macron B 0xc5 a,AekEiloOuU

breve ” 0xc6 a,Ag G uU

dot above ' oxc7 ¢c,C,e EqgG,1lzZ

umlaut " 0xc8 a,A e E iloOuUyY

ring ° Oxca a, A u U

cedilla s Oxcb ¢,C,G Kk K LLnN,1R,s,
St T

double accent | " Oxcd 0,0,u, U

ogonek . Oxce a,A e EiluU

caron ” Oxcf ¢c,C,d D,e, E I L n N, R,
s, S,t,T,z,Z

The nonspacing underline (code Oxcc) must be followed by a Latin alphabetical
character; that is, a basic letter (a to z or A to Z), or a valid diacritical combination.

DCE 1.2.2 Application Development Guide—Directory Services 47

CDS Application Programming

2.4

48

Use of OIDs

OIDs are not seen by applications that restrict themselves to using only the RPC NSI
routines (pc_ns_...(), but these identifiers are important for applications that use
the XDS interface to read entries directly or to create new attributes for use with
namespace entries.

RPC makes use of only four different entry attributes in various application-specified
or administrator-specified combinations. CDS, however, contains definitions for many
more than these, which can be added by applications to RPC entries through the XDS
interface. Attributes that already exist are already properly identified so applications
that use these attributes do not have to concern themselves with the OIDs, except to
the extent of making sure that they handle them properly.

Unlike UUIDs, OIDs are not generated by command or function call. They originate
from ISO, which allocates them in hierarchically organized blocks to recipients. Each
recipient, typically some organization, is then responsible for ensuring that the OIDs
it receives are used uniquely.

For example, the following OID block was allocated to OSF by ISO:

1.3.22

OSF can therefore generate, for example, the following OID and allocate it to identify
some DCE directory object:

1.3.22.1.1.4

(The OID 1.3.22.1.1.4identifies the RPC profile entry object attribute.) OSF is
responsible for making sure that3.22.1.1.4s not used to identify any other attribute.
Thus, as long as all OIDs are generated only from within each owner’s properly
obtained block, and as long as each block owner makes sure that the OIDs generated
within its block are properly used, each OID will always be a universally valid
identifier for its associated value.

OIDs are encoded and internally represented as strings of hexadecimal digits, and
comparisons of OIDs have to be performed as hexadecimal string comparisons (not as

DCE 1.2.2 Application Development Guide—Directory Services

Programming in the CDS Namespace

comparisons on NULL-terminated strings since OIDs can have NULL bytes as part
of their value).

When applications have occasion to handle OIDs, they do so directly because the
numbers do not change and should not be reused. However, for users’ convenience,
CDS also maintains a file (calledis_attributes found in/opt/dcelocal/etg that lists

string equivalents for all the OIDs in use in a cell in entries like the following one:

1.3.22.1.1.4 RPC_Profile byte

This allows users to seRPC_Profile in output, rather than the meaningless string
1.3.22.1.1.4Further details about theds_attributes file and OIDs can be found in
the DCE 1.2.2 Administration Guide

In summary, the procedure you should follow to create new attributes on CDS entries
consists of three steps:

1. Request and receive from your locally designated authority the OIDs for the
attributes you intend to create.

2. Update thecds_attributes file with the new attributes’ OIDs and labels if you
want your application to be able to use string name representations for OIDs in
output.

3. Using XDS, write the routines to create, add, and access the attributes.
Your cell administrator should be able to provide you with a name and an OID. The

nameis a guaranteed-unique series of values for a global directory entry name. If the
directory is GDS, the name is a series of type/value pairs, such as

C=US O=0SF

The cell administrator can also obtain an OID block. From this OID space, the
administrator can assign you the OIDs you need for your application.

Note that there is no need for new OIDs in connection with cell names. The OIDs for

Country Name and Organization Name are part of the X.500 standard implemented
in GDS; only the values associated with the OIDs (the values of the objects) change
from entry name to entry name. Instead, being able to generate new OIDs gives you

DCE 1.2.2 Application Development Guide—Directory Services 49

CDS Application Programming

50

the ability to invent and add new details to the directory itself. For example, you can
create new kinds of CDS entry attributes by generating new OIDs to identify them.
The same thing can be done to GDS, although the procedure is more complicated
because it involves altering the directory schema.

DCE 1.2.2 Application Development Guide—Directory Services

Chapter 3
XDS and the DCE Cell Namespace

This chapter describes the use of the XDS programming interface when accessing the
CDS namespace. The first section provides an introduction to using XDS in the CDS
namespace. Section 3.2 describes XDS objects and how they are used to access CDS
data. Section 3.3 provides a step-by-step procedure for writing an XDS program to
access CDS. Section 3.4 provides examples of using the XOM interface to manipulate
objects. Section 3.5 provides details of the structure of XDS/CDS objects. Finally,
Section 3.6 provides translation tables between XDS and CDS for attributes and data

types.

3.1 Introduction to Accessing CDS with XDS

Outside of the DCE cells and their separate hamespaces is the global namespace in
which the cell names themselves are entered, and where all intercell references are
resolved. Two directory services participate in the global namespace. The first is the
X.500-compliant GDS supplied with DCE. The second is DNS, with which DCE
interacts, but is not a part of DCE.

DCE 1.2.2 Application Development Guide—Directory Services 51

CDS Application Programming

3.1.1

52

The global and cell directory services are accessed implicitly by RPC applications
using the NSI interface. GDS and CDS can also be accessed explicitly by using
the XDS interface. With XDS, application programmers can gain access to GDS, a
powerful general-purpose distributed database service, which can be used for many
other things besides intercell binding. XDS can also be used to accesselihe
namespace directly, as this chapter describes.

An XDS application looks very different from the RPC-based DCE applications. This

is partly because there is no dependency in XDS on the DCE RPC interface, although
you can use both interfaces in the same application. Also, XDS is a generalized

directory interface, oriented more toward performing large database operations than
toward fine-tuning the contents of RPC entries. Nevertheless, XDS can be used as a
general access mechanism on the CDS namespace.

Using the Reference Material in This Chapter

Complete descriptions of all the XDS and XOM functions used in CDS operations
can be found in th®CE 1.2.2 Application Development Referenwlich you should

have beside you as you read through the examples in this chapter. In particular, refer
to that manual for information about XDS error objects, which are not discussed in
this chapter.

Complete descriptions for all objects requiredigsut parameters by XDS functions
when accessing a CDS namespace can be found in Section 3.5. Abbreviated definitions
for these same objects can be found with all the others in Part 4. XOM functions are
general-purpose utility routines that operate on objects of any class, and take the rest
of their input in conventional form.

Slightly less detailed descriptions of tlwitput objects you can expect to receive
when accessing CDS through XDS are also given in Section 3.5. You do not have
to construct objects of these classes yourself; you just have to know their general
structure so that you can disassemble them using XOM routines.

No information is given in this chapter about tHgS_status error objects that

are returned by unsuccessful XDS functions; a description of all the subclasses
of DS_statusrequires a chapter in itself. Code for a rudimentary general-purpose
DS_statushandling routine can be found in theldir.c XDS sample program in
Chapter 7 of this guide.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.1.2

3.1.3

3.2

What You Cannot Do with XDS

XDS allows you to perform general operations on CDS entry attributes, something
which you cannot do through the DCE RPC NSI interface. However, there are certain
things you cannot do to cell directory entries even through XDS:

* You cannot create or modify directory entries; tds_modify_rdn() function
does not work in a CDS namespace. These operations must be performed through
the CDS control program ¢dscp. For more information, see thBCE 1.2.2
Command Reference

* You cannot perform XDS searches on the cell namespace; the XDS function
ds_search()does not work. This is mainly because the CDS has no concept of
a hierarchy of entry attributes, such as the X.500 schema.dEheompare()
function, however, does work.

Registering A Nonlocal Cell

If you are planning to use XDS to access the cell namespace in a one-cell environment
(that is, your cell does not need to communicate with other DCE cells), you do not
need to set up a cell entry in GDS for your cell because the XDS functions simply
call the appropriate statically linked CDS routines to access the cell namespace. In
these circumstances, XDS always tries to access the local cell when given an untyped
(non-X.500) name.

For XDS to be able to access any nonlocal cell namespace, that cell must be registered
(that is, have an entry) in the global namespace.

For information on setting up your cell name, seelflgéE 1.2.2 Administration Guide

XDS Objects

The XDS interface differs from the other DCE component interfaces in thabhject
oriented The following subsections explain two things: first, what object-oriented
programming means in terms of using XDS; and second, how to use XDS to access
CDS.

DCE 1.2.2 Application Development Guide—Directory Services 53

CDS Application Programming

Figure 3-1.

54

Imagine a generalized data structure that always has the samg/platand yet can
contain any kind of data, and any amount of it. Functions could pass these structures
back and forth in the same way all the time, and yet they could use the same structures
for any kind of data they wanted to store or transfer. Such a data structure, if it existed,
would be a trueobject Programming language constructs allow interfaces to pretend
that they use objects, although the realities of implementation are not usually so simple.

XDS is such an interface. For the most part, XDS functions neither accept nor return
values in any form but as objects. The objects themselves are indeed always the
same data type; namely, pointers to array®loject descriptor(C struct) elements.
Contained within thes®M_descriptor element structures are unions that can actually
accommodate all the different kinds of values an object can be called on to hold. In
order to allow the interface to make sense of the unions, €ddhdescriptor also
contains asyntax field, which indicates the data type of that descriptor’'s union. There

is also a record of what the descriptor’s value actually is; for example, whether it
is a name, a number, an address, a list, and so on. This information is held in the
descriptor'stype field.

These OM_descriptor elements, which are referred to abject descriptorsor
descriptors, are the basic building blocks @l XDS objects; every actual XDS
object reduces to arrays of them. Each descriptor contains three items:

* A type field, which identifies the descriptor’s value
» A syntax field, which indicates the data type of thalue field

* The value field, which is a union
Figure 3-1 illustrates one such object descriptor.

One Object Descriptor

type:OM_CLASS
syntax:OID string
value:DS_C_DS_DN

Note that, from an abstract point of viesyntax is just an implementation detail.
The scheme really consists only of a type/value pair. fiipe gives an identity to the
object (something like CDS entry attribute, CDS entry name, or DUA access point),

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Figure 3-2.

3.2.1

and thevalue is some data associated with that identity, just as a variable has a name
that gives meaning to the value it holds, and the value itself.

In order to make the representation of objects as logical and as flexible as possible,
these two logical components of every objegpe andvalue, are themselves each
represented by separate object descriptors. Thus, the first element of every complete
object descriptor array is a descriptor whasgpe field identifies itsvalue field

as containing the name of the kind (olas9 of this object, and thesyntax field
indicates how that namealue should be read. Next is usually one (or more, if the
object is multivalued) object descriptor whosge field identifies itsvalue field as
containing some value appropriate for this class of object. Finally, every complete
object descriptor array ends with a descriptor element that is identified by its fields as
being a NULL-terminating element.

Thus, a minimum-size descriptor array consists of just two elements: the first contains
its class identity, and the second is a NULL (it is legitimate for objects not to have
values). When an object does have a value, it is held irvéhee field of a descriptor
whosetype field communicates the value’s meaning.

Figure 3-2 illustrates the arrangement of a complete object descriptor array.

A Complete Object Represented

type:OM_CLASS type:DS_RDNS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C DS DN value:rdnl

Object Attributes

The generic term for any object valueastribute In this sense, an object is nothing

but a collection of attributes, and every object descriptor describes one attribute. The
first attribute’s value identifies the object’s class, and this determines all the other
attributes the object is supposed to have. One or more other attributes follow, which
contain the object’'s working values. The NULL object descriptor at the end is an
implementation detail, and is not a part of the object.

DCE 1.2.2 Application Development Guide—Directory Services 55

CDS Application Programming

Note that, depending on the attribute it represents, a descriptitie field can contain
a pointer to another array of object descriptors. In other words, an object’s value can
be another object.

Figure 3-3 shows a three-layer compound object: the top-level superajecthject,
contains the subobjectinl, which in turn contains the subobjeatal

Figure 3-3. A Three-Layer Compound Object

type:OM_CLASS type:DS_RDNS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C_DS_DN value:rdnl
dn_object /
type:OM_CLASS type:DS_AVAS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C_DS_RDN value:aval
rdnl /
type:OM_CLASS type:DS_ATTRIBUTE_ type:DS_ATTRIBUTE_
. TYPE VALUES
syntax:OID string syntax:0ID string syntax:OM_S_TELETEX | NULL
. value:DSX_TYPELESS STRING

value:DS_C_AVA ~RDN _ value:"huh"
aval

3.2.2 Interface Objects and Directory Objects

GDS is composed of directory objects that reflect the X.500 design. The XDS interface
also works with objects. However, there is a big difference between directory and
XDS objects. Programmers do not work directly with the directory objects; they are

composed of attributes that make up the directory service’s implementation of entries.

Programmers work with XDS objects. XDS objects have explicit data representations

that can be directly manipulated with programming language operators. Some of these
techniques are described in this chapter; others can be found in Chapter 7.

56 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

XDS and GDS terminology sometimes suggests that XDS objects are somehow direct
representations of the directory objects to which they communicate information. This

is not the case, however. You never directly see or manipulate the directory objects;
the XDS interface objects are used only to pass parameters to the XDS calls, which in
turn request GDS (or CDS) to perform operations on the directory objects. The XDS

objects are therefore somewhat arbitrary structures defined by the interface.

Figure 3-4 illustrates the relationship between XDS (also cafieetface objects and
directory objects. The figure shows an application passing several properly initialized
XDS objects to some XDS function; it then takes some action, which affects the
attribute contents of certain directory objects. The application never works with the
directory objects; it works with the XDS interface objects.

A side effect of the existence of a separate XDS interface and GDS or CDS directory
objects is the existence of attributes for both kinds of objects as well. Because the
purpose of XDS objects is to feed data into and extract data from directory objects,
programmers work with XDS objects whose attributes hdivectory object attributes

as their values. You should keep in mind the distinction between directory objects and
interface objects.

DCE 1.2.2 Application Development Guide—Directory Services 57

CDS Application Programming

Figure 3-4.
GDS Directory Objects

DN attribute
attribute
attribute
attribute

Postal Code
attribute

AN

attribute

attribute

Directory Objects and XDS Interface Objects

ds_modify_entry()

XDS function

58

R

Object Class attribute

Entry Modification
Attribute Type
DS_A_POSTAL_CODE
Attribute Value

"77 Sunset Strip"

XDS Object

attribute

attribute

attribute

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.2.3 Directory Objects and Namespace Entries

The GDS namespace is a hierarchical collection of entries. The name of each of these
entries is an attribute of a directory object. The object is accessed through XDS by
stating its name attribute.

Figure 3-5 shows the relationship of entry names in the GDS namespace to the GDS
directory objects to which they refer.

DCE 1.2.2 Application Development Guide—Directory Services 59

CDS Application Programming

Figure 3-5. Directory Objects and Namespace Entries

GDS Namespace

/.../C=US/O=0SF/OU=DCE \

‘ /.../IC=US/L=Cambridge/CN=Killroy

Object Entries
GDS Directory Objects

DN attribute
attribute
attribute -
attribute

attribute

attribute

attribute

60 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.2.4

3.2.5

Values That an Object Can Contain

There are many different classes of objects defined for the XDS interface; still more
are defined by the X.500 standard for general directory use. But only a small number
of classes are needed for XDS/CDS operations, and only those classes are discussed
in this chapter. Information about other classes can be found in Part 4 of this guide.

The class that an object belongs to determines what sort of information the object can
contain. Each object class consists of a list of attributes that objects must have. For
example, you would expect an object in the directory entry name class to be required
to have an attribute to hold the entry name string. However, it is not sufficient to
simply place a string like the following into an object descriptor:

/.../C=US/O=0SF/OU=DCE/hosts/tamburlaine/self

A full directory entry name such as the preceding one is called in XDBiStanguished
name (DN), meaning that the entry name is fully qualified (distinct) from root to
entry name. To properly represent the entry name in an object, you must look up the
definition of the XDS distinguished name object class and build an object that has the
set of attributes that the definition prescribes.

Building a Name Object

Complete definitions for all the object classes required as input for XDS functions
can be found in Section 3.5. Among them is the class for distinguished name objects,
calledDS_C_DS_DN There you will learn that this class of object has two attributes:
its class attribute, which identifies it a6 C_DS_DNobject, and a second attribute,
which occurs multiple times in the object. Each instance of this attribute contains as
its value one piece of the full name; for example, the directory nhosts

The DS_C_DS_DNattribute that holds the entry name piece, or relative distinguished
name (RDN), is defined by the class rules to hold, not a string, but another object of
the RDN class@S_C_DS_RDN.

Thus, a static declaration of the descriptor array representing$h€ DS _DNobject
would look like the following:

DCE 1.2.2 Application Development Guide—Directory Services 61

CDS Application Programming

62

static OM_descriptor Full_Entry_Name_Object[]
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),

1]
-~

/* NANNNNNNNNNN */
I* Macro to put an "OID string" in a descrip- */

I* tor's type field and fill its other */

I* fields with appropriate values. */
{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},

/* FAVAVAVAVAVAVAN NANANNANNNNNNN NANNNNNANNNNN * /

I* type syntax value */
I* *
I* (the "value" union is in fact here a */

I* structure; the 0 fills a pad field in */

I* that structure.) */

{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self_Entry_RDN}},
OM_NULL_DESCRIPTOR

/* NANANNNNANNNNNNNANNNNN * /
I* Macro to fill a descriptor with proper */
I* NULL values. */

3

The use of theOM_OID_DESC and OM_NULL_DESCRIPTOR macros slightly
obscures the layout of this declaration. However, each line contains code to initialize
exactly oneOM_descriptor object; the array consists of eight objects.

The names (such &ountry _RDN) in the descriptorsvalue fields refer to the other
descriptor arrays, which separately represent the relative name objects. (The order of
the C declaration in the source file is opposite to the order described here.) Because
DS_C_DS_RDNobjects are now called for, the next step is to look at what attributes
that class requires.

The definition forDS_C_DS_RDNcan be found in Section 3.5.2.6. This class object
is defined, likeDS_C_DS_DN to have only one attribute (with the exception of
the OM_Object attribute, which is mandatory for all objects). The one attribute,
DS_AVAS, holds the value of one relative name. The syntax of this value is
OM_S OBJECT, meaning thaDS_AVAS's value is a pointer to yet another object
descriptor array:

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

static OM_descriptor Country_RDNJ] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Country_Value}},
OM_NULL_DESCRIPTOR

b

Note that there should also be five other similar declarations, one for each of the other
DS_C_DS_RDNobjects held irDS_C_DS DN

The declarations have the same meanings as they did in the previous example.
Country_Value is the name of the descriptor array that represents the object of class
DS_C_AVA, which we are now about to look up.

The rules for theDS_C_AVA class can be found in this chapter just after
DS_C_DS_RDN They tell us thaDS_C_AVA objects have two attributes aside from
the omnipresenDM_Object; namely:

* DS_ATTRIBUTE_VALUES
This attribute holds the object’s value.
* DS_ATTRIBUTE_TYPE

This attribute gives the meaning of the object’s value.

In this instance, the meaning of the stribdfs is that it is a country name. There

is a particular directory service attribute value for this; it is identified by an OID
that is associated with the lab&S_A COUNTRY_NAME (the OIDs held in
objects are represented in string form). Accordingly, we make that OID the value
of DS_ATTRIBUTE_TYPE, and we make the name string itself the value of
DS_ATTRIBUTE_VALUES, as shown.

static OM_descriptor Country_Value[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US")},

/* NANNNNNNNNNNNNNN * /
I* Macro to properly */
I* fill the "value" union with the NULL-terminated string. */

OM_NULL_DESCRIPTOR
h

DCE 1.2.2 Application Development Guide—Directory Services 63

CDS Application Programming

3.2.6

3.2.7

64

There are also five othddS C_AVA declarations, one for each of the five other
separate name piece objects referred to inDfe C_DS_RDNsuperobjects.

A Complete Object

The previous sections described how an object is created: you look up the rules for
the object class you require, and then add the attributes called for in the definition.
Whenever some attribute is defined to have an object as its value, you have to look
up the class rules for the new object and declare a further descriptor array for it. In

this way, you continue working down through layers of subobjects until you reach an

object class that contains no subobjects as values; at that point, you are finished.

Normally, you do not statically declare objects in real applications. The steps outlined
in the preceding text are given as a method for determining what an object looks
like. Once you have done that, you can then write routines to create the objects
dynamically. An example of how to do this can be found in th&lir.c example
application in Chapter 7 of this guide.

The process of object building is somewhat easier than it sounds. There are only five
different object classes needed for input to XDS functions when accessing CDS, and
only one of those, th®S_C_DS_DNclass, has more than one level of subobjects.
The rules for all five of these classes can be found in Part 4 of this guide. In order to
use the GDS references, you should know a few things about class hierarchy.

Class Hierarchy

Object classes are hierarchically organized so that some classes may be located above
some classes in the hierarchy and below others in the hierarchy. In any such system of
subordinate classes, each next lower class inherits all the attributes prescribed for the
class immediately above it, plus whatever attributes are defined peculiarly for it alone.

If the hierarchy continues further down, cumulative collection of attributes continues

to accumulate. If there were a class for every letter of the alphabet, starting at the
highest level with A and continuing down to the lowest level with Z, and if each
succeeding letter was a subclass of its predecessor, the Z class would possess all the

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.2.8

3.2.9

attributes of all the other letters, as well as its own, while the A class would possess
only the A class attributes.

XDS/XOM classes are seldom nested more than two or at most three layers. All
inherited attributes are explicitly listed in the object descriptions that follow, so you
do not have to worry about class hierarchies here. However, the complete descriptions
of XDS/XOM objects in Part 4 of this guide rely on statements of class inheritance
to fill out their attribute lists for the different classes. Refer to Part 4 for information
about the classes of objects that can be returned by XDS calls in order to be able to
handle those returned objects.

Class Hierarchy and Object Structure

Note that class hierarchyis different from object structure Object structure is

the layering of object arrays that was previously described inDBeC_DS DN
declaration in Section 3.2.5. It occurs when one object contains another object as the
value of one or more of its attributes.

This is what is meant by recursive objects: one object can point to another object as
one of its attribute values. The layering of subobjects below superobjects in this way
is described repeatedly in Section 3.5.

The only practical significance of class hierarchy is in determining all the attributes a
certain object class must have. Once you have done this, you may find that a certain
attribute requires as its value some other object. The result is a compound object, but
this is completely determined by the attributes for the particular class you are looking
at.

Public and Private Objects and XOM

In Section 3.2.5, you saw how a multilevel XDS object can be statically declared
in C code. Now imagine that you have written an application that contains such a
staticDS_C_DS_DNobject declaration. From the point of view of your application,
that object is nothing but a series of arrays, and you can manipulate them with all
the normal programming operators, just as you can any other data type. Nevertheless,

DCE 1.2.2 Application Development Guide—Directory Services 65

CDS Application Programming

3.2.10

66

the object is syntactically perfectly acceptable to any XDS (or XOM) function that is
prepared to receive BS_C_DS_DNobject.

Objects are also created by the XDS functions themselves; this is the way they usually
return information to callers. However, there is a difference between objects generated
by the XDS interface and objects that are explicitly declared by the application: you
cannot access the formegtivate, objects in the direct way that you can the latter,
public, objects.

These two kinds of objects are the same as far as their classes and attributes are
concerned. The only difference between them is in the way they are accessed. The
public objects that an application explicitly creates or declares in its own memory
area are just as accessible as any of the other data storage it uses. However, private
objects are created and held in the XDS interface’s own system memory. Applications
get handles to private objects, and, in order to access the private objects’ contents,
they have to pass the handles to object management functions. The object management
(XOM) functions make up a sort of all-purpose companion interface to XDS. Whereas
XDS functions typically require some specific class object as input, the XOM functions
accept objects of any class and perform useful operations on them.

If a private object needs to be manipulated, one of the XOM functions,get()

can be called to make a public copy of the private object. Then, calling the XOM
om_create()function allows applications to generate private objects manipulable by
om_get() The main significance of private as opposed to public objects is that they
do not have to be explicitly operated on; instead, you can access them cleanly through
the XOM interface and let it do most of the work. You still have to know something
about the objects’ logical representation, however, to use XOM.

Except for a few more details, which will be mentioned as needed, this is practically
all there is to XDS object representation.

XOM Objects and XDS Library Functions

To call an XDS library function, do the following:
1. Decide what input parameters you must supply to the function.

2. Bundle up these parameters in objects (that is, arrays of object descriptors) in an
XDS format.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.3

3.3.1

Almost all data returned to you by an XDS function is enclosed in objects, which
you must parse to recover the information that you want. This task is made almost
automatic by a library function supplied with the companion X/Open OSI-Abstract-
Data Manipulation (XOM) interface.

With XDS, the programmer has to perform a lot of call parameter management, but in
other respects the interface is easy to use. The XDS functions’ dependence on objects
makes them easy to call, once you have the objects themselves correctly set up.

Accessing CDS Using the XDS Step-by-Step
Procedure

You now know all that you need to know to work with a cell namespace through
XDS. The following subsections provide a walk-through of the steps of some typical
XDS/CDS operations. They describe what is involved in using XDS to access existing
CDS attributes. They then describe how you can create and access new CDS entry
attributes.

Reading and Writing Existing CDS Entry Attributes With
XDS

Suppose that you want to use XDS to read some information from the following CDS
entry:

/.../C=US/O=0SF/OU=DCE/hosts/tamburlaine/self

As explained in théCE 1.2.2 Administration Guidehe/.:/hostshostnameself entry,

which is created at the time of cell configuration, contains binding information for the
machinehostname Since this is a simple RPC NSI entry, there is not very much in
the entry that is interesting to read, but this entry is used as an example anyway as a
simple demonstration.

Following are the header inclusions and general data declarations:

DCE 1.2.2 Application Development Guide—Directory Services 67

CDS Application Programming

68

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdscds.h>

Note that thexom.h andxds.h header files must be included in the order shown in the
preceding example. Also note that thdscds.hheader file is brought in for the sake

of DSX_TYPELESS_RDN This file is where the CDS-significant OIDs are defined.
The xdsbdcp.h file contains information necessary to the Basic Directory Contents
Package, which is the basic version of the XDS interface you can use in this program.

The XDS/XOM interface defines numerous object identifier string constants, which are
used to identify the many object classes, parts, and pieces (among other things) that it
needs to know about. In order to make sure that these OID constants do not collide with
any other constants, the interface refers to them with the sBM&_O_ prefixed to

the user-visible form; for exampl®S_C_DS_DNbecome®©OMP_O_DS_C DS DN
internally. In order to make application instances consistent with the internal form,
useOM_EXPORT to import all XDS-defined or XOM-defined OID constants used

in your application.

OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)

OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)

OM_EXPORT(DS_C_ATTRIBUTE)

OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_C_AVA)

OM_EXPORT(DS_C_DS DN)

OM_EXPORT(DS_C_DS_RDN)

OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DSX_TYPELESS_RDN)

/* ... Special OID for an untyped (that is, nonX.500) */
/* relative distinguished name. Defined in xdscds.h header. */

A further important effect o©OM_EXPORT is that it builds arOM_string structure
to hold the exported OID hexadecimal string. As explained in the previous chapter,

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

OIDs are not numeric values, but strings. Comparisons and similar operations on
OIDs must access them as strings. Once an OID has been exported, you can access
it by using its declared name. For example, the hexadecimal string representation of
DS_C_ATTRIBUTE is contained inDS_C_ATTRIBUTE.elements and the length

of this string is contained iDS_C_ATTRIBUTE.length.

3.3.1.1 Significance of Typed and Untyped Entry Names

Next are the static declarations for the lowest layer of objects that make up the global
name (distinguished name) of the CDS directory entry you want to read. These lowest-
level objects contain the string values for each part of the name. Remember that the
first three parts of the name (excluding the global préfix which is not represented)
constitute the cell name, as follows:

/C=US/O=0SF/OU=DCE/

In this example, assume that GDS is being used as the cell’s global directory
service, so the cell name is represented in X.500 format, and each part of it is
typed in the object representation; for examdles_A COUNTRY_NAME is the
DS_ATTRIBUTE_TYPE in the Country_String_Object. If you were using DNS,

the cell name might be something like the following:

osf.org.dce

In this case, the entire stringsf.org.dcewould be held in a single object whose
DS_ATTRIBUTE_TYPE would beDSX_TYPELESS_RDN.

DSX_TYPELESS RDNis a special type that marks a name piece as not residing in
an X.500 namespace. If the object resides under a typed X.500 name, as is the case
in the declared object structures, then it serves as a delimiter for the end of the cell
name GDS looks up, and the beginning of the name that is passed to a CDS server
in that cell, assuming that the cell has access to GDS,; if not, such a name cannot be
resolved. In the following name, the untyped portion is at the beginning:

DCE 1.2.2 Application Development Guide—Directory Services 69

CDS Application Programming

70

/...Josf.org.dce/hosts/zenocrate/self

In this case, the name is passed immediately by XDS via the local CDS (and the GDA)
to DNS for resolution of the cell name. Thus, the typing of entry names determines
which directory service a global directory entry name is sent to for resolution.

3.3.1.2 Static Declarations

The following are the static declarations you need:

/ /

/* Here are the objects that contain the string values for each */

/* part of the CDS entry’'s global name... */
static OM_descriptor Country_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Organization_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("OSF")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Org_Unit_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("DCE")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Hosts_Dir_String_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("hosts")},
OM_NULL_DESCRIPTOR

J3

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

static OM_descriptor Tamburlaine_Dir_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("tamburlaine")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Self_Entry_String_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("self")},
OM_NULL_DESCRIPTOR

h

The string objects are contained by a next-higher level of objects that identify the
strings as being pieces (RDNs) of a fully qualified directory entry name (DN).
Thus, theCountry RDN object containgCountry_String_Object as the value of

its DS_AVAS attribute; Organization_RDN containsOrganization_String_Object,

and so on.

/ /

/* Here are the 'relative distinguished name" objects.
static OM_descriptor Country_RDNJ] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Country_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Organization_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Organization_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Org_Unit_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Org_Unit_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Hosts_Dir_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

DCE 1.2.2 Application Development Guide—Directory Services 71

CDS Application Programming

72

{DS_AVAS, OM_S_OBJECT, {0, Hosts_Dir_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Tamburlaine_Dir_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Tamburlaine_Dir_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Self_Entry_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Self_Entry_String_Object}},
OM_NULL_DESCRIPTOR

h

At the highest level, all the subobjects are gathered together in the DN object named
Full_Entry_Name_Obiject.

/ /
static OM_descriptor Full_Entry_Name_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self_Entry RDN}},
OM_NULL_DESCRIPTOR

h

3.3.13 Other Necessary Objects fig read()

The ds read() procedure takes requests in the form of a
DS_C_ENTRY_INFO_SELECTION class object. However, if you refer to

the recipe for this object class in Section 3.5, you will find that it is much simpler
than the name object; it contains no subobjects, and its declaration is straightforward.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

The value of thddS_ALL_ATTRIBUTES attribute specifies that all attributes be read
from the CDS entry, which is specified in tiill_Entry Name_Object variable.

Note that the termattribute is used slightly differently in CDS and XDS contexts. In
XDS, attributes describe the values that can be held by various object classes; they
can be thought of asbject fields.In CDS, attributes describe the values that can be
associated with a directory entry. The following code fragment shows the definition
of aDS_C_ENTRY_INFO_SELECTION object:

static OM_descriptor Entry_Info_Select_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

h

3.3.14 Miscellaneous Declarations

The following are declarations for miscellaneous variables:

OM_workspace xdsWorkspace;

/* ..will contain handle to our "workspace" */

DS_feature featureList]] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },

{o}

h

/* ..list of service "packages" we will want from XDS */
OM_private_object session;

/* ..will contain handle to a bound-to directory session */
DS_status dsStatus;

/* ..status return from XDS calls */

OM_return_code omsStatus;

/* ..status return from XOM calls */

OM_sint dummy;

[* ..for unsupported ds_read() argument */

DCE 1.2.2 Application Development Guide—Directory Services 73

CDS Application Programming

74

OM_private_object readResultObject;

[* ...to receive entry information read from CDS by "ds_read()" */

OM_type |_want_entry object[] = {DS_ENTRY, OM_NO_MORE_TYPES},
OM_type |_want_attribute_list[] = {DS_ATTRIBUTES, OM_NO_MORE_TYPES};
OM_type |_want_attribute_value[] = {DS_ATTRIBUTE_VALUES, \
OM_NO_MORE_TYPES};

/* ..arrays to pass to "om_get()" to extract subobjects */

/* from the result object returned by "ds_read()" */
OM_value_position number_of_descriptors;

/* ...to hold number of attribute descriptors returned */

/* by "om_get() */
OM_public_object entry;
/* ...to hold public object returned by "om_get()" */

3.3.15 The Main Program

This section describes the main program. Three calls usually precede any use of XDS.

First, ds_initialize() is called to set up avorkspace A workspace is a memory
area in which XDS can generate objects that will be used to pass information to the
application. If the call is successful, it returns a handle that must be saved for the
ds_shutdown()call. If the call is unsuccessful, it returns NULL, but this example
does not check for errors.

xdsWorkspace = ds_linitialize();

If GDS is being used as the global directory service, the service packages are specified
next. Packages consist of groups of objects, together with the associated supporting
interface functionality, designed to be used for some specific end. For example, to
access the (X.500) Global Directory, specsX _GDS_PKG This example uses

the basic XDS service sBS_BASIC_DIR_CONTENTS_PKG is specified. The
featureListparameter tals_version()is an array, not an object, since packages are
not being handled yet:

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

dsStatus = ds_version(featureList, xdsWorkspace);

Note that, if you arenot using GDS as your global directory service (in other words,
if you are using XDS by itself), then you shoutabt call ds_version()

From this point on, status is returned by XDS functions vi®%& statusvariable.
DS_statusis a handle to a private object, whose valueDS_SUCCESS(that is,
NULL) if the call was successful. If something went wrong, the information in the
(possibly complex) private error object has to be analyzed through cadist@et()

which is one of the general-purpose object management functions that belongs to
XDS’s companion interface XOM. Usage ofn_get() is demonstrated later on in

this program, but return status is not checked in this example.

The third necessary call is tds_bind(). This call brings up the directory service,
which binds to a Directory System Agent (DSA), the GDS server, through a Directory
User Agent (DUA), the GDS client. ThBS_DEFAULT_SESSION parameter calls

for a default session. The alternative is to build and fill out your @& C_SESSION

object, specifying such things as DSA addresses, and pass that. The default is used in
this example:

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);

3.3.1.6 Reading a CDS Attribute

At this point, you can read a set of object attributes from the cell namespace entry.
Call ds_read()with the two objects that specify the entry to be read and the specific
entry attribute you want:

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, Full_Entry Name_Object,
Entry_Info_Select_Object, &readResultObject, &dummy);

The DS _DEFAULT _CONTEXT parameter could be substituted with a
DS_C_CONTEXT object, which would typically be reused during a series of related

DCE 1.2.2 Application Development Guide—Directory Services 75

CDS Application Programming

XDS calls. This object specifies and records how GDS should perform the operation,
how much progress has been made in resolving a name, and so on.

If the call succeeds, the private objemtadResultObject contains a series of
DS_C_ATTRIBUTE subobjects, one for each attribute read from the cell name entry.
A complete recipe for th®®S_C_READ_RESULT object can be found in Chapter
11, but the following is a skeletal outline of the object’s structure:

DS_C_READ_RESULT
DS_ENTRY: object(DS_C_ENTRY_INFO)
DS_ALIAS_DEREFERENCED: OM_S_BOOLEAN
DS_PERFORMER: object(DS_C_NAME)
DS_C_ENTRY_INFO
DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)
DS_ATTRIBUTES: one or more object(DS_C_ATTRIBUTE)
DS_C_NAME == DS_C_DS_DN
DS_RDNS: object(DS_C_DS_RDN)
DS_C_DS_RDN
DS_AVAS: object(DS_C_AVA)
DS_C_AVA
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything
DS_C_ATTRIBUTE ---one for each attribute read
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 3-6 illustrates the general object structure oD& C_READ_RESULT

, showing only the object-valued attributes, and only dd&§_C_ATTRIBUTE
subobject.

76 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Figure 3-6. The DS_C_READ_RESULT Object Structure

DS_C_READ_RESULT

o~

DS_C_ENTRY_INFO

I,

DS_C_DS DN DS_C_ATTRIBUTE

~

DS_C_DS_RDN

.

DS_C_AVA

3.3.1.7 Handling the Result Object

The next goal is to extract the instances of B¢ C_ATTRIBUTE subsubclass, one
for each attribute read, from the returned object. The first step is to make a public copy
of readResultObject which is aprivate object, and therefore does not allow access

DCE 1.2.2 Application Development Guide—Directory Services 77

CDS Application Programming

to the object descriptors themselves. Using the X©M_get() function, you can

make a public copy ofeadResultObject and at the same time specify that only the
relevant parts of it be preserved in the copy. Then, with a couple of catimt@et()

you can reduce the object to manageable size, leaving a superobject whose immediate
subobjects are fairly easily accessed.

The om_get() function takes as its third input parameter @M_type_list, which

is an array ofOM_type. Possible parameters ab&s_ENTRY, DS_ATTRIBUTES,
DS_ATTRIBUTE_VALUES , and anything that can legitimately appear in an object
descriptor'stype field. The types specified in this parameter are interpreted according
to the options specified in the preceding parameter. For example, the relevent attribute
from the read result iDS_ENTRY. It contains theDS_C_ENTRY_INFO object,
which in turn contains th®S_C_ATTRIBUTE objects. TheDS_C_ATTRIBUTE
objects contain the data read from the cell directory name entry. Therefore, you
should specify th©OM_EXCLUDE_ALL_BUT_THESE_TYPES option, which has

the effect of excluding everything but the contents of the objdas ENTRY type
attribute.

The OM_EXCLUDE_SUBOBJECTS option is also ORed into the parameter.
Why would you not preserve the subobjects @ C ENTRY_INFO? Because
om_get()works only on private, not on public, objects. If you were to ose _get()

on the entire object substructure, you would not be able to continue getting the
subobjects, and instead you would have to follow the object pointers down to the
DS_C_ATTRIBUTE. However, wherom_get() excludes subobjects from a copy, it
does not really leave them out; it merely leaves the subobjects private, with a handle
to the private objects where pointers would have been. This allows you to continue to
call om_get()as long as there are more subobjects.

The following is the first call:

/* The DS_C_READ_RESULT object that ds_read() returns has */
/* one subobject, DS_C_ENTRY_INFO; it in turn has two sub- */
/* objects, that is a DS_C_NAME which holds the object's */

[* distinguished name (which we don't care about here), */
/* and a DS_C_ATTRIBUTE which contains the attribute info */
/* we read; that one we want. So we climb down to it ... */
/* This om_get() will "return" the entry-info object ... */

omsStatus = om_get(readResultObject,
OM_EXCLUDE_ALL_BUT_THESE_TYPES +

78 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

OM_EXCLUDE_SUBOBJECTS,
|_want_entry_object,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,

&entry,
&number_of_descriptors);

The number_of_descriptors parameter contains the number of attribute descriptors
returned in the public copy, not in any excluded subobjects.

If an XOM function is successful, it returns @M_SUCCESScode. Unsuccessful
calls to XOM functions do not return error objects, but rather return simple error
codes. The interface assumes that, if the XOM function does not accept your object,
then you will not be able to get much information from any further objects. The return
status is not checked in this example.

The return paramet@ntry should now contain a pointer to tie5s_C_ENTRY_INFO
object with the following immediate structure. (The number of instances of
DS_ATTRIBUTES depends on the number of attributes read from the entry.)

DS_C_ENTRY_INFO
DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)
DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPEOID string
DS_ATTRIBUTE_VALUESanything

DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
object(DS_C_ATTRIBUTE)

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPEOID string
DS_ATTRIBUTE_VALUESanything

The italics indicate private subobjects. Figure 3-7 showsDBeC_ENTRY_INFO
object. Only one instance of ®S_C_ATTRIBUTE subobject is shown in the

DCE 1.2.2 Application Development Guide—Directory Services 79

CDS Application Programming

Figure 3-7.

80

figure; usually there are several such subobjects, all at the same level, each
containing information about one of the attributes read from the entry. These
subobjects are representedd_C_ENTRY_INFO as a series of descriptors of type
DS_ATTRIBUTES, each of which has as its value a sepafag C_ATTRIBUTE
subobject.

The DS_C_ENTRY_INFO Object Structure

DS_C_ENTRY_INFO

DS _C_DS_DN - DS_C_ATTRIBUTE

DS_C_DS_RDN

.

DS_C_AVA

Now extract the separate attribute values of the entry that was read. These were
returned as separate object valuesD®_ ATTRIBUTES; each one has an object
class ofDS_C_ATTRIBUTE. To return any one of these subobjects, a second call to
om_get()is necessary, as follows:

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

/* The second om_get() returns one selected subobject */

/* from the DS_C_ENTRY_INFO subobject we just got. The */

/* contents of "entry" as we enter this call is the */

/* private subobject which is the value of DS_ATTRIBUTES. */

/* If we were to make the following call with the */

/* OM_EXCLUDE_SUBOBJECTS and without the *
/* OM_EXCLUDE_ALL_BUT_THESE_VALUES flags, we would get *
/* back an object consisting of six private subobjects, */

/* one for each of the attributes returned. Note the */

/* values for initial and limiting position: "2" */

I* specifies that we want only the third DS_C_ATTRIBUTE *

/* subobject to be gotten (the subobjects are numbered */

/* from 0, not from 1), and the "3" specifies that we want */

/* no more than that--in other words, the limiting value */

/* must always be one more than the initial value if the */

/* latter is to have any effect. */

/* OM_EXCLUDE_ALL_BUT_THESE_VALUES is likewise required */
/* for the initial and limiting values to have any */

I+ effect ... */

omStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS

+ OM_EXCLUDE_ALL BUT_THESE_VALUES,
I_want_attribute_list,

OM_FALSE,

((OM_value_position) 2),

((OM_value_position) 3),

&entry,

&number_of _descriptors);

Note the value that is passed as the first parameter. imcget()does not work on
public objects, pass it the handle of the private subobject explicitly. To do this you
have to know the arrangement of the descriptor’s value union, which is defined in
xom.h.

3.3.1.8 Representation of Object Values

The following is the layout of th@bject field in a descriptor'sralue union:

DCE 1.2.2 Application Development Guide—Directory Services 81

CDS Application Programming

typedef struct {

OM_uint32 padding;
OM_object object;
} OM_padded_object;

The following is the layout of th&alue union itself:

typedef union OM_value_union {

OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

The following is the layout of the descriptor itself:

typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

Thus, ifentry is a pointer to th&S_C_ENTRY_INFO object, then the private handle
to theDS_C_ATTRIBUTE object you want next is the following:

entry—>value.object.object

3.3.19 Extracting an Attribute Value

The last call yielded one separ&&_C_ATTRIBUTE subsubobject from the original
returned result object:

82 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Figure 3-8.

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 3-8 illustrates what is left.

The DS_C_ATTRIBUTE Object Structure

DS_C_ATTRIBUTE

A final call to om_get()returns the single object descriptor that contains the actual
value of the single attribute you selected from the returned object:

omsStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES,
|_want_attribute_value,

OM_FALSE,

OM_ALL_VALUES,

OM_ALL_VALUES,

&entry,

&number_of_descriptors);

At this point, the value ofntry is the base address of an object descriptor whose
entry—>type is DS_ATTRIBUTE_VALUES. Depending on the value found in
entry—>syntax, the value of the attribute can be read framtry—>value.string,
entry—>value.integer, entry—>value.boolean or entry—>value.enumeration

For example, suppose the valueenitry—>syntaxis OM_S_OCTET_STRING. The
attribute value, represented as an octet strimgf {erminated by a NULL), is found
in entry—>value.string.elementsits length is found irentry—>value.string.length

You can check any attribute value against the value you get froradbep command
by entering the following:

cdscp show object /.:/hosts/tamburlaine/self

For further information orcdscp see theDCE 1.2.2 Command Reference

DCE 1.2.2 Application Development Guide—Directory Services 83

CDS Application Programming

3.3.2

84

Note that you can always calim_get()to get theentire returned object from an XDS
call. This yields a full structure of object descriptors that you can manipulate like any
other data structure. To do this with tde_read()return object would have required
the following call:

/* make a public copy of ENTIRE object... */
omsStatus = om_get(readResultObject,
OM_NO_EXCLUSIONS,

((OM_type_list) 0),

OM_FALSE,

((OM_value_position) 0),

((OM_value_position) 0),

&entry,

&number_of_descriptors);

At the end of every XDS session, you need to unbind from GDS and then deallocate
the XDS and XOM structures and other storage. You must also explicitly deallocate
any service-generated objects, whether public or private, with calstodelete()

as follows:

/* delete service-generated public or private objects... */
omsStatus = om_delete(readResultObject);

omsStatus = om_delete(entry);

/* unbind from the GDS... */

dsStatus = ds_unbind(session);

/* close down the workspace... */

dsStatus = ds_shutdown(xdsWorkspace);

exit();

Creating New CDS Entry Attributes

The following subsections provide the procedure and some code examples for creating
new CDS entry attributes.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.3.2.1 Procedure for Creating New Attributes

To create new attributes of your own on cell namespace entries, you must do the
following:

1. Allocate a new ISO OID for the new attribute. For information on how to do this,
see Chapter 2 of this guide and th€E 1.2.2 Administration Guide

2. Enter the new attribute’s name and OID in the file/opt/dcelocal/etc/
cds_attributes This text file contains OID-to-readable string mappings that
are used, for example, bgdscp when it displays CDS entry attributes. Each
entry also gives a syntax for reading the information in the entry itself. This
should be congruent with the format of the data you intend to write in the
attribute. For more information about tleels_attributes file, see theDCE 1.2.2
Administration Guide

3. In thexdscds.hheader file, define an appropriate OID string constant to represent
the new attribute.

For example, the following shows tixelscds.hdefinition for the CDSCDS_Class
attribute:

#define OMP_O_DSX_A_CDS_Class "\x2B\x16\x01\x03\x0F"

Note the XDS internal form of the name. This is wHaEX A _CDS_Class
looks like when it has been exported usiiM_EXPORT in an application,

as all OIDs must be. Thus, if you wanted to create a CDS attribute called
CDS_Brave_New_Attrib, you would obtain an OID from your administrator
and add the following line taxdscds.h

#define OMP_O_DSX_A_CDS_Brave_New_Attrib your_OID'

4. In an application, call the XD8s_modify_entry() routine to add the attribute
to the cell namespace entry of your choice.

DCE 1.2.2 Application Development Guide—Directory Services 85

CDS Application Programming

86

3.3.2.2 Coding Examples

In the following code fragments, a set of declarations similar to those in the previous
examples is assumed.

The ds_modify_entry() function, which is called to add new attributes to an entry or

to write new values into existing attributes, requireB& C_ENTRY_MOD_LIST

input object whose contents specify the attributes and values to be written to the entry.
The name, as always, is specified iD&_C_DS_DNobject. The following is a static
declaration of such a list, which consists of two attributes:

static OM_descriptor Entry_Modification_Object_1[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Brave_New_Attrib),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("O brave new attribute")},

{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Modification_Object_2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Miscellaneous")},

{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Modification_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_1}},
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_2}},
OM_NULL_DESCRIPTOR

h

A full description of this object can be found in Section 3.5. There could be
any number of additional attribute changes in the list; this would mean additional
DS_C_ENTRY_MOD objects declared, and an additioiixs CHANGESdescriptor
declared and initialized in thBS_C_ENTRY_MOD_LIST object.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

With the DS_C_ENTRY_MOD_LIST class object having been declared as shown
previously, the following code fragment illustrates how to call XDS to write a new
attribute value (actually two new values since two attributes are contained in the list
object). Note that any of the attributes may be new, although the entry itself must
already exist.

dsStatus = ds_modify_entry(session, /* Directory session */
/* from "ds_bind()" */

DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Object, /* Entry name object */
Entry_Modification_List_Object, /* Entry Modification */

/* object */

&dummy); /* Unsupported argument */

If the entire entry is new, you must cals_add_entry() This function requires an
input object of clas®S_C_ATTRIBUTE_LIST , whose contents specify the attributes
(and values) to be attached to the new entry. Following is the static declaration for an
attribute list that contains three attributes:

static OM_descriptor Class_Attribute_Obiject[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Printer")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ClassVersion_Attribute_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_ClassVersion),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("1.0")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor My_Own_Attribute_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_My_OwnAttribute),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("zorro")},
OM_NULL_DESCRIPTOR

h

DCE 1.2.2 Application Development Guide—Directory Services 87

CDS Application Programming

3.4

88

static OM_descriptor Attribute_List_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, Class_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, ClassVersion_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, My_Own_Attribute_Object}},
OM_NULL_DESCRIPTOR

h

The ds_add_entry()function also requires BS_C_DS_DNclass object containing
the new entry’s full name, for example:

/...Josf.org.dce/subsys/doc/my_book

where every member of the name exists except for the lastropehook Assuming
that Full_Entry Name_Objectis aDS_C_DS_DNobject, the following code shows
what the call would look like:

dsStatus = ds_add_entry(session, /* Directory session */
/* from "ds_bind()" */

DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Object, /* Name of new entry */
Attribute_List_Object, [* Attributes to be */

[* attached to new entry, with values */

&dummy); /* Unsupported argument */

Object-Handling Techniques

The following subsections describe the use of XOM and discuss dynamic object

creation.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

34.1 Using XOM to Access CDS

The following code fragments demonstrate an alternative way to set up the entry
modification object for ads_modify_entry() call, mainly for the sake of showing
how theom_put() andom_write() functions are used.

The following technique is used to initialize the modification object:

1. The om_create() function is called to generate a private object of a specified
class.

2. The om_put() function is called to copy statically declared attributes into a
declared private object.

3. Theom_write() function is called to write the value string, which is to be assigned
to the attribute, into the private object.

4. Theom_get()function is called to make the private object public.

5. The object is now public, and its address is inserted into the
DS_C_ENTRY_MOD_LIST object'sDS_CHANGES attribute.

The following new declarations are necessary:

OM_private_object newAttributeMod_priv;

/* ...handle to a private object to "om_put()" to */
OM_public_object newAttributeMod_pub;
/* ...to hold public object from "om_get()" */

OM._type types_to_include[] = {DS_ATTRIBUTE_TYPE, DS_ATTRIBUTE_VALUES,
DS_MOD_TYPE, OM_NO_MORE_TYPES};

[* ..that is, all attribute values of the Entry Modification */

/* object. For "om_put()" and "om_get()" */
char *my_string = "O brave new attribute";

/* ..value | want to write into attribute */
OM_value_position number_of_descriptors;

/* ...to hold value returned by "om_get()" */

First, use XOM to generate a private object of the desired class:

DCE 1.2.2 Application Development Guide—Directory Services 89

CDS Application Programming

omsStatus = om_create(DS_C_ENTRY_MOD, /* Class of object */
OM_TRUE, /* Initialize attributes per defaults */
xdsWorkspace, /* Our workspace handle */

&newAttributeMod_priv); /* Created object handle */

Next, copy the public object’s attributes into the private object:

omsStatus = om_put(newAttributeMod_priv, /* Private object to copy */

/* attributes into *

OM_REPLACE_ALL, /* Which attributes to replace in */
/* destination object */
Entry_Modification_Object, /* Source object to copy */

/* attributes from */

types_to_include, /* List of attribute types we */

/* want copied */

0, 0); /* Start-stop index for multivalued */

[* attributes; ignored with OM_REPLACE_ALL */

Sinceom_put() ignores the class of the source object (the object from which attributes
are being copied), it is not necessary to declare class descriptors for the source
objects. In other words, the static declarations could have omitte@eCLASS
initializations if this technique were being used, for example:

static OM_descriptor Entry_Modification_Object_2[] = {

I* OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD), *
I* Not needed for "om_put()" ... */
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Miscellaneous")},

{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

The OM_CLASS was already properly initialized bym_create()

20 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Next, write the attribute value string into the private object:

omsStatus = om_write(newAttributeMod_priv,/* Private object to write to */
DS_ATTRIBUTE_VALUES, /* Attribute type whose value */

/* we're writing */

0, /* Descriptor index if attribute is multivalued */
OM_S_PRINTABLE_STRING, /* Syntax of value */
0, /* Offset in source string to write from */
my_string); /* Source string to write from */

Now make the whole thing public again:

omsStatus = om_get(newAttributeMod_priv, /* Private object to get */
0, /* Get everything */
types_to_include, /* All attribute types */

0, /* Unsupported argument */

0, 0, /* Start-stop descriptor index for multival- */

/* ued attributes; ignored in this case */

&newAttributeMod_pub, /* Pointer to returned copy */
&number_of_descriptors); /* Number of attribute */

[* descriptors returned */

Finally, insert the address of the subobject into its superobject:

Entry_Modification_List_Object[1].value.object.object = \
newAttributeMod_pub;

3.4.2 Dynamic Creation of Objects

Objects can be completely dynamically allocated and initialized; however, you have
to implement the routines to do this yourself. The examples in this section are code
fragments; for complete examples, see Chapter 7.

DCE 1.2.2 Application Development Guide—Directory Services 91

CDS Application Programming

92

Initialization of object structures can be automated by declaring macros or functions
to do this. For example, the following macro initializes one object descriptor with a
full set of appropriate values:

/* Put a C-style (NULL-terminated) string into an object and */
/* set all the other descriptor fields to requested values */
#define FILL_OMD_STRING(desc, index, typ, syntx, val) \
desc[index].type = typ; \

descfindex].syntax = syntx; \

desc[index].value.string.length = \
(OM_element_position)strlen(val); \
desc[index].value.string.elements = val,

When generating objects, usealloc() to allocate space for the number of objects
desired, and then use macros (or functions) such as the preceding one to initialize the
descriptors. The following code fragment shows how this can be done for the top-level
object of aDS_C_DS_DNobject, such as the one described near the beginning of
this chapter. Recall thd&dS_C_DS_DNhas a separateS_RDNSdescriptor for each
name piece in the full name.

/* Calculate number of "DS_RDNS" attributes there should be ... */
numberOfPieces = number_of _name_pieces;

/* Allocate space for that many descriptors, plus one for the */
/* object class at the front, and a NULL descriptor at the back */
Name_Object = (OM_object)malloc((numberOfPieces + 2) \

* sizeof(OM_descriptor));

if(Name_Object == NULL) /* "malloc()" failed */
return OM_MEMORY_INSUFFICIENT;

/* Initialize it as a DS_C_DS_DN object by placing that class */
/* identifier in the first position... */
FILL_OMD_XOM_STRING(Name_Object, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_DN)

Note that all these steps would have to be repeated for each &iSh€ DS RDN
objects required as attribute values of D8 _C_DS DN Then a tier ofDS_C_AVA

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.5

3.5.1

objects would have to be created in the same way, since each D&h€_DS RDINé
requires one of them dts attribute value.

You could now useom_create()and om_put() to generate a private copy of this
object, if so desired.

The application is responsible for managing the memory it allocates for such dynamic
object creation.

XDS/CDS Object Recipes

The following subsections contain shorthand for object classes. For example, if you
look at the reference pages for tde_* () functions, you will see that an object of
classDS_C_NAME is required to hold entry names you want to pass to the call,
notDS_C_DS DNas is stated in this chapter. HowevBxs_C_NAME is in fact an
abstract class with only one subcl&S_C_DS_DNso, in this chapteDS_C_DS_ DN

is used.

Input XDS/CDS Obiject Recipes

In general, the objects you work with in an XDS/CDS application fall into two
categories:

» Objects you have to supply @sput parametergo XDS functions
» Objects returned to you asutputby XDS functions

This section describes only the first category, since you have to construct these input
objects yourself.

Table 3-1 shows XDS functions and the objects given to them as input parameters.

Only items significant to CDS are listed in the tablBS_C_SESSION and
DS_C_CONTEXT are ignoredDS_C_SESSIONis returned byds_bind() , which
usually receives thBS_DEFAULT_SESSIONconstant as inpuDS_C_CONTEXT
is usually substituted by theS DEFAULT_CONTEXT constant.

DCE 1.2.2 Application Development Guide—Directory Services 93

CDS Application Programming

Note: DS_C_NAME s an abstract class that has the single sub&&sC_ DS DN
Therefore, DS_C_NAME is practically the same thing 83S_C_DS_ DN

Table 3-1. Directory Service Functions With Their Required Input Objects

Function Input Object
ds_add_entry() DS _C_NAME
DS_C_ATTRIBUTE_LIST
ds_bind() None
ds_compare() DS_C_NAME
DS_C_AVA
ds_initialize() None
ds_list() DS_C_NAME
ds_modify_entry() DS_C_NAME
DS_C_ENTRY_MOD_LIST
ds_read() DS _C_NAME
DS_C_ENTRY_INFO_SELECTION
ds_remove_entry() DS _C_NAME
ds_shutdown() None
ds_unbind() None
ds_version() None

3.5.2 Input Object Classes for XDS/CDS Operations

The following subsections contain information about all the object types required as
input to any of the XDS functions that can be used to access CDS. In order to use
these functions successfully, you must be able to construct and modify the objects that
the functions expect as their input parameters. XDS functions require most of their
input parameters to be wrapped in a nested series of data structures that represent
objects, and these functions deliver their output returns to callers in the same object
form.

94 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Objects that are returned to you by the interface are not difficult to manipulate because
theom_get()function allows you to go through them and retrieve only the value parts
you are interested in, and discard the parts of data structures you are not interested in.
However, any objects you are required to supplyngsitto an XDS or XOM function

are another matter: you must build and initialize these object structures yourself.

The basics of object building have already been explained earlier in this chapter. Each
object described in the following subsections is accompanied by a static declaration
in C of a very simple instance of that object class. The objects in an application are
usually built dynamically (this technique was demonstrated earlier in this chapter).

The static declarations that follow give a simple example of what the objects look

like.

An object’s properties, such as what sort of values it can hold, how many of them it can
hold, and so on, are determined by ttiassthe object belongs to. Each class consists

of one or moreattributesthat an object can have. The attributes hold whatever values
the object contains. Thus, the objects are data structures that all look the same (and
can be handled in the same way) from the outside, but whose specific data fields are
determined by the class each object belongs to. At the abstract level, objects consist
of attributes, just as structures consist of fields.

3.5.2.1 XDS/CDS Object Types

Following is a list of all the object types that are described in the following
subsections. Most of these objects are object structures; that is, compounds consisting
of superobjects that contain subobjects as some of their values. These subobjects may
in turn contain other objects, and so on. Subobjects are indicated by indentation.
A DS_C_DS_DNobject contains at least oneS_C_DS_RDNobject, and each
DS_C_DS_RDNcontains ondS_C_AVA object. Note that subobjects can, and often

do, exist by themselves, depending on what object class is called for by a given
function. This list contains all the possible kinds of objects that can be required as
input for any XDS/CDS operation.

« DS_C_ATTRIBUTE_LIST
— DS_C_ATTRIBUTE

« DS_C_DS_DN
— DS_C_DS_RDN

DCE 1.2.2 Application Development Guide—Directory Services 95

CDS Application Programming

96

DS_C_AVA
« DS_C_ENTRY_MOD_LIST
— DS_C_ENTRY_MOD
« DS_C_ENTRY_INFO_SELECTION

In each section, information is provided for the described object’s attributes. All its
attributes are listed.

The illustrations in the following sections can be compared to the same object classes’
tabular definitions later in this guide.

3.5.2.2 TheDS_C_ATTRIBUTE_LIST Object

A DS_C_ATTRIBUTE_LIST class object is required as input ds_add_entry()
The object contains a list of the directory attributes you want associated with the entry

that is to be added.
Its general structure is as follows:
« Attribute List class type attribute
» Zero or more Attribute objects:
— Attribute class type attribute
— Attribute Type attribute
— Zero or more Attribute Value(s)
Thus, aDS_C_ATTRIBUTE_LIST object containing one attribute consists of two
object descriptor arrays because each additional attribute in the list requires an

additional descriptor array to represent it. The subobject arrays’ names (that is,

addresses) are the contents of the value fields inDBe ATTRIBUTES object
descriptors.

Figure 3-9 shows the attributes of tl&s C_ATTRIBUTE_LIST object.

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Figure 3-9.

The DS_C_ATTRIBUTE_LIST Object

DS_C_ATTRIBUTE_LIST Object

type=OM_CLASS

IDENTIFIER_STRING

syntax=OM_S_OBJECT_

type=DS_ATTRIBUTES|
syntax=OM_S_OBJECT

value=DS_C_
ATTRIBUTE_LIST

%]

1 only

DS_C_ATTRIBUTE Object

0 or more

[DS_C_ATTRIBUTE]l

type=DS_ATTRIBUTES

type=OM_CLASS type=DS_ATTRIBUTE__ type=DS_ATTRIBUTE _|
syntax=OM_S_OBJECT_ TYPE VALUES
IDENTIFIER_STRING syntax=OM_S_OBJECT_ syntax=any
value=DS_C_ l?E':‘TlFlER—STRING value=any
ATTRIBUTE values=...
1only 1only 1 or more
type=DS_ATTRIBUTE_
VALUES
e OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwayDS C_ATTRIBUTE_LIST .

» DS_ATTRIBUTES

This is an attribute whose value is another object of c@RSsC_ATTRIBUTE

(see Section 3.5.2.3). The attribute is defined by a separate array of object
descriptors whose base address is the value oD®BeATTRIBUTES attribute.

Note that there can be any number of instances of this attribute and, therefore,
any number of subobjects.

3.5.2.3 TheDS_C_ATTRIBUTE Object

An object of this class can be an attribute 0D& C_ATTRIBUTE_LIST object
(see Section 3.5.2.2).

DCE 1.2.2 Application Development Guide—Directory Services 97

CDS Application Programming

98

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwayDS C_ATTRIBUTE.

» DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

* DS_ATTRIBUTE_VALUES

These are the actual values for the directory attribute represented by this
DS_C_ATTRIBUTE object. Both the value syntax and the number of values
depend on what directory attribute this is; that is, they depend on the value of
DS_ATTRIBUTE_VALUE .

3.5.24 Example Definition of ®S_C_ATTRIBUTE_LIST

Object

The following code fragment is a definition of@S_C_ATTRIBUTE_LIST object.

static OM_descriptor Single_Attribute_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Printer")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor Attribute_List_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, Single_Attribute_Object}},
OM_NULL_DESCRIPTOR

h

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.5.2.5 TheDS_C_DS_DNObject

DS_C_DS_DNclass objects are used to hold the full names of directory entries
(distinguished names). You need an object of this class to pass directory entry names
to the following XDS functions:

» ds_add_entry()

» ds_compare()
ds_list()

» ds_modify_entry()
ds_read()

 ds_remove_entry()

Figure 3-10 shows the attributes o5 C_DS_DNobject.

DCE 1.2.2 Application Development Guide—Directory Services 99

CDS Application Programming

Figure 3-10.

DS_C_DS_DN Object Attributes

DS_C_DS_DN Object

type=OM_CLASS
syntax=OM_S_OBJEC]

r

type=DS_RDNS
syntax=OM_S_OBJECT

DS_C_DS_RDN Objeg

IDENTIFIER_STRING| [DS_C_DS_RDN]
value=DS_C_DS_DN valuj/]
1 only 1 or more
type=OM_CLASS type=DS_AVAS

syntax=OM_S_OBJECT_

IDENTIFIER_STRING|
value=DS_D_DS_RDN

r

syntax=OM_S_OBJEC[T

[DS_C_AVA]
value=[_]

1 only

DS_C AVA Object

100

1 or more

type=DS_RDNS

type=DS_AVAS

type=OM_CLASS

type=DS_ATTRIBUTE |

type=DS_ATTRIBUTE |

syntax=OM_S_OBJEC[T_ TYPE VALUES
IDENTIFIER_STRING syntax=OM_S_OBJECT_ syntax=any
Ue=DS C AVA IDENTIFIER_STRING
value= - - value=... value=...
1 only 1 only 1 only
e OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its

value isDS_C DS DN

 DS_RDNS

This is an attribute whose value is another object of c@RSsC_DS_RDN(see
Section 3.5.2.6). Th®S_C_DS_RDNobject is defined by a separate array of
object descriptors whose base address is the value d&h&DNSattribute.

There are as manpS_RDNSattributes in aDS_C_DS_DNobject as there are
separate hame components in the full directory entry name. For example, suppose

you wanted to represent the following CDS entry name:

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

/.../C=US/O=0SF/OU=DCE/hosts/brazil/self

This would require a total of six instances of txS_RDNS attribute in the
DS_C_DS_DNobject. The.../ (global root prefix) is not represented. This means
that another six object descriptor arrays are required to hold the RDN objects, as
well as six object descriptors in the present object, one to hold (as the value of a
DS_RDNSattribute) a pointer to each array.

Note that the order of thedeS RDNSattributes is significant; that is, the first
DS_RDNS should contain as its value a pointer to the array representing the
C=US part of the name; the nedS_RDNSshould contain as its value a pointer
to the array representing tf@=0OSF part, and so on. The root part of the name
is not represented at all.

3.5.2.6 TheDS_C_DS_RDNObject

DS_C_DS_RDNclass objects are required as values for Bt RDNSattributes of
DS_C_DS_DNobjects. (For an illustration of its structure, see Figure 3-RDN
refers to the X.50 0 terniRDN that is used to signify a part of a full entry name.
Separate objects of this class are not usually required as input to XDS functions.

The standard permits multiple AVAs in an RDN, but the DCE Directory and XDS
API restrict an RDN to one AVA.
* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS C_DS RDN

.« DS_AVAS

This is an attribute whose value is yet another object of d3SsC_AVA (see
Section 3.5.2.7). Th®S_C_AVA object is defined by a separate array of object
descriptors whose base address is the value oDBIAVAS attribute.

Note that there can only be one instance of this attribute iiDBeC_RDNobject.

The object descriptor array describing this object always consists of three object
descriptor structures: the first describes the object’s class, the second describes
the DS_AVAS attribute, and the third descriptor is the terminating NULL.

DCE 1.2.2 Application Development Guide—Directory Services 101

CDS Application Programming

102

3.5.2.7

TheDS C_AVA Object

The DS_C_AVA class object is used to hold an actual value. The value is usually in
the form of one of the many different XOM string types. (For an illustration of its
structure, see Figure 3-10.)

In calls tods_compare() an object of this type is required to hold the type and value
of the attribute that you want compared with those in the entry you specify. It holds
the type and value in a separdS_C_DS_DNobject.

DS _C_AVA is also included here because it is a required subsubobject of
DS_C_DS_DNitself. DS_C_AVA is the subobject in which the name part’'s actual
literal value is held.

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwayDS C_AVA.

DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

DS_ATTRIBUTE_VALUES
This is the literal value of what is represented by thiS_C_AVA object.

If the DS_C_AVA object is a subobject ddS_C_DS_RDN(and therefore also of
DS_C_DS_DN, then the value is a string representing the part of the directory
entry name represented by this object. For example, iDBeC_DS_RDNobject
contains theO=0OSF part of an entry name, then the stri@fSF is the value of
theDS_ATTRIBUTE_VALUES attribute, anddS_A_COUNTRY_NAME is the
value of theDS_ATTRIBUTE_TYPE attribute.

On the other hand, iIDS_C_AVA contains an entry attribute type and value to be
passed tals_compare() thenDS_ATTRIBUTE_TYPE identifies the type of the
attribute, and>S_ATTRIBUTE_VALUES contains a value, which is appropriate
for the attribute type, to be compared with the entry value.

For example, suppose you wanted to compare a certain value with a CDS
entry’'s CDS_ Classattribute’s value. The identifiers for all the valid CDS entry
attributes are found in the filé:/opt/dcelocal/etc/cds_attributes The value of
DS_ATTRIBUTE_TYPE would beCDS_Class which is the label of an object

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

identifier string, andDS_ATTRIBUTE_VALUES would contain some desired
value, in the correct syntax foEDS_Class The syntax also is found in the
cds_attributes file; for CDS_Classit is byte; that is, a character string.

3.5.2.8 Example Definition of ®S_C DS DNObject

The following code fragment shows an example definition fdSa C_DS_DNobject.

static OM_descriptor Entry_String_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("brazil")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Part_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Entry_String_Object}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Name_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),

{DS_RDNS, OM_S_OBJECT, {0, Entry_Part_Object}},
OM_NULL_DESCRIPTOR

h

3.5.2.9 TheDS_C_ENTRY_MOD_LIST Object

DS_C _ENTRY_MOD_LIST class objects, which contain a list of changes
to be made to some directory entry, must be passeddgomodify entry().
DS_C_ENTRY_MOD_LIST objects have the attributes shown in Figure 3-11.

DCE 1.2.2 Application Development Guide—Directory Services 103

CDS Application Programming

Figure 3-11. The DS_C_ENTRY_MOD_LIST Object

DS_C_ENTRY_MOD_LIST Object

type=OM_CLASS type=DS_CHANGES type=DS_CHANGES
syntax=OM_S_OBJECT_ syntax=OM_S_OBJECT
IDENTIFIER_STRING [DS_C_ENTRY_ | - [
value=DS_C_ENTRY_ MOD]
MOD_ =
LIST value]
1 only 1 or more
DS_C_ENTRY Object
type=OM_CLASS type=DS_ATTRIBUTE _| type=DS_ATTRIBUTE
syntax=OM_S_OBJECT_ TYPE VALUES
IDENTIFIER_STRING| syntax=OM_S_OBJECT_ syntax=any
value=DS_C_ENTRY_ IDENTIFIER_STRING value=...
MOD value=<attribute
OID>
1 only 1 only 0 or more
type=DS_MODIFI- type=DS_ATTRIBUTE
CATION_TYPE VALUES
syntax=OM_S_
ENUMERATION
value=DS_ADD_
ATTRIBUTE
1 only
* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwayDS C_ENTRY_MOD_LIST.

» DS_CHANGES

This is an attribute whose value is another object of cl2SsC_ENTRY_MOD
(see Section 3.5.2.10). TiES C_ENTRY_MOD object is defined by a separate
array of object descriptors whose base address is the value DPEh€HANGES
attribute.

Note that there can be one or more instances of this attribute in the object,
which is why it is called_LIST. Each attribute contains one separate entry

modification. To learn how the modification itself is specified, see Section
3.5.2.10. The order of multiple instances of this attribute is significant because,
if more than one modification is specified, the modifications are performed by

104 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

ds_modify_entry() in the order in which thddS_CHANGES attributes appear
in the DS_C_ENTRY_MOD_LIST object.

3.5.2.10 TheDS_C_ENTRY_MOD Object

The DS_C_ENTRY_MOD class object holds the information associated with
a directory entry modification. (For an illustration of its structure, see Figure
3-11.) EachDS_C_ENTRY_MOD object describes one modification. To create
a list of modifications suitable to be passed to da_modify_entry() call,
describe each modification in a separ@&_ C_ENTRY_MOD object, and then
insert these objects as multiple instances of D& CHANGES attribute in a
DS_C_ENTRY_MOD_LIST object (see Section 3.5.2.9).

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS C_ENTRY_MOD.

* DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose modification is described in this object.

 DS_ATTRIBUTE_VALUES

These are the values required for the entry modification; their type and number
depend on both the entry type and the modification requested.

« DS_MOD_TYPE

The value of this attribute identifies the kind of modification requested. It can be
one of the following:

— DS_ADD_ATTRIBUTE

The attribute specified byDS ATTRIBUTE_TYPE is not currently

in the entry. It should be added, along with the value(s) specified by
DS_ATTRIBUTE_VALUES, to the entry. The entry itself is specified in a
separatdDS_C_DS_DNobject, which is also passed dts_modify_entry() .

— DS_ADD_VALUES

The specified attribute is currently in the entry. The value(s) specified by
DS _ATTRIBUTE_VALUES should be added to it.

DCE 1.2.2 Application Development Guide—Directory Services 105

CDS Application Programming

— DS_REMOVE_ATTRIBUTE

The specified attribute is currently in the entry and should be deleted from
the entry. Any values specified lyS_ATTRIBUTE_VALUES are ignored.

— DS_REMOVE_VALUES

The specified attribute is currently in the entry. One or more values, specified
by DS_ATTRIBUTE_VALUES, should be removed from it.

3.5.2.11 Example Definition of BS_C_ENTRY_MOD_LIST
Object

The following code fragment is an example definition of a
DS_C_ENTRY_MOD_LIST object.

OM_string my_uuid;

static OM_descriptor Entry_Mod_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_UUID),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, my_uuid},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Mod_List_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Mod_Object}},
OM_NULL_DESCRIPTOR

h

3.5.2.12 TheDS_C_ENTRY_INFO_SELECTION Object

When you calds_read()to read one or more attributes from a CDS entry, you specify
in the DS_C_ENTRY_INFO_SELECTION object the entry attributes you want to
read.

106 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

The DS_C_ENTRY_INFO_SELECTION object contains the attributes shown in
Figure 3-12.

Figure 3-12. The DS_C_ENTRY_INFO_SELECTION Object

DS_C_ENTRY_INFO_SELECTION Object

type=OM_CLASS type=DS_ALL_ type=DS_ATTRIB-
syntax=OM_S_OBJECT_ ATTRIBUTES UTES_SELECTED
IDENTIFIER_STRING syntax=OM_S_ syntax=OM_S_OBJECT
value=DS_C_ENTRY_ BOOLEAN IDENTIFIER_STRING
INFO_ value=OM_TRUE or value=<attribute
SELECTION OM_FALSE 0oID>
1 only 1 only 0 or more
type=DS_ type=DS_ATTRIB-
INFO_TYPE UTES_SELECTED
syntax=OM_S_
ENUMERATION
value=DS_TYPES_
AND_VALUES
1 only

Note that this object class has no subobjects.
* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwayDS C_ENTRY_INFO_SELECTION.

* DS_ALL_ATTRIBUTES

This attribute is a simple Boolean option whose value indicates whether all the
entry’s attributes are to be read, or only some of them. Its possible values are as
follows:

— OM_TRUE, meaning that all attributes in the directory entry should be read.
Any values specified by th®S _ATTRIBUTES_SELECTED attribute are
ignored.

— OM_FALSE, meaning that only some of the entry attributes should be read;
namely, those specified by tHES _ATTRIBUTES_SELECTED attribute.

DS_ATTRIBUTES_SELECTED

The value of this attribute, which is an OID string, identifies the entry attribute
to be read. Note that this attribute’s value has meaning only if the value of

DCE 1.2.2 Application Development Guide—Directory Services 107

CDS Application Programming

108

DS_ALL_ATTRIBUTES is OM_FALSE; if it is OM_TRUE, the value of
DS_ATTRIBUTES_SELECTED is ignored.

Note also that there are multiple instances of this attribute if more than one
attribute, but not all of them, is to be selected for reading. Each separate instance
of DS_ATTRIBUTES_SELECTED has as its value an OID string that identifies
one directory entry attribute to be read.DS_ATTRIBUTES_SELECTED is
present but does not have a valds, read()reads the entry but does not return
any attribute data; this technique can be used to verify the existence of a directory
entry.

« DS_INFO_TYPE

The value of this attribute specifies what information is to be read from each
attribute specified bypS_ATTRIBUTES_SELECTED. The two possible values
are as follows:

— DS_TYPES_ONLY, meaning that only the attribute types of the selected
attributes should be read.

— DS_TYPES_AND_VALUES meaning that both the attribute types and the
attribute values of the selected attributes should be read.

3.5.2.13 Example Definition of a

DS_C_ENTRY_INFO_SELECTION Object

The following code fragment provides an example definition of a
DS_C_ENTRY_INFO_SELECTION object.

static OM_descriptor Entry_Info_Select_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_CDS_Class),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

h

DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

3.6 Attribute and Data Type Translation
This section provides translations between CDS and XDS for attributes and data
types. Table 3-2 provides the OM syntax for CDS attributes. Table 3-3 provides the
OM syntax for CDS data types. Table 3-4 defines the mapping of CDS data types to
OM syntaxes.
Table 3-2. CDS Attributes to OM Syntax Translation
CDS Attribute OM Syntax
CDS_CTS OM_S_OCTET_STRING
CDS_UTS OM_S_OCTET_STRING
CDS_Class OM_S_OCTET_STRING
CDS_ClassVersion OM_S INTEGER
CDS_ObjectUID OM_S_OCTET_STRING
CDS_AllUpTo OM_S_OCTET_STRING
CDS_Convergence OM_S INTEGER
CDS_InCHName OM_S_INTEGER
CDS_DirectoryVersion OM_S INTEGER
CDS_UpgradeTo OM_S INTEGER
CDS_LinkTimeout OM_S_INTEGER
CDS_Towers OM_S_OCTET_STRING
Table 3-3. OM Syntax to CDS Data Types Translation

OM Syntax CDS Data Type
OM_S_TELETEX_STRING cds_char
OM_S_OBJECT_IDENTIFIER_STRING cds_byte
OM_S_OCTET_STRING cds_byte
OM_S_PRINTABLE_STRING cds_char

DCE 1.2.2 Application Development Guide—Directory Services

109

CDS Application Programming

OM Syntax CDS Data Type
OM_S_NUMERIC_STRING cds_char
OM_S BOOLEAN cds_long
OM_S INTEGER cds_long
OM_S_UTC_TIME_STRING cds_char
OM_S_ENCODING_STRING cds_byte

110 DCE 1.2.2 Application Development Guide—Directory Services

XDS and the DCE Cell Namespace

Table 3—-4. CDS Data Types to OM Syntax Translation

CDS Data Type OM Syntax

cds_none OM_S NULL

cds_long OM_S INTEGER
cds_short OM_S INTEGER
cds_small OM_S INTEGER
cds_uuid OM_S_OCTET_STRING

cds_Timestamp

OM_S_OCTET_STRING

cds_Version OM_S_PRINTABLE_STRING
cds_char OM_S_TELETEX_STRING
cds_byte OM_S_OCTET_STRING

DCE 1.2.2 Application Development Guide—Directory Services

111

Part 3

GDS Application Programming

Part 3 is an overview of programming GDS using XDS.

Chapter 4 discusses GDS concepts and gives an overview of GDS programming.
Chapter 5 describes XOM programming, and Chapter 6 describes XDS programming.
Chapter 7 contains programming examples. Chapter 8 describes how to use threads
with XDS and XOM, and Chapter 9 describes the XDS and XOM convenience
routines.

Chapter 4
GDS API: Concepts and Overview

The Global Directory Service (GDS) is a distributed, replicated directory service. It is
distributed because information is stored in different places in the network. Requests
for information may be routed by GDS to directory servers throughout the network.
It is replicated because information can be stored in more than one location for easier
and more efficient access by its users.

GDS is based on the CCITT X.500/ISO 9594 (1988) international standard. The
aim of this standard, also referred to as the OSI Directory standard, is to provide
a global directory that supports network users and applications with information

required for communications. The directory plays a significant role in allowing the

interconnection of information processing systems from different manufacturers, under
different managements, of different levels of complexity, and of different ages.

GDS is the DCE implementation of the OSI Directory standard. Together with the
Cell Directory Service (CDS), it provides its users with a centralized place to store
information required for communications, which can be retrieved from anywhere in
a distributed system. GDS maintains information describing objects such as people,
organizations, applications, distribution lists, network hardware, and other distributed
services dispersed over a large geographical area.

DCE 1.2.2 Application Development Guide—Directory Services 115

GDS Application Programming

4.1

116

CDS stores names and attributes of resources located in a DCE cell. A DCE cell
consists of various combinations of DCE machines connected by a network. Each
DCE cell contains its own cell directory server, which provides access to local resource
information. CDS is optimized for local information access by its users. For a more

detailed description of cells and their resource services, sde@kel.2.2 Introduction

to OSF DCE

GDS serves as a general-purpose information repository. It provides information about
resources outside a DCE cell. It ties together the various cells by helping to find remote
cells. A detailed discussion of the DCE namespace and its various servers and their
interaction is provided in Chapter 1.

Directory Service Interfaces

X/Open Directory Service (XDS) and X/Open OSlI-Abstract-Data Manipulation
(XOM) are application programming interfaces. XOM and XDS application interfaces
are based on X/Open standards specifications. Together these interfaces provide the
application programmer with a library of functions with which to develop applications
that access the directory service.

The XOM application programming interface (XOM API) is an interface for creating,
deleting, and accessing information objects. The XOM API defines an object-oriented
information model. Objects belong to classes and have attributes associated with them.
The XOM API also defines basic data types, such as Boolean, string, object, and so
on. The representation of these objects are transparent to the programmer. Objects can
only be manipulated through the XOM interface, not directly.

DCE programmers use the XDS API to make directory service calls. In DCE, the
XDS API directs the calls it receives to either GDS or CDS by examining the names
of the information objects to be looked up as shown in Figure 4-1. It uses the XOM
interface for defining and handling information objects. These objects are passed as
parameters and return values to the XDS routines. The XDS API contains functions for
managing connections with a directory server: reading, comparing, adding, removing,
modifying, listing, and searching for directory entries. The GDS package provides
additional information objects that provide for security and cache management when
using GDS.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Figure 4-1.

4.2

42.1

GDS supports additional functions, callednvenience functionsat the XDS/XOM
API. These functions, described in Chapter 9, provide GDS programmers with a toolkit
to allow more efficient production of XDS/XOM based applications.

XDS: Interface to GDS and CDS

Application

/.../C=US/O=0SF/OU=DCE /.../cs.univ.edu

The X.500 Directory Information Model

This section describes the directory information model of X.500, which GDS is based
on. A directory is a collection of information about some part of the world. The most
familiar type of directory is the list of names and numbers that make up a city telephone
directory. A name is provided with some information about the named object, such as
an address and telephone number. The ISO and CCITT standards delfineetary
information modethat defines the abstract structure of directory information, services,
and protocols for a computer network environment, such as DCE.

Directory Objects

The directory contains information about objects. The standard defines an object very
broadly as “anything in some ‘world,” generally the world of telecommunications and
information processing or some part thereof, which is identifiable (can be named).”
Some examples of objects include people, corporations, and application processes.

DCE 1.2.2 Application Development Guide—Directory Services 117

GDS Application Programming

Figure 4-2.

118

Each object known to the directory is represented by an entry. The set of all entries is
called the Directory Information Base (DIB), which is a hierarchical tree. Each entry
consists of a set of attributes representing specific information about the object. Each
attribute, in turn, has a type and one or more values of that type. Attributes with more
than one value are referred to asiltivaluedor recurring attributes.

Figure 4-2 shows the structure of the DIB.

The Structure of the DIB

I
A A B

alias entry Object Entry
Entry
Attribute Attribute = o= Attribute
’ Type ‘ ’ Value(s)

The attributes that constitute a single entry can be of various types. For example, an

entry for a person may contain that person’s name, address, and phone number. If the
person has a second telephone number, the attribute of type telephone number may
have two values, one for each telephone number.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.2.2

4.2.3

Object entries are composed of mandatory and optional attributes. Mandatory and
optional attributes are discussed in Section 4.4.3.

Attribute Types

All attributes in a particular entry must be of different attribute types. Each attribute
type is assigned a unique object identifier value. The directory standard assigns object
identifiers for several commonly used attribute types, including surname, country
name, telephone number, and presentation address. Other international standards may
define additional attribute types. For example, the X.400 Message Handling standard
defines mail-specific attributes like O/R address. It is expected that various national and
private organizations will also define attribute types of their own. The CDS attributes
(defined in thexdscds.hheader file) and the GDS package attributes (defined in the
xdsgds.hheader file) are examples of additional attribute definitions.

Object Identifiers

Objects in a network environment, such as DCE, require unique names to distinguish
them from one another. To provide these names, object identifiers are allocated by
an administrative organization, such as a standards body. An object identifier is a
hierarchical sequence of numbers uniquely identifying an object. Associated with

each object identifier is a character string to make it easier to document.

The possible values of object identifiers are defined in a tree. Part of this tree is
shown in Figure 4-3. It begins with three humbered branches coming from the root:
branch 0 (assigned to CCITT), branch 1 (assigned to ISO), and branch 2 (a joint ISO-
CCITT branch). Below each of these branches are other numbered branches assigned
to various standards such as the directory senvis€s)) and electronic mail service
(mhs-motis(6) with each ending in a named object. Thus, the name of any of these
objects is a series of integers describing a path down this tree to the leaf node.

DCE 1.2.2 Application Development Guide—Directory Services 119

GDS Application Programming

Figure 4-3.

120

Object Identifiers

root
ccitt(0) iso(1) joint-iso-ccitt(2)
ds(5) mhs-motis(6)
attributeType(4) objectClass(6) arch(5)
oc(1) at(2)

The object identifier associated with the XDS package is defined as follows:

{iso(1) identified-organization(3) icd-ecma(12) member-company(2)
dec(1011) xopen(28) dsp(0)}

All object classes and object attributes in the directory service package have these
numbered branches associated with them. The classes and attributes, in turn, have their
own unique numbers. These object identifiers are defined in header files included as
part of the XDS and XOM API software. For example, the attribute @penmon-

Name is identified by the object identifier 2.5.4.3.

Table 4-1 contains a sample list of object identifiers for selected attributes. The
complete list is provided in Chapter 12.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Table 4-1.

4.2.4

Object Identifiers for Selected Attribute Types

Attribute Type Object Identifier
Aliased-Object-Name 2541
Business-Category 2.5.4.15
Common-Name 2543
Country-Name 2546
Description 2.54.13

Note: The object identifiers in Table 4-1 stem from the roint-iso-ccitt(2) ds(5)
attribute Type(4)}.

Object Entries

Entries are grouped into generic object classes based on the type of object they
represent. Examples of object classes @mntry, Organizational-Person, and
Application-Entity . All entries contain a special attribute, the object class attribute,
indicating to which object class (or classes) they belong.

Entries that model a certain object and contain information about the object in terms
of attributes are calledbject entries The directory contains a second type of entry,
which is a pointer to an object entry, called alias entry Alias entries are discussed

in Section 4.3.4.

In summary (as shown previously in Figure 4-2), the DIB is made up of entries,
each of which contains information about objects. Entries consist of attributes; each
attribute has a type and one or more values.

Section 4.3 describes how objects are organized in the DIB. Figure 4-4 shows an
example of an entry describingrganizational-Person

DCE 1.2.2 Application Development Guide—Directory Services 121

GDS Application Programming

Figure 4-4.

Object Class

Top/GDS-Top

Person
Organizational

Person

/"

attribute types

122

Common Name

/4

Al Schmidt

Alfred Schmidt

A Directory Entry Describing Organizational Person

Surname

Schmidt

Telphone Number|

DCE 1.2.2 Application Development Guide—Directory Services

617 289 4448

800 289 4400

617 753 8871

Title

Sales Manager

Organizational
Unit Name

New York Sales

attribute values

GDS API: Concepts and Overview

4.3

43.1

X.500 Naming Concepts

Large amounts of information need to be organized in some way to make efficient
retrieval possible and ensure that names are unique. Information in the DIB is
organized into a hierarchical structure known as the Directory Information Tree (DIT).

The structure and naming of the nodes in the DIT are specified by registration
authorities for a standardized set of X.500 names and by implementors of the directory
service (such as OSF) for implementation-specific names. The DIT hierarchy is
described by a schema. Schemas are described in more detail in Section 4.4.

Although the X.500 standard does not mandate a specific schema, it does make general
recommendations. For example, countries and organizations should be named close
to the root of the DIT; people, applications, and devices should be named further
down in the hierarchy. GDS supplies a default schema that complies with these
recommendations.

Distinguished Names

A hierarchical path exists from the root of the DIT to any entry in the DIB. To access
information stored in an entry, a name that uniquely describes that entry must be
given. An RDN distinguishes an entry from other entries with the same superior node
in the DIT. A sequence of RDNs, starting from the root of the tree, can identify a
unique path down the tree, and thus a unique entry. This sequence of RDNs, each of
which identifies a particular entry, is the distinguished name of that entry. Each entry
in the DIB can be referred to by its distinguished name.

Figure 4-5 shows an example of a distinguished name. The shaded boxes in the
DIT represent the entries that are named in the column labeled RDN. The schema
dictates that countries are named directly below the root, followed by organizations,
organization units, and people.

DCE 1.2.2 Application Development Guide—Directory Services 123

GDS

Application Programming

Figure 4-5. A Distinguished Name in a Directory Information Tree

DIT RDN Distinguished Name

Root {

Countries C=US (C=Us}

L =]
TN

Organizations O=Acme Enterprises {C=Us

O=Acme Enterprises}

= [_J[_ |

OU=New York Sales {C=Us
O=Acme Enterprises

OU=New York Sales}

\\ CN=Alfred Schmidt {c=Us

O=Acme Enterprises
OU=New York Sales

| | | | =] CN=Alfred Schmidt}

Organization Units

124

Every entry in the DIB has a distinguished name, not just the leaf nodes. For
example, the entry for the organization, Acme Enterprises (shown in Figure 4-5) is
represented by the shaded box in theganizations subtree. Its distinguished name

is the concatenation of the distinguished name of the previous entry above with its
relative distinguished name. The entry ®eople Alfred Schmidt, is represented by
the shaded box in thBeoplesubtree.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.3.2

4.3.3

Relative Distinguished Names and Attribute Value Assertions

Each entry has a uniquelative distinguished nam@DN), which distinguishes it
from all other entries with a particular immediate superior in the DIT.

An RDN consists of one or more assertions of the type and value of an attribute. A pair
consisting of an attribute type and a value of that type is known asttebute value
assertion(AVA). All attribute types in an RDN must be different. The attribute value

of an attribute in an RDN’s AVA is called theistinguished valuef that attribute, as
opposed to the other possible values of that attribute.

The assertion is TRUE if the entry contains an attribute of the specified type, and if
one of that attribute’s values matches the AVA’s distinguished attribute value. An entry
commonly has an RDN that consists of a single AVA. In some cases, however, more
than one AVA may be required to distinguish an entry. (Multiple AVAs are discussed
in Section 4.3.3.)

The entry shown in Figure 4-4 contains the R@dmmon-Name = Alfred Schmidt
The attribute consists of two valuesifred Schmidt and Al Schmidt. The AVA
Common-Name = Alfred Schmidt contains the valuélfred Schmidt, which has
been designated as the distinguished value in the AVA.

Multiple AVAs

Frequently, as shown in the previous section, an entry contains a single distinguished
value; therefore, the RDN consists of a single AVA. However, under certain
circumstances, additional values (and hence multiple AVAs) can be used.

Figure 4-4 shows the contents of an entry describdrganizational-Person The
RDN of anOrganizational-Personentry is usually composed of a single AVA, such as
the Common-Nameattribute type with a distinguished value (in Figure 4-5, the AVA
CN = Alfred Schmidt). Depending on the schema, the RDN of @rganizational-
Personentry may contain more than one AVA. For example, the RDN in Figure 4-5
could contain the AVASCN = Alfred Schmidt and OU = New York Sales with
Alfred Schmidt and New York Sales as distinguished values.

In summary:

DCE 1.2.2 Application Development Guide—Directory Services 125

GDS Application Programming

4.3.4

126

» A DIT consists of a collection of distinguished names.
« Distinguished names result from a concatenation of RDNSs.

* RDNs consist of an unordered collection of attribute type and value pairs (AVAS).

Aliases

An alternative name or alias is supported in the DIT by the use of special pointer
entries calledalias entries Alias entries do not contain any other attributes beyond
their distinguished attributes, the object class attribute, and the aliased object name
attribute; that is, the distinguished name of the aliased object entry. Furthermore, an
alias entry has no subordinate entries, making it, by definition, a leaf entry of the DIT
as shown in Figure 4-6. Alias entries point to object entries and provide the basis for
alternative names for the corresponding objects.

Aliases are used to do such things as provide more user-friendly names, direct the
search for a particular entry, reduce the scope of a search, provide for common alternate
abbreviations and spellings, or provide continuity after a name change.

Figure 4-6 demonstrates how an alias name provides continuity after a name change.
The ABC company’s branch office located originally in Osaka has moved to Tokyo.
To make the transition easier for directory service users and to guarantee that a search
based on the old information finds its target, an aliasdetABC has been added to

the directory beneath=0saka. This alias entry points to the object entB~ABC.

A search for ABC undet=0Osaka in the DIT finds the entryC=Japan/L=Tokyo/
O=ABC.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Figure 4-6. An Alias in the Directory Information Tree

L = Tokyo

O =ABC O=ABC

OU = Osaka Branch

Another use of alias entries is as an alternativéltering; that is, by using assertions
about particular attributes to search through the DIT. Although this approach does not
require any special information to be set up in the DIT, it can be expensive to search
where there is a large population of entries and attributes. An alternative approach is
to set up special subtrees whose naming structures are designed for “Yellow Pages”
type searching. Figure 4-7 shows an example of such a subtree populated by alias
entries only. In reality, the entries within these subtrees can be a mixture of object

and alias entries, as long as there exists only one object entry for each object stored
in the directory.

DCE 1.2.2 Application Development Guide—Directory Services 127

GDS Application Programming

Figure 4-7.

4.3.5

4.4

128

A Subtree Populated by Aliases

Country

Organization 5J

Z)

Object within
the organization

An object with an entry in the DIT can have zero or more aliases. Several alias entries

can point to the same object entry. An alias entry can point to an object that is not

a leaf entry. Only object entries can have aliases. Thus, aliases of aliases are not
permitted.

Name Verification

A directory user identifies an entry by supplying an ordered set of RDNs (each of
which consists of an unordered set of AVAs) that form a purported name. The purported
name is mapped onto the desired entry by the process of name verification, which
performs a distributed tree walk through the DIT. When a purported name is a valid
name, a distinguished name exists with the same number of RDNs and matching AVAs
within the RDNs.

Schemas

The structure of directory information is governed by a set of rules callethama
Schemas specify rules for the following:

» The structure of the DIT

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.4.1

4.4.2

» The contents of entries in terms of attributes

» The syntax of attribute values and rules for comparing and matching them

The GDS Standard Schema

When the DCE software package is shipped to a customer, it includes a default or
standardschema for GDS. This is the GDS proprietary interpretation of the X.500
schema.

Each attribute in the schema is assigned a unique object identifier and the syntax
of its value. In addition, the schema specifies the mechanism by which attributes
of this type are compared with one another. Each entry in the DIT belongs to an
object class governed by the schema. Object class definitions can be used to derive
subclasses, supporting the inheritance and refinement of the attribute types defined for
the superclass.

Included with the GDS standard schema are the following tables that define the
structure of the directory:

« Structure rule table (SRT)

» Object class table (OCT)

« Attribute table (AT)

The Structure Rule Table

The SRT specifies the relationship of object classes in the structure of the directory.
The SRT supplied with the GDS standard schema contains the entries shown in Table
4-2.

DCE 1.2.2 Application Development Guide—Directory Services 129

GDS Application Programming

Table 4-2.

130

Structure Rule Table Entries

Acronym of
Superior Rule | Acronym of Structural Object
Rule Number | Number Naming Attribute | Class
1 0 CN SCH
2 0 C C
3 2 @] ORG
4 3 ou ou
5 4 CN ORP
6 4 CN, OU ORP
7 4 CN ORR
8 4 CN MDL
9 4 CN APP
10 9 CN APE
11 9 CN DSA
12 9 CN MMS
13 9 CN MTA
14 9 CN MUA
15 2 L LOC
16 15 CN REP
17 15 CN, STA REP

The SRT determines how the object classes are laid out in the DIT by assigning
rule numbers to each object class. An object class’ superior rule number specifies the
object class directly above it in the DIT.

For example, the object clagdrganization (abbreviated with the acrony®@RG in

the SRT) has a superior rule number of 2, indicating that it is located in the DIT
beneath the object clagdountry (C), which has a rule number of Drganization

Unit (OU) is located beneatrganization because it has a superior rule number of
3 and so forth.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

The SRT only contains structured object classes; that is, classes that form branches in
the DIT. Other object classes, such as abstract and alias classes, are not included.

The SRT specifies the attribute(s) used to name entries belonging to each object class.
These attributes, calledaming attributesare used to define the RDN and therefore
the distinguished name of directory entries.

Figure 4-8 shows the structure of the DIT as defined by the SRT of the GDS standard
schema.

Figure 4-8. SRT DIT Structure for the GDS Standard Schema

@
Organizational Unit . .
Residential Person Residential Person

MHS-Distribution-
List

Organizational Person Organizational Person
Organizational Role Application Process

MHS-Message- - .
MHS-Message-Store Transfer_Aggm MHS-User-Agent Application Entity

DCE 1.2.2 Application Development Guide—Directory Services 131

GDS Application Programming

4.4.3 The Object Class Table

The object classes that make up the GDS standard schema are defined in the
OCT. Table 4-3 contains a partial listing of the OCT (refer to BX@E 1.2.2 GDS
Administration Guide and Referenéer a complete listing of the OCT for the GDS
standard schema). Each column in Table 4-3 contains information about an object
class entry in the schema.

Table 4-3. Object Class Table Entries

Object Class

Super- File | Mandatory | Optional
Acronym | Name Kind class OIb No. | Attributes | Attributes

TOP Top Abstract | None | 85.6.0| -1 OCL None
ALl Alias Alias TOP 85.6.1| -1 AON None

C Country Structural| GTP 85.6.2 1 C DSC SG
CDC CDR

LOC Locality Structural| GTP 85.6.3| 4 None DSC L
SPN STA
SEA SG
CDC CDR

ORG Organization | Structural| GTP 85.6.4| 1 0] DSC L
SPN STA
PDO PA
PC POB
FTN IIN
TN TTI
TXN X1A
PDM DI
RA SEA
UP BC SG
CDC CDR

Note: The object identifiers in Table 4-3 stem from the roint-iso-ccitt(2) ds(5)
objectClass(6)}

132 DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Column 4, Superclass acronyms, provides the class from which an object class inherits
its attributes. Using the information in Column 4, it is possible to derive a graphical
representation of the inheritance properties of object classes in the DIT as shown in
Figure 4-9.

In the figure, the object clas®p is the root of the tree, witl\lias and GDS-Top as
the main branchedop contains the attribute type object class, which is inherited by
all the other object classes.

Do not confuse the information in the OCT with that presented in the SRT. There
is no direct relationship between the relative location of branches and leaves in the
DIT structure and the inheritance properties of classes with their superclasses and
subclasses. For example, when a directory service request is made by a directory user,
such as a read operation, the SRT is used by the directory service to indicate its
position in the DIT. The directory service uses the information defined in the SRT for
tree traversal so that the requested object can be located in the directory. Figure 4-8
shows the object clagdrganization located beneatountry in the DIT.

On the other hand, the OCT defines, among other things, the attributes of an object
class along with its inherited attributes from its superclass. The superclass, in turn,
inherits the attributes from its superclass, and so on until the fiagq, is reached

(from which all classes derive their attributes). Figure 4-9 shows the object class
Organization as a subclass @DS-Top. As such, it inherits its attributes fro@DS-

Top , which in turn inherits from its superclasgop.

DCE 1.2.2 Application Development Guide—Directory Services 133

GDS Application Programming

Figure 4-9.

134

A Partial Representation of the Object Class Table

Object-Class (M)

Aliased-Object_Name (M

Master Knowlege
Access-Control-List

Country-Name (M)

cDs-Cell
CDS-Replica

Description Description

Search-Guide CDS-Cell Organization-Name (M)
CDS-Replica Business-Category
Locality-Name CDS-Cell
Search-Guide CDS-Replica
See-Also Description
State-or-Prov_Name Dest-Indicator
Street_Address Facsimile-Phone-Nbr

Internat-ISDN-Nbr
Locality-Name
Phys.-Deliv-Off-Name
Postal-Address
Postal-Code
Post-Office-Box
Preferred-Delivery-Method
Registered-Address
Search-Guide
See-Also
State-or-Prov_Name
Street_Address
Phone-Nbr
Telex-NBR
TTX-Term-Ident
User-Password
X121-Address

The OCT also contains the unique object identifier of each class in the DIT. These

numbers are defined by various standards authorities and in the X.500 standards
documents mentioned previously. The AT also contains the predefined object identifiers
for each attribute in the directory. These object identifiers are defined in the header

files that are included as part of the GDS API. Table 4-4 shows some examples of

object identifiers for directory classes as defined in the X.500 standard.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Table 4-4. Object Identifiers for Selected Directory Classes

Object Class Type Object Identifier
Alias 85.6.1
Application-Entity 85.6.12
Application-Process 85.6.11
Country 85.6.2
Device 85.6.14
DSA 85.6.13
Group-of-Names 85.6.9
Locality 85.6.3
Organization 85.6.4
Organizational-Person 85.6.7
Organizational-Role 85.6.8
Organizational-Unit 85.6.5
Person 85.6.6
Residential-Person 85.6.10
Top 85.6.0

Note: The object identifiers in Table 4-4 stem from the roint-iso-ccitt(2) ds(5)
objectClass(6)}

Another important feature of the OCT is the distinction made between mandatory and
optional attributes for each object class. This distinction is based on recommendations
from X.500 standards documents. These documents (Recommendations X.520 and
X.521) define selected object classes and associated attribute types by using ASN.1
notation. Most object classes have one or more mandatory attributes associated
with them for use by implementors who want to comply with the X.500 standards
recommendations. In addition, optional attributes are defined.

DCE 1.2.2 Application Development Guide—Directory Services 135

GDS Application Programming

4.4.4

136

The following example provides a flavor of ASN.1 notation; it shows how the object
classcountry is described in Recommendation X.52thé Directory: Selected Object
Classes

country OBJECT-CLASS
SUBCLASS of top
MUST CONTAIN {
countryName}

MAY CONTAIN {
description,
searchGuide}

::= {objectClass 2}

This ASN.1 definition define€ountry as a subclass of superclaBsp. The class,
Country, must contain the mandatory attributeuntryName (or Country-Name

as defined in the GDS standard schema) and can contain the optional attributes
Description and Search-Guide . In addition, the DCE implementation adds two
more attributesCDS-Cell and CDS-Replicg to incorporate other aspects of the DCE
environment that are implementation specific.

Country is assigned the object identifi@c5.6.2 This number distinguishes it from

the other object classes defined by the standard. Thpesuperclass is designated
as2.5.6.0 The first three number®.5.6 identify the object class as a member of a
discrete set of object classes defined by X.500. The last number in the object identifier
distinguishes objects within that discrete set. Alias, a subcla3smfis assigned the
number2.5.6.1 Country is assigned the numb@t5.6.2 and so onGDS-Top has no
object identifier because it is implementation specific and thus not identified by the
standard.

The Attribute Table

The attributes that make up the entries in the GDS standard schema are defined in the
AT. (Refer to theDCE 1.2.2 GDS Administration Guide and Referefarea complete

listing of the AT.) The object identifiers are in the range frém4.0through85.4.35

as defined by the X.500 standaB8§.5.2.0through86.5.2.10as defined by the X.400
standard, and there are additional object identifiers for GDS-specific attributes.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Table 4-5 shows a patrtial listing of the AT for the GDS standard schema.

Note:

The access class for every attribute listed in Table 4-5 is 0 (zero).

Table 4-5. Attribute Table Entries
Max.
Acr. of | Obj. Name of Lower | Upper | No. of Phon. | Index
Attr. ID Attribute Bound | Bound | Val. Syntax | Flag Level
OCL 85.4.0 | Object-Class 1 28 0 2 0 0
AON 85.4.1 | Aliased- 1 1024 1 1 0 0
Object-Name
KNI 85.4.2 | Knowledge- 1 1024 0 4 0 0
Information
CN 85.4.3 | Common-Name | 1 64 2 4 1 1
SN 85.4.4 | Surname 1 64 2 4 1 0
SER 85.4.5 | Serial-Number |1 64 2 5 0 0
C 85.4.6 | Country-Name | 2 2 1 1010 1 1
L 85.4.7 | Locality-Name |1 128 2 4 1 1
SPN 85.4.8 | State-or- 1 128 2 4 1 0
Province-Name

DCE 1.2.2 Application Development Guide—Directory Services

The columns with the headings Lower Bound and Upper Bound specify the range of
the number of bytes (or octets) that the value of an attribute can contain. The schema
puts constraints on the number of values that an attribute can contain in the Maximum
Number of Values column.

The Syntax column describes how the data is represented and relates to ASN.1 syntax
definitions for attributes. For example, a sample of ASN.1 notation foCin@mon-

Name attribute follows:

commonName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caseignoreStringSyntax

137

GDS Application Programming

4.4.5

138

(SIZE(1..ub-common-name))
= (attributeType 3)

The Common-Nameattribute is defined as case insensitive. The size of the string is
from 1 to the upper bound defined by the schema forGoenmon-Name attribute
in the Upper Bound column (in this case, 64 bytes or octets).

Note also that th€ommon-Nameattribute is assigned the number 3 by the standard.
This corresponds to th& in the object identifieB5.4.3

The other columns in the AT refer to the phonetic matching flag, security access
classes, and index level.

As mentioned previously for object classes, object identifier values specified in the
AT are defined as constants in the GDS header files.

Defining Subclasses

The ability to define subclasses is a powerful feature of the directory. Structure rules
govern which object classes can be children of which others in the DIT and therefore
determine possible name forms.

The directory standard defines a number of standard attribute types and object classes.
For example, the attribute typegSommon-Name and Description, and the object
classesCountry and Organizational-Person are defined. Implementations of the
directory standard, such as DCE, define their own schemas following rules stated
in the standard with additional attribute types and object classes.

Figure 4-10 shows the relationship between schemas and the directory information
model.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Figure 4-10. The Relationship Between Schemas and the DIT

4.5

Definitions DIT Elements

Structure Rules |ules for

uses

Y
uses ’
Attributem»

uses

Abstract Syntax Notation 1

The need for Abstract Syntax Notation 1 (ASN.1) arises because different computer
systems represent information in different ways. For example, one computer can use
EBCDIC character representation while another can use ASCII. To transfer a file of
characters from one system to another, common representation must be used during
the transfer. This transfer can be one representation or the other, or some mutually
agreed upon representation negotiated by the two systems. Similarly, floating-point
values, integers, and other types of data can be stored internally in different ways. To
exchange information, a common format must be agreed to before information can be
exchanged.

The translation of EBCDIC to ASCII characters can seem like a trivial problem,
but that leaves the larger issue of mapping between the many diverse representations
that can exist within a network environment. To address this need, the ISO standards
committee defined ASN.1 and Basic Encoding Rules.

ASN.1 is based on the idea that the aspects of transferred information that are preserved
are type, length, and value. Data types are collections of values distinguished for some
reason, such as characters, integers, and floating-point values. Records and structure
types become more complex when they combine several types into a single structure.

DCE 1.2.2 Application Development Guide—Directory Services 139

GDS Application Programming

45.1

140

ASN.1 provides a way to group types into abstract syntaxes. An abstract syntax is a

named group of types. The standard defines abstract syntax as the notation rules that
are independent of the encoding technique used to represent them. Abstract syntax
does not specify how to represent values of types, but merely defines the types that

make up the group of types.

Abstract syntaxes are not enough to define how values of the data types in a specific
abstract syntax are to be represented during communications. For this reason, 1SO
further defines dransfer syntaxor each abstract syntax. A transfer syntax is a set of
rules for encoding values of some specified group of types.

ASN.1 Types

ASN.1 is similar to a high-level programming language. Unlike other high-level
languages, ASN.1 has no executable statements. It includes only language constructs
required to define types and values.

ASN.1 defines a number of built-in types. Users of ASN.1 can then define their own
types based on the built-in types provided by the language. The ASN.1 standard defines
four categories of types that are commonly used in defining application interfaces such
as XOM and XDS:

* ASN.1 simple types

» ASN.1 useful types

» ASN.1 character string types

* ASN.1 type constructors
ASN.1 simple types are Bit String, Boolean, Integer, Null, Object Identifier, Octet
String, and Real. Table 4-6 shows the relationship of OM syntaxes (syntaxes defined
in XOM API) to ASN.1 simple types. (Refer to Chapter 17 for the complete set of
tables for the four categories of ASN.1 types.) As shown in the table, for every ASN.1
type except Real, there is an OM syntax that is functionally equivalent to it. The simple

types are listed in the first column of the table; the corresponding syntaxes are listed
in the second column.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Table 4-6.

4.5.2

Syntax for the Simple ASN.1 Types

ASN.1 Type OM Syntax
Bit String StringgOM_S_BIT_STRING)
Boolean OM_S BOOLEAN
Integer OM_S INTEGER
Null OM_S_NULL
Object Identifier StringgOM_S_OBJECT_IDENTIFIER_STRING)
Octet String StringOM_S_OCTET_STRING)
Real None
1 A future edition of XOM can define a syntax corresponding to this type.

An example will illustrate how OM syntaxes are used to define the syntax of
values for various attributes. One of the simplest of the ASN.1 types is Boolean.
There are only two possible values for a Boolean type: TRUE and FALSE. The
DS_FROM_ENTRY OM attribute of theDS_C_ENTRY_INFO object class has

a value syntax ofOM_S BOOLEAN. OM_S_BOOLEAN is the C language
representation for the OM syntax that corresponds to the ASN.1 Boolean type. The
value of theDS_FROM_ENTRY OM attribute indicates whether information from
the directory was extracted from the specified object’s entry (TRUE), or from a copy
of the entry (FALSE). The actual C language definition @_S_BOOLEAN is

made in the XOM API header filrom.h.

Basic Encoding Rules

It is possible to define a single transfer syntax that is powerful enough to encode values
drawn from a number of abstract syntaxes. 1SO defines a set of rules for encoding
values of many different types for ASN.1. This set of encoding rules is cabieit
encoding rulegBER). It is so powerful that values from any abstract syntax described
by using ASN.1 can be encoded by using the transfer syntax defined by BER.

Although other transfer syntaxes could be used for representing values from ASN.1,
BER is used most often.

DCE 1.2.2 Application Development Guide—Directory Services 141

GDS Application Programming

4.6

Figure 4-11.

142

GDS as a Distributed Service

When present in a DCE cell, GDS can serve two basic functions. First, it can provide
a high-level, worldwide directory service by tying together independent DCE cells.
Second, it can be used as an additional directory service to CDS for storing object
names and attributes in a central place.

The GDS database contains information that can be distributed over several GDS
servers. In addition, copies of information can be stored in multiple GDS servers,
and the information can also be cached locally. The unit of replication in GDS is the
directory entry; whole subtrees can be also replicated.

The information belonging to the DIB is shared between several Directory Service
Agents (DSAs). A DSA is a process that runs on a GDS server machine and manages
the GDS database. DSAs cooperate to perform directory service operations, with each
DSA knowing a fraction of the total directory information, as shown in Figure 4-11.
DSAs are a combination of local database functions and a remote interface to the
clients of users and other DSAs. DSAs can cooperate to execute operations. This
cooperation often involves the navigation of operations through the network.

The Relationship Between the DSA and the DUA

Director y Environment

The Directory

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.6.1

4.6.2

4.6.3

Users access the directory via Directory User Agents (DUAs). DUAs make requests
of DSAs on behalf of users requesting directory service operations. The manner
in which DUAs communicate with DSAs is defined by the X.500 standard. For
communications between DUAs and DSAs, the directory access protocol (DAP) is
defined. For communications between DSAs in a distributed directory, the standard
defines the directory system protocol (DSP).

The Directory Access Protocol

The directory standard defines directory functions in the DAP. The directory functions
can be divided into three general categories: read, search, and modify.

Read operations involve the retrieval of information from specific named entries. This
allows a general name-to-attributes mapping analogous to the White Pages phone
directory.

Search operations involve the general browsing and relational searching of information.
Search operations support human interaction with the directory service and is
analogous to that of the “Yellow Pages” telephone directory.

Modify operations involve the modification of information in the directory.

The Directory System Protocol

The DSA can interact with other DSAs to provide services by using the DSP. DSP
is a protocol defined by the directory standard to allow DSAs to communicate with
one another. DSP provides two methods of distributed request resolution: referral and
chaining.

Referral

In some cases, a DSA may not be able to provide service to a DUA because the
required information is held elsewhere in the network. A DSA can simply choose to

DCE 1.2.2 Application Development Guide—Directory Services 143

GDS Application Programming

inform the DUA or the calling DSA where the information can be found. This is called
referral and can occur because of the user’'s preference or the DSA’s circumstances.

Referrals are possible because the distinguished name provided by the DUA identifies
where in the DIT the requested entry is located. DSAs use their knowledge of the
DIT to inform the DUA of the DSA that holds the requested information.

Figure 4-12 shows an example of a referi2BA1 passes a referral DSA2 back to
the DUA. The DUA then makes a requestD&A2.

Figure 4-12. An Example of a Referral

Step 1

The Directory

Referral to DSA 2

Step 2

The Directory

Read reqyest

144 DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.6.4 Chaining

If a request received from a DUA cannot be fulfilled by the receiving DSA, that DSA
can send a referral back to the initiating DUA over DAP. Alternatively, the DSA can
chain the request over DSP, asking another DSA to perform the requested function.
That DSA can perform the function or can send back a referral of its own. In either
case, the first DSA eventually responds to the originating DUA with either the results
of the completed operation or a referral.

Chaining can go deeper than one level. To prevent lengthy searches, a user can request
no chaining or specify a limit on the total elapsed time for an operation.

Figure 4-13 shows an example of chaining. The DUA makes a requBSA1. DSA1

is unable to service the request and passes D3#42. DSA2 services the request,
passes the result back BSA1, andDSAL1 passes the result back to the DUA.

DCE 1.2.2 Application Development Guide—Directory Services 145

GDS Application Programming

Figure 4-13. An Example of Chaining

Step 1
The Directory
Chained read request
Read reqyest
Step 2

The Directory

4.6.5 The Directory User Agent Cache

The DUA cache is a process that keeps a cache of information obtained from DSAs.
One DUA cache runs on each client machine and is used by all users on that client.
The DUA cache contains copies of recently accessed object entries and information
about DSAs. The user specifies which information should be cached. It is also possible

146 DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

to bypass the DUA cache to obtain information directly from a DSA. This is desirable,
for example, when the user wants to make sure the information obtained is up-to-date.

The shadow update and cache update are processes that update replicated information
in DSAs and DUA caches. These processes run as needed and then terminate. The
shadow update process runs on the GDS server machine; the cache update process
runs on GDS client machines.

When an application program makes a directory service call by using XDS API,
the call is handed to the DUA library. The DUA first looks in the DUA cache (if
requested by the user) to see if the requested information is already available on the
local machine. If it is not, the DUA queries a DSA. If the DSA has the requested
information, it returns the results to the DUA. If it does not, the query can proceed
either by using chaining or a referral. In either case, different DSAs are queried until
the information is found. It is cached (if requested by the user) in the DUA cache and
the results are returned to the application program.

Figure 4-14 shows the interaction between an application program, via the XDS
interface, and the GDS client and server. The GDS client and server use DAP to
communicate. GDS servers use DSP to communicate with one another. DAP and DSP
perform functions similar to the functions that DCE RPC protocols perform in other
DCE services.

DCE 1.2.2 Application Development Guide—Directory Services 147

GDS Application Programming

Figure 4-14.

148

GDS Components
GDS Client
GDS Server
XDS DAP
Appl DUA DSA
DiB
‘ g
DUA
Cache
DAP DSP
GDS Server
.\
DSA
DiB

]

4.6.5.1 Placing Entries in the Local DUA Cache

A special object OM classPSX_C_GDS_CONTEXT, is provided in the GDS
package to allow an application program to manage the placement of entries in the
local DUA cache as a result of a directory request.

DSX_C_GDS_CONTEXT inherits the OM attributes of its superclasses
OM_C_OBJECT and DS_C_CONTEXT. To enable caching entries, the
DS _DONT_USE_COPYOM attribute of DS_C_CONTEXT must be set to a value

of OM_FALSE, indicating that a directory request can access copies of directory
entries maintained in other DSAs or copies cached locally.

DSX_C_GDS_CONTEXT has the following private extension OM attributes in
addition to the OM attributes inherited frodS_C_CONTEXT:

» DSX_DUAFIRST

 DSX_DONT_STORE

* DSX_NORMAL_CLASS

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

DSX_PRIV_CLASS
DSX_RESIDENT_CLASS
DSX_USEDSA

« DSX_DUA_CACHE

DSX_DUAFIRST determines where a query operation, such as a search or list, looks
first for an entry. The default value @M_FALSE, indicating that the DSA is searched
first. If the entry is not found, then the DUA cache is searched.

DSX_DONT_STORE determines if information read from the DSAs by a query
function also needs to be stored in the DUA cache. If this OM attribute is set to
OM_TRUE, nothing is stored in the cache. If this OM attribute is seDtd_FALSE,

the information read is stored in the DUA cache. The objects returneis Hist() and
ds_compare()are stored in the cache without their associated attribute information.
The objects returned bgs_read()andds_search()are stored in the cache with all
their cachable attributes; these are all public attributes that do not exceed 4 Kilobytes
in length.

The three different memory classes that the user can specify for a cached entry are
DSX_NORMAL_CLASS, DSX_PRIV_CLASS, andDSX_RESIDENT_CLASS.

DSX_NORMAL_CLASS assigns the entry to the class of normal objects. If the
number of entries in this class exceeds a maximum value, the entry that is not accessed
for the longest period of time is removed from the DUA cache.

DSX_PRIV_CLASS assigns the entry to the class of privileged objects. Entries can
be removed from the class in the same way as normal objects. However, by setting this
area of memory aside to be used sparingly, the user can protect entries from deletion.

DSX_RESIDENT_CLASS assigns the entry to the class of resident objects. An
entry in this class is never removed automatically. It must be explicitly removed
by using an XDSds_remove_entry()function applied directly to the cache; that is,
DSX_DUA_CACHE and DSX_USEDSAare set toOM_TRUE and OM_FALSE,
respectively.

Tables 4-7 through 4-9 show the possible conditions that result when
DSX_DUA_CACHE andDSX_USEDSAare set toOM_TRUE.

DCE 1.2.2 Application Development Guide—Directory Services 149

GDS Application Programming

Table 4-7.

Table 4-8.

Table 4-9.

150

Cache Attributes: Read Cache First

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY X
DSX_DUAFIRST X

In the situation presented in Table 4-7, the cache is read first, then the other DSAs.

The requested operation is permitted to use copies of entries.

Cache Attributes: Read DSA First

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY X
DSX_DUAFIRST X

In the situation presented in Table 4-8, the DSA is read first, then the cache. The

requested operation is permitted to use copies of entries.

Cache Attributes: Read DSA Only

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY | X

DSX_DUAFIRST N/A N/A

In the situation presented in Table 4-9, only the DSA is read. The requested operation
is not permitted to use copies of entries.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

Tables 4-10 through 4-12 show the possible situations vidteX_DUA_CACHE and
DSX_USEDSAare not both set toOM_TRUE.

Table 4-10. Cache Attributes: DSX_USEDSA is OM_FALSE

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X
DS_DONT_USE_COPY X

In the situation presented in Table 4-10, the DUA Cache is used exclusively.

Table 4-11. Cache Attributes: DSX_DUA CACHE is OM_FALSE

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X
DSX_USEDSA X

In the situation presented in Table 4-11, the DSA is used exclusively.

Table 4-12. Cache Attributes: Error

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X
DSX_USEDSA X

In the situation presented in Table 4-12, neither the DSA nor the DUA cache is used,
and an error is returned.

4.6.5.2 Accessing the DUA Cache Without a GDS Server Present

An application program may need to access the local DUA cache without binding to a
GDS server. This section describes the steps that should be included in the application

DCE 1.2.2 Application Development Guide—Directory Services 151

GDS Application Programming

program. Refer to Chapters 5 and 6 for information on how to use the XDS and XOM
API calls ds_initialize(), ds_version() ds_bind(), ds_shutdown() om_create(),
om_remove() how to do static initialization of public objects, and how to create
private objects.

The steps are as follows:
1. Callds_initialize() as normal.

2. Negotiate th&®SX_GDS_PKGby usingds_version() This is necessary because
DSX_C_GDS_CONTEXT is required in order to set the DUA cache service
controls.

3. Supply aDSX_C_GDS_SESSIONobject to theds_bind() call, which has no
DS_DSA_NAME attribute and ndS_DSA_ADDRESSattribute present.

There are two ways of achieving this step:
* Supply a publicDSX_C_GDS_SESSIONbbject (static initialization):

OM_descriptor cache_session[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_SESSION),
OM_NULL_DESCRIPTOR

h

The other attributes ofDSX_C_GDS_SESSION (DS_REQUESTOR
DSX_PASSWORD DSX_DIR_ID, DSX_AUTH_MECHANISM and
DSX_AUTH_INFO) can be included if required.

» Supply a privatdDSX_C_GDS_SESSIONbbject (using XOM API function
calls):

om_create(DSX_C_GDS_SESSION, OM_TRUE, workspace, &cache_session);
om_remove(cache_session, DS_DSA_NAME, 0, OM_ALL_VALUES);
om_remove(cache_session, DS_DSA_ADDRESS, 0, OM_ALL_VALUES);

Note that an uninitialized session object may not be passésl toind(). That
means thaDM_FALSE should not be used with the previoom_create()
function call.

152 DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4. Supply abSX_C_GDS_CONTEXTobject to the XDS calls that access the DUA
cache. The following service controls must be set to ensure that access is restricted
to the DUA cache alone:

DSX_DUA_CACHE = OM_TRUE
DSX_USEDSA = OM_FALSE

(Service controls that access the DSA will result iD& E_BAD CONTEXT
error.)
There are two ways of achieving this step:

» Supply a publicDSX_C_GDS_CONTEXT object (static initialization)

» Supply a privatdbSX_C_GDS_CONTEXT object (using XOM API function
calls)

5. Supply the boundSX_C_GDS_SESSIONbbject to theds_unbind() call.

6. Call ds_shutdown()as normal.

4.6.6 GDS Configurations

A GDS machine can be configured in two ways:
* Client Only

A node can contain only the client side of GDS. This node can access remote
DSAs and cache information in the DUA cache.

» Client/Server

A machine can be configured with both the GDS client and server. This is the
typical configuration for a machine acting as a GDS server. This configuration
can be useful even if a node acts mainly as a client because the DSA can be used
as a larger, more permanent cache of information contained in remote DSASs.

Note: When a client and server reside on the same machine, access to the directory

is optimized. Communications between the DUA and the DSA are by means
of interprocess communications (IPC) via shared memory.

DCE 1.2.2 Application Development Guide—Directory Services 153

GDS Application Programming

4.6.7

154

GDS Security

A number of authentication mechanisms are supported by GDS. XDS applications
must indicate which method is to be used. Since authentication takes place at bind
time, it is appropriate to pass the selected authentication mechanism as an argument
to ds_bind().

A bind operation can be performed by the application program with or without user
credentials. A bind with credentials is referred to asaathenticated bindnd allows

an application program to require a user to specify a distinguished name password
as user credentials. A bind without user credentials only permits access to public
information in the directory.

A special OM object clas§)SX_C_GDS_SESSIONis provided in the GDS package

to accommodate user credentials and authentication mechanisms. In addition to the
OM attributes inherited from its superclab$&_C_SESSION this OM class consists

of the following OM attributes:

* DSX_PASSWORD
This attribute contains the password for the user credentials.
* DSX_DIR_ID

This attribute contains the identifier for distinguishing between several
configurations of the directory service within a GDS installatiD®X_DIR_ID
plays no role in user credentials.

* DSX_AUTH_MECHANISM

If this attribute is present, it identifies the selected authentication mechanism. If
this attribute is absent, then a bind without credentials (that is, anonymous bind)
is attempted.

* DSX_AUTH_INFO
This attribute is for future use.
The GDS package also provides the following special OM classes to support access
rights to specific OM attributes by directory service users:
* DSX_C_GDS_ACL

This attribute describes up to five categories of rights for one or more directory
users.

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

4.6.8

*» DSX_C_GDS_ACL_ITEM
This attribute specifies the user, or subtree of users, to whom an access right
applies.

The five categories of rights correspond to the access rights defined for the directory
service as described in tHeCE 1.2.2 GDS Administration Guide and Referentiee
categories are as follows:

» Modify Public

* Read Standard
Modify Standard
* Read Sensitive
* Modify Sensitive

Refer to Chapter 6 for more information on binding with credentials and setting access
rights for users. The sample programs in Chapter 7 provide examples of how security
features are used in application programs.

GDS API Logging

The GDS API logging facility displays informational and error messages for XDS
functions. In addition, the input and output arguments to XDS function calls can also
be displayed. For each XDS object, its OM types, syntaxes, and values are displayed
recursively. A number of different display formats can be selected for the XDS objects.
These are selected by setting the value of the environment vaddb® LOG as
shown in Table 4-13.

Logging can be activated dynamically at runtime by setting the environment variable
XDS_LOG.

DCE 1.2.2 Application Development Guide—Directory Services 155

GDS Application Programming

Table 4-13.

156

XDS_LOG Values

XDS_LOG Value Result Example

Bit 1 = on Display arguments, N/A
messages, results and errdrs

Bit 1 = off Display messages only (all| N/A
other bits ignored)

Bit 2 = on Display result and error N/A
objects as private objects

Bit 2 = off Display result and error N/A
objects as public objects

Bit 3 = on Object identifiers displayed| N/A
as specified in 4th bit

Bit 3 = off Object identifiers displayed| DS_C_SESSION
as symbolic constants

Bit 4 = on Object identifiers displayed| 2.5.4.35
as dotted-decimal

Bit 4 = off Object identifiers displayed| \x55\x04\x23
as hexadecimal bytes

Bit 5 = on Syntaxes displayed as 127
integers

Bit 5 = off Syntaxes displayed as OM_S OBJECT
symbolic constants

Bit 6 = on Types displayed as integers 715

Bit 6 = off Types displayed as DS_AVAS
symbolic constants

The bits shown in Table 4-13 can be combined. For example, the following command

sequence set¥DS_LOG to 5 (00101 in binary):

XDS_LOG=5; export XDS_LOG

DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

In this example, the logging facility is directed to display arguments, messages, results,
and errors, to convert results and errors into public objects (for display purposes only),
and to display object identifiers as hexadecimal bytes; and to display OM syntaxes
and OM types as symbolic constants. NormakidS_LOG should be set to 0. If full
tracing is required, then s&DS_LOG to 1.

4.6.8.1 Logging Format

The following general display format is used by the logging facility:

identifier-name= {
{ type, syntaxvalug,
{ type, syntaxvalug,

}; I* identifier-nam&/

where:

type Is the integer or symbolic constant for the specified type.

syntax Is the integer or symbolic constant for the specified syntax:LAis
appended to the syntax label if tlM_S LOCAL_STRING bit is set
in the OM_syntax field.

value Is one of the following:

* An integer (if syntax is OM_S_INTEGER or
OM_S_ENUMERATION).

« OM_FALSE or OM_TRUE (if syntaxis OM_S_BOOLEAN).

» Symbolic constant, dotted-decimal notation, or hexadecimal bytes
(if syntaxis OM_S_OBJECT_ID_STRING).

» Quoted-string (ifsyntaxis any other type of string).
» Another object (ifsyntaxis OM_S_OBJECT).

Note: The terminating NULL descriptor is expected but not displayed.

DCE 1.2.2 Application Development Guide—Directory Services 157

GDS Application Programming

4.6.8.2 Examples

The following examples show how a selection of XDS objects are displayed by the
logging facility.

The following filter selects entries that do not have the valsecret for
the DS_A USER_PASSWORD attribute. The DS _FILTER_TYPE has
the value DS_NOT. It contains a singleDS_C_FILTER_ITEM attribute.
DS_C FILTER_ITEM tests for equality against thBS A USER_PASSWORD
attribute.

my_filter = {

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER 1},

{ DS_FILTER_ITEMS, OM_S_OBJECT,

{

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER_ITEM },
{ DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, 0 },

{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_ USER_PASSWORD },
{ DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, "secret" },

h

h

{ DS_FILTER_TYPE, OM_S_ENUMERATION, 3 },

Y, * my_filter */

The following example shows logging output if the interface logger encounters a
NULL pointer. The NULL pointer is flagged as follows:

my_session = {

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_SESSION },

{ DS_DSA_NAME, OM_S_OBJECT, ---WARNING: NULL pointer encountered--- },
}; /* my_session */

The following example shows logging output if the interface logger encounters a
private object. The private object is displayed as follows:

158 DCE 1.2.2 Application Development Guide—Directory Services

GDS API: Concepts and Overview

bound_session = {
{ OM_PRIVATE_OBJECT, OM_S_OBJECT_ID_STRING, DS_C_SESSION } ...
}; /* bound_session */

The following example shows how a 5-part DSA distinguished name is displayed (
C=de/O=sni/OU=ap/CN=dsa/CN=dsa-mjt

dsa_name = {

{ DS_DSA_NAME, OM_S_OBJECT,

{

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_DN },

{ DS_RDNS, OM_S_OBJECT,

{

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN 1},

{ DS_AVAS, OM_S_OBJECT,

{

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },

{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COUNTRY_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, "de" },

DS_RDNS, OM_S_OBJECT,

OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN 1},
DS_AVAS, OM_S_OBJECT,

OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA 1},
DS_ATTRIBUTE_TYPE, OM_S_OBJECT ID_STRING, DS_A ORG_NAME },
DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "sni" },

DS_RDNS, OM_S_OBJECT,

L e e e e T e M B e B e B

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,

DCE 1.2.2 Application Development Guide—Directory Services 159

GDS Application Programming

160

OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA 1},
DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_ORG_UNIT_NAME 1},
DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "ap" },

[S VU U

{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa" },

DS_RDNS, OM_S_OBJECT,

— e o e o

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },

{ DS_AVAS, OM_S_OBJECT,

{

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },

{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa-m1" },

; I* dsa_name */

}
}
}
}
}
}
}

DCE 1.2.2 Application Development Guide—Directory Services

Chapter 5

XOM Programming

XOM API defines a general-purpose interface for use in conjunction with other
application-specific APIs for OSI services, such as XDS API to directory services
or X.400 Application API to electronic mail service. It presents the application
programmer with a uniform information architecture based on the concept of groups,
classes, and similar information objects.

This chapter describes some of the basic concepts required to understand and use the
XOM API effectively.

The following names refer to the complete XDS example programs, which can be
found in Chapter 7:

* acl.c (acl.h)

» example.c(example.h

* teldir.c

For multithreaded XDS/XOM applications, please refer to Chapter 8. For use of the
XDS/XOM convenience functions please refer to Chapter 9.

DCE 1.2.2 Application Development Guide—Directory Services 161

GDS Application Programming

5.1

5.1.1

162

OM Obijects

The purpose of XOM API is to provide an interface to manage complex information
objects. These information objects belong to classes and have attributes associated with
them. There are two distinct kinds of classes and attributes that are used throughout
the directory service documentatiodirectory classes and attributes a@M classes

and attributes.

The directory classes and attributes defined for XDS API correspond to entries that
make up the objects in the directory. These classes and attributes are defined in the
X.500 directory standard and by additional GDS extensions created for DCE. Other
APIs, such as the X.400 API, which is the application interface for the industry
standard X.400 electronic mail service, define their own set of objects in terms of
classes and attributes. OM classes and OM attributes are used to model the objects in
the directory.

XOM API provides a common information architecture so that the information objects
defined for any API that conforms to this architectural model can be shared. Different
application service interfaces can communicate by using this common way of defining
objects by means of workspaces. A workspace is simply a common work area where
objects defined by a service can be accessed and manipulated. In turn, XOM API
provides a set of standard functions that perform common operations on these objects
in a workspace. Two different APIs can share information by copying data from one
workspace to another.

OM Object Attributes

OM objects are composed of OM attributes. OM objects may contain zero or more

OM attributes. Every OM attribute has zero or more values. An attribute comprises an

integer that indicates the attribute’s value. Each value is accompanied by an integer
that indicates that value’s syntax.

An OM attribute type is a category into which all the values of an OM attribute are
placed on the basis of its purpose. Some OM attributes may either have zero, one, or
multiple values. The OM attribute type is used as the name of the OM attribute.

A syntax is a category into which a value is placed on the basis of its form.
OM_S PRINTABLE_STRING is an example of a syntax.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

An OM attribute value is an information item that can be viewed as a characteristic
or property of the OM object of which it is a part.

OM attribute types and syntaxes have integer values and symbolic equivalents assigned
to them for ease of use by naming authorities in the various API specifications. The
integers that are assigned to the OM attribute type and syntax are fixed, but the attribute
values may change. These OM attribute types and syntaxes are defined in the DCE
implementation of XDS and XOM APIs in header files that are included with the
software along with additional OM attributes specific to the GDS implementation.

Figure 5-1 shows the internal structure of an OM object.

Figure 5-1. The Internal Structure of an OM Object

object
attribute
syntax syntax
type integer integer
integer
value value
e} e} e}
[e]
[e]
o
attribute
syntax syntax
type integer integer
integer
value value
o] o o

For example, the tables in Figure 5-2 show the OM attributes, syntax, and values
for the OM clasDS_C_ENTRY_INFO_SELECTION, and how the integer values

DCE 1.2.2 Application Development Guide—Directory Services 163

GDS Application Programming

164

are mapped to corresponding names in #wm.h and xds.h header files. The
chapters in Part 4 of this guide contain tables for every OM class supported
by the directory service. Refer to Chapter 11 for a complete description of
DS_C_ENTRY_INFO_SELECTION and the accompanying table.

DS_C_ENTRY_INFO_SELECTION is a subclass ofOM_C_OBJECT. This
information is supplied in the description of this OM class in Chapter 19.
As such, DS _C ENTRY_INFO_SELECTION inherits the OM attributes

of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT is
OM_CLASS. OM_CLASS identifies the object's OM class, which in this case
is DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION
identifies information to be extracted from a directory entry and has the following
OM attributes, in addition to those inherited frod@M_C_OBJECT:

« DS_ALL_ATTRIBUTES
« DS_ATTRIBUTES_SELECTED
« DS_INFO_TYPE

As part of an XDS function callDS_ALL_ATTRIBUTES specifies to the directory
service whether all the attributes of a directory entry are relevant to the application
program. It can take the valué&¥M_TRUE or OM_FALSE. These values are defined

to be of syntaxOM_S_BOOLEAN. The valueOM_TRUE indicates that information

is requested on all attributes in the directory entry. The valie FALSE indicates

that information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from
which information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING .

OM_S OBJECT_IDENTIFIER_STRING contains an octet string of integers that
are BER encoded object identifiers of the types of OM attributes in the OM attribute
list. The value ofDS_ATTRIBUTES _SELECTED is significant only if the value

of DS_ALL_ATTRIBUTES is OM_FALSE, as described previously.

DS_INFO_TYPE identifies the information that is to be extracted from

each OM attribute identified. The syntax of the value is specified as
EnumOS_Information_Type). DS_INFO_TYPE is an enumerated type that

has two possible valuesDS_TYPES_ONLY and DS_TYPES_AND_VALUES

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

DS_TYPES_ONLY indicates that only the attribute types in the entry are returned
by the directory service operatioDS _TYPES_AND_VALUES indicates that both
the types and the values of the attributes in the directory entry are returned.

A typical directory service operation, such as a read operatisnréad(), requires

the entry_information_selectiorparameter to specify to the directory service the
information to be extracted from the directory entry. Téigry information_selection
parameter is built by the application program as a public object (Section 5.1.4 describes
how to create a public object), and is included as a parameter tisthiead()function

call, as shown in the following code fragment fraarample.c

/*

* Public Object ("Descriptor List") for

* Entry-Information-Selection

* parameter to ds_read().

*

OM_descriptor selection]] = {
OM_OID_DESC(OM_CLASS,DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_ PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,

{ DS_TYPES_AND_VALUES,NULL } },

OM_NULL_DESCRIPTOR

h

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

DCE 1.2.2 Application Development Guide—Directory Services 165

GDS Application Programming

Figure 5-2. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION

OM Attributes of a OM_C_OBJECT

i Value Value | Value
Attribute Value Syntax Length | No. Initially
OM_CLASS String
(OM_S_OBJECT_IDENTIFIER_STRING) | _ 1
OM Attributes of a DS_C_ENTRY_INFO_SELECTION
i Value Value | Value
Attribute Value Syntax Length | No. Initially
DS_ALL -
ATTRIBUTES OM_S_BOOLEAN 1 |OM.TRUE
DS_ATTRIBUTES_ String Oor
SELECTED (OM_S_OBJECT_IDENTIFIER_STRING) - more
DS _TYPES

DS_INFO_TYPE Enum(DS_Information_Type) - 1 AND_VALUES

#define OM_CLASS ((OM_type) 3)
#define OM_S_BOOLEAN ((OM_syntax) 1)

sample code from
#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6) from the xom.h header file

#define OM_S_ENUMERATION ((OM_syntax) 10)

enum DS_Information_Type {

DS_TYPES_ONLY =0,
DS_TYPES_AND_VALUES = 1

[e]

sample code from
-
[}

from the xds.h header file

o]
#define DS_ALL_ATTRIBUTES ((OM_TYPE) 707)

#define DS_ATTRIBUTES_SELECTED ((OM_TYPE) 710)
#define DS_INFO_TYPE ((OM_type) 734)

166 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.1.2

Object Identifiers

OM classes are uniquely identifiable by means of ASN.1 object identifiers. OM classes
have mandatory and optional OM attributes. Each OM attribute has a type, value, and
syntax. OM objects are instances of OM classes that are uniquely identifiable by
means of ASN.1 object identifiers. The syntax of values defined for these OM object
classes and OM attributes are representations at a higher level of abstraction so that
implementors can provide the necessary high-level language binding for their own
implementations of the various application interfaces, such as XDS API.

The DCE implementation uses C language to define the internal representation of OM
classes and OM attributes. These definitions are supplied in the header files that are
included as part of XDS and the XOM API.

OM classes are defined as symbolic constants that correspond to ASN.1 object
identifiers. An ASN.1 object identifier is a sequence of integers that uniquely identifies
a specific class. OM attribute type and syntax are defined as integer constants.
These standardized definitions provide application programs with a uniform and stable
naming environment in which to perform directory operations. Registration authorities
are responsible for allocating the unique object identifiers.

The following code fragment from the xdsbdcp.h (the basic
directory contents package) header file contains the symbolic constant
OMP_O_DS_A COUNTRY_NAME:

#ifndef dsP_attributeType /* joint-iso-ccitt(2) ds(5) attributeType(4)*/

#define dsP_attributeType(X) ("\x55\x04" #X)

#endif

#define OMP_O_DS_A_COUNTRY_NAME dsp_attributeType(\x06)

It resolves t02.5.4.6 which is the object identifier value for th€ountry-Name
attribute type as defined in the directory standard. The symbolic constant for the
directory object clas€ountry resolves ta2.5.6.2 the corresponding object identifier

in the directory standard. OM classes are defined in the header files in the same
manner.

DCE 1.2.2 Application Development Guide—Directory Services 167

GDS Application Programming

5.1.3

168

C

Naming Conventions

In the DCE implementation of XDS and XOM APIs, all object identifiers start with
the letterds, DS, MH, or OMP. Note that the interface reservalf identifiers starting

with the lettersdsP and omP for internal use by implementations of the interface. It
also reserves all identifiers starting with the lettdsX, DSX, omX, and OMX for
vendor-specific extensions of the interface. Applications programmers should not use
any identifier starting with these letters.

The C identifiers for interface elements are formed by using the following conventions:

XDS API function names are specified entirely in lowercase letters and are
prefixed byds_(for example,ds_read().

XOM API function names are specified entirely in lowercase letters and are
prefixed byom_ (for example,om_get().

C function parameters are derived from the parameter and result names and are
specified entirely in lowercase letters. In addition, the names of results have
_return added as a suffix (for exampleperation_status_returr).

OM class names are specified entirely in uppercase letters and are prefixed by
DS_C_andMH_C_ (for example,DS_C_AVA).

OM attribute names are specified entirely in uppercase letters and are prefixed by
DS_andMH_ (for example, DS_RDNS.

OM syntax names are specified entirely in uppercase letters and are prefixed by
OM_S_ (for example,OM_S_PRINTABLE_STRING).

Directory class names are specified entirely in uppercase letters and are prefixed
by DS_O (for example,DS_O_ORG_PERSON).

Directory attribute names are specified entirely in uppercase letters and are
prefixed byDS_A (for example DS_A COUNTRY_NAME).

Errors are treated as a special case. Constants that are the possible values of the
OM attributeDS_PROBLEM of a subclass of the OM clag3S_C_ERRORare
specified entirely in uppercase letters and are prefixe@8yE_ (for example,
DS_E_BAD_CLASS.

The constants in the Value Length and Value Number columns of the OM class
definition tables are also assigned identifiers. Where the upper limit in one of
these columns isot 1, it is given a name that consists of the OM attribute name,
prefixed byDS_VL_ for value length, oDS_VN_ for value number.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

» The sequence of octets for each object identifier is also assigned an identifier for
internal use by certain OM macros. These identifiers are all uppercase letters and
are prefixed byOMP_O .

Tables 5-1 and 5-2 summarize the XDS and XOM naming conventions.

Table 5-1. C Naming Conventions for XDS

Item Prefix
Reserved for implementors dsP
Reserved for interface extensions dsX
Reserved for interface extensions DSX

XDS functions ds_

Error problem values DS E_
OM class names DS C ,MH C_
OM attribute names DS , MH_
OM value length limits DS VL_
OM value number limits DS VN _
Other constants DS , MH_
Attribute type DS_A_
Object class DS O_

Table 5-2. C Naming Conventions for XOM

Element Type Prefix
Data type OM_
Data value OM_
Data value (class) OM_C_
Data value (syntax) OM_S
Data value component (structure member) None

DCE 1.2.2 Application Development Guide—Directory Services 169

GDS Application Programming

5.1.4

170

Element Type Prefix
Function om_
Function parameter None
Function result None
Macro OM_
Reserved for use by implementors OMP
Reserved for use by implementors omP
Reserved for proprietary extension omX
Reserved for proprietary extension OMX

Public Objects

The ultimate aim of an application program is access to the directory to perform some
operation on the contents of the directory. A user may request the telephone number or
electronic mail address of a fellow employee. In order to access this information, the
application performs a read operation on the directory so that information is extracted
about a target object in the directory and manipulated locally within the application.

XDS functions that perform directory operations, suchdasread() requirepublic

and private objects as input parameters. Typically, a public object is generated by an
application program and contains the information required to access a target directory
object. This information includes the AVAs and RDNs that make up a distinguished
name of an entry in the directory. However, an application program may also generate
a private object. Private objects are described in Section 5.1.5.

A public object is created by using OM classes and OM attributes. These OM classes

and OM attributes model the target object entry in the directory and provide other
information required by the directory service to access the directory.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5141 Descriptor Lists

A public object is represented by a sequenc®©M_descriptor data structures that
is built by the application program. A descriptor contains the type, syntax, and value
for an OM attribute in a public object.

The data structur©M_descriptor is defined in thexom.h header file as follows:

typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

}OM_descriptor;

Figure 5-3 shows the representation of a public object in a descriptor list. The first
descriptor in the list indicates the object's OM class; the last descriptor is a NULL
descriptor that signals the end of the list of OM attributes. In between the first and
the last descriptor are the descriptors for the OM attributes of the object.

For example, the following represents the public objmintry in example.c

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

h

DCE 1.2.2 Application Development Guide—Directory Services 171

GDS Application Programming

Figure 5-3.

172

A Representation of a Public Object By Using a Descriptor List

object
first descriptor class of object
second descriptor first OM attribute of object

o last OM attribute of object

null descriptor

last descriptor (end marker of descriptor list)

The descriptor list is an array of data ty@&1_descriptor that defines the OM class,
OM attribute types, syntax, and values that make up a public object.

The first descriptor gives the OM class of the object. The OM class of the
object is defined by the OM attribute typ@M_CLASS. The OM_OID_DESC
macro initializes the syntax and value of an object identifier, in this case to OM
classDS_C_AVA, with the syntax ofOM_S_OBJECT_IDENTIFIER_STRING .
OM_S OBJECT_IDENTIFIER_STRING is an OM syntax type that is assigned by
definition in the macro to any OM attribute type and value parameters input to it.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

The second descriptor defines the first OM attribute type, ATTRIBUTE_TYPE,
which has as its value DS_A COUNTRY_NAME and syntax
OM_S_OBJECT_IDENTIFIER_STRING .

The third descriptor specifies the AVA of an object entry in the directory. The
OM_OID_DESC macro is not used here becauseM_OID_DESC is only
used to initialize values havingOM_S_OBJECT_IDENTIFIER_STRING
syntax. The OM attribute type iDS _ATTRIBUTE_VALUES, the syntax is
OM_S _PRINTABLE_STRING, and the value idJS. The OM_STRING macro
creates a data value for a string data type (data @p& string), in this case
OM_S PRINTABLE_STRING. A string is specified in terms of its length or
whether or not it terminates with a NULL. (Th@M_STRING macro is described

in Section 5.8.2.4.)

The last descriptor is a NULL descriptor that marks the end of the public object
definition. It is defined in thecom.h header file as follows:

#define OM_NULL_DESCRIPTOR
{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES,
{ { 0, OM_ELEMENTS_UNSPECIFIED } } }

OM_NULL_DESCRIPTOR is OM attribute typedDM_NO_MORE_TYPES, syntax
OM_S_NO_MORE_SYNTAXES, and valueOM_ELEMENTS_UNSPECIFIED .

Figure 5-4 shows the composition of a descriptor list representing a public object.

DCE 1.2.2 Application Development Guide—Directory Services 173

GDS Application Programming

Figure 5-4.

174

A Descriptor List for the Public Object: country

static OM_descriptor country[] = {

OM attribute types

* Directory attribute type
OM_OID_DESC(OM_CLASS, DS_C_AVA),

i S

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

Directory attribute value

{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,0M_STRING("US") },
OM_NULL_DESCRIPTOR
h

5.1.4.2 Building the Distinguished Name as a Public Object

Recall that RDNSs are built from AVAs, and a distinguished name is built from a series
of RDNs. In a typical application program, several AVAs are defined in descriptor
lists as public objects. These public objects are incorporated into descriptor lists that
represent corresponding RDNs. Finally, the RDNs are incorporated into one descriptor
list that represents the distinguished name of an object in the directory, as shown in
Figure 5-5. This descriptor list is included as one of the input parameters to a directory
service function.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

Figure 5-5. The Distinguished Name of “Peter Piper” in the DIT

RDNs
O Country Name = "US"
O Organization Name = "Acme Pepper Co"
O Organizational Unit = "Research"
O Common Name = "Peter Piper"

Distinguished Name = {C=US, O=Acme Pepper Co, OU=Research, CN=Peter Piper}

The following code fragment fronexample.cshows how a distinguished name is
built as a public object. The public object is thameparameter for a subsequent read
operation call to the directory. The representation of a distinguished name in the DIT
is shown in Figure 5-5.

The first section of code defines the four AVAs. These AVAs make the assertion to
the directory service that the attribute values in the distinguished nafetef Piper

are valid and can therefore be read from the directory. The country nalys, ihe
organization name is\cme Pepper Cq the organizational unit name Research

and the common name Reter Piper.

/*

* Public Object ("Descriptor List") for Name parameter to
* ds_read().

* Build the Distinguished-Name of Peter Piper

*

DCE 1.2.2 Application Development Guide—Directory Services 175

GDS Application Programming

176

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

h

static OM_descriptor organization[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,

OM_STRING("Acme Pepper Co") },

OM_NULL_DESCRIPTOR

h

static OM_descriptor organizational_unit[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Research") },
OM_NULL_DESCRIPTOR

h

static OM_descriptor common_name[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Peter Piper") },
OM_NULL_DESCRIPTOR

h

The next section of code is nested one level above the previously defined AVAs.
Each RDN has a descriptor with OM attribute typ& AVAS (indicating that it is

OM attribute typeAVA), a syntax ofOM_S_OBJECT, and a value of the name of
the descriptor array defined in the previous section of code for an AVA.r@h#&
descriptor contains the descriptor list for the AVA country, tie2 descriptor contains

the descriptor list for the AVA organization, and so on.

OM_S OBJECT is a syntax that indicates that its value is a subobject. For example,

the value forDS_AVAS is the previously defined objecountry. In this manner, a
hierarchy of linked objects and subobjects can be constructed.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

static OM_descriptor rdnl[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, country } },
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn2[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S _OBJECT, { 0, organization } },
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn3[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit } },
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdndf] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, common_name } },
OM_NULL_DESCRIPTOR

h

The next section of code contains the RDNs that make up the distinguished name,
which is stored in the array of descriptors calleme It is made up of the OM class
DS_C_DS_DN(representing a distinguished name) and four RDNs of OM attribute
type DS_RDNSand syntaxXOM_S_OBJECT .

OM_descriptor namef[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdn1 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR

h

In summary, the distinguished name Reter Piperis stored in the array of descriptors
called name which is composed of three nested levels of arrays of descriptors (see
Figure 5-6). The definitions for the AVAs are at the innermost level, the definitions
for RDNs are at the next level up, and the distinguished name is at the top level.

DCE 1.2.2 Application Development Guide—Directory Services 177

GDS Application Programming

Figure 5-6. Building a Distinguished Name

AVAs

RDNs

static OM_descriptor country[] = {| static OM_descriptor rdnlf] =
descriptor list

I8 k%

static OM_descriptor organization[] = {| static OM_descriptor rdn2[] =
descriptor list

h h

static OM_descriptor organizational_unit[] = static OM_descriptor rdn3[] =

descriptor list descriptor list

|
T
|

h b
static OM_descriptor common_name[] = static OM_descriptor rdn4[] =
} b

distinguished name

OM_descriptor name[] = {|

A

r- - - T T 77 descriptor list

I

I

I

I

I

I

: CHECK_DS_CALL(ds_read(session, DS_DEFAULT _CONTEXT,
| name, selection, &result, &invoke_id));
I

I

I

I

178 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

Figure 5-7 shows a more general view of the structure distinguished name.

Figure 5-7. A Simplified View of the Structure of a Distinguished Name

DS _C_NAME abstract class
DS_CfDS_DN concrete subclass

DS_CfDS_RDN concrete class

DS_i_AVA concrete class

The name descriptor defines a public object that is provided asrthmeparameter
required by the XDS API read function cadls_read() as follows. (XDS API function
calls are described in detail in Chapter 6.)

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

The result of thals_read()function call is in a private implementation-specific format;

it is stored in a workspace and pointed to t®gsult. The application program must

use XOM function calls (described in Section 5.7) to interpret the data and extract the
information. This extraction process involves uncovering the nested data structures in
a series of XOM function calls.

5.1.4.3 Client-Generated and Service-Generated Public Objects

There are two types of public objects: service-generated objects and client-generated
objects. The distinguished name object described in the previous section is a client-
generated public object because an application program (the client) created the data

DCE 1.2.2 Application Development Guide—Directory Services 179

GDS Application Programming

180

structure. As the creator of the public object, it is the responsibility of the application
program to manage the memory resources allocated for it.

Service-generated public objects are created by the XOM service. Service-generated
public objects may be generated as a result of an XOM request. An XOM API function,
such asom_get() converts a private object into a service-generated public object. This
is necessary because XDS may return a pointer to data in private format that can only
be interpreted by XOM functions such am_get().

For example, Figure 5-8 shows how the read request described in the previous example
returns a pointer to an encoded data structure storegdult. This encoded data
structure, referred to as private object(described in the next section) is one of

the input parameters tom_get() The om_get() function provides a pointer to a
public object (in this caseentry) as an output parameter. The public object is a data
structure that has been interpreteddmy_get()and is accessible by the application
program (the client). The information requested by the application in the read request
is contained in the output parametamtry.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

Figure 5-8. Client-Generated and Service-Generated Objects

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke));

client-generated service-generated
public objects private object

context

session

result

[e

entry

workspace

application program space

service-generated
public object

\
CHECK_OM_CALL(om_get (result,
OM_EXCLUDE_ALL_BUT_THESE_TYRES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

The application program is responsible for managing the storage (memory) for the
service-generated public object. This is an important point because it requires that
the application issue a series ofm_delete() calls to delete the service-generated
public object from memory. Because the data structures involved with directory
service requests can be very large (often involving large subtrees of the DIT), it
is imperative that the application programmer build into any application program the
efficient management of memory resources.

DCE 1.2.2 Application Development Guide—Directory Services 181

GDS Application Programming

5.1.5

Table 5-3.

182

The following code fragment fronexample.hdemonstrates how storage for public
and private objects is released by using a seriesnof delete()function calls after

they are no longer needed by the application program. The data (a list of phone
numbers associated with the nafeter Piper required by the application program)
has already been extracted by using a seriesnofget()function calls, as follows:

/* We can now safely release all the private objects
* and the public objects we no longer need

*

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

Private Objects

Private objects are created dynamically by the service interface. In Figure 5-8, the
ds_read() function returns a pointer to the data structuesult in the workspace.

This service-generated data structure is a private object in a private implementation-
specific format, which requires a calléon_get()to interpret the data. A private object

is one of the required input parameters to XOM API functions (suchmasget(),

as shown in Figure 5-8. Private objects are always service generated.

Table 5-3 compares private and public objects.

Comparison of Private and Public Objects

Private Public
Representation is implementation Representation is defined in the API
specific specification

Not directly accessible by the client | Directly accessible by the client

Manipulated by the client by using OM Manipulated by the client by using
functions programming constructs

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.1.6

Private Public

o

Created in storage provided by the Is a service-generated object if create
service by the service
Is a client-generated object if created

by the client in storage provided by the
client
Cannot be modified by the client If a client-generated object, can be
directly, except through the service modified directly by the client
interface If a service-generated object, cannot be

modified directly by the client, except
through the service interface

Storage is allocated and released by tHéa service-generated object, storagel|is
service allocated and released by the service
If a client-generated object, storage is
allocated and released by the client

Private objects can also be used as input to XOM and XDS API functions to improve
program efficiency. For example, the output ofl@ search()request can be used as
input to ds_read() The search request returns the name of each entry in the search.
If the application program requires the address and telephone number of each name,
a ds_read()operation can be performed on each name as a private object.

Object Classes

Objects are categorized into OM classes based on their purpose and internal structure.
An object is an instance of its OM class. An OM class is characterized by OM attribute
types that may appear in its instances. An OM class is uniquely identified by an ASN.1
object identifier.

Later in this section, it will be shown how OM classes are organized into groups of
OM classes, callepackagesthat support some aspect of the directory service.

DCE 1.2.2 Application Development Guide—Directory Services 183

GDS Application Programming

5.16.1 OM Class Hierarchy and Inheritance Properties

Figure 5-9.

184

OM classes are related to each other in a tree hierarchy whose root is a special
OM class calledOM_C_ OBJECT. Each of the other OM classes is the immediate
subclass of precisely one other OM class. This tree structure is known a@Mhe
class hierarchy It is important because of the property of inheritance. The OM class
hierarchy is defined by the XDS/XOM standards. DCE implements this hierarchy for
GDS and adds its own set of OM classes defined in the GDS package.

The OM attribute types that may exist in an instance of an OM class, but not in an
instance of the OM class above it in the tree hierarchy, are said spésficto that

OM class. OM attributes that may appear in an object are those specific to its OM
class as well as those inherited from OM classes above it in the tree. OM classes
above an instance of an OM class in the treesangerclassesf that OM class. OM
classes below an instance of an OM classsareclassesf that OM class.

For example, as shown in Figure 5-)S C_ENTRY_INFO_SELECTION

inherits its OM attributes from its supercla€@M_C_OBJECT. The OM attributes
DS_ALL_ATTRIBUTES , DS_ATTRIBUTES_SELECTED, andDS_INFO_TYPE

are attributes specific to the OM claBS_C_ENTRY_INFO_SELECTION. The
DS _C_ENTRY_INFO_SELECTION class has no subclasses.

The OM Class DS_C_ENTRY_INFO_SELECTION

OM_C_OBJECT

OM_CLASS

DS_C_ENTRY_INFO_SELECTION

DS_ALL_ATTRIBUTES
DS_ATTRIBUTES_SELECTED
DS_INFO_TYPE

Another important point about OM class inheritance is that an instance of an OM
class is also considered to be an instance of each of its superclasses and may appear

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

wherever the interface requires an instance of any of those superclasses. For example,
DS_C_DS_DNis a subclass ddS_C_NAME. Everywhere in an application program
whereDS_C_NAME is expected at the interface (as a parametetlgoread() for
example), it is permitted to suppS_C_DS_DN

516.2 Abstract and Concrete Classes

OM classes are defined as being eithbstractor concrete. An abstract OM class
is an OM class in which instances are not permitted. An abstract OM class may be
defined so that subclasses can share a common set of OM attributes between them.

In contrast to abstract OM classes, instances of OM concrete classes are permitted.
However, the definition of each OM concrete class may include the restriction that
a client not be allowed to create instances of that OM class. For example, consider
two alternative means of defining the OM classes used in XDS:C_LIST_INFO
andDS_C_READ_RESULT. DS_C_LIST_INFO andDS_C_READ_RESULT are
subclasses of the abstract OM cl&S_C_COMMON_RESULT.

Figure 5-10 shows the relationship of DS _C_LIST_INFO and
DS_C_READ_RESULTSwhen the abstract OM clag&S_C_COMMON_RESULT

is defined and when it is not defined. It demonstrates that the presence of an abstract
OM class enables the programmer to develop applications that process information
more efficiently.

DCE 1.2.2 Application Development Guide—Directory Services 185

GDS Application Programming

Figure 5-10.

186

Comparison of Two Classes With/Without an Abstract OM Class

OM_C_OBJECT

OM_CLASS

DS_C_COMMON_RESULT

DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO DS_C_READ_RESULT

DS_ENTRY

DS_OBJECT_NAME
DS_PARTIAL_OUTCOME_QUAL

DS_SUBORDINATES

DS_C_LIST_INFO and DS_C_READ_RESULT with the DS_C_COMMON_RESULT abstract class defined

OM_C_OBJECT

OM_CLASS

DS_C_LIST_INFO DS_C_READ_RESULT

DS_OBJECT_NAME DS_ENTRY
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_PARTIAL_OUTCOME_QUAL

DS_SUBORDINATES
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO and DS_C_READ_RESULT without the DS_C_COMMON_RESULT abstract class defined
The following list contains the hierarchy of concrete and abstract OM classes in the

directory service package. Abstract OM classes are shown in italics. The indentation
shows the class hierarchy; for example, the abstract digs C OBJECTis a

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

superclass of the abstract claBS_C_COMMON_RESULTSvhich in turn is a
superclass of the concrete cld3§_C _COMPARE_RESULT.
OM_C_OBJECT
« DS_C_ACCESS_POINT
« DS_C_ADDRESS
— DS_C_PRESENTATION_ADDRESS
 DS_C_ATTRIBUTE
— DS_C_AVA
— DS_C_ENTRY_MOD
— DS_C_FILTER_ITEM
* DS_C_ATTRIBUTE_ERROR
* DS_C_ATTRIBUTE_LIST
— DS_C_ENTRY_INFO
« DS_C_COMMON_RESULTS
— DS_C_COMPARE_RESULT
— DS_C_LIST_INFO
— DS_C_READ_RESULT
— DS_C_SEARCH_INFO
« DS_C_CONTEXT
« DS_C_CONTINUATION_REF
— DS_C_REFERRAL
« DS_C_ENTRY_INFO_SELECTION
« DS_C_ENTRY_MOD_LIST
« DS_C_ERROR
— DS_C_ABANDON_FAILED
— DS_C_ATTRIBUTE_PROBLEM
— DS_C_COMMUNICATIONS_ERROR

DCE 1.2.2 Application Development Guide—Directory Services 187

GDS Application Programming

— DS_C_LIBRARY_ERROR
— DS_C_NAME_ERROR
— DS_C_SECURITY_ERROR
— DS_C_SERVICE_ERROR
— DS_C_SYSTEM_ERROR
— DS_C_UPDATE_ERROR
« DS_C_EXT
.« DS_C_FILTER
« DS_C_LIST_INFO_ITEM
« DS_C_LIST_RESULT
- DS_C_NAME
— DS_C_DS_DN
« DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
. DS_C_RELATIVE_NAME
— DS_C_DS_RDN
« DS_C_SEARCH_RESULT
« DS_C_SESSION

In summary, an OM class is defined with the following elements:
» OM class name (indicated by an object identifier)
* Identity of its immediate superclass
« Definitions of the OM attribute types specific to the OM class
* Indication whether the OM class is abstract or concrete
 Constraints on the OM attributes

A complete description of OM classes, OM attributes, syntaxes, and values that
are defined for XDS and XOM APIs are described in Part 4. Tables and textual

188 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

descriptions, such as the one shown in Figure 5-11 for the concrete OM class

DS_C_ATTRIBUTE, are provided for each OM class.

Figure 5-11. Complete Description of Concrete OM Class DS_C_ATTRIBUTE

Description of the class including an
indication if it is an abstract class

DS_C_ATTRIBUTE /

An instance of OM class DS_C_ATTRIBUTE is an attribute of an object and, -
thus a component of its directory entry. / ';‘Jﬂg?fﬁ.sasses
An instance of this OM class has the OM attributes of its superclass, oM ¢ OBJECT ,in

addition to the OM attributes listed in the following table.
Table showing values

of syntax, length,
/ number of values,

Table 11-2. OM_Attributes of a DS_C_ATTRIBUTE and initial value

] Value Value Value Value
OM Attribute Syntax Length Number Initially

DS_ATTRIBUTE_ | String(OM_S_OBJECT_
TYPE IDENTIFIER_
STRING) - 1 -

DS_ATTRIBUTE_
VALUES any - O or more -

'/ Description of attributes and
listing of attribute values

o DS_ATTRIBUTE_TYPE

The attribute type that indicates the class of information given by this attribute.

© DS_ATTRIBUTE_VALUES

The attribute values. The OM value syntax and the number of values allowed for this
OM attribute are determined by the value of the DS_ATTRIBUTE_TYPE
OM attribute in accordance with the rules given in "Attribute and AVA" in Chapter
10. If the values of this OM attribute have the syntax String(*), the strings can be
long and segmented. For this reason, om_read() and om_write() need to be
used to access all String(*) values.

Note: A directory attribute must always have at least one value, although it is
acceptable for instances of this OM class not to have any values.

The table shown in Figure 5-11 provides information under the following headings:

DCE 1.2.2 Application Development Guide—Directory Services

189

GDS Application Programming

* OM Attribute

This is the name of each of the OM attributes.
» Value Syntax

This provides the syntaxes of each of the OM attribute’s values.
* Value Length

This describes any constraints on the number of bits, octets, or characters in each
value that is a string.

* Value Number
This describes any constraints on the number of values.
* Value Initially
This is any value with which the OM attribute can be initialized.
An OM class can be constrained to contain only one member of a set of OM attributes.

In turn, OM attributes can be restricted to having no more than a fixed number of
values, either O (zero) or 1 as an optional value, or exactly one mandatory value.

An OM attribute’s value may be also constrained to a single syntax. That syntax can
be further restricted to a subset of defined values.

An object passed as a parameter to an XOM and XDS function call needs to meet a
minimum set of conditions, as follows:

* The type of each OM attribute must be specific to the object's OM class or one
of its superclasses.

» The number of values of each OM attribute must be within OM class limits.
» The syntax of each value must be among those the OM class permits.

» The number of bits, octets, or characters in each string value must be within OM
class limits.

190 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.2

5.2.1

Packages

A packagsés a collection of OM classes that are grouped together, usually by function.
The packages themselves are features that are negotiated with the directory service by
using the XDS functiords_version() Consider which OM classes will be required for

your application programs and determine the packages that contain these OM classes.

A package is uniquely identified by an ASN.1 object identifier. DCE XDS API supports
the following five packages, of which one is mandatory and four are optional:

» The directory service package (mandatory)

» The basic directory contents package (optional)

» The strong authentication package (optional)

The GDS package (optional)

» The message handling system (MHS) directory user package (optional)

The Directory Service Package

The directory service package is the default package and as such does not require
negotiation. The optional packages have to be negotiated with the directory service
by using theds_version()function.

The object identifiers for specific packages are defined in header files that are part
of the XDS API and XOM API. An object identifier consists of a string of integers.
The header files includédefine preprocessor statements that assign names to the
constants in order to make them more readable. For the application programmer, these
assignments alleviate the burden of maintaining strings of integers. For example, the
object identifiers for the directory service package are definexdsh The xds.h
header file contains OM class and OM attribute hames, OM object constants, and
defines prototypes for XDS API functions, as shown in the following code fragment
from xds.h

/* DS package object identifier */
/* {iso(1) identifier-organization(3) icd-ecma(12)
* member-company(2)

DCE 1.2.2 Application Development Guide—Directory Services 191

GDS Application Programming

5.2.2

192

* dec(1011) xopen(28) dsp(0) } */
#define OMP_O_DS_SERVICE_PKG "\x2B\x0C\x02\x87\xIC\x00"

A ds_version() function call must be included within an application program to
negotiate the optional features (packages) with the directory service. The first step is
to build an array of object identifiers for the optional packages to be negotiated (the
basic directory contents package and the GDS package), as shown in the following
code fragment from thacl.h header file:

DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{o}

h

TheOM_STRING macro is provided for creating a data value of data ®p& string
for octet strings and characters. XOM API macros are described in Section 5.8.2.

The array of object identifiers is stored fisatures and passed as an input parameter
to ds_version() as shown in the following code fragment frcaal.c:

/* Negotiate the use of the BDC and GDS packages. */
if (ds_version(features) != DS_SUCCESS)
printf("ds_version() error\n");

The Basic Directory Contents Package

The basic directory contents package contains the object identifier definition of
directory classes and attribute types as defined by the X.500 standard. These definitions
allow the creation of and maintenance of directory entries for a number of common
objects so that the representation of all such objects is the same throughout the
directory. Also included are the definitions of the OM classes and OM attributes
required to support the directory attribute types. Chapter 12 describes the basic
directory contents package in detail.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.2.3

5.24

The object identifier associated with the basic directory contents package is shown in
the following code fragment from thedsbdcp.h header file:

/* BDC package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)

* member-company (2)

* dec(1011) xopen(28) bdcp(1) } */

#define OMP_DS_BASIC_DIR_CONTENTS_PKG "\x2B\x0C\x02\x87\x73\x1C\x01"

The Strong Authentication Package

The strong authentication package contains the object identifier definition of directory
classes and attribute types as defined by the X.500 standard for security purposes.
Also included are the definitions of the OM classes and OM attributes required to
support these security attribute types. Chapter 13 describes the strong authentication
package in detail.

The object identifier associated with the strong authentication package is shown in the
following code fragment from th&dsap.h header file:

/* SA package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)

* member-company (2)

* dec(1011) xopen(28) sap(2) } */

#define OMP_DS_STRONG_AUTHENT_PKG "\x2B\x0C\x02\x87\x73\x1C\x02"

The GDS Package

The GDS package contains the definition of a DCE extension to the XDS API. It
contains the definitions of OM classes, OM attributes, and syntaxes to support extended
functionality specific to DCE. Chapter 15 describes the GDS package in detail.

DCE 1.2.2 Application Development Guide—Directory Services 193

GDS Application Programming

5.25

194

The following code fragment from thedsgds.hheader file shows the object identifier
for the GDS package:

/* GDS package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12) member-company (2)

I* siemens-units(1107) sni(1) directory(3) xds-api(100) gdsp(l) } */
#define OMP_O_DSX_GDS_PKG "\x2B\x0C\x02\x88\x53\x01\x03\x64\x01"

The MHS Directory User Package

The MHS directory user package contains definitions to support the use of the
directory in accordance with the standard X.400 (1988) User Agents and Message
Transfer Agents (MTAs) for name resolution, distribution list expansion, and capability
assessment. The definitions are based on the attribute types and syntaxes specified in
X.402, Annex A. The definitions of the OM classes and OM attributes required to
support these MHS attribute types are also included with this package. Chapter 14
describes the MHS directory user package in detail.

The object identifier associated with the MHS directory user package is shown in the
following code fragment from th&dsmdup.h header file:

/* MDU package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)

* member-company (2)

* dec(1011) xopen(28) mdup(3) } */

#define OMP_DS_MHS_DIR_USER_PKG "\x2B\x0C\x02\x87\x73\x1C\x03"

Part 4 of this guide describes in detail the attributes and data types that make up the

OM and directory classes defined in the XDS API packages. Chapter 7 examines in
detail how these packages are used in developing the sample application programs.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.2.6

5.3

Package Closure

An OM class can be defined to have an attribute whose OM class is defined in some
other package in order to avoid duplication of OM classes. This gives rise to the
concept of a package closure. A package closure is the set of all OM classes that need
to be supported so that all possible instances of all OM classes can be defined in the
package.

Workspaces

Two application-specific APIs or two different implementations of the same service
require work areas, calledorkspaces, to maintain private and public (service-
generated) objects. The workspace is required because two implementations of the
same service (or different services) can represent private objects differently. Each one
has its own workspace. Using the functions provided by XOM API, suadmnagget()
andom_copy() objects can be copied and moved from one workspace to another.

Recall that private objects are returned by a service to a workspace in private
implementation-specific format. Using the OM function calls described in Section
5.7, the data can be extracted from the private object for further program processing.

Before a request to the directory can be made by an application program, a workspace
must be created by using the appropriate XDS function. An application creates a
workspace by performing the XDS API cals_initialize(). Once the workspace is
obtained, subsequent XDS API calls, suchdasread() return a pointer to a private
object in the workspace. When program processing is completed, the workspace is
destroyed by using thés_shutdown()XDS API function. Implicit inds_shutdown()

is a call to the XOM API functionom_delete()to delete each private object the
workspace contains.

The programs in Chapter 7 demonstrate how to initialize and shut down a workspace.
The XDS functionsds_initialize() and ds_shutdown() are described in detail in
Chapter 6.

The closures of one or more packages are associated with a workspace. A package can
be associated with any number of workspaces. An application program must obtain
a workspace that supports an OM class before it is able to create any instances of

DCE 1.2.2 Application Development Guide—Directory Services 195

GDS Application Programming

5.4

196

that OM class. For example, some of these operations in an application may require
involvement with GDS security, ACLs, or the DUA cache. Therefore, in addition

to the basic packages provided by the directory service APIs, the workspace would

have to support the GDS package. The following code fragment demonstrates how an
application initializes a workspace and negotiates the packages to be associated with
that workspace:

/* Build up an array of object identifiers for the optional */

/* packages to be negotiated. */
DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{o}

h
CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));
CHECK_DS_CALL(ds_version(bdcp_package, workspace));

Storage Management

An object occupies storage. The storage occupied by a public object is allocated by
the client, and is, therefore, directly accessible by the client and can be released by
the client. The storage occupied by a private object is not accessible by the client and
must be managed indirectly by using XOM function calls.

Objects are accessed by an application program via object handles. Object handles are
used as input parameters to interface functions by the client and returned as output
parameters by the service. The object handle for a public object is simply a pointer to
the data structure (an array of descriptors) containing the object OM attributes. The
object handle for a private object is a pointer to a data structure that is in private
implementation-specific format and, therefore, inaccessible directly by the client.

The client creates a client-generated public object by using normal programming
language constructs; for example, static initialization. The client is responsible for
managing any storage involved. The service creates service-generated public objects
and allocates the necessary storage. As previously mentioned, the client must destroy

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

service-generated public objects and release the storage by applying the XOM function
om_delete()to it, as shown in the following code fragment:

/* We can now safely release all the private objects
* and the public objects we no longer need

*

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

The service also creates private objects for which it allocates storage that must be
managed by the application.

One of the input parameters to this_read() function call is name The name
parameter is a public object created by the application from a series of nested data
structures (RDNs and AVAS) to represent the distinguished name contahatey

Piper. When the application no longer needs the public object, it issues the XDS
function call ds_shutdown()to release the memory resources associated with the
public object. Theds_read() call returns the pointer to a private objecgsult,
deposited in the workspace by the service.

The program goes on to use the XOM functiom_get() with the input parameter

result as a pointer to extract attribute values from the returned private object. The
om_get() call returns the pointeentry as a service-generated public object to the
program so that the attribute values specified in the call can be accessed by it. Once
the value is extracted, the application can continue processing; for example, printing a
message to a user with some extracted value like a phone number or postal address. The
service-generated public object becomes the responsibility of the application program.
The program goes on to release the resources allocated by the service by issuing
a series of calls tam_delete() as shown in the following code fragment from
example.h

/*
* extract the telephone number(s) of "name" from the result
*

DCE 1.2.2 Application Development Guide—Directory Services 197

GDS Application Programming

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry,

&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

/* We can now safely release all the private objects
* and the public objects we no longer need

*

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

If the client possesses a valid handle (or pointer) for an object, it has access to a
private object. If the client does not possess an object handle or the handle is not
a valid one, a private object is inaccessible to the client and an error is returned
to the calling function. In the preceding code fragment, the handles for the objects
stored inentry, attributes andtelephonesare the pointer&entry, &attributes, and
&telephonesrespectively.

198 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.5 OM Syntaxes for Attribute Values

An OM attribute is made up of an integer uniquely defined within a package that
indicates the OM attribute’s type, an integer giving that value’'s syntax, and an
information item called avalue The syntaxes defined by the XOM API standard
are closely aligned with ASN.1 types and type constructors.

Some syntaxes are described in the standard in terms of syntax templates.
A syntax template defines a group of related syntaxes. The syntax templates that are
defined are as follows:

* Enum¢)

* Objectf)

* String()

55.1 Enumerated Types

An OM attribute with syntax template Enum(is an enumerated type
(OM_S ENUMERATION) and has a set of values associated with that
OM attribute. For example, one of the OM attributes of the OM class
DS_C_ENTRY_INFO_SELECTION is DS_INFO_TYPE. DS_INFO_TYPE is
listed in the OM attribute table fddS_C_ENTRY_INFO_SELECTION in Chapter

11 as having a value syntax of Enud& Information_Type), as shown in Table
5-4. DS_INFO_TYPE takes one of the following values:

« DS_TYPES_ONLY
. DS_TYPES_AND_VALUES

DCE 1.2.2 Application Development Guide—Directory Services 199

GDS Application Programming

Table 5-4. Description of an OM Attribute By Using Syntax Enum(*)
OM Attributes of DS_C_ENTRY_INFO_SELECTION
Value Value Value
OM Attribute Value Syntax Length Number Initially
DS_ALL_ATTRIBUTES | OM_S BOOLEAN — 1 OM_TRUE
DS _ATTRIBUTES StringOM_S_OBJECT _ — 0 or more —
SELECTED IDENTIFIER_STRING)
DS _INFO_TYPE Enum@S_Information_ — 1 DS_ TYPES_
Type) AND_
VALUES
The C language representation of the syntax of the OM attribute type
DS INFO_TYPE is OM_S ENUMERATION as defined in the xom.h
header file. The value of the OM attribute is eith&S TYPES ONLY or
DS_TYPES_AND_VALUES , as shown in the following code fragment from
example.h:
/*
* Public Object ("Descriptor List") for
* Entry-Information-Selection
* parameter to ds_read().
*/
OM_descriptor selection]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NER),
{ DS_INFO_TYPE,OM_S_ENUMERATION,
{ DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR
h
200 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.5.2 Object Types

An OM attribute with syntax template Objet}(has OM_S OBJECT as syntax

and a subobject as a value. For example, one of the OM attributes of the OM
classDS_C DS DNis DS_RDNS DS RDNSis listed in the OM attribute table

for DS_C_DS_DNas having a value syntax of Objed®S C_DS_RDN, as shown

in Table 5-5.

Table 5-5. Description of an OM Attribute By Using Syntax Object(*)

OM Attributes of DS _C_ DS DN
Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_RDNS ObjectDS_C_DS_RDN)| — 0 or —
more

The C language representation of the syntax of the OM attribute DPERDNSIs
OM_S OBJECT, as shown in following code fragment froexample.h

OM_descriptor namef[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdn1 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR

h

5.5.3 Strings

An OM attribute with syntax template Strirtg(specifies the string syntax of its value.

A string is categorized as eithetb# string, an octet string or acharacter string The

bits of a bit string, the octets of an octet string, or the octets of a character string
constitute theelementsof the string. (Refer to Chapter 17 for a list of the syntaxes
that form the string group.)

DCE 1.2.2 Application Development Guide—Directory Services 201

GDS Application Programming

5.5.4

5.6

202

The value length of a string is the number of elements in the string. Any constraints
on the value length of a string are specified in the appropriate OM class definitions.

The elements of the string are numbered. The position of the first element is O (zero).
The positions of successive elements are successive positive integers.

For example, one of the attributes of the oM class
DS _C_ENTRY_INFO_SELECTION is DS _ATTRIBUTES_SELECTED.
DS _ATTRIBUTES SELECTED is listed in the OM attribute table
for DS_C_ENTRY_INFO_SELECTION as having a value syntax of
StringOM_S_OBJECT _IDENTIFIER_STRING), as shown in Table 5-4.

Other Syntaxes

The other syntaxes are defined as follows:
* OM_S_BOOLEAN

A value of this syntax is a Boolean; that is, the value can(d_TRUE or
OM_FALSE.

* OM_S_INTEGER
A value of this syntax is a positive or negative integer.
* OM_S_NULL

The one value of this syntax is a valueless placeholder.

Service Interface Data Types

The local variables within an application program that contain the parameters and
results of XDS and XOM API function calls are declared by using a standard set of
data types. These data types are definedypgdef statements in th&om.h header

files. Some of the more commonly used data types are described in the following
subsections. A complete description of service interface data types is provided in
Chapter 18 and in thBCE 1.2.2 Application Development Reference

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.6.1 The OM_descriptor Data Type

The OM_descriptor data type is used to describe an OM attribute type and value.
A data value of this type is a descriptor, which embodies an OM attribute value. An
array of descriptors can represent all the values of an object.

OM_descriptor is defined in thecom.h header file as follows:

/* Descriptor */
typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

OM_descriptor is made up of a series of nested data structures, as shown in Figure
5-12.

DCE 1.2.2 Application Development Guide—Directory Services 203

GDS Application Programming

Figure 5-12. Data Type OM_descriptor_struct

-

typedef struct OM_descriptor_struct {
OM_type type; ———» typedef OM_uintl6 OM_type T
OM_syntax syntax; —® typedef OM_uintl6 OM_syntax; J
union OM_value_union value;
} OM_descriptor;

Y
typedef unsigned OM_uint16;
typedef long unsigned OM_uint32;
typedef long int OM_sint32;

\

typedef union OM_value_union {

OM_string string;
OM_boolean boolean; —» typedef OM_uint32 OM_boolean;
OM_enumeration enumeration; —= typedef OM_sint32 OM_enumeration;
OM_integer integer; — typedef OM_sint32 OM_integer
OM_padded_object object;

} OM_value;

L——» typedef struct {

OM_string_length length;
void *elements;
JOM_string;

t———————————® typedef struct {

OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef struct OM_descriptor_struct *OM_object; ———

204

Figure 5-12 shows thaype andsyntax are integer constants for an OM attribute type
and syntax, as shown in the following code fragment frexample.c

static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

h

The code fragment initializes four descriptors, as shown in Figure 5-13. The type and
syntax evaluate to integers for all four descriptors.

Figure 5-13. Initializing Descriptors

static OM_descriptor country[] ={
OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

Type Syntax Value

OM_CLASS =3 OM_S_OBJECT_IDENTIFIER_STRING =6 | 9, DS_C_AVA =
\x2B\x0C\x02\x87\x73\x1C\x00\x85\x44

DS_ATTRIBUTE_TYPE =711 OM_S_OBJECT_IDENTIFIER_STRING =6 | 3, DS_A_COUNTRY_NAME =\x55\x04\x06

DS_ATTIBUTE_VALUES =713 | OM_S_PRINTABLE_STRING =19 2, "us"

OM_NO_MORE_TYPES =0 OM_S_NO_MORE_SYNTAXES =0 0, OM_ELEMENTS_UNSPECIFIED =0

The value component is a little more complex. Figure 5-12 shows thdtie is a

union of OM_value_union . OM_value_union has five membersstring, boolean
enumeration, integer, andobject. The member&oolean enumeration, andinteger

have integer values. Theiring member contains a string of tygeM_string, which

is a structure composed of a length and a pointer to a string of charactersbjEoe
member is a structure of tyl@M_padded_objectthat points to another object nested
below it. Many OM attributes have other objects as values. These subobjects, in turn,
may have other subobjects and so on.

For example, as shown in Figure 5-14, the OM cl&s C_READ_RESULT has
one OM attribute:DS_ENTRY. The syntax ofDS_ENTRY is OM_S_OBJECT
with a value of DS_C_ENTRY_INFO, indicating that it points to the
subobject DS_C_ENTRY_INFO. DS _C_ENTRY_INFO has the OM attribute

DCE 1.2.2 Application Development Guide—Directory Services 205

GDS Application Programming

DS_OBJECT_NAME with the syntaxOM_S_OBJECT, indicating that it points to
the subobjecDS_C_NAME.

Figure 5-14. An Object and a Subordinate Object

OM Class Attribute Syntax and Value
DS_C_READ_RESULT DS_ENTRY Object(DS_C_ENTRY_INFO)
DS_C_ENTRY_INFO DS_FROM_ENTRY

OM_S_BOOLEAN

DS_OBJECT_NAME Object(DS_C_NAME)

5.6.2 Data Types for XDS API Function Calls

The following code fragment froraxample.hshows how the data types are used to

declare the variables that contain the output parameters from the XDS API function
calls.

int main(void)

{

DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

The code fragment shows the following:

» The ds_initialize() call returns a variable of typ®M_workspace that contains
a handle or pointer to a workspace.

206 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

» The ds_bind() call returns a pointer to a variable of tyg@_private_object.
The private object contains the session information required by all subsequent
XDS API calls, exceptls_shutdown()

» Theds_read()call returns a pointer to the result of a directory read request in a
variable of typeOM_private_object.

» The error handing macro€HECK_DS CALL and CHECK_OM_CALL ,
defined in the example.h header file, use the data typd3S_status and
OM_return_code, respectively, as return values from XDS and XOM API
function calls.

5.6.3 Data Types for XOM API Calls

The following code fragment froraxample.hshows how the data types are used to
declare the variables that contain the input and output parameters for the XOM API

function calls.

/*

* variables to extract the telephone number(s)

*

OM_type
OM_type
OM_type
OM_public_object
OM_public_object
OM_public_object
OM_descriptor

OM_value_position

entry_list[] = { DS_ENTRY, 0 };
attributes_list[] = { DS_ATTRIBUTES, 0 };
telephone_list] = { DS_ATTRIBUTE_VALUES, 0 };

entry;

attributes;

telephones;

telephone; / current phone number */
total_num; /* number of Attribute Descriptors */

The code fragment shows the following:

» The series obm_get()calls requires a list of OM attribute types that identifies the
types of OM attributes to be included in the operation. The variadhsy list,
attribute_list, andtelephone_listare declared as typ@M_type.

DCE 1.2.2 Application Development Guide—Directory Services 207

GDS Application Programming

5.7

5.7.1

208

» The series of om_get() calls return pointers to variables of type
OM_public_object. The om_get() call generates public objects that are
accessible to the application program.

* Where the variabléotal_num is type OM_value_position and is used to hold
the number of OM descriptors returned bsn_get()

Chapter 17 contains detailed descriptions of all the data types defined by XOM API.

OM Function Calls

XOM API supports general-purpose OM functions defined by the X/Open standards
body that allow an application program to manipulate objects in a workspace. Section
5.7.1 lists the OM function calls and gives a brief description of each. Section 5.7.2
illustrates the use of OM function calls by using th_get()call as an example.

Summary of OM Function Calls

The following list of XOM API function calls contains a brief description of each
function. Refer to the appropriate reference page in E@E 1.2.2 Application
Development Referender a detailed description of the input and output parameters,
return codes, and usage of each function.

* om_copy()

Creates an independent copy of an existing private object and all of its subobjects
in a specified workspace.

* om_copy_value()

Replaces an existing OM attribute value or inserts a new value into a target private
object with a copy of an existing OM attribute value found in a source private
object.

» om_create()
Creates a private object that is an instance of the specified OM class.

» om_delete()

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

Deletes a private or service-generated public object.
* om_get()

Creates a new public object that is an exact, but independent, copy of an existing
private object; certain exclusions and/or syntax conversion may be requested for
the copy.

» om_instance()

Tests to determine if an object is an instance of a specified OM class (includes
the case when the object is a subclass of that OM class).

* om_put()

Places or replaces copies of the attribute values of the source private or public
object into the target private object.

» om_read()
Reads a segment of a string attribute from a private object.
* om_remove()
Removes and discards values of an attribute of a private object.
o om_write()
Writes a segment of a string attribute to a private object.
» om_encode()
Not supported by DCE XOM API.
» om_decode()
Not supported by DCE XOM API.

5.7.2 Using the OM Function Calls

Most application programs require the use of a seriesmof get() function calls to
create service-generated public objects from which the program can extract requested
information. For this reason, this section uses the operatiomofyet()as an example

to describe how XOM API functions operate in general.

DCE 1.2.2 Application Development Guide—Directory Services 209

GDS Application Programming

The following code fragment fronexample.h shows how a series obm_get()
function calls extract a list of telephone numbers from a workspace.dSheead()
function call deposits the private object storeddsult in the workspace and provides
access to it by the pointe&result .

/*

* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry,

&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

/* We can now safely release all the private objects
* and the public objects we no longer need

*

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

for (telephone = telephones;

telephone->type != DS_ATTRIBUTE_VALUES;

210 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

telephone++)

{

if (telephone->type 1= DS_ATTRIBUTE_VALUES
|| (telephone->syntax & OM_S_SYNTAX) =
OM_S_PRINTABLE_STRING)

{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);
}

(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}
CHECK_OM_CALL(om_delete(telephones));

Theom_get()call makes a copy of all or a selected set of parts of a private object. The
copy is a service-generated public object that is accessible to the application program.
The application program extracts the list of telephone numbers from this copy.

5.7.2.1 Required Input Parameters

The om_get()function requires the following input parameters:
* A private object
* A set of exclusions

» A set of OM attributes to be included in the copy

A flag to indicate whether local string processing is required
» The position of the first value to be copied (the base value)

» The position within each OM attribute that is one beyond the last attribute to be
included in the copy (indicating the scope of the copy)

The om_get()call returns the following output parameters:
» The public object that is a copy of the private object

» The number of OM attribute descriptors returned in the public object

In the code fragment frorexample.h the private objectesult is input toom_get()

DCE 1.2.2 Application Development Guide—Directory Services 211

GDS Application Programming

212

The next parameter, trexclusiongparameter, reduces the copy to a prescribed portion
of the original. The exclusions apply to the OM attributes of the object, but not
to those of subobjects. The possibilities for determining the combinations of types,
values, subobjects, and descriptors to be excluded depend on the creativity of the
programmer. For a detailed description of all the exclusion possibilities, refer to the
DCE 1.2.2 Application Development Referenthe values chosen for them_get()

calls inexample.hare simplified for clarity. These exclusion values are as follows:

« OM_EXCLUDE_ALL_BUT_THESE_TYPES
« OM_EXCLUDE_SUBOBJECTS

Each value indicates an exclusion, as definecbby get() and is chosen from the

set of exclusions; alternatively, the single valod_NO_EXCLUSIONS may be
chosen, which selects the entire object. Each value, exaptNO_EXCLUSIONS,

is represented by a distinct bit, the presence of the value being represented as 1, and
its absence as 0 (zero). Multiple exclusions are requested by adding or ORing the
values that indicate the individual exclusions.

OM_EXCLUDE_ALL_THESE_TYPES indicates that the OM attributes included

are only the ones defined in the list of included types supplied in the next parameter,
entry_list OM_EXCLUDE_SUBOBJECTS indicates that, for each value whose
syntax iSOM_S_OBJECT, a descriptor containing an object handle for the original
private subobject is returned, rather than a public copy of it. This handle makes that
subobject accessible for use in subsequent function calls. Exclusion provides a means
to examine an object one level at a time. The object the handle points to is used in
the nextom_get()call to get the next level.

The entry_list parameter is declared iexample.h as data typeOM_type and
initialized as a two-cell array with valueBS_ENTRY and a NULL terminator.
DS_ENTRY specifies the single OM attribute type included for tbat_get() call.

This call only limits processing to the one directory entry; only one entry was defined
previously in the program — the distinguished namePeter Piper. The 0 (zero)
marks the end of the OM attribute list.

The next parameteM_FALSE, indicates that mapping to a local string format is

not required. The next two parameters set the initial and limiting value to 0 (zero),
meaning that no specific values are to be excluded.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

The final two parameters are output parametensry, a pointer to a service-generated
public object deposited bym_get()in the workspace, antal_num an integer. Both
entry andtotal_numare available for examination by the application program.

5.7.2.2 Extracting the Data from the Read Result

The entry parameter contains the result of processing dm_get() of the read
parameter generated by tlis_read() operation. A successful call tds_read()
returns an instance of OM clafS_C_READ_RESULT in the private objectesult
DS_C_READ_RESULT contains the information extracted from the directory entry

of the target object. Figure 5-15 shows the relationship of some of the superclasses,
subclasses, and the OM attribute@$ C READ_RESULT. Consider Figure 5-15

as a partial map of the contents refsult.

Figure 5-15. The Read Result

ds_read(...&result...) | | PS_C_READ_RESULT DS_C_ATTRIBUTE_LIST|

DS_ENTRY
DS_ATTRIBUTES

DS_C_ENTRY_INFO DS_C_ATTRIBUTE
DS_FROM_ENTRY

DS, OBJECT NAME DS_ATTRIBUTE_TYPE
| DS_ATTR_VALUES

o]
o
o

other objects | DS_C_ATTRIBUTE

DS_ATTRIBUTE_TYPE
DS_ATTR_VALUES

om_get(result...)

The om_get()function call creates a public object to make the information contained
in result available to the application program. Thatry parameter is defined as data
typeOM_public_object. As such, itis composed of several nested layers of subobjects
that contain entry information, OM attributes, and OM attribute values, as shown in
Figure 5-16. The series @im_get()calls removes these layers of objects to extract a
list of telephone numbers.

DCE 1.2.2 Application Development Guide—Directory Services 213

GDS Application Programming

Figure 5-16 also shows that the process of exposing the subobjects continues
while the syntax of the subobjects ©®M_S_OBJECT. In effect, example.h

is reversing the process of building up a series of public objects as input to
ds_read() namely, the distinguished name Beter Piper and the descriptor list

for entry_information_selection

Figure 5-16. Extracting Information Using om_get()

read result handle
TR

om_get

I
I
I
I
v entry_information handle

\entry_«}—» DS_ENTRY private object
OM_S_OBJECT

I
|
I

attribute handle

attributes DS_ATTRIBUTES —ﬂ private object

OM_S_OBJECT

om_get

I
I
I
I
I
I

telephones DS_ATRIBUTE_

VALUES "+49 89 636 12345"
OM_S_PRINTABLE_
STRING

The following code fragment fronrexample.cshows how the syntax of the variable
telephonesis tested for valid syntax; in this cas®M_S PRINTABLE_STRING:

for (telephone = telephones;
telephone->type != DS_ATTRIBUTE_VALUES;

214 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

telephone++)

{

if (telephone->type != DS_ATTRIBUTE_VALUES ||
(telephone->syntax & OM_S_SYNTAX) =
OM_S_PRINTABLE_STRING)

{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}

The preceding example determines whetkeégphoness in a format that can be used

by the application program as string data that can be printed out, and that the syntax
is correct for a list of telephone numbers. Note that the program uses the constant
OM_S SYNTAX to mask off the top 6 bits. These bits are special bits that are used
by XOM API. (Refer to Chapter 18 for more information on these special bits.)

5.7.2.3 Return Codes

XOM API function calls return a value of typeM_return_code , which
indicates whether the function succeeded. If the function is successful, the value of
OM_return_code is set toOM_SUCCESS If the function fails, it returns one of

the values listed in Chapter 18. The constants@/_return_code are defined in

the xom.h header file.

5.8 XOM API Header Files

The XOM API includes the header filgom.h. This header file is composed of
declarations defining the C workspace interface. It supplies type definitions, symbolic
constant definitions, and macro definitions.

DCE 1.2.2 Application Development Guide—Directory Services 215

GDS Application Programming

5.8.1

5.8.2

216

XOM Type Definitions and Symbolic Constant Definitions

The xom.h header file includesypedef statements that define the data types of all
OM objects used in the interface. It also provides definitions of symbolic constants
used by the interface.

Refer to thexom.h(4xom)reference page for more information.

XOM API Macros

XOM API provides several macros that are useful in defining public objects in your
application programs. These macros are defined irxtime.h header file.

OM_IMPORT
Makes object identifier symbolic constants available within a C source module.
OM_EXPORT

Allocates memory and initializes object identifier symbolic constants within a C
source module.

OM_OID_DESC

Initializes the type, syntax, and value of an OM attribute that holds an object
identifier.

OM_NULL_DESCRIPTOR

Marks the end of a client-generated public object.
OMP_LENGTH

Calculates the length of an object identifier.
OM_STRING

Creates a data value of a string data type.

DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

5.8.2.1 TheOM_EXPORT andOM_IMPORT Macros

Most application programs find it convenient to export all the names they use from
the same C source modul®@M_EXPORT allocates memory for the constants that
represent an object OM class or an object identifier, as shown in the following code
fragment fromexample.c

/* Define necessary Object Identifier constants
*

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

In this code fragment, object identifier constants that represent OM classes defined in
the xds.h andxdsbdcp.h header files are exported to the main program module. The
object identifier constants are definedxids.h, with the OMP_O prefix followed by

the variable name for the object identifier. The constant itself provides the hexadecimal
value of the object identifier string.

The OM_EXPORT macro takes the OM class name as input and creates two new
data structures: a character string and a structure of @idestring. The structure

of type OM_string contains a length and a pointer to a string that may be used later
in an application program by th@M_OID_DESC macro to initialize the value of an
object identifier.

OM_IMPORT marks the identifiers as external for the compiler. It is used if
OM_EXPORT is called in a different file from where its values are referenced.
OM_IMPORT is not used inrexample.cbecauseOM_EXPORT is called in the file
where the object identifiers are referenced.

DCE 1.2.2 Application Development Guide—Directory Services 217

GDS Application Programming

5.8.2.2 TheOM_OID_DESC andOMP_LENGTH Macros

TheOM_OID_DESC macro initializes the type, syntax, and value of an OM attribute
that holds an object identifier; in other words, it initialiZéM_descriptor. It takes as

input an OM attribute type and the name of an object identifier. The object identifier
should have already been exported to the program module, as shown in the previous
section.

The output of the macro is @dM_descriptor composed of a type, syntax, and value.
The type is the name of the OM class. The synta®i4 S OBJECT_IDENTIFIER .

The value is a two-member structure with the length of the object identifier and a
pointer to the actual object identifier string. It is defined as a pointeoid so that

it can be used as a generic pointer; it can point to any data type.

OM_OID_DESC callsOMP_LENGTH to calculate the length of the object identifier
string.

The following code fragment fromxom.h shows the OM_OID _DESC and
OMP_LENGTH macros:

/* Private macro to calculate length

* of an object identifier

*

#define OMP_LENGTH(oid_string) (sizeof(OMP_QO_##oid_string)-1)
/* Macro to initialize the syntax and value

* of an object identifier

*

#define OM_OID_DESC(type, oid_name)

{ (type), OM_S_OBJECT_IDENTIFIER_STRING,

{ OMP_LENGTH(oid_name) , OMP_D_##oid_name } }

5.8.2.3 TheOM_NULL_DESCRIPTOR Macro

The OM_NULL_DESCRIPTOR macro marks the end of a client-generated
public object by setting the type, syntax, and valueQdl_NO_MORE_TYPES,

218 DCE 1.2.2 Application Development Guide—Directory Services

XOM Programming

OM_S NO_MORE_SYNTAXES, and a value of zero length and a NULL string,
respectively.

5.8.24 TheOM_STRING Macro

The OM_STRING macro creates a string data value. Data strings are of type
OM_string, as shown in this code fragment from thkem.h header file:

[* String */

typedef struct {

OM_string_length length;

void *elements;
} OM_string;

#define OM_STRING(string) \

{ (OM_string_length)(sizeof(string)-1), string }

A string is specified in terms of its length or whether or not it terminates with a NULL.
OM_string_length is the number of octets by which the string is represented, or it is
the OM_LENGTH_UNSPECIFIED value if the string terminates with a NULL.

The bits of a bit string are represented as a sequence of octets. The first octet stores
the number of unused bits in the last octet. The bits in the bit string, beginning with
the first bit and proceeding to the trailing bit, are placed in bits 7 to O of the second
octet. These are followed by bits 7 to O of the third octet, then by bits 7 to 0 of each
octet in turn, followed by as many bits as are required of the final octet commencing
with bit 7.

DCE 1.2.2 Application Development Guide—Directory Services 219

Chapter 6

XDS Programming

The XDS API defines an application programming interface to directory services in the
X/Open Common Applications Environment as defineXi®pen Portability Guide

This interface is based on the 1988 CCITT X.500 Series of Recommendations and
the ISO 9594 Standard. This joint standard is referred to from this point on simply as
X.500.

This chapter describes the purpose and function of XDS API functions in a general
way. Refer to the reference pages in D@E 1.2.2 Application Development Reference
for complete and detailed information on specific function calls.
The sections that follow describe the following types of XDS functions:
» XDS interface management functions
These functions interact with the XDS interface
« Directory connection management functions
These functions initiate, manage, and terminate connections with the directory

« Directory operation functions

DCE 1.2.2 Application Development Guide—Directory Services 221

GDS Application Programming

These functions perform operations on a directory

Note: The DCE XDS API does not support asynchronous operations from within
the same thread. If an application requires asynchronous XDS operations,
then it should use multiple threads to achieve this functionality. Please refer
to Chapter 8 for information on using the XDS/XOM API in a multithreaded
application.

Theds_abandon()function is not supported in this releaseds _abandon()
call returns aDS_C_ABANDON_FAILED (DS _E TOO_LATE) error.
Refer to Chapter 10 for information on abandoning directory operations.

The following names refer to the complete XDS example programs, which can be
found in Chapter 7:

* acl.c (acl.h)

» example.c(example.h

« teldir.c

6.1 XDS Interface Management Functions

XDS API defines a set of functions that only interact with the XDS interface and have
no counterpart in the directory standard definition:

* ds_initialize()
» ds_version()
» ds_shutdown()

These interface functions perform operations that involve the initialization,
management, and termination of sessions with the XDS interface service.

222 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.1.1 The ds_initialize() Function Call

Every application program must first calls_initialize() to establish a workspace
where objects returned by the directory service are deposited.dShmitialize()
function must be called before any other directory interface functions are called.

The ds_initialize() call returns a handle (or pointer) to a workspace. The application
program performs operations on OM objects in this workspace. OM objects created
in this workspace can be used as input parameters to the other directory interface
functions. In addition, objects returned by the directory service are deposited in the
workspace.

Within the following code fragment fromaxample.¢ a workspace is initialized. (The

declaration of the variablevorkspaceand the call tods_initialize() are found in
different sections of the program.)

int main(void)

{

DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

OM_value_position total_num; /* Number of Attribute Descriptors */
/*

* Perform the Directory operations:

* (1) Initialize the directory service and get an OM workspace.

* (2) bind a default directory session.

* (3) read the telephone number of "name".

* (4) terminate the directory session.

*

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

OM_workspace is a type definition in thexom.h header file defined as a pointer to
void. A void pointer is a generic pointer that may point to any data type. The variable
workspaceis declared as data typ®M_workspace The return value is assigned

DCE 1.2.2 Application Development Guide—Directory Services 223

GDS Application Programming

6.1.2

224

to the variableworkspace and the CHECK_DS_CALL macro determines if the
call is successfulCHECK_DS_CALL is an error-handling macro that is defined in
example.h

The ds_initialize() call returns a handle to a workspace in which OM objects can
be created and manipulated. Only objects created in this workspace can be used
as parameters to other directory interface functions. d$idnitialize() call returns

NULL if it fails.

The ds_version() Function Call

The ds_version() call negotiates features of the directory interface. These features
are collected into packages that define the scope of the service. Packages define such
things as object identifiers for directory and OM classes and OM attributes, enumerated
types, structures, and OM object constants.

XDS API defines the following packages in separate header files as part of the XDS
API software product:
« Directory service package

The directory service package contains the OM classes and OM attributes used to
interact with the directory service. This package is contained irxtiseh header
file.

 Basic directory contents package

The basic directory contents package contains OM classes and OM attributes that
represent values of selected attributes and selected objects defined in the X.500
standard. This package is contained in xdsbdcp.h header file.

Strong authentication package

The strong authentication package contains OM classes and OM attributes that
represent values of security attributes and objects defined in the X.500 standard.
This package is contained in tixelssap.hheader file.

» GDS package

The GDS package contains the OM classes and OM attributes that are required
for GDS. This package is contained in theésgds.hheader file.

» MHS directory user package

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

The MHS (message handling system) directory user package contains the OM
classes and OM attributes that are required for electronic mail support. This
package is contained in thelsmdup.h header file.

The application program, which is the client, uskss version()to negotiate the scope

of the services the directory service will provide to the clientdsA version()function

call includes a list of features (or packages) that the client wants to include as part of
the interface. The features are object identifiers that represent packages supported by
the DCE XDS API. The service returns a list of Boolean values to indicate whether
or not the package was successfully negotiated.

These features are assigned to the workspace that an application program initialized
(as described in Section 6.1.1). In addition, an application program must include the
header files for the appropriate packages as part of the source code.

It is not necessary to negotiate the directory service package. It it a mandatory
requirement for XDS API, and as such it is included by default. The other packages
listed previously are optional and require negotiation by usisigversion()

The following code fragment froracl.h shows how an application builds up an array
of object identifiers for the optional packages to be negotiated: the basic directory
contents package and the GDS package.

static DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{0}

h

TheOM_STRING macro is provided for creating a data value of data ©p& string
for octets strings and characters. The array of object identifiers is storfedtires
the input parameter tds_version() as shown in the following code fragment from
acl.c

/* Negotiate the use of the BDCP and GDS packages. */
if (ds_version(features,workspace) = DS_SUCCESS)
printf("ds_version() error\n");

DCE 1.2.2 Application Development Guide—Directory Services 225

GDS Application Programming

6.1.3 The ds_shutdown() Function Call

The ds_shutdown() call deletes the workspace established dsy initialize() and
enables the directory service to release resources. No other directory functions that
reference that workspace may be called after this function.

The following code fragment froracl.c demonstrates how the application closes the
directory workspace by performingds_shutdown()call.

/* Close the directory workspace. */
if (ds_shutdown (workspace) != DS_SUCCESS)
printf ("ds_shutdown() error \n");

6.2 Directory Connection Management Functions

The following subsections describe the XDS functions that initiate, manage, and
terminate connections with the directory service.

6.2.1 A Directory Session

A directory session identifies the DSA to which a directory operation is sent. It also
defines the characteristics of a session, such as the distinguished name of the requestor.

An application program can request a session with specific OM attributes tailored
for the program’s requirements. The application passes an instance of OM class
DC_C_SESSIONwith the appropriate OM attributes, or it uses the default parameters
by passing the constaliS DEFAULT_SESSIONas a parameter to thes_bind()
function call.

226 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.2.2

The ds_bind() Function Call

The ds_bind() call establishes a session with the directory. Tdee bind() call
corresponds to th®irectoryBind function in the Abstract Service defined in the
X.500 standard.

When ads_bind() call completes successfully, the directory returns a pointer to an
OM private object of OM clas®C_C_SESSION This parameter is then passed as
the first parameter to most interface function calls untdsaunbind() is called to
terminate the directory session.

XDS API supports multiple concurrent sessions so that an application can interact with
the directory service by using several identities, and interact directly and concurrently
with different parts of the directory service.

The following code fragment froraxample.cshows how an application binds to the
GDS server (without credentials) by using the default session:

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

If a user wants to do an authenticated bind and/or wants to specify the directory
identifier, an instance of OM claf3SX_C_GDS_SESSIONrom the GDS package

is required.DSX_C_GDS_SESSIONdentifies a particular link from an application

to a DSA. SinceDSX_C_GDS_SESSIONSs a subclass of the standard OM class for

a sessionDS_C_SESSIONIt may be passed as a parameter to an XDS API function,
such agds_bind(), wherever a standard session is expected.

The following code fragment fronacl.c shows how an application performs an
authenticated bind to the GDS:

/*

* Create a default session object.

*

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
1= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/*

DCE 1.2.2 Application Development Guide—Directory Services 227

GDS Application Programming

228

* Alter the default session object to include the following

* credentials:

* requestor: /C=de/O=sni/OU=ap/CN=norbert

* password: "secret"

* authentication mechanism: simple

*

if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
1= OM_SUCCESS)

printf("om_put() error %d\n", rc);

/*

* Bind with credentials to the default GDS server.

* The returned session object is stored in the private object

* variable bound_session and is used for all further XDS

* function calls.

*

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

The program creates a default session object by using the XOM API function
om_create() and alters the default session object by usorg_put(). The bind
credentials are initialized in the following code fragment from éxample.hheader

file included in the main program module:

/* The following descriptor list specifies

* the bind credentials

*

static OM_descriptor credentials[] = {

{DS_REQUESTOR, OM_S_OBJECT, {0, dn_norbert} },
{DSX_PASSWORD, OM_S_OCTET_STRING, OM_STRING("secret")},
{DSX_AUTH_MECHANISM, OM_S_ENUMERATION, {DSX_SIMPLE,0}},
OM_NULL_DESCRIPTOR

h
The credentialsparameter is provided as an input parameter taothe put() function

call to modify the existing session object in the directory service. A private object that
is used for all subsequend directory calls is returned to the workspaoembput().

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.2.3

6.2.4

6.3

The ds_unbind() Function Call

Theds_unbind() call terminates a directory session and makesstesiorparameter
unavailable for use with other interface functions. However, the unbound session can
be modified by OM functions and used again as a parametgs _tbind(). When the
sessionparameter is no longer needed, it should be deleted by using OM functions
such asom_delete()

The following code fragment frorexample.cshows how the application closes the
connection to the GDS server by usidg_unbind():

/* Close the connection to the GDS server. */
if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

The ds_unbind() call corresponds to thBirectoryUnbind function in the Abstract
Service defined in the X.500 standard.

Automatic Connection Management

The XDS implementation does not support automatic connection management. A DSA
connection is established whels_bind() is called and released whets_unbind()
is called.

XDS Interface Class Definitions

The XDS interface class definitions are described in detail in Chapter 11. The OM
attribute types, syntax, and values and inheritance properties are described for each
OM class.

A good way to begin to understand how the OM class hierarchy is structured and the
relationship between OM classes and OM attributes to the service provided by the
directory service package is to look up one of the OM classes listed in Chapter 11.

DCE 1.2.2 Application Development Guide—Directory Services 229

GDS Application Programming

6.3.1

6.3.2

230

Example: The DS_C_FILTER Class

For example, DS_C_FILTER inherits the OM attributes from its superclass
OM_C_OBJECT, as do all OM classesOM_C_OBJECT, as defined in Chapter
19, has one OM attributeOM_CLASS, which has the value of an object
identifier string that identifies the numeric representation of the object's OM class.
DS _C_FILTER, on the other hand, has several OM attributes.

The purpose ofDS_C_FILTER is to select or reject an object on the basis of
information in its directory entry. It has the following OM attributes:

« DS_FILTER_ITEMS
- DS_FILTERS
« DS_FILTER_TYPE

Two of these OM attributes DS FILTER _ITEMS and DS_FILTERS, have
values that are OM object classes themselves. The value of the OM attribute
DS FILTER_ITEMS is DS _C _FILTER_ITEM, which is an OM class.
DS_C_FILTER_ITEM is a component of a filter and defines the nature of the filter.
The value of the OM attribut®S_FILTERS is DS_C_FILTER, an OM class. Thus,
DS_FILTERS defines a collection of filters. The OM attribus_FILTER_TYPE

has a value that is an enumerated type, which takes one of the RaBie&AND,

DS _OR or DS_NOT.

Refer to Figure 6-3 for a description of the relationshipl_C_FILTER to its
superclas©OM_C_OBJECT and its attributes.

The DS_C_CONTEXT Parameter

The OM classDS_C_CONTEXT is the second parameter to every directory
service requestDS_C_CONTEXT defines the characteristics of the directory
service interaction that are specific to a particular directory service operation. These
characteristics are divided into three categories of OM attributes: common parameters,
service controls, and local controls.

Common parameters affect the processing of each directory service operation.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.4

Service controls indicate how the directory service should handle requests. Included
in this category are decisions about whether or not chaining is permitted, the priority
of requests, the scope of referral (to DSAs within a country or within a DMD), and
the maximum number of objects about which a function should return information.

Local controls include asynchronous support and automatic continuation; XDS
does not currently support asynchronous operations from within the same thread.
Applications requiring asynchronous use of the XDS/XOM API should use threads as
defined in Chapter 8.

Directory Class Definitions

The X.500 standards define a number of attribute types and classes. These definitions
allow the creation and maintenance of directory entries for a humber of common
objects so that the representation of all such objects is the same throughout the
directory. The basic directory contents package contains OM classes and OM attributes
that model the X.500 attribute types and classes.

The X.500 object classes and attributes are defined in the following documents
published by CCITT. These are the objects and the associated attributes that will
be the targets of directory service operations in your application programs:

» The Directory: Selected Attributes Types (Recommendation X.520)
» The Directory: Selected Object Classes (Recommendation X.521)
Table 6-1 describes the OM classes, OM attributes, and their object identifiers that

model the X.500 objects and attributes. (See Chapter 12 for more tables with the same
type of information.)

DCE 1.2.2 Application Development Guide—Directory Services 231

GDS Application Programming

Table 6-1. Representation of Values for Selected Attribute Types
Value Multi- Matching

Attribute Type OM Value Syntax Length valued Rules
DS_A ALIASED_ Object{DS_C_NAME) — no E
OBJECT_NAME
DS_A BUSINESS_ StringOM_S_ 1-128 yes E, S
CATEGORY TELETEX_STRING)
DS_A COMMON_ StringOM_S_ 1-64 yes E, S
NAME TELETEX_STRING)
DS_A _COUNTRY_ StringOM_S_ 2 no E
NAME PRINTABLE_

STRING) 1
DS_A DESCRIPTION | StringlOM_S_ 1-1024 yes E, S

TELETEX_STRING)

232

1 As permitted by ISO 3166.

The tables in Chapter 12 contain similar categories of information as do similar tables
for the attributes defined in the directory service package. These information categories
include the following:

* OM Value Syntax
* Value Length
* Multivalued
» Matching Rules
The OM Value Syntax column describes the structure of the values of an OM attribute.

The Value Length column gives the range of lengths permitted for the string types.
The Multivalued column indicates whether the attribute can have multiple values.

The CCITT standards define matching rules that are used for determining whether two
values are equal, for ordering two values, or for identifying one value as a substring
of another in directory service operations. These are indicated in the Matching Rules
column.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.5

6.5.1

6.5.2

The GDS administrator maintains the directory service and determines the structure
of the DIT as defined by the GDS schema. The GDS standard (or default) schema is
based on the recommendations in the CCITT documents mentioned previously.

Recall that the structure rule table (SRT) of the GDS schema defines the structure
of the DIT, the object class table (OCT) defines class inheritance properties, and the
attribute table (AT) defines the mandatory and optional attributes for each class. You
will find it useful to familiarize yourself with the existing schema when developing an
application program that will access the directory. This is because the public objects
that your programs will create (by using OM classes and OM attributes) are modeled
after objects and attributes in the directory.

The GDS Package

The GDS software provides functional extensions to the standard in the following
areas:

» Authentication
» Access control

* DUA cache

Authentication

An instance of OM clas®SX_C_GDS_SESSIONdentifies a particular link from

an application program to a DSA. This additional OM class is necessary if the user
either wants to specify use of an authentication mechanism (for example, a password),
or wants to specify a directory identifier.

Access Control

In addition to authentication (for example, by means of nhame and password), access
protection is required for each object at the attribute level. A telephone number, for
example, is an attribute that generally everybody is allowed to read. However, an
attribute value such aswserpasswordisually has restricted access. In addition, even

DCE 1.2.2 Application Development Guide—Directory Services 233

GDS Application Programming

234

for attributes that everyone is allowed to read, it may only be acceptable for a small
number of people to have authorization to change the values.

Because there can be a multitude of different attributes in the DIT, it is too
expensive to define a protection mechanism for each individual attribute type. The
directory attributeDSX_A_ACL is present for each entry in the DIT. Its syntax is
ObjectDSX_C_GDS_ACL), referencing the GDS clad3SX_C_GDS_ACL These

OM classes and attributes have been added to the directory service to specify the
category of access to the individual attributes that are granted to users. There are three
categories of access: public, standard, and sensitive.

DSX_C_GDS_ACL has five OM attributes that define the read and modify access
rights for each of these categories (read access is granted to all users; modify access
implicitly grants read access):

DSX_MODIFY_PUBLIC

Specifies the user, or group of users, that can modify attributes classified as public
attributes

DSX_READ_STANDARD

Specifies the user, or group of users, that can read attributes classified as standard
attributes

DSX_MODIFY_STANDARD

Specifies the user, or group of users, that can modify attributes classified as
standard attributes

DSX_READ_SENSITIVE

Specifies the user, or group of users, that can read attributes classified as sensitive
attributes

DSX_MODIFY_SENSITIVE

Specifies the user, or group of users, that can modify attributes classified as
sensitive attributes

The ACL of the default schema has no access rights when GDS is configured. Every
user, including the anonymous user, has read and modify access to all attributes in the
schema.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.5.3

6.5.4

A master entry can be created only by the user who has write access to the naming
attribute of the parent node. Thus, the user can create all attributes of the entry. Using
the ACL class, the user can establish which objects can be accessed. If the user does
not enter an ACL attribute when creating an entry, GDS automatically uses the ACL
attribute of the parent node for the new entry.

A master entry can only be deleted by users who have write access to the naming
attribute of the entry to be deleted.

A shadow entry created by means of shadow handling (refer t®@i 1.2.2 GDS
Administration Guide and Referendeas the same ACL attribute as the corresponding
master entry. This entry can therefore only be modified and deleted by the user who
can also modify and delete the master entry.

DUA Cache

To further optimize access times, frequently requested information is automatically
loaded to a section of memory in the client computer, the DUA cache, and can be
overwritten again if it is not used within a certain interval of time. The cache may
be periodically updated. The GDS administration program specifies the period. It can
also specify that certain data is never written to the cache, or that certain data that is
transferred must under no circumstances be deleted, unless it is deleted by the user.
Because the DUA cache is not subject to any access control, GDS ensures that only
the information that everybody is allowed to read is stored.

The GDS package includes the OM claB$X_C_GDS_CONTEXT to support
additional service controls for cachinBSX_C_GDS_CONTEXT is a subclass of
DS_C_CONTEXT. As such, it inherits all the standard X.500 attributes associated
with DS_C_CONTEXT, in addition to its own OM attributes related to caching. Refer
to Chapter 4 for more information on how to manage the DUA cache by using XDS.

Advanced Administration Operations

GDS makes use of three operational attributes:

* DSX_A_MASTER_KNOWLEDGE

DCE 1.2.2 Application Development Guide—Directory Services 235

GDS Application Programming

6.6

Table 6-2.

236

Contains the distinguished name of the DSA that holds the master copy of a
specific entry

« DSX_A_ACL
Used for GDS access control
 DS_A_USER_PASSWORDattribute of aDS_O_DSAobject class
Used by the GDS shadowing mechanism.

The DSX A MASTER_KNOWLEDGE and DSX A ACL attributes are
present in every GDS entry. When an application requests all attributes,
it may prevent any of these three attributes from being returned by
setting the DSX PREFER_ADM_FUNCS service control (OM class
DSX_C_GDS_CONTEXT) to OM_FALSE. Certain GDS applications, such

as GDS administration, may need these attributes. They can achieve this by setting
this service control t®©M_TRUE.

Directory Operation Functions

The X.500 standard defines the operations provided by the directory in a document
called theAbstract Service DefinitiorDCE implements this standard with XDS API
functions calls. The XDS API functions allow an application program to interact
with the directory service. The standard divides these interactions into three general
categories: read, search, and modify.

The XDS API functions correspond to the Abstract Service functions defined in the
X.500 standard, as shown in Table 6-2.

Mapping of XDS API Functions to the Abstract Services

XDS Function Call Equivalent Abstract Service
ds_read() Read

ds_compare() Compare

ds_list() List

ds_search() Search

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.7

6.7.1

ds_add_entry() AddEntry
ds_remove_entry() RemoveEntry
ds_modify_entry() ModifyEntry
ds_modify_rdn() ModifyRDN

Directory Read Operations

Read functions retrieve information from specific named entries in the directory where
names are mapped to attributes. This is analogous to looking up some information
about a name in the “White Pages” phone directory.

XDS API implements the following read functions:
» ds_read()

The requestor supplies a distinguished name and one or more attribute types. The
value(s) of requested attributes or just the attribute type(s) is returned by the DSA.

» ds_compare()

The requestor gives a distinguished name and an attribute value assertion (AVA).
If the AVA is TRUE for the named entry, a value of TRUE is returned by the
DSA.

For example, a typical read operation could request the telephone number of a
particular employee. A read request would submit the distinguished name of the
employee with an indication to return its telephone numl@rus/O=sni/OU=sales/
CN=John Smith.

Reading an Entry from the Directory

The following sections describe a typical read operation by usingdtheead()
function call. They include a description of tasks directly related to the read operation.
They do not include service-related tasks such as initializing the interface, allocating
an OM workspace, and binding to the directory. These tasks are described in Section
6.1. The following sections also do not describe the process of extracting information

DCE 1.2.2 Application Development Guide—Directory Services 237

GDS Application Programming

from the workspace by using XOM functions. Refer to Chapter 5 for a description of
how to use XOM functions to access the workspace.

A typical read operation involves the following steps:

1. Define the necessary object identifier constants for the OM classes and OM
attributes that will define public objects for input tts_read() by using the
OM_EXPORT macro.

2. Declare the variables that will contain the output from the XDS functions to be
used in the application.

3. Build public objects (descriptor lists) for tmameparameter tals_read()

4. Create a descriptor list for theelectionparameter tals_read()that selects the
type and scope of information in your request.

5. Perform the read operation.

These steps are demonstrated in the following code fragmentssixample.c(refer to
Chapter 7 for a complete program listing). The program reads the telephone numbers
of a given target entry.

6.7.2 Step 1: Export Object Identifiers for Required Directory
Classes and Attributes

Most application programs find it convenient to export all the names they use from
the same C source module. In the following code fragment feoample.¢ the
OM_EXPORT macro allocates memory for the constants that represent the OM object
classes and directory attributes required for the read operation:

/* Define necessary Object Identifier constants
*

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)

238 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

OM_EXPORT(DS_C_DS_DN)

OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

The OM_EXPORT macro performs the following steps:

1. It defines a character array call@MP_D_ concatenated with thelass_name
input parameter.

2. It initializes this array to the value of a character string cal@MP_O_

concatenated with thelass_namenput parameter. This value has already been
defined in a header file.

3. It defines arOM_string data structure as thdass_naménput parameter.

4. It initializes theOM_string data structure’s first component to the length of the

array initialized in Step 2, and initializes the second component to a pointer to
the value of the array initialized in Step 2.

6.7.3 Step 2: Declare Local Variables

The local variablesessionresult andinvoke_idare defined in the following code
fragment fromexample.c

int main(void)

{

DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations*/
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

OM_value_position total_num; /* Number of Attribute Descriptors */

These data types are defined irtypedef statement in thexom.h header file. The
sessiorandresultvariables are defined as data typ®l_private object because they

are returned byds_bind() andds_read() respectively, to the workspace as private
objects. Since asynchronous operations (within the same thread) are not supported,

DCE 1.2.2 Application Development Guide—Directory Services 239

GDS Application Programming

6.7.4

6.7.5

240

the invoke_idfunctionality is redundant. Thievoke_idparameter must be supplied to
the XDS functions as described in tB&€E 1.2.2 Application Development Reference
but its return value should be ignored.

Values inerror andreturn_codeare returned by XOM and XDS functions to indicate
whether a call was successful. TiMerkspacevariable is defined a®M_workspace

and is used when establishing an OM workspace. toted_numvariable is defined
asOM_value_positionto indicate the number of attribute descriptors returned in the
public object byom_get() based on the inclusion and exclusion parameters specified.

Step 3: Build Public Objects

A ds_read()function call can take a public object as an input parameter. A public
object is generated by an application program and contains the information required
to access a target directory object. This information includes the AVAs and RDNs that
make up a distinguished name of an entry in the directory.

A public object is created by using OM classes and OM attributes. These OM classes
and OM attributes model the target object entry in the directory and provide other

information required by the directory service to access the directory. In this case, the
target object entry in the directory is the entry feeter Piper.

Chapter 5 describes how to create the required public objects fodgheead()
function call by using macros and data structures defined in the XDS and XOM
API header files.

The purpose of building the public objects for AVAs and RDNs is to provide the public
objects that represent a distinguished name. The distinguished name public object is
stored in the array of descriptors calledmeand provided as an input parameter to

the ds_read() function call.

Step 4: Create an Entry-Information-Selection Parameter

The distinguished name féteter Piperis an entry in the directory that the application
is designed to access. Tlelectionparameter of thels_read() function call tailors
its results to obtain just part of the required entry. Information on all attributes, no

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

attributes, or a specific group of attributes can be chosen. Attribute types are always
returned, but the attribute values need not be.

The value of the parameter is a public object (descriptor list) that is an instance of OM
classDS_C_ENTRY_INFO_SELECTION, as shown in the following code fragment
from example.c

/*

* Public Object ("Descriptor List") for

* Entry-Information-Selection

* parameter to ds_read().

*

OM_descriptor selection]] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,

{ DS_TYPES_AND_VALUES,NULL } },

OM_NULL_DESCRIPTOR

h

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT.
(This information is supplied in the description of this class in Chapter 11.)
As such, DS C ENTRY_INFO_SELECTION inherits the OM attributes

of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT is
OM_CLASS. OM_CLASS identifies an object’'s class, which in this case is
DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION
identifies information to be extracted from a directory entry and has the following
OM attributes:

* OM_C_CLASS (inherited fromOM_C_OBJECT)
* DS_ALL_ATTRIBUTES
* DS_ATTRIBUTES_SELECTED
* DS_INFO_TYPE
As part of ads_read() or ds_search()function call, DS_ALL_ATTRIBUTES

specifies to the directory service those attributes of a directory entry that are relevant
to the application program. It can take the vall@eM_TRUE or OM_FALSE.

DCE 1.2.2 Application Development Guide—Directory Services 241

GDS Application Programming

6.7.6

242

These values are defined to be of synaM_S_BOOLEAN. The valueOM_TRUE
indicates that information is requested on all attributes in the directory entry. The
value OM_FALSE, used in the preceding sample code fragment, indicates that
information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from
which information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING .

OM_S OBJECT_IDENTIFIER_STRING contains an octet string of BER-encoded
integers, which are decimal representations of object identifiers of the types of
attributes in the attribute list. In the preceding code fragment, the string value is
the attribute namé&S_A_PHONE_NBR because the purpose of the read call is to
read a list of telephone numbers from the directory.

DS _INFO_TYPE identifies what information is to be extracted from each attribute
identified. The syntax of the value is specified as Erd#&(Information_Type).
DS_INFO_TYPE is an enumerated type that has two possible values:
DS_TYPES_ONLY and DS_TYPES_AND_VALUES DS_TYPES_ONLY
indicates that only the attribute types of the selected attributes in the entry are
returned by the directory service operatiddS_TYPES_AND_VALUES indicates

that both the attribute types and the attribute values of the selected attributes in the
entry are returned. The code fragment fremample.cshown previously defines the
value of DS_INFO_TYPE as DS_TYPES_AND_VALUES because the program
wants to get the actual telephone numbers.

Step 5: Perform the Read Operation

The following code fragment fromaxample.cshows theds_read()function call and
the XDS calls that precede it:

/*

* Perform the Directory operations:

* (1) Initialize the directory service

* and get an OM workspace.

* (2) bind a default directory session.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

* (3) read the telephone number of "name".

* (4) terminate the directory session.

*

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));
CHECK_DS_CALL(ds_version(bdcp_package, workspace));
CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace,
&session));

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

CHECK_DS_CALL is an error-checking macro defined in theample.hheader file

that is included byexample.c The ds_read() call returns a return code of type
DS_statusto indicate whether or not the read operation completed successfully.
If the call was successfulls_read() returns the valuedS_SUCCESS If the call

fails, it returns an error code. (Refer to Chapter 11 for a comprehensive list of error
codes.)CHECK_DS_CALL interprets this return value and returns successfully to
the program or branches to an error-handling routine.

The sessioninput parameter is a private object generateddbybind() prior to the
ds_read()call, as shown in the preceding code fragm&38. DEFAULT_CONTEXT
describes the characteristics of a directory service interaction. Most XDS API function
calls require these two input parameters because they define the operating parameters
of a session with a GDS server. (Sessions are described in Section 6.2.1; contexts are
described in Section 6.3.2.)

The result of a directory service request is returned in a private object (in this case,
resul) that is appropriate to the type of operation. The result of the operation is
returned in a single OM object. The components of the result are represented by OM
attributes in the operations result object:

+ DS_C_COMPARE_RESULT
Returned byds_compare()

e DS_C_LIST_RESULT
Returned byds_list()

 DS_C_READ_RESULT
Returned byds_read()

 DS_C_SEARCH_RESULT

DCE 1.2.2 Application Development Guide—Directory Services 243

GDS Application Programming

244

Returned byds_search()

The OM class returned bgs_read() is DS_C_READ_RESULT. The OM class
returned by theds _compare() call is DS_C_COMPARE_RESULT, and so on.
(Refer to the reference pages in tB€E 1.2.2 Application Development Reference
for a description of the OM classes associated with a particular function call; refer to
Chapter 11 for full descriptions of the OM attributes, syntaxes, and values associated
with these OM classes.)

The superclasses, subclasses, and OM attributeD®rC_READ_RESULT are
shown in Figure 6-1.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

Figure 6-1. Output from ds_read(): DS_C_READ_RESULT

|

ds_read(...&result...)

KEY:

'

DS_C_READ_RESULT
OM_CLASS

DS_ALIASED_DEREFERENCE

[DS_PERFORMER}
— DS_ENTRY

DS_C_ENTRY_INFO
OM_CLASS

S_ATTRIBUTES, ..]
DS_FROM_ENTRY

DS_OBJECT_NAME

[DS_RDNS, ..]——

DS_C_ATTRIBUTE
OM_CLASS
DS_ATTRIBUTE_TYPE

[DS_ATTRIBUTE_VALUES, ...]]

DS_C_DS_RDN
OM_CLASS
DS_AVAS,... —

v points to subobjects

BOLD OM class
BOLD and ITALICSabstract OM class

ITALICS inherited OM attribute

[1 optional OM attribute
, ... multi-valued OM attribute

i

DS_C_AVA
OM_CLASS
DS_ATTRIBUTE_TYPE

DS_ATTRIBUTE_VALUES

Theresultvalue is returned to the workspace in private implementation-specific format.
As such, it cannot be read directly by an application program, but it requires a series
of om_get()function calls to extract the requested information from it. The following
code fragment fronexample.cshows how a series @m_get()calls extracts the list

of telephone numbers associated with the distinguished nanfefer Piper. Chapter

5 describes this extraction process in detail.

DCE 1.2.2 Application Development Guide—Directory Services

245

GDS Application Programming

/*

* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.

* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*

CHECK_OM_CALL(om_get()(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry,

&total_num));

CHECK_OM_CALL(om_get()(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get()(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

6.8 Directory Search Operations

Search functions can be used to browse through the Directory Information Tree (DIT).
For example, a search request could supply the distinguished name of an entry and
request a list of the distinguished names of the children of that entry.
XDS API implements the following search operations:

* ds_list()

The requestor supplies a distinguished name. The directory service returns a list
of the immediate subordinates of the named entry.

» ds_search()

246 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

The requestor supplies a search criterion known adter. The user names

a subtree of the DIT, specifies some target attribute types, and formulates an
expression by combining a number of attributes by using logical AND, OR, or
NOT operators. The directory service returns information from all of the entries
within the specified portion of the DIT that matches the filter. Section 6.8.6
includes a description of how filters are usedatl.c

6.8.1 Searching the Directory

This section describes a typical search operation by usingishsearch()function

call. It only includes the tasks directly related to the search operation and does not
include tasks related to the XDS interface or other directory operations.

A typical search operation involves the following steps:

1. Using theOM_EXPORT macro, define the necessary object identifier constants
for the OM classes and OM attributes that will define public objects for input to
ds_search()

2. Declare the variables that will contain the output from the XDS functions that
will be used in the application.

3. Build public objects (descriptor lists) for theameparameter tals_search()
4. Specify the portion of the DIT to be searched.

5. Create a descriptor list for thidter parameter tads_search()that designates
which entries are to be eliminated from the search.

6. Create a descriptor list for tleelectionparameter tals_search()that selects the
type and scope of information in your request.

7. Perform the search operation.
These steps are demonstrated in the following code fragmentsaitbim The program

includes a search operation. In order to perform the operation, the program assumes
the directory contains the subtree shown in Figure 6-2.

DCE 1.2.2 Application Development Guide—Directory Services 247

GDS Application Programming

Figure 6-2. Subtree for the acl.h Sample Program

O c=de
(objectClass=Country,
ACL=(mod-pub: *
mod-std: *
read-std: *
mod-sen: *))

O O=sni
(objectClass=Organization,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN-stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN-stefanie

D) OU=ap
(objectClass=OrganizationalUnit,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie))

O cN=stefanie O CN=ingrid
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson,

ACL=(mod-pub: /C=de/O=sni/OU=ap/* ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/* read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/* read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie) mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)

surname="Schmid" surname="Schmid"

telephone="+49 89 636 0" telephone="+49 89 636 0"
userPassword="secret") userPassword="secret")

O CN=norbert
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid"
telephone="+49 89 636 0"
userPassword="secret")

248 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.8.2 Step 1: Export Object Identifiers

Most application programs find it convenient to export all the names they use from the
same C source module. In the followiragl.c fragment, theOM_EXPORT macro
allocates memory for the constants that represent the object OM classes and OM
attributes required for the search operation:

/* The application must export the object identifiers it */
[* requires. */
OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_C_FILTER)
OM_EXPORT (DS_C_FILTER_ITEM)
OM_EXPORT (DSX_C_GDS_SESSION)
OM_EXPORT (DSX_C_GDS_CONTEXT)
OM_EXPORT (DSX_C_GDS_ACL)
OM_EXPORT (DSX_C_GDS_ACL_ITEM)
OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_LOCALITY_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_SURNAME)
OM_EXPORT (DS_A_ACL)

OM_EXPORT (DS_TYPELESS_RDN)
OM_EXPORT (DS_O_TOP)

OM_EXPORT (DS_O_COUNTRY)
OM_EXPORT (DS_O_ORG)
OM_EXPORT (DS_O_ORG_UNIT)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG__PERSON)

DCE 1.2.2 Application Development Guide—Directory Services 249

GDS Application Programming

The OM_EXPORT macro takes the OM class name as input and creates two new
data structures: a character string and structure of &gk string. The structure of
type OM_string contains a length and a pointer that are used in Step 3 to initialize
the value of the object identifier.

6.8.3 Step 2: Declare Local Variables

The local variables are defined in the following code fragment femfc:

OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */
/* is returned by ds_bind() */

OM_public_object context; /* Context object. */
OM_private_object result; /* Holds the search result object. */
OM_sint invoke_id; /* Integer for the invoke id */
/* returned by ds_search(). */

[* (this parameter must be present */

/* even though it is ignored). */

OM_type sinfo_list[] = { DS_SEARCH_INFO, 0 };

OM_type entry_list[] = { DS_ENTRIES, 0 };

/* Lists of types to be extracted */

OM_public_object sinfo; /* Search-Info object from result. */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned. */
OM_return_code rc; /* XOM function return code. */
register int i;

char user_name[MAX_DN_LEN];

/* Holds requestor's name. */

char entry_stringifMAX_DN_LEN + 7] = "[?r??] ",

/* Holds entry details. */

The data types shown in this code fragment are definedtypedef statement in the
xom.h header file. Since asynchronous operations (within the same thread) are not
supported, thénvoke_idfunctionality is redundant. Thigwoke_idparameter must be

250 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.8.4

6.8.5

supplied to the XDS functions as described in BeE 1.2.2 Application Development
Referencebut its return value should be ignored.

Step 3: Build Public Objects for the name Parameter to
ds_search()

The public objects required by the search operation are defined actlicheader file.
Thenameinput parameter in thds_search(function call inacl.cis the representation

of the distinguished name for the root of the DIT. The following code fragment from
acl.c shows how the descriptor list for the distinguished name is initialized:

static OM_descriptor dn_root[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

h

Step 4: Specify the Portion of the DIT To Be Searched

The ds_search() call requires thesubsetinput parameter. Thesubsetparameter
specifies the portion of the DIT to be searched. It takes the value of one of the
following symbolic constants, which are defined in thas.h header file:

» DS_BASE_OBJECT, meaning to search just the given object entry

« DS_ONE_LEVEL, meaning to search just the immediate subordinates of the
given object entry

« DS_WHOLE_SUBTREE, meaning to search the given object and all its
subordinates

The subsetparameter iracl.c takes the valu®S_WHOLE_SUBTREE.

DCE 1.2.2 Application Development Guide—Directory Services 251

GDS Application Programming

6.8.6 Step 5: Create a Filter

The filter input parameter is used to eliminate entries from the search that are not
wanted. Information is only returned on entries that satisfy the filter.

DS_C_FILTER inherits the attributes from its supercla®d_C_OBJECT, as do

all OM classesOM_C_OBJECT (as defined in Chapter 11) has one OM attribute,
OM_CLASS, which has the value of an object identifier string that identifies the
numeric representation of the object's OM cla®&_C_FILTER, on the other hand,
has several OM attributes.

The purpose ofDS_C_FILTER is to select or reject an object on the basis of
information in its directory entry. It has the following OM attributes:

« DS_FILTER_ITEMS
- DS_FILTERS
« DS_FILTER_TYPE

Two of these OM attributesdDS_FILTER_ITEMS andDS_FILTERS, have values
that are OM object classes themselves. The OM attribBeFILTER_ITEMS has

the value OM clas®S_C_FILTER_ITEM . DS_C_FILTER_ITEM is a component

of a filter and defines the nature of the filter. The OM attrilD& FILTERS has the
value of OM classDS_C_FILTER and thus defines a collection of filters. The OM
attributeDS_FILTER_TYPE has a value that is an enumerated type, which takes one
of the valuesDS_AND, DS_OR, or DS_NOT.

Figure 6-3 shows the relationship oDS_C_FILTER to its superclass
OM_C_OBJECT, and its attibutes.

252 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

Figure 6-3. OM Class DS_C_FILTER

'

DS_C_FILTER
OM_CLASS
— [DS_FILTER_ITEMS, ...]
[DS_FILTERS, ...]
DS_FILTER_TYPE

DS_C_FILTER_ITEM
OM_CLASS
DS_ATTRIBUTE_TYPE
[DS_ATTRIBUTE_VALUES, ..,
DS_FILTER_ITEM_TYPE
[DS_FINAL_SUBSTRING]
[DS_INITAL_SUBSTRING]

KEY:

" ¥ points to subobjects
BOLD OM class
BOLD and ITALICS abstract OM class
ITALICS inherited OM attribute
[l optional OM attribute
multi-valued OM attribute

The DS_NO_FILTER constant can be used as the value of this parameter if all
entries are searched and no entries are eliminated. This corresponds to a filter with

a DS_FILTER_TYPE value of DS_AND, and no values of th®S_FILTERS or
DS_FILTER_ITEMS OM attributes.

The following code fragment froracl.c shows the descriptor list for a filter:

/* The following descriptor list specifies a filter */

/* for search : */
I* (Present: objectClass) */
static OM_descriptor filter_item[] = {
OM_OID_DESC(OM_CLASS, DS_C_FILTER_ITEM),

DCE 1.2.2 Application Development Guide—Directory Services 253

GDS Application Programming

{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, 0} },
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_NULL_DESCRIPTOR

h

static OM_descriptor filter[] = {

OM_OID_DESC(OM_CLASS, DS_C_FILTER),

{DS_FILTER_ITEMS, OM_S_OBJECT, {0, filter_item} },
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, 0} },
OM_NULL_DESCRIPTOR

h

6.8.7 Step 6: Create an Entry-Information-Selection Parameter

Theds_search()call requires aelectioninput parameter to specify what information
from the entry is requested. Tiselectionparameter of thels_search()call in acl.h
requests information on all attributes, as shown in the following code fragment:

static OM_descriptor selection_acl[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL),
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

h

As shown in the code fragmenDS ALL_ATTRIBUTES has a syntax of
OM_S BOOLEAN that is set toOM_FALSE, indicating that only the requested
attributes of the entry are to be returned. The ACL attribute’s types and values are

selectedDS_INFO_TYPE has a value oDS_TYPES_AND_VALUES indicating
that both the attribute types and the attribute values in the entry are returned.

6.8.8 Step 7: Perform the Search Operation

The following code fragment froracl.c shows theds_search()function call:

254 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

/* Search the whole subtree below root.

The filter selects entries with an object-class attribute.
The selection extracts the ACL attribute from each
selected entry.

* The results are returned in the private object "result".

*

*

*

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how

* filters may be used.

*

*

if(ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE,
filter, OM_FALSE, selection_acl, &result, &invoke_id) = DS_SUCCESS)
printf("ds_search() error\n");

The ds_search() call returns the valueDS_SUCCESSIf the call successfully
completes. Otherwise, it returns an error code. (Refer to Chapter 11 for a
comprehensive list of error codes.)

The result of the search operation is returned to the workspace in a private object
result. This result is returned as a single OM object. The components of the result
are represented by OM attributes in the operatioa&ult object.

The OM class returned byds search() is DS_C_SEARCH_RESULT. The

superclasses, subclasses, and attributeBD®rC_SEARCH_RESULT are shown in
Figure 6-4.

DCE 1.2.2 Application Development Guide—Directory Services 255

GDS Application Programming

Figure 6-4. OM Class DS_C_SEARCH_RESULT

‘ KEY:
Y points to subobjects
ds_search(...&result...)
— Y BOLD OM class
DS_C_SEARCH_RESULT BOLD and ITALICS abstract OM class

ITALICS inherited OM attribute
[I optional OM attribute
multi-values OM attribute

OM_CLASS
fDS_SEARCH_INFO]

[DS_UNCORRELATED_
SEARCH_INFO, ...]

DS_C_SEARCH_INFO
OM_CLASS
DS_ALIASED_DEREFERENCED
—[DS_PERFORMER]
[DS_ENTRIES, ...]
[DS_OBJECT_NAME |
[DS_PARTIAL_OUTCOME_QUAL]

Y
DS_C_ENTRY_INFO » DS_C_NAME DS_C_PARTIAL_OUTCOME_QUAL
OM CLASS —®= (refer to Figure 27-1) OM_CLASS
— [DS_ATTRIBUTES, I DS_LIMIT_PROBLEM
DS FROM ENTRY DS_UNAVAILABLE_CRITICAL_EXT
DS OBJECT NAME [DS_UNEXPLORED,]—|
Y DS_C_CONTINUATION_REF
OM_CLASS
DS_C_ATTRIBUTE DS_TARGET_OBJECT
OM_CLASS DS_ACCESS_POINTS, ...
DS_ATTRIBUTE_TYPE ¢ —— DS_OPERATION_PROGRESS
[DS_ATTRIBUTE_VALUES, ..] [DS_RDNS_RESOLVED]
DS_C_ACCESS_POINT DS_ALIASED_RDNS
OM_CLASS
DS_AE_TITLE
l DS_ADDRESS
DS_C_ADDRESS DS_C_OPERATION_PROGRESS
OM_CLASS
DS_%_MPF\’CELiEsl\éTATlON_ADDRESS DS_NAME_RESOLUTION_PHASE
DS N ADDRESSES [DS_NEXT_RDN_TO_BE_RESOLVED]

[DS_P_SELECTOR]
[DS_S_SELECTOR]
[DS_T_SELECTOR]

The result object is returned to the workspace in a private implementation-specific
format. As such, it cannot be read directly by an application program, but requires a
series ofom_get()function calls to extract the requested information.

256 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.9

6.9.1

Directory Modify Operations

Modify functions alter information in the directory. For example, if an employee of
an organizational unit transfers to a new organizational unit, a typical modify request
would modify theOU name attribute in the person’s directory entry to reflect the
change.

XDS API implements the following modify functions:

» ds_modify_entry()

The requestor gives a distinguished name and a list of modifications to the named
entry. The directory service carries out the specified changes if the user requesting
the change has proper access rights.

» ds_add_entry()

The requestor gives a distinguished name and values for a new entry. The entry
is added as a leaf node in the DIT if the user requesting the change has proper
access rights.

« ds_remove_entry()

The requestor gives a distinguished name. The entry with that name is removed
if the user requesting the change has proper access rights.

» ds_modify_rdn()

The requestor gives a distinguished name and a new RDN for the entry. The
directory changes the entry’s RDN if the user requesting the change has proper
access rights.

Note thatds_add_entry() ds_remove_entry() and ds_maodify_rdn() only apply
to leaf entries. They are not intended to provide a general facility for building and
manipulating the DIT.

Modifying Directory Entries

This section describes a modification and subsequent listing of the DIT by using
the ds_add_entry() ds_list(), andds_remove_entry()function calls. It includes a
description of tasks directly related to these operations and does not include service-

DCE 1.2.2 Application Development Guide—Directory Services 257

GDS Application Programming

Figure 6-5.

258

related tasks. It does not includeds_modify_entry() function call. The modify
operation is used in the context of the X.58Bstract Service Definition

A typical operation to add, remove, or list an entry involves following the same basic
steps that were defined previously for the read and search operations:

1. Using theOM_EXPORT macro, define the necessary object identifier constants
for the OM classes and OM attributes that will define public objects for input to
the function calls.

2. Declare the variables that will contain the output from the XDS functions you
will use in your application.

3. Build public objects (descriptor lists) for theame parameters to the function
calls.

4. Create descriptor lists for the attributes to be added, removed, or listed.

5. Perform the operations.
These steps are demonstrated in the following code fragments. The program adds two
entries to the directory, then a list operation is performed on their superior entry, and

finally the two entries are removed from the directory. The directory tree shown in
Figure 6-5 is used in the program.

T CountryName="ie"
/ OQ"nizationName:"sni"

A Sample Directory Tree

CN="brendan" O O CN="sinead"
(ObjectClass=OrganizationalPerson, Top, Person (ObjectClass=OrganizationalPerson, Top, Person
surname="Moloney" surname="Murphy"
telephoneNumber="+49 89 636 0") userPassword="secret")

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

6.9.2 Step 1: Export Object Identifiers for Required Directory
Classes and Attributes

In the following code fragment, th®@M_EXPORT macro allocates memory for the
constants that represent the object classes and attributes required for the add, list, and
remove operations:

/* The application has to export the object identifiers */
[* it requires. */

OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)

OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DS_O_TOP)

OM_EXPORT (DS_O_PERSON)

OM_EXPORT (DS_O_ORG_PERSON)

6.9.3 Step 2: Declare Local Variables

The local variabledbound_sessigrresult andinvoke_idare defined in the following
sample code fragment:

OM_private_object bound_session; /* Holds the Session object */
/* which is returned by */
/* ds_bind(). *

DCE 1.2.2 Application Development Guide—Directory Services 259

GDS Application Programming

OM_private_object result; /* Holds the list result */
/* object. */

OM_sint invoke_id; /* Integer for the invoke id */
/* returned by ds_search(). */

/* This parameter must be */

[* present even though it is */

/* ignored. */

These data types are defined tipedef statements in th&om.h header file. The
bound_sessiorand result variables are defined as data ty@_private_object
because they are returned dg_bind() and ds_list() operations to the workspace

as private objects. Since asynchronous operations (within the same thread) are not
supported, thévoke_idparameter functionality is redundant. Tingoke_idparameter

must be supplied to the XDS functions as described inDIGE 1.2.2 Application
Development Referenchut its return value should be ignored.

6.9.4 Step 3: Build Public Objects

The public objects required by tls_add_entry() ds_list(), andds_remove_entry()
operations are defined in the following code fragment:

/* Build up descriptor lists for the following distinguished names: */

* C=ie/O=sni *
I* C=ie/O=sni/OU=ap/CN=brendan */
I* C=ie/O=sni/OU=ap/CN=sinead */
static OM_descriptor ava_ie[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("ie")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_sni] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

h

260 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_brendan[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("brendan™)},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_sinead[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sinead")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ie[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_ie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_snif] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_brendan[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_brendan}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_sinead[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

DCE 1.2.2 Application Development Guide—Directory Services 261

GDS Application Programming

6.9.5

262

{DS_AVAS, OM_S_OBJECT, {0, ava_sinead}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_brendan[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_brendan}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_sinead[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_ie}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sinead}},
OM_NULL_DESCRIPTOR

h

Step 4: Create Descriptor Lists for Attributes

The following code fragments show how the attribute lists are created for the attributes
to be added to the directory.

First, initialize the public objecbbject classto contain the representation of the
classes in the DIT that are common to bddnganizational-Person entries, Top,
Person andOrganizational-Person

DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

/* Build up an array of object identifiers for the */

/* attributes to be added to the directory. */

static OM_descriptor object_class[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

h

Next, initialize the public objects that represent the attributes to be added. These are
surname and telephonefor the distinguished name of Brendan, aswname2 and
passwordfor the distinguished name of Sinead:

static OM_descriptor telephone] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("+49 89 636 0")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,
OM_STRING("Moloney")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor surname2[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,
OM_STRING("Murphy")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor password[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),

DCE 1.2.2 Application Development Guide—Directory Services 263

GDS Application Programming

{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING,
OM_STRING("secret")},
OM_NULL_DESCRIPTOR

h

Finally, initialize the public objects that represent the list of attributes to be added to
the directory. These arattr_listl for the distinguished name Brendan, aait_list2
for the distinguished name Sinead:

static OM_descriptor attr_listl[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, telephone} },
OM_NULL_DESCRIPTOR

h

static OM_descriptor attr_list2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname2} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, password} },
OM_NULL_DESCRIPTOR

h

The attr_listl variable contains the public objectsirname and telephone which
are the C representations of the attributes of the distinguished Harie/O=sni/
OU=ap/CN=Brendan that are added to the directory. Thtr_list2 variable contains
the public objects firssurname2 and password which are the C representations of
the attributes of the distinguished nan@=ie/O=sni/OU=ap/CN=Sinead

6.9.6 Step 5: Perform the Operations

The following code fragments show thds_add_entry() ds_list(), and the
ds_remove_entry()calls.

264 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

First, the twods_add_entry() function calls add the attribute lists contained in
attr_listl and attr_list2 to the distinguished names representeddhybrendan and
dn_sinead respectively:

/* Add two entries to the GDS server. */
if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, attr_list1,

&invoke_id) !'= DS_SUCCESS)

printf("ds_add_entry() error\n");

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, attr_list2,

&invoke_id) !'= DS_SUCCESS)

printf("ds_add_entry() error\n");

Next, list all the subordinates of the object referenced by the distinguished hame
C=ie/O=sni/OU=ap

if (ds_list(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
&result, &invoke_id)

1= DS_SUCCESS)

printf("ds_list() error\n");

The ds_list() call returns the result in the private objeetsult to the workspace.
The components ofresult are represented by OM attributes in the OM class
DS_C_LIST_RESULT (as shown in Figure 6-6) and can only be read by a series of
om_get()calls.

DCE 1.2.2 Application Development Guide—Directory Services 265

GDS Application Programming

Figure 6-6. OM Class DS_C_LIST_RESULT

‘ KEY:
. v points to subobjects
ds_list(...&result...) y BOLD OM class
DS C LIST RESULT BOLD and ITALICS abstract OM class
- - ITALICS inherited OM attribute
OM_CLASS 0 optional OM attribute
[IDS_LIST_INFO] multi-values OM attribute
[DS_UNCORRELATED_
LIST_INFO, ...]
DS_C_LIST_INFO
OM_CLASS
DS_ALIASED_DEREFERENCED
[DS_PERFORMER]
[DS_SUBORDINATES, ... |
[DS_OBJECT_NAME |
[DS_PARTIAL_OUTCOME_QUAL |
Y
DS_C_LIST_INFO_ITEM DS_C_NAME DS_C_PARTIAL_OUTCOME_QUAL
OM CLASS (refer to Figure 27-1) OM_CLASS
DS_ALIAS_ENTRY 1 1 DS_LIMIT_PROBLEM
DS_FROM_ENTRY DS_UNAVAILABLE_CRITICAL_EXT
DS_RDN [DS_UNEXPLORED, ... |———

\ 1

DS_C_RELAT|VE_NAME DS_C_CONTINUATION_REF
OM_CLASS
DS_C_DS_RDN DS_TARGET_OBJECT
"OM CLASS ‘ DS_ACCESS_POINTS, ...
DS_AVAS, ... —— DS_OPERATION_PROGRESS
- [DS_RDNS_RESOLVED |
\ DS_C_ACCESS_POINT DS_ALIASED_RDNS
OM_CLASS
DS_C_AVA DS_AE_TITLE Y
OM_CLASS —— DS_ADDRESS
DS _ATTRlBUTE TYPE DS_C_OPERATION_PROGRESS
DS_ATTRIBUTE_VALUES OM_CLASS
DS_NAME_RESOLUTION_PHASE
DS_C_ADDRESS [DS_NEXT_RDN_TO_BE_RESOLVED |

DS_C_PRESENTATION_ADDRESS
OM_CLASS
DS_N_ADDRESSES, ...
[DS_P_SELECTOR]
[DS_S_SELECTOR]
[DS_T_SELECTOR]

Finally, remove the two entries from the directory:

266 DCE 1.2.2 Application Development Guide—Directory Services

XDS Programming

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, &invoke_id)

1= DS_SUCCESS)

printf("ds_remove_entry() error\n");

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, &invoke_id)

1= DS_SUCCESS)

printf("ds_remove_entry() error\n");

6.10 Return Codes

XDS API function calls return a value of typPS_status with the exception of
ds_initialize() which returns a value of typ®©M_workspace If the function is
successful, theS_statusreturns with a value oDS _SUCCESS If the function
does not complete successfully, th®S status takes either the error constant
DS_NO_WORKSPACE or one of the private error objects described in Chapter 11.

DCE 1.2.2 Application Development Guide—Directory Services 267

Chapter 7
Sample Application Programs

This chapter contains three sample programs and the header files that are included in
them (in parentheses), as follows:

» example.c(example.h
* acl.c (acl.h)

« teldir.c

Most of the concepts that you will need to know to understand and use these programs
are discussed in previous chapters in this guide. The programs are arranged so that
the simplest programegkample.g is presented first and the most complex program
(teldir.c) is presented last. The three programs demonstrate basic XDS and XOM
API principles and concepts in operation. Tieddir.c program is considerably more
complex and uses a more sophisticated approach. It allows the user to enter values
dynamically; for example, a surname and phone number.

For a sample XDS application that uses threads, please refer to Chapter &clthe

sample program is presented again in Chapter 9, this time using the XDS/XOM
convenience routines.

DCE 1.2.2 Application Development Guide—Directory Services 269

GDS Application Programming

7.1 General Programming Guidelines

Writing an application program by using XDS and XOM APIs involves the following
general steps before you begin coding:

1. Select the interface functions that you will need for your application and determine
the parameters for the function calls.

2. Check for abstract OM classes and superclasses of objects that you will manipulate
for inherited OM attributes in Part 4.

3. Find the correct symbolic constants of the appropriate packages; these can be
found in the header files included with the GDS API, suchxdsbdcp.h

4. Determine the error handling required.

7.2 The example.c Program

The example.c program uses XDS API in synchronous mode to read a telephone
number or numbers of a distinguished name. The program consists of the following
general steps:

1. Define the required object identifier constants.

2. Declare the variables involved with directory service operations (Steps 3, 4, 7, 8,
and 9).

3. Build the distinguished name dfeter Piper as a public object for the input
parameter tals_read()

Build a public object for thaelectionparameter tals_read()

Declare the variables to extract the telephone numbers by aringet()
Initialize the directory service and get an OM workspace.

Pull in the required packages.

Bind to a default directory session.

© © N o 0o A

Perform the read operation to extract the telephone number of a distinguished
name from the directory.

10. Terminate the directory service session.

270 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

11. Extract the telephone number(s) by using a seriemofget() calls.

12. Release the storage occupied by private and public objects that are no longer
needed.

13. Print the telephone number string.
14. Release the storage occupied by public objects containing telephone numbers.

15. Continue processing and exit.

Step 1 uses th©M_EXPORT macro to allocate memory for the object identifier
constants that represent an OM class or OM attribute. These constants are the OM
attribute values that are used to build the public objects that are required as input to
ds_read()

Step 2 declares the variables for directory service operations and error handling. The
sessionand workspacevariables are required for binding a session to a server and
creating a workspace into whiads_read()can deposit the results of the read operation

on the directory.

The result variable is a pointer that is returned bg_read()to the workspace. The
information stored inresult is in implementation-specific private format that is not
accessible directly by the application program. Subsegoentget()calls extract the
telephone number(s) requested by the program fregnlt and store the information
in the variabletelephonegdeclared in Step 5).

The error andreturn_codevariables are used by the program for error handling. The
error variable is used for processing the return code from XDS API function calls.
The return_codevariable is used by the error handling header &kample.h for
processing return codes froom_get()function calls.

Step 3 builds the public object representing the distinguished nankRetef Piper.

The program uses statically defined public objects to demonstrate the basic principles
of building public objects. However, a more sophisticated approach is presented in
the last sample program in this chapteidir.c. The teldir.c program dynamically
defines a public object from a user-supplied hame in DCE string format.

In the programexample.¢ the process starts with the definition of an array of
descriptor lists as AVAs. These AVAs are public objects that are included in the
definition of RDNs. The RDNSs, in turn, are included in the distinguished name of
Peter Piper stored inname Using the same method of static definition, Step 4

DCE 1.2.2 Application Development Guide—Directory Services 271

GDS Application Programming

272

defines theDS_C_ENTRY_INFO_SELECTION public object and stores it in the
variableselection The nameand selectionvariables are required as input parameters
to ds_read() This process is described in detail in Chapter 6.

Step 5 declares the variables requiredbiny get()to extract the telephone number(s)
from result The entry_list attributes_list and telephone_listvariables are of type
OM_type and are initialized to the values of the OM attribute ty[S ENTRY,
DS_ATTRIBUTES, and DS_ATTRIBUTE_VALUES, respectively. DS_ENTRY
contains the selected list of entrieBS ATTRIBUTES contains the selected list
of attribute types, an®S_ATTRIBUTE_VALUES contains the actual values of the
telephone numbers.

Theentry, attributes andtelephonewariables are of typ©M_ public_object because

they store the output parametersoofi_get() Theom_get()call makes these objects
available to the application program as public object data types. The program must
remove layers of objects and subobjects to get at the actual string data values of the
telephone numbers.

The telephonesrariable contains the actual string values of the telephone number(s).
It is a descriptor in the array of descriptors that make up the public object that contains
the actual string data that the program wants to extract from the directory.

Step 6 initializes the directory service and gets an OM workspace in vdsictead()
deposits the result of the read operation.

Step 7 pulls the basic directory contents package into the program because it contains
features that are required by the program but not included in the default package (the
directory service package).

Step 8 binds the session to the default session. An application program can bind with a
specifically tailored session object by using an instance of OM €1&<C_SESSION

In most cases, however, it is sufficient to use the con®2&tDEFAULT _SESSION
DS_DEFAULT_SESSIONuses the default values BiS_C_SESSIONand the values

of specific OM attributes that are set locally in the cache. These OM attributes are
DS_DSA ADDRESS(the address of the default DSA) amS DSA_NAME (the
distinguished name of the default DSA). It is the responsibility of local administrators
to make sure that these default values are set correctly in the cache.

Step 9 performs the read operation and deposits the result in the workspasealin
The Sresultvariable is one of the input parameters for th@_get() function call.

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.2.1

The sessionvariable and thdDS_DEFAULT_CONTEXT constant are theession
and contextparameters required to be present in dse read() function call.

Thenamevariable holds the public object representing the distinguished naPetef
Piper; the selectionvariable contains the public object indicating which attributes and
values are selected by the read operation from the entry.irboke idparameter is
not used by the DCE implementation of XDS and is ignored.

Step 10 terminates the directory session.

Step 11 uses a series ofn_get()calls to extract the telephone number(s). The first
om_get()extracts the information about the entry freesultand puts it inentry. The
secondom_get() extracts the attribute types froentry and puts them irattributes
The thirdom_get()extracts the actual values of the telephone numbers &ttributes
and puts them inelephonesThe telephonessariable contains the string data values
of the telephone number(s).

Step 12 releases the storage occupied by the private and public objects that are no
longer needed. The program has the data valuésléphonghat it needs to continue
processing. Ads_shutdown()call is issued to shut down the interface established by
ds_initialize().

Step 13 prints out each telephone number associated with the distinguished name
Peter Piper in the directory, or returns an error message if the number is not in the
correct format. It checks for an attribute with typ& ATTRIBUTE_VALUES and a
syntax ofOM_S_PRINTABLE_STRING, the proper syntax for a telephone number.
The constanOM_S_SYNTAX is used to mask the six high-order bits in the syntax
because they are used internally by the XOM service.

Step 14 releases the storage occupiedebgphonedecause it is no longer needed.

Step 15 continues processing and exits.

The example.c Code

The following code is a listing of thexample.cprogram:

DCE 1.2.2 Application Development Guide—Directory Services 273

GDS Application Programming

274

/*

* sample application that uses XDS in synchronous mode
*

* This program reads the telephone number(s) of a given target name.
*

#ifdef THREADSAFE

#include <pthread.h>

#endif

#include <stdio.h>

#include <xom.h>

#include <xds.h>

#include <xdsbdcp.h>

#include "example.h" /* possible Error Handling header */
/* Step 1 */

*

* Define necessary Object Identifier constants

*

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)

OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

[* Step 2 */

int main(void)

{

DS_status error; /* return value from DS functions */
OM_return_code return_code; /* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; [* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

OM_value_position total_num; /* Number of Attribute Descriptors */
static DS_feature bdcp_package[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ { (OM_uint32)0, (void *)0 }, OM_FALSE },

h

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

/* Step 3 */
*
* Public Object ("Descriptor List") for Name parameter to ds_read().
* Build the Distinguished-Name of Peter Piper.
*
static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR
h

static OM_descriptor organization[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,
OM_STRING("Acme Pepper Co") },
OM_NULL_DESCRIPTOR
h
static OM_descriptor organizational_unit[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,0OM_STRING("Research") },
OM_NULL_DESCRIPTOR
h
static OM_descriptor common_name[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,0OM_STRING("Peter Piper") },
OM_NULL_DESCRIPTOR
h
static OM_descriptor rdnl[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S OBJECT, { 0, country } },
OM_NULL_DESCRIPTOR
h
static OM_descriptor rdn2[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, organization } },
OM_NULL_DESCRIPTOR
h

DCE 1.2.2 Application Development Guide—Directory Services 275

GDS Application Programming

static OM_descriptor rdn3[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit } },
OM_NULL_DESCRIPTOR
h
static OM_descriptor rdn4[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, common_name } },
OM_NULL_DESCRIPTOR
h

OM_descriptor namef[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR
h
I* Step 4 */
/*

*

*

Public Object ("Descriptor List") for

* Entry-Information-Selection parameter to ds_read().

*/

OM_descriptor selection]] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR

3

/* Step 5 */

/*

* variables to extract the telephone number(s)

*/

OM_type entry_list[] = { DS_ENTRY, 0 }
OM_type attributes_list[] = { DS_ATTRIBUTES, 0 };
OM_type telephone_list] = { DS_ATTRIBUTE_VALUES, 0 };

OM_public_object entry;
OM_public_object attributes;

276 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_public_object telephones;

OM_descriptor *telephone; /* current phone number
/*

* Perform the directory service operations:

* (1) Initialize the directory service and get a workspace
* (2) bind a default directory session.

* (3) read the telephone number of "name".

* (4) terminate the directory session.

*

I* Step 6 */

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));
/* Step 7 *

CHECK_DS_CALL(ds_version(bdcp_package, workspace));
/* Step 8 */

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

/* Step 9 */

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, name,

selection, &result, &invoke_id));
/*

* NOTE: should check here for Attribute-Error (no-such-attribute)

* in case the "name" doesn't have a telephone.

* Then for all other cases call error_handler

*/

/* Step 10 */

CHECK_DS_CALL(ds_unbind(session));

/* Step 11 */

/*

* extract the telephone number(s) of "name" from the result

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.
* (2) get the Attributes from the Entry-Information.
* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES

+ OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry,

&total_num));

DCE 1.2.2 Application Development Guide—Directory Services

277

GDS Application Programming

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0O,
&attributes, &total_num));
CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0,
&telephones, &total_num));
[* Step 12 */
/* We can now safely release all the private objects
* and the public objects we no longer need
*
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));
/* Step 13 */
for (telephone = telephones;
telephone->type == DS_ATTRIBUTE_VALUES;
telephone++)

{

it (telephone->type != DS_ATTRIBUTE_VALUES

| (telephone->syntax & OM_S_SYNTAX) != OM_S_PRINTABLE_STRING)
{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %.*s\n",
telephone->value.string.length,
telephone->value.string.elements);

}

/* Step 14 */
CHECK_OM_CALL(om_delete(telephones));

/* Step 15 */

/* more application-specific processing can occur here...
*/

/* ... and finally exit. */

278 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.2.2

exit(EXIT_SUCCESS);
}

Error Handling

The example.c program includes the header filexample.h for error handling

of XDS and XOM function calls. Theexample.h program contains two error-
handling functions: CHECK_DS_CALL for handling XDS APl errors, and
CHECK_OM_CALL for handling XOM API errors. Note thafHECK_DS_CALL

and CHECK_OM_CALL are created specifically faxample.cand are not part of

the XDS or XOM APIs. They are included to demonstrate a possible method for
error handling.

XDS and XOM API functions return a status code. érample.¢ error contains
the status code for XDS API functions. If the call is successful, the function returns
DS_SUCCESSOtherwise, one of the error codes described in Chapter 11 is returned.

Thereturn_codevariable contains the status code for XOM API functions. If the call
is successful, the function retur@M_SUCCESS Otherwise, one of the error codes
described in Chapter 18 is returned.

The contents oéxample.hare as follows:

/*

* define some convenient exit codes
*

#define EXIT_FAILURE 1

#define EXIT_SUCCESS 0

/*

* declare an error handling function and
* an error checking macro for DS

*

void handle_ds_error(DS_status error);
#define CHECK_DS_CALL(function_call)
error = (function_call);

if (error = DS_SUCCESS)

DCE 1.2.2 Application Development Guide—Directory Services 279

GDS Application Programming

handle_ds_error(error);

/*

* declare an error handling function and

* an error checking macro for OM

*/

void handle_om_error(OM_return_code return_code);

#define CHECK_OM_CALL(function_call)

return_code = (function_call);

if (return_code != OM_SUCCESS)

handle_om_error(return_code);

/*

* the error handling code

*

* NOTE: any errors arising in these functions are ignored.

*/

void handle_ds_error(DS_status error)

{

(void) fprintf(stderr, "DS error has occurred\n");

(void) om_delete((OM_object) error);

/* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action. But we choose the simple option ...

*/

exit(EXIT_FAILURE);

}

void handle_om_error(OM_return_code return_code)

{

(void) fprintf(stderr, "OM error %d has occurred\n”, return_code);

/* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action. But we choose the simple option ...

*/

exit(EXIT_FAILURE);

}

280 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.3 The acl.c Program

The acl.c file is a program that displays the ACLs on each entry in the directory
for a specific user. The permissions are presented in a form similar to UNIX file
permissions. In addition, each entry is flagged as either a master or a shadow copy.

The distinguished name of the user requesting the access permissiGrgésO=sni/
OU=ap/CN=norbert. The results of the request are presented in the following format:

[ABCD] <entry’s distinguished name

where:
A is one of the following:
* m (master copy)
* s (shadow copy)
B is one of the following:
 r (read access to public attributes)
» w (write access to public attributes)
» - (no access to public attributes)
C is one of the following:
* r (read access to standard attributes)
* w (write access to standard attributes)
* - (no access to standard attributes))
D is one of the following:

* r (read access to sensitive attributes)
* w (write access to sensitive attributes)

* - (no access to sensitive attributes)

For example, the following result means that the effiyde/O=sniis a master copy,
and that the user who is making the requéSt=fle/O=sni/OU=ap/CN=norber) has

DCE 1.2.2 Application Development Guide—Directory Services 281

GDS Application Programming

write access to its public attributes, read access to its standard attributes, and no accesss
to its sensitive attributes:

[mwr-] /C=de/O=sni

The program requires that the user perform an authenticated bind to the directory
service. The user’s credentials must already exist in the directory. For this reason, the
tree of six entries shown in Figure 7-1 is added to the directory each time the program
runs, and is removed again afterward.

282 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

Figure 7-1. Entries With User Credentials Added to the Directory Tree

O c=de
(objectClass=Country,
ACL=(mod-pub: *
mod-std: *
read-std: *
mod-sen: *))

O O=sni
(objectClass=Organization,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN-stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN-stefanie

D) OU=ap
(objectClass=OrganizationalUnit,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie))

O cN=stefanie O CN=ingrid
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/* ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/* read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/* read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie) mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid" surname="Schmid"
telephone="+49 89 636 0" telephone="+49 89 636 0"
userPassword="secret") userPassword="secret")

O CN=norbert
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid"
telephone="+49 89 636 0"
userPassword="secret")

The program consists of the following steps:

DCE 1.2.2 Application Development Guide—Directory Services 283

GDS Application Programming

1. Export the required object identifiers (s&d.h in Section 7.3.2).

2. Build the descriptor lists for objects required by the program éeéé in Section
7.3.2).

. Initialize a workspace.
. Negotiate use of the basic directory contents and GDS packages.
. Add a fixed tree of entries to the directory to permit an authenticated bind.

. Create a default session object.

N o 0o b~ W

. Alter the default session object to include the credentials of the requéState]
O=sni/OU=ap/CN=norbert).

o]

. Bind with credentials to the default GDS server.
9. Create a default context object and alter it to include shadow entries.

10. Search the whole subtree belowot and extract the ACL attribute from each
selected entry.

11. Close the connection to the GDS server.

12. Remove the user’s credentials from the directory.
13. Extract the components from the search result.
14. Examine each entry and print the entry details.
15. Close the XDS workspace.

Step 1 through Step 4, Step 6 through Step 8, Step 12, and Step 15 are similar to
those performed for the previous sample applicagample.c

Step 5 is included so that the appropriate entries will exist in the directory when the
program attempts to access the access permissions.

The default session object created in Step 9 osescreate()to create an instance of a
default session object, and it usa®_put() to put in the appropriate user credentials.
The credentialsparameter is a descriptor list defineddnl.h header file.

Step 10 used the same method as Step 9 to alter the default context to include shadow

entries. Usingpm_create()andom_put(), the OM attributeDS _DONT_USE_COPY
is set to a value 0OM_FALSE to indicate that copies of entries maintained in other

284 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.3.1

DSAs and copies cached locally (that is, shadow copies) can be useds&heopy
parameter is a descriptor list defined in @e.h header file.

Step 11 usesls_search()to search the subtree belawot to find and extract the
ACL attributes from the selected entries defined in sleéection_aclparameter. The
selection_achariable is a descriptor list defined &cl.h. The results are returned to
the workspace imesult

Step 13 and Step 14 extract the components fresult and examine each entry by
using a series obm_get()calls, as described in the previous sectiondgample.c

The acl.c Code

The following code is a listing of thacl.c program.

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

/*

*

This sample program displays the access permissions (ACL) on each

*

entry in the directory for a specific user. The permissions are
* presented in a form similar to the UNIX file permissions.

* In addition, each entry is flagged as either a master

* or a shadow copy.

* The distinguished name of the user performing the check is:

* /C=de/O=sni/OU=ap/CN=norbert

* The results are presented in the following format :

* [ABCD] <entry’s distinguished name>

DCE 1.2.2 Application Development Guide—Directory Services 285

GDS Application Programming

* A: ’'m’ master copy

* 's’ shadow copy

*

* B: 'r read access to public attributes
* 'w' write access to public attributes
* -’ no access to public attributes

*

* C: 'r read access to standard attributes
* ‘W' write access to standard attributes
* -’ no access to standard attributes
*

* D: 'r' read access to sensitive attributes
* ‘W' write access to sensitive attributes
* -’ no access to sensitive attributes

* For example, the following result means that the entry '/C=de/O=sni’
* is a master copy and that the requesting user

* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public

* attributes, read access to its standard

* attributes and no access to its sensitive attributes.

* [mwr-] /C=de/O=sni

* The program requires that the specific user perform an authenticated
* bind to the directory. In order to achieve this the user's

* credentials must already exist in the directory.

* Therefore the following tree of 6 entries is added to the directory

* each time the program runs, and removed again afterwards.

* O C=de
(objectClass=Country,
ACL=(mod-pub: *

I
I
* | read-std:*
* | mod-std: *
* | read-sen:*
* | mod-sen: *))
* I
* I
* O Os=sni
* | (objectClass=Organization,

286 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

| ACL=(mod-pub: /C=de/O=sni/OU=ap/*

| read-std:/C=de/O=sni/OU=ap/CN=stefanie

| mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* | read-sen:/C=de/O=sni/OU=ap/CN=stefanie

| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))

I

| (objectClass=OrganizationalUnit,
| ACL=(mod-pub: /C=de/O=sni/OU=ap/*
| read-std:/C=de/O=sni/OU=ap/CN=stefanie
* | mod-std: /C=de/O=sni/OU=ap/CN=stefanie
| read-sen:/C=de/O=sni/OU=ap/CN=stefanie
| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
I

O CNs=ingrid
(objectClass=0OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

O CN=norbert
(objectClass=0rganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

I
I
I
I
I
I
I
I
I
I
I
* I
I
I
I
I
I
I
I
I
I
I
I

* O CNs=stefanie

DCE 1.2.2 Application Development Guide—Directory Services 287

GDS Application Programming

* (objectClass=OrganizationalPerson,

* ACL=(mod-pub: /C=de/O=sni/OU=ap/*

* read-std:/C=de/O=sni/OU=ap/*

* mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* read-sen:/C=de/O=sni/OU=ap/*

* mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* surname="Schmid",

* telephone="+49 89 636 0",

* userPassword="secret")

*

*

*

#ifdef THREADSAFE
#include <pthread.h>
#endif

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>
#include "acl.h" [* static initialization of data structures. */
void

main(

int argc,

char *argvl[]

)

{

OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */
/* is returned by ds_bind() */

OM_private_object context; /* Context object. */
OM_private_object result; /* Holds the search result object. */
OM_sint invoke_id; I* Integer for the invoke id */
/* returned by ds_search(). */

/* (this parameter must be present */

/* even though it is ignored). */

OM_type sinfo_list] = { DS_SEARCH_INFO, 0 };

OM_type entry_list] = { DS_ENTRIES, 0 };

/* Lists of types to be extracted */

288 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_public_object sinfo; /* Search-Info object from result. */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned. */
OM_return_code rc; /* XOM function return code. */
register int i;

char user_name[MAX_DN_LEN];

/* Holds requestor's name. */

char entry_string[MAX_DN_LEN + 7] = "[2r??] *;

/* Holds entry details. */

/* Step 3 (see acl.h program code for Steps 1 and 2)
*
* |nitialise a directory workspace for use by XOM.
*/
if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");

/* Step 4
*
* Negotiate the use of the BDCP and GDS packages.
*/
if (ds_version(features, workspace) !'= DS_SUCCESS)
printf("ds_version() error\n");

/* Step 5

* Add a fixed tree of entries to the directory in order to permit
* an authenticated bind by: /C=de/O=sni/OU=ap/CN=norbert

*

if (! add_tree(workspace))

printf("add_tree() error\n");

/* Step 6

*

* Create a default session object.

*

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
1= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/* Step 7

*

* Alter the default session object to include the following

* credentials: requestor: /C=de/O=sni/OU=ap/CN=norbert

* password: "secret"”

DCE 1.2.2 Application Development Guide—Directory Services

289

GDS Application Programming

290

* authentication mechanism: simple
*
if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
I= OM_SUCCESS)
printf("om_put() error %d\n", rc);
/* Step 8
*
* Bind with credentials to the default GDS server. The returned
* session object is stored in the private object variable
* bound_session and is used for all further XDS function calls.
*
if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");
I* Step 9
*
* Create a default context object.
*
if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context))
I= OM_SUCCESS)
printf("om_create() error %d\n", rc);
/*
* Alter the default context object to include 'shadow’ entries.
*
if ((rc = om_put(context, OM_REPLACE_ALL, use_copy, 0 ,0, 0))
I= OM_SUCCESS)
printf("om_put() error %d\n", rc);
[* Step 10
*
* Search the whole subtree below root. The filter selects
* entries with an object-class attribute. The selection
* extracts the ACL attribute from each selected entry.
* The results are returned in the private object 'result’.

*

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how
* filters may be used.
*

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE,
filter, OM_FALSE, selection_acl, &result, &invoke_id)
I= DS_SUCCESS)

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

printf("ds_search() error\n");
/* Step 11
*
* Close the connection to the GDS server.
*
if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");
/* Step 12
*
* Remove the user's credentials from the directory.
*
if (! remove_tree(workspace, session))
printf("remove_tree() error\n");
/* Step 13

*

* Extract components from the search result by means of om_get().

*/
if ((rc = om_get(result,

OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,

sinfo_list, OM_FALSE, 0, 0, &sinfo, &total_num))
I= OM_SUCCESS)

printf("om_get(Search-Result) error %d\n", rc);

if ((rc = om_get(sinfo->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,

entry_list, OM_FALSE, 0, 0, &entry, &total_num))

I= OM_SUCCESS)

printf("om_get(Search-Info) error %d\n", rc);

/*

* Convert the requestor's distinguished name to string format.
*/

if (! xds_name_to_string(dn_norbert, user_name))
printf("xds_name_to_string() error\n");

printf("User: %s\nTotal: %d\n", user_name, total_num);
/* Step 14

*

* Examine each entry and print the entry details.

*/

for (i = 0; i < total_num; i++) {

if (process_entry_info((entry+i)->value.object.object,
entry_string, user_name))

DCE 1.2.2 Application Development Guide—Directory Services

291

GDS Application Programming

292

printf("%s\n", entry_string);

}

/* Step 15

*

* Close the directory workspace.

*/

if (ds_shutdown(workspace) = DS_SUCCESS)
printf("ds_shutdown() error\n");

}

/*

* Add the tree of entries described above.
*/

int

add_tree(

OM_workspace workspace

)

{

OM_private_object session; /* Holds the Session object which */

/* is returned by ds_bind() */

OM_sint invoke_id; /* Integer for the invoke id */
int error = 0;

/* Bind (without credentials) to the default GDS server. */

if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) != DS_SUCCESS)
error++;

/* Add entries to the GDS server. */
ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_de, alist_C,

&invoke_id);

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_sni, alist_O,
&invoke_id) !'= DS_SUCCESS)

error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ap, alist OU,
&invoke_id) !'= DS_SUCCESS)

error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_stefanie, alist OP,
&invoke_id) !'= DS_SUCCESS)

error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_norbert, alist OP,
&invoke_id) !'= DS_SUCCESS)

error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ingrid, alist_OP,

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

&invoke_id) != DS_SUCCESS)

error++;

/* Close the connection to the GDS server. */
if (ds_unbind(session) != DS_SUCCESS)
error++;

return (error?0:1);

}

/*

* Remove the tree of entries described above.
*/

int

remove_tree(

OM_workspace workspace,

OM_private_object session

)

{

OM_private_object bound_session; /* Holds Session object which */
/* is returned by ds_bind() */

OM_sint invoke_id; I* Integer for the invoke id */

int error = 0;

/* Bind (with credentials) to the default GDS server. */

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)

error++;

/* Remove entries from the GDS server. */

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ingrid,
&invoke_id) !'= DS_SUCCESS)
error++;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_stefanie,
&invoke_id) !'= DS_SUCCESS)
error++;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_norbert,
&invoke_id) !'= DS_SUCCESS)
error++;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sni,
&invoke_id) !'= DS_SUCCESS)
error++;
ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_de,

DCE 1.2.2 Application Development Guide—Directory Services 293

GDS Application Programming

&invoke_id);
/* Close the connection to the GDS server. */
if (ds_unbind(bound_session) != DS_SUCCESS)
error++;
return (error?0:1);
}
/*
* Convert a distinguished name in XDS format (OM_descriptor
* lists) to string format.
*
int
xds_name_to_string(
OM_public_object name, /* Xds distinguished name. */
char *string [* String distinguished name. */
)
{
register OM_object dn = name;
register OM_object rdn;
register OM_object ava;
register char *sp = string;
int error = 0;
while ((dn->type !'= OM_NO_MORE_TYPES) && (! error)) {
if ((dn->type == DS_RDNS) &&
((dn->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
rdn = dn->value.object.object;
while ((rdn->type != OM_NO_MORE_TYPES) && (! error)) {
if ((rdn->type == DS_AVAS) &&
((rdn->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
ava = rdn->value.object.object;
while ((ava->type !'= OM_NO_MORE_TYPES) &&
(! error)) {
if ((ava->type == DS_ATTRIBUTE_TYPE) &&
((ava->syntax & OM_S_SYNTAX) ==
OM_S_OBJECT_IDENTIFIER_STRING)) {
*sp++ =l
if (strncmp(ava->value.string.elements,
DS_A_COUNTRY_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'C}
else if (strncmp(ava->value.string.elements,

294 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

DS_A_ORG_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'O’;
else if (strncmp(ava->value.string.elements,
DS_A_ORG_UNIT_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'O, *sp++ = 'U
else if (strncmp(ava->value.string.elements,
DS_A_COMMON_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'C’, *sp++ = 'N’;
else if (strncmp(ava->value.string.elements,
DS_A_LOCALITY_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'L’;
else if (strncmp(ava->value.string.elements,
DSX_TYPELESS_RDN.elements,
ava->value.string.length) != 0) {
error++;
continue;
}
if (*(sp-1) !'= '1); I* no '=' if typeless*/
*sp++ = =
}
if (ava->type == DS_ATTRIBUTE_VALUES) {
switch(ava->syntax & OM_S_SYNTAX) {
case OM_S_PRINTABLE_STRING :
case OM_S_TELETEX_STRING :
strncpy(sp, ava->value.string.elements,
ava->value.string.length);
sp += ava->value.string.length;
break;

default:
error++;
continue;

DCE 1.2.2 Application Development Guide—Directory Services

295

GDS Application Programming

rdn-++;

}

}

dn++;

}

*sp = \0’;

return (error?0:1);

}

/*

* Extract information about an entry from the Entry-Info object:
* whether the entry is a master-copy, its ACL permissions and
* its distinguished name.

* Build up a string based on this information.

*

int

process_entry_info(

OM_private_object entry,

char *entry_string,

char *user_name

)

{

OM_return_code rc; /* Return code from XOM function. */
OM_public_object ei_attrs; /* Components from Entry-Info. */
OM_public_object attr; /* Directory attribute. */
OM_public_object acl; /* ACL attribute value. */
OM_public_object acl_item; /* ACL item component. */
OM_value_position total_attrs; /* Number of attributes returned. */
register int i;

register int interp;

register int error = 0;

register int found_acl = 0;

static OM_type ei_attr_list]] = { DS_FROM_ENTRY,

DS_OBJECT_NAME,
DS_ATTRIBUTES,

0%
/* Attributes to be extracted. */
/*
* Extract three attributes from each Entry-Info object.
*/

if (rc = om_get(entry, OM_EXCLUDE_ALL_BUT THESE_TYPES,

296 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

ei_attr_list, OM_FALSE, 0, 0, &ei_attrs, &total_attrs))

I= OM_SUCCESS) {

error++;

printf("om_get(Entry-Info) error %d, rc);

}

for (i = 0; ((i < total_attrs) && (! error)); i++, ei_attrs++) {
/*

* Determine if current entry is a master-copy or a shadow-copy.
*

if ((ei_attrs->type == DS_FROM_ENTRY) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN))
if (ei_attrs->value.boolean == OM_TRUE)

entry_string[1] = 'm’;

else if (ei_attrs->value.boolean == OM_FALSE)
entry_string[1] = 's’;
else

entry_string[1] = '?’;

if ((ei_attrs->type == DS_ATTRIBUTES) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
attr = ei_attrs->value.object.object;

while ((attr->type !'= OM_NO_MORE_TYPES) && (! error)) {
/*

* Check that the attribute is an ACL attribute.

*

if ((attr->type == DS_ATTRIBUTE_TYPE) &&

((attr->syntax & OM_S_SYNTAX) ==
OM_S_OBJECT_IDENTIFIER_STRING)) {

if (strncmp(attr->value.string.elements,

DSX_A_ACL.elements,

attr->value.string.length) == 0)
found_acl++;
}

/*

* Examine the ACL. Check each permission for

* the current user.

*/

if ((found_acl) &&

(attr->type == DS_ATTRIBUTE_VALUES) &&
((attr->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
acl = attr->value.object.object;

DCE 1.2.2 Application Development Guide—Directory Services 297

GDS Application Programming

entry_string[2]
entry_string[3] = -';

entry_string[4]

while (acl->type !'= OM_NO_MORE_TYPES) {
if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT)
acl_item = acl->value.object.object;

switch (acl->type) {

case OM_CLASS:

break;

case DSX_MODIFY_PUBLIC:

if (permitted_access(user_name, acl_item))
entry_string[2] = 'w’;

break;

case DSX_READ_STANDARD:

if (permitted_access(user_name, acl_item))
entry_string[3] = 'r’;

break;

case DSX_MODIFY_STANDARD:

if (permitted_access(user_name, acl_item))
entry_string[3] = 'w’;

break;

case DSX_READ_SENSITIVE:

if (permitted_access(user_name, acl_item))
entry_string[4] = 'r’;

break;

inon
~

case DSX_MODIFY_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'w’;
break;

}

acl++;

/*

* Convert the entry’s distinguished name to a string format.
*/

if ((ei_attrs->type == DS_OBJECT_NAME) &&

298 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT))
if (! xds_name_to_string(ei_attrs->value.object.object,
&entry_string[7])) {
error++;
printf("xds_name_to_string() error\n");
}
}
return (error?0:1);
}
/*
* Check if a user is permitted access based on the ACL supplied.
*
*/
int
permitted_access(
char *user_name,
OM_public_object acl_item
)
{
char acl_name[MAX_DN_LEN];
int interpretation;
int acl_present = 0O;
int access = 0;
int acl_name_length;
while (acl_item->type = OM_NO_MORE_TYPES) {
switch (acl_item->type) {
case OM_CLASS:
break;
case DSX_INTERPRETATION:
interpretation = acl_item->value.boolean;
break;
case DSX_USER:
xds_name_to_string(acl_item->value.object.object, acl_name);
if (interpretation == DSX_SINGLE_OBJECT) {

if (strcmp(acl_name, user_name) == 0)

access = 1;

}

else if (interpretation == DSX_ROOT_OF_SUBTREE) {
if ((acl_name_length = strlen(acl_name)) == 0)

access = 1;

DCE 1.2.2 Application Development Guide—Directory Services 299

GDS Application Programming

7.3.2

300

else if (strncmp(acl_name,user_name,
acl_name_length) == 0)
access = 1,

}

break;

}

acl_item++;

}

return (access);

}

The acl.h Header File

The acl.h header file performs the following:
1. It exports the object identifiers thatl.c requires.

2. It builds the descriptor lists for the following distinguished names:

root

C=de

C=de/O=sni

C=de/O=sni/OU=ap
C=de/O=sni/OU=ap/CN=stefanie
C=de/O=sni/OU=ap/CN=norbert
C=de/O=sni/OU=ap/CN=ingrid

It builds the object identifiers for attributes to be added to the directory.

It builds a descriptor list for the attribute types and values that are to be selected.
It builds the descriptor list for bind credentials.

It builds the descriptor list for context.

It builds the descriptor list for optional packages that are to be negotiated.

© N o 0k~ w

It builds the descriptor list for search filters.

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.3.3 The acl.h Code

The following code is a listing of thacl.h file:

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

#ifndef ACL_HEADER

#define ACL_HEADER

#define MAX_DN_LEN 100

/* max length of a distinguished name in string format*/

/* The application must export the object identifiers it requires.
*

OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)

OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)

OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)

OM_EXPORT (DS_C_FILTER)

OM_EXPORT (DS_C_FILTER_ITEM)

OM_EXPORT (DSX_C_GDS_SESSION)

OM_EXPORT (DSX_C_GDS_CONTEXT)

OM_EXPORT (DSX_C_GDS_ACL)

OM_EXPORT (DSX_C_GDS_ACL_ITEM)

OM_EXPORT (DS_A_COUNTRY_NAME)

OM_EXPORT (DS_A_ORG_NAME)

OM_EXPORT (DS_A_ORG_UNIT_NAME)

OM_EXPORT (DS_A_COMMON_NAME)

OM_EXPORT (DS_A_LOCALITY_NAME)

OM_EXPORT (DS_A_OBJECT_CLASS)

OM_EXPORT (DS_A_USER_PASSWORD)

OM_EXPORT (DS_A_PHONE_NBR)

OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DSX_A_ACL)

DCE 1.2.2 Application Development Guide—Directory Services 301

GDS Application Programming

OM_EXPORT (DSX_TYPELESS_RDN)

OM_EXPORT (DS_O_TOP)

OM_EXPORT (DS_O_COUNTRY)

OM_EXPORT (DS_O_ORG)

OM_EXPORT (DS_O_ORG_UNIT)

OM_EXPORT (DS_O_PERSON)

OM_EXPORT (DS_O_ORG_PERSON)

/* Build up descriptor lists for the following distinguished names: */

I* root */

I* /C=de */
I* /C=de/O=sni */

* /C=de/O=sni/OU=ap */

I* /C=de/O=sni/OU=ap/CN=stefanie */

I* /C=de/O=sni/OU=ap/CN=norbert */

I* /C=de/O=sni/OU=ap/CN=ingrid */

static OM_descriptor ava_de[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("de")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor ava_snif] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor ava_ap[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor ava_stefanie[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("stefanie")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor ava_norbert]] = {

302 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("norbert")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_ingrid[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ingrid")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_de[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_de}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_snif] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_stefanie[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_norbert]] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_norbert}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ingrid[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_ingrid}},
OM_NULL_DESCRIPTOR

DCE 1.2.2 Application Development Guide—Directory Services 303

GDS Application Programming

h

static OM_descriptor dn_root[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_de[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_sni[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_de}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_de}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_stefanie[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_de}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_norbert[]] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_de}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_norbert}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ingrid[] = {

304 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
{DS_RDNS,0M_S_OBJECT,{0,rdn_ingrid}},
OM_NULL_DESCRIPTOR

h

/* Build up an array of object identifiers for the attributes to be */
/* added to the directory. */
static OM_descriptor obj_class_C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_COUNTRY),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_ O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_UNIT),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

h

static OM_descriptor att_phone_num[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

DCE 1.2.2 Application Development Guide—Directory Services 305

GDS Application Programming

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A PHONE_NBR),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,

OM_STRING("+49 89 636 0")},

OM_NULL_DESCRIPTOR

h

static OM_descriptor att_password[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, OM_STRING("secret")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor att_surname[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("Schmid")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor acl_item_root]] = {

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, 0}},
{DSX_USER, OM_S_OBJECT, {0, dn_root}},

OM_NULL_DESCRIPTOR

3

static OM_descriptor acl_item_ap[] = {

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, 0}},
{DSX_USER, OM_S_OBJECT, {0, dn_ap}},

OM_NULL_DESCRIPTOR

3

static OM_descriptor acl_item_stefanie[] = {

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_SINGLE_OBJECT, 0}},
{DSX_USER, OM_S OBJECT, {0, dn_stefanie}},

OM_NULL_DESCRIPTOR

3

static OM_descriptor acll]] = {

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL),

{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {0, acl_item_root}},
{DSX_READ_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},

306 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

{DSX_READ_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor acl2]] = {

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL),
{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_READ_STANDARD, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_READ_SENSITIVE, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor att_acll]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_ACL),
{DS_ATTRIBUTE_VALUES, OM_S_OBJECT, {0, acl1} },
OM_NULL_DESCRIPTOR

3

static OM_descriptor att_acl2[]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_ACL),
{DS_ATTRIBUTE_VALUES, OM_S_OBJECT, {0, acl2} },
OM_NULL_DESCRIPTOR

3

static OM_descriptor alist C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_C} },
OM_NULL_DESCRIPTOR

3

static OM_descriptor alist_ O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_O} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_acl1} },
OM_NULL_DESCRIPTOR

3

static OM_descriptor alist OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OU} },
OM_NULL_DESCRIPTOR

DCE 1.2.2 Application Development Guide—Directory Services 307

GDS Application Programming

h

static OM_descriptor alist_ OP[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OP} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_acl2} },

{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_surname} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_phone_num} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_password} },
OM_NULL_DESCRIPTOR

h

/* The following descriptor list specifies what to return from *

/* the entry. The ACL attribute’s types and values are selected. */
static OM_descriptor selection_acl[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S BOOLEAN, OM_FALSE},
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL),
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

3

/* The following descriptor list specifies the bind credentials */

static OM_descriptor credentials[] = {

{DS_REQUESTOR, OM_S_OBJECT, {0, dn_norbert} },
{DSX_PASSWORD, OM_S OCTET_STRING, OM_STRING("secret")},
{DSX_AUTH_MECHANISM, OM_S_ENUMERATION, {DSX_SIMPLE,0}},
OM_NULL_DESCRIPTOR

3

/* The following descriptor list specifies part of the context */

static OM_descriptor use_copy[] = {

{DS_DONT_USE_COPY, OM_S BOOLEAN, {OM_FALSE, 0} },
OM_NULL_DESCRIPTOR

3

/* Build up an array of object identifiers for the optional */

/* packages to be negotiated. */
DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },

{0}

3
/* The following descriptor list specifies a filter for search : */

I* (Present: objectClass) */

308 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.4

7.4.1

static OM_descriptor filter_item[] = {
OM_OID_DESC(OM_CLASS, DS_C_FILTER_ITEM),
{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, 0} },
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_NULL_DESCRIPTOR

h

static OM_descriptor filter[] = {

OM_OID_DESC(OM_CLASS, DS_C_FILTER),
{DS_FILTER_ITEMS, OM_S_OBJECT, {0, filter_item} },
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, 0} },
OM_NULL_DESCRIPTOR

h

#endif /* ACL_HEADER */

The teldir.c Program

The sample prograrteldir.c permits a user to add, read, or delete entries in a CDS
or GDS namespace in any local or remote DCE cell, assuming that permissions are
granted by the ACLs. The entry consists of a person’s surname and phone number.
Each entry is of clas®rganizational-Person

The program uses predefined static XDS public objects that are never altered and
partially defined static XDS public objects so that values for the surname and phone

number can be entered dynamically by a user. It also uses dynamic XDS public objects
that are created and filled only as needed by usingstlingToXdsName function.

These techniques are a departure from those used in the first two sample programs
where all objects are predefined.

Predefined Static Public Objects

The predefined static object classes and attributes are shown in the following code
fragment:

DCE 1.2.2 Application Development Guide—Directory Services 309

GDS Application Programming

* To hold the attributes we want to attach to the name being added.

* One attribute is the class of the object (DS_O_ORG_PERSON), the

* rest of the attributes are the surname (required for all objects

* of class DS_O_ORG_PERSON) and phone number. In addition, we need

* an object to hold all this information to pass it into

* ds_add_entry().

*

static OM_descriptor xdsObjectClass[] = {

/* This object is an attribute--an object class. */

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A OBJECT_CLASS),
/* Not only must the class be listed, but also all */

/* its superclasses. */

OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),

OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),

OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),

/* Null terminator */

OM_NULL_DESCRIPTOR

h

static OM_descriptor xdsAttributesToAdd[] = {

/* This object is an attribute list. */

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

/* These are "pointers" to the attributes in the list. */

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } },

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsSurname } },

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNum } },

/* Null terminator */

OM_NULL_DESCRIPTOR

h

/*

* To hold the list of attributes we want to read.

*/

static OM_descriptor xdsAttributeSelection]] = {

/* This is an entry information selection. */

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/* No, we don't want all attributes. */

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE },

/* These are the ones we want to read. */

OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_ SURNAME),

310 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.4.2

OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

/* Give us both the types and their values. */

{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES, NULL } },
/* Null terminator */

OM_NULL_DESCRIPTOR

h

Partially Defined Static Public Objects

The program patrtially defines static XDS objects with placeholders so that values for
the surname and telephone number entered by the user can be added later, as shown
in the following code fragment:

static OM_descriptor xdsSurname[] = {

[* This object is an attribute--a surname. */

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

/* No default--so we need a placeholder for the actual surname. */
OM_NULL_DESCRIPTOR,

/* Null terminator */

OM_NULL_DESCRIPTOR

h

static OM_descriptor xdsPhoneNum[] = {

/* This object is an attribute--a telephone number. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

/* By default, phone numbers are unlisted. If the user specifies */
/* an actual phone number, it will go into this position. */
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("unlisted") },

/* Null terminator */

OM_NULL_DESCRIPTOR

h

DCE 1.2.2 Application Development Guide—Directory Services 311

GDS Application Programming

7.4.3

312

The program prompts the user for the surname of the person whose number will be
changed and uses tiLL_OMD_STRING macro to fill in values, as shown in the
following code fragment:

if (operation == 'a’) {

/* add operation requires additional input */

/*

* Get the person’'s real name from the user and place it in the
* XDS object already defined at the

* top of the program (xdsSurname).

* We are requiring a name, so we will loop until we get one.
*

do {

printf("What is this person’s surname? ");

gets(newSurname);

} while (*newSurname == "0’);

FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,
OM_S_TELETEX_STRING, newSurname)

Dynamically Defined Public Objects

The program uses the functi@tringToXdsName to convert the DCE name entered

by a user into an XDS name object of OM claBS C_DS DN which is the
representation of a distinguished name. In the other two sample programs, arrays of
descriptor lists are statically declared to represent the AVAs and RDNs that make up the
public object that represents a distinguished name. The funstiamgToXdsName
parses the DCE name and dynamically converts it to a public object.

For example, the following code fragment shows how space fo6aC_AVA object

is allocated and its entries are filled by using #leL_OMD_XOM_STRING and
FILL_OMD_NULL macros:

/*
* Allocate space for a DS_C_AVA object and fill in its entries:

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

* DS_C_AVA class identifier
* AVA's type

* AVA'’s value

* null terminator

*

ava = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 4);

if(ava == NULL) /* malloc() failed */

return OM_MEMORY_INSUFFICIENT;

FILL_OMD_XOM_STRING(ava, 0, OM_CLASS, OM_S_OBJECT_IDENTIFIER_STRING,
DS_C_AVA)

splitNamePiece(start, &type, &value);

FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE,
OM_S_OBJECT_IDENTIFIER_STRING, type)

FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
value)

FILL_OMD_NULL(ava, 3)

The program uses the same method to build the RDNs that make up the the
distinguished name. The distinguished name is NULL terminated by using the
FILL_OMD_NULL macro, and the location of the new public object is provided
for the calling routine (main) in the pointeadsNameObj as shown in the following
code fragment:

/* Add the DS_C_RDN object to the DS_C_DS_DN object. */
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)
}

/*

* Null terminate the DS_C_DS_DN, tell the calling routine

* where to find it, and return.

*

FILL_OMD_NULL(dsdn, index)

*xdsNameObj = dsdn;

return(OM_SUCCESS);

} /* end stringToXdsName() */

DCE 1.2.2 Application Development Guide—Directory Services 313

GDS Application Programming

7.4.4

314

Main Program Procedural Steps

The program consists of the following general steps:

1. Examine the command-line argument to determine the type of operation (read,
add, or delete entry) that the user wants to perform.

Initialize a workspace.

Pull in the packages with the required XDS features.

Prompt the user for the name entry on which the operation will be performed.
Convert the DCE-formatted user input string to an XDS object name.

Bind (without credentials) to the default server.

Perform the requested operation (read, add, or delete entry).

Perform error handling.

© © N o g bk~ w N

Unbind from the server.

Sy
o

. Shut down the workspace, releasing resources back to the system.

Step 1 simply involves determining which of the three optiomsfread),a (add), or

d (delete)—the user has entered. Step 2 initializes a workspace, an operation required
by XDS API for every application program. Step 3 is required because additional
features not present in the directory service package need to be used by the application
program. An additional package, the basic directory contents package, is defined in
featureListas a static XDS object earlier in the program.

In Step 4, the user is prompted for the DCE-formatted name, which is the distinguished
name of the person on whose telephone number the operation is to be performed. The
name must be a fully or partially qualified name that begins with either.ther /.:

prefix. An example of a fully qualified, or global, name/is/C=de/O=sni/OU=ap/
CN=klaus. An example of a partially qualified, or cell, name /igbrad/sni/com.
Additional information is requested in Step 5 if the user requests an add operation.

Step 5 converts the DCE-formatted name to an XDS object name (public object)
by using thestringToXdsName() function call. This function builds an XDS public
object that represents the distinguished name entered by the user.

Step 6 binds the session to the default server without credentials; username and
password are not required.

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

7.4.5

In Step 7, the requested operation is performed by using XDS API functions calls.
For an add operatiords_add_entry()is performed; for a read operatiods_read()

is performed; and for a delete operatials, remove_entry()is performed. The read
operation requires a series of XOM A&in_get()function calls to extract the surname
and phone number from the workspace. (For a detailed description of the XDS and
XOM API function calls, refer to Chapters 5 and 6.)

Step 8 and Step 9 are required for every XDS API application program in order
to clean up before the program exits. The session is unbound from the server, and
the public and private objects are released to the system that provided the memory
allocated for them.

The teldir.c Code

The following is a listing of the filgeldir.c:

/*

*

This sample program behaves like a simple telephone directory.

* |t permits a user to add, read or delete entries in a GDS

* namespace or to a CDS namespace in any local or remote DCE cell
* (assuming that permissions are granted by the ACLS).

* Each entry is of class Organizational-Person and simply contains
* a person’s surname and their phone number.

* The addition of an entry is followed by a read to verify that the
* information was entered properly.

* All valid names should begin with one of the following symbols:

* /... Fully qualified name (from global root).

* such as /.../C=de/O=sni/OU=ap/CN=klaus
*

* /. Partially qualified name (from local cell root).
* such as /.:/brad/sni/com

* This program demonstrates the following techniques:
* - Using completely static XDS public objects (predefined at the top
* of the program and never altered). See xdsObjectClass,

DCE 1.2.2 Application Development Guide—Directory Services 315

GDS Application Programming

316

*

*

xdsAttributesToAdd, and xdsAttributeSelection below.

Using partially static XDS public objects (predefined at the top

of the program but altered later). See xdsSurname and xdsPhoneNum
below. See also the macros whose names begin with "FILL_OMD_".
Using dynamic XDS public objects (created and filled in only as
needed). See the function stringToXdsName() below.

Parsing DCE-style names and converting them into XDS objects. See
the function stringToXdsName() below.

Getting the value of an attribute from an object read from the
namespace using ds_read(). See the function extractValue() below.
Getting the numeric value of an error (type DS_status) returned by
one of the XDS calls. See the function handleDSError() below.

*

#ifdef THREADSAFE
#include <pthread.h>

#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(
OM_EXPORT(

DS_A_COMMON_NAME)
DS_A_COUNTRY_NAME)
DS_A_LOCALITY_NAME)
DS_A_OBJECT_CLASS)
DS_A_ORG_UNIT_NAME)
DS_A_ORG_NAME)
DS_A_SURNAME)
DS_A_PHONE_NBR)
DS_A_TITLE)
DS_C_ATTRIBUTE)
DS_C_ATTRIBUTE_LIST)
DS_C_AVA)
DS_C_DS_DN)
DS_C_DS_RDN)

DS_C_ENTRY_INFO_SELECTION)

DS_O_ORG_PERSON)

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_EXPORT(DS_O_PERSON)

OM_EXPORT(DS_O_TOP)

OM_EXPORT(DSX_TYPELESS_RDN) /* For "typeless" pieces of a name, as */
/* found in cells with bind-style names*/

/* and in the CDS namespace. */

#define MAX_NAME_LEN 1024

/* These values can be found in */
/* the "Directory Class Definitions" chapter. */

/* (One byte must be added for the null terminator.) */

#define MAX_PHONE_LEN 33

#define MAX_SURNAME_LEN 66

/

* Macros for help filling in static XDS objects.

/

/* Put NULL value (equivalent to OM_NULL_DESCRIPTOR) in object */
#define FILL_OMD_NULL(desc, index)

desc[index].type = OM_NO_MORE_TYPES;

desc[index].syntax = OM_S_NO_MORE_SYNTAXES;
desc[index].value.object.padding = 0;
desc[index].value.object.object = OM_ELEMENTS_UNSPECIFIED;
/* Put C-style (null-terminated) string in object */

#define FILL_OMD_STRING(desc, index, typ, syntx, val)
desc[index].type = typ;

descfindex].syntax = syntx;

desc[index].value.string.length = (OM_string_length)

strlen(val);

desc[index].value.string.elements = val,

/* Put XOM string in object */

#define FILL_OMD_XOM_STRING(desc, index, typ, syntx, val)
desc[index].type = typ;

descfindex].syntax = syntx;

desc[index].value.string.length = val.length;
desc[index].value.string.elements = val.elements;

/* Put other value in object */

#define FILL_OMD_STRUCT(desc, index, typ, syntx, val)
desc[index].type = typ;

descfindex].syntax = syntx;

desc[index].value.object.padding = 0;
desc[index].value.object.object = val;

/

DCE 1.2.2 Application Development Guide—Directory Services 317

GDS Application Programming

* Static XDS objects.

/*
* To identify which packages we need for this program. We only need
* the basic package because we are not doing anything fancy with
* session parameters, etc.
*/
DS_feature featureList]] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{0}
h
/*
* To hold the attributes we want to attach to the name being added.
* One attribute is the class of the object (DS_O_ORG_PERSON), the
* rest of the attributes are the surname (required for all objects
* of class DS_O_ORG_PERSON) and phone number. In addition, we need
* an object to hold all this information to pass it
* into ds_add_entry().
*/
static OM_descriptor xdsObjectClass[] = {
/* This object is an attribute--an object class. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A OBJECT_CLASS),
/* Not only must the class be listed, but also all */
/* its superclasses. */
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
/* Null terminator */
OM_NULL_DESCRIPTOR
h
static OM_descriptor xdsSurname[] = {
/* This object is an attribute--a surname. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
/* No default--so we need a placeholder for the actual surname.
*/
OM_NULL_DESCRIPTOR,
/* Null terminator */
OM_NULL_DESCRIPTOR

318 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

h
static OM_descriptor xdsPhoneNum[] = {
/* This object is an attribute--a telephone number. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
/* By default, phone numbers are unlisted. If the user specifies */
/* an actual phone number, it will go into this position. */
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("unlisted") },
/* Null terminator */
OM_NULL_DESCRIPTOR
h
static OM_descriptor xdsAttributesToAdd[] = {
/* This object is an attribute list. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
/* These are "pointers" to the attributes in the list. */
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsSurname } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNum } },
/* Null terminator */
OM_NULL_DESCRIPTOR
h
/*
* To hold the list of attributes we want to read.
*
static OM_descriptor xdsAttributeSelection]] = {
/* This is an entry information selection. */
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
/* No, we don't want all attributes. */
{ DS_ALL_ATTRIBUTES, OM_S BOOLEAN, OM_FALSE 1},
/* These are the ones we want to read. */
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS _ATTRIBUTES_SELECTED, DS_A PHONE_NBR),
/* Give us both the types and their values. */
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES, NULL } },
/* Null terminator */
OM_NULL_DESCRIPTOR
h

/

* dce_cf_get_cell_name()

DCE 1.2.2 Application Development Guide—Directory Services 319

GDS Application Programming

320

* Use this dummy function if CDS is not available.

/
void
dce_cf_get_cell_name(
char ** cellname,
unsigned long * status
)
{
fprintf(stderr, "CDS unavailable: dce_cf _get_cell_name() error\n");
*status = 1;
} * end dce_cf_get_cell_name() */
!
* showUsage()
* Display "usage" information.
/
void
showUsage(
char * cmd /* In--Name of command being called */
)
{
fprintf(stderr, "\nusage: %s [option]\n\n", cmd);
fprintf(stderr, "option: -a : add an entry\n");
fprintf(stderr, " -r : read an entry\n");
fprintf(stderr, " -d : delete an entry\n");
} ¥ end showUsage() */
/
* numNamePieces()
* Returns the number of pieces in a string name.
/
int
numNamePieces(
char * string /* In--String whose pieces are to be counted*/
)
{
int count; /* Number of pieces found */
char * currSep; /* Pointer to separator between pieces */
if(string == NULL) /* If nothing there, no pieces */
return(0);
count = 1; /* Otherwise, there’s at least one */
/*

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

* If the first character is a /, it's not really separating
* two pieces so we want to ignore it here.

*

if(*string == 1")

currSep = string + 1;

else

currSep = string;

/* How many pieces are there? */

while((currSep = strchr(currSep, '/)) !'= NULL) {
count++;

currSep++; /* Begin at next character */

}

return(count);

} * end numNamePieces() */

/
* splitNamePiece()
* Divides a piece of a name (string) into its XDS attribute type

* and value.
/
void
splitNamePiece(
char * string, /* In--String to be broken down */
OM_string * type, /* Out--XDS type of this piece of the name */
char ** value /* Out--Pointer to beginning of the value */
) /* part of string */
{
char * equalSign; [* Location of the = within string */
/*

* If the string contains an equal sign, this is probably a
* typed name. Check for all the attribute types allowed by
* the default schema.

*

if((equalSign = strchr(string, '=")) !'= NULL) {

*value = equalSign + 1;

if((strncmp(string, "C=", 2) == 0) ||

(strncmp(string, "c=", 2) == 0))

*type = DS_A_COUNTRY_NAME;

else if((strnemp(string, "O=", 2) == 0) ||

(strncmp(string, "o=", 2) == 0))

*type = DS_A_ORG_NAME;

DCE 1.2.2 Application Development Guide—Directory Services 321

GDS Application Programming

322

else if((strncmp(string, "OU=", 3) == 0) ||

(strncmp(string, "ou=", 3) == 0))

*type = DS_A_ORG_UNIT_NAME;

else if((strncmp(string, "LN=", 3) == 0) ||

(strncmp(string, "In=", 3) == 0))

*type = DS_A_LOCALITY_NAME;

else if((strncmp(string, "CN=", 3) == 0) ||

(strncmp(string, "cn=", 3) == 0))

*type = DS_A_COMMON_NAME;

/*

* If this did not appear to be a type allowed by the
* default schema, consider the whole string as the
* value (whose type is "typeless").

*

else {

*type = DSX_TYPELESS_RDN;

*value = string;

}

}

/*

* If the string does not contain an equal sign, this is a
* typeless name.

*

else {

*type = DSX_TYPELESS_RDN;

*value = string;

}

} /* end splitNamePiece() */

/

* extractValue()

* Pulls the value of a particular attribute from a private object
* that was received using ds_read().

* Returns:

* OM_SUCCESS If successful.

* OM_NO_SUCH_OBJECT If no values for the attribute
* were found.

* other Any value returned by one of the
* om_get() calls.

OM_return_code

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

extractValue(

OM_private_object object, /* In--Object to extract from */
OM_string * attribute, /* In--Attribute to extract */

char * value /* Out--Value found */
)

{

OM_public_object attrList;
OM_public_object attrType;
OM_public_object attrValue;
OM_public_object entry;

int i;
OM_return_code omsStatus;
OM_value_position total;
OM_value_position totalAttributes;

OM_type xdsiIncludedTypes[] = { 0O, /* Place holder */
0 }; /* Null terminator*/

/*

* Get the entry from the object returned by ds_read().

*/

xdsiIncludedTypes[0] = DS_ENTRY;

omsStatus = om_get(object, /* Object to extract from */

OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
/* Only want what is in */
/* xdsIncludedTypes, don't*/

/* include subobjects */

xdslIncludedTypes, /* What to get */
OM_FALSE, /* Currently ignored */
OM_ALL_VALUES, /* Start with first value */
OM_ALL_VALUES, /* End with last value */
&entry, /* Put the entry here */
&total); /* Put number of attribut */

/* descriptors here */

if(omStatus '= OM_SUCCESS) {

fprintf(stderr, "om_get(entry) returned error %d\n",

omsStatus);

return(omStatus);

}

if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,

"Number of descriptors returned by om_get(entry)

DCE 1.2.2 Application Development Guide—Directory Services 323

GDS Application Programming

324

was %d\n", total);
return(OM_NO_SUCH_OBJECT);
}
/*
* Get the attribute list from the entry.
*
xdsiIncludedTypes[0] = DS_ATTRIBUTES;
omStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdslIncludedTypes, OM_FALSE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrlList, &totalAttributes);
if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(attrList) returned error %d\n",
omsStatus);
return(omStatus);
}
if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,
"Number of descriptors returned by om_get(attrList)
was %d\n", total);
return(OM_NO_SUCH_OBJECT);

}

/*

* Search the list for the attribute with the proper type.
*

for(i = 0; i < totalAttributes; i++) {

xdsincludedTypes[0] = DS_ATTRIBUTE_TYPE;

omsStatus = om_get((attrList+i)->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsIncludedTypes, OM_FALSE, OM_ALL_VALUES,

OM_ALL_VALUES, &attrType, &total);

if(omStatus '= OM_SUCCESS) {

fprintf(stderr, "om_get(attrType) [i = %d] returned

error %d\n", i, omStatus);
return(omStatus);
}

if(total <= 0) { /* Make sure something was returned */
fprintf(stderr,

"Number of descriptors returned by om_get(attrType)

[i = %d] was %d\n", i, total);

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

return(OM_NO_SUCH_OBJECT);
}
if(strncmp(attrType->value.string.elements,
attribute->elements,
attribute->length) == 0)
break; /* If we found a match, quit looking. */
}
if(i == totalAttributes) { /* Verify that we found a match.
*/
fprintf(stderr,
"%s: extractValue() could not find requested attribute\n");
return(OM_NOT_PRESENT);
}
/*
* Get the attribute value from the corresponding item in the
* attribute list.
*/
xdsincludedTypes[0] = DS_ATTRIBUTE_VALUES;
omsStatus = om_get((attrList+i)->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsincludedTypes, OM_FALSE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrValue, &total);
if(omStatus != OM_SUCCESS) {
fprintf(stderr, "om_get(attrValue) returned error %d\n",
omStatus);
return(omsStatus);
}
if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,
"Number of descriptors returned by om_get(attrValue)
was %d\n", total);
return(OM_NO_SUCH_OBJECT);
}
/*
* Copy the value into the buffer for return to the caller.
*/
strncpy(value, attrValue->value.string.elements,
attrValue->value.string.length);
value[attrValue->value.string.length] = "\0’;
/*

DCE 1.2.2 Application Development Guide—Directory Services

325

GDS Application Programming

326

* Free up the resources we don't need any more and return.
*

om_delete(attrvValue);

om_delete(attrType);

om_delete(attrList);

om_delete(entry);

return(OM_SUCCESS);

} /* end extractValue() */

!

* stringToXdsName()

* Converts a string that is a DCE name to an XDS name object (class
* DS_C_DS _DN). Returns one of the following:

* OM_SUCCESS If successful.

* OM_MEMORY_INSUFFICIENT If a malloc fails.

* OM_PERMANENT_ERROR If the name is not in a valid format.
* OM_SYSTEM_ERROR If the local cell's name cannot

* be determined.

*

* Technically, the space obtained here through malloc() needs

* to be returned to the system when it is no longer needed.

* If this was a more complex application, this function would

* probably malloc all the space it needs at once and require

* calling routines to free the space when finished with it.

/
OM_return_code

stringToXdsName(

char * origString, /* In--String name to be converted */
OM_object * xdsNameObj /* Out--Pointer to XDS name object */
)

{

OM_descriptor * ava; /* DS_C_AVA object */

char * cellName; /* Name of this cell */
OM_object dsdn; /* DS_C_DS_DN object */

char * end; /* End of name piece */

int index; /* Index into DS_C_DS DN object */
int numberOfPieces; /* Number of pieces in the name */
unsigned long rc; /* Return code for some functions*/
OM_descriptor * rdn; /* DS_C_RDN object */

char * start; /* Beginning of piece of name */
char * string; /* Copy of origString that we can use*/

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

OM_string type; /* Type of one piece of the name */
char * value; /* Piece of the name */
/*

* A DS_C_AVA object only contains pointers to the strings that
represent the pieces of the name, not the contents of the

strings themselves. So we’ll make a copy of the string passed
* in to guarantee that these pieces survive in case the programmer
* alters or reuses the original string.

*

*

* In addition, all valid names should begin with one of the
* following symbols:

* /... Fully qualified name (from global root). For

* these, we need to ignore the /...

* /. Partially qualified name (from local cell root).

* For these, we must replace the /.. with the name
* of the local cell name

* |If we see anything else, we'll return with an error. (Notice
* that /: is a valid DCE name, but refers to the file system’s
* namespace. Filenames cannot be accessed through

* CDS, GDS, or XDS.)

*

if(strnecmp(origString, "/.../", 5) == 0) {

string = (char *)malloc(strlen(origString+5) + 1);

if(string == NULL) /* malloc() failed */

return OM_MEMORY_INSUFFICIENT,;

strepy(string, origString+5);

}

else if(strncmp(origString, "/.:/", 4) == 0) {
dce_cf_get_cell_name(&cellName, &rc);

iftrc !1=0) /* Could not get cell name */
return OM_SYSTEM_ERROR;
/*

* The cell name will have /.../ on the front, so we will
* skip over it as we add it to the string (by always

* starting at its fifth character).

*/

string = (char *)malloc(strlen

(origString+4) + strlen(cellName+5) + 2);

if(string == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT;

DCE 1.2.2 Application Development Guide—Directory Services 327

GDS Application Programming

328

strepy(string, cellName+5);
strcat(string, "/");
strcat(string, origString+4);

}
else /* Invalid name format */
return OM_PERMANENT_ERROR,;

/*
* Count the number of pieces in the name that will have to
* be dealt with.
*
numberOfPieces = numNamePieces(string);
/*
* Allocate memory for the DS_C_DS_DN object. We will need an
* OM_descriptor for each name piece, one for the class
* identifier, and one for the null terminator.
*
dsdn = (OM_object)malloc(
(numberOfPieces + 2) * sizeof(OM_descriptor));

if(dsdn == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT,;
/*

* |nitialize it as a DS_C_DS_DN object by placing that class
* identifier in the first position.

*/

FILL_OMD_XOM_STRING(dsdn, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS _C_DS DN)

/*

* For each piece of string, do the following:

* Break off the next piece of the string

* Build a DS_C_AVA object to show the type and value
* of this piece of the name

* Wrap the DS_C_AVA up in a DS_C_RDN object

* Add the DS_C_RDN to the DS_C_DS_DN object

*/

for(start=string, index=1 ; index <= numberOfPieces ;
index++, start=end+1) {

/*

* Find the next delimiter and replace it with a null byte
* so the piece of the name is effectively separated from
* the rest of the string.

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

*
end = strchr(start, '/);
ift end !'= NULL)

*end = \0;
else /* If this is the last piece, there won't be */
/* a 'I' at the end, just a null byte. */

end = strchr(start, 0’);

/*

* Allocate space for a DS_C_AVA object and fill in its entries:
* DS_C_AVA class identifier

* AVA’s type

* AVA's value

* null terminator

*

ava = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 4);

ifl ava == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT,;
FILL_OMD_XOM_STRING(ava, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_AVA)
splitNamePiece(start, &type, &value);
FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE,
OM_S_OBJECT_IDENTIFIER_STRING, type)
FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES,

OM_S PRINTABLE_STRING, value)

FILL_OMD_NULL(ava, 3)

/*

* Allocate space for a DS_C_RDN object and fill in its entries:
* DS_C_RDN class identifier

* AVA it contains

* null terminator

*/

rdn = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 3);

if(rdn == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT,;
FILL_OMD_XOM_STRING(rdn, 0, OM_CLASS,

OM_S OBJECT_IDENTIFIER_STRING, DS _C DS RDN)
FILL_OMD_STRUCT(rdn, 1, DS_AVAS, OM_S OBJECT, ava)
FILL_OMD_NULL(rdn, 2)

/* Add the DS_C_RDN object to the DS_C_DS DN object. */
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)

DCE 1.2.2 Application Development Guide—Directory Services 329

GDS Application Programming

}

/*

* Null terminate the DS_C_DS_DN, tell the calling routine
* where to find it, and return.

*

FILL_OMD_NULL(dsdn, index)

*xdsNameObj = dsdn;

return(OM_SUCCESS);

} /* end stringToXdsName() */

!

* handleDSError()

* Extracts the error number from a DS_status return code, prints it
* in an error message, then terminates the program.

/
void
handleDSError(
char * header, /* In--Name of function whose return code */
I* is being checked */

DS_status returnCode /* In--Return code to be checked */

)

{

OM_type includeDSProblem[] = { DS_PROBLEM,
0%

OM_return_code omStatus;

OM_public_object problem;

OM_value_position total;

/*

* A DS_status return code is an object. It will be one of the

* subclasses of the class DS_C_ERROR. What we want from it is
* the value of the attribute DS_PROBLEM.

*/

omsStatus = om_get(returnCode,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
includeDSProblem,

OM_FALSE,

OM_ALL_VALUES,

OM_ALL_VALUES,

&problem,

&total);

/*

330 DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

* Make sure we successfully extracted the problem number and print
* the error message before quitting.

*

if((omStatus == OM_SUCCESS) && (total > 0))
printf("%s returned error %d\n", header,
problem->value.enumeration);

else

printf("%s failed for unknown reason\n", header);
exit(1);

}

/

* Main program

*

void

main(

int argc,

char * argv[]

)

{

DS_status dsStatus;

OM_sint invokelD;

char newName[MAX_NAME_LEN];

char newPhoneNum[MAX_PHONE_LEN];
char newSurname[MAX_SURNAME_LEN];
OM_return_code omStatus;

char phoneNumRead[MAX_PHONE_LEN];
int rc = 0;

OM_private_object readResult;
OM_private_object session;

char surnameRead[MAX_SURNAME_LEN];
OM_object xdsName;

OM_workspace xdsWorkspace;

int operation;

/* Step 1

*

* Examine command-line argument.

*/

operation = getopt(argc, argv, "rad");

if ((operation == '?") || (operation == EOF)) {
showUsage(argv[0]);

DCE 1.2.2 Application Development Guide—Directory Services 331

GDS Application Programming

332

exit(1);
}
/* Step 2
*
* |nitialize the XDS workspace.
*/
xdsWorkspace = ds_initialize();
if(xdsWorkspace == NULL) {
fprintf(stderr, "ds_initialize() failed\n");
exit(1);
}
/* Step 3
*
* Pull in the packages that contain the XDS features we need.
*/
dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_version()", dsStatus);
/* Step 4
*
* Find out what name the user wants to use in the namespace and
* convert it to and XDS object. We do this conversion dynamically
* (not using static structures defined at the top of the program)
* because we don't know how long the name will be.
*/
switch(operation) {
case 'r' :
printf("What name do you want to read? ");
break;
case 'a’ :
printf("What name do you want to add? ");
break;
case 'd :
printf("What name do you want to delete? ");
break;
}
/* Step 5 */
gets(newName);
omStatus = stringToXdsName(newName, &xdsName);
if(omStatus !'= OM_SUCCESS) {

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

fprintf(stderr, "stringToXdsName() failed with OM error %d\n",

omStatus);
exit(1);
}
if (operation == 'a’) {
/* add operation requires additional input */
/*

* Get the person’s real name from the user and place it in
* the XDS object already defined at the top of the program
* (xdsSurname). We are requiring a name, so we will loop
* until we get one.

*

do {

printf("What is this person’s surname? ");

gets(newSurname);

} while (*newSurname == "0’);

FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,
OM_S_TELETEX_STRING, newSurname)

/*

* Get the person’s phone number from the user and place it
* in the XDS object already defined at the top of the

* program (xdsPhoneNum). A phone number is not required,
* so if none is given we will use the default already

* stored in the structure.

*/

printf("What is this person’s phone number? ");

gets(newPhoneNum);

if(*newPhoneNum = "\0") {

FILL_OMD_STRING(xdsPhoneNum, 2, DS_ATTRIBUTE_VALUES,
OM_S PRINTABLE_STRING, newPhoneNum)

}

}

/* Step 6

*

* Open the session with the namespace:

* bind (without credentials) to the default server.

*

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);
if(dsStatus != DS_SUCCESS)

handleDSError("ds_bind()", dsStatus);

DCE 1.2.2 Application Development Guide—Directory Services 333

GDS Application Programming

334

I* Step 7 */

switch(operation) { /* perform the requested operation */
/*

* Add entry to the namespace. The xdsSurname and xdsPhoneNum

* objects are already contained within an attribute list object

* (xdsAttributesToAdd).

*

case 'a’ :

dsStatus = ds_add_entry(session, DS_DEFAULT_CONTEXT, xdsName,

xdsAttributesToAdd, &invokelD);

if(dsStatus != DS_SUCCESS)

handleDSError("ds_add_entry()", dsStatus);

/* FALL THROUGH */

/*

* Read the entry of the name supplied.

*

case r' :

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, xdsName,

xdsAttributeSelection, &readResult, &invokelD);

if(dsStatus != DS_SUCCESS)

handleDSError("ds_read()", dsStatus);

/*

* Get each attribute from the object read and print them.

*

omStatus = extractValue(readResult, &DS_A_SURNAME,

surnameRead);

if(omStatus != OM_SUCCESS) {

printf("** Surname could not be read\n");

strecpy(surnameRead, "(unknown)");

rc = 1;

}

omStatus = extractValue(readResult, &DS_A_PHONE_NBR,

phoneNumRead);

if(omStatus != OM_SUCCESS) {

printf("** Phone number could not be read\n");

strcpy(phoneNumRead, "(unknown)");

rc = 1,

}

printf("The phone number for %s is %s.\n", surnameRead,

phoneNumRead);

DCE 1.2.2 Application Development Guide—Directory Services

Sample Application Programs

break;

/*
* delete the entry from the namespace.
*
case 'd :
dsStatus = ds_remove_entry(session, DS_DEFAULT_CONTEXT,
xdsName, &invokelD);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_remove_entry()", dsStatus);
else
printf("The entry has been deleted.\n");
break;
}
/*
* Clean up and exit.
*
/* Step 8 */
dsStatus = ds_unbind(session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_unbind()", dsStatus);
/* Step 9 */
dsStatus = ds_shutdown(xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_shutdown()", dsStatus);
exit(rc);
} /* end main() */

DCE 1.2.2 Application Development Guide—Directory Services 335

Chapter 8

Using Threads With The XDS/XOM
API

Some programs work well when they are structured as multiple flows of control.
Other programs may show better performance when they are multithreaded, allowing
the multiple threads to be mapped to multiple processors when they are available.

GDS application programs can contain multiple threads of control. For example, a
GDS application can need to query several GDS servers. This can be achieved more
efficiently by using separate threads simultaneously to query the different servers.

GDS supports multithreaded applications. Writing multithreaded applications over
GDS imposes new requirements on programmers: they must manage the threads,
synchronize threads’ access to global resources, and make choices about thread
scheduling and priorities.

This chapter describes a simple GDS application that uses threads. (Refer to the
*(3thr) reference pages for more information on DCE threads.)

DCE 1.2.2 Application Development Guide—Directory Services 337

GDS Application Programming

The XDS/XOM API calls do not change when they are making use of DCE threads
in an application program. The service underneath XDS/XOM API is designed to be
both thread-safeto allow multiple threads to safely access shared data,candel-
safe to handle unexpected cancellation of a thread in an application program.

Figure 8-1 shows an example of how an application can issue XDS/XOM calls from
within different threads.

Figure 8-1. Issuing XDS/XOM Calls from Within Different Threads

Thread 3 Thread 4 Thread 5
ds_initialiize
’ ds_read ‘ ‘ ds_list ‘ ‘ ds_compare ‘

The order of thread completion is not defined; however, XDS/XOM has an inherent

ordering. Multithreaded XDS applications must adhere to the following order of
execution:

1. ds_initialize()
2. ds_version()(optional)
3. ds_hind()

338 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

8.1

4. Other XDS calls in sequence or parallel from multiple threads
5. ds_unbind()
6. ds_shutdown()

Multithreaded XOM applications must adhere to the following order of execution:
1. ds_initialize()
2. XOM calls in sequence or parallel from multiple threads
3. ds_shutdown()

The XDS/XOM API returns an appropriate error code if these sequences are not
adhered to. For example the following errors are returned:

DS_E_BUSY
If ds_unbind() is called while there are still outstanding operations, or
if ds_shutdown()is called before all directory connections have been
released byds_unbind().

OM_NO_SUCH_WORKSPACE
If any XOM API calls are made before callinds_initialize(), or if a
call to ds_shutdown() completes while there are outstanding XOM
operations on the same workspace. In the latter case, these XOM
operations will not be performed.

Overview of Sample Threads Program

The sample program is callethradd. The thradd program is a multithreaded
XDS application that adds entries to a GDS directory. Each thread performs a
ds_add_entry() call. The information for each entry to be added is read from an
input file.

The thradd program can also be used to reset the directory to its original state.
This is achieved by invokinghradd with a-d command-line argument. In this case,
thradd uses the same input file and calls_remove_entry()for each entry. The
ds_remove_entry()calls are also done in separate threads.

DCE 1.2.2 Application Development Guide—Directory Services 339

GDS Application Programming

To keep the program short and clear, it works with a fixed tree for the upper nbdes (
C=it/O=sni/OU=ap), to which the entries described in the input file are added. This
fixed upper tree is added to the directory thyadd. The input file contains the
common name, the surname, and the phone number of @agdmizational-Person
entry to be added.

For simplicity, onlypthread_join() is used for synchronization purposes; mutexes are
not used.
The thradd program can be enhanced to satisfy the following scenarios:

» As a server program for interactive directory actions from different users. The
thradd program simulates a server program that gets requests from different users
to add entries to a directory. In the casetbfadd, the users’ interactive input
is simulated through the entries in the input file. Each line of input represents a
different directory entry, anthradd uses a separate thread for each line.

* Initialization of the directory with data from file. Théhradd program could be
enhanced to read generic attribute information for a variety of directory object
classes from a file, and to add the corresponding entries to the directory.

8.1.1 User Interface

The thradd program is called from the command line as follows:

thradd [-d] [-f file_namé¢

where:

-d Causes the entries in the file and the tf€=it/O=sni/OU=ap to be
deleted; otherwise, they are added.

-ffile_name Specifies the name of the input file. If no input file is specified, then a
default filename othradd.dat is used.

340 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

8.1.2

8.1.3

Input File Format

The input file can contain any number of lines. Each line represents a directory entry
of an organizational person. Each line must contain the following three attributes for
each entry:

<common nante <surname <phone number

The attributes must be strings without space characters. Lines containing less than
three strings are rejected by the program; any input on a line after the first three
strings is ignored and can be used for comments. The attributes are separated by one
or more space characters.

The input strings are not verified for their relevant attribute syntax. A wrong attribute
syntax will result in either als_add_entry()error or ads_remove_entry()error.

The following would be a valid input file fothradd:

Anna Meister 010101
Erwin Reiter 020202
Gerhard Schulz 030303
Gottfried Schmid 040404
Heidrun Blum 050505
Hermann Meier 060606
Josefa Fischer 070707
Jutta Arndt 080808
Leopold Huber 090909
Magdalena Schuster 101010
Margot Junge 111111

Program Output

The thradd program writes messages $tdout for every action done by a thread.
The order of the output can differ from the order in the input file; it depends on the
execution of the different threads.

DCE 1.2.2 Application Development Guide—Directory Services 341

GDS Application Programming

8.1.4

8.2

342

Errors are reported tetderr.

Prerequisites

The directory must be active before runnitigadd. If you are runningthradd in
addingmode then the directory should not contain a nigteit. Thethradd program
should always be invoked twice with the same input file: first without and then with
option -d. This guarantees that the directory is reset to its original state. The GDS
administration prograngdsditadm can be used to verify the directory contents after
adding entries.

Description of Sample Program

The thradd program has a similar structure to the sample XDS programs in the
previous chapter. Therefore, only a short general outline of the program is given here.
The thread specifics are described in detail in the next section.

The static descriptors for the fixed tree (that/G5it/O=sni/OU=ap) are declared in
the thradd.h header file. Listings of both thiaradd.c application and théhradd.h
header file are included in later sections of this chapter.

The main routine scans the command-line options, initializes the XDS workspace and,
if working in adding mode, binds to the default GDS server without credentials, adds
the fixed tree of upper nodes, and then unbinds from the directory.

The program then binds to the default GDS server without credentials. Each line of
the input file is processed in turn bywhile loop (until the end of the file is reached).
The while loop contains twdor loops. The firsfor loop creates a separate thread for
each line of the input file, up to a maximum BIAX_THREAD_NO of threads.

The add_or_remove() procedure, which adds or removes an entry to/from the
directory, is the starting point of each thread’s processing.

The secondor loop waits for termination of the threads and then releases the resources
used by the threads.

DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

When the entire input file has been processhhdd closes the connection to the

GDS server and, if working iremovingmode, removes the fixed tree of upper nodes
(that is,/C=it/O=sni/OU=ap).

Finally, the XDS workspace is closed.
Figure 8-2 shows the program flow.

Figure 8-2. Program Flow for the thradd Sample Program

’ Init routines ‘

Bind to GDS server ‘

Create threads

/ N

Thread 1 Thread n ‘

\ /

Wait for threads

Unbind from GDS Server ‘

End routines ‘

DCE 1.2.2 Application Development Guide—Directory Services 343

GDS Application Programming

8.3

344

Detailed Description of Thread Specifics

The program consists of the following general steps:

1.

© 00 N O 00 b~ wWwDN

[y
o

Include the header filpthread.h.

. Define a parameter block structure type for the thread start routine.
. Declare arrays for thread handles and parameter blocks.

. Read the input file line by line.

. Update the parameter block.

. Create the thread.

. Wait for the termination of the thread.

. Release the resources used by the thread.

. Define the thread start routine.

. Declare local variables needed for descriptors for the objects read from the input

file.

The following paragraphs describe the corresponding step humbers from the program
listing in the next section:

Step 1 includes the header fiighread.h, which is required for thread programming.

Step 2 defines a parameter block structure type for the thread start routine. A
thread start routine must have exactly one parameter. Howader,or_remove()
requires three parameters (session object, input line, and operating mode). The
structurepb_add_or_removeis defined as the parameter block for these components.
Therefore, the single parameter block contains the three parameters required by
add_or_remove()

Step 3 declares arrays for thread handles and parameter blocks. The routine that
creates the threadn@in, in this case) must maintain the following information for
each thread:

» A thread handle of typpthread_t to identify the thread for join and detach calls.

DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

* A thread-specific parameter block that cannot be accessed by any other thread.
This makes sure that a parameter for one thread is not overwritten by another
thread.

Step 4 reads the input file line by line. A thread is created for each line. A maximum
MAX_THREAD_NO of threads is created in parallel. The program then waits for

the termination of the created threads so that it can release the resources used by these
threads, allowing it to create new threads for remaining input lines (if any).

The absolute maximum number of threads working in parallel depends on system
limits; for thradd, a value of 10 was chosen (s#®add.h), which is well below the
maximum on most systems.

Step 5 updates the parameter block. For each thread, a different element of the array
of parameter blocks is used.

Step 6 creates the thread. The thread is created by using the fuptttread_create()
The function has the following parameters:

» The thread handle (output) is stored in an element of the array ofptypead _t.
 For the thread characteristics, the defaqiliread_attr_default is used.
» The start routine for this thread &dd_or_remove()

» The parameter passedadd_or_remove()is a pointer to an element of the array
of parameter blocks.

Step 7 waits for the termination of the thread. Ttread_join() routine is called

with the thread handle as the input parameter. The program waits for the termination
of the thread. If the thread has already terminated, th#mead_join() returns
immediately. The second parameter gihread_join() contains the return value of

the start function; here it is a dummy value becaadé or_remove()returns avoid.

The add_or_remove() routine is designed as woid function because the calling
routine does not have to deal with error cases. atlé_or_remove()routine prints

status messages itself to show the processing order of the threads. Usually, a status
should be returned to the application.

Step 8 releases the resources used by the thread. The thread handle is used as input for

the functionpthread_detach() which releases the resources (for example, memory)
used by the thread.

DCE 1.2.2 Application Development Guide—Directory Services 345

GDS Application Programming

8.4

346

Step 9 defines the thread start routine. As previously mentioned, the thread start routine
must have exactly one parameter. In this case, it is a pointer to the parameter block
structure defined in Step 2.

Step 10 declares local variables needed for descriptors for the objects read from the
input file. These descriptors are variables and are declared as automatic because of the
reentrancy requirement. In the previous sample programs, descriptors were generally
declared static. For this example, this is only possible for the constant descriptors
declared inthradd.h.

Of course, this example shows only a small part of the possibilities of multithreaded
XDS programming. For example, each thread could make its own bind, which would
be useful if more than one GDS server was involved.

The thradd.c Code

The following code is a listing of théhradd.c program:

* The program operates in two modes; it adds or removes entries of
* object type organizational person to/from a directory. The
* information about the entries is read from a file.

* The program requires that a tree exists in the directory.

* Therefore, each time the program runs, the following tree of 3
* entries is added to or removed from the directory, according

* to the operation mode.

* O Cs=it

* | (objectClass=Country)

* I

* O Os=sni

* | (objectClass=Organization)

* I

* O OuU=ap

* (objectClass=0rganizationalUnit)

DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

*

* Information about the organizational persons to be added or
* removed is read from the input file. It may contain any number
* of lines, where each line must have the following syntax:
*
* <common name> <surname> <phone number>
* Each item must be a string without a space.
*
* Lines containing less than 3 strings are rejected by the
* program. The program does not check to see if the strings conform
* to the appropiate attribute syntax; that is a wrong attribute
* syntax will lead to a ds_add_entry error, or to a
* ds_remove_entry error.

*

* Usage: thradd [-d] [-f<file_name>]

* -d If the option -d is set, the entries in the
* file and the tree described above are removed,
* otherwise they are added.

* -f<file_name> The option -f specifies the name of the input
* file.If left out, the default "thradd.dat"

* is used.

*/

/* Step 1 */

/*

* Header file for thread programming:

*/

#include <pthread.h>
#include <stdio.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

#include "thradd.h" /* static data structures. */
/* Step 2 */
/*

* typedef for parameter block of function add_or_remove

* (this is necessary because the start function of a thread
* takes only 1 parameter). The following 3 parameters are
* passed to add_or_remove:

DCE 1.2.2 Application Development Guide—Directory Services 347

GDS Application Programming

* Input - Session object from the ds_bind call
* Input - Buffer with the entry information

* Input - "adding" or "removing" mode ?

*

typedef struct {
OM_private_object session;

char line[MAX_LINE_LEN+1];
int do_remove;

} pb_add_or_remove;

/*

* static constants:

*

* Default name for input file containing entry information.
*/

static char fn_default]] = "thradd.dat";

/*

* function declarations:

*/

char *own_fgets(char *s, int n, FILE *f);

void add_or_remove(pb_add_or_remove *pb);

int
main(
int argc,

char *argvl[]

)

{

OM_workspace workspace; /* workspace for objects */
OM_private_object bound_session; /* Holds the Session */
/* returned by ds_bind() */

FILE *fp; [* pointer for input file*/
int do_remove = FALSE; /* "adding" or "removing"*/
int error = FALSE; /* error in options ? */
int is_eof = FALSE; /* EOF input file reached*/
int thread_count; /* no. of created threads*/
char *file_name; /* ptr to input file_name*/

/* Step 3 */

pthread_t threads[]MAX_THREAD_NO]J; [* thread table */

pb_add_or_remove param_blocklMAX_THREAD_NOJ; /* 1 param block*/
/* for start routine per thread */

348 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

int dummy;

int [0

int i;

extern char *optarg;/* external variable used by getopt */
extern int optind; /* external variable used by getopt */
/*

* scan options -d and -f

*

file_name = fn_default;
while ((c=getopt(argc, argv, "df:")) != EOF)
{
switch (c)
{
case 'd:
do_remove = TRUE;
break;
case 'f:
file_name = optarg;
break;
default:
error = TRUE;
break;
}
}
if (error)
{
printf("usage: %s [-d] [-f<file_name>]\n", argv[0]);
return(FAILURE);
}
if ((fp = fopen(file_name, "r")) == (FILE *) NULL)
{
printf(“fopen() error, file name: %s\n", file_name);
return(FAILURE);
}
/*
* |nitialize a directory workspace for use by XOM.
*/
if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");
/*

DCE 1.2.2 Application Development Guide—Directory Services 349

GDS Application Programming

* Negotiate the use of the BDCP and GDS packages.
*
if (ds_version(features, workspace) != DS_SUCCESS)
printf("ds_version() error\n");
/*
* Add the fixed tree of entries, if in adding mode
*
if ('do_remove)
if (add_entries(workspace))
printf("add_entries() error\n");
/*
* Bind to the default GDS server.
* The returned session object is stored in the private
* object variable bound_session and is used for further
* XDS function calls.
*
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
1= DS_SUCCESS)
printf("ds_bind() error\n");
/* Step 4 */
/*
* Add or remove entries described in input file. This is done
* in parallel, creating up to MAX_THREAD_NO threads at a time.
*
while (lis_eof)
{
for (thread_count=0; thread_count<MAX_THREAD_NO;
thread_count++)
{
/* Step 5 */
/*
* Prepare parameter block:
*/
is_eof = (own_fgets(param_block[thread_count].line,
MAX_LINE_LEN, fp) == NULL);

if (is_eof)

break;

param_block[thread_count].session = bound_session;
param_block[thread_count].do_remove = do_remove;
/* Step 6 */

350 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

/*
* Create thread with start routine add_or_remove:
*
if (pthread_create(&threads[thread_count],
pthread_attr_default,
(pthread_startroutine_t) add_or_remove,
(pthread_addr_t) ¶m_block[thread_count])
1= SUCCESS)
printf("pthread_create() error\n");
} /* end for */

/*
* Wait for termination of the created threads and release
* resources:

*/

for (i=0; i<thread_count; i++)
{

I* Step 7 */

/*

* Wait for termination of thread

* (If thread has terminated already, the function
* returns immediately):

*/

if (pthread_join(threads[i], (pthread_addr_t) &dummy)
1= SUCCESS)

printf("pthread_join() error\n");

/* Step 8 */

/*

* Release resources used by the thread:

*/

if (pthread_detach(&threads][i]) '= SUCCESS)
printf("pthread_detach() error\n");

} /* end for */

} I* end while */

/*

* Close the connection to the GDS server.

*/

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

if (om_delete(bound_session) != OM_SUCCESS)
printf("om_delete() error\n");

DCE 1.2.2 Application Development Guide—Directory Services 351

GDS Application Programming

352

/*
* Remove the tree from the directory, if removing mode
*
if (do_remove)
if (remove_entries(workspace))
printf("remove_entries() error\n");
/*
* Close the directory workspace.
*
if (ds_shutdown(workspace) '= DS_SUCCESS)
printf("ds_shutdown() error\n");
fclose(fp);
return(SUCCESS);
} /* end main() */
/* Step 9 */
/*
* Handle (add or remove) a directory entry
*
void
add_or_remove(
pb_add_or_remove *pb /* parameter information */
)
{
/*
* further local variables:
*
char common_name[MAX_AT_LEN+1];
char phone_num[MAX_AT_LEN+1];
char surname[MAX_AT_LEN+1];
OM_sint invoke_id;
/* Step 10 */
/*
* local variables for descriptors for objects read from file
*/
OM_descriptor ava_genop[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR
h

DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

OM_descriptor rdn_genop[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

h

OM_descriptor dn_genop[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

h

OM_descriptor att_phone_num[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
OM_NULL_DESCRIPTOR, [* place holder */
OM_NULL_DESCRIPTOR

3

OM_descriptor att_surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
OM_NULL_DESCRIPTOR, [* place holder */
OM_NULL_DESCRIPTOR

3

OM_descriptor alist OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OP} },
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

3

rdn_genop[l].type = DS_AVAS;

rdn_genop[l].syntax = OM_S OBJECT;
rdn_genop[1].value.object.padding = O;
rdn_genop[1].value.object.object = ava_genop;
dn_genop[4].type = DS_RDNS;

dn_genop[4].syntax = OM_S_OBJECT;
dn_genop[4].value.object.padding = O;
dn_genop[4].value.object.object = rdn_genop;

DCE 1.2.2 Application Development Guide—Directory Services 353

GDS Application Programming

alist_OP[2].type = DS_ATTRIBUTES;

alist_OP[2].syntax = OM_S_OBJECT;

alist_OPJ[2].value.object.padding = 0;

alist_OPJ[2].value.object.object = att_surname;
alist_OP[3].type = DS_ATTRIBUTES;

alist_OPJ[3].syntax = OM_S_OBJECT;

alist_OPJ[3].value.object.padding = 0;

alist_OPJ[3].value.object.object = att_phone_num;

if (sscanf(pb->line, "%s %s %s", common_name,

surname, phone_num) != 3)

{

printf("invalid input line: >%s<\n", pb->line);

return;

}

/*

* Fill descriptor for common name

*

ava_genop[2].type = DS_ATTRIBUTE_VALUES;

ava_genop[2].syntax = OM_S_PRINTABLE_STRING;

ava_genop[2].value.string.length =

(OM_string_length)strlen(common_name);

ava_genop[2].value.string.elements = common_name;

if (pb->do_remove) /* add */

{

/*

* Fill descriptors for surname and phone number
*

att_surname[2].type = DS_ATTRIBUTE_VALUES;
att_surname[2].syntax = OM_S_TELETEX_STRING;
att_surname[2].value.string.length =
(OM_string_length)strlen(surname);
att_surname[2].value.string.elements = surname;
att_phone_num[2].type = DS_ATTRIBUTE_VALUES;
att_phone_num[2].syntax = OM_S_PRINTABLE_STRING;
att_phone_num[2].value.string.length =
(OM_string_length)strlen(phone_num);
att_phone_num[2].value.string.elements = phone_num;
/*
* add entry
*/

354 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

if (ds_add_entry(pb->session, DS_DEFAULT_CONTEXT, dn_genop,
alist_OP, &invoke_id) '= DS_SUCCESS)
printf("ds_add_entry() error: %s %s %s\n",
common_name, surname, phone_num);
else
printf("entry added: %s %s %s\n",
common_name, surname, phone_num);
}
else /* remove */
{
/*
* remove entry
*
if (ds_remove_entry(pb->session, DS_DEFAULT_CONTEXT,
dn_genop, &invoke_id) != DS_SUCCESS)
printf("ds_remove_entry() error: %s\n", common_name);
else
printf("entry removed: %s\n", common_name);
} I+ end if ¥
} /* end add_or_remove() */
/*
* Add the tree of entries described above.
*
int
add_entries(
OM_workspace workspace /* In--XDS workspace */
)
{
OM_private_object bound_session; /* Holds Session object */
/* returned by ds_bind() */
OM_sint invoke_id;
int error = FALSE;
/* Bind (without credentials) to the default GDS server */
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
I= DS_SUCCESS)
error = TRUE;
/* Add entries to the GDS server */
if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_it,
alist_C, &invoke_id) !'= DS_SUCCESS)
error = TRUE;

DCE 1.2.2 Application Development Guide—Directory Services 355

GDS Application Programming

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sni,
alist_O, &invoke_id) !'= DS_SUCCESS)

error = TRUE;

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
alist_OU, &invoke_id) != DS_SUCCESS)

error = TRUE;

/* Close the connection to the GDS server */

if (ds_unbind(bound_session) != DS_SUCCESS)

error = TRUE;

if (om_delete(bound_session) != OM_SUCCESS)
error = TRUE;

return (error);

}

/*

* Remove the tree of entries described above.
*/

int

remove_entries(

OM_workspace workspace /* In--XDS workspace */
)

{

OM_private_object bound_session; /* Holds Session object */
/* returned by ds_bind() */
OM_sint invoke_id;
int error = FALSE;
/* Bind to the default GDS server */
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
I= DS_SUCCESS)
error = TRUE;
/* Remove entries from the GDS server */
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_ap, &invoke_id) != DS_SUCCESS)
error = TRUE;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sni, &invoke_id) != DS_SUCCESS)
error = TRUE;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_it, &invoke_id) '= DS_SUCCESS)
error = TRUE;
/* Close the connection to the GDS server */

356 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

8.5

if (ds_unbind(bound_session) !=
error = TRUE;

if (om_delete(bound_session) !=
error = TRUE;

return (error);

}

/*

* read one line with fgets and
* a null character

*/

char *

own_fgets(

char *s, /* OUT--string read

DS_SUCCESS)

OM_SUCCESS)

overwrite new line by

*

int n, /* IN---maximum number of chars to be read */

FILE *f /* IN—input file
)

{
char *result;
int i =0;

result = fgets(s, n, f);
if (result !'= NULL)

{

i = strlen(s);

if (s[i-1] == "\n")
sli-1] = "\0’;

}

return (result);
}

*/

The thradd.h Header File

The following code is a listing of théhradd.h header file:

#ifndef THRADD_H
#define THRADD_H

DCE 1.2.2 Application Development Guide—Directory Services

357

GDS Application Programming

358

#ifndef TRUE

#define TRUE (1)

#endif

#ifndef FALSE

#define FALSE (0)

#endif

#define SUCCESS 0

#define FAILURE 1

#define MAX_LINE_LEN 100 /* max length of line in input file */
#define MAX_AT_LEN 100 /* max length of an attribute value */
#define MAX_THREAD_NO 10 /* max number of threads created */
/* The application must export the object
identifiers it requires.

*

OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_SURNAME)
OM_EXPORT (DS_O_TOP)

OM_EXPORT (DS_O_COUNTRY)
OM_EXPORT (DS_O_ORG)

OM_EXPORT (DS_O_ORG_UNIT)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

/* Build descriptor lists for the following */

[* distinguished names: */

I* root */
I* /C=it *
I* /C=it/O=sni */
I* /C=it/O=sni/OU=ap */
static OM_descriptor ava_it[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),

DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("it")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_sni] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_it[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_it}},
OM_NULL_DESCRIPTOR

3

static OM_descriptor rdn_snif] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

3

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

3

static OM_descriptor dn_root[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

3

static OM_descriptor dn_it[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT {0,rdn_it}},

OM_NULL_DESCRIPTOR

3

DCE 1.2.2 Application Development Guide—Directory Services

359

GDS Application Programming

static OM_descriptor dn_sni[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR

h

/* Build up an array of object identifiers for the */

[* attributes to be added to the directory. */

static OM_descriptor obj_class_C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_COUNTRY),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_UNIT),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),

360 DCE 1.2.2 Application Development Guide—Directory Services

Using Threads With The XDS/XOM API

OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_ C[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_C} },
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_ O] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_O} },
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_ OU[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OU} },
OM_NULL_DESCRIPTOR

3

/* Build up an array of object identifiers for the */

/* optional packages to be negotiated. */

static DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{0}

3
#endif /* THRADD_H */

DCE 1.2.2 Application Development Guide—Directory Services

361

Chapter 9
XDS/XOM Convenience Routines

This chapter describes functions that are available to XDS/XOM programmers to
help simplify and speed up the development of XDS applications. The convenience
functions target two main areas, as follows:

* Filling, comparing, and extracting objects

» Converting objects to and from strings

The following six convenience functions are provided:
» dsX_extract_attr_values()
o omX_fill()
« omX_fill_oid()
» omX_extract()
* omX_string_to_object()

» omX_object_to_string()

DCE 1.2.2 Application Development Guide—Directory Services 363

GDS Application Programming

Refer to the*(3xds) and* (3xom) reference pages for detailed descriptions of these
functions.

To demonstrate the power of the convenience functionsatii&€ sample program
from Chapter 7 is presented again here, after being modified to make use of these
functions. The modified sample program is caltet2.c

9.1 String Handling

The convenience functions provide the ability to specify OM objects in string format
by means of abbreviations. These abbreviations are defined in the XOM object
information file xoischema

X.500 attribute types can be specified as abbreviations or object identifier strings. The
mapping of the attribute abbreviations and object identifier strings to BER encoded
object identifiers and the associated attribute syntaxes is determined by the XOM
object information module with the help of theischemafile. For valid attribute
abbreviations, please refer to tkeischemafile in the following directory:

dce_local_path>/var/adm/directory/gds/adm

It is important that any schema changes to the DSA are reflected iroikehema
file.

The convenience functions are able to handle strings with special syntax. The strings
can be broadly classified into the following:

* Strings representing GDS attribute information

* Strings representing structured GDS attribute information

* Strings representing a structured GDS attribute value

* Strings representing a distinguished name (DN)

* Strings representing expressions

364 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

9.11

Strings Representing GDS Attribute Information

Strings that represent GDS attribute information are used to associate the attributes
with their values. They are of the form:

attribute_type= attribute_value

The attribute types can either be specified as abbreviations or object identifier strings.
An object identifier string is defined as a series of digits separated by (tiet)
character. If attribute abbreviations are used, they are case insensitive. For example,
cn=schmid or 85.4.3=schmid

In the case of attributes witbM_S OBJECT_IDENTIFIER syntax, the attribute
value can also be specified as an abbreviation string. For example, an object class for
Residential Personcan be specified a®CL=REP or OCL="\x55\x06\x0A’

All leading and trailing whitespace (surrounding the attribute type, the = (equal sign),
and the attribute value) is ignored.
The following are the reserved characters for such strings:

' Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the \ (backslash) are
not interpreted. For examplen=henry mueller

Separates multiple values of a recurring attribute. All leading and
trailing whitespace (surrounding the semicolon) is ignored. For example,
TN=899898;979779

= Associates the attribute with its value.

\xnn Specifies hexadecimal data. The two charactarsare read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

DCE 1.2.2 Application Development Guide—Directory Services 365

GDS Application Programming

9.1.2

366

Strings Representing Structured GDS Attribute Information

Strings that represent structured GDS attribute information are used to associate the
structured attribute and its components with their values. They are of the form:

structured_attribute_type {Compl= Valug Comp2= Value ..}

The structured attribute type can be specified as abbreviations or object identifier
strings. An object identifier string is defined as a series of digits separated by dots.
If attribute abbreviations are used, they are case insensifieeapl Comp2 and

so on, are the components of the structured attribute. They should be specified as
abbreviations, as in the following example:

TXN={TN=977999, CC=345, AB=8444}

Recurring values for structured attributes can be specified with the help of the
semicolon. An example follows:

TXN={TN=977999, CC=345, AB=8444},{TN=123444,CC=345, AB=8444}

Recurring values for the components should be specified as follows:

TXN={TN=977999; 274424, CC=345, AB=8444}

If any of the components are further structured, they should be enclosed within braces
as follows:

FTN={PA={FR=1,TD=1}, PN=67899}
All leading and trailing whitespace, which surrounds the structured attribute type, the

component abbreviation, the equal sign, the { (left brace),, tfttemma), and the }
(right brace), is ignored.

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

Attributes and components with DN syntax should be specified as follows:

AON={/c=de/o=sni/ou=apll/cn=mueller}
ACL={MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}}

In the case of attributes witbM_S OBJECT_IDENTIFIER syntax, the attribute
value can also be specified as an abbreviation string, as shown in the following:

SG={OCL=REP}
SG={OCL="\x55\x06\Xx0A"}

Attributes of type presentation address (OM class
DS_C_PRESENTATION_ADDRESS are handled specially, using
the PSAP macro utility. The value for such an attribute can be specified as follows:

PSA={TS=Server, NA="TCP/IP!internet=127.0.0.1+port=12345"}

The local_string parameter should be set @M_TRUE in the convenience function
being used. Here, the network address (NA) is specified with a special syntax. Refer
to theDCE 1.2.2 GDS Administration Guide and Referefmefurther information.

The following are the reserved characters for strings with structured attribute
information:

Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the backslash are not
interpreted. For examplen="henry mueller’

/ Specifies an attribute value with DN syntax. For exampi®N = {/
c=de/o=sni/ou=ap22/cn=mayer}

{ Indicates the start of a structured attribute value block.
} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444

DCE 1.2.2 Application Development Guide—Directory Services 367

GDS Application Programming

9.1.3

368

\xnn

It can also be used to specify multiple AVAs in the case of attributes
with DN syntax.

Separates multiple values of a recurring attribute or the recurring
components of the structured attribute. All leading and trailing
whitespace (surrounding the attribute type, the equal sign, the left and
right braces, the component abbreviation, the component value and the
semicolon) is ignored. The following is an example:

TXN={TN=977999,CC=345,AB=8444};{TN=53533,CC=242,AB=44242}

Associates the components with their values, and associates the
components to the structured attribute.

Used to specify hexadecimal data. The two charactei@e read as the
hexadecimal value.

Used to escape any of the other reserved characters.

Strings Representing a Structured GDS Attribute Value

Strings are used to represent the structured GDS attribute value. Only one structured
attribute value can be specified.

They are of the form:

Comp1l = Value Comp2 = Value

Compl Comp2 and so on, are the components of the structured attribute. They should
be specified as abbreviations. For example, to specify a vall@SoC_TELEX NBR
class, the string format is the following:

TN=977999, CC=345, AB=8444

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

9.14

Recurring values for the components can be specified as shown in the following:

TN=977999; 274424, CC=345, AB=8444

If any of the components are further structured, they should be enclosed within braces
as follows:

FTP={FR=1,TD=1}, PN=67899

Components with DN syntax can be specified as follows:

MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}

Components of type presentation address (OM class
DS_C_PRESENTATION_ADDRESS are handled specially, using the PSAP macro
utility. The value for the components can be specified as follows:

TS=Server, NA="TCP/IP!internet=127.0.0.1+port=12345’

The local_string parameter should be set @M_TRUE in the convenience function
being used. Here, the NA is specified with a special syntax. Refer td@Ee 1.2.2
GDS Administration Guide and Referenfwe further information.

The reserved characters for such strings are the same as those for strings representing

structured attribute information (Section 9.1.2).

Strings Representing a Distinguished Name

Strings are used to represent the DN of the object. They are of the form:

/attribute_type= naming_attribute_value...

DCE 1.2.2 Application Development Guide—Directory Services 369

GDS Application Programming

370

or

[attribute_valudattribute_value....

The attribute types can be specified as abbreviations or object identifier strings. An
object identifier string is defined as a series of digits separated by dots. If attribute
abbreviations are used, they are case insensitive. Multiple AVAs are represented by
separating the naming attribute values with commas.

The first RDN can also be specified as the DCE global root stringwhich is a
sequence of the slash followed by three dots. In this casel.th&ring is simply
ignored and the rest of the string is processed. Three examples follow:

/c=de/o=sni/ou=apll, I=munich/85.4.3=schmid
/c=us/o=osf/ou=abc/subsystems/server/xyz
/...Ilc=us/o=o0sflou=abc/subsystems/server/xyz

The first nonspace character should always be the slash. All leading and trailing
whitespace (surrounding the slash, the attribute type, the equal sign and the attribute
value) is ignored.

The following are the reserved characters:

' Used to enclose the naming attribute values. If this character is used, all
other reserved characters within the quoted string except the backslash
are not interpreted. For example="henry mueller’.

/ Used as a delimiter between RDNSs.

, Specifies multiple AVAs. All leading and trailing whitespace surrounding
the comma is ignored. An example follows:

/c=de/o=dbp/ou=dapll/cn=schmid, ou=apll

= Associates the object with its naming attribute value.

\xnn Used to specify hexadecimal data. The two charactei@re read as the
hexadecimal value.

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

9.15

\ Used to escape any of the other reserved characters.

Strings Representing Expressions

Strings are used to specify an SQL-like expression in a search operation. For example,
consider the following:

(CN ~=schmid) && (OCL=ORP || OCL=REP) && !(SN=ronnie)

This is used to search for anybody who is an organizational person or a residential
person, whose name approximately matcéerenid but whose surname is nainnie.

Object identifiers can also be used instead of attribute abbreviations. The object
identifier string is a series of numbers separated by dots.

All leading and trailing whitespace (surrounding the attribute types, the operators, and
the attribute values) is ignored.

If spaces are part of the attribute value, then the complete attribute value must be
enclosed in quotes.

Additionally, the presence of an attribute can also be tested in either of the following
ways:

c =de && cn
c=de &&cn=*

The following are the reserved characters:

' Used to indicate the start/end of an attribute value string. Can be used
when spaces are part of the data. If this character is used, all other
reserved characters within the quoted string except the backslash are
not interpreted. An example follows:

DCE 1.2.2 Application Development Guide—Directory Services 371

GDS Application Programming

OUs=sni && cn="Henri Mueller’ && tn=89989

/ Used to specify an attribute value with DN syntax. An example follows:

AON = {/c=de/o=sni/ou=ap22/cn=mayer}

= Used to associate the attribute with its value.
&& Used to logically AND two conditions.

Il Used to logically OR two conditions.

! Used to logically NEGATE a condition.

~= Used to specify phonetic matching during a search operation.

> Used to match values greater than a specified value.

>= Used to match values greater than or equal to a specified value.
< Used to match values less than a specified value.

<= Used to match values less than or equal to a specified value.

* Used to specify substrings during search.

(Used for nesting of filters.

) Used for nesting of filters.

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444t can also be used to specify multiple
AVAs in the case of attributes with DN syntax.

\xnn Used to specify hexadecimal data. The two charactei@re read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.

During evaluation of complex expressions during search operations, the following
precedence of operators prevail:

1. ()

372 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

2.

3. &&

4,

The () operators have the highest precedence, and || the lowest.

9.2 The acl2.c Program

The acl2.cfile is a program that performs the same functionalityaakc described

in Chapter 7. Please refer to Chapter 7 for a complete description of the program’s
functionality, including outputs. The purpose a€l2.c and acl2.h is to show how

the XDS/XOM convenience functions can be used to reduce the complexity of a real
application.

The program consists of the following steps:

1.
2.

N o o A~

©

10.
11.
12.

Export the required object identifiers. (See &loé.hdescription in Section 9.2.2.)

Define the string expressions for the directory entry names and their attributes.
(See theacl2.h description in Section 9.2.2.)

Initialize a workspace.

Negotiate use of the basic directory contents and GDS packages.
Build the name objects for the entries to be added to the directory.
Build the attribute objects for the entries to be added to the directory.

Add the fixed tree of entries to the directory in order to permit an authenticated
bind.

Create a default session object.

Alter the default session object to include the credentials of the requéState]
O=sni/OU=ap/CN=norbert).

Bind with credentials to the default GDS server.
Create a default context object and alter it to include shadow entries.

Build filter, name, and entry information selection objects to be used for the search
process.

DCE 1.2.2 Application Development Guide—Directory Services 373

GDS Application Programming

374

13. Search the whole subtree belowot and extract the ACL attribute from each
selected entry.

14. Close the connection to the GDS server.

15. Remove the user’s credentials from the directory.

16. Release the memory used for application-created objects.
17. Extract the components from the search result.

18. Examine each entry and print the entry details.

19. Close the XDS workspace.

In comparison to thacl.c program in Chapter 7, the following points should be noted:

» Step 1 has not changed significantly. The number of object identifiers, which the
acl2.cneeds to be exported, has been reduced.

» Step 2 has been completely revised. In fact, the header file has been reduced
substantially. This is as a result of removing all the static descriptor lists for the
directory names and attributes and replacing them with string expressions.

» Steps 3 and 4 are the same as before.

» Steps 5 and 6 are new steps that make use of the convenience functions
omX_string_to_object() omX_fill_oid(), andomX_fill().

» Steps 7 through 10 are the same as Steps 5 through 8.

» Step 11 is the same as Step 9, but with an additional call to build an object to
specify the use of shadow entries. A convenience function is used for this purpose.
This replaces a static descriptor list definition from the old header file.

» Step 12 is new. It calls several convenience functions to create objects that are
used byds_search() These objects were statically declared in the header file.

» Steps 13 through 15 are the same as Steps 10 through 12 from the old code.

» Step 16 is a new step to release memory that has been allocated by the convenience
functions when creating objects.

» Step 17 replaces Step 13 from the old program with a call to the convenience
functionomX_extract() to extract the required components from the search result.

» Step 18 is the same as Step 14 in the old program, but with an additional call to
free the memory allocated lymX_extract() in the previous step.

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

» Step 19 is the same as Step 15 in the old code.

9.2.1 The acl2.c Code

The following code is a listing of thacl2.c program:

* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

/
/*

* This sample program displays the access permissions (ACL) on each
* entry in the directory for a specific user. The permissions are

* presented in a form similar to the UNIX file permissions. In

* addition, each entry is flagged as either a master or a shadow copy.
* The distinguished name of the user performing the check is:

* /C=de/O=sni/OU=ap/CN=norbert

* The results are presented in the following format:

* [ABCD] <entry’s distinguished name>

*

* A: ’'m’ master copy

* 's’ shadow copy

*

* B: 'r' read access to public attributes

* 'w' write access to public attributes
* -’ no access to public attributes

*

* C: 'r read access to standard attributes
* 'w' write access to standard attributes
* -’ no access to standard attributes

DCE 1.2.2 Application Development Guide—Directory Services 375

GDS Application Programming

* D: 'r read access to sensitive attributes
* ‘W' write access to sensitive attributes
* -’ no access to sensitive attributes

* For example, the following result means that the entry

* '/C=de/O=sni’ is a master copy and that the requesting user

* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public
* attributes, read access to its standard attributes and no access
* to its sensitive attributes.

* [mwr-] /C=de/O=sni

* The program requires that the specific user perform an authenticated
* bind to the directory. In order to achieve this the user’s

* credentials must already exist in the directory. Therefore the

* following tree of 6 entries is added to the directory each time the

* program runs, and removed again afterwards.

* O C=de
| (objectClass=Country,
| ACL=(mod-pub: *
| read-std:*
| mod-std: *

* | read-sen:*
| mod-sen: *))
I
I

* O Os=sni

(objectClass=0rganization,

ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/CN=stefanie
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/CN=stefanie
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))

I
I
I
I
I
I
I
* O OuU=ap
| (objectClass=OrganizationalUnit,
| ACL=(mod-pub: /C=de/O=sni/OU=ap/*
| read-std:/C=de/O=sni/OU=ap/CN=stefanie
| mod-std: /C=de/O=sni/OU=ap/CN=stefanie

376 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

* | read-sen:/C=de/O=sni/OU=ap/CN=stefanie

* | mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
* I

* R . E—— +

* I

* O CN=ingrid

|
|
| (objectClass=OrganizationalPerson,
| ACL=(mod-pub: /C=de/O=sni/OU=ap/*
| read-std:/C=de/O=sni/OU=ap/*
| mod-std: /C=de/O=sni/OU=ap/CN=stefanie
| read-sen:/C=de/O=sni/OU=ap/*
| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
| surname="Schmid",
| telephone="+49 89 636 0",
| userPassword="secret")
|
O CN=norbert
(objectClass=0OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

I
I
I
I
I
I
I
I
I
I
I
* I
I
I
I
I
I
I
I
I
I
I
I

* O CN-=stefanie

* (objectClass=0rganizationalPerson,

* ACL=(mod-pub: /C=de/O=sni/OU=ap/*

* read-std:/C=de/O=sni/OU=ap/*

* mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* read-sen:/C=de/O=sni/OU=ap/*

* mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* surname="Schmid",

* telephone="+49 89 636 0",

* userPassword="secret")

* In this version of the program, instead of providing client-generated

DCE 1.2.2 Application Development Guide—Directory Services 377

GDS Application Programming

378

* public objects, the XOM Convenience Functions are used for creating
* objects. They are also used for extracting information from service
* generated objects.

*

#ifdef THREADSAFE

#include <pthread.h>

#endif

#include <stdio.h>

#include <xom.h>

#include <xds.h>

#include <xdsbdcp.h>

#include <xdsgds.h>

#include <xdscds.h>

#include <xdsext.h> /* convenience functions header file */
#include <xomext.h> /* convenience functions header file */
#include "acl2.h"

void

main(

int argc,

char *argvl[]

)

{

OM_workspace workspace; /* Workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */
/* is returned by ds_bind() */

OM_private_object context; /* Context object. */
OM_private_object result; /* Holds the search result object.*/
OM_sint invoke_id; * Integer for the invoke id */
/* returned by ds_search(). */

/* (this parameter must be present*/

/* even though it is ignored). */

OM_type navigation_path[] = { DS_SEARCH_INFO, 0 };

/* List of OM types to the target */
/* object - of the search result */

OM_type entry_list]] = { DS_ENTRIES, 0 }

/* List of types to be extracted */

OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned.*/
OM_return_code rc; /* XOM function return code. */

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

register int i;
char user_name[MAX_DN_LEN] = DN_NORBERT;
/* Holds the requestor's name - */

[* "/C=de/O=sni/OU=ap/CN=norbert" */

char

entry_string[MAX_DN_LEN + 7] = "[2r??] *;

/* Holds entry details. */

struct entry

entry_array[6];/* List of entry names and attrs */

OM_object credentials; /* Credentials part of session obj*/
OM_object use_copy; /* Specifies whether to use shadow*/
/* entries, in context object */

OM_object filter; /* Filter - for search operation */
OM_object dn_root; /* Name object for "/" */
OM_object selection_acl; /* Entry Information */
/* Selection obj */

static char *name_list[] =

{ DN_DE, DN_SNI, DN_AP, DN_STEFANIE,
DN_NORBERT, DN_INGRID };
/* Array of names to be added */

static char *C_attr_list] = { OBJ_CLASS _C };
static char *O_attr_list] = { OBJ_CLASS_O, ATT_ACL1 };
static char *OU_attr_list[] = { OBJ_CLASS_OU };
static char *OP_attr_list[] = { OBJ_CLASS_OP, ATT_ACL2,

ATT_SURNAME, ATT_PHONE_NUM, ATT_PASSWORD }
/* Attribute lists, in string fmt */

static char *dn_root_str = DN_ROOT;
static char *filter_str = FILTER;
/* Step 3

*

* |nitialize a directory workspace for use by XOM.
*/

if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");

/* Step 4

*

* Negotiate the use of the BDC and GDS packages.
*/

if (ds_version(features, workspace) !'= DS_SUCCESS)
printf("ds_version() error\n");

/* Step 5

*

DCE 1.2.2 Application Development Guide—Directory Services

379

GDS Application Programming

* Build name objects for entries to be added to the directory.
*
for (i = 0; i < NO_OF_ENTRIES; i++)
if (! build_name_object(workspace,name_list[i],
&(entry_array[i].name)))
printf("build_name_object() error\n");
/* Step 6
*
* Build attribute objects for entries to be added to the directory
*
if ((! build_attr_list_object(workspace, NO_C_ATTRS, C_attr_list,
&entry_array[0].attr_list)) ||
(! build_attr_list_object(workspace, NO_O_ATTRS, O_attr_list,
&entry_array[1].attr_list)) ||
(! build_attr_list_object(workspace, NO_OU_ATTRS, OU_attr_list,
&entry_array[2].attr_list)) ||
(! build_attr_list_object(workspace, NO_OP_ATTRS, OP_attr_list,
&entry_array[3].attr_list)))
printf("build_attr_list_object() error\n");

/*
* These entries also have the OP attribute list.
*
entry_array[4].attr_list = entry_array[3].attr_list;
entry_array[5].attr_list = entry_array[3].attr_list;
/* Step 7

*

* Add a fixed tree of entries to the directory in order to permit
* an authenticated bind by: /C=de/O=sni/OU=ap/CN=norbert

*

if (! add_tree(workspace, entry_array, NO_OF_ENTRIES))
printf("add_tree() error\n");

/* Step 8

*

* Create a default session object.

*

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
I= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/* Step 9

*

380 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

* Build an object with the following credentials:
* requestor: /C=de/O=sni/OU=ap/CN=norbert

* password: "secret"
* authentication mechanism: simple
*/

if (! build_credentials_object(entry_array[4].name,&credentials))
printf("build_credentials_object() error\n");

/*

* Alter the default session object to include the credentials

*

if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
1= OM_SUCCESS)

printf("om_put() error %d\n", rc);

[* Step 10

*

* Bind with credentials to the default GDS server. The

* returned session object is stored in the private object variable
* bound_session and is used for all further XDS function calls.
*

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

I* Step 11

*

* Create a default context object.

*/

if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context))
I= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/*

* Build an object specifying that shadow entries should be used.
*/

if (! build_use_copy_object(&use_copy))
printf("build_use_copy_object() error\n");

/*

* Alter the default context object to include 'shadow’ entries.

*/

if ((rc = om_put(context, OM_REPLACE_ALL, use_copy, 0 ,0, 0))
1= OM_SUCCESS) printf("om_put() error %d\n", rc);

/* Step 12

*

DCE 1.2.2 Application Development Guide—Directory Services 381

GDS Application Programming

* Build a filter object, specifying presence of object class attr.
*
if (! build_filter_object(workspace, filter_str, &filter))
printf("build_filter_object() error\n");
/*
* Build a root name object, name = "/"
*
if (! build_name_object(workspace, dn_root_str, &dn_root))
printf("build_name_object() error\n");
/*
* Build an entry information selection object,
* selecting acl attributes.
*
if (! build_selection_object(&selection_acl))
printf("build_selection_object() error\n");
/* Step 13

* Search the whole subtree below root. The filter selects entries
* with an object-class attribute. The selection extracts the ACL
* attribute from each selected entry. The results are returned in
* the private object 'result’.

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how
* filters may be used.
*

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE,
filter, OM_FALSE, selection_acl, &result, &invoke_id) = DS _SUCCESS)
printf("ds_search() error\n");

/* Step 14

*

* Close the connection to the GDS server.

*/

if (ds_unbind(bound_session) != DS_SUCCESS)

printf("ds_unbind() error\n");

/* Step 15

*

* Remove the user's credentials from the directory.

*

if (! remove_tree(workspace, session, entry_array, NO_OF_ENTRIES))

382 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

printf("remove_tree() error\n");
/* Step 16
*
* Free the name and attribute objects
* which make up the directory entries.
*
if (! free_entry_list(entry_array))
printf(“free_entry_list() error\n");

/*
* Free public objects which were created.
*
free(selection_acl);
free(use_copy);
free(credentials);
if ((om_delete(filter) '= OM_SUCCESS) ||
(om_delete(dn_root) !'= OM_SUCCESS))
printf("om_delete() error\n“);
/* Step 17
*
* Extract components from the search result by means of the XOM
* Convenience Function, omX_extract()
*
if ((rc = omX_extract(result, navigation_path,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry, &total_num))
I= OM_SUCCESS)
printf("omX_extract(Search-Result) error %d\n", rc);

/*

* Requestor's name = "/C=de/O=sni/OU=ap/CN=norbert"
*/

printf("User: %s\nTotal: %d\n", user_name, total_num);
/* Step 18

*

* Examine each entry and print the entry details.
*/

for (i = 0; i < total_num; i++) {

if (process_entry_info((entry+i)->value.object.object,
entry_string, user_name))

printf("%s\n", entry_string);

}

DCE 1.2.2 Application Development Guide—Directory Services

383

GDS Application Programming

384

/*
* Now free the entry object (returned from omX_extract()).
*
if (om_delete(entry) != OM_SUCCESS)
printf("om_delete() error\n");
/* Step 19
*
* Close the directory workspace.
*
if (ds_shutdown(workspace) '= DS_SUCCESS)
printf("ds_shutdown() error\n");
}
/*
* Add the tree of entries described above.
*
int
add_tree(
OM_workspace workspace,
struct entry elist[],

int no_entries

)

{

OM_private_object session; /* Holds the Session object which */
/* is returned by ds_bind() */

OM_sint invoke_id; * Integer for the invoke id */
int error = 0;

int i;

/*

* Bind (without credentials) to the default GDS server.

*

if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) != DS _SUCCESS)
error++;

/*

* Add entries to the GDS server.

*/

for (i = 0; i < no_entries; i++)

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, elist[i].name,
elistfi].attr_list, &invoke_id) != DS_SUCCESS) {

/* Ignore error if adding country - possibly already there */

if (i '= 0) errort++;

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

/*
* Close the connection to the GDS server.
*/
if (ds_unbind(session) != DS_SUCCESS)
error++;
return (error?0:1);
}
/*
* Remove the tree of entries described above.
*/
int
remove_tree(
OM_workspace workspace,
OM_private_object session,
struct entry elist[],
int no_entries
)
{
OM_private_object bound_session; /* Holds the Session object which */
/* is returned by ds_bind() */
OM_sint invoke_id; /* Integer for the invoke id */
int i;
int error = 0;
/*
* Bind (without credentials) to the default GDS server.
*/
if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
error++;
/*
* Remove entries from the GDS server.
*/
for (i = no_entries-1; i >= 0; i--
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
elist[il.name, &invoke_id) != DS_SUCCESS) {
/* Ignore error if removing country - possibly has entries */

/* below it *
if (i I= 0) error++;
}

/*

DCE 1.2.2 Application Development Guide—Directory Services 385

GDS Application Programming

386

* Close the connection to the GDS server.

*

if (ds_unbind(bound_session) != DS_SUCCESS)

error++;

return (error?0:1);

}

/*

* Extract information about an entry from the Entry-Info object: whether
* the entry is a master-copy, its ACL permissions and its distinguished
* name. Build up a string based on this information.

*

int

process_entry_info(

OM_private_object entry,

char *entry_string,
char *user_name
)
{
OM_return_code rc; /* Return code from XOM function. */
OM_public_object ei_attrs; /* Components from Entry-Info. */
OM_public_object attr; /* Directory attribute. */
OM_public_object acl; /* ACL attribute parts. */
OM_public_object acl_vals; /* ACL attribute value. */
OM_public_object acl_item; /* ACL item component. */
OM_value_position total_attrs; /* Number of attributes returned. */
OM_value_position total_acls; /* Number of acl values returned. */
register int i;
register int interp;
register int error = 0;
register int found_acl = 0;
static OM_type ei_attr_list]] = { DS_FROM_ENTRY,
DS_OBJECT_NAME,
0%
/* Attributes to be extracted. */
OM_string entry_str;

/*

* Extract occurrences of DS_FROM_ENTRY, and DS_OBJECT_NAME
* from each Entry-Info object.

*/

if ((rc = om_get(entry, OM_EXCLUDE_ALL_BUT_THESE_TYPES,

DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

ei_attr_list, OM_FALSE, 0, 0, &ei_attrs, &total_attrs))

I= OM_SUCCESS) {

error++;

printf("om_get(Entry-Info) error %d\n", rc);

}

for (i = 0; ((i < total_attrs) && (! error)); i++, ei_attrs++) {
/*

* Determine if current entry is a master-copy or a shadow-copy.
*

if ((ei_attrs->type == DS_FROM_ENTRY) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN))
if (ei_attrs->value.boolean == OM_TRUE)

entry_string[1] = 'm’;

else if (ei_attrs->value.boolean == OM_FALSE)
entry_string[1] = 's’;

else

entry_string[1] = '?’

/*

* Convert the entry’s distinguished name to a string format.
*/

entry_str.elements = &entry_string[7];
entry_str.length = MAX_DN_LEN;
if ((ei_attrs->type == DS_OBJECT_NAME) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT))
if ((rc = omX_object_to_string(ei_attrs->value.object.object,
OM_FALSE, &entry_str)) '= OM_SUCCESS) {
error++;
printf("omX_object_to_string() error\n");
}
}
/*
* Now extract occurences of attributes, where the attribute
* type is ACL from the Entry-Info object.
*/
dsX_extract_attr_values(entry, DSX_A_ACL, OM_TRUE,
&acl_vals, &total acls);
for (i = 0; ((i < total_acls) && (! error)); i++) {
acl = acl_vals[i].value.object.object;
/*
* Examine the ACL. Check each permission for the current user.

DCE 1.2.2 Application Development Guide—Directory Services 387

GDS Application Programming

*

entry_string[2] = 'r’;

entry_string[3]

entry_string[4]

while (acl->type !'= OM_NO_MORE_TYPES) {
if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT)
acl_item = acl->value.object.object;

switch (acl->type) {

case OM_CLASS:

break;

case DSX_MODIFY_PUBLIC:

if (permitted_access(user_name, acl_item))
entry_string[2] = 'w’;

break;

case DSX_READ_STANDARD:

if (permitted_access(user_name, acl_item))
entry_string[3] = 'r’;

break;

case DSX_MODIFY_STANDARD:

if (permitted_access(user_name, acl_item))
entry_string[3] = 'w’;

break;

case DSX_READ_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'r’;
break;
case DSX_MODIFY_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'w’;
break;
}
acl++;
}
}
/*
* Now free acl_vals.
*/
if (total_acls > 0)
if ((rc = om_delete(acl_vals)) '= OM_SUCCESS) {
error++;

388 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

printf("om_delete() error, rc = %d\n", rc);
}

return (error?0:1);

}

/*

* Check if a user is permitted access based on the ACL supplied.
*

int

permitted_access(

char *user_name,
OM_public_object acl_item

)

{

char acl_name[MAX_DN_LEN];
OM_string acl_name_str;

int interpretation;

int acl_present = 0;

int access = 0;

int acl_name_length;
OM_return_code rc;

while (acl_item->type !'= OM_NO_MORE_TYPES) {
switch (acl_item->type) {
case OM_CLASS:
break;

case DSX_INTERPRETATION:
interpretation = acl_item->value.boolean;
break;
case DSX_USER:
acl_name_str.elements = acl_name;
if ((rc = omX_object_to_string(acl_item->value.object.object,
OM_FALSE, &acl_name_str)) == OM_SUCCESS) {
if (interpretation == DSX_SINGLE_OBJECT) {

if (strcmp(acl_name, user_name) == 0)

access = 1;

}

else if (interpretation == DSX_ROOT_OF_SUBTREE) {
if ((acl_name_length = strlen(acl_name)) == 0)

access = 1;

else if (strncmp(acl_name,user_name,acl_name_length)
== 0)

DCE 1.2.2 Application Development Guide—Directory Services 389

GDS Application Programming

access = 1;

}

}

break;

}

acl_item++;

}

return (access);

}

/*

* Build a name object from a name string using the XOM
* Convenience Function omX_string_to_object().
*

int

build_name_object(

OM_workspace workspace,

char *name,

OM_private_object *name_obj

)

{

OM_integer err_pos;
OM_integer err_type;
OM_return_code rc;
OM_string name_str;
int error = 0;

name_str.length = strlen(name);
name_str.elements = name;
if ((rc = omX_string_to_object(workspace, &name_str, DS_C_DS DN,
OM_TRUE, name_obj, &err_pos, &err_type)) = OM_SUCCESS)
error++;
return (error?0:1);
}
/*
* Build an attribute list object given a list of attribute strings.
* Use the XOM Convenience Function omX_string_to_object() to build
* an attribute object from an attribute string, and omX_fill() to
* create the other OM descriptor required.
*/
int
build_attr_list_object(

390 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

OM_workspace workspace,
OM_integer no_attrs,
char *attr_str_array[],
OM_object *attr_list_obj

)

{

OM_integer err_pos;
OM_integer err_type;
OM_object attr;
OM_object alist;
OM_string attr_str;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;
int i;

/*

* Allocate space for class descriptor, null descriptor and

* one descriptor for each attribute.

*/

if ((alist =

(OM_descriptor *)malloc((2+no_attrs) * sizeof(OM_descriptor)))

error++;
if ((rc = omX_fill_oid(OM_CLASS, DS_C_ATTRIBUTE_LIST, &alist[0]))
I= OM_SUCCESS)
error++;
for (i = 1; i <= no_attrs; i++) {
attr_str.length = strlen(attr_str_array[i-1]);
attr_str.elements = attr_str_array[i-1];
if ((rc = omX_string_to_object(workspace, &attr_str, DS_C_ATTRIBUTE,
OM_TRUE, &attr, &err_pos, &err_type)) = OM_SUCCESS)
error++;
if ((rc = omX_fill(DS_ATTRIBUTES, OM_S_OBJECT, 0, attr, &alist[i]))
I= OM_SUCCESS)
error++;
}
alist[i] = null_desc;
*attr_list_obj = alist;
return (error?0:1);

}

DCE 1.2.2 Application Development Guide—Directory Services 391

GDS Application Programming

/*

* Build an entry info selection object using the XOM Convenience
* Functions omX_fill() and omX_fill_oid() to fill the OM descriptors.
*

int

build_selection_object(

OM_object *selection_obj

)

{

OM_integer err_pos;

OM_integer err_type;

OM_object desc;

OM_object sel;

OM_return_code rc;

OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;

/*

* Allocate space for class descriptor, null descriptor and one

* descriptor for each attribute.

*/

if ((sel = (OM_descriptor *)malloc((5) * sizeof(OM_descriptor))) == 0)
error++;

if ((rc = omX_fill_oid(OM_CLASS, DS_C_ENTRY_INFO_SELECTION, &sel[0]))
I= OM_SUCCESS)

error++;

if (rc = omX_fil(DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE, 0,
&sel[1])) '= OM_SUCCESS)

error++;

if (rc = omX_fill_oid(DS_ATTRIBUTES_SELECTED, DSX_A_ACL,

&sel[2])) '= OM_SUCCESS)

error++;

if (rc = omX_fill(DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES,
0, &sel[3])) != OM_SUCCESS)

error++;

sel[4] = null_desc;

*selection_obj = sel;

return (error?0:1);

}

/*

* Build a credentials object using the XOM Convenience Function

392 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

* omX_fill().

*

int
build_credentials_object(
OM_object name,

OM_object *credentials_obj

)

{

OM_integer err_pos;

OM_integer err_type;

OM_object cred;

OM_return_code rc;

OM_descriptor null_desc = OM_NULL_DESCRIPTOR,;
int error = 0;

/*

* Just allocate space for a null descriptor and two other descriptors,
* no class descriptor required.
*/
if ((cred = (OM_descriptor *)malloc((4) * sizeof(OM_descriptor))) == 0)
error++;
if ((rc = omX_fill(DS_REQUESTOR, OM_S_OBJECT, 0, name, &cred[0]))
I= OM_SUCCESS)
error++;
if (rc = omX_fil(DSX_PASSWORD, OM_S_OCTET_STRING, (sizeof(PASSWD)-1),
PASSWD, &cred[1])) !'= OM_SUCCESS)
if ((rc = omX_fill(DSX_AUTH_MECHANISM, OM_S _ENUMERATION, DSX_SIMPLE,
0, &cred[2])) '= OM_SUCCESS)
error++;
cred[3] = null_desc;
*credentials_obj = cred;
return (error?0:1);
}
/*
* Build an object setting DS_DONT_USE_COPY to FALSE, using the
* XOM Convenience Function omX_fill().

*/

int

build_use_copy_object(

OM_object *use_copy_obj

)

DCE 1.2.2 Application Development Guide—Directory Services 393

GDS Application Programming

{

OM_integer err_pos;

OM_integer err_type;

OM_object desc;

OM_object copy;

OM_return_code rc;

OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;

/*

* Just allocate space for a null descriptor and one other
* descriptor, no class descriptor required.
*
if ((copy = (OM_descriptor *)malloc((2) * sizeof(OM_descriptor))) == 0)
error++;
if (rc = omX_fil(DS_DONT_USE_COPY, OM_S_BOOLEAN, OM_FALSE, 0,
©[0])) !'= OM_SUCCESS)
error++;
copy[1] = null_desc;
*use_copy_obj = copy;
return (error?0:1);
}
/*
* Build a filter object from a filter string using the XOM Convenience
* Function omX_string_to_object().
*/
int
build_filter_object(
OM_workspace workspace,
char *ilter,
OM_object *filter_obj
)

{

OM_integer err_pos;
OM_integer err_type;
OM_string filter_str;
OM_return_code rc;

int error = 0;

filter_str.length = strlen(filter);
filter_str.elements = filter;
if ((rc = omX_string_to_object(workspace, &filter_str, DS_C_FILTER,

394 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

OM_TRUE, filter_obj, &err_pos, &err_type)) = OM_SUCCESS)
error++;

return (error?0:1);

}

/*

* Free the name and attribute list objects in the entry list. Objects
* which have been created using the XOM Convenience Function

* omX_string_to_object() must be deleted using om_delete().

*/
int
free_entry_list(
struct entry entry_array[]
)
{
OM_object attr_list_obj;
int i,
int error = 0;
for (i = 0; i < NO_OF_ENTRIES; i++) {
/*
* Delete the service generated public name object .
*/
if (om_delete(entry_array[i].name) != OM_SUCCESS)
error++;
/*
* The last two attribute lists were the same as the 4th one.
*/

if (i < NO_OF_ENTRIES-2) {
attr_list_obj = entry_array[i].attr_list;
for (j = O; attr_list_objfjl.type != OM_NO_MORE_TYPES; j++) {
if (attr_list_obj[j.type == DS_ATTRIBUTES)
/*
* Delete the service generated public attribute object.
*/
if (om_delete(attr_list_obj[j].value.object.object)
I= OM_SUCCESS)
error++;
}
/*
* Free the whole attribute list object.
*/

DCE 1.2.2 Application Development Guide—Directory Services 395

GDS Application Programming

free(attr_list_obj);
}
}

return (error?0:1);

}

9.2.2 The acl2.h Header File

The acl2.h header file performs the following:
1. It exports the object identifiers thatl2.crequires.
2. It declares a structure to contain the name and attributes of directory entries.
3. It defines abbreviated names for the directory entries.
4. It defines abbreviated names for the directory attributes.
5

. It builds the descriptor list for optional packages that are to be negotiated.

The following code is a listing of thacl2.hfile:

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

#ifndef _ACL2_H

#define _ACL2_H

#define MAX_DN_LEN 100 /* max length of a distinguished name in */
[* string format. */

/* Step 1 */

/* The application must export the object identifiers it requires. */
OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)

OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)

396 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

OM_EXPORT (DS_C_FILTER)

OM_EXPORT (DSX_C_GDS_SESSION)

OM_EXPORT (DSX_C_GDS_CONTEXT)

OM_EXPORT (DSX_A_ACL)

/* Structure to contain the name and attribute list */
/* of a directory entry.
struct entry {

OM_private_object

OM_object

} Entry

/* Step 2

/*

*

name;
attr_list;

*/

* Names of directory entries, in string format.

*

#define
#define
#define
#define
#define
#define
#define
/*

DN_ROOT
DN_DE
DN_SNI
DN_AP
DN_STEFANIE
DN_NORBERT
DN_INGRID

npn
"/C=de"

"/C=de/O=sni"
"/C=de/O=sni/OU=ap"
"/C=de/O=sni/OU=ap/CN=stefanie"

"/C=de/O=sni/OU=ap/CN=norbert"

"/C=de/O=sni/OU=ap/CN=ingrid"

* Attributes, in string format.

*

#define
#define
#define
#define
#define
#define
#define
#define

OBJ_CLASS C
OBJ_CLASS O

OBJ_CLASS_OU
OBJ_CLASS_OP
ATT_PHONE_NUM

ATT_PASSWORD
ATT_SURNAME

ATT_ACL1

"OCL = TOP; C"

"OCL = TOP; ORG"
"OCL = TOP; OU"

"OCL = TOP; PER; ORP"
"TN = '+49 89 636 0" "
"UP = secret"

"SN = Schmid"

"ACL={MPUB = {INT = 1,USR = {/}}, \

RSTD = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\

MSTD
RSEN
MSEN

#define ATT_ACL2

RSTD
MSTD
RSEN

{INT
{INT
{INT

{INT
{INT
{INT

0,USR
0,USR
0,USR

{/C=de/O=sni/OU=ap/CN=stefanie}},\
{/C=de/O=sni/OU=ap/CN=stefanie}},\
{/IC=de/O=sni/OU=ap/CN=stefanie}}}"

"ACL={MPUB = {INT = 1,USR = {/C=de/O=sni/OU=ap}},\

1,USR = {/C=de/O=sni/OU=ap}}\

0,USR
1,USR

{/C=de/O=sni/OU=ap/CN=stefanie}},\
{/C=de/O=sni/OU=ap}},\

DCE 1.2.2 Application Development Guide—Directory Services

397

GDS Application Programming

MSEN = {INT = O,USR = {/C=de/O=sni/OU=ap/CN=stefanie}}}"

/* Other strings. */
#define PASSWD "secret"

#define FILTER "OCL"

#define NO_OF_ENTRIES 6 /* 6 entries to be added */
#define NO_C_ATTRS 1 /* 1 attr in Country attribute list */
#define NO_O_ATTRS 2 [* 2 attr in Org attribute list */
#define NO_OU_ATTRS 1 /* 1 attr in Org-Unit attribute list */
#define NO_OP_ATTRS 5 /* 5 attr in Org-Person attribute list*/

/* Build up an array of object identifiers for the optional */

/* packages to be negotiated. */

DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{o}

h
#endif /* _ACL2_H */

9.2.3 Example Strings

This section contains examples of input string®hoX_string_to_object() and some
examples of strings that can be returneddoyX_object_to_string().

9.2.3.1 Input Strings tomX_string_to_object()

The following are examples of strings that can be handled by the
omX_string_to_object() function.

9.23.11 Example 1

To create @S_C_DS_DNobject (root), use strings like the following:

398 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

9.2.3.1.2 Example 2
To create otheDS_C_DS_DNobijects, use strings like the following:
/c=de/o=sni/ou=apll/cn=naik,sn=naik
/c=de/o=sni/ou=ap11/85.4.3=naik,sn=naik
/c=de/o=sni/ou=apll/cn=naik,sn=na\x69k
/c=de/o=sni/ou=apll/cn=naik,loc=Muenchen\,8000

/c=de/o=sni/ou=apll/cn=naik,loc="Muenchen,8000’
/| C =de/ O =sni/Ou = apll/CN=naik, SN=naik

9.2.3.1.3 Example 3

To create &S_C_DS_DNobject (DCE name), use a string like the following:

/...Ilc=us/o=o0sflou=abc/subsystems/server/xyz

9.23.14 Example 4

To create &S_C_DS_RDNobject, use strings like the following:

cn=naik,sn=naik
cn=naik,sn=na\x69k
CN = naik, SN = naik

9.2.3.15 Example 5

To create &S_C_DS_RDNobject (DCE name), use a string like the following:

DCE 1.2.2 Application Development Guide—Directory Services 399

GDS Application Programming

server

9.2.3.1.6 Example 6

To create DS_C_ATTRIBUTE object (containing, for examplé€gommon-Name,
use strings like the following:

cn=bhavesh naik
CN = bhavesh naik
85.4.3=bhavesh nai\x69k

9.2.3.1.7 Example 7

To create aDS_C_ATTRIBUTE object (containing an object class with multiple
values of Residential-Person and Organizational-Persor), use strings like the
following:

OCL=REP;ORP
OCL = "\x55\x06\x0a’ ; '\x55\x06\x07’

9.2.3.1.8 Example 8

To create aDS_C_ATTRIBUTE object (containing a GDS structured attribute like
Telex-Number or Owner), use strings like the following:

TXN={TN=12345,CC=678,AB=90}

TXN = { TN = 12345, CC = 678, AB = 90}
own={/c=de/o=sni/ou=apl1};{/c=de/o=sni/ou=ap22}
pa={pa="Wilhelm Riehl Str.85’;’Munich’}

400 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

9.2.3.1.9 Example 9

To create &SX_C_GDS_ACL object, use a string like the following:

MPUB={INT=0, USR={/c=de/o=sni/cn=naik, sn=bhavesh}}

9.2.3.1.10 Example 10
To create aDS_C_PRESENTATION_ADDRESS object, use a string like the

following:

TS=Server,NA="TCP/IPlinternet=127.0.0.1+port=25015’

9.2.3.1.11 Example 11

To create &S_C_FILTER object, use strings like the following:

c

lc

C = de && CN = 'bha\x76esh naik’

c=de&&cn ~ =mueller

c=de&&(cn="a*|[cn=b*||cn=c*)
ACL={MPUB={INT=0,USR={/c=de/o=sni/cn=naik, sn=bhavesh}}}

¢ = de || cn = *aa*bb*cc*

(cn ~=naik)&&((OCL=0ORP)||(OCL=REP))&& !(SN="bhavesh naik’)&&(L=*)

9.2.3.1.12 Example 12

The following is an example of the error return when an erroneous string is supplied:

/c=de/o=sni,=de

DCE 1.2.2 Application Development Guide—Directory Services 401

GDS Application Programming

The OM_return_code would beOM_WRONG_VALUE_MAKEUP .
The error_type would beOMX_MISSING_ABBRYV .

The error_position would be 13.

9.2.3.2 Strings Returned lymX_object_to_string()

The following are examples of strings returned by thX_object to_string()
function.

9.2.3.21 Example 1

If a DS_C_DS_DNobject is supplied, the following might be returned:

/
/C=de/O=sni/OU=ap11/CN=naik,SN=naik
/C=de/O=sni/OU=ap11/CN=naik,LOC=Muenchen\,8000

9.2.3.2.2 Example 2

If a DS_C_DS_RDNobject is supplied, the following might be returned:

CN=naik,SN=naik
server

9.2.3.2.3 Example 3

If a DS_C_ATTRIBUTE object is supplied, the following might be returned:

402 DCE 1.2.2 Application Development Guide—Directory Services

XDS/XOM Convenience Routines

CN=bhavesh naik

OCL=REP;ORP

TXN={AB=90,CC=678,TN=12345}
OWN={/C=de/O=sni/OU=ap11};{/C=de/O=sni/OU=ap22}

9.2.3.24 Example 4

If a DSX_C_GDS_ACL object is supplied, the following might be returned:

MPUB={INT=0,USR={/C=de/O=sni/CN=naik,SN=bhavesh}}

9.2.3.25 Example 5

If a DS_C_NAME_ERROR object is supplied with DS PROBLEM of
DS_E_NO_SUCH_OBJECT the following might be returned:

The specified name does not match the name of any object
in the directory

9.2.3.2.6 Example 6

If a DS_C_ATTRIBUTE_ERROR object is supplied with
DS _C_ATTRIBUTE_PROBLEM containing
DS_E_ATTRIBUTE_OR_VALUE_EXISTS, the following might be returned:

An attempt is made to add an attribute or value that already
exists. Violating Attribute - Telephone-Number

DCE 1.2.2 Application Development Guide—Directory Services 403

Part 4

XDS/XOM Supplementary
Information

Part 4 contains reference material for the X/Open Object Management (XOM)
programming interface.

Chapter 10

XDS Interface Description

The XDS interface comprises a humber of functions, together with many OM classes
of OM objects, which are used as the parameters and results of the functions. Both the
functions and the OM objects are based closely on the abstract service that is specified
in the standards (s€khe Directory: Abstract Service DefinitipfSO 9594-3, CCITT
X.511).

The interface models the directory interactions as service requests made through a
number of interface functions, which take a number of input parameters. Each valid
request causes an operation within the directory service, which eventually returns a
status and any result of the operation.

All interactions between the user and the directory service belong to a session, which is
represented by an OM object passed as the first parameter to most interface functions.

The other parameters to the functions include a context and various service-specific

parameters. The context includes a number of parameters that are common to many
functions, and that seldom change from operation to operation.

DCE 1.2.2 Application Development Guide—Directory Services 407

XDS/XOM Supplementary Information

10.1

408

Each of the components of this model are described in the following sections in this
chapter along with other features of the interface, such as security.

XDS Conformance to Standards

The XDS interface defines an API that application programs can use to access the
functionality of the underlying directory service. The DCE XDS API conforms to the
X/Open CAE Specification, API to directory services (X[Ng)vember 1991).

The DCE XDS implementation supports the following features:

» A synchronous interface. Asynchronous functionality can be achieved by using
threads as described in Chapter 8.

 All synchronous interface functions are supported. The two asynchronous-specific
functions are handled as follows:

— ds_abandon()

This call does not issue a directory service abandon operation. It returns with
a DS_C_ABANDON_FAILED (DS_E_TOO_LATE)error. For details on
abandoning operations see Section 10.10.3.

— ds_receive_result()

If there are any outstanding operations (when multiple
threads issue XDS calls in parallel), this function returns
DS_SUCCESS with the completion_flag_return parameter set to

DS_OUTSTANDING_OPERATIONS. If no XDS calls are outstanding,

this function returns DS_SUCCESS with the completion_flag_return

parameter set tS _NO_OUTSTANDING_OPERATION.

» Automatic connection management is not provided. Té& bind() and
ds_unbind() functions always try, respectively, to set up and release directory
service connections immediately.

» The DS_FILE_DESCRIPTOR attribute of theDS_C_SESSIONobject is not
used.

« The default values for OM attributes in théS C CONTEXT and
DS _C_SESSIONobjects are described in Chapter 11.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

Support for local strings. XDS supports the mapping from/to local string formats.
The programmer can request this feature when using the following XDS/XOM
functions:

— dsX_extract_attr_values()
— omX_extract()

— omX_object_to_string()
— omX_string_to_object()
— om_get()

— om_read()

The programmer controls this mapping through tleeal_strings Boolean
parameter. To request conversion, set this paramete©Oltb TRUE. The
mappings currently suported are as follows:

— T.61 String to/from 1ISO 8859-1 (that is, LATIN-1)

For details on these mappings, refer to B@E 1.2.2 GDS Administration Guide
and Reference

On input, when requesting conversion of LATIN-1 characters to T.61 format, you
should only use the T.61 subset; otherwise, an error is returned.

DCE XDS supports five packages, of which one is mandatory and four are optional.
Use of the optional packages is negotiated by usisgversion() The packages are
as follows:

The directory service package (as defined in Chapter 11), which also includes the
errors. This package is mandatory.

The basic directory contents package (as defined in Chapter 12). This package is
optional.

The strong authentication package (as defined in Chapter 13). This package is
optional.

The message handling system directory user package (as defined in Chapter 14).
This package is optional.

The GDS package (as defined in Chapter 15). This package is optional.

DCE 1.2.2 Application Development Guide—Directory Services 409

XDS/XOM Supplementary Information

10.2

410

None of the OM classes defined in these five packages are encodable. Thus, DCE XDS
application programmers do not require the use of the XOM functionsencode()
andom_decode() which are not supported by the DCE XOM API.

The XDS Functions

As mentioned already, the standards define abstract services that requestors use to
interact with the directory. Each of these abstract services maps to a single function
call, and the detailed specifications are given in the XDS reference pages. The services
and the function calls to which they map are as follows:

DirectoryBind
Maps tods_bind()

DirectoryUnbind
Maps tods_unbind()

Read Maps tods_read()
Compare Maps tods_compare()
Abandon Maps tods_abandon()
List Maps tods_list()
Search Maps tods_search()
AddEntry Maps tods_add_entry()

RemoveEntry
Maps tods_remove_entry()

ModifyEntry
Maps tods_maodify_entr y()

ModifyRDN
Maps tods_modify_rdn()

There is a function calledls_receive_result() which has no counterpart in the
abstract service. It is used with asynchronous operations. (Seedthéntro(3xds)
reference page for information on how the asynchronous functisnabandon()and
ds_receive_result()are handled by the DCE XDS API.)

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

Table 10-1.

The ds_initialize(), ds_shutdown() andds_version()functions are used to control
the XDS API and do not initiate any directory operations.

The interface functions are summarized in Table 10-1.

The XDS Interface Functions

Name

Description

ds_abandon()

Abandons the result of a pending asynchrong
operation. This function is not supported. Se€
xds_intro(3xds).

ds_add_entry()

Adds a leaf entry to the DIT.

ds_bind()

Opens a session with a DUA (Directory User
Agent), which in turn connects to a DSA.

ds_compare()

Compares a purported attribute value with the
attribute value stored in the DIB for a particul
entry.

ds_initialize()

Initializes the XDS interface.

ds_list()

Enumerates the names of the immediate
subordinates of a particular directory entry.

ds_modify_entry()

Atomically performs modification to a director
entry.

ds_modify_rdn()

Changes the RDN of a leaf entry.

ds_read()

Queries information on a particular directory
entry by name.

ds_receive_result()

Retrieves the result of an asynchronously
executed function. Seeds_intro(3xds).

ds_remove_entry()

Removes a leaf entry from the DIT.

ds_search()

Finds entries of interest in a portion of the DI

ds_shutdown()

Discards a workspace.

ds_unbind()

Unbinds from a directory session.

ds_version()

Negotiates features of the interface and servi

Le.

DCE 1.2.2 Application Development Guide—Directory Services

411

XDS/XOM Supplementary Information

10.3

10.4

412

The XDS Negotiation Sequence

The interface has an initialization and shutdown sequence that permits the
negotiation of optional features. This involves tie initialize(), ds_version(), and
ds_shutdown()functions.

Every application program must first cal$_initialize(), which returns a workspace.
This workspace supports the standard directory service package (see Chapter 11).

The workspace can be extended to support the optional basic directory contents
package (see Chapter 12), the strong authentication package (see Chapter 13), the GDS
package (see Chapter 15), or the MHS directory user package (see Chapter 14). These
packages are identified by means of OSI object identifiers, and these object identifiers
are supplied tals_version()to incorporate the extensions into the workspace.

After a workspace with the required features is negotiated in this way, the application
can use the workspace as required. It can create and manipulate OM objects by using
the OM functions, and it can start one or more directory sessions by dsirtgnd().

After completing its tasks, terminating all its directory sessions by usinginbind(),
and releasing all its OM objects by usiogn_delete() the application needs to ensure
that resources associated with the interface are freed by calkinghutdown()

It is possible to retain access to service-generated public objectslaftehutdown()
is called, or to start another cycle by callim_initialize() if so required by the
application design.

The session Parameter

A session identifies the DUA and the suite of DSAs to which a particular
directory operation is sent. It contains som#&ectoryBindArguments, such as the
distinguished name of the requestor. Téessionparameter is passed as the first
parameter to most interface functions.

A session is described by an OM object of OM cl&S C_SESSION It is created,

and appropriate parameter values can be set with the OM functions. A directory session
then starts withds_bind() and later terminates witlds_unbind(). A session with

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

default parameters can be started by passing the coB&MDEFAULT _SESSION
as theDS_C_SESSIONparameter tals_bind().

The ds_bind() function must be called befor®S_C_SESSIONcan be used as
a parameter to any other function in this interface. Aftlr unbind() is called,
ds_bind() must be called again if another session is to be started.

The interface supports multiple concurrent sessions so that an application implemented
as a single process, such as a server in a client/server model, can interact with
the directory by using several identities, and a process can interact directly and
concurrently with different parts of the directory.

Details of the OM clas®S_C_SESSIONare given in Chapter 11.

10.5 The context Parameter

The context defines the characteristics of the directory interaction that are specific to
a particular directory operation; nevertheless, the same characteristics are often used
for many operations. Since these parameters are presumed to be relatively static for
a given directory user during a particular directory interaction, these parameters are
collected into an OM object of OM claddS_C_CONTEXT, which is supplied as

the second parameter of each directory service request. This reduces the number of
parameters passed to each function.

The context includes many administrative details, such aCiirmmonArguments
defined in the abstract service, which affect the processing of each directory operation.
These details include a number $&rviceControls which allow control over some
aspects of the service. Ti8erviceControlsinclude options such gzreferChaining,
chainingProhibited, localScope dontUseCopy and dontDereferenceAliases
together withpriority , timeLimit , sizeLimit, andscopeOfReferral Each of these is
mapped onto an OM attribute in the context (see Chapter 11).

The effect of passing theontextparameter is as if its contents were passed as a
group of additional parameters for every function call. The value of each component
of the context is determined when the interface function is called, and it remains fixed
throughout the operation.

DCE 1.2.2 Application Development Guide—Directory Services 413

XDS/XOM Supplementary Information

10.6

10.6.1

414

All OM attributes in the clas®S_C_CONTEXT have default values, some of which

are administered locally. The constdd®_DEFAULT_CONTEXT can be passed as

the value of theDS_C_CONTEXT parameter to the interface functions, and it has
the same effect as a context OM object created with default values. The context must
be a private object, unless it B3S_DEFAULT_CONTEXT .

(See Chapter 11 for detailed specifications of the OM dSsC_CONTEXT.)

The XDS Function Arguments

The abstract service defines specific parameters for each operation. These are mapped
onto corresponding parameters to each interface function, which are alsoinpled
parametersAlthough each service has different parameters, some specific parameters
recur in several operations and these are briefly introduced here. (For complete details
of these parameters, see Chapter 11.)

All parameters that are OM objects can generally be supplied to the interface functions
as public objects (that is, descriptor lists) or as private objects. Private objects must be
created in the workspace that is returneddsy initialize(). In some cases, constants
can be supplied instead of OM objects.

Note: Wherever a function can accept an instance of a particular OM class as the
value of a parameter, it also accepts an instance of any subclass of the OM
class. For example, most functions havename parameter, which accepts
values of OM clas®S_C_NAMEIt is always acceptable to supply an instance
of the subclas®S_C_DS_DNas the value of the parameter.

Attribute and Attribute Value Assertion

Each directory attribute is represented in the interface by an OM object of OM class
DS_C_ATTRIBUTE. The type of the directory attribute is represented by an OM
attribute, DS_ATTRIBUTE_TYPE, within the OM object. The values of the directory
attribute are expressed as the values of the OM attrib®eATTRIBUTE_VALUES .

The representation of the attribute value depends on the attribute type and is determined
as indicated in the following list. The list describes the way in which an application

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

program must supply values to the interface; for example, inctrngesparameter
to ds_modify_entry(). The interface follows the same rules when returning attribute
values to the application; for example, in te_read()result.

» The first possibility is that the attribute type and the representation of the
corresponding values can be defined in a package; for example, the selected
attribute types from the standards that are defined in the basic directory contents
package in Chapter 12 and the strong authentication package in Chapter 13. In this
case, attribute values are represented as specified. Additional directory attribute
types and their OM representations are defined by the GDS package.

« If the attribute type is not known and the value is an ASN.1 simple type such
aslntegerType, the representation is the corresponding type specified in Chapter
17.

* If the attribute type is not known and the value is an ASN.1 structured type,
the value is represented in the Basic Encoding Rules (BER) with OM syntax
StringOM_S_ENCODING_STRING).

Note: The distinguished encoding specified in the standards (see Clause 8.7 of
The Directory: Authentication FramewagrkSO 9594-8, CCITT X.500)
must be used if the request is to be signed.

Where attribute values have OM syntax Strijgthey can be long segmented strings,
and the function®m_read() andom_write() need to be used to access them.

An attribute value assertion (AVA) is an assertion about the value of an attribute of an
entry, and it can be TRUE, FALSE, or undefined. It consists of an attribute type and
a single value. In general, the AVA is TRUE if one of the values of the given attribute
in the entry matches the given value. An AVA is represented in the interface by an
instance of OM clas®S_C_AVA, which is a subclass ddS_C_ATTRIBUTE and

can only have one value.

Information used byls _add_entry()to construct a new directory entry is represented
by an OM object of OM classDS_C_ATTRIBUTE_LIST, which contains a
single multivalued OM attribute whose values are OM objects of OM class
DS_C_ATTRIBUTE.

DCE 1.2.2 Application Development Guide—Directory Services 415

XDS/XOM Supplementary Information

10.6.2

10.6.3

416

The selection Parameter

Theselectionparameter of thels_read()andds_search()operations tailors its results

to obtain just part of the required entry. Information on all attributes, no attributes, or
a specific group of attributes can be chosen. Attribute types are always returned, but
the attribute values are not necessarily returned.

The value of the parameter is an instance of OM class
DS_C_ENTRY_INFO_SELECTION, but one of the constants in the following list
can be used in simple cases:

» To verify the existence of an entry for the purported name, use the constant
DS_SELECT_NO_ATTRIBUTES.

e To return just the types of all attributes, use the constant
DS_SELECT_ALL_TYPES.

« To return the types and values of all attributes, use the constant
DS_SELECT_ALL_TYPES_AND_VALUES.

To choose a particular set of attributes, create a new instance of the OM class
DS_C_ENTRY_INFO_SELECTION and set the appropriate OM attribute values
by using the OM functions.

The name Parameter

Most operations take @ameparameter to specify the target of the operation. The name
is represented by an instance of one of the subclasses of the OMD8ass> NAME.

The DCE XDS API defines the subclaBsS_C_DS DNto represent distinguished
names and other names.

For directory interrogations, any aliases in the name are dereferenced, unless
prohibited by the DS_DONT_DEREFERENCE_ALIASES service control.
However, for modify operations, this service control is ignored if set, and aliases are
never dereferenced.

RDNs are represented by an instance of one of the subclasses of the OM

class DS _C_RELATIVE_NAME. The DCE XDS APl defines the subclass
DS_C_DS_RDNrto represent RDNs.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

10.7 XDS Function Call Results

All XDS functions return aDS_status which is the C function result; most return
data in aninvoke_id parameter, which identifies the particular invocation, and the
interrogation operations each return data in theult parameter. Thénvoke _idand

result values are returned using pointers that are supplied as parameters of the
C function. These three types of function results are introduced in the following
subsections.

All OM objects returned by interface functions (results and errors) are private objects
in the workspace returned las_initialize().

10.7.1 The invoke_id Parameter

All interface functions that invoke a directory service operation returfingoke_id
parameter, which is an integer that identifies the particular invocation of an
operation. Since asynchronous operations (within the same thread) are not supported,
the invoke_idreturn value is no longer relevant for operations. DCE application
programmers must still supply this parameter as described in the XDS reference pages,
but they should ignore the value returned.

10.7.2 The result Parameter

Directory service interrogation operations returmeault value only if they succeed.
All errors from these operations, including directory access protocol (DAP) errors, are
reported inDS_status(see Section 10.7.3), as are errors from all other operations.

The result of an interrogation is returned in a private object whose OM class is
appropriate to the particular operation. The format of directory operation results is
driven by the abstract service. To simplify processing, the result of a single operation
is returned in a single OM object, which corresponds to the abstract result defined in
the standards. The components of the result of an operation are represented by OM
attributes in the operation’s result object. All information contained in the abstract
service result is made available to the application program. The result is inspected
using the functions provided in the object management ARI, get()

DCE 1.2.2 Application Development Guide—Directory Services 417

XDS/XOM Supplementary Information

10.7.3

10.8

418

Only the interrogation operations produce results, and each type of interrogation has
a specific OM class of OM object for its result. These OM classes are as follows (see
Chapter 11 for their definitions):

DS_C_COMPARE_RESULT
DS_C_LIST_RESULT

« DS_C_READ_RESULT

« DS_C_SEARCH_RESULT

The results of the different operations share several common components, including
the CommonResultsdefined in the standards (s@&ée Directory: Abstract Service
Definition, ISO 9594-3, CCITT X.511) by inheriting OM attributes from the superclass
DS_C_COMMON_RESULTA&n additional common component is the full DN of the
target object, after all aliases are dereferenced.

The actual OM class of the result can always be a subclass of that named in order to
allow flexibility for extensions. Thuspm_instance()always needs to be used when
testing the OM class.

Any attribute values in the result are represented as discussed in Section 10.6.1.

The DS_status Return Value

Every interface function returns BS_statusvalue, which is either the constant
DS_SUCCESSor an error. Errors are represented by private objects whose OM class
is a subclass oDS_C_ERRORDetails of all errors are given in Chapter 11.

Other results of functions are not valid unless the status result has the value
DS_SUCCESS

Synchronous Operations

Since asynchronous use of the interface (within the same thread) is not supported, the
value of theDS_ASYNCHRONOUS OM attribute inDS_C_CONTEXT is always
OM_FALSE, causing all operations within the same thread to be synchronous.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

10.9

10.10

In synchronous mode, all functions wait until the operation is complete before
returning. The thread of control is blocked within the interface after calling a function,
and it can use the result immediately after the function returns.

Implementations define a limit on the number of asynchronous operations that
can be outstanding at any one time on any one session. The limit is given by
the implementation-defined constabS_MAX_OUTSTANDING_OPERATIONS.

It always has the value O (zero) because asynchronous operations within the same
thread are not supported.

All errors occurring during a synchronous request are reported when the function
returns. (See Chapter 11 for complete details of error handling.)

The DS_FILE_DESCRIPTOR OM attribute ofDS_C_SESSIONSs not used by the
DCE XDS API and is always set tOS_NO_VALID_FILE_DESCRIPTOR.

Security and XDS

The X/Open XDS specifications do not define a security interface because this can
put constraints on security features of existing directory implementations.

DCE GDS provides an extension to the XDS API for security support. This is
achieved at the XDS API level through a n®8X_C_GDS_SESSIOMNession object

that contains information on the security mechanism that should be used. Simple
authentication through the use of name and password, and external authentication
based on DCE security, are supported. (See Chapter 15 for additional information.)

Other Features of the XDS Interface

The following subsections describe these features of the interface:
» Automatic Connection Management

» Automatic Continuation and Referral Handling

DCE 1.2.2 Application Development Guide—Directory Services 419

XDS/XOM Supplementary Information

10.10.1

10.10.2

420

Automatic Connection Management

An implementation can provide automatic management of the association or
connection between the user and the directory service, making and releasing
connections at its discretion.

The DCE XDS implementation does not support automatic connection management.
A DSA connection is established wheis_bind() is called and released when
ds_unbind() is called.

Automatic Continuation and Referral Handling

The interface provides automatic handling of continuation references and referrals in
order to reduce the burden on application programs. These facilities can be inhibited
to meet special needs.

A continuation referencelescribes how the performance of all or part of an operation
can be continued at a different DSA or DSAs. A single continuation reference
returned as the entire response to an operation is calledesal and is classified

as an error. One or more continuation references can also be returned as part
of DS_PARTIAL_OUTCOME_QUAL returned from ads_list() or ds_search()
operation.

A DSA returns a referral if it has administrative, operational, or technical reasons for
preferring not to chain. It can return a referral BS_CHAINING_PROHIB

is set in the DS_C _CONTEXT, or it can report a service error
(DS_E_CHAINING_REQUIRED) instead.

By default, the implementation uses any continuation references it receives to try to
contact the other DSA or DSAs, enabling it to make further progress in the operation,
whenever practical. It only returns the result, or an error, to the application after it
has made this attempt. Note that continuation references can still be returned to the
application; for example, if the relevant DSA cannot be contacted.

The default behavior is the simplest for most applications but, if necessary, the
application can cause all continuation references to be returned to it. It does this
by setting the value of the OM attribu@S_AUTOMATIC_CONTINUATION in

the DS_C_CONTEXT to OM_FALSE.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Interface Description

10.10.3 Abandoning Operations

The XDS user can abandon a directory operation when operating in multithreaded
mode. An operation is abandoned by callippread_cancel()to cancel the thread
that issued the directory operation. General cancelability must be enabled; otherwise,
the cancelability will be ignored.
XDS will react as follows, depending on when the cancel is delivered:
» Before interaction with the DSA
— Nothing is sent to the DSA.
— The exceptiompthread_cancel_eis reraised.
* While waiting for a response from the DSA
— An ABANDON message is sent to the DSA.

— The exceptiompthread_cancel_eis reraised.

 After the result has arrived, but before a point has been reached when it is
committed to be passed back to the user

— The result is thrown away.
— The exceptiorpthread_cancel_eis reraised.
* After the point where result return is committed place
— The cancel is ignored.
— The result is returned normally.

It is the responsibility of the user to handle the cancel exception in the last case and,
if necessary, to discard the result.

DCE 1.2.2 Application Development Guide—Directory Services 421

Chapter 11

XDS Class Definitions

When referring to classes and attributes in the directory service, the chapters in Parts 3
and 4 make a clear distinction between OM classes and directory classes, and between
OM attributes and directory attributes. In both cases, the former is a construct of the
closely associated Object Management interface, while the latter is a construct of the
directory service to which XDS provides access. The teobjsct classandattribute
indicate the directory constructs, while the phra®d4 classandOM attributeindicate

the Object Management constructs.

11.1 Introduction to OM Classes

This chapter defines, in alphabetical order, the OM classes that constitute the directory
service package. This package incorporates the OM classes for the errors that may be
returned at the XDS interface. The object identifier associated with this package is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) dsp(0)}

DCE 1.2.2 Application Development Guide—Directory Services 423

XDS/XOM Supplementary Information

11.2

424

It takes the following encoding:

\X2B\xC\x2\x87\x73\x1C\x0
This object identifier is represented by the consfast SERVICE_PKG.

The object management notation is briefly described in the following text. See Chapters
17 through 19 for more information on object management.

Each OM class is described in a separate section, which identifies the OM attributes
specific to that OM class. The OM classes and OM attributes for each OM class

are listed in alphabetical order. The OM attributes that can be found in an instance

of an OM class are those OM attributes specific to that OM class, as well as those
inherited from each of its superclasses (see Chapter 5). The OM class-specific OM
attributes are defined in a table. The table indicates the name of each OM attribute, the
syntax of each of its values, any restrictions on the length (in bits, octets (bytes), or

characters) of each value, any restrictions upon the number of values, and the value,
if any, om_create()supplies.

The constants that represent the OM classes and OM attributes in the C binding are
defined in thexds.h(4xds)header file.

XDS Errors

Errors are reported to the application program by meanB®fstatus which is a
result of every function. (ThéS_statusis the function result in the C language
binding for most functions.) A function that completes successfully returns the value
DS_SUCCESS$ whereas one that is not successful returns an error. The error is a
private object containing details of the problem that occurred. The error constant
DS_NO_WORKSPACE can be returned by all directory service functions, except
ds_initialize(). DS_NO_WORKSPACE is returned ifds_initialize() is not invoked
before calling any other directory service function.

Errors are classified into ten OM classes. The standardsT{se®irectory: Abstract

Service Definition, 1ISO 9594-3, CCITT X.511) classify errors into eight different
groups, as follows:

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

» Abandoned

» Abandon Failed

« Attribute Error

* Name Error

» Referral

*» Security Error

» Service Error

» Update Error
The directory service interface never returns an Abandoned error. The interface also
defines three more kinds of errors, as follows:

« DS C LIBRARY_ERROR

« DS_C_COMMUNICATIONS ERROR

« DS_C_SYSTEM_ERROR
Each of these kinds of errors is represented by an OM class. These OM classes
are detailed in subsequent sections of this chapter. All of them inherit the OM
attribute DS_PROBLEM from their superclas®S_C_ERRORwhich is described
in this chapter. The values th&tS_PROBLEM can take are listed in the relevent
subsections of this chapter. For a description of these errors, refer DGRel.2.2

Problem Determination GuideThe error OM classes defined in this chapter are part
of the directory service package.

The ds_bind() operation returns a Security Error or a Service Error. All other
operations can also return the same errorgl@sind() . Such errors can arise in
the course of following an automatic referral list.

DS C REFERRAL is not a real error, and it is not a subclass of
DS_C_ERROR although it is reported in the same way as BS_status
result. A DS C ATTRIBUTE_ERROR, also not a subclass dbS_C_ERROR

is special because it can report several problems at once. Each one is reported in
DS_C_ATTRIBUTE_PROBLEM, which is a subclass ddS_C_ERROR

DCE 1.2.2 Application Development Guide—Directory Services 425

XDS/XOM Supplementary Information

11.3

426

OM Class Hierarchy

This section shows the hierarchical organization of the OM classes defined in this
chapter and, as a result, shows which OM classes inherit additional OM attributes from
their superclasses. In the following list, subclassification is indicated by indentation,
and the names of abstract classes are in italics. Thus, for example, the concrete
classDS_C_PRESENTATION_ADDRESSis an immediate subclass of the abstract
classDS_C_ADDRESSwhich in turn is an immediate subclass of the abstract class
OM_C_OBJECT(OM_C_OBJECTis defined in Chapter 19 of this guide.)

OM_C_OBJECT

DS_C_ACCESS_POINT
DS_C_ADDRESS

— DS_C_PRESENTATION_ADDRESS
DS_C_ATTRIBUTE

— DS_C_AVA

— DS_C_ENTRY_MOD

— DS_C_FILTER_ITEM
DS_C_ATTRIBUTE_ERROR
DS_C_ATTRIBUTE_LIST

— DS_C_ENTRY_INFO
DS_C_COMMON_RESULTS

— DS_C_COMPARE_RESULT
— DS_C_LIST_INFO

— DS_C_READ_RESULT

— DS_C_SEARCH_INFO
DS_C_CONTEXT
DS_C_CONTINUATION_REF

— DS_C_REFERRAL
DS_C_ENTRY_INFO_SELECTION

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

« DS_C_ENTRY_MOD_LIST
« DS_C_ERROR
— DS_C_ABANDON_FAILED
— DS_C_ATTRIBUTE_PROBLEM
— DS_C_COMMUNICATIONS_ERROR
— DS_C_LIBRARY_ERROR
— DS_C_NAME_ERROR
— DS_C_SECURITY_ERROR
— DS_C_SERVICE_ERROR
— DS_C_SYSTEM_ERROR
— DS_C_UPDATE_ERROR
« DS_C_EXT
« DS_C_FILTER
« DS_C_LIST_INFO_ITEM
« DS_C_LIST RESULT
« DS_C_NAME
— DS_C_DS_DN
« DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
« DS_C_RELATIVE_NAME
— DS_C_DS_RDN
« DS_C_SEARCH_RESULT
» DS_C_SESSION
None of the classes in the preceding list are encodable wsimgencode()and
om_decode(). The application is not permitted to create or modify instances of

some OM classes because these OM classes are only returned by the interface and
never supplied to it. These OM classes are as follows:

DCE 1.2.2 Application Development Guide—Directory Services 427

XDS/XOM Supplementary Information

11.4

428

+ DS_C_ACCESS POINT
 DS_C_ATTRIBUTE_ERROR

« DS_C_COMPARE_RESULT

* DS_C_CONTINUATION_REF
 All subclasses oDS_C_ERROR

* DS_C_LIST_INFO

* DS_C_LIST_INFO_ITEM

* DS_C_LIST_RESULT

» DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
« DS_C_READ_RESULT

« DS_C_REFERRAL

« DS_C_SEARCH_INFO

« DS_C_SEARCH_RESULT

DS_C_ABANDON_FAILED

An instance of OM clasBS_C_ABANDON_FAILED reports a problem encountered
during an attempt to abandon an operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the problem. Its value is one of the following:

* DS_E_CANNOT_ABANDON

* DS_E_NO_SUCH_OPERATION

* DS_E_TOO_LATE

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

A ds_abandon() XDS call always returns eéDS_E_TOO_LATE error for the
DS_C_ABANDON_FAILED OM class. Refer to Chapter 10 for information on
abandoning directory operations.

115 DS_C_ACCESS_POINT

An instance of OM clas®S _C_ACCESS_POINT identifies a particular point at
which a DSA can be accessed.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-1.

Table 11-1. OM Attributes of DS_C_ACCESS_POINT

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_ADDRESS Objec{DS_C_ — 1 —
ADDRESS)
DS_AE_TITLE Objec{DS_C_NAME)| — 1 —

» DS_ADDRESS

This attribute indicates the address of the DSA to be used when communicating
with it.

« DS_AE_TITLE

This attribute indicates the name of the DSA.

11.6 DS_C_ADDRESS

The OM clasDS_C_ADDRESE&:presents the address of a particular entity or service,
such as a DSA.

DCE 1.2.2 Application Development Guide—Directory Services 429

XDS/XOM Supplementary Information

It is an abstract class that has the OM attributes of its supercddsC OBJECT
and no other OM attributes.

An address is an unambiguous name, label, or number that identifies the location of
the entity or service. All addresses are represented as instances of some subclass of
this OM class.

The only subclass defined by the DCE XDS API is

DS_C_PRESENTATION_ADDRESS which is the presentation address of an OSI
application entity used for OSI communications with this subclass.

11.7 DS_C_ATTRIBUTE

An instance of OM clasBS_C_ATTRIBUTE is an attribute of an object, and is thus
a component of its directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attributes listed in Table 11-2.

Table 11-2. OM Attributes of DS_C_ATTRIBUTE

Value Value Value

OM Attribute Value Syntax Length Number | Initially
DS_ATTRIBUTE_ StringOM_S_ — 1 —
TYPE OBJECT_

IDENTIFIER_

STRING)
DS _ATTRIBUTE_ Any — 0 or more| —
VALUES

* DS_ATTRIBUTE_TYPE
The attribute type that indicates the class of information given by this attribute.

* DS_ATTRIBUTE_VALUES

430 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.8

Table 11-3.

The attribute values. The OM value syntax and the number of values allowed for
this OM attribute are determined by the value of b8 ATTRIBUTE_TYPE
OM attribute in accordance with the rules given in Chapter 10.

If the values of this OM attribute have the syntax Stririgy(the strings can be
long and segmented. For this reasom_read()andom_write() need to be used
to access all String] values.

Note:

A directory attribute must always have at least one value, although it is

acceptable for instances of this OM class not to have any values.

DS_C_ATTRIBUTE_ERROR

An instance of OM clas®S_C_ATTRIBUTE_ERROR reports an attribute-related

directory service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctabs,C_OBJECT
in addition to the OM attributes listed in Table 11-3.

OM Attributes of DS_C_ATTRIBUTE_ERROR

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _OBJECT_ Objec{DS_C_NAME)| — 1 —
NAME
DS PROBLEMS Objec{DS_C _ — 1 or more| —
ATTRIBUTE_
PROBLEM)

« DS_OBJECT_NAME

This attribute contains the name of the directory entry to which the operation is
applied when the failure occurs.

» DS_PROBLEMS

DCE 1.2.2 Application Development Guide—Directory Services

431

XDS/XOM Supplementary Information

This attribute documents the attribute-related problems encountered. Uniquely, a
DS_C_ATTRIBUTE_ERROR can report several problems at once. All problems
are related to the preceding object.

11.9 DS_C_ATTRIBUTE_LIST

An instance of OM clas®S_C_ATTRIBUTE_LIST s a list of directory attributes.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attribute listed in Table 11-4.

Table 11-4. OM Attribute of DS_C_ATTRIBUTE_LIST

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _ATTRIBUTES Objec{DS_C _ — 0 or more| —
ATTRIBUTE)

*» DS_ATTRIBUTES

This attribute indicates the attributes that constitute a new object’s directory entry,
or those selected from an existing entry.

11.10 DS_C_ATTRIBUTE_PROBLEM

An instance of OM clasBS_C_ATTRIBUTE_PROBLEM documents one attribute-
related problem encountered while performing an operation as requested on a particular
occasion.

An application is not permitted to create or modify instances of this OM class. An

instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORN addition to the OM attributes listed in Table 11-5.

432 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

Table 11-5. OM Attributes of DS_C_ATTRIBUTE_PROBLEM

Value Value Value

OM Attribute Value Syntax Length Number | Initially
DS_ATTRIBUTE_ StringOM_S_ — 1 —
TYPE OBJECT_

IDENTIFIER_

STRING)
DS_ATTRIBUTE_ Any — Oor1l —
VALUE

* DS_ATTRIBUTE_TYPE
This attribute identifies the type of attribute with which the problem is associated.
* DS_ATTRIBUTE_VALUE

This attribute specifies the attribute value with which the problem is associated.
Its syntax is determined by the value BfS_ATTRIBUTE_TYPE. This OM
attribute is present if it is necessary to avoid ambiguity.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the problem. Its value is one of the following:

« DS_E_ATTRIBUTE_OR_VALUE_EXISTS

* DS_E_CONSTRAINT_VIOLATION
DS_E_INAPPROP_MATCHING
DS_E_INVALID_ATTRIBUTE_SYNTAX
DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE
DS_E_UNDEFINED_ATTRIBUTE_TYPE

11.11 DS C_AVA

An instance of OM clasDS C_AVA (attribute value assertion) is a proposition
concerning the values of a directory entry.

DCE 1.2.2 Application Development Guide—Directory Services 433

XDS/XOM Supplementary Information

11.12

Table 11-6.

434

An instance of this OM class has the OM attributes of its superclasses,
OM_C OBJECTand DS C ATTRIBUTE, and no other OM attributes. An
additional restriction on this OM class is that there must be exactly one value of the
OM attribute DS_ATTRIBUTE_VALUES . The DS_ATTRIBUTE_TYPE remains
single valued. The OM value syntax &fS_ATTRIBUTE_VALUES must conform

to the rules outlined in Chapter 10.

DS_C_COMMON_RESULTS

The OM classDS_C_COMMON_RESULT&mprises results that are returned by,
and are common to, the directory interrogation operations.

It is an abstract OM class, which has the OM attributes of its superclass,
OM_C_OBJECTIn addition to the OM attributes listed in Table 11-6.

OM Attributes of DS_C_COMMON_RESULTS
Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_ALIAS_ OM_S_ BOOLEAN | — 1 —
DEREFERENCED
DS _PERFORMER [Object{DS_C_NAME) — Oorl —

* DS_ALIAS_DEREFERENCED

This attribute indicates whether the name of the target object that is passed as a
function argument includes an alias that is dereferenced to determine the DN.

» DS_PERFORMER

When present, this attribute gives the DN of the performer of a particular operation.
It can be present when the result is signed, and it holds the name of the DSA that
signed the result. The DCE directory service does not support the optional feature
of signed results; therefore, this OM attribute is never present.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.13

11.14

Table 11-7.

DS_C_COMMUNICATIONS_ERROR

An instance of OM clas®S_C_COMMUNICATIONS ERROR reports an error
occurring in the other OSI services supporting the directory service.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

Communications errors include those arising in remote operation, association control,
presentation, session, and transport.

The OM attribute DS PROBLEM, which is inherited from the
superclass DS_C_ERROR identifies the problem. Its value is
DS_E_COMMUNICATIONS_PROBLEM .

DS_C_COMPARE_RESULT

An instance of OM clas®S_C_COMPARE_RESULT comprises the results of a
successful call tals_compare()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT® addition to the OM attributes listed in Table 11-
7.

OM Attributes of DS_C_COMPARE_RESULT

Value Value Value
OM Attribute Value Syntax Length | Number | Initially
DS_FROM_ENTRY OM_S_ BOOLEAN — 1 —
DS_MATCHED OM_S_ BOOLEAN — 1 —
DS _OBJECT_NAME | Objec{DS_C_NAME)| — Oorl —

« DS_FROM_ENTRY

DCE 1.2.2 Application Development Guide—Directory Services 435

XDS/XOM Supplementary Information

This attribute indicates whether the assertion is tested against the specified object’s
entry, rather than a copy of the entry.

» DS_MATCHED

This attribute indicates whether the assertion specified as an argument returns the
valueOM_TRUE. It takes the valu®©M_TRUE if the values are compared and
matched; otherwise, it takes the valOd_FALSE.

« DS_OBJECT_NAME

This attribute contains the DN of the target object of the operation. It is present if
the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULTSs OM_TRUE.

11.15 DS_C_CONTEXT

An instance of OM clas®S_C_CONTEXT comprises per-operation arguments that
are accepted by most of the interface functions.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attributes listed in Table 11-8.

Table 11-8. OM Attributes of DS_C_CONTEXT

Value Value

OM Attribute Value Syntax Length | Number | Value Initially
Common Arguments
DS_EXT Objec{DS_C_ EXT) — 0 or more| —
DS_OPERATION_ Objec(DS_C_ — 1 DS_ OPERATION_
PROGRESS OPERATION_ NOT_STARTED
PROGRESS)
DS_ALIASED_ OM_S_ INTEGER — Oorl |O
RDNS
Service Controls
DS_CHAINING_ OM_S_ BOOLEAN — 1 OM_TRUE
PROHIB

436 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

Value Value

OM Attribute Value Syntax Length | Number | Value Initially
DS_DONT_ OM_S_ BOOLEAN — 1 OM_FALSE
DEREFERENCE_
ALIASES
DS_DONT_ OM_S_ BOOLEAN — 1 OM_TRUE
USE_COPY
DS_LOCAL_ SCOPE | OM_S_ BOOLEAN — 1 OM_FALSE
DS_PREFER_ OM_S_ BOOLEAN — 1 OM_FALSE
CHAINING
DS _PRIORITY Enum(DS_Priority) — 1 DS_MEDIUM
DS_SCOPE_ Enum (DS_ Scope_ — Oorl |—
OF REFERRAL of Referral)
DS_SIZE_ LIMIT OM_S_ INTEGER — Qorl |—
DS_TIME_ LIMIT OM_S_ INTEGER — Qorl |—

Local Controls
DS_ OM_S_ BOOLEAN — 1 OM_FALSE
ASYNCHRONOUS
DS_AUTOMATIC_ OM_S_ BOOLEAN — 1 OM_TRUE
CONTINUATION

The context gathers several arguments passed to interface functions, which are
presumed to be relatively static for a given directory user during a particular directory
interaction. The context is passed as an argument to each function that interrogates
or updates the directory. Although it is generally assumed that the context is changed
infrequently, the value of each argument can be changed between every operation if
required. ThebS_ASYNCHRONOUSargument must not be changed. Each argument

is represented by one of the OM attributes of B8 C_CONTEXT OM class.

The context contains the common arguments defined in the standardsTi{eee
Directory: Abstract Service DefinitignSO 9594-3, CCITT X.511), except that all
security information is omitted for reasons discussed in Chapter 10. These are made up
of a number of service controls explained in the following text, possible extensions in
theDS_EXT OM attribute, and operation progress and alias dereferencing information

DCE 1.2.2 Application Development Guide—Directory Services 437

XDS/XOM Supplementary Information

in the DS_OPERATION_PROGRESSOM attribute. It also contains a number of
arguments that provide local control over the interface.

The OM attributes of th®S C_CONTEXT OM class are as follows:
e Common Arguments
— DS_EXT

This attribute represents any future standardized extensions that need to be
applied to the directory service operation. The DCE XDS implementation
does not evaluate this optional OM attribute.

— DS_OPERATION_PROGRESS

This attribute represents the state that the directory service assumes at the
start of the operation. This OM attribute normally takes its default value,
which is the valueDS_OPERATION_NOT_STARTED described in the
DS_C_OPERATION_PROGRESSOM class definition.

— DS_ALIASED_RDNS

This attribute indicates to the directory service that the object component of
the operationparameter is created by dereferencing of an alias on an earlier
operation attempt. This value is set in the referral response of the previous
operation.

» Service Controls
— DS_CHAINING_PROHIB

This attribute indicates that chaining and other methods of distributing the
request around the directory service are prohibited.

— DS_DONT_DEREFERENCE_ALIASES

This attribute indicates that any alias used to identify the target entry of
an operation is not dereferenced. This allows interrogation of alias entries.
(Aliases are never dereferenced during updates.)

— DS_DONT_USE_COPY

This attribute indicates that the request can only be satisfied by accessing
directory entries, and not by using copies of entries. This includes both copies
maintained in other DSAs by bilateral agreement, and, copies cached locally.

— DS_LOCAL_SCOPE

438 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

This attribute indicates that the directory request will be satisfied locally. The
meaning of this option is configured by an administrator. This option typically
restricts the request to a single DSA or DMD.

— DS_PREFER_CHAINING

This attribute indicates that chaining is preferred to referrals when necessary.
The directory service is not obliged to follow this preference and can return
a referral even if it is set.

— DS_PRIORITY

This attribute indicates the priority, relative to other directory requests,
according to which the directory service attempts to satisfy the request. This
is not a guaranteed service since there is no queuing throughout the directory.
Its value must be one of the following:

DS_LOW
DS_MEDIUM
DS_HIGH

— DS_SCOPE_OF REFERRAL

This attribute indicates the part of the directory to which referrals are limited.
This includes referral errors and partial outcome qualifiers. Its value must be
one of the following:

DS_COUNTRY, meaning DSAs within the country in which the request
originates.

DS_DMD, meaning DSAs within the DMD in which the request
originates.

DS_SCOPE_OF_REFERRAL is an optional attribute. The lack of this
attribute in aDS_C_CONTEXT object indicates that the scope is not limited.

— DS_SIZE_LIMIT

If present, this attribute indicates the maximum number of objects about which
ds_list() or ds_search()needs to return information. If this limit is exceeded,
information is returned about exactly this nhumber of objects. The objects
that are chosen are not specified because this can depend on the timing of
interactions between DSAs, among other reasons.

— DS_TIME_LIMIT

DCE 1.2.2 Application Development Guide—Directory Services 439

XDS/XOM Supplementary Information

440

If present, this attribute indicates the maximum elapsed time, in seconds,
within which the service needs to be provided (not the processing
time devoted to the request). If this limit is reached, a service error
(DS_E_TIME_LIMIT_EXCEEDED) is returned, except for thds_list()

or ds_search() operations, which return an arbitrary selection of the
accumulated results.

 Local Controls
— DS_ASYNCHRONOUS (Optional Functionality)

The interface currently operates synchronously (within the same thread) only,
as detailed in Chapter 10. There is only one possible value, as follows:

OM_FALSE, meaning that the operation is performed sequentially
(synchronously) with the application being blocked until a result or error
is returned.

— DS_AUTOMATIC_CONTINUATION

This attribute indicates the requestor’s requirement for continuation reference
handling, including referrals and those in partial outcome qualifiers. The value
is one of the following:

OM_FALSE, meaning that the interface returns all continuation
references to the application program.

OM_TRUE, meaning that continuation references are automatically
processed, and the subsequent results are returned to the application
instead of the continuation references, whenever practical. This is a
much simpler option tha®@M_FALSE unless the application has special
requirements.

Note: Continuation references can still be returned to the application if, for example,
the relevant DSA cannot be contacted.

Applications can assume that an object of OM cl&S C_CONTEXT, created
with default values of all its OM attributes, works with all the interface functions.
The DS_DEFAULT_CONTEXT constant can be used as an argument to interface
functions instead of creating an OM object with default values.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.16 DS_C_CONTINUATION_REF

An instance of OM clas®S_C_CONTINUATION_REF comprises the information
that enables a partially completed directory request to be continued; for example,

following a referral.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-9.

Table 11-9. OM Attributes of DS_C_CONTINUATION_REF

Value Value Value

OM Attribute Value Syntax Length Number | Initially
DS _ACCESS Objec{DS_C _ — 1 or more| —
POINTS ACCESS_POINT)
DS _ALIASED OM_S INTEGER — 1 —
RDNS
DS_OPERATION_ | ObjectDS_C_ — 1 —
PROGRESS OPERATION_

PROGRESS)
DS_RDNS OM_S INTEGER — Oor1l —
RESOLVED
DS _TARGET _ Objec{DS_C_NAME)| — 1 —
OBJECT

*» DS_ACCESS_POINTS

This attribute indicates the names and presentation
where the directory request is continued.

* DS_ALIASED_RDNS

addresses of the DSAs from

This attribute indicates how many (if any) of the RDNs in the target name
are produced by dereferencing an alias. Its value is 0 (zero) if no aliases are
dereferenced. This value needs to be used inD¥e C_CONTEXT of any
continued operation.

* DS_OPERATION_PROGRESS

DCE 1.2.2 Application Development Guide—Directory Services

441

XDS/XOM Supplementary Information

This attribute indicates the state at which the directory request must be continued.
This value needs to be used in th&_C_CONTEXT of any continued operation.

» DS_RDNS_RESOLVED

This attribute indicates the number of RDNs in the supplied object name that are
resolved (using internal references), and not just assumed to be correct (using
cross-references).

» DS_TARGET_OBJECT

This attribute indicates the name of the object upon which the continuation must
focus.

11.17 DS_C_DS_DN

An instance of OM clas®S_C_DS_DNrepresents a name of a directory object.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS_C_NAME in addition to the OM attribute listed in Table
11-10.

Table 11-10. OM Attribute of DS_C_DS DN

442

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _RDNS Objec{DS_C DS_ | — 0 or more| —
RDN)

 DS_RDNS

This attribute indicates the sequence of RDNs that define the path through the DIT
from its root to the object that theS_C_DS_DNindicates. TheDS_C_DS DN

of the root of the directory is the null name (B5_RDNSvalues). The order of

the values is significant; the first value is closest to the root, and the last value is
the RDN of the object.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.18 DS_C_DS_RDN

An instance of OM clas®S_C_DS_RDNis a relative distinguished name. An RDN
uniquely identifies an immediate subordinate of an object whose entry is displayed in
the DIT.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS_C_RELATIVE_NAMEIn addition to the OM attribute
listed in Table 11-11.

Table 11-11. OM Attribute of DS_C_DS_RDN

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_AVAS Objec{DS_C_AVA) | — 1 or more| —

.« DS_AVAS

This attribute indicates thBS_AVAS that are marked by the DIB as components
of the object’'s RDN. The assertion is TRUE of the object but not of any of its
siblings, and the attribute type and value are displayed in the object’s directory
entry. The order of th®S_AVAS is not significant.

11.19 DS_C_ENTRY_INFO

An instance of OM clas®S C_ENTRY_INFO contains selected information from
a single directory entry.

An instance of this OM class has the OM attributes of its superclasses,

OM_C _OBJECTand DS _C _ATTRIBUTE_LIST, in addition to the OM attributes
listed in Table 11-12.

DCE 1.2.2 Application Development Guide—Directory Services 443

XDS/XOM Supplementary Information

Table 11-12. OM Attributes of DS_C_ENTRY_INFO

Value Value Value
OM Attribute Value Syntax Length | Number Initially
DS_FROM_ENTRY OM_S_ — 1 —
BOOLEAN
DS _OBJECT_NAME | Objec(DS_C_ — 1 —
NAME)

The OM attribute DS _ATTRIBUTES is inherited from the superclass

DS C _ATTRIBUTE_LIST. It contains the information extracted from the
directory entry of the target object. The type of each attribute requested and located
is indicated in the list as are its values, if types and values are requested.

The OM class-specific OM attributes are as follows:

« DS_FROM_ENTRY

This attribute indicates whether the information is extracted from the specified
object’s entry, rather than from a copy of the entry.

« DS_OBJECT_NAME

This attribute contains the object’s DN.

11.20 DS_C_ENTRY_INFO_SELECTION

An instance of OM classDS C ENTRY_INFO_SELECTION identifies the
information to be extracted from a directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C _OBJECT
in addition to the OM attributes listed in Table 11-13.

444 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

Table 11-13. OM Attributes of DS_C_ENTRY_INFO_SELECTION

Value Value
OM Attribute Value Syntax Length | Number | Value Initially
DS_ALL_ATTRIBUTES | OM_S_BOOLEAN — 1 OM_TRUE
DS_ ATTRIBUTES_ StringgOM_S_OBJECT_ — 0 or —
SELECTED IDENTIFIER_STRING) more
DS _INFO_TYPE Enum(DS_Information_ — 1 DS TYPES
Type) AND_VALUES

* DS_ALL_ATTRIBUTES

This attribute indicates which attributes are relevant. It can take one of the
following values:

— OM_FALSE, meaning that information is only requested on those attributes
that are listed in the OM attributeS ATTRIBUTES SELECTED.

— OM_TRUE, meaning that information is requested on all
attributes in the directory entry. Any values of the OM attribute
DS_ATTRIBUTES_SELECTED are ignored in this case.

DS_ATTRIBUTES_SELECTED

This attribute lists the types of attributes in the entry from which information
will be extracted. The value of this OM attribute is used only if the value
of DS_ALL_ATTRIBUTES is OM_FALSE . If an empty list is supplied, no
attribute data is returned that could be used to verify the existence of an entry for
a DN.

DS_INFO_TYPE

This attribute identifies the information that will be extracted from each attribute
identified. It must take one of the following values:

— DS_TYPES_ONLY, meaning that only the attribute types of the selected
attributes in the entry are returned.

— DS_TYPES_AND_VALUES meaning that both the attribute types and the
attribute values of the selected attributes in the entry are returned.

DCE 1.2.2 Application Development Guide—Directory Services 445

XDS/XOM Supplementary Information

11.21 DS_C_ENTRY_MOD

An instance of OM clas®S_C_ENTRY_MOD describes a single modification to a
specified attribute of a directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTandDS_C_ATTRIBUTE, in addition to the OM attribute listed in
Table 11-14.

Table 11-14. OM Attribute of DS_C_ENTRY_MOD

Value Value
OM Attribute Value Syntax Length | Number | Value Initially
DS _MOD_TYPE | EnumDS_ — 1 DS _ADD_
Modification_ ATTRIBUTE
Type)

The attribute type to be modified, and the associated values, are specified in the
OM attributesDS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES that are
inherited from theDS_C_ATTRIBUTE superclass.

« DS_MOD_TYPE

This attribute identifies the type of modification. It must have one of the following
values:

— DS_ADD_ATTRIBUTE, meaning that the specified attribute is absent and
will be added with the specified values.

— DS_ADD_VALUES, meaning that the specified attribute is present and that
one or more specified values will be added to it.

— DS_REMOVE_ATTRIBUTE, meaning that the specified attribute is
present and will be removed. Any values present in the OM attribute
DS_ATTRIBUTE_VALUES are ignored.

— DS_REMOVE_VALUES, meaning that the specified attribute is present and
that one or more specified values will be removed from it.

446 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.22 DS_C_ENTRY_MOD_LIST

An instance of OM clas®DS_C ENTRY_MOD_LIST comprises a sequence of
changes to be made to a directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C OBJECT
in addition to the OM attribute listed in Table 11-15.

Table 11-15. OM Attribute of DS_C_ENTRY_MOD_LIST

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _CHANGES Objec{DS_C _ — 1 or more| —
ENTRY_MOD)

» DS_CHANGES

This attribute identifies the modifications to be made (in the order specified) to
the directory entry of the specified object.

11.23 DS_C_ERROR

The OM clasDS_C_ERRORomprises the parameters common to all errors.

It is an abstract OM class with the OM attributes of its supercl@ds, C OBJECT
in addition to the OM attribute listed in Table 11-16.

Table 11-16. OM Attribute of DS_C_ERROR

Value Value Value
OM Attribute Value Syntax Length | Number | Initially
DS_PROBLEM Enum(DS_Problem) | — 1 —

Details of errors are returned in an instance of a subclass of this OM class. Each such
subclass represents a particular kind of error, and is one of the following:

« DS_C_ABANDON_FAILED

DCE 1.2.2 Application Development Guide—Directory Services 447

XDS/XOM Supplementary Information

448

A number of possible values are defined for these subclasses. DCE XDS does not
return other values for error conditions described in this chapter. Information on system
errors can be found in Section 11.44. The following is a list of the error values. Each
error OM class section defines the possible error values associated with that class. For

DS_C_ATTRIBUTE_PROBLEM
DS_C_COMMUNICATIONS_ERROR
DS_C_LIBRARY_ERROR
DS_C_NAME_ERROR
DS_C_SECURITY_ERROR
DS_C_SERVICE_ERROR
DS_C_SYSTEM_ERROR
DS_C_UPDATE_ERROR

a description of the errors, refer to tbeCE 1.2.2 Problem Determination Guide

DS_E_ADMIN_LIMIT_EXCEEDED
DS_E_AFFECTS_MULTIPLE_DSAS
DS_E_ALIAS_DEREFERENCING_PROBLEM
DS_E_ALIAS_PROBLEM
DS_E_ATTRIBUTE_OR_VALUE_EXISTS
DS_E_BAD_ARGUMENT
DS_E_BAD_CLASS
DS_E_BAD_CONTEXT
DS_E_BAD_NAME
DS_E_BAD_SESSION
DS_E_BAD_WORKSPACE

DS_E_BUSY
DS_E_CANNOT_ABANDON
DS_E_CHAINING_REQUIRED
DS_E_COMMUNICATIONS_PROBLEM

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

« DS_E_CONSTRAINT_VIOLATION

« DS_E_DIT_ERROR

« DS_E_ENTRY_EXISTS

- DS_E_INAPPROP_AUTHENTICATION

- DS_E_INAPPROP_MATCHING

« DS_E_INSUFFICIENT_ACCESS_RIGHTS
« DS_E_INVALID_ATTRIBUTE_SYNTAX

« DS_E_INVALID_ATTRIBUTE_VALUE

« DS_E_INVALID_CREDENTIALS

« DS_E_INVALID_REF

« DS_E_INVALID_SIGNATURE

- DS_E_LOOP_DETECTED

- DS_E_MISCELLANEOUS

- DS_E_MISSING_TYPE

- DS_E_MIXED_SYNCHRONOUS

« DS_E_NAMING_VIOLATION

- DS_E_NO_INFO

- DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE
« DS_E_NO_SUCH_OBJECT

« DS_E_NO_SUCH_OPERATION

- DS_E_NOT_ALLOWED_ON_NON_LEAF
« DS_E_NOT_ALLOWED_ON_RDN

- DS_E_NOT_SUPPORTED

- DS_E_OBJECT_CLASS_MOD_PROHIB
- DS_E_OBJECT_CLASS_VIOLATION

- DS_E_OUT_OF_SCOPE

« DS_E_PROTECTION_REQUIRED

DCE 1.2.2 Application Development Guide—Directory Services 449

XDS/XOM Supplementary Information

« DS_E_TIME_LIMIT_EXCEEDED

« DS_E_TOO_LATE

« DS_E_TOO_MANY_OPERATIONS
« DS_E_TOO_MANY_SESSIONS

« DS_E_UNABLE_TO_PROCEED

« DS_E_UNAVAILABLE

« DS_E_UNAVAILABLE_CRIT_EXT
- DS_E_UNDEFINED_ATTRIBUTE_TYPE

+ DS_E_UNWILLING_TO_PERFORM

11.24 DS _C_EXT

An instance of OM clas®S_C_EXT indicates that a standardized extension to the
directory service is outlined in the standards. Such extensions will only be standardized
in post-1988 versions of the standards. Therefore, this OM class is not used by the

XDS API and is only included for X/Open conformance purposes.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT

in addition to the OM attributes listed in Table 11-17.

Table 11-17. OM Attributes of DS_C_EXT

Value Value Value
OM Attribute Value Syntax Length | Number | Initially
DS_CRIT OM_S_BOOLEAN — 1 OM_FALSE
DS_IDENT OM_S_INTEGER — 1 —
DS_ITEM_ Any — 1 —
PARAMETERS
* DS_CRIT

This attribute must have one of the following values:

450 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

— OM_FALSE, meaning that the originator permits the operation to be
performed even if the extension is not available.

— OM_TRUE, meaning that the originator mandates that the extended operation
be performed. If the extended operation is not performed, an error is reported.

 DS_IDENT
This attribute identifies the service extension.
« DS ITEM_PARAMETERS

This OM attribute supplies the parameters of the extension. Its syntax is
determined by the value @S _IDENT.

11.25 DS_C_FILTER

An instance of OM clas®S_C_FILTER is used to select or reject an object on the
basis of information in its directory entry. At any point in time, an attribute filter has
a value relative to every object. The value is FALSE, TRUE, or undefined. The object
is selected if, and only if, the filter’s value is TRUE.

An instance of this OM class has the OM attributes of its superdigs,C_ OBJECT
in addition to the OM attributes listed in Table 11-18.

Table 11-18. OM Attributes of DS_C_FILTER

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_FILTER_ITEMS Objec{DS_C _ — 0 or more —
FILTER_ITEM)
DS _FILTERS Objec{DS_C _ — 0 or more —
FILTER)
DS _FILTER_TYPE Enum(DS_Filter_ — 1 DS_AND
Type)

A filter is a collection of less elaborate filters and elemen28y FILTER _ITEMS,
together with a Boolean operation. The filter value is undefined if, and only if, all the

DCE 1.2.2 Application Development Guide—Directory Services 451

XDS/XOM Supplementary Information

componentDS_FILTERS and DS_FILTER_ITEMS are undefined. Otherwise, the
filter has a Boolean value with respect to any directory entry, which can be determined
by evaluating each of the nested components and combining their values using the
Boolean operation. The components whose values are undefined are ignored.

* DS_FILTER_ITEMS

This attribute is a collection of assertions, each relating to just one attribute of a
directory entry.

» DS_FILTERS
This attribute is a collection of simpler filters.
» DS_FILTER_TYPE
This attribute is the filter's type. It can have any of the following values:

— DS_AND, meaning that the filter is the logical conjunction of its components.
The filter is TRUE unless any of the nested filters or filter items is FALSE.
If there are no nested components, the filter is TRUE.

— DS_OR meaning that the filter is the logical disjunction of its components.
The filter is FALSE unless any of the nested filters or filter items is TRUE.
If there are no nested components, the filter is FALSE.

— DS_NOT, meaning that the result of this filter is reversed. There must be
exactly one nested filter or filter item. The filter is TRUE if the enclosed filter
or filter item is FALSE, and it is FALSE if the enclosed filter or filter item is
TRUE.

11.26 DS_C_FILTER_ITEM

452

An instance of OM clas®S_C_FILTER_ITEM is a component obS_C_FILTER.
It is an assertion about the existence or values of a single attribute type in a directory
entry.

An instance of this OM class has the OM attributes of its superclasses,

OM_C_OBJECTandDS_C_ATTRIBUTE, in addition to the OM attributes listed in
Table 11-19.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

Table 11-19. OM Attributes of DS_C_FILTER_ITEM

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_FILTER_ Enum(DS_Filter_ — 1 —
ITEM_TYPE Item_Type)
DS_FINAL _ String(*) lormore| Oorl —
SUBSTRING
DS_INITIAL _ String) lormore| Oorl —
SUBSTRING

Note: OM attributesDS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES
are inherited from the superclaBS C_ATTRIBUTE.

The value of the filter item is undefined in the following cases:
» The DS_ATTRIBUTE_TYPE is not known.

* None of theDS_ATTRIBUTE_VALUES conform to the attribute syntax defined
for that attribute type.

» The DS_FILTER_ITEM_TYPE uses a matching rule that is not defined for the
attribute syntax.

Access control restrictions can also cause the value to be undefined.
« DS _FILTER_ITEM_TYPE

This attribute identifies the type of filter item and, thus, the nature of the filter.
The filter item can adopt any of the following values:

— DS_APPROXIMATE_MATCH , meaning that the filter is TRUE if the
directory entry contains at least one value of the specified type that is
approximately equal to that specified (the meaning of “approximately equal”
is implementation dependent); otherwise, the filter is FALSE.

Rules for approximate matching are defined locally. For example, an
approximate match may take into account spelling variations or employ
phonetic comparison rules. In the absence of any such capabilities, a DSA
needs to treat an approximate match as a test for equality. DCE GDS supports
phonetic comparisons. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

DCE 1.2.2 Application Development Guide—Directory Services 453

XDS/XOM Supplementary Information

454

DS_EQUALITY , meaning that the filter is TRUE if the entry contains at least
one value of the specified type that is equal to the value specified, according
to the equality matching rule in force; otherwise, the filter is FALSE. There
must be exactly one value of the OM attribid_ATTRIBUTE_VALUES .

DS_GREATER_OR_EQUAL, meaning that the filter item is TRUE if,
and only if, at least one value of the attribute is greater than or equal to
the supplied value. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

DS_LESS _OR_EQUAL meaning that the filter item is TRUE if, and
only if, at least one value of the attribute is less than or equal to the
supplied value. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

DS_PRESENT, meaning that the filter is TRUE if the entry contains an
attribute of the specified type; otherwise, it is FALSE.

Any values of the OM attribut®S_ATTRIBUTE_VALUES are ignored.

DS_SUBSTRINGS meaning that the filter is TRUE if the entry contains at
least one value of the specified attribute type that contains all of the specified
substrings in the given order; otherwise, the filter is FALSE.

Any number of substrings can be given as values of the OM attribute
DS_ATTRIBUTE_VALUES . Similarly, no substrings can be specified.
There can also be a substring iIDS_INITIAL_SUBSTRING or
DS_FINAL_SUBSTRING, or both. The substrings do not overlap, but
they can be separated from each other or from the ends of the attribute
value by zero or more string elements. However, at least one attribute
of type DS_ATTRIBUTE_VALUES, DS_INITIAL_SUBSTRING, or
DS_FINAL_SUBSTRING must exist.

DS_FINAL_SUBSTRING

If present, this attribute is the substring that will match the final part of an attribute
value in the entry. This attribute can only exist if th&_ FILTER_ITEM_TYPE
is equal toDS_SUBSTRINGS

DS_INITIAL_SUBSTRING

If present, this attribute is the substring that will match the initial part of an
attribute value in the entry.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.27 DS_C_LIBRARY_ERROR

An instance of OM clasBS_C_LIBRARY_ERROR reports an error detected by the
interface function library.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

Each function has several possible errors that can be detected by the library itself and
that are returned directly by the subroutine. These errors occur when the library itself
is incapable of performing an action, submitting a service request, or deciphering a
response from the directory service.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the particular library error that occurred. (In reference
pages, the ERRORS section of each function description lists the errors that the
respective function can return.) Its value is one of the following:

 DS_E_BAD_ARGUMENT

- DS_E_BAD_CLASS

« DS_E_BAD_CONTEXT

-« DS_E_BAD_NAME

. DS_E_BAD_SESSION

- DS_E_MISCELLANEOUS

- DS_E_MISSING_TYPE

« DS_E_MIXED_SYNCHRONOUS
« DS_E_NOT_SUPPORTED

« DS_E_TOO_MANY_OPERATIONS
« DS_E_TOO_MANY_SESSIONS

DCE 1.2.2 Application Development Guide—Directory Services 455

XDS/XOM Supplementary Information

11.28 DS_C_LIST_INFO

An instance of OM clas®S_C_LIST_INFO is part of the results odls_list().

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT® addition to the OM attributes listed in Table 11-
20.

Table 11-20. OM Attributes of DS_C_LIST_INFO

456

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _OBJECT _ Objec{DS_C_NAME)| — Oor1l —
NAME
DS _PARTIAL _ Objec{DS_C _ — Oor1l —

OUTCOME_QUAL | PARTIAL
OUTCOME_QUAL)

DS _ Objec{DS_C _ — 0 or more| —

SUBORDINATES LIST_INFO_ITEM)

 DS_OBJECT_NAME

This attribute is the DN of the target object of the operation. It is present if
the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULT% OM_TRUE.

« DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is present if the list of subordinates is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.
The partial outcome qualifier contains details of why the search is not completed,
and which areas of the directory have not been searched.

* DS_SUBORDINATES

This attribute contains information about zero or more subordinate objects
identified byds_list().

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.29 DS_C_LIST_INFO_ITEM

An instance of OM clas®S_C_LIST_INFO_ITEM comprises details returned by
ds_list() of a single subordinate object.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-21.

Table 11-21. OM Attributes of DS_C_LIST_INFO_ITEM

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_ALIAS_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_FROM_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_RDN Objec(DS_C_ — 1 —
RELATIVE_ NAME)

* DS_ALIAS_ENTRY
This attribute indicates whether the object is an alias.
* DS_FROM_ENTRY

This attribute indicates whether information about the object was obtained directly
from its directory entry, rather than from a copy of the entry.

 DS_RDN

This attribute contains the RDN of the object. If this is the name of an alias entry,
as indicated bypS_ALIAS_ENTRY, it is not dereferenced.

11.30 DS_C_LIST RESULT

An instance of OM clasBS_C_LIST_RESULT comprises the results of a successful
call to ds_list().

DCE 1.2.2 Application Development Guide—Directory Services 457

XDS/XOM Supplementary Information

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-22.

Table 11-22. OM Attributes of DS_C_LIST_RESULT

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _LIST_INFO Objec{DS_C_ — Oorl —
LIST_INFO)
DS _ Objec{DS_C _ — 0 or more| —
UNCORRELATED_ | LIST_ RESULT)
LIST_INFO

Note: No instance contains values of both OM attributes.
e DS_LIST_INFO
This attribute contains the full results dé_list(), or just part of them.
* DS_UNCORRELATED_LIST_INFO

When the DUA requests a protection requessighed the information returned

can comprise a number of sets of results originating from, and signed by, different
components of the directory. Implementations can reflect this structure by nesting
DS_LIST_RESULT OM objects as values of this OM attribute. Alternatively, they
can collapse all results into a single value of the OM attritid& LIST_INFO.

The DCE directory service does not support the optional feature of signed results;
therefore, this OM attribute is never present.

11.31 DS_C_NAME

458

The OM clasDS_C_NAMHEepresents a name of an object in the directory, or a part
of such a name.

It is an abstract class that has the attributes of its superclddsC OBJECTand no
other OM attributes.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

A name uniquely distinguishes the object from all other objects whose entries are
displayed in the DIT. However, an object can have more than one name; that is, a
name need not be unique. A DN is unique; there are no other DNs that identify the
same object. An RDN is part of a name and only distinguishes the object from others
that are its siblings.

Most of the interface functions takermmeparameter, the value of which must be an
instance of one of the subclasses of this OM class. Thus, this OM class is useful for
amalgamating all possible representations of names.

The DCE XDS implementation defines one subclass of this OM class and, thus,

a single representation for names; that BS_C DS DN which provides a
representation for names, including DNs.

11.32 DS_C_NAME_ERROR

An instance of OM clas®S_C_NAME_ERROR reports a name-related directory
service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORN addition to the OM attribute listed in Table 11-23.

Table 11-23. OM Attribute of DS_C_NAME_ERROR

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_MATCHED Objec{DS_C_NAME)| — 1 —

» DS_MATCHED

This attribute identifies the initial part (up to, but excluding, the first RDN that
is unrecognized) of the name that is supplied, or of the name resulting from
dereferencing an alias. It names the lowest entry (object or alias) in the DIT that
is matched.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the cause of the failure. Its value is one of the following:

DCE 1.2.2 Application Development Guide—Directory Services 459

XDS/XOM Supplementary Information

DS_E_ALIAS_DEREFERENCING_PROBLEM
DS_E_ALIAS_PROBLEM
DS_E_INVALID_ATTRIBUTE_VALUE

« DS_E_NO_SUCH_OBJECT

11.33 DS_C_OPERATION_PROGRESS

An instance of OM clas®S_C_OPERATION_PROGRESSspecifies the progress
or processing state of a directory request.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-24.

Table 11-24. OM Attributes of DS_C_OPERATION_PROGRESS

460

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS _NAME_ EnumDS_Name_ — 1 —
RESOLUTION _ Resolution_Phase)
PHASE
DS_NEXT_ OM_S_INTEGER — Oorl —
RDN_TO_BE
RESOLVED

The target name mentioned as follows is the name upon which processing of the
directory request is currently focused.

» DS_NAME_RESOLUTION_PHASE

This attribute indicates what phase is reached in handling the target name. It must
have one of the following values:

— DS_COMPLETED, meaning that the DSA holding the target object is
reached.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.34

— DS _NOT_STARTED, meaning that so far a DSA is not reached with a
naming context containing the initial RDNs of the name.

— DS_PROCEEDING, meaning that the initial part of the name has been
recognized, although the DSA holding the target object has not yet been
reached.

« DS_NEXT_RDN_TO_BE_RESOLVED

This attribute indicates to the DSA which of the RDNs in the target name is
next to be resolved. It takes the form of an integer in the range from 1 to the
number of RDNs in the name. This OM attribute only has a value if the value of
DS_NAME_RESOLUTION_PHASE is DS_PROCEEDING.

The constant DS _OPERATION _NOT _STARTED can be wused in the
DS_C_CONTEXT of an operation instead of an instance of this OM class.

DS_C_PARTIAL_OUTCOME_QUAL

An instance of OM clas®S_C_PARTIAL_OUTCOME_QUAL explains to what
extent the results of a call ts_list() or ds_search()are incomplete and why.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-25.

DCE 1.2.2 Application Development Guide—Directory Services 461

XDS/XOM Supplementary Information

Table 11-25. OM Attributes of a DS_C_PARTIAL_OUTCOME_QUAL

462

Value Value Value

OM Attribute Value Syntax Length Number | Initially
DS _LIMIT_ Enum(DS_Limit_ — 1 —
PROBLEM Problem)
DS_ OM_S_ BOOLEAN | — 1 —
UNAVAILABLE_
CRIT_EXT
DS _ Objec{DS_C _ — 0 or more| —
UNEXPLORED CONTINUATION _

REF)

* DS_LIMIT_PROBLEM

This attribute explains fully or partly why the results are incomplete. It can have
one of the following values:

— DS_ADMIN_LIMIT_EXCEEDED , meaning that an administrative limit is
reached.

— DS_NO_LIMIT_EXCEEDED , meaning that there is no limit problem.

— DS_SIZE_LIMIT_EXCEEDED , meaning that the maximum number of
objects specified as a service control is reached.

— DS_TIME_LIMIT_EXCEEDED , meaning that the maximum number of
seconds specified as a service control is reached.

DS_UNAVAILABLE_CRIT_EXT

If OM_TRUE, this attribute indicates that some part of the directory service
cannot provide a requested critical service extension. The user requested one
or more standard service extensions by including values of the OM attribute
DS_EXT in the DS_C_CONTEXT supplied for the operation. Furthermore,

the user indicated that some of these extensions are essential by setting the
OM attribute DS_CRIT in the extension ta®OM_TRUE. Some of the critical
extensions cannot be performed by one particular DSA or by a number of DSAs.
In general, it is not possible to determine which DSA could not perform which
particular extension.

 DS_UNEXPLORED

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

This attribute identifies any regions of the directory that are left unexplored in such
a way that the directory request can be continued. Only continuation references
within the scope specified by tHeS SCOPE_OF_REFERRALservice control

are included.

11.35 DS_C_PRESENTATION_ADDRESS

An instance of OM clasPDS C PRESENTATION_ADDRESSis a presentation
address of an OSI application entity, which is used for OSI communications with

this instance.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS _C_ADDRESSIn addition to the OM attributes listed in

Table 11-26.

Table 11-26. OM Attributes of DS_C_PRESENTATION_ADDRESS

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS N_ StringOM_S — 1 or more| —
ADDRESSES OCTET_STRING)
DS_P_SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)
DS_S SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)
DS_T_SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)
» DS_N_ADDRESSES
This attribute is the network addresses of the application entity.
* DS_P_SELECTOR
This attribute is the presentation selector.
* DS_S_SELECTOR
DCE 1.2.2 Application Development Guide—Directory Services 463

XDS/XOM Supplementary Information

This attribute is the session selector.
« DS T SELECTOR

This attribute is the transport selector.

11.36 DS_C_READ_RESULT

An instance of OM clasBS_C_READ_RESULT comprises the result of a successful
call to ds_read() An application is not permitted to create or modify instances of
this OM class. An instance of this OM class has the OM attributes of its superclasses,

OM_C_OBJECTand DS _C_ COMMON_RESULT$ addition to the OM attribute
listed in Table 11-27.

Table 11-27. OM Attribute of DS_C_READ_RESULT

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_ENTRY Objec{DS_C_ — 1 —
ENTRY_INFO)

» DS_ENTRY

This attribute contains the information extracted from the directory entry of the
target object.

11.37 DS_C_REFERRAL

464

An instance of OM clas®S_C_REFERRAL reports failure to perform an operation

and redirects the requestor to one or more access points better equipped to perform
the operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_CONTINUATION_REF, and no additional OM attributes.

The referral is a continuation reference by means of which the operation can progress.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

11.38 DS_C_RELATIVE_NAME

11.39

The OM class DS_C_RELATIVE_NAMErepresents the RDNs of objects in
the directory. It is an abstract class, which has the attributes of its superclass,
OM_C_OBJECTand no other OM attributes.

An RDN is part of a name, and only distinguishes the object from others that are its
siblings. This OM class is used to accumulate all possible representations of RDNs.
An argument of interface functions that is an RDN, or an OM attribute value that is

an RDN is an instance of one of the subclasses of this OM class.

The DCE XDS API defines one subclass of this OM class, and, thus, a single
representation for RDNs; that i§S_C_DS_RDN which provides a representation
for RDNs.

DS_C_SEARCH_INFO

An instance of OM clasBS_C_SEARCH_INFOis part of the result ofls_search()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT® addition to the OM attributes listed in Table 11-
28.

Table 11-28. OM Attributes of DS_C_SEARCH_INFO

Value Value Value

OM Attribute Value Syntax Length Number | Initially
DS _ENTRIES Objec{DS_C _ — 0 or more| —

ETNRY_INFO)
DS _OBJECT_ Objec{DS_C_NAME)| — Oorl —
NAME
DS_PARTIAL_ Objec(DS_C_ — Oor1l —
OUTCOME_QUAL | PARTIAL_

OUTCOME_QUAL)

DCE 1.2.2 Application Development Guide—Directory Services 465

XDS/XOM Supplementary Information

* DS_ENTRIES

This attribute contains information about zero or more objects found by
ds_search()that matched the given selection criteria.

« DS_OBJECT_NAME

This attribute contains the DN of the target object of the operation. It is present if
the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULTSs OM_TRUE.

« DS_PARTIAL_OUTCOME_QUAL

This OM attribute value is only present if the list of entries is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.
The partial outcome qualifier contains details of why the search was not completed
and which areas of the directory were not searched.

11.40 DS_C_SEARCH_RESULT

An instance of OM clasDS C_SEARCH_RESULT comprises the result of a
successful call tals_search()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-29.

Table 11-29. OM Attributes of DS_C_SEARCH_RESULT

Value Value Value
OM Attribute Value Syntax Length Number | Initially
DS_SEARCH_INFO | Objec{DS_C_ — Oorl —
SEARCH_INFO)
DS _ Objec{DS_C _ — 0 or more| —
UNCORRELATED_ | SEARCH_RESULT)
SEARCH_INFO

Note: No instance contains values of both OM attributes.

466 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

* DS_SEARCH_INFO
This attribute contains the full result d_search() or part of the result.
» DS_UNCORRELATED_SEARCH_INFO

When the DUA requests a protection requessighed the information returned

can comprise a number of sets of results originating from and signed by different
components of the directory service. Implementations can reflect this structure by
nestingDS_C_SEARCH_RESULT OM objects as values of this OM attribute.
Alternatively, they can collapse all results into a single value of the OM attribute
DS_SEARCH_INFO. The DCE directory service does not support the optional
feature of signed results; therefore, this OM attribute is never present.

11.41 DS_C_SECURITY_ERROR

An instance of OM clasDS_C_SECURITY_ERROR reports a security-related
directory service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass

DS_C_ERRORidentifies the cause of this failure. Its value is one of the following:
* DS_E_INAPPROP_AUTHENTICATION
» DS_E_INSUFFICIENT_ACCESS_RIGHTS

DS_E_INVALID_CREDENTIALS

DS_E_INVALID_SIGNATURE

DS_E_NO_INFO

DS_E_PROTECTION_REQUIRED

DCE 1.2.2 Application Development Guide—Directory Services 467

XDS/XOM Supplementary Information

11.42 DS_C_SERVICE_ERROR

An instance of OM clasBS_C_SERVICE_ERRORreports a directory service error
related to the provision of the service.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the cause of the failure. Its value is one of the following:

* DS_E_ADMIN_LIMIT_EXCEEDED

 DS_E_BUSY

* DS_E_CHAINING_REQUIRED

* DS_E _DIT_ERROR

* DS_E_INVALID_REF

* DS_E_LOOP_DETECTED

+ DS_E_OUT_OF_SCOPE

« DS_E_TIME_LIMIT_EXCEEDED

« DS_E_UNABLE_TO_PROCEED

* DS_E_UNAVAILABLE

« DS_E_UNAVAILABLE_CRIT_EXT

« DS_E_UNWILLING_TO_PERFORM

11.43 DS_C_SESSION

468

An instance of OM clas®DS_C_SESSIONidentifies a particular link from the
application program to a DUA.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-30.

DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

Table 11-30. OM Attributes of DS_C_SESSION

Value Value Value

OM Attribute Value Syntax Length Number | Initially

DS_DSA _ADDRESS| Objec{DS_C_ — Oorl localt
ADDRESS)

DS_DSA_NAME Objec{DS_C _ — Oorl localt
NAME)

DS _FILE_ OM_S INTEGER — 1 See text

DESCRIPTOR

DS REQUESTOR | ObjectDS_C_ — Oor1l —
NAME)

1 The default values of these OM attributes are set to the address and

name of the default DSA entry in the local cache. If this cache entry is
not present, then these OM attributes are absent.

The DS_C_SESSIONgathers all the information that describes a particular directory
interaction. The parameters that will control such a session are set up in an instance
of this OM class, which is then passed as an argumenistdind(). This sets the

OM attributes that describe the actual characteristics of this session, and then starts
the session. A session started in this way must pass as the first argument to each
interface function. The result of modifying an initiated session is unspecified. Finally,
ds_unbind() is used to terminate the session, after which the parameters can be
modified and a new session started using the same instance, if required. Multiple
concurrent sessions can run using multiple instances of this OM class.

The OM attributes of a session are as follows:

 DS_DSA_ADDRESS

This attribute indicates the address of the default DSA named by
DS_DSA_NAME

« DS_DSA_NAME

This attribute indicates the DN of the DSA that is used by default to service
directory requests.

» DS_FILE_DESCRIPTOR (Optional Functionality)

DCE 1.2.2 Application Development Guide—Directory Services 469

XDS/XOM Supplementary Information

This OM attribute is not used by DCE XDS and is always set to
DS_NO_VALID_FILE_DESCRIPTOR.

* DS_REQUESTOR
This attribute is the DN of the user of this directory service session.
Applications can assume that an object of OM clB& C_SESSION created with
default values of all its OM attributes, works with all the interface functions. Local

administrators need to ensure that this is the case. Such a session can be created by
passing the constamS_DEFAULT_SESSIONas an argument tds_bind().

11.44 DS_C_SYSTEM_ERROR

An instance of OM clasBS_C_SYSTEM_ERRORreports an error that occurred in
the underlying operating system.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_ERRORand no additional OM attributes, although there can be additional
implementation-defined OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS _C_ERRORIdentifies the cause of the failure. Its value is the same as that of
errno defined in the C language.

The standard names of system errors are defined in Volume 2 ¥f@@en Portability
Guide

If such an error persists,@S_C_LIBRARY_ERROR (DS_E_MISCELLANEOUS)
is reported.

11.45 DS_C_UPDATE_ERROR

An instance of OM clas®S_C_UPDATE_ERRORreports a directory service error
peculiar to a modification operation.

470 DCE 1.2.2 Application Development Guide—Directory Services

XDS Class Definitions

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORidentifies the cause of the failure. Its value is one of the following:

« DS_E_AFFECTS_MULTIPLE_DSAS

 DS_E_ENTRY_EXISTS

 DS_E_NAMING_VIOLATION

« DS_E_NOT_ALLOWED_ON_NON_LEAF

« DS_E_NOT_ALLOWED_ON_RDN

« DS_E_OBJECT_CLASS_MOD_PROHIB

» DS_E_OBJECT_CLASS_VIOLATION

DCE 1.2.2 Application Development Guide—Directory Services 471

Chapter 12
Basic Directory Contents Package

The standards define a number of attribute types (known asdtezted attribute
typeg, attribute syntaxes, attribute sets, and object classes (known aseliheted
object class€$. These definitions allow the creation and maintenance of directory
entries for a number of common objects so that the representation of all such objects
is the same throughout the directory. They include such objec®oastry, Person

and Organization.

This chapter outlines names for each of these items, and defines OM classes to
represent those that are not represented directly by OM syntaxes. The attribute values
in the directory are not restricted to those discussed in this chapter, and new attribute
types and syntaxes can be created at any time. (For further information on how the

values of other syntaxes are represented in the interface, see Chapter 10.)

1. These definitions are chiefly he Directory: Selected Attribute Typ@SO 9594-6, CCITT
X.520) and The Directory: Selected Object Classd$SO 9594-7, CCITT X.521) with
additional material inThe Directory: Overview of Concepts, Models, and Servige©
9594-1, CCITT X.500) and he Directory: Authentication FramewoikSO 9594-8, CCITT
X.509).

DCE 1.2.2 Application Development Guide—Directory Services 473

XDS/XOM Supplementary Information

12.1

474

The constants and OM classes in this chapter are defined in addition to those in Chapter
11, since they are not essential to the working of the interface, but instead allow
directory entries to be utilized. The definitions belong to the basic directory contents
package (BDCP), which is supported by the DCE XDS API following negotiation of

its use withds_version()

Note: The definitions for the GDS package are provided in Chapter 15. The
definitions for the strong authentication package are provided in Chapter 13.
The definitions for the MHS directory user package are provided in Chapter
14.

The object identifier associated with the BDCP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) bdcp(1)}

It takes the following encoding:

\X2B\xC\x2\x87\x73\x1C\x1

This identifier is represented by the const&x8 BASIC_DIR_CONTENTS_PKG.
The C constants associated with this package are irxdebdcp.h header file. (See
the xdsbdcp.h(4xds)reference page.)

The concepts and notation used are introduced in Chapter 11. They are also fully
explained in Chapters 17 through 19.

The selected attribute types are presented first, followed by the selected object classes.
Next, the OM class hierarchy and OM class definitions required to support the selected
attribute types are presented.

Selected Attribute Types

This section presents the attribute types, defined in the standards, which are to be used
in directory entries. Each directory entry is composed of a number of attributes, each

DCE 1.2.2 Application Development Guide—Directory Services

Basic Directory Contents Package

of which comprises an attribute type together with one or more attribute values. The
form of each value of an attribute is determined by the attribute syntax associated
with the attribute’s type.

In the interface, attributes are displayed as instances of OMDI&sE€ ATTRIBUTE

with the attribute type represented as the value of the OM attribute
DS_ATTRIBUTE_TYPE, and the attribute value (or values) represented as
the value (or values) of the OM attribuS_ATTRIBUTE_VALUES . Each attribute

type has an object identifier, assigned in the standards, which is the value of the OM
attribute DS_ATTRIBUTE_TYPE. These object identifiers are represented in the
interface by constants with the same name as the directory attribute, and they are
prefixed withDS_A_ so that they can be easily identified.

Table 12-1 shows the names of the attribute types defined in the standards, together
with the BER encoding of the object identifiers associated with each of them. Table
12-2 shows the names of the attribute types, together with the OM value syntax that is
used in the interface to represent values of that attribute type. Table 12-2 also includes
the range of lengths permitted for the string types. This indicates whether the attribute
can be multivalued and which matching rules are provided for the syntax. Following
the table is a brief description of each attribute.

The standards define matching rules that are used for deciding whether two values are
equal (E), for ordering (O) two values, and for identifying one value as a substring
(S) of another in directory service operations. Specific matching rules are given in
this chapter for certain attributes. In addition, the following general rules apply as

indicated:
« All attribute values whose syntax is Strif@M_S_NUMERIC_STRING),
StringOM_S_PRINTABLE_STRING), or
StringgOM_S_TELETEX_STRING) are considered

insignificant for the following reasons:

— Differences caused by the presence of spaces preceding the first printing
character

— Spaces following the last printing character
— More than one consecutive space anywhere within the value

e For all attribute values whose syntax is St(@il S TELETEX_ STRING),
differences in the case of alphabetical characters are considered insignificant.

DCE 1.2.2 Application Development Guide—Directory Services 475

XDS/XOM Supplementary Information

Note: The third and fourth columns of Table 12-1 contain the contents octets of the
BER encoding of the object identifier. All these object identifiers stem from
the root{joint-iso-ccitt(2) ds(5) attributeType(4)}.

Table 12-1. Object Identifiers for Selected Attribute Types

Object Identifier BER
Package Attribute Type Decimal Hexadecimal
BDCP DS_A_ALIASED_OBJECT_NAME 85,4,1 \x55\x04\x01
BDCP DS_A_BUSINESS_CATEGORY 85, 4, 15 \x55\x04\x0F
BDCP DS_A_COMMON_NAME 85,4,3 \x55\x04\x03
BDCP DS_A_COUNTRY_NAME 85,4,6 \x55\x04\x06
BDCP DS_A_DESCRIPTION 85, 4, 13 \x55\x04\x0D
BDCP DS_A_DEST_INDICATOR 85, 4, 27 \x55\x04\x1B
BDCP DS_A_FACSIMILE_PHONE_NBR 85, 4, 23 \x55\x04\x17
BDCP DS_A_INTERNAT_ISDN_NBR 85, 4, 25 \x55\x04\x19
BDCP DS_A_KNOWLEDGE_INFO 85, 4, 2 \x55\x04\x02
BDCP DS_A_LOCALITY_NAME 85, 4,7 \x55\x04\x07
BDCP DS_A_MEMBER 85, 4, 31 \X55\x04\x1F
BDCP DS_A_OBJECT_CLASS 85, 4,0 \x55\x04\x00
BDCP DS_A_ORG_NAME 85, 4, 10 \x55\x04\x0A
BDCP DS_A_ORG_UNIT_NAME 85, 4, 11 \x55\x04\x0B
BDCP DS_A_OWNER 85, 4, 32 \x55\x04\x20
BDCP DS_A_PHYS_DELIV_OFF_NAME 85, 4, 19 \x55\x04\x13
BDCP DS_A_POST_OFFICE_BOX 85, 4, 18 \x55\x04\x12
BDCP DS_A_POSTAL_ADDRESS 85, 4, 16 \x55\x04\x10
BDCP DS_A_POSTAL_CODE 85, 4, 17 \x55\x04\x11
BDCP DS_A_PREF_DELIV_METHOD 85, 4, 28 \x55\x04\x1C
BDCP DS_A_PRESENTATION_ADDRESS 85, 4, 29 \x55\x04\x1D

476 DCE 1.2.2 Application Development Guide—Directory Services

Basic Directory Contents Package

Object Identifier BER
Package Attribute Type Decimal Hexadecimal
BDCP DS_A REGISTERED_ADDRESS 85, 4, 26 \X55\x04\x1A
BDCP DS_A ROLE_OCCUPANT 85, 4, 33 \x55\x04\x21
BDCP DS_A_SEARCH_GUIDE 85, 4, 14 \x55\x04\x0E
BDCP DS_A SEE_ALSO 85, 4, 34 \x55\x04\x22
BDCP DS_A SERIAL_NBR 85,4,5 \x55\x04\x05
BDCP DS_A_STATE_OR_PROV_NAME 85,4, 8 \x55\x04\x08
BDCP DS_A STREET_ADDRESS 85, 4,9 \x55\x04\x09
BDCP DS_A_SUPPORT_APPLIC_CONTEXT 85,4, 3 \x55\x04\x1E
BDCP DS_A_SURNAME 85,4, 4 \x55\x04\x04
BDCP DS_A PHONE_NBR 85, 4, 20 \x55\x04\x14
BDCP DS_A TELETEX_TERM_IDENT 85, 4, 22 \x55\x04\x16
BDCP DS_A TELEX_NBR 85, 4, 21 \x55\x04\x15
BDCP DS_A TITLE 85, 4, 12 \x55\x04\x0C
BDCP DS_A_USER_PASSWORD 85, 4, 35 \x55\x04\x23
BDCP DS_A X121_ADDRESS 85, 4, 24 \x55\x04\x18
Table 12-2. Representation of Values for Selected Attribute Types
Value | Multi-