
DCE 1.2.2 Application Development Guide—Core
Components

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:

DCE 1.2.2 Application Development Guide—Core Components, (Volume 1)
ISBN 1–85912–192–6
Document Number F203A

DCE 1.2.2 Application Development Guide—Core Components, (Volume 2)
ISBN 1–85912–154–3
Document Number F203B

Published in the U.K. by The Open Group, 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xxv

The Open Group xxv

The Development of Product Standards. xxvi

Open Group Publications xxvii

Versions and Issues of Specifications. xxix

Corrigenda. xxix

Ordering Information xxix

This Book xxx

Audience xxx

Applicability xxx

Purpose. xxx

Document Usage xxx

Related Documents. xxxi

Typographic and Keying Conventions. xxxii

Problem Reporting. xxxiii

Pathnames of Directories and Files in DCE
Documentation. xxxiii

Trademarks. xxxiv

Part 1. DCE Facilities

Chapter 1. Introduction to DCE Facilities. 3

Chapter 2. DCE Host Services. 7

2.1 Types of Applications 8

DCE 1.2.2 Application Development Guide—Core Components i

Contents

2.2 Issues of Distributed Applications. 9

2.3 Managing a Host’s Endpoint Map. 10

2.4 Binding to dced’s Services. 11
2.4.1 Host Service Naming in Applications. 12
2.4.2 The dced Program Maintains Entry Lists. . . . 13
2.4.3 Reading All of a Host Service’s Data. 15
2.4.4 Managing Individual dced Entries. 18

2.5 Managing Hostdata on a Remote Host. 22
2.5.1 Kinds of Hostdata Stored. 22
2.5.2 Adding New Hostdata. 23
2.5.3 Modifying Hostdata 25
2.5.4 Running Programs Automatically When

Hostdata Changes. 26

2.6 Controlling Servers Remotely. 29
2.6.1 Two States of Server Management:

Configuration and Execution. 29
2.6.2 Configuring Servers 30
2.6.3 Starting and Stopping Servers. 34
2.6.4 Enabling and Disabling Services of a Server. . . 36

2.7 Validating the Security Server. 37

2.8 Managing Server Key Tables 38

2.9 Sample dced Application 41
2.9.1 Running the Program. 41
2.9.2 greet_dced.idl. 43
2.9.3 greet_dced_server.c 44
2.9.4 greet_dced_manager.c. 47
2.9.5 greet_dced_client.c. 48
2.9.6 util.c 50
2.9.7 util.h 50
2.9.8 greet_dced.install. 51
2.9.9 greet_dced.delete. 53
2.9.10 Makefile 53

Chapter 3. DCE Application Messaging 55

3.1 DCE and Messages. 56

3.2 DCE Messaging Interface Usage. 57
3.2.1 A Simple DCE Messaging Example. 57
3.2.2 The DCE Message Interface and sams Input and

Output Files 62

3.3 DCE Messaging Routines. 64

ii DCE 1.2.2 Application Development Guide—Core Components

Contents

3.3.1 Message Output Routines. 66
3.3.2 Message Retrieval Routines. 69
3.3.3 Message Table Routines. 71
3.3.4 DCE XPG4 Routines. 73

Chapter 4. Using the DCE Serviceability Application Interface. 77

4.1 Overview 78
4.1.1 How Programs Use Serviceability. 79
4.1.2 Simple Serviceability Interface Tutorial 80
4.1.3 Serviceability Input and Output Files. 92

4.2 Integrating Serviceability into a Server. 94
4.2.1 Serviceability Strategy. 95
4.2.2 Components and Subcomponents. 95
4.2.3 Identifying Event Points 96

4.3 Application Use of Serviceability 97
4.3.1 Basic Server Calls. 97
4.3.2 Extended Format Notation for Message Text. . . 102
4.3.3 Specifying Message Severity. 103
4.3.4 How to Route Messages. 105
4.3.5 Table of Message Processing Specifiers. . . . 111
4.3.6 Logging and Log Reading. 111
4.3.7 Message Action Attributes. 113
4.3.8 Suppressing the Serviceability Message Prolog. . . 113
4.3.9 Serviceability Use of the __FILE__ Macro. . . . 114
4.3.10 Forcing Use of the In-Memory Message Table. . . 115
4.3.11 Dynamically Filtering Messages Before Output. . . 116
4.3.12 Using Serviceability for Debug Messages. . . . 120
4.3.13 Performance Costs of Serviceability Debugging. . 127
4.3.14 Using the Remote Serviceability Interface. . . . 128

Chapter 5. The DCE Backing Store 139

5.1 Data in a Backing Store. 140

5.2 Using a Backing Store. 140

5.3 Header for Data. 140

5.4 The User Interface. 141

5.5 The IDL Encoding Services. 142
5.5.1 Encoding and Decoding in the Backing Store. . . 142
5.5.2 Conformant Arrays Not Allowed. 143

5.6 The Backing Store Routines. 144
5.6.1 Opening a Backing Store. 145

DCE 1.2.2 Application Development Guide—Core Components iii

Contents

5.6.2 Closing a Backing Store. 145
5.6.3 Storing or Retrieving Data. 145
5.6.4 Freeing Data. 146
5.6.5 Making or Retrieving Headers. 147
5.6.6 Performing Iteration 147
5.6.7 Deleting Items from a Backing Store. 148
5.6.8 Locking and Unlocking a Backing Store. . . . 148

5.7 Example of Backing Store Use. 149

Part 2. DCE Threads

Chapter 6. Introduction to Multithreaded Programming. 155

6.1 Advantages of Using Threads. 156

6.2 Software Models for Multithreaded Programming. . . . 156
6.2.1 Boss/Worker Model 157
6.2.2 Work Crew Model. 157
6.2.3 Pipelining Model 158
6.2.4 Combinations of Models. 158

6.3 Potential Disadvantages of Multithreaded Programming. . . 159

Chapter 7. Thread Concepts and Operations. 161

7.1 Thread Operations. 162
7.1.1 Starting a Thread. 162
7.1.2 Terminating a Thread. 163
7.1.3 Waiting for a Thread to Terminate. 163
7.1.4 Deleting a Thread. 164

7.2 New Primitives. 164

7.3 Attributes Objects 165
7.3.1 Creating an Attributes Object. 165
7.3.2 Deleting an Attributes Object. 165
7.3.3 Thread Attributes. 166
7.3.4 Mutex Attributes 168
7.3.5 Condition Variable Attributes. 169

7.4 Synchronization Objects. 169
7.4.1 Mutexes 169
7.4.2 Condition Variables 172
7.4.3 Other Synchronization Methods. 176

7.5 One-Time Initialization Routines 176

7.6 Thread-Specific Data 177

iv DCE 1.2.2 Application Development Guide—Core Components

Contents

7.7 Thread Cancellation. 178

7.8 Thread Scheduling. 179

Chapter 8. Programming with Threads. 183

8.1 Calling UNIX Services. 184
8.1.1 Jacket Routines 184
8.1.2 Blocking System Calls. 187
8.1.3 Calling fork() in a Multithreaded Environment. . . 187

8.2 Using Signals 189
8.2.1 Types of Signals 189
8.2.2 DCE Threads Signal Handling. 191
8.2.3 Alternatives to Using Signals. 192

8.3 Nonthreaded Libraries. 194
8.3.1 Working with Nonthreaded Software. 194
8.3.2 Making Nonthreaded Code Thread-Reentrant. . . 195

8.4 Avoiding Nonreentrant Software. 195
8.4.1 Global Lock 195
8.4.2 Thread-Specific Storage. 196

8.5 Avoiding Priority Inversion. 196

8.6 Using Synchronization Objects. 197
8.6.1 Race Conditions 197
8.6.2 Deadlocks. 198

8.7 Signaling a Condition Variable. 198

Chapter 9. Using the DCE Threads Exception-Returning Interface. 201

9.1 Syntax for C 202

9.2 Invoking the Exception-Returning Interface. 204

9.3 Operations on Exceptions. 205
9.3.1 Declaring and Initializing an Exception Object. . . 205
9.3.2 Raising an Exception. 206
9.3.3 Defining a Region of Code over Which

Exceptions Are Caught. 206
9.3.4 Catching a Particular Exception or All

Exceptions. 207
9.3.5 Defining Epilogue Actions for a Block. 207
9.3.6 Importing a System-Defined Error Status into

the Program as an Exception. 208

9.4 Rules and Conventions for Modular Use of Exceptions. . . 208

9.5 DCE Threads Exceptions and Definitions. 211

DCE 1.2.2 Application Development Guide—Core Components v

Contents

Chapter 10. DCE Threads Example. 215

10.1 Details of Program Logic and Implementation. 215

10.2 DCE Threads Example Body. 217

Part 3. DCE Remote Procedure Call

Chapter 11. Developing a Simple RPC Application. 227

11.1 The Remote Procedure Call Model. 228
11.1.1 RPC Application Code. 230
11.1.2 Stubs. 231
11.1.3 The RPC Runtime. 233
11.1.4 RPC Application Components That Work

Together 233
11.1.5 Overview of DCE RPC Development Tasks. . . 235

11.2 Writing an Interface Definition. 237
11.2.1 RPC Interfaces That Represent Services. . . . 239
11.2.2 Generating an Interface UUID. 240
11.2.3 Naming the Interface. 242
11.2.4 Specifying Interface Attributes. 242
11.2.5 Import Declarations 243
11.2.6 Constant Declarations. 243
11.2.7 Type Declarations. 244
11.2.8 Operation Declarations. 245

11.3 Running the IDL Compiler. 246

11.4 Writing the Client Code. 247

11.5 Writing the Server Code 249
11.5.1 The greet_server.c Source Code. 250
11.5.2 The greet_manager.c Source Code. 253

11.6 Building the greet Programs. 254

11.7 Running the greet Programs. 255

Chapter 12. RPC Fundamentals. 257

12.1 Universal Unique Identifiers. 259

12.2 Communications Protocols. 260

12.3 Binding Information. 261
12.3.1 Server Binding Information 262
12.3.2 Defining a Compatible Server. 263
12.3.3 How Clients Obtain Server Binding Information. . 265
12.3.4 Client Binding Information for Servers. 268

vi DCE 1.2.2 Application Development Guide—Core Components

Contents

12.4 Endpoints 269
12.4.1 Well-Known Endpoints 270
12.4.2 Dynamic Endpoints 270

12.5 Execution Semantics 272

12.6 Communications Failures 273

12.7 Scaling Applications 274

12.8 RPC Objects 275

Chapter 13. Basic RPC Routine Usage. 277

13.1 Overview of the RPC Routines. 277
13.1.1 Basic Operations of RPC Communications. . . . 278
13.1.2 Basic Operations of the NSI. 278
13.1.3 Basic Operations of Authenticated RPCs. . . . 279

13.2 Server Initialization Using the RPC Routines. 280
13.2.1 Assigning Types to Objects 282
13.2.2 Registering Interfaces. 284
13.2.3 Selecting RPC Protocol Sequences. 285
13.2.4 Obtaining a List of Server Binding Handles. . . 286
13.2.5 Registering Endpoints. 286
13.2.6 Making Binding Information Accessible to

Clients. 287
13.2.7 Listening for Calls. 289

13.3 How Clients Find Servers. 290
13.3.1 Searching a Namespace. 290
13.3.2 Using String Bindings to Obtain Binding

Information 293

Chapter 14. RPC and Other DCE Components. 295

14.1 Threads of Execution in RPC Applications. 296
14.1.1 Remote Procedure Call Threads. 298
14.1.2 Cancels 301
14.1.3 Multithreaded RPC Applications. 302

14.2 Security and RPC: Using Authenticated Remote
Procedure Calls. 305
14.2.1 Authentication 306
14.2.2 Authorization. 308
14.2.3 Authenticated RPC Routines. 310
14.2.4 Using RPC Within a Single Thread 312

14.3 Directory Services and RPC: Using the Namespace. . . . 314
14.3.1 NSI Directory Service Entries. 314

DCE 1.2.2 Application Development Guide—Core Components vii

Contents

14.3.2 Searching the Namespace for Binding
Information 331

14.3.3 Strategies for Using Directory Service Entries. . . 342
14.3.4 The Service Model for Defining Servers. . . . 347
14.3.5 The Resource Model for Defining Servers. . . . 352

Chapter 15. Developing Applications that Use Distributed Objects. 363

15.1 IDL and the Class Hierarchy of a DCE Application. . . . 364
15.1.1 Specifying a C++ Class via an IDL Interface. . . 364
15.1.2 IDL-Generated Classes as Part of Your Hierarchy. . 367

15.2 Servers that Manage Distributed Objects. 368
15.2.1 Initializing Object-Oriented Servers 369
15.2.2 Implementing Distributed-Dynamic Objects. . . 370
15.2.3 Implementing Static Member Functions. . . . 372
15.2.4 When Function Parameters Are Remote Objects. . 375
15.2.5 Naming Objects 377

15.3 Clients That Use Distributed Objects. 387
15.3.1 Creating Remote-Dynamic Objects. 387
15.3.2 Creating Client-Local Objects. 390
15.3.3 Location Transparency of Local and Remote

Objects 391
15.3.4 Finding Known Remote Objects. 396

15.4 Multiple Interfaces and Interface Inheritance. 400
15.4.1 Implementing Multiple Managers. 404
15.4.2 Using Objects that Support Multiple Interfaces. . . 407

15.5 Passing C++ Objects as DCE RPC Parameters. 411
15.5.1 Representation. 414
15.5.2 Delegation. 417

15.6 Integrating C and C++ Clients and Servers. 419
15.6.1 Writing a C++ Client for C Servers 419
15.6.2 Writing a C Client for C++ Servers 421

Chapter 16. Writing Internationalized RPC Applications. 423

16.1 Character Sets, Code Sets, and Code Set Conversion. . . 424

16.2 Remote Procedure Call with Character/Code Set
Interoperability 425

16.3 Building an Application for Character and Code Set
Interoperability 431
16.3.1 Writing the Interface Definition File 432
16.3.2 Writing the Attribute Configuration File 434

viii DCE 1.2.2 Application Development Guide—Core Components

Contents

16.3.3 Writing the Stub Support Routines. 436
16.3.4 Writing the Server Code. 442
16.3.5 Writing the Client Code 451
16.3.6 Writing the Evaluation Routine 457

Chapter 17. Topics in RPC Application Development. 473

17.1 Memory Management. 474
17.1.1 Using the Memory Management Defaults. . . . 475
17.1.2 Using rpc_ss_allocate and rpc_ss_free. 475
17.1.3 Using Your Own Allocation and Free Routines. . . 477
17.1.4 Using Thread Handles in Memory Management. . 478

17.2 Guidelines for Error Handling. 479
17.2.1 Exceptions. 480
17.2.2 The fault_status Attribute. 481
17.2.3 The comm_status Attribute 482
17.2.4 Determining Which Method to Use for Handling

Exceptions. 482
17.2.5 Examples of Error Handling. 483

17.3 Context Handles 486
17.3.1 Context Handles in the Interface. 487
17.3.2 Context Handles in a Server Manager. 489
17.3.3 Context Rundown. 500
17.3.4 Binding and Security Information. 502

17.4 Pipes 504
17.4.1 Input Pipes 505
17.4.2 Output Pipes. 508
17.4.3 Pipe Summary. 512

17.5 Nested Calls and Callbacks. 513

17.6 Routing Remote Procedure Calls. 516
17.6.1 Obtaining an Endpoint. 518
17.6.2 Buffering Call Requests 523
17.6.3 Queuing Incoming Calls 524
17.6.4 Selecting a Manager. 527

17.7 Creating Portable Data via the IDL Encoding Services. . . 529
17.7.1 Memory Management. 530
17.7.2 Buffering Styles 531
17.7.3 IDL Encoding Services Handles. 532
17.7.4 Programming Example. 534
17.7.5 Performing Multiple Operations on a Single

Handle. 542
17.7.6 Determining the Identity of an Encoding. . . . 542

DCE 1.2.2 Application Development Guide—Core Components ix

Contents

Chapter 18. Interface Definition Language. 543

18.1 The Interface Definition Language File. 543

18.2 Syntax Notation Conventions 544
18.2.1 Typography 544
18.2.2 Special Symbols. 544

18.3 IDL Lexical Elements 545
18.3.1 Identifiers. 545
18.3.2 Keywords. 545
18.3.3 Punctuation Characters. 546
18.3.4 Whitespace 546
18.3.5 Case Sensitivity 547

18.4 IDL Versus C 547
18.4.1 Declarations 547
18.4.2 Data Types 548
18.4.3 Attributes. 548

18.5 Interface Definition Structure 548
18.5.1 Interface Definition Header 549
18.5.2 Interface Definition Body. 549

18.6 Overview of IDL Attributes. 550

18.7 Interface Definition Header Attributes. 551
18.7.1 The uuid Attribute. 552
18.7.2 The version Attribute. 553
18.7.3 The endpoint Attribute. 554
18.7.4 The exceptions Attribute. 555
18.7.5 The pointer_default Attribute. 556
18.7.6 The local Attribute. 557
18.7.7 Rules for Using Interface Definition Header

Attributes 557
18.7.8 Examples of Interface Definition Header

Attributes 558

18.8 Import Declarations. 558

18.9 Constant Declarations. 559
18.9.1 Integer Constants. 560
18.9.2 Boolean Constants. 560
18.9.3 Character Constants. 560
18.9.4 String Constants. 561
18.9.5 NULL Constants 561

18.10 Type Declarations. 561
18.10.1 Type Attributes 562
18.10.2 Base Type Specifiers. 562

x DCE 1.2.2 Application Development Guide—Core Components

Contents

18.10.3 Constructed Type Specifiers. 563
18.10.4 Predefined Type Specifiers. 564
18.10.5 Type Declarator 564

18.11 Operation Declarations. 565
18.11.1 Operation Attributes 566
18.11.2 Operation Attributes: Execution Semantics. . . . 566
18.11.3 Operation Attributes: Memory Management. . . 567

18.12 Parameter Declarations. 567

18.13 Basic Data Types 569
18.13.1 Integer Types. 569
18.13.2 Floating-Point Types. 570
18.13.3 The char Type. 570
18.13.4 The boolean Type. 571
18.13.5 The byte Type. 571
18.13.6 The void Type. 571
18.13.7 The handle_t Type. 572
18.13.8 The error_status_t Type. 572
18.13.9 International Characters. 573

18.14 Constructed Data Types. 574
18.14.1 Structures. 574
18.14.2 Unions. 576
18.14.3 Enumeration 580
18.14.4 Pipes. 581
18.14.5 Arrays. 585
18.14.6 Strings. 596
18.14.7 Pointers 597
18.14.8 Customized Handles. 618
18.14.9 Context Handles. 619

18.15 IDL Support for C++ 628
18.15.1 The idl-generated Class Hierarchy. 629
18.15.2 The Interface Inheritance Operator. 631
18.15.3 The static Keyword for Operations. 632
18.15.4 The C++ Reference Operator (&) on Parameters. . 633
18.15.5 Functions Generated by IDL. 633

18.16 Associating a Data Type with a Transmitted Type. . . . 639

18.17 IDL Grammar Synopsis. 642

Chapter 19. Attribute Configuration Language. 653

19.1 Syntax Notation Conventions 653

19.2 Attribute Configuration File. 654

DCE 1.2.2 Application Development Guide—Core Components xi

Contents

19.2.1 Naming the ACF. 654
19.2.2 Compiling the ACF 654
19.2.3 ACF Features. 654

19.3 Structure 655
19.3.1 ACF Interface Header. 656
19.3.2 ACF Interface Body 657
19.3.3 The include Statement and the C++ Attributes

cstub and sstub 658
19.3.4 The auto_handle Attribute. 659
19.3.5 The explicit_handle Attribute. 661
19.3.6 The implicit_handle Attribute. 663
19.3.7 The client_memory Attribute. 664
19.3.8 The comm_status and fault_status Attributes. . . 665
19.3.9 The code and nocode Attributes. 669
19.3.10 The represent_as Attribute. 671
19.3.11 The enable_allocate Attribute. 674
19.3.12 The heap Attribute. 675
19.3.13 The extern_exceptions Attribute. 676
19.3.14 The encode and decode Attributes. 678
19.3.15 The cs_char Attribute. 680
19.3.16 The cs_stag, cs_drtag, and cs_rtag Attributes. . . 686
19.3.17 The cs_tag_rtn Attribute. 688
19.3.18 The binding_callout Attribute. 690
19.3.19 The C++ Attributes cxx_new, cxx_static,

cxx_lookup, and cxx_delegate. 693

19.4 Summary of Attributes. 696

19.5 Attribute Configuration Language. 697

Part 4. DCE Distributed Time Service

Chapter 20. Introduction to the Distributed Time Service API. 707

20.1 DTS Time Representation. 708
20.1.1 Absolute Time Representation. 708
20.1.2 Relative Time Representation. 711

20.2 Time Structures. 713
20.2.1 The utc Structure. 714
20.2.2 The tm Structure. 715
20.2.3 The timespec Structure. 716
20.2.4 The reltimespec Structure. 716

20.3 DTS API Header Files. 717

20.4 DTS API Routine Functions. 717

xii DCE 1.2.2 Application Development Guide—Core Components

Contents

Chapter 21. Time-Provider Interface. 721

21.1 General TPI Control Flow. 722
21.1.1 ContactProvider Procedure. 725
21.1.2 ServerRequestProviderTime Procedure. 726

21.2 Time-Provider Process IDL File. 726

21.3 Initializing the Time-Provider Process. 731

21.4 Time-Provider Algorithm 733

21.5 DTS Synchronization Algorithm. 734

21.6 Running the Time-Provider Process. 735

21.7 Sources of Additional Information. 735

Chapter 22. DTS API Routines Programming Example. 737

Part 5. DCE Security Service

Chapter 23. Overview of Security. 743

23.1 Purpose and Organization of the Security Chapters. . . . 743

23.2 About Authenticated RPC. 744

23.3 About the GSSAPI. 744

23.4 UNIX System Security and DCE Security. 745

23.5 What Authentication and Authorization Mean. 746

23.6 Authentication, Authorization, and Data Protection in
Brief 747

23.7 Summary of DCE Security Services and Facilities. . . . 750
23.7.1 Interfaces to the Security Server. 751
23.7.2 Interfaces to the Login Facility. 753
23.7.3 Interfaces to the Extended Registry Attribute

Facility 753
23.7.4 Interfaces to the Extended Privilege Attribute

Facility 754
23.7.5 Interfaces to the Key Management Facility. . . . 754
23.7.6 Interfaces to the ID Map Facility. 754
23.7.7 Interfaces to the Access Control List Facility. . . 754
23.7.8 DCE Implementations of UNIX System Program

Interfaces 755
23.7.9 Interfaces to the Password Management Facility. . 755

23.8 Relationships Between the DCE Security Service and
DCE Applications 755

DCE 1.2.2 Application Development Guide—Core Components xiii

Contents

23.9 DTS, the Cell Namespace, and Security. 756
23.9.1 DTS and Security. 756
23.9.2 The Cell Namespace and the Security

Namespace 757

Chapter 24. Authentication. 759

24.1 Background Concepts. 759
24.1.1 Principals. 760
24.1.2 The Shared-Secret Authentication Protocol. . . . 761
24.1.3 Cells and Realms. 761
24.1.4 Protection Levels. 762
24.1.5 Data Encryption Mechanisms. 764

24.2 A Walkthrough of Shared-Secret Authentication Protocols. . 764
24.2.1 Authenticating a User. 765
24.2.2 Authenticating an Application. 787

24.3 Intercell Authentication. 795
24.3.1 KDS Surrogates 795
24.3.2 Intercell Authentication by Trust Peers. 797

Chapter 25. Authorization 799

25.1 DCE Authorization. 799
25.1.1 Object Types and ACL Types. 800
25.1.2 ACL Manager Types. 801
25.1.3 Access Control Lists. 802
25.1.4 ACL Entries 802
25.1.5 Access Checking. 807
25.1.6 Examples of ACL Checking 808

25.2 Name-Based Authorization. 812

Chapter 26. GSSAPI Credentials 813

26.1 Using Default Credentials. 814
26.1.1 Initiating a Security Context 815
26.1.2 Accepting a Security Context. 815

26.2 Creating New Credential Handles. 816
26.2.1 Initiating a Security Context with New

Credential Handles. 816
26.2.2 Accepting a Security Context Using New

Credential Handles. 816

26.3 Delegating Credentials. 817

xiv DCE 1.2.2 Application Development Guide—Core Components

Contents

26.3.1 Initiating a Security Context to Delegate
Credentials 817

26.3.2 Accepting a Security Context with Delegated
Credentials 817

Chapter 27. The Extended Privilege Attribute API. 819

27.1 Identities of Principals in Delegation 820
27.1.1 ACL Entry Types for Delegation. 821
27.1.2 ACL Checking for Delegation. 822

27.2 Calls to Establish Delegation Chains. 823
27.2.1 Types of Delegation 823
27.2.2 Target and Delegate Restrictions. 824
27.2.3 Optional and Required Restrictions. 826
27.2.4 Compatibility Between Version 1.1 and

Pre-Version 1.1 Servers and Clients. 827

27.3 Calls to Extract Privilege Attribute Information. 828

27.4 Disabling Delegation 830

27.5 Setting Extended Attributes. 830

Chapter 28. The Registry API. 831

28.1 Binding to a Registry Site. 831

28.2 The Registry Database. 833
28.2.1 Creating and Maintaining PGO Items. 834
28.2.2 Creating and Maintaining Accounts 836
28.2.3 Registry Properties and Policies. 837
28.2.4 Routines to Return UNIX Structures. 839
28.2.5 Miscellaneous Registry Routines. 839

Chapter 29. The Extended Attribute API. 841

29.1 The ERA API 842
29.1.1 Attribute Schema. 843
29.1.2 Attribute Types and Instances. 843
29.1.3 Attribute Type Components 843

29.2 Calls to Manipulate Schema Entries. 851
29.2.1 The sec_attr_schema_entry_t Data Type. . . . 851
29.2.2 Creating and Managing Schema Entries. . . . 853
29.2.3 Reading Schema Entries. 856
29.2.4 Reading the ACL Manager Types. 858

29.3 Calls to Manipulate Attribute Instances. 858
29.3.1 The sec_attr_t Data Type. 858

DCE 1.2.2 Application Development Guide—Core Components xv

Contents

29.3.2 Creating and Managing Attribute Instances. . . . 859
29.3.3 Reading Attribute Instances. 861

29.4 The Attribute Trigger Facility 865
29.4.1 Defining an Attribute Trigger/Attribute

Association 865
29.4.2 Trigger Binding 867
29.4.3 Access Control on Attributes with Triggers. . . . 869

29.5 Calls that Access Attribute Triggers. 869
29.5.1 Using sec_attr_trig_cursor_t with

sec_attr_trig_query() 869
29.5.2 The sec_rgy_attr_trig_query() and

sec_rgy_attr_trig_update() Calls 870
29.5.3 The priv_attr_triq_query() Call. 871

29.6 The DCE Attribute API. 871

29.7 Macros to Aid Extended Attribute Programming. 873
29.7.1 Macros to Access Binding Fields. 873
29.7.2 Macros to Access Schema Entry Fields. . . . 874
29.7.3 Macros to Access Attribute Instance Fields. . . . 876
29.7.4 Binding Data Structure Size Calculation Macros. . 878
29.7.5 Schema Entry Data Structure Size Calculation

Macros 878
29.7.6 Attribute Instance Data Structure Size

Calculation Macros 879
29.7.7 Binding Semantic Check Macros. 880
29.7.8 Schema Entry Semantic Check Macros. 881
29.7.9 Attribute Instance Semantic Check Macros. . . . 882
29.7.10 Schema Entry Flag Set and Unset Macros. . . . 882
29.7.11 Schema Trigger Entry Flag Check Macros. . . . 883

29.8 Utilities to Use with Extended Attribute Calls. 884

Chapter 30. The Login API. 885

30.1 Establishing Login Contexts. 886
30.1.1 Validating the Login Context and Certifying the

Security Server 887
30.1.2 Validating the Login Context Without Certifying

the Security Server. 888
30.1.3 Example of a System Login Program. 888

30.2 Context Inheritance. 889
30.2.1 The Initial Context. 889
30.2.2 Private Contexts 890

30.3 Handling Expired Certificates of Identity 890

xvi DCE 1.2.2 Application Development Guide—Core Components

Contents

30.4 Importing and Exporting Contexts. 891

30.5 Changing a Groupset 892

30.6 Miscellaneous Login API Functions. 893
30.6.1 Getting the Current Context 893
30.6.2 Getting Information from a Login Context. . . . 893
30.6.3 Getting Password and Group Information for

Local Process Identities 893
30.6.4 Releasing and Purging a Context. 894

Chapter 31. The Key Management API. 895

31.1 Retrieving a Key 896

31.2 Changing a Key. 896

31.3 Automatic Key Management 898

31.4 Deleting Expired Keys. 898

31.5 Deleting a Compromised Key. 898

Chapter 32. The Access Control List APIs. 901

32.1 The Client-Side API 902
32.1.1 Binding to an ACL 903
32.1.2 ACL Editors and Browsers. 903
32.1.3 Errors. 904

32.2 Guidelines for Constructing ACL Managers. 904

32.3 Extended Naming of Protected Objects. 905
32.3.1 The ACL Network Interface 907
32.3.2 The ACL Library 908

Chapter 33. The ID Map API 917

Chapter 34. DCE Audit Service. 919

34.1 Features of the DCE Audit Service. 919

34.2 Components of the DCE Audit Service. 920

34.3 DCE Audit Service Concepts. 920
34.3.1 Audit Clients 920
34.3.2 Code Point 921
34.3.3 Events. 921
34.3.4 Event Class 924
34.3.5 Event Class Number. 925
34.3.6 Filters. 925

DCE 1.2.2 Application Development Guide—Core Components xvii

Contents

34.3.7 Audit Records. 926
34.3.8 Audit Trail File 927

34.4 Administration and Programming in DCE Audit. 927
34.4.1 Programmer Tasks. 927
34.4.2 Administrator Tasks 930

Chapter 35. Using the Audit API Functions. 933

35.1 Adding Audit Capability to Distributed Applications. . . . 933
35.1.1 Opening the Audit Trail 934
35.1.2 Initializing the Audit Records. 935
35.1.3 Adding Event-Specific Information. 936
35.1.4 Committing an Audit Record. 937
35.1.5 Closing an Audit Trail File. 938

35.2 Writing Audit Trail Analysis and Examination Tools . . . 939
35.2.1 Opening an Audit Trail File for Reading. . . . 939
35.2.2 Reading the Desired Audit Records into a Buffer. . 940
35.2.3 Transforming the Audit Record into Readable

Text 941
35.2.4 Discarding the Audit Record. 942
35.2.5 Closing the Audit Trail File 942

Chapter 36. The Password Management API. 943

36.1 The Client-Side API 944

36.2 The Password Management Network Interface. 947

Chapter 37. The DCE Certification Service. 949

37.1 Who Needs to Use the Certification API?. 950

37.2 Overview of DCE Certification. 951
37.2.1 Use of Public Keys 952
37.2.2 Contents of Certificates 954
37.2.3 Component Parts of the DCE Certification API. . . 955
37.2.4 High Level Certification API 958
37.2.5 Policy Models. 959

37.3 Implementing and Registering a Cryptographic Module. . . 961
37.3.1 Contents of a Cryptographic Module. 961
37.3.2 Accessing a Registered Cryptographic Module. . . 962
37.3.3 Signature Algorithms Provided by DCE

Certification 963
37.3.4 Registering a Cryptographic Module. 963

37.4 Implementing and Registering a Policy Module. 964

xviii DCE 1.2.2 Application Development Guide—Core Components

Contents

37.4.1 Policy Modules Provided with DCE Certification. . 964

37.5 The Low Level Certificate Manipulation API 966
37.5.1 Policy Module Implementation. 967
37.5.2 Accessing a Registered Policy Module. 968
37.5.3 Registering a Policy Module. 969
37.5.4 Registering the module. 970

Index Index–1

DCE 1.2.2 Application Development Guide—Core Components xix

Contents

List of Figures

Figure 2–1. The dced Entry Lists 14

Figure 2–2. Structure of an Entry. 15

Figure 2–3. Accessing Hostdata. 19

Figure 3–1. sams and DCE Messages. 63

Figure 4–1. Serviceability and DCE Applications. 93

Figure 6–1. Work Crew Model. 157

Figure 6–2. Pipelining Model 158

Figure 7–1. Thread State Transitions. 162

Figure 7–2. Only One Thread Can Lock a Mutex. 170

Figure 7–3. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds. . 173

Figure 7–4. Thread B Signals Condition Ready. 174

Figure 7–5. Thread A Wakes Up and Proceeds. 175

Figure 7–6. Flow with SCHED_FIFO Scheduling. 180

Figure 7–7. Flow with SCHED_RR Scheduling. 181

Figure 7–8. Flow with SCHED_OTHER Scheduling. 181

Figure 11–1. The Parts of an RPC Application. 231

Figure 11–2. Marshalling and Unmarshalling Between ASCII and EBCDIC Data. . 232

Figure 11–3. Interrelationships During a Remote Procedure Call. 234

Figure 11–4. Generating Stubs. 236

Figure 11–5. Building a Simple Client and Server. 237

Figure 11–6. Role of RPC Interfaces. 240

Figure 12–1. A Binding. 261

Figure 12–2. Information Used to Identify a Compatible Server. 265

Figure 12–3. Client Binding Information Resulting from a Remote Procedure
Call 269

xx DCE 1.2.2 Application Development Guide—Core Components

Contents

Figure 13–1. Manager Types. 283

Figure 13–2. Exporting Server Binding Information. 288

Figure 13–3. Importing Server Binding Information. 292

Figure 14–1. Local Application Thread During a Procedure Call. 297

Figure 14–2. Server Application Thread and Multiple Call Threads. 298

Figure 14–3. Execution Phases of an RPC Thread. 299

Figure 14–4. Concurrent Call Threads Executing in Shared Address Space. . . 300

Figure 14–5. Phases of a Cancel in an RPC Thread. 301

Figure 14–6. A Multithreaded RPC Application Acting as Both Server and
Client 304

Figure 14–7. NSI Attributes. 316

Figure 14–8. Parts of a Global Name. 319

Figure 14–9. Possible Information in a Server Entry. 321

Figure 14–10. Possible Mappings of a Group. 322

Figure 14–11. Possible Mappings of a Profile. 325

Figure 14–12. The import_next, lookup_next Search Algorithm in a Single Entry. . 335

Figure 14–13. Priorities Assigned on Proximity of Members. 346

Figure 14–14. Service Model: Interchangeable Instances on Two Hosts. 348

Figure 14–15. Service Model: Interchangeable Instances on One Host. 349

Figure 14–16. Service Model: Distinct Instances on One Host. 352

Figure 14–17. Resource Model: A System-Specific Application. 356

Figure 14–18. Resource Model: A Single Server Entry for Each Server. . . . 358

Figure 14–19. Resource Model: A Separate Server Entry for Each Object. . . . 360

Figure 15–1. Servers Need the Client Stub to Access Client-Local Objects. . . 376

Figure 15–2. Clients Use the Server Stub. 393

Figure 15–3. Multiple Interfaces and Inheritance. 401

Figure 15–4. Clients Do Not Know About Server Implementations. 408

Figure 17–1. Phases of a Nested RPC Call. 514

Figure 17–2. Phases of a Nested RPC Call to Client Address Space. 515

Figure 17–3. Steps in Routing Remote Procedure Calls. 517

Figure 17–4. Mapping Information and Corresponding Endpoint Map Elements. . 519

Figure 17–5. Decisions for Looking Up an Endpoint. 521

DCE 1.2.2 Application Development Guide—Core Components xxi

Contents

Figure 17–6. A Request Buffer at Full Capacity. 524

Figure 17–7. Stages of Call Routing by a Server Process. 526

Figure 17–8. Decisions for Selecting a Manager. 529

Figure 20–1. ISO Format for Time Displays. 709

Figure 20–2. Variations to the ISO Time Format. 710

Figure 20–3. Full Syntax for a Relative Time. 711

Figure 20–4. Syntax for Representing a Duration. 712

Figure 20–5. DTS API Routines Shown by Functional Grouping. 718

Figure 21–1. DTS/Time-Provider RPC Calling Sequence. 724

Figure 23–1. Shared-Secret Authentication and DCE Authorization in Brief. . . 749

Figure 23–2. DCE Security and the DCE Application Environment. 756

Figure 24–1. Conventions Used in Authentication Walkthrough Illustrations. . . 765

Figure 24–2. Client Initiation of Private Key Acquisition. 772

Figure 24–3. Client Acquisition of Private Key from PKSS. 774

Figure 24–4. Client Acquires TGT Using Third-Party Protocol. 776

Figure 24–5. Client Acquires TGT Using the DCE Version 1.0 Protocol. . . . 781

Figure 24–6. Client Acquires PTGT. 785

Figure 24–7. Client Sets Authentication and Authorization Information. . . . 788

Figure 24–8. Client Principal Makes Application Request. 790

Figure 24–9. Application Server Responds to Client’s Request. 792

Figure 25–1. Derivation of ACL Defaults. 801

Figure 29–1. The sec_attr_schema_entry_t Data Type. 853

Figure 29–2. The sec_attr_t Data Type. 859

Figure 29–3. The sec_attr_bind_info_t Data Type. 867

Figure 32–1. ACL Program Interfaces 902

Figure 32–2. Protection with Extended Naming. 906

Figure 34–1. Event Number Formats. 923

Figure 34–2. Overview of the DCE Audit Service 932

Figure 36–1. Use of Password Management Facility APIs. 944

Figure 37–1. How Public Keys Work: Part 1. 952

Figure 37–2. How Public Keys Work: Part 2. 952

Figure 37–3. The Essential Parts of a Certificate. 955

xxii DCE 1.2.2 Application Development Guide—Core Components

Contents

Figure 37–4. Certification API Organization. 957

Figure 37–5. A Certificate Chain. 960

DCE 1.2.2 Application Development Guide—Core Components xxiii

Contents

List of Tables

Table 2–1. API Routines for Remote Server Management. 30

Table 4–1. Serviceability Message Severities. 103

Table 4–2. Serviceability Message Processing Specifiers. 111

Table 4–3. Remote Operations by Application Servers. 129

Table 7–1. Sample Thread Properties. 180

Table 8–1. Signals for Which Handlers Are Not Provided. 191

Table 9–1. DCE Threads Exceptions. 211

Table 11–1. Basic Tasks of an RPC Application. 229

Table 12–1. Execution Semantics for DCE RPC Calls. 272

Table 13–1. Basic Runtime Routines. 279

Table 14–1. NSI next Operations 330

Table 16–1. Tasks of an Internationalized RPC Application. 426

Table 18–1. IDL Attributes. 550

Table 18–2. Base Data Type Specifiers. 562

Table 19–1. Summary of the ACF Attributes. 696

Table 20–1. Absolute Time Structures. 714

Table 20–2. Relative Time Structures. 714

Table 26–1. Credential Types 814

Table 29–1. Encodings and Required Data Types. 854

xxiv DCE 1.2.2 Application Development Guide—Core Components

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

DCE 1.2.2 Application Development Guide—Core Components xxv

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xxvi DCE 1.2.2 Application Development Guide—Core Components

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

DCE 1.2.2 Application Development Guide—Core Components xxvii

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides
These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

xxviii DCE 1.2.2 Application Development Guide—Core Components

Preface

are intended to communicate the findings to the outside world so as
to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

DCE 1.2.2 Application Development Guide—Core Components xxix

Preface

This Book

The DCE 1.2.2 Application Development Guideprovides information about how to
program the application programming interfaces (APIs) provided for each OSF

®

Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating system and
C language experience who want to develop and write applications to run on DCE.

Applicability

This revision applies to the OSF
®

DCE Release 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The DCE 1.2.2 Application Development Guideconsists of three books, as follows:

• DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1–85912– 187–X

• DCE 1.2.2 Application Development Guide—Core Components

xxx DCE 1.2.2 Application Development Guide—Core Components

Preface

— Volume 1
Document Number F203A, ISBN 1–85912–192–6

Part 1. DCE Facilities

Part 2. DCE Threads

Part 3. DCE Remote Procedure Call

— Volume 2
Document Number F203B, ISBN 1–85912–154–3

Part 4. DCE Distributed Time Service

Part 5. DCE Security Service

• DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1–85912–197–7

— Part 1. DCE Directory Service

— Part 2. CDS Application Programming

— Part 3. GDS Application Programming

— Part 4. XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1–85912–182–9

• DCE 1.2.2 Command Reference
Document Number F212, ISBN 1–85912–138–1

• DCE 1.2.2 Application Development Reference
Document Number F205A, ISBN 1–85912–103–9 (Volume 1)
Document Number F205B, ISBN 1–85912–108–X (Volume 2)
Document Number F205C, ISBN 1–85912–159–4 (Volume 3)

• DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1–85912–113–6

DCE 1.2.2 Application Development Guide—Core Components xxxi

Preface

• DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1–85912–118–7

• DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1–85912–123–3 (Volume 1)
Document Number F209B, ISBN 1–85912–128–4 (Volume 2)

• DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1–85912–133–0

• DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1–85912–158–6

• DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1–85912–163–3

• DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1–85912–143–8 (Volume 1)
Document Number F213B, ISBN 1–85912–148–9 (Volume 2)

• DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1–85912–153–5

• DCE 1.2.2 File-Access FVT User’s Guide
Document Number F210, ISBN 1–85912–189–6

• DCE 1.2.2 Release Notes
Document Number F218, ISBN 1–85912–168–3

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

xxxii DCE 1.2.2 Application Development Guide—Core Components

Preface

{ } Braces enclose a list from which y ou must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl- x> or ^x
The notation<Ctrl- x > or ^x followed by the name of a key indicates
a control character sequence. For example,<Ctrl-C> means that you
hold down the control key while pressing<C>.

<Return> The notation<Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—IntroductionandDCE 1.2.2 Testing Guide.

DCE 1.2.2 Application Development Guide—Core Components xxxiii

Preface

Trademarks

Motif ®, OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the “X Device”
TM

are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

xxxiv DCE 1.2.2 Application Development Guide—Core Components

Preface

NetWare is a registered trademark of Novell, Inc.

DCE 1.2.2 Application Development Guide—Core Components xxxv

Part 4
DCE Distributed Time Service

Chapter 20
Introduction to the Distributed Time
Service API

This chapter describes the DCE Distributed Time Service (DTS) programming
routines. You can use these routines to obtain timestamps that are based on Coordinated
Universal Time (UTC). You can also use the DTS routines to translate among different
timestamp formats and perform calculations on timestamps. Applications can use the
timestamps that DTS supplies to determine event sequencing, duration, and scheduling.
Applications can call the DTS routines from any host that has thelibdce. The dtsd
need not be running.

DTS routines are written in the C programming language. You should be familiar with
basic DTS concepts before you attempt to use the application programming interface
(API). The DTS chapters of theDCE 1.2.2 Administration Guide—Core Components
provide conceptual information about DTS.

The DTS API routines offer the following basic functions:

• Retrieving timestamp information

• Converting between binary timestamps that use different time structures

DCE 1.2.2 Application Development Guide—Core Components 707

DCE Distributed Time Service

• Converting between binary timestamps and ASCII representations

• Converting between UTC time and local time

• Manipulating binary timestamps

• Comparing two binary time values

• Calculating binary time values

• Obtaining time zone information

The sections that follow describe how DTS represents time, discuss the DTS time
structures, discuss the DTS API header files, and briefly describe the DTS API routines.

20.1 DTS Time Representation

UTC is the international time standard that has largely replaced Greenwich Mean
Time (GMT). The standard is administered by the International Time Bureau (BIH)
and is widely used. DTS uses opaque binary timestamps that represent UTC for all of
its internal processes. You cannot read or disassemble a DTS binary timestamp; the
DTS API allows applications to convert or manipulate timestamps, but they cannot be
displayed. DTS also translates the binary timestamps into ASCII text strings, which
can be displayed.

20.1.1 Absolute Time Representation

An absolute time is a point on a time scale. For DTS, absolute times reference
the UTC time scale; absolute time measurements are derived from system clocks
or external time-providers. When DTS reads a system clock time, it records the time
in an opaque binary timestamp that also includes the inaccuracy and other information.
When you display an absolute time, DTS converts the time to ASCII text as shown
in the following display:

1990-11-21-13:30:25.785-04:00I000.082

708 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

DTS displays all times in a format that complies with the International Organization
for Standardization (ISO) 8601 (1988) standard. Note that the inaccuracy portion of
the time is not defined in the ISO standard; times that do not include an inaccuracy
are accepted.

Figure 20-1 explains the ISO format that generated the previous display.

Figure 20–1. ISO Format for Time Displays

CCYY−MM−DD−hh:mm:ss.fff[+|−]hh:mmIsss.fff

 Inaccuracy
 component

 TDF
 component

 Calendar date and time
 component

Century

Year

Month

Day

hour

minute

second

fraction

fractions

seconds

designator
Inaccuracy

minutes

hours

+|− TDF

In this figure, the relative time preceded by the+ (plus) or− (minus) character indicates
the hours and minutes that the calendar date and time are offset from UTC. The
presence of this time differential factor (TDF) in the string also indicates that the
calendar date and time are the local time of the system, not UTC. Local time is UTC
plus the TDF. The Inaccuracy (I) designator indicates the beginning of the inaccuracy
component associated with the time.

Although DTS displays all times in the previous format, variations to the ISO format
shown in Figure 20-2 are also accepted as input for the ASCII conversion routines.

DCE 1.2.2 Application Development Guide—Core Components 709

DCE Distributed Time Service

Figure 20–2. Variations to the ISO Time Format

CCYY−MM−DDThh:mm:ss,fff[+|−]hh:mm ss,fff+−

 Inaccuracy
 component

 TDF
 component

 Calendar date and time
 component

fractions

seconds

Inaccuracy
designator

minutes

hours

+|− TDF

Century

Year

Month

Day

Time
designator

hour

minute

second

fraction

In this figure, the Time (T) designator separates the calendar date from the time, a
, (comma) separates seconds from fractional seconds, and the+ or − indicates the
beginning of the inaccuracy component.

The following examples show some valid time formats.

The following represents July 4, 1776 17:01 GMT and an unspecified inaccuracy
(default):

1776-7-4-17:01:00

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 with a
TDF of −5 hours and an inaccuracy of 100 seconds:

1776-7-4-12:01:00-05:00I100

Both of the following represent 12:00 GMT in the current day, month, and year with
an unspecified inaccuracy:

12:00 and T12

710 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

The following represents July 14, 1792 00:00 GMT with an unspecified inaccuracy:

1792-7-14

20.1.2 Relative Time Representation

A relative time is a discrete time interval that is usually added to or subtracted from
another time. A TDF associated with an absolute time is one example of a relative
time. A relative time is normally used as input for commands or system routines.

Figure 20-3 shows the full syntax for a relative time.

Figure 20–3. Full Syntax for a Relative Time

DD−hh:mm:ss.fffIss.fff

designator
Inaccuracy

 Relative date and time
 component

 Inaccuracy
 component

seconds

fractions
Days

hours

minutes

seconds

fractions

The following example shows a relative time of 21 days, 8 hours, and 30 minutes, 25
seconds with an inaccuracy of 0.300 seconds:

21-08:30:25.000I00.300

The following example shows a negative relative time of 20.2 seconds with an
unspecified inaccuracy (default):

-20.2

DCE 1.2.2 Application Development Guide—Core Components 711

DCE Distributed Time Service

The following example shows a relative time of 10 minutes, 15.1 seconds with an
inaccuracy of 4 seconds:

10:15.1I4

Notice that a relative time does not use the calendar date fields, since these fields
concern absolute time. A positive relative time is unsigned; a negative relative time
is preceded by a− (minus) sign. A relative time is often subtracted from or added to
another relative or absolute time. Relative times that DTS uses internally are opaque
binary timestamps. The DTS API offers several routines that can be used to calculate
new times by use of relative binary timestamps.

20.1.2.1 Representing Periods of Time

A given duration of a period of time can be represented by a data element of variable
length that uses the syntax shown in Figure 20-4.

Figure 20–4. Syntax for Representing a Duration

I nSnMnHnTMnYnP

Time Designator

Hours/Hour Designator

Minutes/Minute Designator

Seconds/Second Designator

Inaccuracy Designator/Inaccuracy

DnWn
Period Designator

Years/Year Designator

Months/Month Designator

Weeks/Week Designator

Days/Day Designator

20.1.2.2 The Data Element Parts

The data element contains the following parts:

• The designatorP precedes the part that includes the calendar components,
including the following:

— The number of years followed by the designatorY

712 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

— The number of months followed by the designatorM

— The number of weeks followed by the designatorW

— The number of days followed by the designatorD

• The T designator precedes the part that includes the time components, including
the following:

— The number of hours followed by the designatorH

— The number of minutes followed by the designatorM

— The number of seconds followed by the designatorS

• The designatorI precedes the number of seconds of inaccuracy.

The following example represents a period of 1 year, 6 months, 15 days, 11 hours, 30
minutes, and 30 seconds and an unspecified inaccuracy:

P1Y6M15DT11H30M30S

The following example represents a period of 3 weeks and an inaccuracy of 4 seconds:

P3WI4

20.2 Time Structures

DTS can convert among several types of binary time structures that are based on
different base dates and time unit measurements. DTS uses UTC-based time structures
and can convert other types of time structures to its own presentation of UTC-based
time. The DTS API routines are used to perform these conversions for applications
on your system.

Table 20-1 lists the absolute time structures that the DTS API uses to modify binary
times for applications.

DCE 1.2.2 Application Development Guide—Core Components 713

DCE Distributed Time Service

Table 20–1. Absolute Time Structures

Structure Time Units Base Date
Approximate
Range

utc 100-nanosecond 15 October 1582 A.D. 1 to A.D.
30,000

tm second 1 January 1900 A.D. 1 to A.D.
30,000

timespec nanosecond 1 January 1970 A.D. 1970 to A.D.
2106

Table 20-2 lists the relative time structures that the DTS API uses to modify binary
times for applications.

Table 20–2. Relative Time Structures

Structure Time Units Approximate Range

utc 100-nanosecond +/− 30,000 years

tm second +/- 30,000 years

reltimespec nanosecond +/- 68 years

The remainder of this section explains the DTS time structures in detail.

20.2.1 The utc Structure

UTC is useful for measuring time across local time zones and for avoiding the seasonal
changes (summer time or daylight savings time) that can affect the local time. DTS
uses 128-bit binary numbers to represent time values internally; throughout this guide,
these binary numbers representing time values are referred to asbinary timestamps.
The DTS utc structure determines the ordering of the bits in a binary timestamp;
all binary timestamps that are based on theutc structure contain the following
information:

• The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 (the date
of the Gregorian reform to the Christian calendar)

714 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

• The count of 100-nanosecond units of inaccuracy applied to the preceding item

• The TDF, expressed as the signed quantity

• The DTS version number

The binary timestamps that are derived from the DTSutc structure have an opaque
format. This format is a cryptic character sequence that DTS uses and stores internally.
The opaque binary timestamp is designed for use in programs, protocols, and
databases.

Note: Applications use the opaque binary timestamps when storing time values or
when passing them to DTS.

The API provides the necessary routines for converting between opaque binary
timestamps and character strings that can be displayed and read by users.

20.2.2 The tm Structure

The tm structure is based on the time in years, months, days, hours, minutes, and
seconds since 00:00:00 GMT (Greenwich Mean Time), 1 January 1900. Thetm
structure is defined in thetime.h header file.

The tm structure declaration follows:

struct tm {

int tm_sec; /* Seconds (0 - 59) */

int tm_min; /* Minutes (0 - 59) */

int tm_hour; /* Hours (0 - 23) */

int tm_mday; /* Day of Month (1 - 31) */

int tm_mon; /* Month of Year (0 - 11) */

int tm_year; /* Year - 1900 */

int tm_wday; /* Day of Week (Sunday = 0) */

int tm_yday; /* Day of Year (0 - 364) */

int tm_isdst; /* Nonzero if Daylight Savings Time */

/* is in effect */

};

DCE 1.2.2 Application Development Guide—Core Components 715

DCE Distributed Time Service

Not all of the tm structure fields are used for each routine that converts between
tm structures andutc structures. (See the parameter descriptions contained in the
reference pages in theDCE 1.2.2 Application Development Referencefor additional
information about which fields are used for specific routines.)

20.2.3 The timespec Structure

The timespecstructure is normally used in combination with or in place of thetm
structure to provide finer resolution for binary times. Thetimespecstructure is similar
to the tm structure, but thetimespecstructure specifies the number of seconds and
nanoseconds since the base time of 00:00:00 GMT, 1 January 1970. You can find the
structure in thedce/utc.h header file.

The timespecstructure declaration follows:

struct timespec {

time_t tv_sec; /* Seconds since 00:00:00 GMT, */

/* 1 January 1970 */

long tv_nsec; /* Additional nanoseconds since */

/* tv_sec */

} timespec_t;

20.2.4 The reltimespec Structure

The reltimespec structure represents relative time. This structure is similar to the
timespecstructure, except that the first field issignedin the reltimespec structure.
(The field isunsignedin thetimespecstructure.) You can find thereltimespecstructure
in the dce/utc.h header file.

The reltimespecstructure declaration follows:

struct reltimespec {

time_t tv_sec; /* Seconds of relative time */

716 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

long tv_nsec; /* Additional nanoseconds of */

/* relative time */

} reltimespec_t;

20.3 DTS API Header Files

The time.h anddce/utc.hheader files contain the data structures, type definitions, and
define statements that are referenced by the DTS API routines. Thetime.h header file
is a standard UNIX file. Thedce/utc.h header file includestime.h and contains the
timespec, reltimespec, andutc structures.

These header files are located in/usr/include/dce.

20.4 DTS API Routine Functions

Figure 20-5 categorizes the DTS portable interface routines by function.

DCE 1.2.2 Application Development Guide—Core Components 717

DCE Distributed Time Service

Figure 20–5. DTS API Routines Shown by Functional Grouping

Converting Times ...

To/From

utc_binreltime
utc_bintime
utc_mkbinreltime
utc_mkbintime

timespec Structures:

utc_ascanytime
utc_ascgmtime
utc_asclocaltime
utc_ascreltime
utc_mkasctime
utc_mkascreltime

ASCII text:
To/From

utc_anytime
utc_gmtime
utc_localtime
utc_mkanytime
utc_mkgmtime
utc_mklocaltime
utc_mkreltime
utc_reltime

To/From
 Structures:tm

Retrieving Time ...
utc_gettime
utc_getusertime

Information ...
Obtaining Timezone

utc_anyzone
utc_gmtzone
utc_localzone

Comparing Times ...

utc_cmpintervaltime
utc_cmpmidtime

Manipulating Times ...
utc_boundtime
utc_spantime
utc_pointtime

Calculating Times ...

utc_addtime
utc_mulftime
utc_multime
utc_subtime

utc_abstime

An alphabetical listing of the DTS portable interface routines and a brief description
of each one follows:

• utc_abstime: Computes the absolute value of a binary relative timestamp

• utc_addtime: Computes the sum of two binary timestamps; the timestamps can
be two relative times or a relative time and an absolute time

718 DCE 1.2.2 Application Development Guide—Core Components

Introduction to the Distributed Time Service API

• utc_anytime: Converts a binary timestamp into atm structure by using the TDF
information contained in the timestamp to determine the TDF returned with the
tm structure

• utc_anyzone: Gets the time zone label and offset from GMT by using the TDF
contained in the inpututc

• utc_ascanytime: Converts a binary timestamp into an ASCII string that represents
an arbitrary time zone

• utc_ascgmtime: Converts a binary timestamp into an ASCII string that expresses
a GMT time

• utc_asclocaltime: Converts a binary timestamp to an ASCII string that represents
a local time

• utc_ascreltime: Converts a binary timestamp that expresses a relative time to its
ASCII representation

• utc_binreltime: Converts a relative binary timestamp into twotimespecstructures
that express relative time and inaccuracy

• utc_bintime: Converts a binary timestamp into atimespecstructure

• utc_boundtime: Given two UTC times, one before and one after an event, returns
a single UTC time whose inaccuracy includes the event

• utc_cmpintervaltime: Compares two binary timestamps or two relative binary
timestamps

• utc_cmpmidtime: Compares two binary timestamps or two relative binary
timestamps, ignoring inaccuracies

• utc_gettime: Returns the current system time and inaccuracy as an opaque binary
timestamp

• utc_getusertime: Returns the time and process-specific TDF, rather than the
system-specific TDF

• utc_gmtime: Converts a binary timestamp into atm structure that expresses GMT
or the equivalent UTC

• utc_gmtzone: Gets the time zone label, givenutc

• utc_localtime: Converts a binary timestamp into atm structure that expresses
local time

• utc_localzone: Gets the time zone label and offset from GMT, givenutc

DCE 1.2.2 Application Development Guide—Core Components 719

DCE Distributed Time Service

• utc_mkanytime: Converts atm structure and TDF (expressing the time in an
arbitrary time zone) into a binary timestamp

• utc_mkascreltime: Converts a null-terminated character string, which represents
a relative timestamp, to a binary timestamp

• utc_mkasctime: Converts a null-terminated character string, which represents an
absolute timestamp, to a binary timestamp

• utc_mkbinreltime : Converts atimespecstructure expressing a relative time to a
binary timestamp

• utc_mkbintime: Converts atimespecstructure into a binary timestamp

• utc_mkgmtime: Converts atm structure that expresses GMT or UTC to a binary
timestamp

• utc_mklocaltime: Converts atm structure that expresses local time to a binary
timestamp

• utc_mkreltime: Converts atm structure that expresses relative time to a binary
timestamp

• utc_mulftime: Multiplies a relative binary timestamp by a floating-point value

• utc_multime: Multiplies a relative binary timestamp by an integer factor

• utc_pointtime: Converts a binary timestamp to three binary timestamps that
represent the earliest, most likely, and latest time

• utc_reltime: Converts a binary timestamp that expresses a relative time into atm
structure

• utc_spantime: Given two (possibly unordered) binary timestamps, returns a single
UTC time interval whose inaccuracy spans the two input timestamps

• utc_subtime: Computes the difference between two binary timestamps that
express either an absolute time and a relative time, two relative times, or two
absolute times

720 DCE 1.2.2 Application Development Guide—Core Components

Chapter 21
Time-Provider Interface

This chapter describes the Time-Provider Interface (TPI) for DCE Distributed Time
Service software. The chapter provides a brief overview of the TPI, explains how to
use external time-providers with DTS, and describes the data structures and message
protocols that make up the TPI.

Coordinated Universal Time (UTC) is widely used and is disseminated throughout
the world by various standards organizations. Several manufacturers supply devices
that can acquire UTC time values via radio, satellite, or telephone. These devices can
then provide standardized time values to computer systems. Normally, one device is
connected to a computer system; the device runs a process that interprets signals and
translates them to time values, which can either be displayed or be provided to the
server process running on the connected system.

To synchronize its system clock with UTC using an external time-provider device, a
DTS server needs a software interface to the device to periodically obtain UTC. In
effect, this interface serves as an intermediary between the DTS server and external
time-provider processes. The DTS server requires the interface to obtain UTC time
values and to determine the associated inaccuracy of each value. The interface between

DCE 1.2.2 Application Development Guide—Core Components 721

DCE Distributed Time Service

the DTS server process and the time-provider process is called theTime-Provider
Interface.

The remainder of this chapter describes the TPI and its attendant processes in detail.
The following section describes the control flow between the DTS server process, the
TPI, and the time-provider process.

21.1 General TPI Control Flow

When you use a time-provider with a system running DTS, the external time-
provider is implemented as an independent process that communicates with a DTS
server process through remote procedure calls (RPCs). A remote procedure call is a
synchronous request and response between a main calling program and a procedure
executing in another process. RPC applications are based on the client/server model.
In this context, the following processes act as the client and server components in the
RPC-based application:

• The DTS daemon is the client.

• The Time-Provider process (TP process) is the server.

Both the RPC-client (DTS daemon) and the server (TP process) must be running on
the same system.

Applications running on RPC communicate through an interface that is well known to
both the client and the server. The RPC interface consists of a set of procedures, data
types, and constants that describe how a client can invoke a routine running on the
server. The server offers the interface to the clients through the Interface Definition
Language (IDL) file.

The IDL file defines the syntax for an operation, including the following:

• The name of the operation

• The data type of the value that the operation returns (if any)

• The order and data types of the operation’s parameters (if any)

The TP process offers two procedures that DTS calls to obtain time values. These
procedures areContactProvider andServerRequestProviderTime.

722 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

At each system synchronization, DTS makes the initial remote procedure call
(ContactProvider) to a TP process that is assumed to be running on the same node.

If the TP process is active, the RPC call returns the following arguments:

• A successful communication status message

• A control message that DTS uses for further processing

If the TP process is not active, the RPC call either returns a communication status
failure or a time-out occurs. DTS then synchronizes with other servers instead of with
the external time-provider.

If the initial call (ContactProvider) is successful, DTS makes a second call
(ServerRequestProviderTime) to retrieve the timestamps from the external time-
provider. The control message sent by the TP process in the first RPC call specifies
the length of time DTS waits for the RPC call to complete. The TP process returns
the following parameters in the procedure call:

• A communication status message.

• A time structure that contains timestamps collected from the external time-
provider. (DTS then uses these timestamps to complete its synchronization.)

Figure 21-1 illustrates the RPC calling sequence between DTS and the TP process.
Note that solid black lines represent the path followed by input parameters; dashed
lines represent the path followed by output parameters and return values.

The following steps describe the process shown in Figure 21-1:

1. At synchronization time, DTS calls theContactProvider remote procedure. Input
parameters are passed to the TP client stub, dispatched to the RPC runtime library,
and then passed to the TP server stub.

2. The TP process receives the call and executes theContactProvider procedure.

3. The procedure terminates and returns the results through the TP server stub, the
RPC runtime library, and the TP client stub.

4. The procedure terminates in the DTS call, where the returned parameters are
examined.

DCE 1.2.2 Application Development Guide—Core Components 723

DCE Distributed Time Service

5. DTS then calls theServerRequestProviderTime remote procedure. Input
parameters are passed to the TP client stub, dispatched to the RPC runtime
library, and then passed to the TP server stub.

Figure 21–1. DTS/Time-Provider RPC Calling Sequence

7 236

TP process

RPC interface

DTS daemon

RPC interface

TP server stub

ServerRequestProviderTime

TP client stub

1 4 5 8

ContactProvider

RPC runtime library

6. The TP process receives the call and executes theServerRequestProviderTime
procedure.

7. The procedure terminates and returns the results through the TP server stub, the
RPC runtime library, and the TP client stub.

8. The DTS remote procedure call terminates and the timestamps are returned as an
output parameter. DTS then synchronizes using the timestamps returned by the
external time-provider.

The following section describes the remote procedures that are exported by the TP
process during the previous sequence.

724 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

21.1.1 ContactProvider Procedure

ContactProvider is the first routine called by DTS. The routine is called to verify that
the TP process is running and to obtain a control message that DTS uses for subsequent
communications with the TP process and for synchronization after it receives the
timestamps. The parameters passed in theContactProvider procedure call consist of
the following elements:

• Binding Handle

An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a server
(the TP process) that offers the same interface.

• Control Message

An output parameter that contains information used by DTS for subsequent
processing. The control message consists of the following elements:

TPstatus One of the following values:

• K_TPI_SUCCESS

• K_TPI_FAILURE

nextPoll A time value that tells DTS when to contact the TP process again.
For example, once a day through dial-up, radio, or satellite.

timeout A value that tells DTS how long to wait for a response from the TP
process.

noClockSet A value that specifies whether or not DTS is allowed to alter the
system clock. IfnoClockSetis specified as 0x01 (TRUE), DTS
does not adjust or set the clock during the current synchronization.
This option is useful for systems whose system clock is known
to be accurate (such as systems equipped with special hardware)
or systems that are managed by some other time service (such as
Network Time Protocol (NTP)), but which still wish to function as
a DTS server.

• Communication Status

An output parameter that contains a status code returned by the DCE RPC runtime
library. The statusrpc_s_okis returned if the TP process is successfully contacted.

DCE 1.2.2 Application Development Guide—Core Components 725

DCE Distributed Time Service

21.1.2 ServerRequestProviderTime Procedure

After the TP process is successfully contacted, DTS makes the
ServerRequestProviderTime procedure call to obtain the timestamps from the
external time-provider. The parameters passed in theServerRequestProviderTime
procedure call consist of the following elements:

• Binding Handle

An input parameter that establishes the relationship between DTS and the TP
process. A binding handle enables the client (DTS) to recognize and find a server
(the TP process) that offers the same interface.

• Time Response Message

An output parameter that contains a TP process status value (K_TPI_SUCCESS
or K_TPI_FAILURE), a count of the timestamps that are returned, and the
timestamps obtained from the external time-provider. The timestamp count is
an integer in the rangeK_MIN_TIMESTAMPS to K_MAX_TIMESTAMPS .
Each timestamp consists of threeutc time values:

— The system clock time immediately before the TP process polls the
external time source. (The TP process normally obtains the time from the
utc_gettime() DTS API routine.)

— The time value returned to the TP process by the external time source.

— The system clock time immediately after the external time source is read.
(The TP process obtains the time from theutc_gettime() DTS API routine.)

• Communication Status

An output parameter that contains a status code returned by the DCE RPC runtime
library. The statusrpc_s_okis returned if the TP process is successfully contacted.

21.2 Time-Provider Process IDL File

A remote procedure call can only work if an interface definition that clearly defines
operation signatures exists. Operation signatures define the syntax for an operation,
including its name and parameters (input and output) that are passed as part of the
procedure call. The TP process interface exports the two operation signatures that
have been previously explained. The interface is provided in the fileexamples/dts/

726 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

dtsprovider.idl . When building the TP process application, this file must be compiled
using the IDL compiler, which creates three files:

• dtsprovider.h (header file)

• dtsprovider_sstub.c(server stub file)

• dtsprovider_cstub.c (client stub file)

The Time-Provider program (TP program) must be compiled along with the
dtsprovider_sstub.c code and then linked together. The TP program must also
include the stub-generated filedtsprovider.h. The following sample code shows the
structure of this interface.

/*

* Time Service Provider Interface

*

* This interface is defined through the Network Interface

* Definition Language (NIDL).

*/

[uuid (bfca1238-628a-11c9-a073-08002b0dea7a),

version(1)

]

interface time_provider

{

import "dce/nbase.idl";

import "dce/utctypes.idl";

/* Minimum and Maximum number of times to read time source at

* each synchronization

*/

const long K_MIN_TIMESTAMPS = 1;

const long K_MAX_TIMESTAMPS = 6;

/* Message status field return values

*/

const long K_TPI_FAILURE = 0;

const long K_TPI_SUCCESS = 1;

DCE 1.2.2 Application Development Guide—Core Components 727

DCE Distributed Time Service

/* This structure contains one reading of the TP wrapped in

* the timestamps of the local clock.

*/

typedef struct TimeResponseType

{

utc_t beforeTime; /* local clk just before getting UTC */

utc_t TPtime; /* source UTC; inacc also supplied */

utc_t afterTime; /* local clk just after getting UTC */

} TimeResponseType;

/* Time-provider control message. This structure is returned

* in response to a time service request. The status field

* returns TP success or failure. The nextPoll gives the

* client the time at which to poll the TP next. The timeout

* value tells the client how long to wait for a time response

* from the TP. The noClockSet will tell the client whether

* or not it is allowed to alter the system clock after a

* synchronization with the TP.

*/

typedef struct TPctlMsg

{

unsigned long status;

unsigned long nextPoll;

unsigned long timeout;

unsigned long noClockSet;

} TPctlMsg;

/* TP timestamp message. The actual time-provider

* synchronization data. The status is the result of the

* operation (success or failure). The timeStampCount

* parameter returns the number of timestamps being returned

* in this message. The timeStampList is the set of

* timestamps being returned from the TP.

*/

typedef struct TPtimeMsg

{

unsigned long status;

unsigned long timeStampCount;

TimeResponseType timeStampList[K_MAX_TIMESTAMPS];

728 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

} TPtimeMsg;

/* The Time-Provider Interface structures are described here.

* There are two types of response messages from the TP:

* control message and data message.

*

* <<<< TPI CONTROL MESSAGE >>>>

*

* 31 0

* +--+

* | Time-Provider Status |

* +--+

* | Next Poll Delta |

* +--+

* | Message Time Out |

* +--+

* | NoSet Flag |

* +--+

*

* <<<< a single timestamp >>>>

*

* 128 0

* +--+

* | Before Time |

* +--+

* | TP Time |

* +--+

* | After Time |

* +--+

*

* <<<< TPI DATA MESSAGE >>>>

*

* 31 0

* +--+

* | Time-Provider Status |

* +--+

* | Timestamp Count |

* +--+

* | |

DCE 1.2.2 Application Development Guide—Core Components 729

DCE Distributed Time Service

* | <timestamp one> |

* | |

* +--+

* | . |

* | . |

* | . |

* | . |

* | . |

* +--+

* | |

* | <timestamp K_MAX_TIMESTAMPS> |

* | |

* +--+

*/

/* The RPC-based Time-Provider Program (TPP) interfaces are

* defined here. These calls are invoked by a Time Service

* daemon running as a server (in this case it makes an RPC

* client call to the TPP server).

*/

/* CONTACT_PROVIDER

* Send initial contact message to the TPP. The TPP server

* responds with a control message.

*/

void ContactProvider

(

[in] handle_t bind_h,

[out] TPctlMsg *ctrlRespMsg,

[out] error_status_t *comStatus

);

/* SERVER_REQUEST_PROVIDER_TIME

* The client sends a request to the TPP for times. The

* TPP server responds with an array of timestamps obtained

* by querying the Time-Provider hardware that it polls.

*/

void ServerRequestProviderTime

(

[in] handle_t bind_h,

730 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

[out] TPtimeMsg *timesRspMsg,

[out] error_status_t *comStatus

);

}

21.3 Initializing the Time-Provider Process

Initializing the RPC-based TP process prepares it to receive remote procedure calls
from a DTS daemon requesting the timestamps. The following steps are involved:

1. Include the header file (dtsprovider.h) that is created by compiling/usr/include/
dce/dtsprovider.idl, which contains the interface definition.

2. Register the interface with the DCE RPC runtime.

3. Select one or more protocol sequences that are compatible with both the interface
and the runtime library. It is recommended that the TP process application selects
all protocol sequences available on the system. Available protocol sequences are
obtained by calling an RPC API routine, described in the example that follows.
This ensures that transport independence is maintained in RPC applications.

4. Register the TP process with the endpoint mapper service of the DCE daemon
(dced) running on the system. This makes the TP process available to the DTS
daemon.

5. Obtain the name of the machine’s principal and then register an authentication
service to use with authenticated remote procedure calls coming from the DTS
daemon. Note that DTS and the TP program are presumed to be running in an
authenticated environment.

6. Listen for remote procedure calls.

The following shows these steps, including the sequence of calls needed:

/* Register the TP server interface with the RPC runtime.

* The interface specification time_provider_v1_0_ifspec

* is obtained from the generated header file dtsprovider.h

* The entry point vector is normally defined at the top of

* the TP source program similar to this:

DCE 1.2.2 Application Development Guide—Core Components 731

DCE Distributed Time Service

*

* globaldef time_provider_v1_0_epv_t time_provider_epv =

* {

* ContactProvider,

* ServerRequestProviderTime

* };

*/

rpc_server_register_if (time_provider_v1_0_s_ifspec,

NULL,

(rpc_mgr_epv_t) &time_provider_epv,

&RPCstatus);

/*

* This call tells the DCE RPC runtime to listen for remote

* procedure calls using all supported protocol sequences.

* To listen for a specific protocol sequence, use the

* rpc_server_use_protreq call.

*/

rpc_server_use_all_protseqs (max_calls,

&RPCstatus);

/* This routine is called to obtain a vector of binding

* handles that were established with registration of

* protocol sequences.

*/

rpc_server_inq_bindings (&bind_vector,

&RPCstatus);

/* This routine adds the address information of the binding

* handle for the TP server to the endpoint mapper database.

*/

rpc_ep_register (time_provider_v1_0_s_ifspec,

bind_vector,

NULL,

"Time-Provider",

&RPCstatus);

/* Obtain the name of the machine’s principal and register an

* authentication service to use for authenticated remote

* procedure calls coming from the time service daemon.

732 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

*/

dce_cf_prin_name_from_host (NULL,

&machinePrincipalName,

&status);

rpc_server_register_auth_info (machinePrincipalName,

rpc_c_authn_dce_private,

NULL,

NULL,

&RPCstatus);

/* This routine is called to listen for remote procedure calls

* sent by the DTS client. Possible RPC calls coming from DTS

* client are ContactProvider and ServerRequestProviderTime.

*/

rpc_server_listen (max_calls,

&RPCstatus);

21.4 Time-Provider Algorithm

The time-provider algorithm assumes that the two remote procedure calls will come
in the following order:ContactProvider followed by ServerRequestProviderTime.
The algorithm to create a generic time-provider follows:

1. Initialize the TP process, as described previously. Listen for RPC calls.

2. If the ContactProvider procedure is invoked, perform the following steps:

a. Initialize the control message to the appropriate values (status value to
K_TPI_SUCCESS; nextPoll, timeout, and noClockSet to valid integer
values).

b. Set the communication status output parameter torpc_s_ok.

c. Return from the procedure call. (The DCE RPC runtime returns the values to
DTS.)

3. If theServerRequestProviderTimeprocedure is run, perform the following steps:

a. Initialize the timestamp count to the appropriate number.

b. Use theutc_gettime() DTS API routine to read the system time.

DCE 1.2.2 Application Development Guide—Core Components 733

DCE Distributed Time Service

c. Poll the external time source and read a UTC value. Use theutc_gmtime()
routine to convert the UTC time value to a binary timestamp.

d. Use theutc_gettime() routine to read the system time.

e. Repeat steps b, c, and d the number of times specified by the values of
K_MIN_TIMESTAMPS andK_MAX_TIMESTAMPS .

f. If steps b, c, or d return erroneous data, initialize the TP process status field
(TPstatus) of the data message toK_TPI_FAILURE ; otherwise, initialize
the data message timestamps.

g. Set the communication status output parameter torpc_s_ok.

h. Return from the procedure call. (The DCE RPC runtime sends the values
back to DTS.)

4. The TP process continues listening for RPC calls.

21.5 DTS Synchronization Algorithm

DTS performs the following steps to synchronize with an external time-provider:

1. At startup time, creates the binding handle for the TPI. The binding handle is
obtained from the list of available protocol sequences on the system.

2. At synchronization time, makes the remote procedure callContactProvider,
assuming that a TP process is running on the system. If the procedure call fails,
examine the RPC communication status, checking the availability of the server.
If the server is unavailable, synchronize with peer servers; otherwise, continue.

3. Waits for the procedure call to return the control message in the output parameter.
If the procedure call does not return within the specified LAN timeout interval,
synchronizes with peer servers. Otherwise, go to step 4.

4. If the procedure call returned successfully (communication status isrpc_s_ok),
reads the data in the control message.

5. Makes the remote procedure callServerRequestProviderTime to obtain the
timestamps from the external time-provider. If the procedure does not return within
the elapsed time specified by the control message (timeout), then synchronizes
with peer servers. Schedules the next synchronization based upon the applicable
DTS management parameters, ignoringnextPoll.

734 DCE 1.2.2 Application Development Guide—Core Components

Time-Provider Interface

6. If the procedure returns successfully, verifies that the TP process status is
K_TPI_SUCCESS. Otherwise, synchronizes with peer servers and schedule the
next synchronization.

7. Extracts the timestamps from the data message and synchronizes using the
timestamps.

8. Schedules the next synchronization time by adding the value ofnextPollseconds
to the current time. At the next synchronization, goes to step 2.

Note: Application developers do not have to perform these steps; DTS performs
these steps internally during synchronization with an external time-provider.

21.6 Running the Time-Provider Process

Both the TP process and the DTS daemon must run on the same system. The TP
process must be started up under the login context of the machine’s principal, which
has root privileges. The DTS daemon and the TP process are started independently.
However, before starting the TP process, ensure thatdced is running on the system.
If it is not running, start it. The TP process can always exit without affecting the DTS
daemon. DTS dynamically reestablishes communications with the TP process when it
creates binding handles.

21.7 Sources of Additional Information

Refer to the following for additional information:

• See/examples/dtsfor examples of time-provider programs that you can use with
several different types of external time-provider devices.

• See theDCE 1.2.2 Administration Guide—Core Componentsfor commercial
sources of external time-providers.

• See the DCE 1.2.2 Application Development Referencefor reference pages
describing the RPC API and DTS API routines.

DCE 1.2.2 Application Development Guide—Core Components 735

Chapter 22
DTS API Routines Programming
Example

This chapter contains a C programming example showing a practical application of
the DTS API programming routines. The program performs the following actions:

• Prompts the user to enter two sets of time coordinates corresponding to the
timestamps of two ‘‘events.’’

• Stores those coordinates in atm structure.

• Converts thetm structure to autc structure.

• Prints out theutc structure in ISO text format.

• Determines which event occurred first.

• Determines if Event 1 may have caused Event 2 by comparing the intervals.

#include time.h /* time data structures */

#include dce/utc.h /* utc structure definitions */

DCE 1.2.2 Application Development Guide—Core Components 737

DCE Distributed Time Service

void ReadTime();

void PrintTime();

/* This program requests user input about events, then prints

* out information about those events.

*/

main()

{

struct utc event1,event2;

enum utc_cmptype relation;

/* Read in the two events.

*/

ReadTime(&event1);

ReadTime(&event2);

/* Print out the two events.

*/

printf("The first event is : ");

PrintTime(&event1);

printf("\nThe second event is : ");

PrintTime(&event2);

printf("\n");

/* Determine which event occurred first.

*/

if (utc_cmpmidtime(&relation,&event1,&event2))

exit(1);

switch(relation)

{

case utc_lessThan:

printf("comparing midpoints: Event1 < Event2\n");

break;

case utc_greaterThan:

printf("comparing midpoints: Event1 > Event2\n");

break;

case utc_equalTo:

printf("comparing midpoints: Event1 == Event2\n");

break;

738 DCE 1.2.2 Application Development Guide—Core Components

DTS API Routines Programming Example

default:

exit(1);

break;

}

/* Could Event 1 have caused Event 2? Compare the

* intervals.

*/

if (utc_cmpintervaltime(&relation,&event1,&event2))

exit(1);

switch(relation)

{

case utc_lessThan:

printf("comparing intervals: Event1 < Event2\n");

break;

case utc_greaterThan:

printf("comparing intervals: Event1 > Event2\n");

break;

case utc_equalTo:

printf("comparing intervals: Event1 == Event2\n");

break;

case utc_indeterminate:

printf("comparing intervals: Event1 ? Event2\n");

default:

exit(1);

break;

}

}

/* Print out a utc structure in ISO text format.

*/

void PrintTime(utcTime)

struct utc *utcTime;

{

char string[50];

/* Break up the time string.

*/

if (utc_ascgmtime(string, /* Out: Converted time */

DCE 1.2.2 Application Development Guide—Core Components 739

DCE Distributed Time Service

50, /* In: String length */

utcTime)) /* In: Time to convert */

exit(1);

printf("%s\n",string);

}

/* Prompt the user to enter time coordinates. Store the

* coordinates in a tm structure and then convert the tm

* structure to a utc structure.

*/

void ReadTime(utcTime)

struct utc *utcTime;

{

struct tm tmTime,tmInacc;

(void)memset((void *)&tmTime, 0, sizeof(tmTime));

(void)memset((void *)&tmInacc, 0, sizeof(tmInacc));

(void)printf("Year? ");

(void)scanf("%d",&tmTime.tm_year);

tmTime.tm_year -= 1900;

(void)printf("Month? ");

(void)scanf("%d",&tmTime.tm_mon);

tmTime.tm_mon -= 1;

(void)printf("Day? ");

(void)scanf("%d",&tmTime.tm_mday);

(void)printf("Hour? ");

(void)scanf("%d",&tmTime.tm_hour);

(void)printf("Minute? ");

(void)scanf("%d",&tmTime.tm_min);

(void)printf("Inacc Secs? ");

(void)scanf("%d",&tmInacc.tm_sec);

if (utc_mkanytime(utcTime,

&tmTime,

(long)0,

&tmInacc,

(long)0,

(long)0))

exit(1);

}

740 DCE 1.2.2 Application Development Guide—Core Components

Part 5
DCE Security Service

Chapter 23
Overview of Security

This chapter provides a brief overview of the two security services available in DCE:

• DCE Security Service

• Generic Security Services (GSS)

Refer to theDCE 1.2.2 Application Development Referencefor detailed information
on the Application Program Interfaces (APIs) discussed in the security chapters of
this guide.

23.1 Purpose and Organization of the Security
Chapters

This part of the guide explains the major features of DCE security so that you can
decide what, if anything, you need to do to ensure that your DCE application is
sufficiently secure. A lot of security is built into DCE, so in many cases you will need
to do nothing, or very little, to secure your DCE application. Furthermore, you do not

DCE 1.2.2 Application Development Guide—Core Components 743

DCE Security Service

need to understand all of the details of the DCE security services in order to use them
effectively.

Following the overview of the DCE Security Service in this chapter are two chapters
that contain conceptual discussions of authentication and authorization. The remaining
chapters in this part of the guide discuss the DCE Security Service APIs—registry,
login, extended registry attribute (ERA), extended privilege attribute (EPA), key
management, access control list (ACL), password management, and ID map—and
GSS credentials.

23.2 About Authenticated RPC

Perhaps the most important security facility is the authenticated remote procedure
call (RPC) facility. Authenticated RPC enables distributed applications to participate
in authenticated network communications. Applications using the authenticated RPC
routines may select the authentication protocol and the authorization protocol to be
used, and set various protocol-independent protection levels for communicating with
remote entities (users, servers, and computers).

The use of authenticated RPC is explained in Chapters 13 and 14. Chapter 14 contains
information about a number of RPC routines that relate directly to security issues, such
as rpc_binding_set_auth_info().

These security chapters, however, contains conceptual information that is useful for
understanding the authentication and authorization protocols that authenticated RPC
routines use; for this information, we recommend that you read Chapters 24 and 25,
as well as this one.

23.3 About the GSSAPI

The GSS provides an alternate way of providing DCE security to distributed
applications that handle network communications by themselves. With GSSAPI, you
can include established applications in DCE and ensure the security and integrity
of the applications and their data. In peer-to-peer communications, the application
that establishes the secure connection is thecontext initiatoror simply initiator. The
context initiator is like a DCE RPC client. The application that accepts the secure

744 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

connection is thecontext acceptoror simply acceptor. The context acceptor is like a
DCE RPC server.

The GSS available with DCE includes two sets of routines:

• Standard GSSAPI routines, which are defined in the Internet RFC 1509 ‘‘Generic
Security Service API: C-bindings.’’ These routines have the prefixgss_.

• OSF DCE extensions to the GSSAPI routines. These are additional routines that
enable an application to use DCE security services. These routines have the prefix
gssdce_.

The chapters that follow provide information about how the GSSAPI routines use
the authentication and authorization protocols. Chapter 26 provides information about
GSS credentials, which are used to establish an application’s identity in DCE.

23.4 UNIX System Security and DCE Security

UNIX system security mostly presumes that a computer’s backplane can be trusted
because computing operations are assumed to be local, and because the computer
itself can be physically secured. In a distributed environment, the logical equivalent
of the single system’s backplane is the network itself. Network computing means
distributed, rather than localized, computing operations and, in the case of an open
network (which DCE assumes), little of the network is physically secure. Thus, the
nature of distributed systems poses special security risks, in addition to those posed
by nondistributed systems. Unlike UNIX system security, DCE security is designed
specifically to address those risks.

These considerations notwithstanding, network security is ultimately dependent on the
security features that are local to the individual computers in the network and, what is
more important, the manner in which those features are used and administered. Since
any compromise to the local security of a computer in the distributed environment
may introduce opportunities for compromising network security, DCE security does
not diminish the importance of local security. In fact, the relative importance of local
system security is greater in the distributed environment because the consequences of
a local security breach may not be local. Finally, while DCE security does nothing to
enhance local security, neither does it introduce any new avenues for compromising
local security.

DCE 1.2.2 Application Development Guide—Core Components 745

DCE Security Service

In the discussions in this guide, we assume you are familiar with the authentication
and authorization features that UNIX systems provide:/etc/passwdand /etc/group
file processing, routines that return or change file attributes, routines that return or
change real or effective user IDs (UIDs) and group IDs (GIDs), and data encryption
and decryption.

23.5 What Authentication and Authorization Mean

There are two questions that DCE security can answer for a principal about another
principal with which it might want to communicate:

• Is this principal really who it says it is?

• Does it have the right to do what it wants to do?

Depending on the answers to these questions, a security-sensitive principal takes
different courses of action with respect to a principal with which it is communicating.

To authenticate a principal means to verify that the principal is representing its true
identity. To authorize a principal means to grant permission for the principal to perform
an operation. While distinct, the concepts of authentication and authorization are
also intertwined. For one thing, a principal’s authorization is explicitly linked to its
identity. For another, there is the possibility that authorization data concerning an
authenticated principal can be falsified, which raises the additional question, ‘‘Should
the authorization data concerning this principal be believed?’’ To this question also,
DCE security can provide an answer to a principal for which this issue is a concern.

The discussions of authenticated RPC refer to the specific mechanisms by which
authentication and authorization are performed as authentication and authorization
protocols. Authenticated RPC supports at least one of each. However, RPC
documentation refers to authentication and authorization protocols as services. The
security chapters use the termprotocol instead ofservicein this context to prevent
confusion between the protocol-independent DCE authentication and authorization
services and the various authentication and authorization protocols that those services
support.

The GSSAPI combines authentication and authorization under a single security
concept called amechanism. The security mechanism provides applications a choice

746 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

of either Kerberos security or Privilege Attribute Certificate (PAC) authorization under
DCE security.

23.6 Authentication, Authorization, and Data
Protection in Brief

When one principal talks to another in a distributed computing environment, there is a
risk that communications between the two will provide a means for compromising the
security of one or the other. For example, a client may attack a server, or a server may
set a trap for clients. An attack is most likely to succeed if the malevolent principal can
convince its victim that it is something other than what it really is (an attacker), and/or
that it possesses authorization that it does not really have. A counterfeit identity and/
or authorization data grants an attacker access that it presumably would not otherwise
have, and so provides an opportunity for the attacker to do damage.

One way an attacker might obtain counterfeit credentials is to intercept network
transmissions between a client and a server, and then attempt to decipher (and perhaps
modify) the transmitted data. If the attacker is able to interceptand deciphera
principal’s authentication or authorization information, it can later use this data to
masquerade as an authentic principal with proper authorization.

DCE security protects against these kinds of attacks. It contains features that enable
principals to

• Detect whether data they receive has been modified in transit

• Be certain that an attacker will be unable to decipher any authentication and
authorization data it may succeed in intercepting

DCE security gives DCE principals confidence that the identity and authorization of
principals they communicate with are authentic.

Figure 23-1 is an extremely condensed and highly stylized representation of the
essentials of DCE security in terms of the DCE shared-secret authentication protocol
and the DCE authorization protocol. Unless we note otherwise, assume that discussions
in the security chapters of this guide refer to these two protocols, used in conjunction
with one another.

The following is a description of the events depicted in the illustration:

DCE 1.2.2 Application Development Guide—Core Components 747

DCE Security Service

1. Principal A (which could be an attacker masquerading as Principal A) requests
authentication of its identity from the authentication service. This request is
encrypted using several keys, one of which is a key derived from the password
supplied by Principal A. A copy of Principal A’s key also exists in the registry
database, having been stored there when the principal’s account was created (or
when the password was changed). It is thus available to the authentication service.

The authentication service then obtains the registry’s copy of Principal A’s key and
uses it to decrypt Principal A’s authentication request. If the decryption succeeds,
the keys are the same; Principal A is therefore authenticated and the authentication
service replies with information that enables Principal A to ask the privilege
service to authenticate its privilege attributes. (Privilege attributes are data used
in making authorization decisions; they consist of the principal’s name and group
memberships.) If Principal A fails to get authenticated privilege attributes (also
referred to ascredentials), it may simply assert its privilege attributes to Principal
B.

2. Principal A now makes a request to Principal B to perform some operation that
requires thec permission to objectd, and presents its certified privilege attributes.
Principal B may grant or denyc access tod after examining the ACL that protects
objectd. (An ACL associates the privilege attributes of principals with permissions
to an object.) Ifc is one of the permissions listed in the ACL granted to Principal
A, then Principal A is allowed to perform the operation; if thec permission is
not granted, A is denied access.

748 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

Figure 23–1. Shared-Secret Authentication and DCE Authorization in Brief

Authentication
 Service

Privilege
 Service

Principal B

Principal A

Request for authentication
encrypted in several keys, one
of which is principal A’s key

Request for privilege attributes

”How to contact Privilege Service”

Certified privilege attributes

”Do c to d”

Certified privilege attributes

Response to request

RPC

RPC

RPC

RPC

RPC

RPC

Had the authentication service been unable to decrypt the principal’s
authentication request, the principal would have been unauthenticated and,
as a consequence, unable to acquire certified privilege attributes from the
privilege service. In that case, Principal A might have simply asserted its
privilege attributes to B; that is, claimed them for itself, without the benefit of
having the privilege service certify this data as being genuine. Had Principal
A then presented asserted privilege attributes to Principal B, then B might
have denied the requested permission or granted it, depending on whether B
grants permissions to unauthenticated principals, and whetherc is among the
permissions that B grants to such principals.

If Principals A and B are especially sensitive to security concerns, they may
request that transmitted data be checked for integrity to establish whether it has
been modified in transit, and possibly also encrypted to ensure that the data is
unintelligible to any party other than Principals A and B.

DCE 1.2.2 Application Development Guide—Core Components 749

DCE Security Service

23.7 Summary of DCE Security Services and Facilities

The DCE Security Service consists of services and facilities. The security services are

• The registry service, which maintains a database of principals, groups,
organizations, accounts, and administrative policies.

• The authentication service, which verifies the identity of a principal and issues
tickets that the principal uses to access remote services. (A ticket is data about a
principal that is presented to the entity providing the service.)

• The privilege service, which certifies a principal’s privilege attributes (that is, its
name and group memberships, which are represented as UUIDs).

The three security services are implemented in a single daemon, the security server.

The DCE Security Service facilities are

• The login facility, which enables a principal to establish its network identity.

• The ERA facility, which extends the registry database to maintain attribute types
and instances.

• The EPA facility, which provides access to the information in extended privilege
attribute certificates (EPACs)

• The ACL facility, which enables a principal’s access to an object to be determined
by a comparison of the principal’s privilege attributes to the object’s permissions.

• The key management facility, which enables noninteractive principals (most
frequently, servers) to manage their secret keys.

• The ID map facility, which maps cell-relative principal names to global principal
names, and global principal names to cell-relative principal names. This facility
is used in connection with the transmission of information about principals that
are members of different DCE cells.

• The password management facility, which enables principal’s passwords to be
generated, and to be subjected to strength-checks beyond those defined in DCE
standard policy.

For UNIX system compatibility with DCE, the DCE Security Service also provides
implementations of UNIX system C library interfaces to the/etc/passwdand /etc/
group files.

750 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

23.7.1 Interfaces to the Security Server

Following are the user interfaces to the security server itself (see theDCE 1.2.2
Administration Guide—Core Componentsand theDCE 1.2.2 Command Reference):

• secd

The security daemon (a replicated server)

• sec_create_db

Creates the security databases

• sec_admin

Administers instances of the security daemon

• sec_salvage_db

Converts the security database from one version of DCE to another

Salvages a corrupted security database

• The security validation service ofdced

Enables clients of the security server to communicate with it

All other interfaces to the security server are more precisely characterized as interfaces
to its three services: registry, authentication, and privilege.

23.7.1.1 Registry Service Interfaces

User interfaces to the registry service are described in theDCE 1.2.2 Administration
Guide—Core Componentsand theDCE 1.2.2 Command Reference. Following is a
summary of them:

• rgy_edit

Edits registry database entries

• passwd_import

Creates registry database entries from UNIX system/etc/passwdand /etc/group
files

• passwd_export

DCE 1.2.2 Application Development Guide—Core Components 751

DCE Security Service

Creates local registry information that corresponds to network registry database
entries

• chpass

Changes a user’s password in a registry database entry

23.7.1.2 Authentication Service Interfaces

Following is a summary of the user interfaces to the authentication service when the
default authentication protocol is in effect (the default protocol is DCE shared-secret,
which is based on the Kerberos Version 5 network authentication system).

• kinit

Obtains a login session’s ticket(s) to remote services (thelogin andsu tools also
perform this service)

• klist

Lists a login session’s tickets to remote services

• kdestroy

Destroys a login session’s tickets to remote services

There are two security APIs that distributed applications are most likely to call to use
the authentication service:

• Authenticated RPC facility

• GSSAPI

Although an application that uses GSSAPI may not make explicit calls to RPC
routines, the GSSAPI implementation itself uses DCE RPC to communicate with
the DCE registry.

752 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

23.7.1.3 Privilege Service Interfaces

There are no user interfaces or APIs to the privilege service. The login facility and
authenticated RPC or GSSAPI encapsulate interactions between a principal and the
privilege service.

23.7.2 Interfaces to the Login Facility

User interfaces to the login facility consist of the following tools:

• dce_login

Enables an interactive principal to log into DCE, but does not change the
principal’s local identity

• login

Enables an interactive principal to log in

• su

Enables a logged-in interactive principal to assume a different principal identity

The API to the login facility consists of calls that are prefixed withsec_login_. This
API enables application processes to assume their network identities. Network login
and system login programs are examples of applications that call this API.

23.7.3 Interfaces to the Extended Registry Attribute Facility

The user interface to the ERA facility consists of DCE control program (dcecp)
commands that allow users to modify the registry schema to create and maintain
attribute types and to create and maintain instances of those types.

The API to the ERA facility consists of calls that are prefixed withsec_rgy_attr_.

DCE 1.2.2 Application Development Guide—Core Components 753

DCE Security Service

23.7.4 Interfaces to the Extended Privilege Attribute Facility

There are no user interfaces to the EPA facility. The API to this facility consists of
calls that are prefixed withsec_cred_. These routines extract data from EPACs.

23.7.5 Interfaces to the Key Management Facility

For a distributed application, it may be important for a server to have a network identity
that is distinct from the principal identity it inherits from the user who invokes it or
the host on which it runs. The key management facility provides features that enable
noninteractive principals to manage their secret keys.

The user interface to the key management facility consist of a fewrgy_edit
subcommands that enable an administrator to maintain a key table. A remote interface
allows users and administrators to maintain key tables on remote machines through the
dcecp keytabverbs. A subset of local operations is also available though this interface.
These subcommands call the key management API, which consists of several calls
with the prefixsec_key_.

23.7.6 Interfaces to the ID Map Facility

There are no user interfaces to the ID map facility. The API to this facility consists
of calls that are prefixed whtsec_id_. These routines map a global principal or group
name into a cell name and a cell-relative principal or group name, and generate a
global principal or group name from a cell name and a cell-relative principal or group
name. This API also converts between the internal (UUID) representation of a name
and the human-readable string.

23.7.7 Interfaces to the Access Control List Facility

The only user interface to the ACL facility is thedcecp ACL object acl_edit. This
tool edits an object’s ACL, the entries of which specify the permissions to the object
that may be granted to principals possessing specified privilege attributes.

754 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

The ACL API consists of routines that are prefixed withsec_acl_. This is the same API
that acl_edit calls, so an ACL editor or browser that is intended to replaceacl_edit
would call this API. A different case is that of an application server that needs to
store and retrieve application-specific, access-control information for its clients. Such
an application needs to implement its own ACL manager by using the DCE ACL
library. (Refer to Chapter 32 for more information on ACL managers).

23.7.8 DCE Implementations of UNIX System Program Interfaces

DCE security provides implementations of UNIX system C library interfaces related
to security. These aregetpwent() and the related program interfaces to the/etc/
passwdfile, andgetgrent() and the related program interfaces to the/etc/group file.
Applications that bind withlibdce.aare bound with the DCE security implementations
of these interfaces.

23.7.9 Interfaces to the Password Management Facility

The user interface to the password management facility is provided by subcommands
to the rgy_edit and dcecp commands. These subcommands enforce password
management policy for principals and enable them to request generated passwords. See
the rgy_edit(8sec)anddcecp(8dce)reference pages and theDCE 1.2.2 Administration
Guide—Core Componentsfor information on using these commands to create and
change principal passwords.

The API to the password management facility consists of routines that are prefixed with
sec_pwd_mgmt_. See the appropriate reference pages and Chapter 36 for information
on these routines.

23.8 Relationships Between the DCE Security Service
and DCE Applications

Figure 23-2 is a schematic illustration of the relationships among the interfaces to the
DCE Security Service, and the relationship of security interfaces to DCE applications.

DCE 1.2.2 Application Development Guide—Core Components 755

DCE Security Service

Figure 23–2. DCE Security and the DCE Application Environment

Security API

RPC API

Security and RPC runtime libraries

Local operating system

Applications Default DCE
Security tools

Local OS
security APIs

Remote
client or
server

RPC
or

Peer
to

Peer
GSSAPI

23.9 DTS, the Cell Namespace, and Security

The following subsections discuss the dependencies of DCE security on the Distributed
Time Service (DTS), and the relationship between the security namespace and the Cell
Directory Service (CDS) namespace. For information about how DCE components
such as CDS use features of DCE security, refer to the documentation on the
component of interest (for example, the section of theDCE 1.2.2 Administration
Guide—Core Componentson CDS).

23.9.1 DTS and Security

The DCE Security Service depends on a relatively close synchronization of
network clocks, a service provided by DTS. When network clocks become too
skewed, unexpired tickets to services may be regarded as invalid, and/or expired
tickets considered valid. Excessive skewing can inconvenience users and introduce
opportunities for security breaches; in the latter case, administrative intervention is
required.

756 DCE 1.2.2 Application Development Guide—Core Components

Overview of Security

23.9.2 The Cell Namespace and the Security Namespace

The registry database maintains three security namespaces: the principal, group,
and organization (PGO) namespaces. These namespaces are distinct from the cell
namespace maintained by CDS. Security names take the following form:

/.../ cell_name/ pgo_name

CDS names take the following form:

/.../ cell_name/ pathname/ object_name

Since the security namespace is rooted in the CDS namespace, security names have
equivalent CDS names. Thus, for example, an entry for a principal in the registry
database has the first of the following forms in the security namespace and the second
of the following forms in the CDS namespace:

/.../ cell_name/ principal_name

/.../cell_name/ security_mount_point/ principal/ principal_name

Note: The security mount point (security_mount_pointas shown in the preceding
syntax) is determined when DCE is configured. Therefore, the name may
differ at individual sites.

There is no ambiguity about the security namespace to which a name refers because
security names are always used in contexts that identify the namespace in question.
For example, logging into DCE requires a principal name to be supplied.

However, an ACL is an object that is referenced not directly, but by the name of the
object it protects. Since protected objects are not always security objects (and therefore
may be registeredonly in the CDS namespace), ACL management interfaces always
take CDS names rather than security names as input, whether or not it is the ACL of
a security object (such as a registry database entry) that is being read or modified.

DCE 1.2.2 Application Development Guide—Core Components 757

Chapter 24
Authentication

This chapter describes the authentication process of users and applications, as well as
of principals in other cells.

Note: The authenticated RPC facility may also be referred to as theprotectedRPC
facility, as it involves services beyond authentication.

24.1 Background Concepts

The following concepts, as they relate to this chapter, are described within this section:

• Principals, which are the subjects of authentication

• The shared-secret authentication protocol, which is the mechanism by which
authentication is effected when applications specify this protocol via the
authenticated RPC facility

• Cells, which are the environment where authentication takes place

DCE 1.2.2 Application Development Guide—Core Components 759

DCE Security Service

• Protection levels, which are the various degrees to which transmitted application-
level data may be protected

• Data encryption/decryption (cryptographic) algorithms, which are the mechanisms
that the security server and client and server runtimes use to encrypt and decrypt
data exchanged between principals

24.1.1 Principals

For the purposes of this discussion, the termprincipal may be precisely defined as
an entity that is capable of believing it can communicate securely with another entity.
In DCE security, principals are represented as entries in the registry database. DCE
principals include the following:

• Users, who are also referred to asinteractive principals

• Instances of DCE (system-level) servers

• Instances of application-level servers

• Computers (hosts) in a DCE cell

• Key distribution service (KDS) surrogates (these are used for cross-cell
authentication; see Section 24.3)

The DCE security server itself comprises three principals that correspond to the three
services that it provides: KDS, registry service, and privilege service. The KDS in
turn provides two subservices: the authentication (sub)service and the ticket-granting
(sub)service (TGS).

Note: As used in the literature, the termauthentication serviceis sometimes
ambiguous. This name may be, in places, associated with at least three
distinct entities: the authentication (sub)service of the KDS, the KDS itself
(comprising its authentication and ticket-granting subservices), and the entire
DCE Security Service (comprising the KDS, the registry service, and the
privilege service).

These three servers (KDS, registry service, and privilege service) comprise the main
part of the DCEnetwork trusted computing base. The KDS, registry service, and
privilege service servers are commonly all implemented in a single process called the
security server or security daemon.

760 DCE 1.2.2 Application Development Guide—Core Components

Authentication

24.1.2 The Shared-Secret Authentication Protocol

The registry service maintains a database, which contains an entry representing every
principal, identifying the principal by its name and a secret keybound to it. It is
this binding of the principal identity to a secret key shared with the registry that
is at the root of the DCE shared-secret authentication protocols, as will be seen in
this chapter. In the case of an interactive principal, the secret key is derived from
the user’s password (at login time). In order to establish its identity as a principal, a
noninteractive principal, such as a server or computer, must store its secret key in a
data file or hardware device, or rely on a system administrator to enter it. The secret
keys of servers are considered to be stronger than those of users/clients, because they
are truly random (as opposed to being derived from a password, which greatly restricts
their randomness).

DCE shared-secret authentication implements an extended version of the Kerberos
Version 5 system as its authentication protocol. Namely, the part of the DCE security
server that corresponds to Kerberos is the KDS. The other parts (registry service
and privilege service) do not occur in Kerberos. The Kerberos system was originally
developed at the Massachusetts Institute of Technology as part of Project Athena, and
provides a trustworthy, shared-secret authentication system. The walkthrough of the
authentication protocol in this chapter describes the protocol in general terms.

Note: The KDS is an exceptional principal in that it does not share its key with
any other principal. KDS surrogates (see Section 24.3) are also exceptional in
that they are not autonomous participants in authenticated communications,
as other kinds of principals are.

In the theory of shared-secret authentication all principals are initially considered to
be untrusted, except for those in the trusted computing base itself (KDS, registry
service, privilege service). A security-sensitive application must make use of the
trusted computing base to convince itself of the level of trust it may place in all
other principals. How that is done is the subject of this chapter.

24.1.3 Cells and Realms

The cell is the basic unit of configuration and administration in DCE. In terms of
security, a cell is the set of principals that share a secret key with an instance of

DCE 1.2.2 Application Development Guide—Core Components 761

DCE Security Service

the registry service. Therefore, each instance of a security server (together with its
replicas) defines a separate cell.

From the perspective of security only, a cell is sometimes also known as arealm or
security domain. (The term realm is often used in Kerberos documentation, and so
may be more familiar to some readers than is the termcell.) A security cell is always
configured to coincide with a corresponding CDS cell, and perhaps Distributed File
System (DFS) cell as well. DCE documentation always refers to such a collective
configuration of services as a cell.

24.1.4 Protection Levels

Protection levels specify how much of the information in network messages exchanged
by principals is encrypted. As a rule, the higher the protection level, the greater the
negative impact on performance. An application can set a protection level by using
either authenticated RPC or GSSAPI.

24.1.4.1 Authenticated RPC and Protection Levels

The authenticated RPC facility provides several levels of protection so that applications
can control tradeoffs between security and performance. Following is a summary of
some of the protection levels that an application using authenticated RPC may specify:

• Connect level

Performs authentication only when a client and server establish a relationship (or
connection)

• Call level

Attaches a verifier to each client call and server response that protects the system-
level metadataof every remote call (but not the application-level data)

• Packet-integrity level

In addition to protecting metadata, ensures the integrity of the application-level
data (RPC and return parameters) transferred between two principals, that is, that
none of it has been modified in transit

• Packet-privacy level

762 DCE 1.2.2 Application Development Guide—Core Components

Authentication

In addition to protecting metadata and integrity, encrypts all application-level data,
thus guaranteeing its confidentiality

Refer to the discussion of authenticated RPC in Chapters 13 and 14 for complete
information about protection levels.

24.1.4.2 GSSAPI and Protection Levels

Unlike authenticated RPC, where the client chooses a protection level that is then
applied automatically to all data transferred in either direction, applications that use
GSSAPI must explicitly protect data on a message-by-message basis. This allows an
application the option of protecting only particularly sensitive messages, and avoids
the overhead of security processing for other messages. (That is possible with RPC
too, of course, provided that the programmer is willing to specify security attributes
on an RPC call-by-call basis.)

GSSAPI offers two distinct types of protection through thegss_sign()/ gss_verify()
routines and thegss_seal()/gss_unseal()routines, as follows:

• Thegss_sign()routine creates a token containing an encrypted signature to protect
the integrity of the message data. The token contains only the signature (not the
message data). The application must send both the token and the message to which
it applies to the peer application for verification. The receiving application calls
the gss_verify()routine to check the signature.

• The gss_seal()routine creates a token containing both an encrypted signature and
the message data, and may optionally encrypt the message data. Only the token
need be sent to the peer application, which processes it by using thegss_unseal()
routine to verify the signature and extract the message data.

Three distinct signature algorithms are supported by the per-message protection
routines. An algorithm may be requested by providing one of several constants to the
qop_requestparameter (qop stands for quality of protection) of either thegss_sign()
or thegss_seal()routine. The constants are as follows:

GSSDCE_C_QOP_DES_MAC
Conventional DES MAC. Slow but well understood.

DCE 1.2.2 Application Development Guide—Core Components 763

DCE Security Service

GSSDCE_C_QOP_DES_MD5
DES MAC of an MD5 (Message Digest #5) signature. Faster than DES
MAC.

GSSDCE_C_QOP_MD5
MD5 signature. Fastest supported signature algorithm. The default.

24.1.5 Data Encryption Mechanisms

Authentication protocols assume the availability of a data encryption mechanism,
parameterized by a so-calledcrypto-variableor key. In fact, it is the knowledge of
such a key that is the concrete manifestation of the abstract notion of authentication.
One mechanism that is frequently used is the Data Encryption Standard (DES), though
the DCE security architecture supports other cryptographic algorithms. Your version of
DCE security may use DES for data privacy or for principal authentication and data-
integrity checking; or it may use another encryption mechanism, or no encryption at
all. Consult the documentation supplied by your DCE vendor for specific information.

24.2 A Walkthrough of Shared-Secret Authentication
Protocols

This section walks you through the following topics:

• Authentication of the user during login, in Section 24.2.1.

• Authentication of applications, in Section 24.2.2.

The walkthrough is seen primarily from the user and the associated application-client
side. The illustrations in this chapter show only a high-level view (not low-level details)
of what happens when a user logs in and runs an authenticated application; they are
intended only to provide a general understanding of the protocol. (See theSecurity
Volumeof the Application Environment Specification/Distributed Computingfor full
details.)

In these figures, fill patterns represent encryption key values and encrypted data. The
key symbol within a box indicates that a key is being passed as data. The key symbol
on a line indicates that encryption or decryption is taking place, depending on whether

764 DCE 1.2.2 Application Development Guide—Core Components

Authentication

the resulting data is represented as encrypted or not. These conventions are shown in
Figure 24-1.

Figure 24–1. Conventions Used in Authentication Walkthrough Illustrations

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

data being decrypteddata being encrypted

ÁÁ
ÁÁ

an encryption
key being passed
as data

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÂÂÂÂÂ
ÂÂÂÂÂ
ÂÂÂÂÂ

data encrypted
with various
encryption keys

ÁÁÁ
ÁÁÁ

ÂÂÂ
ÂÂÂ

various
encryption keys

Note: All computer-to-computer communications initiated by DCE security are
processed through the RPC mechanism, although the integration of security
with client and server RPC runtimes are not illustrated or explained in any
detail here.

Finally, note that to use shared-secret protocol, you do not need to understand how
it works. It is described here so that application developers can determine whether it
provides sufficient security for their needs. The discussion that follows is technical
and detailed and may not be of interest to every reader.

24.2.1 Authenticating a User

This section explains how DCE security authenticates a user/client. DCE authentication
basically consists of two successive procedures:

1. Acquisition by the security client of a ticket-granting ticket (TGT) for the user.

2. Acquisition by the security client of a privilege-ticket-granting ticket (PTGT) for
the user.

These procedures are described in the following two subsections.

DCE 1.2.2 Application Development Guide—Core Components 765

DCE Security Service

24.2.1.1 How the Client Obtains a TGT for the User

This section describes the acquisition, by the security client, of the user’s TGT. It
is the authentication service of the KDS that issues TGTs. Acquisition of the user’s
TGT is the first of the two parts of DCE user authentication. The other part is the
acquisition of service tickets, which are issued by the TGS of the KDS.

Authentication protocols used by DCE security clients and servers to obtain TGTs for
users, which is the first part of the user-authentication process, are:

• The public keyprotocol, which provides the highest level of security

• The third-party protocol, which is less secure than public key protocol

• The timestampsprotocol, which is less secure than the third-party protocol

• The DCE Version 1.0 protocol, which is the least secure of the three and is
provided solely to enable DCE Version 1.1 security servers to process requests
from pre-DCE Version 1.1 clients

The protocol used by the security client when it makes a login request to the
authentication service is determined as follows:

1. Pre-DCE Version 1.1 clients always use the DCE Version 1.0 protocol.

2. DCE Version 1.1 clients always use the third-party protocol, unless the host
machine’s session key, which the client uses to construct the request, is
unavailable. It then uses the timestamps protocol.

3. DCE Version 1.2.2 clients always attempt to use the public key authentication
protocol. If a client is unable to use the protocol, the client reverts to DCE Version
1.1 behavior.

The protocol used by the authentication service to respond to the client is determined
by the following:

• The protocol used by the client making the login request

• The value of anypre_auth_req ERA attached to the requesting principal

The authentication service always attempts to reply by using the same protocol used
by the client making the request, unless the value of the ERA forbids it to do so. (See
the discussion of DCE Version 1.1 authentication in theDCE 1.2.2 Administration

766 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Guide—Core Componentsfor more detailed information on how security clients and
the authentication service determine which protocol to use.)

For a general discussion of the security aspects of these protocols, and of security
administration and security ERAs, see theDCE 1.2.2 Administration Guide—Core
Components. The following subsections explain how the three protocols operate.

24.2.1.1.1 The Public Key Authentication Protocol

Public key authentication protocol works via public and private key-pairs. A user’s
identity is proven to the DCE Key Distribution Center (KDC) through a signature in
the user’s private authentication key. The KDC verifies the request through the user’s
authentication public key, which must be contained in the DCE registry. If the request
is verified, the KDC replies with a TGT that is first signed by the KDC using its own
private authentication key, and then is encrypted by the KDC using the client’s key
encipherment public key, which must be stored in the DCE registry. Because the KDC
does not know the user’s private keys, a compromise of the KDC cannot reveal the
private keys. Therefore, public key users will not have any identifying information
exposed to an intruder. This method of public and private key pair usage constitutes
the public key protocol.

The public key protocol invokes routinessec_login_validate_identity(),
sec_login_valid_and_cert_ident(), andsec_login_validate_first()as follows:

1. The user logs in.

2. The client process sends a message to the KDC. The message consists of a
timestamp and nonce signed by the client’s private digital signature key. An
optional certificate of the client can also be sent along.

3. The KDC checks the timestamp and signature of the client’s message. If the
information is valid, the KDC sends a reply key to the client. The reply consists
of a message signed by the KDC’s digital signature key and then encrypted by
the client’s key encipherment key. The reply key is for encrypting the encrypted
portion of the KerberosKRB_AS_REP message, which includes the symmetric
session key associated with the TGT. The session key used in association with the
TGT is returned in the standardEncKDCRepPart field of the KRB_AS_REP
message.

If the KDC is unable to authenticate the user’s supplied public key data, the KDC
returns an error indicating why the authentication failed and whether the user is

DCE 1.2.2 Application Development Guide—Core Components 767

DCE Security Service

required to use the public key authentication protocol. The KDC determines this
from thepre_auth_req ERA attached to the user principal.

If the public key login attempt fails, thesec_logincode instead falls back to the
use of existing password-based authentication unless the KDC error information
indicates that the principal is required to use public key login authentication.
Preventing fall back is done by giving each principal apre_auth_req ERA value
of PADATA_ENC_PUBLIC_KEY .

Authentication information is transmitted as data types:

• KRB5_PADATA_PUBKEY_REQ

• PADATA_ENC_PUBKEY_REP

4. The client checks the signature on the reply to make sure it is from the KDC. The
sesion key can be decrypted only by the legitimate client that possesses the private
key needed to decrypt. The client then uses the TGT and associated session key.

24.2.1.1.2 Storage of the Private Key

Private key information is stored either in a local file or by the DCE private key storage
server (PKSS). If the principal’sDCEPKPrivateKeyStorage ERA value is not set,
the login program assumes the private key is stored in a local file. If the principal’s
DCEPKPrivateKeyStorage ERA value is set, the login program obtains the private
key from the private key storage mechanism associated with the UUID contained in
the ERA. The currently supported storage mechanisms and their associated UUID’s
are the following:

• Local file — The UUID is8687c5b8-b01a-11cf-b137-0800090a5254.

• Private key storage server (PKSS) — The UUID is72053e72-b01a-11cf-8bf5-
0800090a5254.

• Registry Database — The UUID isadb48ed4-e94d-11cf-ab4b-08000919ebb5.
(This mechanism is supported for internal security server purposes only.)

The PKSS stores private keys in records that have the following information:

• The user’s principal name.

• The user’s public key.

• The key version of the user’s public key (key v.n).

768 DCE 1.2.2 Application Development Guide—Core Components

Authentication

• The application domain. (Currently, private keys are used only in the context of
a DCE login.)

• Key usage flags. (Currently, private keys are used only for authentication and for
key encipherment.)

• Password hash value 2 (H2) derived from the user’s password.

• The user’s private key encrypted under the user’s password hash value 1 (H1).

The PKSS cannot directly access the user’s private key because it does not have the
user’s password H1 value. An ACL protects user records from unauthorized access,
allowing access to only thesec_adminprincipal.

The following two descriptions depict the initial message exchange between the login
client and the PKSS, and the second (final) exchange in which the PKSS returns the
private key to the client.

Client Initiation of Private Key Acquisition from PKSS

The client DCE login program begins the process of key acquisition from the PKSS.
Refer to Figure 24-2 as you read the following steps.

1. The login client sends a message to the PKSS that consists of the following
components:

• The user’s principal name.

• The application domain.

• Key usage flags.

• The key version number (key v.n).

• An exponentiated Diffie-Hellman value (Sc) used for establishing a Diffie-
Hellman key.

• An algorithm list (alg list), which is a list of secret key encryption algorithms
supported by the client (currently only DES). The client and the PKSS use
this algorithm with the Diffie-Hellman key and the session key.

2. Upon receipt of this message from the login client, the PKSS generates a Diffie-
Hellman value of its own (Ss). Using this value along with the client’s Diffie-
Hellman value, the PKSS computes a Diffie-Hellman key.

DCE 1.2.2 Application Development Guide—Core Components 769

DCE Security Service

The PKSS determines whether it supports any of the algorithms listed in the client
message. If so, it can communicate securely with the client and the PKSS selects
one of the supported algorithms for use. (Currently, OSF DCE clients and servers
support only DES.)

3. The PKSS generates a random session key and a nonce (Ns). The session key will
be used to encrypt messages between the client and server. The PKSS encrypts
the nonce (Ns) with the session key, then encrypts the session key with the user’s
password H2 value taken from the user record.

4. The PKSS computes a hash on the algorithm list provided by the client. It encrypts
both the hashed algorithm list and the encrypted session key (see step 3) under
the Diffie-Hellman key generated in step 2.

5. The PKSS composes and sends the client a message consisting of

• The nonce (Nc) encrypted under the random session key.

• The session key encrypted by the user’s password H2 value and then
encrypted under the Diffie-Hellman key.

• The hashed algorithm list further encrypted under the Diffie-Hellman key.

• The algorithm to be used for the session key. (The algorithm is chosen from
the client’s algorithm list.)

• The PKSS-generated Diffie-Hellman value.

6. Upon receipt, the login client extracts the PKSS-generated Diffie-Hellman value
and combines it with its own Diffie-Hellman value to obtain its copy of the Diffie-
Hellman key.

7. The client uses the encryption algorithm specified by the PKSS, along with its
Diffie-Hellman key to obtain the hashed algorithm list and the session key (still
encrypted under the user’s password H2 value).

The login client computes a hash on its own algorithm list and compares it with
the hashed algorithm list returned from the PKSS. The two lists must match.
Otherwise, the client determines that the PKSS is invalid and returns an error.

8. The login client decrypts the session key by using H2 derived from the user’s
password. The client uses the session key to decrypt the PKSS-generated
nonce (Ns). The session key will be used to authenticate the current session
communications between the client and PKSS.

770 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Note: A PKSS imposter would not know the user’s password H2 value. The
resulting session key would differ from the imposter’s session key,
preventing further communications between the client and the imposter.

9. The client composes a message encrypted under the session key. The message
consists of

• The PKSS-generated nonce (Ns)

• A client-generated nonce (Nc)

• An operation identifier that indicates private key acquisition

DCE 1.2.2 Application Development Guide—Core Components 771

DCE Security Service

Figure 24–2. Client Initiation of Private Key Acquisition

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
���������� ���������

���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Server-generated nonce

Client-generated nonceH1 (hash 1)

H2 (hash value 2)

Diffie-Hellman value

Session key

Legend:
Client Principal Private Key Server

Hashed algorithm list

�
�
�

�
�
�

User’s public key

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

User’s private key

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
������

Server-generated seed

Client-generated seed

S

Security Runtime

sN

alg

sS

cS

compute

name
principal

usage
domain

v.n
key

Ss

N s

Ss

3

N

4

s

6

S

7

c

8

list

9

User Interface

alg

name
principal

5

1

API Layer

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

usage
domain

v.n

��
��
��

��
��
��

��
��
��

��
��
��

key
v.n

domain
usage

principal
name

USER RECORD

s

key

N

alg

2

algorithm

cN

cN sN
algorithm

compute

Private Key Server

list
c

cN

sN

cS

sS

�����
�����
�����
�����

���
���
���

���
���
���

sec_login_setup_
identity (principalname...)

cert_ident (password...)
sec_login_valid_and

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
�����

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���alg

list

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

alg

��
��
��
��

��
��
��
��

���
���
���

���
���
���

list

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

alg
list���

���
���
���
���

���
���
���
���
���

request private key for
client corresponding

RPC

OP-ID

���
���
���

���
���
���

hash
��
��
��
��

���
���
���
���

to

OP-ID

principalname

Login: principalname
password

�����
�����
�����

�����
�����
�����

list

772 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Client Completion of Private Key Acquisition from PKSS

The client DCE login program completes the process of key acquisition from the
PKSS. Refer to Figure 24-5 as you read the following steps.

1. The client sends the PKSS the composed message encrypted under the session
key (see Step 9 in the preceding discussion).

2. Upon receipt of the client message, the PKSS uses the session key to obtain
the operation ID, the client-generated nonce (Nc), and the PKSS-generated nonce
(Ns).

The PKSS compares the client’s copy of Ns with its original nonce (Ns). A match
proves the client had knowledge of the user’s secret password which was needed
to obtain the session key. The client used the session key to obtain Ns.

3. The PKSS composes a message consisting of

• The user’s private key encrypted under the user’s password H1 value

• The user’s public key

• The key version number

• The client-generated nonce (Nc)

4. The PKSS encrypts this message with the session key and sends it to the client.

5. Upon receipt, the client uses the session key to obtain the user’s private key
(encrypted under the user’s password H1 value), the user’s public key, the key
version number, and the client-generated nonce (Nc).

The client compares the PKSS’s copy of Nc with its own nonce. A match proves
the authenticity of the PKSS because only the true PKSS could have used the
correct user password H2 value to properly encrypt the session key passed to the
client in the first message.

6. The client uses its password H1 value to decrypt the private key. The client’s
security runtime program returns the authenticated private key to the calling
routine.

DCE 1.2.2 Application Development Guide—Core Components 773

DCE Security Service

Figure 24–3. Client Acquisition of Private Key from PKSS

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
����������� ����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

Private Key Server

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

User’s public key

������
������
������

������
������
������

Client Principal
Legend:

H1 (hash value 1)

Session key

Client-generated nonce

Server-generated nonce

User’s private key

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

cN

key

key
v.n

N s

4

N

3

c

��
��
��

��
��
��

��
��
��
��

��
��
��
��

5

��
��
��
��
��

��
��
��
��
��

2

��
��
��

��
��
�� N

���
���
���
���
���

���
���
���
���
���

key
v.n

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

c

cN

sN

cN sN

name

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��

��
��
��

v.n
key

principal

N

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

cN

usage

key
v.n

s

Private Key Server

Nc

USER RECORD

N

domain

c

6

v.n

5

1

���
���
���

���
���
���

�����
�����
�����
�����password

���
���
���

���
���
���

principalname

OP-ID

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

Login:

����
����
����
����

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

����
����
����
����

���
���
���
���

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

����
����
����

����
����
����

RPC

���
���
���

���
���
���

��
��
��
��

��
��
��
��

OP-ID

���
���
���
���
���

���
���
���
���
���

OP-ID

��
��
��

��
��
��

API Layer

User Interface Security Runtime

�����
�����
�����

�����
�����
�����

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�����
�����
�����
�����

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

774 DCE 1.2.2 Application Development Guide—Core Components

Authentication

24.2.1.1.1 The Third-Party Authentication Protocol

The DCE Authentication Service can use the third-party authentication protocol to
provide a user with a TGT. Refer to Figure 24-2 as you read the following steps.

1. The user logs in, entering the correct user name. The login program invokes
sec_login_setup_identity(), which takes the user’s principal name as one of its
arguments, andsec_login_valid_and_cert_ident(), which has the user’s password
as one of its arguments. Thesec_login_valid_and_cert_ident()routine causes the
security runtime to request a TGT from the authentication service of the KDS.
(The client principal will later present the TGT to the TGS, to acquire service
tickets to other servers.) The client’s security runtime performs the following steps
to construct the TGT request to the authentication service:

a. It requests, from thesecvalservice, a random key, say conversation key 1,
which the client will later use to encrypt its request to the authentication
service. Two copies of conversation key 1 are passed to the client: one
unencrypted and one encrypted in the machine session key (a copy of
which is sealed inside the machine ticket-granting ticket, or MTGT). (In
order to do this securely, the request tosecvalmust be done over a secure
local communications channel on the host machine.) It then concatenates the
encrypted copy of conversation key 1 with the MTGT.

DCE 1.2.2 Application Development Guide—Core Components 775

DCE Security Service

Figure 24–4. Client Acquires TGT Using Third-Party Protocol

ËËËËËËË
ËËËËËËË
ËËËËËËË
ËËËËËËË

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

Login: principalname
 password

Privilege Service

Registry Service

Authentication Service

ÁÁÁ
ÁÁÁ

API layer

sec_login_setup_
identity(principalname...)

sec_login_valid_and
cert_ident(password...)

User Interface

Legend:
ÅÅÅÅ
ÅÅÅÅconversation key 1

mtgt host machine TGTmachine session key

ÂÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂÂ

request TGT for client
corresponding to
principalname

ÍÍÍÍÍ
ÍÍÍÍÍ
ÍÍÍÍÍ
ÅÅÅ
ÅÅÅ

mtgt

TS

user’s secret key

ËËËË
ËËËË

conversation key 2

ËËË
ËËË
ËËËÁÁÁ

ÁÁÁ
ÅÅÅ
ÅÅÅ

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂ

TSËËËË
ËËËË

ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

TSËËË
ËËË

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍÅÅÅ

ÅÅÅ
mtgt
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂ

TS
ËËË
ËËË
ËËË

ÅÅÅ
ÅÅÅ
ÁÁÁ
ÁÁÁ

TGT

ËËË
ËËË

client’s TGT

TS
ËËË
ËËË

rpc

rpc

ËËË
ËËË

if status=OK, then get PTGT
from PS (Privilege Service)

Security runtime

Security ServerClient Principal

ÅÅÅ
ÅÅÅÍÍÍ
ÍÍÍ
ÍÍÍÍÍÍÍÍ

ÍÍÍÍÍ
ÍÍÍÍÍ
ÅÅÅ
ÅÅÅ

ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
ÅÅÅ
ÅÅÅ

mtgt

TS timestamp

secval Process

ÍÍÍÍ
ÍÍÍÍ

ÉÉÉ
ÉÉÉ

TGT ÉÉÉ
ÉÉÉ

ËËËËËËËË
ËËËËËËËË
ËËËËËËËË

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

TGT
ÉÉÉ
ÉÉÉ
ÉÉÉ

TGT
ÉÉÉ
ÉÉÉTGT

ÉÉÉ
ÉÉÉ

TGT

ÉÉÉ
ÉÉÉ

conversation key 3

mtgt

776 DCE 1.2.2 Application Development Guide—Core Components

Authentication

b. It generates another random key, conversation key 2, which the authentication
service will later use to encrypt the TGT it returns to the client. It then
concatenates it to a timestamp string.

c. It derives, from the password input by the user, the user’s secret key, a copy
of which also exists in the registry service database. It then encrypts the
timestamp/conversation key 2 twice: first by using the user’s secret key, and
then by using conversation key 1.

d. Finally, it completes constructing the authentication service request message
by concatenating the encrypted conversation key 1 (obtained fromsecvalin
Step 1a) with the doubly encrypted timestamp and conversation key 1.

2. The client’s security runtime then forwards the constructed request to the
authentication service of the KDS. (This corresponds to the first step of the DCE
Version 1.0 protocol, described in Section 24.2.1.1.3.)

3. The authentication service receives the request and performs the following steps
to verify the user and prepare the user’s TGT:

a. It decrypts the MTGT (by using the KDS’s secret key), and obtains the
machine session key from it. (This decryption is not shown pictorially in
Figure 24-2.)

b. Using the machine session key, it decrypts the package containing
conversation key 1.

c. It obtains the user’s secret key from the registry service and then decrypts the
doubly encrypted package containing the timestamp and conversation key 2
by using the user’s secret key and conversation key 1.

If this decryption fails, the user’s secret key that was used by the login
program to encrypt the package differs from the one stored in the registry
service, and therefore the password supplied to the login program by the user
was incorrect. In this case, the user is not authenticated, and an error code is
returned to the login program.

If the decryption succeeds, and if the decrypted timestamp is within an
allowable clock skew (5 minutes) of the current time, the user has been
authenticated (that is, the user knows the correct principal password and this
isn’t a replay attack), and the authentication service proceeds with preparation
of the user’s TGT.

4. The authentication service then prepares the user’s TGT, encrypts it in the KDS’s
secret key, encrypts the conversation key 3 contained in the TGT (to be used later

DCE 1.2.2 Application Development Guide—Core Components 777

DCE Security Service

by the client to acquire service tickets) in conversation key 2, and returns this
data to the client.

5. The client security runtime decrypts the reply from the authentication service by
using conversation key 2, obtaining the conversation key 3 from the TGT, and it
becomes part of the client’s login context.

Note the following security safeguards inherent in the structure of this protocol:

• All network transmissions between the security client and the authentication
service are encrypted by using strong random keys (not weak keys derived from
passwords), placing even offline decryption attempts at the outer limits of practical
possibility.

• The timestamp and conversation key 2 are encrypted by using the user’s secret
key, which is derived from the user’s password (and subsequently reencrypted by
using conversation key 1). This enables the authentication service to verify that
the requesting client knows the user’s password. (It does this by decrypting the
package via the registry service’s copy of the user’s secret key; if the decryption
succeeds, the keys are the same, that is, they were derived from the same
password.)

• The authentication service actively verifies whether the requesting client knows
the user’s password. Contrast this with the DCE Version 1.0 protocol, where the
authentication service blindly issues TGTs without requiring any evidence that the
requestor knows the user’s password. It is therefore aware of, and can manage,
persistent login failures for a given user, eliminating active password-guessing
attacks.

• The authentication service’s reply is encrypted by using conversation key 2, which
was provided by the client. This verifies to the client that the authentication service
itself is authentic since, if it were not, it would not have been able to obtain the
machine session key and user’s secret key it needed to decrypt conversation key
2.

These safeguards provide assurance to both server and client that the entity with which
each is communicating is, in fact, what it claims to be.

Having acquired the user’s TGT, the login program proceeds with the next step in the
authentication procedure (described in Section 24.2.1.2).

778 DCE 1.2.2 Application Development Guide—Core Components

Authentication

24.2.1.1.2 The Timestamps Authentication Protocol

This section describes how the DCE Authentication Service uses the timestamps
authentication protocol to provide a user with a TGT.

Since the timestamps protocol is largely identical to the DCE Version 1.0 protocol,
which is fully explained in the next section, this section describes only the differences
between the two.

The timestamps protocol proceeds exactly as the DCE Version 1.0 protocol described
in Section 24.2.1.1.5, with these additions:

• In Step 1, the client security runtime sends to the authentication service, in addition
to the user’s stringname, the current timestamp encrypted in the user’s secret key.

• In Step 2, the authentication service, before preparing the user’s TGT, verifies the
user’s authenticity (albeit not as strongly as in the third-party protocol) as follows:

1. It decrypts the timestamp by using the copy of the user’s key it obtained from
the registry service.

2. If the decryption succeeds, and the timestamp is within an allowable clock
skew (5 minutes) of the current time, the user is authenticated, and the
authentication service proceeds to prepare the TGT. If the decryption fails,
or if the timestamp is not within the allowable clock skew, the authentication
service rejects the login request.

With this protocol, the authentication service can verify the following:

• That the client login request is timely; that is, that the authentication service is
communicating with the client now (within the allowable clock skew)

• That the requesting client knows the user’s password

The authentication service is therefore aware of, and can manage, persistent login
failures for a given user, eliminating passive password-guessing attacks.

From this point, the timestamps protocol continues as the DCE Version 1.0 protocol
described in the next section, and then proceeds with the next step in the authentication
procedure, described in Section 24.2.1.2.

Note: Encrypted timestamps (under the name authenticators) are passed in several
places in the protocols, to guarantee fresh communications (within the

DCE 1.2.2 Application Development Guide—Core Components 779

DCE Security Service

allowable clock skew) and thereby guard against replay attacks. This has been
shown explicitly in the preceding, but will be omitted in the remainder of this
chapter.

24.2.1.1.3 The DCE Version 1.0 Authentication Protocol

This section explains how the DCE Authentication Service uses the DCE Version
1.0 protocol to authenticate a user. This protocol exists in DCE Version 1.1 solely to
provide interoperability between DCE Version 1.1 servers and pre-DCE Version 1.1
clients; only pre-DCE Version 1.1 clients transmit DCE Version 1.0 login requests,
and the authentication service returns DCE Version 1.0 responsesonly to pre-DCE
Version 1.1 clients.

The DCE Version 1.0 protocol lacks the security features previously described for
the third-party and timestamps protocols, hence this protocol is more vulnerable to
attacks. You should keep this in mind when you are considering the inclusion of pre-
DCE Version 1.1 clients in your DCE Version 1.1 cell.

The DCE Version 1.0 protocol proceeds as follows. Refer to Figure 24-5 as you read
these steps.

1. The user logs in, entering the correct user name. The login tool invokes
sec_login_setup_identity(), which takes the user’s principal name as one of its
arguments. This call causes the client security runtime to request a TGT and
passes the user’s name (represented as a string, not a UUID) to the authentication
service. The TGT will later be used by the client to acquire service tickets to other
services; the first such usage will be to acquire a service ticket to the privilege
service (see Section 24.2.1.2).

780 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Figure 24–5. Client Acquires TGT Using the DCE Version 1.0 Protocol

sec_login_setup_
identity(principalname. . .)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÂÂÂ
ÂÂÂ

TGT

ÄÄÄ
ÄÄÄ

ÀÀ
ÀÀ

login: principalname
 password

 KDS

ÄÄ
ÄÄ

conversation key 3

client principal’s secret key encrypted with client principal’s secret key

encrypted with conversation key 3

Legend: Client Principal

ÁÁ
ÁÁ

encrypted with KDS’s secret keyKDS’s secret key

sec_login_valid_and_
cert_ident(passwd. . .)

Registry Service

Privilege Service
Security runtime

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TGT

ID

Security Server

User interface

API layer

ÄÄÄ
ÄÄÄ ÄÄÄ

ÄÄÄ
ÄÄÄ
ÄÄÄ

ÄÄÄ
ÄÄÄ

ÀÀÀ
ÀÀÀ

ÀÀÀ
ÀÀÀ

ÀÀÀ
ÀÀÀ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÄÄÄ
ÄÄÄ

TGT

ID

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÄÄ
ÄÄ
ÂÂTGT

ÂÂID

ÄÄ
ÄÄ

TGT

IDÂÂID
ÄÄÄ
ÄÄÄ

get TGT for client ID
corresponding to
principalname

RPC

If status = OK, then get ptgt

prepare TGT

If status = OK, then get
password

2. Upon receiving the request for a TGT, the authentication service obtains the
user’s secret key from the registry service database (where the secret keys of
all principals in the cell are stored). Using its own secret key (that is, that of
the KDS), the authentication service encrypts the user’s identity, along with a

DCE 1.2.2 Application Development Guide—Core Components 781

DCE Security Service

conversation key 3 (this conversation key 3 is the same as conversation key 3 in
the discussion of the third-party protocol, earlier in this chapter), in a TGT. The
authentication service separately encrypts a copy of conversation key 3 with the
user’s secret key and returns this data to the client.

3. When this data arrives at the client, the login tool prompts the user for the
password and invokessec_login_valid_and_cert_ident(). This call passes the
password to the client’s security runtime library. The security runtime derives the
user’s secret key from the password (using a well-known algorithm), and uses it to
decrypt conversation key 3. (If the user enters the wrong password, this decryption
fails.) The client’s security runtime cannot decrypt the TGT since it does not know
the KDS’s secret key. The TGT is the client principal’s certificate of identity—it
is usable by the client precisely because the client knows the conversation key 3
carried in it.

Note: One of the functions ofsec_login_valid_and_cert_ident()is to authenticate
the authentication service itself to the host machine’s login program, by
demonstrating that the (purported) authentication service really knows
the secret key of the host computer. (The mere fact that the purported
authentication service knew the user’s secret key is not convincing to the
host’s login program, because that purported authentication service could
have been a bogus server working in league with a bogus user—the host
doesn’t trust any of these things.) The way in which this is accomplished is
not illustrated here but is explained in Chapter 30.

Having acquired the user’s TGT, the login program proceeds with the next step in the
authentication procedure, described in Section 24.2.1.2.

24.2.1.3 How the Client Obtains a PTGT for the User

This section describes the acquisition, by the client’s security runtime, of the user’s
PTGT. Acquisition of the user’s PTGT is the second of the two parts of DCE user
authentication.

From this point on, the client principal uses four different conversation keys to talk
with other principals. Use of multiple short-lived keys makes an attacker’s task far
more difficult, since there are more encryption keys to discover and less encrypted
material and time with which to crack them.

782 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Refer to Figure 24-6 as you read the following steps.

1. When the client’s security runtime has succeeded in decrypting conversation key
3, it next wants to acquire a PTGT from the privilege service. Before a request for
a PTGT can even be formulated, however, a service ticket to the privilege service
must be acquired. The client’s security runtime therefore begins by requesting
such a service ticket from the TGS. The security runtime encrypts this request by
using the conversation key 3 (which is also sealed in the client’s TGT); it also
sends along the client’s TGT.

2. The TGS decrypts the TGT (which was encrypted in the KDS’s secret key),
learning conversation key 3, and verifies that the request was properly encrypted
by using conversation key 3. This convinces the TGS that the identity of the
requesting client is authentic; that is, no other principal could have sent a message
so encrypted because no other principal knows conversation key 3. (The reader
should review the preceding steps if necessary to be convinced that this is true.)
Since the user has demonstrated to the TGS knowledge of the key, the TGS allows
the user to talk to the privilege service, and so prepares a service ticket to that
service. This ticket contains the identity of the user (and a conversation key 4),
encrypted under the secret key of the privilege service (which the TGS retrieves
from the registry service). The TGS separately encrypts conversation key 4 under
conversation key 3, and returns this data to the client.

Note: Beginning with Figure 24-6, the illustrations do not emphasize all the
TGS’s encryption and decryption activities (such emphasis would be
redundant since the TGS knows all of the keys).

3. Upon receipt of this data, the client’s security runtime uses conversation key 3
to decrypt conversation key 4. The client then formulates a request for a PTGT,
encrypting it with conversation key 4, and sends this together with the service
ticket it just received from the TGS, to the privilege service.

4. The privilege service decrypts the service ticket sent to it (using its secret key),
thereby learning the identity of the client and the conversation key 4 it will use to
decrypt the request and to encrypt its response. The privilege service is convinced
of the authenticity of this request because the information was encrypted under its
own secret key, and no principal other than the KDS (acting as the TGS) could
have encrypted the information by using this secret key. Because the privilege
service believes the authenticity of the client’s identity, it prepares an extended
privilege attribute certificate (EPAC) to issue to the client. (Actually, in the pure
DCE Version 1.0 protocol this would be a PAC, not an EPAC, but since this is
a high-level description intended for both releases we’ll just talk about EPACs

DCE 1.2.2 Application Development Guide—Core Components 783

DCE Security Service

without fear of confusion. So what we’re really describing here is an extended
privilege TGT, or EPTGT, though we’ll continue to call it a PTGT.)

The EPAC describes the user’s privilege attributes (identity information and group
membership) and any extended attributes that are associated with the user—all
represented as UUIDs (not strings). The EPAC (or EPAC chain, in case of a
delegated operation) is sealed with an MD5 checksum. (Delegation is described
in Chapter 27.) The privilege service constructs a PTGT, which is a ticket that
contains the EPAC, the EPAC seal, another copy of the EPAC seal encrypted
in the secret key of the privilege service (this is called adelegation token),
and a conversation key 5 (which is actually generated by the KDS, though the
illustration doesn’t show this detail). All this information except for the EPAC
itself is encrypted in the secret key of the KDS (thus, the delegation token is
doubly encrypted). (The KDS and privilege service cooperate to prepare the
PTGT, although the illustration only shows the privilege service preparing it.)
The EPAC seal inside the PTGT binds the EPAC to the PTGT, guaranteeing its
integrity even though it isn’t encrypted. The conversation key 5 is encrypted in
conversation key 4, and all this data is returned to the client.

784 DCE 1.2.2 Application Development Guide—Core Components

Authentication

Figure 24–6. Client Acquires PTGT

Legend:

Privilege Service’s secret key

conversation key 3

conversation key 4

conversation key 5

KDS’s secret key

get PTGT

Network interface layer

API layer Security runtime
Registry Service

Ticket-Granting Service

Privilege Service

Client Principal Security Server

request ticket to
Privilege service

ID

Seal

PTGT

Seal

PTGT

Seal

RPC

PTGT

Seal

EPAC

EPAC

EPAC

encrypted with Privilege Service’s secret key

encrypted with conversation key 3

encrypted with conversation key 4

encrypted with conversation key 5

encrypted with KDS’s secret key

ticket to
Priv svc

ticket to
Priv svc

TGT request ticket to
Privilege service

ID

DCE 1.2.2 Application Development Guide—Core Components 785

DCE Security Service

5. The client’s security runtime uses conversation key 4 to decrypt conversation key
5. It cannot decrypt the PTGT itself, since the PTGT is encrypted under the secret
key of the KDS.

24.2.1.4 The Login Context

At this point, the security service has authenticated the user’s identity (that is,
has verified that the user knows its password), and the user has acquired (trusted)
information about its privilege attributes from the privilege service. The client now
calls sec_login_set_context()to set the login context (a handle to this user’s network
identity and privilege attributes that have been established). Henceforth, processes
invoked by this user inherit the user’s login context, and among these processes is
the client side of distributed applications — those are the subject of the rest of the
walkthrough.

24.2.1.5 Identities in a Delegation Chain

When a user who has initiated delegation (withsec_login_become_initiator())
makes an authenticated RPC to the next member in a delegation chain (the
first intermediary), the initiator passes its PTGT (including EPAC, seal and
delegation token) to the TGS, and receives an extended privilege service ticket
(again containing EPAC, seal and delegation token) to the intermediary. This
is passed to the intermediary. The intermediary then invokes either routine
sec_login_become_delegate()or sec_login_become_impersonator(), passing to the
privilege service the authorization information it received from the initiator (EPAC
and delegation token), together with the intermediary’s own PTGT (including the
intermediary’s EPAC, seal and delegation token).

The privilege service uses the two delegation tokens, which are seals over the initiator’s
and intermediary’s EPAC encrypted in the privilege service’s own secret key, to verify
the authenticity of the EPACs. If these are valid, the privilege service creates an EPAC
chain, consisting of the initiator’s and intermediary’s EPACs, and generates a new
seal and delegation token for this EPAC chain, and returns to the intermediary a new
PTGT containing this information. Thus, the intermediary’s authorization information
now includes both EPACs in the delegation chain and a PTGT that contains the
EPAC chain’s seal and delegation token. The subsequent additions of identities to

786 DCE 1.2.2 Application Development Guide—Core Components

Authentication

the delegation chain are handled in the same manner, resulting in PTGTs with each
intermediary’s identity being added to the EPAC chain. Any such PTGT can be used
to continue the delegation chain or to acquire a service ticket to the ultimate target
server.

24.2.2 Authenticating an Application

Applications that are run between client and server must also be authenticated. For
specific information about using the authenticated RPC routines see Chapters 13 and
14. For information about the GSSAPI, see Chapters 23 and 26.

24.2.2.1 Authentication Using Authenticated RPC

This section explains how DCE security authenticates an application, to which the
application developer has added authenticated RPCs.

Note: The authenticated RPC facility may also be referred to as theprotectedRPC
facility, as it involves services beyond authentication. Authenticated RPC may
also be referred to as the protected RPC facility,

Refer to Figure 24-7 as you read the following steps.

DCE 1.2.2 Application Development Guide—Core Components 787

DCE Security Service

Figure 24–7. Client Sets Authentication and Authorization Information

rpc_ns_binding_import_begin()
rpc_ns_binding_import_next()
 .
 .
 .

rpc_binding_set_auth_info(
binding
server_princ_name
authn_svc
protect_level
authz_svc)

binding handle
to application
server

User interface

 start application

 API layer

RPC

Client Principal

(Applies the specified authentication
protocol, protection level, and
authorization protocol to the binding
service)

CDS Server

If status = OK, then set auth info

1. Having been authenticated and having acquired a PTGT, the user invokes
an application. The client side of the application makes calls to routines
rpc_binding_import_begin(), rpc_binding_import_next() , and the like. These
calls specify the remote interfaces required by the client for the application.

2. The CDS returns the client binding handles to the specified interfaces. (For
simplicity in this example, we consider the simple binding model in which the
client consults the CDS for the server’s RPC binding name.)

3. The client annotates the binding handle—that is, it sets security information
for the binding handle by callingrpc_binding_set_auth_info(). Among other
parameters, this routine sets the authentication protocol, the protection level,
and authorization protocol for the binding handle corresponding to the remote
interface. It also sets the server’s principal name, which the client must know

788 DCE 1.2.2 Application Development Guide—Core Components

Authentication

securely (it may be the same or different than the server’s RPC binding name).
In this example, assume that the authentication protocol (authn_svcparameter)
is DCE shared-secret authentication, the protection level (protect_level) is packet
privacy (all RPC argument values are encrypted), and the authorization protocol
(authz_svc) is DCE authorization. (DCE authorization means that an EPAC
chain, containing UUIDs representing the client’s or delegation chain’s privilege
attributes, will be sent to the server, which will compare this information with the
ACLs protecting the objects of interest in order to determine whether the principal
is to be granted or denied access.)

Refer to Figure 24-8 as you read the following steps.

4. The client requests some operation (using the annotated binding handle) to be
performed by the server. The client RPC runtime requests from the TGS a service
ticket to the server (identified by the server principal name with which the binding
handle has been annotated). To acquire the ticket, the client security runtime
formulates a request to the TGS. The request includes the server’s principal name,
which the client security runtime encrypts under conversation key 3. Also sent
along with the request is the principal’s PTGT, including EPAC and seal.

DCE 1.2.2 Application Development Guide—Core Components 789

DCE Security Service

Figure 24–8. Client Principal Makes Application Request

Application user interface

API Security runtime

Client Principal

RPC

Legend:

KDS’s secret key

conversation key 5

conversation key 6

Application Server’s secret key

encrypted with KDS’s secret key

encrypted with conversation key 5

encrypted with conversation key 6

encrypted with Application Server’s secret key

user action

if status = OK,
then encrypt
app request

app_request(binding ...

app_request()

request ticket to
application srvr

Registry Service

Ticket Granting Service

Privilege Service

Security Server

EPAC

Seal
PTGT

Seal

Application Server

app_request()

app_request()

Seal

EPAC

5. The TGS decrypts the PTGT (which was encrypted in the KDS’s secret key),
thereby recovering conversation key 5, and uses conversation key 5 to decrypt
the rest of the TGS request message. The TGS then constructs a service ticket,
including the EPAC chain information and conversation key 6. By default, the
key that is used to encrypt the service ticket is the application server’s secret key.

790 DCE 1.2.2 Application Development Guide—Core Components

Authentication

For server principals that must use the user-to-user authentication protocol, the
service ticket granted must be encrypted using the session key obtained from the
server’s current TGT, which the client must pass in with the ticket request. If the
client had used the server-key-based request, and the server requires user-to-user
protocol, the TGS will respond with an error instructing the client-side runtime
to ask the server for its current TGT and to reissue the request with this TGT.

The service ticket is returned to the client, together with conversation key 6
encrypted under conversation key 5.

6. The client’s security runtime uses conversation key 5 to decrypt conversation key
6, and then uses conversation key 6 to encrypt the application-level RPC request
to the server. The client’s RPC runtime sends the encrypted application request
to the application server, together with the service ticket.

Refer to Figure 24-9 as you read the following steps.

7. The application server’s security runtime receives the client’s request and decrypts
the service ticket by using its secret key, or the TGT session key if user-to-user
based authentication is used. In this way, the server’s security runtime learns
conversation key 6 and uses it to decrypt the RPC request. If the server determines
from the client’s authorization information (EPAC chain) that the request is
granted, it performs the requested operation and prepares a response. The server’s
runtime encrypts the response by using conversation key 6 and sends it back to
the client.

8. The client runtime receives and decrypts the response, and returns data to the
application (by returning from the RPC).

DCE 1.2.2 Application Development Guide—Core Components 791

DCE Security Service

Figure 24–9. Application Server Responds to Client’s Request

Client Principal

Security runtime

ÁÁ
ÁÁ

conversation key 6 encrypted with conversation key 6

Application Server

Application
User Interface

API

ÁÁ
ÁÁ

ÁÁÁ
ÁÁÁ

RPC

ÁÁÁ
ÁÁÁ

Legend:

ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÂÂÂÂapp_request()

app_request()

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÂÂÂÂÂ
ÂÂÂÂÂ

svr_response()ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÂÂÂÂÂsvr_response()

svr_response()

If client is authorized for
app request, then perform
operation

svr_response()

The preceding walkthroughs have focused on the security aspect of authenticated RPC
in DCE, not on its communications aspect. The technical details of integrating security
with RPC lie beyond the scope of this chapter. However, the following remarks apply:

• In the CO (virtual circuit) RPC protocol, the client’s security credentials (ticket
with conversation key 6 and EPAC) arepushedfrom client to server at connection

792 DCE 1.2.2 Application Development Guide—Core Components

Authentication

establishment time, that is, at the time of the first remote procedure call from client
to server (and the remote call is of course protected with conversation key 6). In
the CL (datagram) RPC protocol, on the other hand, while the first remote call
from client to server is protected as previously described (with conversation key
6), the credentials themselves are not sent with the remote call. Instead, the server
itself pulls the credentials, by performing acallback, that is, a reverse (system-
level) RPC back to the client, requesting the credentials. Once it receives these
credentials, the server proceeds as if the credentials had been transferred with the
original application-level RPC (from client to server) itself, as in the preceding
walkthroughs.

• Once the application client and server have established conversation key 6, they
cache it and continue to use it for subsequent RPCs, until itexpires. All tickets
and their conversation keys are accompanied by an expiration time, beyond which
a new conversation key must be established (via a new service ticket, or perhaps
even a new TGT if that expires, as described in the preceding walkthroughs).
Thus, the security overhead of these subsequent RPCs is minimal, namely, it is
reduced merely to the overhead of encryption/decryption processing itself, without
the protocol message-passing.

24.2.2.2 Authentication Using GSSAPI

This section describes the process by which applications that perform their network
communications via a mechanism other than DCE RPC can use GSSAPI and DCE
security to authenticate and otherwise protect their communications. (These alternative
communications mechanisms are calledpeer-to-peer, to distinguish them from RPC.)

In peer-to-peer communications, the application component that establishes the secure
connection is called thecontext initiatoror simply initiator. The context initiator is
analogous to a DCE RPC client. The application component that accepts the secure
connection is called thecontext acceptoror simply acceptor. The context acceptor is
analogous to a DCE RPC server.

The peer application components establish a secure connection in the following way.
(The reader will notice that the underlying security aspects are identical to those of
the preceding RPC case, the only differences being in the explicit routine-invocation
and communications aspects.)

DCE 1.2.2 Application Development Guide—Core Components 793

DCE Security Service

1. The context initiator uses thegss_init_sec_context()routine to request from the
DCE security server a service ticket (as previously described) that will allow the
initiator to talk to the context acceptor.

The initiator’s security runtime creates an envelope that contains:

• The initiator’s PTGT

Note: It is assumed that the initiator’s security runtime already possesses a
PTGT; that is, GSSAPI itself does not handle login.

• The acceptor’s principal name, protected under conversation key 5

The initiator’s security runtime sends the envelope to the TGS. (As in Section
24.2.2, step 4, this communication happens via RPC, but this use of RPC is hidden
from the application because it’s an implicit RPC being made by the security
runtime, not an explicit RPC by the application initiator itself.) The TGS issues
a service ticket to the initiator, encrypted in the acceptor’s secret key, exactly as
described in Section 24.2.2, step 5.

2. The initiator’s security runtime recovers conversation key 6 as described in Section
24.2.2, step 6, and then hands to the GSSAPI the service ticket (including EPAC
chain) and conversation key 4.

3. GSSAPI holds onto conversation key 6 and creates a GSSAPItokencontaining
the service ticket.

This GSSAPI token is then returned to the initiator, which forwards it to the
acceptor (via the application’s chosen communications mechanism). (Compare
this with Section 24.2.2, step 6.)

4. The acceptor calls thegss_accept_sec_context()routine, which passes the token
to the acceptor’s security runtime.

5. The acceptor’s security runtime processes the token, in particular recovering
conversation key 6, exactly as described in Section 24.2.2, step 7.

6. The acceptor’s GSSAPI holds onto conversation key 6 and the EPAC chain, and
creates a GSSAPI token containing the success message. It passes the token to
the acceptor. (Again, refer to Section 24.2.2, step 7.)

7. The acceptor forwards the GSSAPI token to the initiator.

8. The initiator passes the token to its GSSAPI, which sends it to the security runtime
by calling thegss_init_sec_context()routine again.

794 DCE 1.2.2 Application Development Guide—Core Components

Authentication

9. The initiator’s security runtime tries to decrypt the message. If this succeeds, it
returns a success status to the GSSAPI that the acceptor’s identity is authenticated.
If not, it returns a failure status to the GSSAPI. (Compare this to Section 24.2.2,
step 8.)

The context acceptor and context initiator can then use conversation key 6
in future communications by calling thegss_sign() and gss_seal() routines.
(Compare this scenario with the RPC remarks following Section 24.2.2, step
8.) The context acceptor can get the initiator’s EPAC chain in the form of an
rpc_authz_cred_handle_tobject so it can perform a DCE ACL check by calling the
gssdce_extract_creds_from_sec_context()routine. If the context initiator wants to
talk to a different context acceptor, it must acquire a ticket to that context acceptor.

24.3 Intercell Authentication

While the intercell authentication model is an extension of intracell authentication,
certain concepts are particular to intercell authentication. The following subsections
discuss those concepts.

24.3.1 KDS Surrogates

A principal trusts the DCE Security Service (registry service/KDS/privilege service) to
authenticate other principals in its cell because it trusts the cryptographic algorithms
and protocols, and the security of the code and data of the security service itself (which
is trusted because it is part of the DCE network trusted computing base). The DCE
Security Service can authenticate all principals in its cell because it shares a secret key
with each of them. A client principal that wants to talk to aforeign server principal
(that is, a principal in another cell) must acquire a ticket targeted to that server. As
always, such a ticket must be encrypted in the secret key of the foreign server, else the
server will not trust the ticket. The client cannot get such a ticket from its own local
security service, because only the foreign security service, not local security service,
knows the secret key of the foreign server. Therefore, some means must be devised
by which the two instances of the security service can securely convey information
about their respective principals to one another (without actually divulging secret keys
of principals to foreign security services, which would be a security risk).

DCE 1.2.2 Application Development Guide—Core Components 795

DCE Security Service

Besides the fact that it is trusteda priori, a cell’s KDS is an exceptional principal
in this other respect: other kinds of principals share their secret keys with the local
security service, whereas the KDS’s key is private to the KDS; that is, it is known
to no other principal. Thus, one problem that intercell authentication must overcome
is the means by which the KDS in one cell may trust that in another cell without
either of them having to share their private keys (which would again introduce an
unacceptable security risk).

Note: With respect to cryptographic keys, the termsecret refers to keys that are
(securely) shared between a bounded set of two (or more) principals, while
private refers to keys that are known to only a single principal, andpublic to
keys that are known to an unbounded set of principals (potentially to all
principals). The cryptographic algorithms and protocols that are currently
supported by DCE all depend on secret key technology (typified by DES),
even though a small number of private keys (those of KDSs) are used.

The solution to this problem is a small extension of the shared-secret authentication
model previously discussed in this chapter. Namely, a new principal is invented
specifically for cross-cell authentication, and two entries for this principal are made,
one each in the registry service databases of the two mutually authenticating cells. The
two entries have thesamesecret key. These two special registry service database entries
are known asmutual authentication surrogates, and the two cells that maintain mutual
authentication surrogates are calledtrust peers. It is through their surrogates that the
two instances of the KDS can convey information about their respective principals to
one another (though the two KDSs never communicate directly with one another, nor
do the surrogates), thus enabling a client principal from one cell to acquire a ticket to
a server principal in another cell.

An authentication surrogate is a true principal in the sense that it is represented
by an entry in a registry service database, but it is not an autonomous participant
in authenticated communications in the same sense that, for example, a client or a
server is. Rather, it is more like analias that is assumed by a cell’s KDS when
it communicates with foreign clients. The establishment, via surrogates, of a trust
peer relationship between two cells is anexplicit expression of mutual trust in the
two KDSs on the part of the cell administrators who establish the relationship.
Administrators use thergy_edit tool to create surrogates and establish the trust
relationship. Administrators who do not trust one another’s cells must not establish
such a relationship.

796 DCE 1.2.2 Application Development Guide—Core Components

Authentication

24.3.2 Intercell Authentication by Trust Peers

This section explains how a client principal in one cell is authenticated by the KDS
in a peer cell, so that the client principal may communicate with a server principal
that is a member of the foreign cell. The style of description is the same as in the
walkthroughs earlier in this chapter, though no figures are used here.

1. A client principal, having already been authenticated in the normal way by the
KDS and privilege service in its home cell and acquired its PTGT, requests its
local TGS for a service ticket targeted to a server in a foreign cell. The client
specifies the server principal by its fully qualified principal name, which includes
the name of the foreign cell.

2. The client’s security runtime makes a request to the client’s local TGS for a service
ticket to the foreign server. The TGS recognizes by the server’s principal name
that it is foreign, so this TGS cannot directly issue the desired service ticket.
Instead, it issues a so-called cross-cell TGT (XTGT), which is targeted to the
surrogateshared between the two cells (that is, it is encrypted in the surrogate’s
secret key). The EPAC data in the client’s PTGT is copied into the XTGT, and
the local TGS returns the XTGT to the client. (For simplicity, we deal here only
with simple case of EPAC data, not a delegation EPAC chain.)

3. The client receives the XTGT, recognizes that it is not targeted to the application
server it had requested, and proceeds to send a request to the foreign TGS for a
service ticket to the foreign privilege service, this time presenting the XTGT
(instead of its original TGT) as proof of authentication. Upon receiving this
request, the foreign TGS decrypts it by using the surrogate’s secret key, and
returns to the client a service ticket to the foreign privilege service. (Note how
knowledge of the surrogate’s shared key makes it possible for the two TGSs to
cooperate in this way.)

4. The client’s security runtime sends this service ticket to the foreign privilege
service, to obtain a cross-cell privilege TGT (XPTGT). This XPTGT contains
the client’s original EPAC, and is encrypted with the secret key of the foreign
privilege service.

5. After the client principal receives the XPTGT, it sends it to the foreign TGS,
requesting a service ticket to the foreign server principal it was originally
interested in. From this point on, the protocol goes exactly as it would in the
case of a client principal in the server’s cell requesting a service ticket to that
server (as previously described). Similarly, the client principal may reuse the
XPTGT to acquire service tickets to any other servers in the foreign cell.

DCE 1.2.2 Application Development Guide—Core Components 797

Chapter 25
Authorization

This chapter explains concepts related to authorization. The authenticated RPC facility
enables you to select the authorization protocol that your application uses. Among the
authorization protocols supported by the DCE Security Service for use by authenticated
RPC is DCE authorization (the default), and name-based authorization.

This chapter first discusses DCE authorization, and more particularly, DCE access
control lists (ACLs). At the end of this chapter, we also briefly discuss the name-
based authorization protocol.

25.1 DCE Authorization

The DCE authorization protocol is based in part on the UNIX file-protection model,
but is extended with ACLs. An ACL is a list of access control entries that protects
an object. Each entry in the ACL specifies a set of permissions. Usually, most of
the entries in the ACL specify a privilege attribute (such as membership in a group)
and the set of permissions that may be granted to the principal(s) that possesses that

DCE 1.2.2 Application Development Guide—Core Components 799

DCE Security Service

privilege attribute. Some other entries specify a set of permissions that may mask the
permission set in a privilege attribute entry.

Every ACL is managed by an ACL manager type. An ACL manager type determines a
principal’s authorization to perform an operation on an object by reading the object’s
ACL to find the appropriate entry (or entries) that matches some privilege attribute
possessed by the principal. If the type of access requested by the principal is one of
the permissions listed in the matching entry, and assuming no applicable mask entry
denies that permission, then the ACL manager type allows the principal to perform
the requested operation. If the requested permission is not listed in the matching
ACL entry, or is denied by a mask, permission to perform the operation is denied.
Permission to perform the operation is also denied if the ACL contains no matching
privilege attribute entry.

Unlike UNIX file permissions, DCE ACLs are not limited to the protection of file
system objects such as is, files, directories, and devices. ACLs may also control access
to nonfile-system objects, such as the individual entries in a database.

Note: The implementation of DCE ACLs is aligned with POSIX P1003.6 Draft 12.

In the discussions in this chapter, we use the general termnameto refer to a principal,
group, or cell identifier; but readers should always bear in mind that these names have
two representations: as UUIDs in ACL program interfaces and as print strings in user
interfaces.

25.1.1 Object Types and ACL Types

The ACL facility distinguishes between two types of objects: container objects and
simple objects. Container objects contain other objects, which may be simple and/
or other container objects. Simple objects do not contain other objects. Examples of
container objects include file-system directories and databases; examples of simple
objects include files and database entries.

To protect both object types, and to enable newly created objects to inherit default
ACLs from their parent container objects, the ACL facility supports two basic kinds
of ACLs:

• An Object ACL is associated with either a container or a simple object, and
controls access to it.

800 DCE 1.2.2 Application Development Guide—Core Components

Authorization

• A Creation ACL is associated with a container object only. Its function is not
to control access to the container but to supply default values for the ACLs of
objects created in the container. There are two types of Creation ACLs:

— An Initial Object Creation ACL supplies default values for a simple object’s
Object ACL and for a container object’s Initial Object Creation ACL.

— An Initial Container Creation ACL supplies default values for both a container
object’s Object ACL and its Initial Container Creation ACL.

Figure 25-1 illustrates how ACL defaults are derived from Creation ACLs.

Figure 25–1. Derivation of ACL Defaults

Object ACL

Initial Container Creation ACL

Initial Object Creation ACL

Object ACL defaults

Object ACL defaults

Initial Container Creation ACL defaults

Initial Object Creation ACL defaults

Container Object A

Container Object Created in Container ASimple Object Created in Container A

Aside from the distinctions previously described, there are no differences between
Object ACLs and Creation ACLs; therefore, the information about ACLs in the rest
of this chapter does not differentiate between them.

25.1.2 ACL Manager Types

A separate ACL manager type manages the ACLs for each class of objects for which
permissions are uniquely defined. The manager type defines the permissions for those
objects whose ACLs it manages, which are the number of permissions, the meanings
of the permissions, and the tokens that represent the permissions in user interfaces to
ACL manipulation tools.

DCE 1.2.2 Application Development Guide—Core Components 801

DCE Security Service

For example, for the purpose of access control, five classes of objects are defined
in the registry database, and five ACL manager types manage the ACLs for the
registry database objects (the five registry manager types run in a single security
server process). Other DCE components implement their own manager types, and
applications implement manager types for the objects that the applications protect.

Refer to theDCE 1.2.2 Administration Guideand theDCE 1.2.2 Command Reference
for information about standard DCE ACL manager types and the permissions they
implement. Refer to Part 1 and Chapter 32 of this guide for information about
implementing ACL manager types for distributed applications.

25.1.3 Access Control Lists

An ACL consists of the following:

• An ACL manager type identifier, which identifies the manager type of the ACL.

• A default cell identifier, which specifies the cell of which a principal or group
identified as local is assumed to be a member. A DCE global pathname is necessary
to specify a principal or a group from a nondefault cell; this consists of a pair of
UUIDs representing the principal or group, and the cell of which it is a member.
It is necessary to use the ID Map API to convert the global print string names
of foreign principals and groups to the UUID representations that DCE ACL
managers use. (Refer to Chapter 33 for more information on this subject.)

• At least one ACL entry.

The rest of this chapter discusses ACLs primarily from a user-interface point of view,
since this perspective provides an orientation to the discussion of the ACL API in this
part.

25.1.4 ACL Entries

DCE authorization defines two basic kinds of ACL entries:

• Those that associate a specified privilege attribute with a permission set; these are
privilege attribute entries.

802 DCE 1.2.2 Application Development Guide—Core Components

Authorization

• Those that specify a permission set that masks a permission set specified in a
privilege attribute entry; these are mask entries.

The following subsections describe the two kinds of ACL entries in detail.

25.1.4.1 Privilege Attribute Entry Types

The privilege attributes of a principal are based on identity and include the principal’s
name, its group membership(s), and native cell. Note that not all ACL manager types
implement all privilege attribute entry types. For example, the ACL manager type of a
database object probably would not support theuser_obj andgroup_obj entry types.

Note: The term local cell means the cell specified in the ACL header; this is not
necessarily the cell in which the protected object resides.

The descriptions of the ACL entry types that specify privilege attributes are as follows:

• user_obj

The user_obj entry establishes the permissions for the object’s ‘‘user’’ (in the
established UNIX sense). An ACL may contain only one entry of this type. The
identity of the principal to which this ACL entry refers is assumed to be local and
is specified somewhere other than in this entry. In the case of a file, for example,
the identity is attached to the file’s inode.

• user

The user entry establishes the permissions for the local principal named in this
entry. An ACL may contain a number of entries of this type, but each entry must
be unique with respect to the principal it specifies.

• foreign_user

Theforeign_userentry establishes the permissions for the foreign principal named
in this entry. An ACL may contain a number of entries of this type, but each entry
must be unique with respect to the foreign principal it specifies. This entry type
is exactly like theuser entry type, except that this entry explicitly names a cell.
(For the entry typeuser, the principal inherits the cell specified by the default cell
identifier in the ACL header.)

• group_obj

DCE 1.2.2 Application Development Guide—Core Components 803

DCE Security Service

The group_obj entry establishes the permissions for the object’s ‘‘group’’ (in the
established UNIX sense). An ACL may contain only one entry of this type. As is
the case with theuser_obj entry, the identity of the group is assumed to be local
and is specified elsewhere than in thegroup_obj entry itself.

• group

The group entry establishes the permissions for the local group named in this
entry. An ACL may contain a number of entries of this type, but each entry must
be unique with respect to the group it specifies.

• foreign_group

The foreign_group entry establishes the permissions for the foreign group named
in this entry. An ACL may contain a number of entries of this type, but each entry
must be unique with respect to the foreign group it specifies. This entry type is
exactly like thegroup entry type, except that this entry explicitly names a cell
(for the entry typegroup, the principals inherit the default cell identifier).

• other_obj

The other_obj entry establishes the permissions for local principals whose
identities do not correspond to any entry type that explicitly names a principal or
group; an ACL may contain only one entry of this type.

• foreign_other

The foreign_other entry establishes the permissions for all principals that are
members of a specified foreign cell and whose identities do not correspond to any
foreign_user or foreign_group entry. An ACL may contain a number of entries
of this type, but each entry must specify a different foreign cell.

• any_other

The any_other entry establishes the permissions for principals whose privilege
attributes do not match those specified in any other entry type. An ACL may
contain only one entry of this type.

The following additional ACL entry types are supplied for delegated identities:

• user_obj_delegate

• user_delegate

• foreign_user_delegate

• group_obj_delegate

804 DCE 1.2.2 Application Development Guide—Core Components

Authorization

• group_delegate

• foreign_group_delegate

• foreign_other_delegate

• other_obj_delegate

• foreign_other_delegate

• any_other_delegate

These ACL entry types are described in detail in Chapter 27, along with the extensions
to the ACL checking algorithm for delegation.

ACL entries for privilege attributes consist of three fields in the following form:

entry_type[:key]:permissions

Following are descriptions of the fields:

• The ACL entry_typespecifies an ACL entry type as described in the previous list.

• The key field specifies the privilege attribute to which the permissions listed in
the entry apply. The key field for the ACL entry typesuser, group, foreign_user,
foreign_group, and foreign_other explicitly names a principal, group, or cell.
For the entry typesforeign_user, foreign_group, andforeign_other, the key field
must contain a global DCE pathname of the forms/.../cellname/principalname, /
.../cellname/groupname, or /.../cellname, respectively. The entry typesuser_obj,
group_obj, other_obj, andany_other do not use the key field.

• The permissionsfield lists the permissions that may be granted to the principal
possessing the privilege attribute specified in the entry, unless a mask (or masks)
further restricts the permissions that may be granted to the principal. As noted
previously, the number and meaning of the permissions that may protect an object
are defined by the object’s ACL manager type. Therefore, the permissions that
an ACL entry may specify must be the set, or a subset, of the permissions
implemented by the manager type of the ACL in which the entry appears.

A principal is denied access when auser or foreign_user entry that names the
principal contains an empty permission set.

DCE 1.2.2 Application Development Guide—Core Components 805

DCE Security Service

25.1.4.2 Mask Entry Types

Following are descriptions of the ACL entry types that specify masks:

• mask_obj

The mask_obj entry establishes the permission set that masks all privilege
attribute entry types except theuser_obj andother_obj types.

• unauthenticated

The unauthenticated entry establishes the permission set that masks the
permission set in a privilege attribute entry that corresponds to a principal whose
privilege attributes have not been certified by an authority such as the privilege
service.

The two masks are similar in that the permission set specified in the mask entry is
intersected (logically ANDed) with the permission set in a privilege attribute entry.
This masking operation yields the effective permission set (the permissions that may
be granted to the principal) for the principal possessing the privilege attribute. For
example, if a privilege attribute entry specifies the permissionsab, and a mask entry
that specifies the permissionsbc masks that privilege attribute entry, the effective
permission set isb. Similarly, a mask entry that specifies the empty permission set
means that none of the permissions in any privilege attribute entry that mask entry
masks is granted to the principal possessing the privilege attribute.

The two masks are dissimilar in one notable respect. Adding anunauthenticated
mask entry with an empty permission set to an ACL is equivalent to omitting
the unauthenticated mask entry from the ACL; in both cases, the set of effective
permissions for principals possessing unauthenticated privilege attributes is empty.
However, adding amask_obj entry with an empty permission set to an ACL is
different from having nomask_obj entry in the ACL. In the first case, the effective
permission set is empty; in the second case, the effective permission set is identical
to the permission set in the privilege attribute entry.

ACL entries for masks consist of two fields in the following form:

entry_type:permissions

Following are descriptions of the fields:

806 DCE 1.2.2 Application Development Guide—Core Components

Authorization

• The entry_typefield specifies one of the two masks entry types:mask_obj or
unauthenticated.

• The permissionsfield specifies the permission set that masks the permission set
in any privilege attribute entry masked by the mask entry.

25.1.4.3 The Extended ACL Entry Type

The ACL entry typeextended is a special entry type for ensuring the compatibility
of ACL data created by different software revisions. It enables old application clients
to copy ACLs from one newer revision object store to another without losing data.
It also enables obsolete clients to manipulate ACL data that they understand without
corrupting the extended entries that they do not understand.

25.1.5 Access Checking

Standard DCE ACL manager types use a common access-check algorithm to determine
the permissions they grant to a principal. Access checking is executed in up to six
stages, in the following order:

1. Theuser_obj entry check

2. The check for a matchinguser or foreign_user entry

3. Thegroup_obj entry check and the check for matchinggroup or foreign_group
entries

4. Theother_obj entry check

5. The check for a matchingforeign_other entry

6. Theany_other check

If during any stage of access checking an ACL manager type finds a privilege attribute
entry that matches a privilege attribute possessed by a principal, then the manager type
does not execute any subsequent stages, even though the principal may possess other
privilege attributes for which there are other matching entries. See theSecurity Volume
of the Application Environment Specification/Distributed Computingfor descriptions
of the algorithms used at each stage of access checking.

DCE 1.2.2 Application Development Guide—Core Components 807

DCE Security Service

25.1.6 Examples of ACL Checking

The following subsections provide some examples that illustrate ACLs and the access-
check algorithms. The examples use the arbitrary convention of ordering entries as
follows: masks, principals, groups, and ‘‘other’’ entries. However, the access check
algorithm disregards the order in which entries appear in an ACL. Also note that the
permissions in these examples do not refer to any particular permissions implemented
by any ACL manager type.

25.1.6.1 Example 1

Following is an ACL that protects an object to which three principals,janea, /.../cella/
fritzb , andmariac, seek access:

mask_obj:ab

user_obj:abc

user:janea:abdef

foreign_user:/.../cella/fritzb:abc

group:projectx:abcf

group:projecty:bcg

Note: The numbered lists in the discussions that follow correspond to stages 1, 2,
3, 4, 5 and 6 of the access-check algorithm referred to in Section 25.1.5.

The principal janea requests permissionc to the object protected by the ACL.
Assume that the principaljanea has the privilege attributes of being a member of
the groupsprojectx andprojecty (as well as having auser entry that names her) and
that janea is the principal to which theuser_obj entry refers. Assume also that this
principal’s privilege attributes are certified:

1. Theuser_obj check yields the permissionsabc.

The result of this check is that the effective permission set forjanea is abc. Because
a matching entry is found during the first stage of access checking, none of the
remaining stages of access checking is executed, even though there are three other
matching entries. Themask_obj entry does not mask theuser_obj entry, sojanea’s

808 DCE 1.2.2 Application Development Guide—Core Components

Authorization

effective permissions are the permissions in theuser_obj entry. Sincejanea requested
a permission that is a member of the effective permission set, her request is granted.

The second principal seeking access to the protected object is/.../cella/fritzb. This
principal requests permissionb. Assume thatuser_obj resolves to some identity other
than /.../cella/fritzb, and that this principal’s privilege attributes are uncertified:

1. Theuser_obj check yields no permissions because/.../cella/fritzb’s identity does
not match that of theuser_obj (no foreign principal can ever match this entry).

2. The foreign_user entry for /.../cella/fritzb specifies the permissionsabc. The
application of themask_obj, which specifies the permissionsab to this permission
set, yields the permissionsab. Since theunauthenticated mask entry is missing
from the ACL, all permissions for unauthenticated identities are masked, yielding
an empty effective permission set.

The result of these checks is that/.../cella/fritzb’s request is denied (and would be
denied, regardless of the permission requested). In this case, only the first two stages
of access checking are executed.

The third principal seeking access ismariac, who requests permissiona. Assume
that the privilege attributes ofmariac are certified, thatmariac is not the principal
that corresponds to theuser_obj entry, and thatmariac is a member of the groups
projectx andprojecty:

1. Theuser_obj check yields no permissions.

2. There is no matching user entry.

3. The group check finds two matching entries. The permissions associated with
projectx (abcf) when masked by themask_obj entry (ab) yield the permissions
ab. The permissions associated withprojecty (bcg) when masked by the
mask_obj entry yield the permissionb. The union of the permission setsab
andb is the setab.

The effective permission set formariac is ab and since the requested permission (a)
is a member of that set,mariac’s request is granted. The remaining stages of access
checking are not executed.

DCE 1.2.2 Application Development Guide—Core Components 809

DCE Security Service

25.1.6.2 Example 2

Following is the ACL for an object to which two principals,ugob and /.../cellb/lolad,
seek access:

mask_obj:bcde

unauthenticated:ab

user_obj:abcdef

user:ugob:abcdefg

group:projectz:abh

foreign_other:/.../cellb/:abc

Note: The numbered lists in the discussions that follow correspond to stages 1, 2,
3, 4, 5 and 6 of the access check algorithm referred to in Section 25.1.5.

The principalugob requests permissionb. Assume thatugob is not the principal to
which the user_obj entry refers. Assume also that the privilege attributes ofugob
include membership in the groupprojectz, in addition to theuser entry that names
him. In this case, the principal has failed to acquire certified privilege attributes:

1. Theuser_obj check yields no permissions.

2. The matching entry among the user entries specifies the permissionsabcdefg.
Applying mask_obj (bcde) yields the permission setbcde. Applying the
unauthenticated mask (ab) to the permission setbcde yields the effective
permission setb.

Since the principalugob requests a permission (b) that is a member of the effective
permissions set, this principal’s request is granted.

A case that illustrates how access is determined for otherwise undifferentiated members
of a specified foreign cell is that of the principal/.../cellb/lolad, who requests
permissione. Assume that the privilege attributes of this principal are certified:

1. The principal is foreign, so theuser_obj check cannot be a match.

2. There are noforeign_user entries.

3. There are noforeign_group entries.

810 DCE 1.2.2 Application Development Guide—Core Components

Authorization

4. The principallolad is a member ofcellb, meaning that the privilege attributes
match those in theforeign_other entry for cellb. The permissions specified by
the foreign_other entry for cellb (abc) as masked bymask_obj (bcde) yields
the effective permission setbc.

The permission requested (e) is not a member of the effective permission set (bc), so
the request is denied.

25.1.6.3 Example 3

Following is the ACL for an object to which one principal,silviob seeks access.

unauthenticated:a

user:jeand:abcde

user:denisf:-

group:projectx:abcd

foreign_other:/.../cella:-

foreign_other:/.../cellc:abc

any_other:ab

Note: The user entry for denisf and theforeign_other entry for cella both specify
an empty permission set with the notation- (dash), meaning that identities
corresponding to these entries are explicitly denied all permissions. Also, the
numbered lists in the discussions that follow correspond to stages 1, 2, 3, 4,
5 and 6 of the access-check algorithm referred to in Section 25.1.5.

The principalsilviob requests permissiona. Assume that this principal’s privileges
include membership in the groupprojecty and that they are not certified:

1. There is nouser_obj entry, so this check can yield no permissions.

2. There is nouser entry for this principal, so this check yields no permissions.

3. There is no entry for the groupprojecty, so this check yields no permissions.

4. There is noother_obj entry, so this check can yield no permissions.

5. The principal is local, so noforeign_other entry can be a match; this check yields
no permissions.

DCE 1.2.2 Application Development Guide—Core Components 811

DCE Security Service

6. Having failed to match any entry examined in the preceding checks, the principal
matches theany_other entry, which yields the permission setab. There is no
mask_obj entry, but there is theunauthenticatedmask entry, which specifies the
permission seta. Applying theunauthenticated mask to this privilege attribute
entry yields the effective permissiona.

The permission requested (a) is a member of the effective permission set (a), so this
principal’s request is granted.

25.2 Name-Based Authorization

The Kerberos authentication service, upon which the DCE shared-secret authentication
protocol is based, authenticates the string name representation of a principal. The
DCE Security Service converts these string representations to UUIDs, and it is
these UUIDs that an ACL manager uses to make authorization decisions. However,
since some existing (non-DCE) applications implement Kerberos authentication, DCE
security supports an authorization protocol based on principal string names: name-
based authorization.

It is assumed that applications that use name-based authorization have a means to
associate string names with permissions, since the DCE Security Service offers no
such facility. Because in name-based authorization there is no UUID representation of
privilege attribute data, and because DCE ACL managers recognize only UUIDs, if an
application uses name-based authorization, then a principal’s privilege attributes are
represented as an anonymous PAC. Such PAC data can only match the ACL entry types
other_obj, foreign_other, or any_other, and are masked by theunauthenticated
mask.

Also note that there is essentially no intercell security for an application that uses the
name-based authorization protocol because such applications never communicate with
the privilege service, which evaluates intercell trust.

812 DCE 1.2.2 Application Development Guide—Core Components

Chapter 26
GSSAPI Credentials

A GSSAPIcredentialis a data structure that provides proof of an application’s claim
to a principal name. An application uses a credential to establish its global identity.
The global identity can be, but is not necessarily, related to the local user name under
which the application (either the initiator or the acceptor) is running.

A credential can consist of either of the following:

• DCE login context

• Principal name

There are three types of credentials, as shown in Table 26-1.

DCE 1.2.2 Application Development Guide—Core Components 813

DCE Security Service

Table 26–1. Credential Types

Credential Content

INITIATE A login context only. This credential identifies
applications that only initiate security contexts.

ACCEPT Principal name and an associated entry key table.
This credential identifies applications that only
accept security contexts.

BOTH A login context and principal name with a key
table entry. This credential identifies applications
that can either initiate or accept security contexts.

Credentials are maintained internally to GSSAPI. When they establish a security
context, applications use credential handles to point to the credentials they need.

When an application initiates or accepts a security context, it can use GSSAPI routines
with either a default credential or a specific credential handle. This chapter discusses
how applications do the following:

• Use default credentials

• Create credential handles to refer to specific credentials

• Delegate credentials

For detailed information on the GSSAPI routines referred to in this chapter, see the
DCE 1.2.2 Application Development Reference.

26.1 Using Default Credentials

A default credentialis a credential that is

• Generated by either of the following routines:

— gss_init_sec_context()

— gss_accept_sec_context()

• Based on the following information:

814 DCE 1.2.2 Application Development Guide—Core Components

GSSAPI Credentials

— The DCE default login context for the application (forINITIATE type
credentials)

— The registered principal name in the token (forACCEPT or BOTH type
credentials).

When an application calls the GSSAPI routine to either initiate
(gss_init_sec_context()) or accept (gss_accept_sec_context()) a security
context, it can specify the use of its default credential.

Use default credentials to help ensure the portability of your applications.

26.1.1 Initiating a Security Context

To use a default credential when initiating a security context, an application calls
the gss_init_sec_context()routine and specifiesGSS_C_NO_CREDENTIAL as the
input claimant credential handle to the routine. The routine uses the initiator’s DCE
default login context to generate the default credential. The credential is anINITIATE
type credential.

You can change the default login context by calling the DCEsec_login_* () routines.
For information on these routines, see see the appropriatesec_login_* (3sec)reference
page.

26.1.2 Accepting a Security Context

To use a default credential when accepting a security context, an application calls the
gss_accept_security_context()routine and specifiesGSS_C_NO_CREDENTIAL as
the verifier credential handle to the routine. The GSSAPI uses a principal name
registered for the context acceptor to generate the default credential handle. The
credential is anACCEPT credential type.

DCE 1.2.2 Application Development Guide—Core Components 815

DCE Security Service

26.2 Creating New Credential Handles

An application can create a new credential handle to pass to thegss_init_sec_context()
routine or the gss_accept_sec_context()routine. An application might create a
credential handle rather than use the default credential for the following reasons:

• Limit the identities the application can use

• Provide an additional identity for the application

26.2.1 Initiating a Security Context with New Credential Handles

To create a credential handle for anINITIATE credential type, the application calls
the gssdce_login_context_to_cred()routine and specifies its login context as input
to the routine. The routine creates a credential handle that points to the credential
consisting of that login context.

An application can also use aBOTH type credential to initiate a security context. Use
the gss_acquire_cred()routine to create aBOTH type credential, as explained in the
next section.

When the application uses aBOTH credential, thegss_acquire_cred()routine creates
a login context from the key table information. Then, it uses the login context to create
the credential. For more details, see thegss_acquire_cred(3sec)reference page.

26.2.2 Accepting a Security Context Using New Credential Handles

To create new credential handle for anACCEPT or BOTH type credential, an
application calls thegss_acquire_cred()routine.

The gss_acquire_cred()routine uses a principal name and its entry in the key table
to generate the credential handle. If the principal name has not yet been registered
(using gssdce_register_acceptor_identity()or the rpc_server_register_auth_info()
routines), thegss_acquire_cred()routine automatically registers it.

816 DCE 1.2.2 Application Development Guide—Core Components

GSSAPI Credentials

26.3 Delegating Credentials

In delegation, an initiator forwards its identity to an acceptor so that the acceptor can
use the identity to act as an agent for the initiator. There are two forms of delegation:

• Impersonation delegation

• Traced delegation

26.3.1 Initiating a Security Context to Delegate Credentials

An application indicates that it wants to delegate credentials when it calls the
gss_init_sec_context()routine and sets theGSS_C_DELEG_FLAG flag to TRUE.
Notes added to the initiator’s login context can indicate the type of delegation used
and any restrictions in effect (for traced delegation only). If no delegation notes
are included with the login context and theGSS_C_DELEG_FLAG flag is set,
impersonation delegation is used.

26.3.2 Accepting a Security Context with Delegated Credentials

If the GSS_C_DELEG_FLAG flag has been set when the security context was
intiated, thegss_accept_sec_context()routine will pass a credential to the acceptor.
The routine does the following:

1. Uses information from the input token to create the appropriate delegated
credential

2. Creates an impersonation or traced delegation credential with anINITIATE
credential type

3. Passes the delegatedINITIATE credential to the acceptor

The principal named in the delegatedINITIATE credential is the name of the initiator
(for impersonation delegation) or the acceptor actingfor the initiator (for traced
delegation). The acceptor uses the credential to act for the initiator, initiating security
contexts as appropriate.

DCE 1.2.2 Application Development Guide—Core Components 817

Chapter 27
The Extended Privilege Attribute API

This chapter describes the extended privilege attribute (EPA) API. The EPA facility
addresses the requirements of complex distributed systems by allowing clients and
servers to invoke secure operations via one or more intermediate servers.

In a simple client/server distributed environment, most operations involve two
principals: the initiator of the operation and the target of the operation. The target
of the operation makes authorization decisions based on the identity of the initiator.
However, in distributed object-oriented environments, there is frequently a need for
server principals to perform operations on behalf of a client principal. In these cases,
it may not be enough for authorization decisions to be based simply on the identity of
the initiator since the initiator of the operation may not be the principal that requests
the operation.

To handle these cases, the EPA API provides routines that allow principals to operate
on objects on behalf of (as delegates of) an initiating principal. The collection of the
delegation initiator and the intermediaries is referred to as adelegation chain.

Using the EPA API and relatedsec_login_* () calls, an application may be written
that allows client Principal A to invoke an operation on server Principal C via server

DCE 1.2.2 Application Development Guide—Core Components 819

DCE Security Service

Principal B. The DCE Security Service will know the true initiator of the operation
(Principal A) and can distinguish the delegated operation from the same operation
invoked directly by Principal A.

The EPA interface consists of the security credential calls (sec_cred_ * ()) that
extract privilege attributes and authorization data from an opaque binding handle to
authenticated credentials. In addition, the followingsec_login_* () calls of the login
API are used to establish delegation chains and to perform other delegation related
functions.

• sec_login_become_initiator()

• sec_login_become_delegate()

• sec_login_become_impersonator()

• sec_login_cred_get_delegate()

• sec_login_cred_get_initiator()

• sec_login_cred_initialize_cursor()

• sec_login_disable_delegation()

• sec_login_set_extended_attrs()

27.1 Identities of Principals in Delegation

The identity of principals in a delegation chain is maintained in extended privilege
attribute certificates (EPACs), as are the identities for all DCE principals. Each EPAC
contains the name and group memberships of a principal in the delegation chain and
any extended attributes that apply to the principal. The delegation chain includes an
EPAC for each member of the delegation chain.

When delegation is in use, the target server receives the delegation chain, and thus
knows the privilege attributes of the delegation chain initiator and each intermediary
(delegate) in the chain. Authorization decisions can then be made based on the
identities of all principals involved in the operation.

820 DCE 1.2.2 Application Development Guide—Core Components

The Extended Privilege Attribute API

27.1.1 ACL Entry Types for Delegation

When a server’s ACL manager is presented with credentials to use as a base of an
authorization decision, the manager evaluates the privilege attributes of each principal
involved in the delegation chain. The ACL manager grants access for the requested
operation only if all principals in the delegation chain have the necessary permissions
on the object that is the eventual target of the operation.

For the initiator of the delegation chain, permission on the target object must be
granted directly using any of the following standard ACL entry types:

• user_obj

• user

• foreign_user

• group_obj

• group

• foreign_group

• foreign_other

• other_obj

• foreign_other

• any_other

• extended

For intermediaries in a delegation chain, permissions to a target object can be granted
directly to the intermediary with the standard ACL entry type previously described,
or permissions can be granted by delegate ACL entries. Delegate ACL entries grant
permissions to principals only if they are acting as delegates. The following delegate
ACL entry types are available:

• user_obj_delegate

• user_delegate

• foreign_user_delegate

• group_obj_delegate

• group_delegate

DCE 1.2.2 Application Development Guide—Core Components 821

DCE Security Service

• foreign_group_delegate

• foreign_other_delegate

• other_obj_delegate

• foreign_other_delegate

• any_other_delegate

Note that, to perform an operation, all delegates in the chain must have the appropriate
permissions. For example, assume a delegation chain consists of Principal A (the
initiator) and Principal’s B and C (the intermediaries). To perform the operation, the
delegation chain requiresMrw permissions on Server X. One way of granting these
permission is to grant them directly to each member of the delegation chain, as shown
in the following:

user:Principal A:Mrw

user:Principal B:Mrw

user:Principal C:Mrw

Providing access directly also allows each intermediary in the chain to perform the
operation of their own initiative, a consequence that may or may not be desired. To
specify that Principals B and C may only be intermediaries operating on behalf of
an authorized initiating principal without granting them the ability to perform the
operation on their own, use delegation entries. In this case, the Server X’s ACL would
contain the following entries:

user:Principal A:Mrw

user_delegate:Principal B:Mrw

user_delegate:Principal C:Mrw

27.1.2 ACL Checking for Delegation

To determine permissions, the ACL manager first uses the standard access-check
algorithm (described in Chapter 25) to determine the permissions to grant to the
delegation initiator. If the requested permission is not granted, access is denied.

822 DCE 1.2.2 Application Development Guide—Core Components

The Extended Privilege Attribute API

If the requested permission is granted, the ACL manager then checks the permissions
granted to the delegates in the chain. This checking is similar to the standard access-
check algorithm, but it takes into account any additional delegate permissions granted
to the delegates. If the requested permission is not granted to all delegates, access is
denied. If the requested permission is granted to all delegates, access is granted.

27.2 Calls to Establish Delegation Chains

The following sec_login_* () API calls set up a delegation chain:

• sec_login_become_initiator()

Enables delegation for a client. The principal that executes this call is known as
the delegation initiator.

• sec_login_become_delegate(), sec_login_become_impersonator()

Cause an intermediate server to become a delegate in a delegation chain. The
principals that execute these calls are known asintermediariesin the delegation
chain.

The sec_login_become_delegate()call should be used if the traced delegation has
been enabled. Thesec_login_become_impersonator()call should be used if simple
delegation has been enabled. See Section 27.2.1 for more information about delegation
types.

The following subsections describe the information supplied to the calls that establish
delegation chains.

27.2.1 Types of Delegation

When a client application callssec_login_become_initiator()to enable delegation,
that application specifies the type of delegation that should be enabled. The delegation
type can be any of the following:

• Traced Delegation

DCE 1.2.2 Application Development Guide—Core Components 823

DCE Security Service

Includes the identities of all members of the delegation chain in the credentials
used for authorization. To become an intermediary in a traced delegation chain,
server principals use thesec_login_become_delegate()call.

Note that ACLs on objects that are targets of traced delegation must grant the
requested permission (or delegate permission) to each member of the delegation
chain.

• Impersonation

Includes only the identity of the initiator of the delegation chain used for
authorization. All intermediaries ‘‘impersonate’’ the delegation initiator. To
become an impersonator, principals use thesec_login_become_impersonator()
call.

Note that ACLs on objects that are targets of impersonation need list only the
delegation initiator, not each delegate in the chain.

Generally, traced delegation is the preferred method. The high degree of location
transparency inherent in simple delegation greatly increases the risk of a client being
compromised by a Trojan horse application.

When server principals run the sec_login_become_delegate() or
sec_login_become_impersonator()call to become an intermediary in a delegation
chain, they must also specify the delegation type as input to the call. The type they
specify must be the same type as the delegation type specified by the initiator of the
chain (unless they specify no delegation).

27.2.2 Target and Delegate Restrictions

When a principal enables delegation or becomes an intermediary in a delegation chain,
the principal may specify target and delegate restrictions. Target restrictions identify
the server principals (by UUID) to which the identities in a delegation chain can be
projected. Delegate restrictions identify the server principals that can further project
the delegation chain.

If a target restriction prohibits a server from seeing an identity in a delegation chain, the
security runtime replaces that identity with the identity of theanonymous principal. If a
delegate restriction prohibits a principal from being an intermediary in a chain, then the
security runtime replaces that principal’s identity with the identity of the anonymous

824 DCE 1.2.2 Application Development Guide—Core Components

The Extended Privilege Attribute API

principal. This replacement with the anonymous identity allows the authenticated RPC
call to complete. Whether the operation requested by the delegation chain is performed
can be controlled by ACL entries that grant permission to the anonymous principal
on the objects that are the targets of the delegated operation.

If no delegate restrictions are supplied, any principal can be an intermediary in the
delegation chain. If any delegate restrictions are supplied, then only those supplied
can further transmit the delegation chain.

Note: In the current release of DCE, there is no way for a server to register its
DCE credentials with the RPC runtime. Only a server name and key table
can currently be registered. Because of this limitation, target restrictions are
currently implemented so thatall target servers see anonymous credentials
for any EPAC that contains any target restriction regardless of the identity
specified in the restriction.

27.2.2.1 The Anonymous Principal

The DCE Security Service replaces those identities in the delegation chain that are
not allowed to be seen by target or delegate restrictions with the UUIDs associated
with the anonymous principal’s identity. These UUIDs are as follows:

• Anonymous principal UUID:fad18d52-ac83-11cc-b72d-0800092784e9

• Anonymous group UUID:fc6ed07a-ac83-11cc-97af-0800092784e9

The other_obj, any_other,other_obj_deleg, and any_other_deleg ACL entries
define the anonymous principal’s access to objects. The entries must be set up just as
for any other principal. The appropriate direct or delegate permissions must be granted
to the anonymous principal or the delegated operation will fail.

27.2.2.2 Target and Delegate Restriction Syntax

Target and delegate restrictions are expressed as a list of values of type
sec_id_restriction_t. This data type consists of a UUID and an entry type. The entry
type specifies whether the UUID identifies a principal, a group, or ‘‘any other’’
principals (in a manner similar to theany_other ACL entry type). As in ACL entry

DCE 1.2.2 Application Development Guide—Core Components 825

DCE Security Service

types, the target restriction entry types can refer to principals and groups from the
local cell or from foreign cells.

The possible delegation entry types are as follows:

• sec_rstr_e_type_user

The target or delegate is a local principal identified by UUID.

• sec_rstr_e_type_group

The target or delegate is any member of a local group identified by UUID.

• sec_rstr_e_type_foreign_user

The target or delegate is a foreign principal identified by principal and cell UUID.

• sec_rstr_e_type_foreign_group

The target or delegate is any member of a foreign group identified by group and
cell UUID.

• sec_rstr_e_type_foreign_other

The target or delegate is any principal that can authenticate to the foreign cell
identified by UUID.

• sec_rstr_e_type_any_other

The target or delegate is any principal that can authenticate to any cell.

• sec_rstr_e_type_no_other

No principal can act as a target or delegate.

27.2.3 Optional and Required Restrictions

When a principal callssec_login_become_initiator() to enable delegation, or
sec_login_become_delegate()or sec_login_become_impersonator()to become an
intermediary, the principal can specify optional and required restrictions. Optional
and required restrictions are provided for use by applications that have specific
authorization requirements. These restrictions, which are defined by the application,
can be set by initiators or intermediaries, and are interpreted and enforced by
application target servers. Servers can ignore optional restrictions that they cannot
interpret, but they must reject requests associated with a required restriction that they

826 DCE 1.2.2 Application Development Guide—Core Components

The Extended Privilege Attribute API

cannot interpret. Both optional and required restrictions are supplied as values of
type sec_id_opt_req_t. They are inserted in an EPAC by the privilege server and
evaluated by the target server application.

27.2.4 Compatibility Between Version 1.1 and Pre-Version 1.1
Servers and Clients

Prior to DCE Version 1.1, a principal’s privilege attributes were stored in a privilege
attribute certificate (PAC). At Version 1.1, the PAC was renamed to EPAC and extended
to include the following:

• Target, delegate, optional, and required restrictions.

• Extended registry attributes (ERAs), as described in Chapter 29.

Additionally, authorization credentials can now consist of multiple EPACs, as in
delegation chains, instead of a single PAC.

When a pre-Version 1.1 client interacts with a Version 1.1 server or vice versa, the
Version 1.1 server requires an EPAC and the pre-Version 1.1 server requires a PAC.

For Version 1.1 servers, the security runtime automatically converts the PAC supplied
by a pre-Version 1.1 client to an EPAC. For pre-Version 1.1 servers, the security
runtime automatically extracts PAC data from the credentials supplied by the Version
1.1 client. However, because an EPAC for a delegation chain contains the privilege
attributes of multiple principals and a PAC contains only one set of privilege attributes,
the principals engaged in delegation must specify how to handle this issue of multiple
versus single identities.

When a principal initiates delegation or becomes an intermediary in a delegation
chain, that principal can specify whether to use the privilege attributes of the chain
initiator or the last intermediary in the chain to construct the PAC required by a
pre-Version 1.1 server. This compatibility decision is specified as a value of type
sec_id_compatibility_mode_t, which is set to one of the following three values:

• sec_id_compat_mode_none

Compatibility mode is off. The security runtime supplies the application server
with an unauthenticated PAC.

• sec_id_compat_mode_initiator

DCE 1.2.2 Application Development Guide—Core Components 827

DCE Security Service

Compatibility mode is on. The pre-Version 1.1 PAC data is extracted from the
EPAC of the delegation initiator.

• sec_id_compat_mode_caller

Compatibility mode is on. The pre-Version 1.1 PAC data extracted from the EPAC
of the last intermediary in the delegation chain.

27.3 Calls to Extract Privilege Attribute Information

The EPA APIsec_cred_* () and login APIsec_login_cred_* () calls extract privilege
attribute information. These calls return information associated with an opaque handle
to an authenticated identity.

The sec_cred_* () calls are used by servers that have been called by a client with
authenticated credentials. The calls and the information they return are as follows:

• sec_cred_get_authz_session_info()

Returns a client’s authorization information

• sec_cred_get_client_princ_name()

Returns the principal name of the client

• sec_cred_get_deleg_restrictions()

Returns delegate restrictions

• sec_cred_get_delegate()

Returns a credential handle to the privilege attributes of a delegate in a delegation
chain

• sec_cred_get_delegation_type()

Returns the delegation type

• sec_cred_get_extended_attrs()

Returns extended attributes

• sec_cred_get_initiator()

Returns a credential handle to the privilege attributes of the initiator of a delegation
chain

828 DCE 1.2.2 Application Development Guide—Core Components

The Extended Privilege Attribute API

• sec_cred_get_opt_restrictions()

Returns optional restrictions

• sec_cred_get_pa_data()

Returns privilege attributes from a credential handle

• sec_cred_get_req_restrictions()

Returns required restrictions

• sec_cred_get_tgt_restrictions()

Returns target restrictions

• sec_cred_get_v1_pac()

Returns pre-Version 1.1 privilege attributes

• sec_cred_is_authenticated()

Returns TRUE if the caller’s privilege attributes are authenticated or FALSE
otherwise

The sec_login_cred_* () calls are used by clients that are part of a delegation chain.
The calls and the information they return are as follows:

• sec_login_cred_get_delegate()

Returns the privilege attributes of a delegate in a delegation chain.

• sec_login_cred_get_initiator()

Returns the privilege attributes of the initiator of a delegation chain

Thesec_cred_* () andsec_login_* () calls discussed in this chapter return information
about authenticated principals associated with an opaque credential handle supplied
to the call. Two credential handles are used:

• sec_login_handle_t(returned by a client-sidesec_login_get_current_context()
call)

• rpc_authz_cred_handle_t(returned by a server-siderpc_inq_auth_caller() call)

These are handles to all the credentials in a delegation chain.
The sec_login_cred_get_initiator(), sec_login_cred_get_delegate(),
sec_cred_get_initiator(), and sec_cred_get_delegate()calls return a handle

DCE 1.2.2 Application Development Guide—Core Components 829

DCE Security Service

of type sec_cred_pa_handle_t, which is a handle to the extended privilege attributes
of a particular identity in a delegation chain. The othersec_cred_* () andsec_login_*
() calls discussed in this chapter take thesec_cred_pa_handle_thandle and return
the requested information for the particular identity.

27.4 Disabling Delegation

The login APIsec_login_disable_delegation()call disables delegation for a specified
login context. It returns a new login context of typesec_login_handle_twithout any
delegation information and prevents any further delegation.

27.5 Setting Extended Attributes

The login API sec_login_set_extended_attrs()call adds extended registry attributes
to a login context. The extended registry attributes must have been established and
attached to the object by using the ERA API. (For more information on ERAs, see
Chapter 29.)

830 DCE 1.2.2 Application Development Guide—Core Components

Chapter 28
The Registry API

This chapter describes the registry API. Like the other security APIs, this one provides
a simpler binding mechanism than the standard RPC handle structure. It includes
facilities for creating and maintaining the registry database. Applications that run in
the default DCE registry environment (that is, those that assume the presence of the
default registry tools and servers) have no reason to call this API.

28.1 Binding to a Registry Site

Although it is often convenient to speak of the registry database in a way that implies
that it is a single physical database, the registry database is replicated in all but the
very smallest cells. Replication reduces network traffic and increases the availability
of registry data to clients.

A cell’s registry database usually consists of an update site (also known as themaster
site), and a number of query sites (also known as read-only, orslavesites). Changes
to data at the master site are propagated to its slaves by messages sent by the master.
Query sites can only satisfy requests for data (for example,sec_rgy_acct_lookup(),

DCE 1.2.2 Application Development Guide—Core Components 831

DCE Security Service

which returns account information). Requests for database changes (for example,
sec_rgy_acct_passwd(), which changes the password for an account) must be directed
to the master site; a query site that receives such a request returns an error.

To submit requests to the registry server, a client must first select a site and bind to it.
The client may select a site by name, ask the DCE Directory Service to bind to the
master site, or select an arbitrary site. In addition, a client may select a cell and bind
to a registry site in that cell.

The registry API enables a client to communicate with the registry server via a
specified authentication protocol, at a specified protection level, and using a specified
authorization protocol. For instance, a developer may decide that the protection level
for communicating with an update site should be higher (that is, more secure) than
that for a query site; that is, the developer may feel that, on the one hand, the relatively
infrequent changes to registry data should be done in a highly secure manner and that,
on the other hand, authentication overhead should be reduced for the more frequent
requests for registry data. The registry API accommodates these varying needs.

The following calls bind a client to a registry server in preparation for registry
operations. The argument list of these calls enables an application to specify the
authentication protocol, the protection level, and the authorization protocol to be used:

• sec_rgy_site_bind()

Binds to a specified site

• sec_rgy_site_bind_update()

Binds to the update site

• sec_rgy_site_bind_query()

Binds to any query site

• sec_rgy_cell_bind()

Binds to any registry site in a specified cell

• sec_rgy_site_binding_get_info()

Extracts the registry site name and security information from the binding handle

The following calls are similar to the binding calls just described, except that an
application cannot specify security information. By default, however, the following

832 DCE 1.2.2 Application Development Guide—Core Components

The Registry API

calls use DCE shared-secret authentication, the packet-integrity level of protection,
and DCE authorization.

• sec_rgy_site_open()

Binds to the specified site

• sec_rgy_site_open_update()

Binds to any update site

• sec_rgy_site_open_query()

Binds to any query site

• sec_rgy_site_get()

Gets the registry site name from the binding handle

The following calls provide miscellaneous binding management functionality:

• sec_rgy_site_close()

Terminates binding to a registry site and frees resources associated with this
binding

• sec_rgy_site_is_readonly()

Tests whether a bound site is an update or query site

28.2 The Registry Database

The registry database comprises three container objects:

• principal

Contains principal names; each name is associated with account information that
is also specified here (for example, the name of the primary group)

• group

Contains groups and the names of their member principals

• organization

Contains organizations and the names of their member principals

DCE 1.2.2 Application Development Guide—Core Components 833

DCE Security Service

These three objects are referred to asname domains, and each member of a domain
is referred to as aPGO item. Principal items are contained in the principal domain,
groups in the group domain, and organizations in the organization domain. A principal
may have a name such as/rd/writers/tom , from which you might infer thattom is a
member of the groupwriters and the organizationrd . However, this is not the case
because the name/rd/writers/tom only indicates thattom and the data corresponding
to the account of this principal (if any) reside in/rd/writers in the principal domain.
There may also be a group named/rd/writers in the group domain, but the principal
tom is not a member unless he is explicitly named in the group/rd/writers in the
group domain.

Each PGO item consists of a print string name, a UUID, and a UNIX number
(for compatibility with UNIX system security interfaces). For various administrative
reasons, it is frequently convenient to be able to refer to a PGO item by more than
one name. Consequently, some PGO items are aliases for other items. An alias uses
the same UUID and UNIX number as the PGO item to which it refers, but contains
only a pointer to that item.

The registry also contains thergy object, which describes registry properties and
policies, and organization policies.

28.2.1 Creating and Maintaining PGO Items

The PGO items in the registry database are created and maintained with routines that
are prefixed withsec_rgy_pgo_. The contents of a PGO item vary with the domain.
If the domain isgroup or organization, the contents are the membership list of
principal names. If the domain isprincipal , the contents are the data corresponding
to the registry account using that name.

The sec_rgy_pgo_* () interface contains the following calls for maintaining the PGO
trees:

• sec_rgy_pgo_add()

Adds a PGO item

• sec_rgy_pgo_delete()

Deletes a PGO item

• sec_rgy_pgo_rename()

834 DCE 1.2.2 Application Development Guide—Core Components

The Registry API

Changes the name of a PGO item

• sec_rgy_pgo_replace()

Replaces information corresponding to the specified PGO item

The sec_rgy_pgo_* () interface contains the following calls for maintaining PGO
membership lists:

• sec_rgy_pgo_add_member()

Adds a member to a group or organization membership list

• sec_rgy_pgo_delete_member()

Deletes a member from a group or organization membership list

• sec_rgy_pgo_get_members()

Returns a list of members of a group or organization

• sec_rgy_pgo_is_member()

Tests whether a principal is a member of a specified group or organization

The sec_rgy_pgo_* () interface contains the following calls for retrieving PGO item
data:

• sec_rgy_pgo_get_by_id()

Returns the PGO item with the specified UUID

• sec_rgy_pgo_get_by_eff_unix_num()

Returns the PGO item with the specified effective UNIX number

• sec_rgy_pgo_get_by_name()

Returns the PGO item with the specified name

• sec_rgy_pgo_get_by_unix_num()

Returns the PGO item with the specified UNIX number

• sec_rgy_pgo_get_next()

Returns the PGO item that follows the last PGO item returned

Thesec_rgy_pgo_* () interface also contains routines that convert PGO item specifiers,
as follows:

DCE 1.2.2 Application Development Guide—Core Components 835

DCE Security Service

• sec_rgy_pgo_id_to_name()

• sec_rgy_pgo_id_to_unix_num()

• sec_rgy_pgo_name_to_id()

• sec_rgy_pgo_unix_num_to_id()

• sec_rgy_pgo_name_to_unix_num()

• sec_rgy_pgo_unix_num_to_name()

28.2.2 Creating and Maintaining Accounts

The login-namefield of an account contains a principal name, a primary group name,
and an organization name. The account may also contain a project list (also known as a
concurrent group set) that specifies all the groups to which the principal corresponding
to the account belongs, but thelogin-namefield itself specifies only one group name.

An account can be added to the registry database only when all of its constituent PGO
items are established. For instance, to create an account with the principal nametom,
the group namewriters , and the organization namerd , all three names must exist as
individual PGO items in the database; and thewriters group and therd organization
must specify thattom is a member.

When an account is created withsec_rgy_acct_add()(and if a project list is
enabled for the new account), the call scans the groups in the registry and creates
a project list containing all the groups in which the principal name appears.
Subsequently, the project list may be modified with thesec_rgy_pgo_add_member()
andsec_rgy_pgo_delete_member()calls.

The following calls create and maintain accounts:

• sec_rgy_acct_add()

Adds an account to an existing principal item

• sec_rgy_acct_delete()

Deletes an account, leaving the principal item

• sec_rgy_acct_rename()

836 DCE 1.2.2 Application Development Guide—Core Components

The Registry API

Changes an account login name, perhaps moving the account to a different
principal item

The following calls return the information in an account:

• sec_rgy_acct_get_projlist()

Returns the project list for an account

• sec_rgy_acct_lookup()

Returns all the account data

The following calls modify the information in an account:

• sec_rgy_acct_passwd()

Changes an account password

• sec_rgy_acct_replace_all()

Replaces all of an account’s data

• sec_rgy_acct_admin_replace()

Replaces only the administrative account data

• sec_rgy_acct_user_replace()

Replaces only the account data that is accessible to the user of the account

28.2.3 Registry Properties and Policies

The following subsections outline some registry API parameters that affect the cell
as a whole, and the routines that enable an application to retrieve and set values for
them.

28.2.3.1 Registry Properties

Several registry parameters and flags affect all accounts in the registry. These registry
properties include the following:

• The version number of the registry software used to create and read the registry

DCE 1.2.2 Application Development Guide—Core Components 837

DCE Security Service

• The name and UUID of the cell associated with the registry, and whether the
current registry site is an update site or a query site

• Minimum and default lifetimes for certificates of identity issued to principals

• Bounds on the UNIX numbers used for principals, and whether the UUIDs of
principals also contain embedded UNIX numbers

The routines associated with this parameter set are

• sec_rgy_properties_get_info()

• sec_rgy_properties_set_info()

28.2.3.2 The Registry Authentication Policy

Another set of parameters affecting all principals is the registry authentication policy.
This set only controls the maximum lifetime of certificates of identity, upon first issue
and renewal. Accounts also have authentication policies, and the policy in effect for
any principal is the most restrictive combination of the registry policy and the policy
for a principal’s account. The associated routines are

• sec_rgy_auth_plcy_get_info()

• sec_rgy_auth_plcy_get_effective()

• sec_rgy_auth_plcy_set_info()

28.2.3.3 Organization Policies

Another parameter set controls the set of accounts of principals that are members of
an organization. These parameters control the lifetime and length of passwords, as
well as the set of characters from which passwords may be composed. This parameter
set also specifies the default lifespan of accounts associated with the organization. The
routines associated with this parameter set are

• sec_rgy_plcy_get_info()

• sec_rgy_plcy_get_effective()

• sec_rgy_plcy_set_info()

838 DCE 1.2.2 Application Development Guide—Core Components

The Registry API

28.2.4 Routines to Return UNIX Structures

The registry API provides calls to obtain registry entries in a UNIX compatible
structure. These APIs return account and group entries similar to thegetpwnam,
getgrnam, getpwuid, andgetgrid UNIX library routines. These APIs, which can be
called by the corresponding UNIX library routines to ensure compatibility with UNIX
programs, are

• sec_rgy_unix_getpwnam()

Returns a UNIX compatible password entry for an account specified by name

• sec_rgy_unix_getgrnam()

Returns a UNIX compatible group entry for an account associated with a specified
group name

• sec_rgy_unix_getpwuid()

Returns a UNIX compatible password entry for an account specified by UNIX ID

• sec_rgy_unix_getgrgid()

Returns a UNIX compatible group entry for an account associated with a specified
group ID

28.2.5 Miscellaneous Registry Routines

The registry API includes a few miscellaneous routines, as follows:

• sec_rgy_login_get_info()

Returns login information for the specified account.

• sec_rgy_login_get_effective()

Applies local overrides (if such data is available) to registry account information
and returns information about which account information fields have been
overridden

• sec_rgy_wait_until_consistent()

Blocks until all previous database updates have been propagated to all sites. This
is useful for applications that first bind and write to an update site, and then bind
to an arbitrary query site and depend upon up-to-date information.

DCE 1.2.2 Application Development Guide—Core Components 839

DCE Security Service

Note: The sec_rgy_wait_until_consistent()routine is not available in DCE
Release 1.0 Version 1.0.2.

• sec_rgy_cursor_reset()

Resets the database cursor to return the first suitable entry

840 DCE 1.2.2 Application Development Guide—Core Components

Chapter 29
The Extended Attribute API

This chapter describes the extended attribute APIs. There are two extended attribute
APIs: the extended registry attribute (ERA) interface to create attributes in the registry
database and the DCE attribute interface to create attributes in a database of your
choice.

The ERA interface (consisting ofsec_attr_* () calls) provides facilities for extending
the registry database by creating, maintaining, and viewing attribute types and
instances, and providing information to and receiving it from outside attribute servers
known as attribute triggers . It is the preferred API for security schema and
attribute manipulations. Application servers that manage legacy security attributes
or provide third-party processing of attributes stored in the registry database can
export and implement thesec_attr() interface. Trigger servers are accessed through
the sec_attr_trig() interface by the security client agent during certainsec_rgy_attr_
* () calls. The ERA interface uses the same binding mechanism as the registry API,
described in Chapter 28.

The DCE attribute interface (consisting ofdce_attr_sch_* () calls) is provided for
schema and attribute manipulation of data repositories other than the registry. Although
similar to the ERA interface, the functionality of the DCE attribute interface is limited

DCE 1.2.2 Application Development Guide—Core Components 841

DCE Security Service

to creating schema entries (attribute types). The interface does not provide calls to
create and manipulate attribute instances or to access trigger servers.

The chapter first describes the ERA interface and then the DCE attribute interface.
Finally is describes macros and utilities provided for developers who use either
attribute API.

29.1 The ERA API

The registry is a repository for principal, group, organization, and account data. It
stores the network privilege attributes used by DCE and account data used by local
operating systems. This local account data, however, is appropriate only for UNIX
operating systems. The ERA facility provides a mechanism for extending the registry
schema to include data (attributes) required by or useful to operating systems other
than UNIX operating systems.

The ERA API provides the ability to define attribute types and to attach attribute
instances to registry objects. Registry objects are nodes in the registry database, to
which access is controlled by an ACL manager type. The registry objects are

• principal

• group

• organization

• policy

• directory

• replist

• attr_schema

All registry objects and their accompanying ACL manager type are described in the
DCE 1.2.2 Administration Guide—Core Components.

The ERA API also provides a trigger interface that application servers use to integrate
their attribute services with ERA services.

842 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

29.1.1 Attribute Schema

The schema extensions are implemented in a single attribute schema that is essentially
a catalog of schema entries, each of which defines the format and function of an
attribute type. The schema can be dynamically updated to create, modify, or delete
schema entries.

The attribute schema is identified by the namexattrschema under the security
junction point (usually/.:/sec) in the CDS namespace. Access to the attribute schema
(hereinafter called simplyschema) is controlled by an ACL on the schema object. The
schema is propagated from the master security server to replicas, like other registry
data. Since the attribute schema is local to a cell, it defines the types that can be used
within the cell, but not outside the cell (unless the type is also defined in another cell).

29.1.2 Attribute Types and Instances

Each attribute type definition in the schema consists of attribute type identifiers (UUID
and name) and semantics that control the instances of attributes of this type. In this
manual,schema entryrefers to the registry entry that defines an attribute type.

An attribute instance is an attribute that is attached to an object and has a value (as
opposed to an attribute type, which has no values but simply defines the semantics
to which attribute instances of that attribute type must adhere). Attribute instances
contain the UUID of their attribute type.

29.1.3 Attribute Type Components

The sec_attr_schema_entry_tdata type defines an attribute type. This data type
contains attribute type identifiers and characteristics.

The identifiers of attribute types are a name and a UUID. Generally, the name is used
for interactive access and the UUID for programmatic access.

Attribute type characteristics describe the format and function of the attribute type and
thus control the format and function of instances of that type. These characteristics,

DCE 1.2.2 Application Development Guide—Core Components 843

DCE Security Service

all specified in thesec_attr_schema_entry_tdata type, are described in the following
sections.

29.1.3.1 Attribute Encoding

Attribute encoding defines the legal encoding for instances of the attribute type. The
encoding controls the format of the attribute instance values, such as whether the
attribute value is an integer, string, a UUID, or a vector of UUIDs that define an
attribute set.

Attribute encodings are specified in thesec_attr_encoding_tdata type (fully described
in the DCE 1.2.2 Application Development Reference).

The possible encodings for attribute types are

• any

The attribute instance value can be of any legal encoding type.

• void

The attribute instance has no value. It is simply a marker that is either present or
absent.

• printstring

The attribute value is a printable IDL character string from the DCE Portable
Character Set (PCS).

• printstring_array

The attribute value is an array of print strings.

• integer

The attribute value is a signed 32-bit integer.

• bytes

The attribute value is a string of bytes. The byte string is assumed to be a pickle
or is otherwise a self-describing type.

• confidential_bytes

844 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

The attribute value is a string of encrypted bytes. This encrypted data can be
passed over the network and is available to user-developed applications.

• internationalization_data

An internationalized string of bytes with a tag identifying the OSF registered
codeset used to encode the data.

• uuid

A DCE UUID.

• attr_set

The value is an attribute set, a vector of attribute type UUIDs used to associate
multiple related attribute instances (members of the set). The vector contains the
UUIDs of each member of the set. Attribute sets provide a flexible way to group
related attributes on an object for easier search and retrieval.

The attribute type UUIDs referenced in an attribute set instance must correspond
to existing attribute schema entries. Although the members specified in a set
are generally expected to be attached to the object to which the set instance is
attached, no checking is done to confirm that they are. Thus, it is possible to create
an attribute set instance on an object before creating member attribute instances
on that object. A query on such an attribute set returns all instances of member
attributes that exist on the object along with a warning that some attribute types
were missing.

Note that attribute sets cannot be nested; a member UUID of an attribute set
cannot itself identify an attribute set.

A query on an attribute set expands to a query per the set’s members.
In other words, an attribute lookup operation on an attribute set returns
all attribute instances that are members of the set, not the set instance
itself. (Certain operations, such assec_rgy_attr_set_lookup_by_id() and
sec_rgy_attr_lookup_by_name(), can retrieve attribute set instances.)

Updates to an attribute set (sec_rgy_attr_update()) do not expand the update
to its members but apply only to the attribute set. Since the value carried by a
set instance is a vector containing the UUIDs of the member attribute types, an
update makes changes only to the set’s members, not the values carried by those
member attributes. Deletions of attribute sets delete only the set instance, not the
member instances.

DCE 1.2.2 Application Development Guide—Core Components 845

DCE Security Service

Since the attributes that are set members exist independently of the attribute set,
they can be manipulated directly like any other attribute.

• binding

The attribute value is asec_attr_binding_info_t type containing authentication,
authorization, and binding information suitable for communicating with a DCE
server.

29.1.3.2 ACL Manager Set

An attribute type’s ACL manager set specifies the ACL manager type or types (by
UUID) that control access to the object types to which attribute instances of this type
can be attached. Attribute instances can be attached only to objects protected by the
ACL manager types in the schema entry. For example, suppose an ACL manager
set for an attribute type namedMVSname lists only the ACL manager type for
principals. Then, instances of the attribute type namedMVSname can be attached
only to principals and not any other registry objects.

Access to an attribute instance is controlled by the ACL on the object to which the
attribute instance is attached and access control is implemented by the object’s ACL
manager type. For example, access to an attribute namedMVSname on the principal
object nameddelores is controlled by the ACL on thedeloresobject.

Do not confuse access to an attribute type definition (a schema entry) with access to
an attribute instance. As described previously, access to a schema entry is controlled
by the ACL on thexattrschema object. Access to an attribute instance is controlled
by the ACL on the object to which the attribute instance is attached.

In addition to the ACL manager types, the ACL manager set defines the permission
bits needed to query, update, test, and delete instances of the attribute type. These bits
are used by the object’s ACL manager to determine rights to the object’s attributes.

The ACL manager types and permissions defined for the attribute type apply to all
instances of the attribute type.

Note that the ACL manager facility supports additional generic attribute type
permissions (O through Z inclusive). Administrators can assign these permissions
to attribute types of their choice. All uses of these additional permission bits are

846 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

controlled by the cell’s administrator. See theDCE 1.2.2 Administration Guide—Core
Componentsfor more information.

29.1.3.3 Attribute Flags

The attribute type flags set in a schema entry are described in the following paragraphs.

29.1.3.3.1 The Unique Flag

The unique flag specifies whether the value of each instance of an attribute type must
be unique within the cell. For example, assume that an instance of attribute type A
is attached to 25 principals in the cell. If the unique flag is set on, the value of the
A attribute for each of those 25 principals must be different. If it is set off, all 25
principals can share the same value for attribute A.

29.1.3.3.2 The Multivalued Flag

The multivalued flag specifies whether instances of the attribute can be multivalued.
If an attribute is multivalued, multiple instances of the same attribute type can be
attached to a single registry object. For example, if the multivalued flag is set on, a
single principal can have multiple instances of attribute type A. If the flag is set off,
a single principal can have only one instance of attribute type A.

All instances’ multivalued attributes share the UUID (the UUID of their attribute type),
but the values carried by the instances differ. Generally, to access all instances of a
multivalued attribute, you supply the attribute UUID. To access a specific instance of
a multivalued attribute, you supply the UUID and the value carried by that instance.

29.1.3.3.3 The Reserved Flag

The reserved flag indicates whether the attribute type can be deleted from the schema.
Note that, when an attribute type is deleted, all instances of the attribute type are
deleted. If the reserved flag is set on, the entry cannot be deleted. If the reserved flag
is set off, authorized principals can delete the schema entry.

DCE 1.2.2 Application Development Guide—Core Components 847

DCE Security Service

29.1.3.3.4 The Apply-Defaults Flag

The apply-defaults flag indicates whether or not default attributes should be returned
when objects are queried by a client with thesec_rgy_attr_get_effective()call. If
the apply-defaults flag is set on, defaults are applied. If it is set off, defaults are not
supplied.

Defaults are determined in the following manner:

1. If the requested attribute exists on the principal, that attribute is returned. If it
does not, the search continues.

2. The next step in the search depends on the type of object:

For principals with accounts:

a. The organization named in the principal’s account is examined to see if an
attribute of the requested type exists. If it does, it is returned and the search
ends. If it does not, the search continues to thepolicy object as described in
Step 2b.

b. The registrypolicy object is examined to see if an attribute of the requested
type exists. If it does, it is returned. If it does not, a message indicating that
no attribute of the type exists for the object is returned.

For principals without accounts, for groups, and for organizations:

The registrypolicy object is examined to see if an attribute of the requested type
exists. If it does, it is returned. If it does not, a message indicating that no attribute
of the type exists for the object is returned.

29.1.3.4 The Intercell Action Field

The intercell action field of the schema entry specifies the action that should be taken
by the privilege server when reading attributes from a foreign cell. This field can
contain one of three values:

• sec_attr_intercell_act_accept

To accept the foreign attribute instance

• sec_attr_intercell_act_reject

848 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

To reject the foreign attribute instance

• sec_attr_intercell_act_evaluate

To call a remote trigger server to determine how the attribute instance should be
handled

When the privilege server generates a PTGT for a foreign principal, it retrieves the
list of attributes from the foreign principal’s EPAC.

These attributes instances may be attached to theprincipal object itself or attached
to the group ororganization object associated with theprincipal object.

The privilege server then checks the local attribute schema for attribute types with
UUIDs that match the UUIDs of the the attribute instances from the foreign cell that
are contained in the EPAC. At this point, the privilege server takes one of the following
two actions:

1. If the privilege server cannot find a matching attribute type in the local attribute
schema, it checks theunknown_intercell_action attribute on thepolicy object.
If the unknown_intercell_action attribute is set to

• sec_attr_intercell_act_accept, the foreign attribute instance is retained and
included in the EPAC generated for the object by the privilege server.

• sec_attr_intercell_act_reject, the foreign attribute is discarded.

Note: The unknown_intercell_action attribute must be created by the system
administrator and attached to thepolicy object. The attribute type, which
takes the same values as the intercell_action field, has the following
characteristics:

Name: unknown_intercell_action

Attribute UUID:
171e0ef2c-d12e-11cc-bb7b-080009353559

Encoding: sec_attr_encoding_integer

ACL manager set: policy_acl_mgr

Unique: false

Multivalued: false

Reserved: true

DCE 1.2.2 Application Development Guide—Core Components 849

DCE Security Service

Comment text: Flag indicating whether to accept or reject foreign
attributes for which no schema entry exists

2. If the privilege server finds a matching attribute type in the local attribute schema,
it retrieves the attribute. The action it now takes depends on the setting of the
attribute type’s intercell action field and unique flag as follows:

• If the intercell action field is set tosec_attr_intercell_act_acceptand

— The unique flag is not set on, the privilege server includes the foreign
attribute instance in the principal’s EPAC.

— The unique flag is set on, the privilege server includes the foreign attribute
instance in the principal’s EPAC only if the attribute instance value is
unique among all instances of the attribute type within the local cell.

Note: If the unique attribute type flag is set on and a query trigger exists
for a given attribute type, the intercell action field cannot be set to
sec_attr_intercell_act_acceptbecause, in this case, only the query
trigger server can reasonably perform a uniqueness check.

• If the intercell action field is set tosec_attr_intercell_act_reject, the privilege
server unconditionally discards the foreign attribute instance.

• If the intercell action field is set tosec_attr_intercell_act_evaluate, the
privilege server makes a remotesec_attr_trig_intercell_avail() call to an
attribute trigger by using the binding information in the local attribute type
schema entry. The remote attribute trigger decides whether to retain, discard,
or map the attribute instance to another value(s). The privilege server includes
the values returned by the attribute trigger in thesec_attr_trig_query() call
output array in the principal’s EPAC.

29.1.3.5 Attribute Scope

The scope field controls the objects to which the attribute can be be attached. If
scope is defined, the attribute can be attached only to objects defined by the scope.
For example, if the scope for a given attribute type is defined as the directory name/
principal/krbgt , instances of that attribute type can be attached only to objects in the/
principal/krbgt directory (a directory that by convention contains only cell principals).
If the scope is narrowed by fully specifying an object in the/principal/krbgt directory

850 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

(for example,/principal/krbgt/dresden.com) then the attribute can be attached only
to thedresden.comprincipal.

29.1.3.6 Trigger Type Flag

The schema entry trigger type flag specifies whether the trigger server associated with
the attribute type is invoked for update or query operations. See Section 29.4 for more
information on attribute triggers.

29.1.3.7 Trigger Binding

The schema entry trigger binding field contains a binding handle to a remote trigger
that will perform processing for the attribute instances. See Section 29.4 for more
information on attribute triggers.

29.2 Calls to Manipulate Schema Entries

This section first introduces thesec_attr_schema_entry_tdata type used by the calls
that create and update schema entries that define attribute types. It then describes the
calls that create, modify, delete, and read schema entries.

29.2.1 The sec_attr_schema_entry_t Data Type

The sec_attr_schema_entry_tdata type is used in the calls that create and update
schema entries. The data type consists of four values and six other data types. The
values used by thesec_attr_schema_entry_tare the attribute type name, UUID,
scope, and a text field for comments.

The data types used by thesec_attr_schema_entry_tare

• sec_attr_sch_entry_flags_t

Specifies the unique, multivalued, reserved, and apply defaults attribute flags.

DCE 1.2.2 Application Development Guide—Core Components 851

DCE Security Service

• sec_attr_acl_mgr_info_set_t

Specifies the attribute type’s ACL manager(s). This data type defines the attribute
type ACL manager set. This data type contains an array of pointers of type
sec_attr_mgr_info_p_t, which referencesec_attr_acl_mgr_info_t data types.
There is onesec_attr_acl_mgr_info_tdata type for each ACL manager associated
with the attribute type. Eachsec_attr_acl_mgr_info_tdefines the ACL manager
UUID and the permission bits.

• sec_attr_encoding_t

Specifies the schema entry encoding.

• sec_attr_trig_type_t

Specifies the type of attribute trigger associated with the attribute type (if an
attribute trigger is to be associated with the attribute type). See Section 29.4 for
more information on attribute triggers.

• sec_attr_intercell_action_t

Specifies the action to be taken attribute instances of this type that come from a
foreign cell.

• sec_attr_bind_info_t

Specifies binding information for the trigger server associated with the attribute
type (if an attribute trigger is associated with the attribute type).

The sec_attr_bind_info_t data type uses two other data types:
sec_attr_bind_auth_info_t and sec_attr_binding_t. The sec_attr_bind_info_t
structure for trigger binding is described fully in Section 29.4.

Figure 29-1 illustrates the structure of asec_attr_schema_entry_tdata type.

852 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

Figure 29–1. The sec_attr_schema_entry_t Data Type

nameuuid comment
sec_attr_encoding_t

sec_attr_intercell_action_t

sec_attr_trig_type_t

sec_attr_mgr_info_p_t

sec_attr_mgr_info_t

ACL Manager set

sec_attr_acl_mgr_info_set_t

sec_attr_bind_info_t

number of
bindings

sec_attr_bind_auth_info_t sec_attr_binding_t

sec_attr_bind_type_tsec_attr_bind_auth_info_type_t tagged union:
defines authorization
and authentication
parameters

tagged union:
binding information in
the format specified by
sec_attr_bind_type_t

encoding tags trigger type

action to be taken
on attributes from
foreign cell

sec_attr_schema_entry_t

authorization method

sec_attr_sch_entry_flags_t

attribute flags
unique
multi-valued
reserved
use_defaults

scope

29.2.2 Creating and Managing Schema Entries

This section describes the calls to create, modify, and delete the schema entries that
define attribute types.

DCE 1.2.2 Application Development Guide—Core Components 853

DCE Security Service

29.2.2.1 Thesec_rgy_attr_sch_create_entry()Call

The sec_rgy_attr_sch_create_entry()call creates a schema entry that defines an
attribute type in the attribute schema.

This call uses thesec_attr_schema_entry_tdata type that completely defines the
schema entry, including the following:

• The attribute type name (generally used for interactive access) and UUID
(generally used for programmatic access). Note that attribute instances share the
name and UUID of their attribute type.

• The attribute’s encoding (described in Section 29.1.3). The encoding is specified
as an enumerator of typesec_attr_encoding_t. For some kinds of encodings,
additional data types are used to further specify the encoding information. These
additional data types, the kinds of encodings that require them, and the purpose
of the data types are listed in Table 29-1.

Table 29–1. Encodings and Required Data Types

Encoding Required Data Type Purpose of Data Type

sec_attr_enc_bytes sec_attr_enc_bytes_t Defines the length of
attribute values

sec_attr_enc_confidential_bytes sec_attr_enc_bytes_t Defines the length of
attribute values

sec_attr_enc_i18n_data sec_attr_i18n_data_t Defines the
internationalization codeset

sec_attr_enc_attr_set sec_attr_enc_attr_set_t Defines the total number of
members in the attribute set
and the UUID of each
member

sec_attr_enc_printstring sec_attr_enc_printstring_t Defines a single print string

sec_attr_enc_printstring_array sec_attr_enc_str_array_t Defines an array of print
strings

854 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

29.2.2.2 Thesec_rgy_attr_sch_update_entry()Call

The sec_rgy_attr_sch_update_entry()call updates a schema entry that defines an
attribute type.

The schema entry components that can be modified are controlled by the ERA API
and themodify_partsparameter of thesec_rgy_attr_sch_update_entry()call.

To ensure that registry and access control data remains consistent, the ERA API allows
only the following schema entry components to be modified:

• Attribute name

• Reserved flag

• Apply defaults flag

• Intercell action flag

• Trigger binding

• Comment

Note that ACL managers can be added to a schema entry’s ACL manager set, but
they cannot be modified or deleted.

To modify any other schema entry fields implies a drastic change to the attribute type.
If this change must be made, the schema entry must be deleted (which deletes all
attribute instances of that type) and then recreated.

Themodify_partsparameter of thesec_rgy_attr_sch_update_entry()call can also be
used to prohibit modification of additional schema entry fields. This parameter, which
is actually asec_attr_schema_entry_parts_tdata type, lists the fields that can be
modified by the call. Only those fields listed insec_attr_schema_entry_parts_tcan
be modified.

The new values used to update the attribute type are supplied in a
sec_attr_schema_entry_tdata type.

DCE 1.2.2 Application Development Guide—Core Components 855

DCE Security Service

29.2.2.3 Thesec_rgy_attr_sch_delete_entry()Call

The sec_rgy_attr_sch_delete_entry()call deletes attributes types from the attribute
schema. The attribute type to be deleted is specified by UUID. When an attribute type
is deleted, all instances of that attribute type are invalidated.

29.2.3 Reading Schema Entries

This section describes the calls that read schema entries and the cursor used by the
sec_rgy_attr_sch_scan()call.

29.2.3.1 Usingsec_attr_cursor_twith sec_rgy_attr_sch_scan()

The sec_rgy_attr_sch_scan()call, which reads a specified number of attribute type
entries from the attribute schema, uses a cursor of typesec_attr_cursor_t. This cursor
must be allocated before it can be used as input to thesec_rgy_attr_sch_scan()call. In
addition, it can also be initialized to the first attribute type entry in the schema, although
this is not required. After use, the resources allocated to thesec_attr_cursor_t must
be released.

The following calls allocate, initialize, and release asec_attr_cursor_t for use with
the sec_rgy_attr_sch_scan()call:

• sec_rgy_attr_sch_cursor_init()

The sec_rgy_attr_sch_cursor_init()call allocates resources to the cursor and
initializes the cursor to the first attribute type entry in the attribute schema. This
call also supplies the total number of entries in the attribute schema as part of
its output. The cursor allocation is a local operation. The cursor initialization is a
remote operation and makes a remote call to the registry.

• sec_rgy_attr_sch_cursor_alloc()

The sec_rgy_attr_sch_cursor_alloc()call allocates resources to the cursor but
does not initialize the cursor. However, since thesec_rgy_attr_sch_scan()call
will initialize the cursor if it is passed in uninitialized, you may prefer this
call to limit the number of remote calls performed by an application. Be
aware that thesec_rgy_attr_sch_cursor_init() call provides the total number

856 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

of entries in the named schema, a piece of information not provided by the
sec_rgy_attr_sch_cursor_alloc()call.

• sec_rgy_attr_sch_cursor_release()

The sec_rgy_attr_sch_cursor_release()call releases all resources allocated to a
sec_attr_cursor_tcursor used with thesec_rgy_attr_sch_scan()call.

• sec_rgy_attr_sch_cursor_reset()

The sec_rgy_attr_sch_cursor_reset()call initializes asec_attr_cursor_t cursor
used with thesec_rgy_attr_sch_scan()call. The reset cursor can then be used
without releasing and reallocating.

29.2.3.2 Thesec_rgy_attr_sch_scan()Call

The sec_rgy_attr_sch_scan()call reads a specified number of schema entries from
the attribute schema.

The number of entries to read is specified as an unsigned 32-bit integer. The read
begins at the entry at which thesec_attr_cursor_tcursor is positioned and continues
through the number of entries specified. The cursor must be allocated but can be
initialized or uninitialized sincesec_rgy_attr_sch_scan()initializes any uninitialized
cursor it receives as input.

The call output includes an array ofsec_attr_schema_entry_tvalues and a 32-bit
integer that specifies the number of schema entries returned.

To read through all entries in a schema, continue makingsec_rgy_attr_sch_scan()
calls, until theno_more_entriesmessage is received. When all calls are complete,
release the resources allocated to thesec_attr_cursor_t cursor by using the
sec_rgy_attr_sch_cursor_release()call.

29.2.3.3 Thesec_rgy_attr_sch_lookup_by_id()and
sec_rgy_attr_sch_lookup_by_name()Calls

Thesec_rgy_attr_sch_lookup_by_id()call reads the attribute schema entry identified
by UUID. The output of the call is asec_attr_schema_entry_ttype that contains the

DCE 1.2.2 Application Development Guide—Core Components 857

DCE Security Service

specified attribute type’s name, UUID, and characteristics. Generally, this call is used
for programmatic access.

For interactive access, use thesec_rgy_attr_sch_lookup_by_name()call. This call
returns the same information as thesec_rgy_attr_sch_lookup_by_id()call but
specifies the schema entry to read by name instead of by UUID.

29.2.4 Reading the ACL Manager Types

Two calls retrieve the ACL manager types that protect objects dominated by a named
schema:

• sec_rgy_attr_sch_get_acl_mgrs()

Retrieves the UUIDs of the ACL manager types protecting all objects in a named
schema.

• sec_rgy_attr_sch_aclmgr_strings()

Retrieves printable strings for each ACL manager type protecting objects in a
named schema. The strings contain the ACL manager type’s name, associated
help information, and supported permission bits.

29.3 Calls to Manipulate Attribute Instances

This section introduces thesec_attr_schema_tdata type used by the calls that create
and update attribute instances and then describes the calls that create, modify, delete,
and read attribute instances. For all calls, the object whose attributes should be accessed
is identified by name and by the domain in which the object exists. (The domain
parameter is ignored for thePolicy and theReplist objects.) Registry domains are
described in Chapter 28.

29.3.1 The sec_attr_t Data Type

The sec_attr_tdata type is used in the calls that create and update attribute instances.
The data type consists of a value of typeuuid_t that identifies the attribute to be

858 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

accessed by UUID and data type ofsec_attr_value_t. The sec_attr_value_tdata
type is a tagged union of the actual value assigned (or to be assigned to the attribute
instance) and a data type ofsec_attr_encoding_tthat specifies the encoding tags
that define the attribute type characteristics. Figure 29-2 illustrates the structure of a
sec_attr_t data type.

Figure 29–2. The sec_attr_t Data Type

sec_attr_t

sec_attr_value_t

sec_attr_encoding_t

attribute type UUID

encoding tags

tagged union: value of
the attribute instance in
the format indicated by
sec_attr_encoding_t

29.3.2 Creating and Managing Attribute Instances

This section describes the calls to create, modify, and delete the attribute instances.

29.3.2.1 Thesec_rgy_attr_update()Call

The sec_rgy_attr_update()call creates new attribute instances and updates existing
attribute instances attached to an object specified by name and registry domain. The
instances to be created or updated are passed as an array ofsec_attr_t data types.

Because the new values are passed in as an array, if the update of any attribute instance
in the array fails, all fail. However, to help pinpoint the cause of the failure, the call

DCE 1.2.2 Application Development Guide—Core Components 859

DCE Security Service

identifies the first attribute whose update failed in a failure index by array element
number.

For existing attribute instances attached to the object, the values passed in the array
overwrite the existing values. In other words, if the UUID passed in the input array
matches the UUID of an existing instance, the values passed in overwrite the existing
values.

If the attribute instance does not exist, it is created. In other words, if the UUID passed
in in the array does not match any other attribute type UUID attached to the object,
a new attribute instance is created.

For multivalued attributes, because every instance of the multivalued attribute is
identified by the same UUID, every instance is overwritten with the supplied value.
For example, suppose objectdelores has three attributes of the multivalued type
security_role. If you pass in one value forsecurity_role, the values of all three
are changed to the one you enter.

To change only one of thesecurity_role values, you must supply the values that
should be unchanged as well as the new value. For example, suppose objectdelores
has threesecurity_role attributes with values oflevel1, level2, andlevel3. To change
level1 to level1O. and retain level2andlevel3, the input array must containlevel1.5,
level2, and level3 .

To create instances of multivalued attributes, you must create individualsec_attr_t
data types to define each multivalued attribute instance and then pass all of them in
the sec_rgy_attr_update()input array.

If an input attribute is associated with an update attribute trigger, the attribute
trigger is invoked (by thesec_attr_trig_update() call), and the values in the
sec_rgy_attr_update() input array are used as input to the update attribute trigger.
The output values from the update attribute trigger are stored in the registry database
and returned in thesec_rgy_attr_update()output array.

29.3.2.2 Thesec_rgy_attr_test_and_update()Call

The sec_rgy_attr_test_and_update()call, like the sec_rgy_attr_update() call,
creates new attribute instances and updates existing attribute instances attached to

860 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

an object specified by name and registry domain. However, it performs the update
only if a set of specified attribute instances match the attribute instances that already
exist for the object. This call is useful to ensure that updates are made only if certain
conditions exist.

The attribute instances to be matched are passed in an input array ofsec_attr_t
values. Other than this conditional test, this call functions exactly the same as the
sec_rgy_attr_update()call.

29.3.2.3 Thesec_rgy_attr_delete()Call

The sec_rgy_attr_delete()call deletes the specified attribute instances from an object
identified by name and registry domain. The attribute instances to be deleted are passed
in as an array of values ofsec_attr_t.

To delete attribute instances that are not multivalued and to delete all instances of
a multivalued attribute, an attribute UUID is all that is required. For these attribute
instances, supply the attribute UUID in the input array and set the attribute encoding
(in sec_attr_encoding_t) to sec_attr_enc_void.

To delete a specific instance of a multivalued attribute, you must supply the UUID
and value that uniquely identify the multivalued attribute instance in the input array.

Note that, if the deletion of any attribute instance in the array fails, all fail. However,
to help pinpoint the cause of the failure, the call identifies the first attribute whose
deletion failed in a failure index by array element number.

29.3.3 Reading Attribute Instances

This section describes the calls that read attribute instances, and it describes the cursor
used by thesec_rgy_attr_lookup_by_id()call.

DCE 1.2.2 Application Development Guide—Core Components 861

DCE Security Service

29.3.3.1 Usingsec_rgy_attr_cursor_twith
sec_rgy_attr_lookup_by_id()

The sec_rgy_attr_lookup_by_id()call, which reads attributes for a specified object,
uses a cursor of typesec_attr_cursor_t. This cursor must be allocated before it can
be used as input to thesec_rgy_attr_lookup_by_id()call. In addition, it can also be
initialized to the first attribute in the specified object’s list of attributes, although this
is not required. After use, the resources allocated to thesec_attr_cursor_t must be
released.

The following calls allocate, initialize, and release asec_attr_cursor_t for use with
the sec_rgy_attr_lookup_by_id()call:

• sec_rgy_attr_cursor_init()

The sec_rgy_attr_sch_cursor_init()call allocates resources to and initializes the
cursor to the first attribute in the specified object’s list of attributes. This call also
supplies the total number of attributes attached to the object as part of its output.
The cursor allocation is a local operation. The cursor initialization is a remote
operation and makes a remote call to the registry.

• sec_rgy_attr_cursor_alloc()

The sec_rgy_attr_cursor_alloc()call allocates resources to the cursor but does
not initialize the cursor. However, since thesec_rgy_attr_lookup_by_id() call
will initialize the cursor if it is passed in uninitialized, you may prefer this call to
limit the number of remote calls performed by the application. Be aware that the
sec_rgy_attr_cursor_init() call provides the total number of attributes attached
to the specified object, a piece of information not provided by this call.

• sec_rgy_attr_cursor_release()

The sec_rgy_attr_cursor_release()call releases all resources allocated to a
sec_attr_cursor_tcursor used with thesec_rgy_attr_lookup_by_id()call.

• sec_rgy_attr_cursor_reset()

The sec_rgy_attr_cursor_reset()call reinitializes asec_attr_cursor_t cursor
used with thesec_rgy_attr_lookup_by_id() call. The reset cursor can then be
used without releasing and reallocating.

862 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

29.3.3.2 Thesec_rgy_attr_lookup_by_id()Call

The sec_rgy_attr_lookup_by_id() call reads attributes specified by UUID for an
object specified by name and domain. Specifically the call returns the following:

• An array ofsec_attr_t values.

• A count of the total number of attribute instances returned.

• A count of the total number of attribute instances that could not be returned
because of size constraints of thesec_attr_t array. (Note that the call allows the
size of the array to be specified.)

For multivalued attributes, the call returns asec_attr_t for each value as an individual
attribute instance. For attribute sets, the call returns asec_attr_t for each member of
the set, but not the set instance. This routine is useful for programmatic access.

If the attribute instance to be read is not associated with a query trigger or no additional
information is required by the query trigger, an attribute UUID is all that is required.
For these attribute instances, supply the attribute UUID in the input array and set the
attribute encoding (insec_attr_encoding_t) to sec_attr_enc_void.

If the attribute instance to be read is associated with a query attribute trigger
that requires additional information before it can process the query request, use a
sec_attr_value_tto supply the requested information by doing the following:

• Set thesec_attr_encoding_tto an encoding type that is compatible with the
information required by the query attribute trigger.

• Set thesec_attr_value_tto hold the required information.

You can define the number of elements in the input array ofsec_attr_t values (in the
num_attr_keysparameter). If you define the number of elements as 0 (zero), the call
returns all of the object’s attribute instances that the caller is authorized to see. You
should be aware, however, that if you define the number of elements as zero and the
attribute is associated with a query attribute trigger, you will be unable to pass any
information to the query attribute trigger.

DCE 1.2.2 Application Development Guide—Core Components 863

DCE Security Service

29.3.3.3 Thesec_rgy_attr_set_lookup_by_id()Call

The sec_rgy_attr_set_lookup_by_id() call reads attribute sets specified by set
instance UUID for an object specified by name and domain. Specifically the call
returns the following:

• A sec_attr_t for each attribute instance in the attribute set.

• A count of the total number of attribute set instances returned.

• A count of the total number that could not be returned because of size constraints
of the sec_attr_t array. (Note that the call allows the size and length of the array
to be specified.)

Note: Since attribute triggers cannot be associated with an attribute set instance, this
call provides no way to supply input data to a query attribute trigger.

29.3.3.4 Thesec_rgy_attr_lookup_by_name()Call

The sec_rgy_attr_lookup_by_name() call reads a single attribute instance specified
by name for an object specified by name and domain. The call returns asec_attr_t
for the specified attribute instance.

For multivalued attributes, the call returns the first instance of the multivalued
attribute. (To retrieve every instance of a multivalued attribute, use the
sec_rgy_attr_lookup_by_id()call.)

For attribute sets, the call returns the attribute set instance, not the member instances.
To retrieve all members of the set, use thesec_rgy_attr_lookup_by_id()call.

Note: This call provides no way to supply input data to a query attribute trigger. If
the attribute to be read is associated with a query trigger that requires input
data, use thesec_rgy_attr_lookup_by_id()call.

864 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

29.4 The Attribute Trigger Facility

Some attribute types require the support of an outside server either to verify input
attribute values or to supply output attribute values when those values are stored in an
external database. Such a server could, for example, connect a legacy registry system
to the DCE registry. The attribute trigger facility provides for automatic calls to outside
DCE servers, known asattribute triggers.

Trigger servers, which are written by application developers, export thesec_attr_trig
interface. They are invoked automatically when an attribute that has been associated
with an attribute trigger (during schema entry creation) is queried or updated. The
attribute trigger facility consists of three components:

• The attribute schema trigger fields (trig_types and trig_binding) that associate
an attribute trigger and its binding information with an attribute type. These fields
are part of the standard creation of a schema entry that defines an attribute type.
See Section 29.1.1.

• The sec_attr_trig APIs that define the query and update trigger operations. The
APIs are provided in thesec_attr_trig_ * () calls.

• The user-written attribute trigger servers are independent from DCE servers. The
trigger servers implement the trigger operations for the attribute types that require
attribute trigger processing. These servers are not provided as part of DCE, but
must be written by application developers.

29.4.1 Defining an Attribute Trigger/Attribute Association

When an attribute is created with thesec_rgy_attr_update()call, you define the
association between the attribute type and an attribute trigger by specifying the
following:

• Trigger Type

Defines the trigger as a query server (invoked for query operations) or an
update server (invoked for updates operations). The trigger type is defined in
a sec_attr_trig_type_t data type, which is used by asec_attr_schema_entry_t
data type.

• Trigger Binding

DCE 1.2.2 Application Development Guide—Core Components 865

DCE Security Service

Defines the server binding handle for the attribute trigger. The details of the
trigger binding are defined in a number of data types, which are also used by
the sec_attr_schema_entry_tdata type. Trigger binding is described in detail in
Section 29.1.3.7.

Only if both of pieces of information are provided will the association between the
attribute type and the attribute trigger be created. You can associate an attribute trigger
to any attribute type of any encoding except for attribute sets.

29.4.1.1 Query Triggers

When you execute a call that accesses an attribute associated with a query trigger, the
client-side attribute lookup code performs the following tasks:

• Binds to the attribute trigger (using a binding from the attribute type’s schema
entry)

• Makes the remotesec_attr_trig_query()call to the attribute trigger server, passing
in the attribute keys and optional information provided by the caller

• If the sec_attr_trig_query() call is successful, returns the output attribute(s) to
the caller

If you execute asec_rgy_attr() update call with an attribute type that is associated
with a query trigger, not an update trigger, the input attribute values are ignored and a
‘‘stub’’ attribute instance is created on the named object simply to mark the existence
of this attribute on the object. Modifications to the real attribute value must occur at
the attribute trigger.

29.4.1.2 Update Triggers

When you execute a call that accesses an attribute associated with an update trigger,
the client-side attribute update code performs the following tasks:

• Binds to the attribute trigger (using a binding from the attribute type’s schema
entry)

• Makes the remotesec_attr_trig_update() call to the attribute trigger server,
passing in the attributes provided by the caller

866 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

• If the sec_attr_trig_update() call is successful, stores the output attribute(s) in
the registry database and returns the output attribute(s) to the caller

29.4.2 Trigger Binding

Two data types are used to defined an attribute trigger. Thesec_attr_trig_type_t type
defines the type of attribute trigger. Thesec_attr_bind_info_tdata type, illustrated in
Figure 29-3 and described in this section, specifies the attribute trigger’s binding.

Figure 29–3. The sec_attr_bind_info_t Data Type

sec_attr_bind_info_t

number of
bindings

sec_attr_bind_auth_info_t sec_attr_binding_t

sec_attr_bind_auth_info_type_t
tagged union:
authorization
and authentica-
tion parameters

tagged union:
binding handle in the
format indicated by
sec_attr_bind_type_t

defines whether or not
binding is authenticated

trigger binding

sec_attr_twr_ref_t

sec_attr_twr_set_t

array of towers

bind type:
CDS entry name
string binding
tower set

sec_attr_bind_type_t

The sec_attr_bind_info_t data type uses two data types:sec_attr_binding_t
, which defines the information used to generate binding handle and
sec_attr_bind_auth_info_t, which defines the binding authentication and
authorization information.

DCE 1.2.2 Application Development Guide—Core Components 867

DCE Security Service

29.4.2.1 Thesec_attr_binding_t Data Type

To describe the binding handle, thesec_attr_binding_t type uses a
sec_attr_bind_type_t data type that specifies the format to the data used to
generate the binding handle and a tagged union that contains the binding handle. The
binding handle can be generated from any of the following:

• A server directory entry name (used withrpc_ns_binding_import_ * () calls)

If the binding information is a server name, callrpc_ns_binding_import_begin()
to establish a context for importing RPC binding handles from the name service
database. For therpc_ns_binding_import_begin() call, specify the CDS server
directory entry name, an entry name syntax value ofrpc_c_ns_syntax_dce, and
sec_attr_trig as the interface handle of the interface to import.

• A string binding (used withrpc_binding_from_string_binding() calls)

If the binding information is a string binding, call
rpc_binding_from_string_binding() to generate an RPC binding handle.

• An RPC protocol tower set (used withrpc_tower_to_binding() calls)

If the binding information is a protocol tower, two additional data types are used to
pass in an unallocated array of towers, which the server must then allocate. These
data types aresec_attr_twr_ref_t to point to the tower andsec_attr_twr_set_t
to define the array of towers.

Architectural components of DCE can take advantage of the internal
rpc_tower_to_binding operation in rpcpvt.idl to generate a binding handle
from the canonical representation of a protocol tower.

Although the server directory entry name, with the actual server address stored in
CDS, is the recommended way to specify an attribute trigger binding handle, prototype
applications may want to specify a string binding or protocol tower for convenience.

29.4.2.2 Thesec_attr_bind_auth_info_tData Type

To describe whether or not RPC calls to the server will be authenticated and,
for authenticated calls, to provide authentication and authorization information, the
sec_attr_bind_auth_info_ttype uses thesec_attr_bind_auth_info_type_tdata type,
and a tagged union. Thesec_attr_bind_auth_info_type_ttype defines whether or not

868 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

the call is authenticated. The tagged union contains the authentication and authorization
parameters.

Once a binding handle is obtained, callrpc_binding_set_auth_info() and supply it
with the binding handle and authorization and authentication information.

29.4.3 Access Control on Attributes with Triggers

When a query or update call accesses an attribute associated with an attribute trigger,
the call checks the ACL of the object with which the attribute is associated to see if the
client has the permissions required for the operation. If access is granted, the operation
returns a binding handle authenticated with the client’s login context. This handle is
then used to perform thesec_attr_trig_query or sec_attr_trig_updateoperation.

Access to information maintained by an attribute trigger is controlled entirely by
that attribute trigger. The attribute trigger can choose to implement any authorization
mechanism, including none. For example, the attribute trigger can obtain the client’s
identity from the RPC runtime to perform name-based authentication and perform
ACL checks (or any other type of access control mechanism), and it can query the
registry attribute schema for the attribute type’s permission set to use for an ACL
check. Access control on attribute information stored outside of the registry database
is left to the application designer.

29.5 Calls that Access Attribute Triggers

This section describes the calls that send information to and receive it from attribute
triggers.

29.5.1 Using sec_attr_trig_cursor_t with sec_attr_trig_query()

Thesec_attr_trig_query()call, which reads attributes associated with a query attribute
trigger, uses a cursor of typesec_attr_trig_cursor_t. This cursor must be allocated
and initialized before it can be used as input to thesec_attr_trig_query() call. After
use, the resources allocated tosec_attr_trig_cursor_t must be released.

DCE 1.2.2 Application Development Guide—Core Components 869

DCE Security Service

The following calls allocate, initialize, and release asec_attr_trig_cursor_t type for
use with thesec_attr_trig_query() call:

• sec_attr_trig_cursor_init()

The sec_attr_trig_cursor_init() call allocates resources to the cursor and
initializes the cursor to the first attribute in the list of attributes for the object
whose binding handle is specified. This call makes a remote call.

• sec_attr_trig_cursor_release()

The sec_rgy_attr_cursor_release()call releases all resources allocated to a
sec_attr_trig_cursor_t type bysec_attr_trig_cursor_init().

29.5.2 The sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update()
Calls

The sec_attr_trig_query() call reads instances of attributes coded with a trigger
type of query for a specified object. It passes an array ofsec_attr_t values to a
query attribute trigger and receives the output parameters back from the server. The
sec_attr_trig_update() routine passes attributes coded with a trigger type of update
to an update attribute trigger for evaluation before the updates are made to the registry.

Both calls are called automatically by the DCE attribute lookup or update code for all
schema entries that specify a trigger. Although you should not call these calls directly,
if you are implementing a trigger server, it will receive input from these calls and the
attribute trigger’s output should be passed back to them. The data received must be
in a form accessible to the call and, if it is the result of an update, a form that can be
stored in the registry database.

The object whose attribute instances are to be read or updated is identified by

• The name of the cell in which the object exists

• The name of the object or a UUID in string format that identifies the object

870 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

29.5.3 The priv_attr_triq_query() Call

The priv_attr_trig_query() call is used by the privilege service to retrieve trigger
attributes and add them to a princpal’s EPAC. The privilege service executes this call
when it receives a request to add a principal and its extended attribute instances to an
EPAC and the attributes are associated with a trigger server. The call passes an array
of sec_attr_tvalues to the attribute trigger and receives the attribute values back from
the trigger server in another array ofsec_attr_t values. If the principal is being added
to a delegation chain, the call also passes the UUIDs of all of the current members
of the delegation chain to the trigger server. The trigger server can then evaluate all
identities to determine access rights to the requested attributes.

Like the sec_rgy_attr_trig_update()calls, you will not callpriv_attr_trig_query()
directly. However, if you are implementing a trigger server, it will receive input from
these calls and the attribute trigger’s output should be passed back to the call. The
data received must be in a form accessible to the call.

29.6 The DCE Attribute API

The DCE attribute calls are not described in detail. This is because, with the
exception of the calls that bind to a selected database (dce_attr_sch_bind()(
and dce_attr_sch_bind_free()), the dce_sec_attr_* () calls are the same as the
sec_rgy_attr_sch_* () calls. Refer to Section 29.1 for information on using each call.
Note also that the DCE attribute calls are suffixed with3dce, not 3sec(for example,
dce_attr_sch_bind.3dce).

The DCE attribute API consists of the following calls:

• dce_attr_sch_bind()

Returns an opaque handle of typedce_attr_sch_handle_tto a schema object
specified by name and sets authentication and authorization parameters for the
handle. This is the call used to bind to the schema of your choice.

• dce_attr_sch_bind_free()

Releases an opaque handle of typedce_attr_sch_handle_t.

• dce_attr_sch_create_entry()

DCE 1.2.2 Application Development Guide—Core Components 871

DCE Security Service

Creates a schema entry in a schema bound to withdce_attr_sch_bind. This call
is based onsec_rgy_attr_sch_create_entry()and is used in the same way.

• dce_attr_sch_update_entry()

Updates a schema entry in a schema bound to withdce_attr_sch_bind(). This
call is based onsec_rgy_attr_sch_update_entry()and is used in the same way.

• dce_attr_sch_delete_entry()

Deletes a schema entry in a schema bound to withdce_attr_sch_bind(). This call
is based onsec_rgy_attr_sch_delete_entry()and is used in the same way.

• dce_attr_sch_scan()

Reads a specified number of schema entries. This call is based on
sec_rgy_attr_sch_scan()and is used in the same way.

• dce_attr_sch_cursor_init()

Allocates resources to and initializes a cursor used withdce_attr_sch_scan().
The dce_attr_sch_cursor_init()routine makes a remote call that also returns the
current number of schema entries in the schema. Thedce_attr_sch_cursor_init()
call is based onsec_rgy_attr_sch_cursor_init()and is used in the same way.

• dce_attr_sch_cursor_alloc()

Allocates resources to a cursor used withdce_attr_sch_scan() .
The dce_attr_sch_cursor_alloc() routine is a local operation. The
dce_attr_sch_cursor_alloc()call is based onsec_rgy_attr_sch_cursor_alloc()
and is used in the same way.

• dce_attr_sch_cursor_release()

Releases states associated with a cursor created bydce_attr_sch_cursor_alloc()
or dce_attr_sch_cursor_init(). The dce_attr_sch_cursor_release()call is based
on sec_rgy_attr_sch_cursor_release()and is used in the same way.

• dce_attr_sch_cursor_reset()

Reinitializes a cursor used withdce_attr_sch_scan(). The reset cursor can
then be reused without releasing and reallocating. This call is based on the
sec_rgy_attr_sch_cursor_reset()and is used in the same way.

• dce_attr_sch_lookup_by_id()

Reads a schema entry identified by UUID. This call is based on
sec_rgy_attr_lookup_by_id()and is used in the same way.

872 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

• dce_attr_sch_lookup_by_name()

Reads a schema entry identified by name. This call is based on
sec_rgy_attr_sch_lookup_by_name()and is used in the same way.

• dce_attr_sch_get_acl_mgrs()

Retrieves the UUIDs of ACL manager types protecting objects dominated by a
named schema. This call is based onsec_rgy_attr_sch_get_acl_mgrs()and is
used in the same way.

• dce_attr_sch_aclmgr_strings()

Retrieves the print strings containing information about ACL manager types
protecting objects dominated by a named schema. The print strings contain the
manager’s name, help information, and supported permission bits. This call is
based onsec_rgy_attr_sch_aclmgr_strings()and is used in the same way.

29.7 Macros to Aid Extended Attribute Programming

The extended attribute APIs includes macros to help programmers using the extended
attribute interfaces. The macros perform a variety of functions including

• Accessing fields in data structures

• Calculating the size of data structures

• Performing semantic and flag checks

• Setting flags

The macros are indce/rpcbase.h, which is derived fromdce/rpcbase.idl.

The following subsections list the definitions of each macro.

29.7.1 Macros to Access Binding Fields

In the following macro definitions, which are used by asec_attr_schema_entry_t
and its equivalentdce_attr_schdata type, B is a pointer tosec_attr_bind_info_t.

DCE 1.2.2 Application Development Guide—Core Components 873

DCE Security Service

#define SA_BND_AUTH_INFO(B) (B)->auth_info

#define SA_BND_AUTH_INFO_TYPE(B) (SA_BND_AUTH_INFO(B)).info_type

#define SA_BND_AUTH_SVR_PNAME_P(B) \

(SA_BND_AUTH_DCE_INFO(B)).svr_princ_name

#define SA_BND_AUTH_PROT_LEVEL(B) \

(SA_BND_AUTH_DCE_INFO(B)).protect_level

#define SA_BND_AUTH_AUTHN_SVC(B) \

(SA_BND_AUTH_DCE_INFO(B)).authn_svc

#define SA_BND_AUTH_AUTHZ_SVC(B) \

(SA_BND_AUTH_DCE_INFO(B)).authz_svc

#define SA_BND_NUM(B) (B)->num_bindings

#define SA_BND_ARRAY(B,I) (B)->bindings[I]

#define SA_BND_TYPE(B,I) (SA_BND_ARRAY(B,I)).bind_type

#define SA_BND_STRING_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.string_binding

#define SA_BND_SVRNAME_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.svrname

#define SA_BND_SVRNAME_SYNTAX(B,I) \

(SA_BND_SVRNAME_P(B,I))->name_syntax

#define SA_BND_SVRNAME_NAME_P(B,I) \

(SA_BND_SVRNAME_P(B,I))->name

#define SA_BND_TWRSET_P(B,I) \

(SA_BND_ARRAY(B,I)).tagged_union.twr_set

#define SA_BND_TWRSET_COUNT(B,I) (SA_BND_TWRSET_P(B,I))->count

#define SA_BND_TWR_P(B,I,J) (SA_BND_TWRSET_P(B,I))->towers[J]

#define SA_BND_TWR_LEN(B,I,J) (SA_BND_TWR_P(B,I,J))->tower_length

#define SA_BND_TWR_OCTETS(B,I,J) \

(SA_BND_TWR_P(B,I,J))->tower_octet_string

29.7.2 Macros to Access Schema Entry Fields

In the following macro definitions, S is a pointer tosec_attr_schema_entry_t(and
its equivalentdce_attr_schdata type) and I and J are nonnegative integers for array
element selection.

874 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

#define SA_ACL_MGR_SET_P(S) (S)->acl_mgr_set

#define SA_ACL_MGR_NUM(S) (SA_ACL_MGR_SET_P(S))->num_acl_mgrs

#define SA_ACL_MGR_INFO_P(S,I) (SA_ACL_MGR_SET_P(S))->mgr_info[I]

#define SA_ACL_MGR_TYPE(S,I) (SA_ACL_MGR_INFO_P(S,I))->acl_mgr_type

#define SA_ACL_MGR_PERMS_QUERY(S,I) (SA_ACL_MGR_INFO_P(S,I))->query_permset

#define SA_ACL_MGR_PERMS_UPDATE(S,I) (SA_ACL_MGR_INFO_P(S,I))->update_permset

#define SA_ACL_MGR_PERMS_TEST(S,I) (SA_ACL_MGR_INFO_P(S,I))->test_permset

#define SA_ACL_MGR_PERMS_DELETE(S,I) (SA_ACL_MGR_INFO_P(S,I))->delete_permset

#define SA_TRG_BND_INFO_P(S) (S)->trig_binding

#define SA_TRG_BND_AUTH_INFO(S) \

(SA_BND_AUTH_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_INFO_TYPE(S) \

(SA_BND_AUTH_INFO_TYPE(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_DCE_INFO(S) \

(SA_BND_AUTH_DCE_INFO(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_SVR_PNAME_P(S) \

(SA_BND_AUTH_SVR_PNAME_P(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEVEL(S) \

(SA_BND_AUTH_PROT_LEVEL(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC(S) \

(SA_BND_AUTH_AUTHN_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC(S) \

(SA_BND_AUTH_AUTHZ_SVC(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_NUM(S) \

(SA_BND_NUM(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_ARRAY(S,I) \

(SA_BND_ARRAY((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TYPE(S,I) \

(SA_BND_TYPE((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_STRING_P(S,I) \

(SA_BND_STRING_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_P(S,I) \

(SA_BND_SVRNAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_SYNTAX(S,I) \

(SA_BND_SVRNAME_SYNTAX((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_SVRNAME_NAME_P(S,I) \

(SA_BND_SVRNAME_NAME_P((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWRSET_P(S,I) \

(SA_BND_TWRSET_P((SA_TRG_BND_INFO_P(S)),I))

DCE 1.2.2 Application Development Guide—Core Components 875

DCE Security Service

#define SA_TRG_BND_TWRSET_COUNT(S,I) \

(SA_BND_TWRSET_COUNT((SA_TRG_BND_INFO_P(S)),I))

#define SA_TRG_BND_TWR_P(S,I,J) \

(SA_BND_TWR_P((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_LEN(S,I,J) \

(SA_BND_TWR_LEN((SA_TRG_BND_INFO_P(S)),I,J))

#define SA_TRG_BND_TWR_OCTETS(S,I,J) \

(SA_BND_TWR_OCTETS((SA_TRG_BND_INFO_P(S)),I,J))

29.7.3 Macros to Access Attribute Instance Fields

In the following macro descriptions, S is a pointer tosec_attr_t, and I and J are
nonnegative integers for array element selection.

#define SA_ATTR_ID(S) (S)->attr_id

#define SA_ATTR_VALUE(S) (S)->attr_value

#define SA_ATTR_ENCODING(S) (SA_ATTR_VALUE(S)).attr_encoding

#define SA_ATTR_INTEGER(S) \

(SA_ATTR_VALUE(S)).tagged_union.signed_int

#define SA_ATTR_PRINTSTRING_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.printstring

#define SA_ATTR_STR_ARRAY_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.string_array

#define SA_ATTR_STR_ARRAY_NUM(S) (SA_ATTR_STR_ARRAY_P(S))->num_strings

#define SA_ATTR_STR_ARRAY_ELT_P(S,I) (SA_ATTR_STR_ARRAY_P(S))->strings[I]

#define SA_ATTR_BYTES_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.bytes

#define SA_ATTR_BYTES_LEN(S) (SA_ATTR_BYTES_P(S))->length

#define SA_ATTR_BYTES_DATA(S,I) (SA_ATTR_BYTES_P(S))->data[I]

#define SA_ATTR_IDATA_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.idata

#define SA_ATTR_IDATA_CODESET(S) (SA_ATTR_IDATA_P(S))->codeset

#define SA_ATTR_IDATA_LEN(S) (SA_ATTR_IDATA_P(S))->length

#define SA_ATTR_IDATA_DATA(S,I) (SA_ATTR_IDATA_P(S))->data[I]

#define SA_ATTR_UUID(S) \

876 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

(SA_ATTR_VALUE(S)).tagged_union.uuid

#define SA_ATTR_SET_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.attr_set

#define SA_ATTR_SET_NUM(S) (SA_ATTR_SET_P(S))->num_members

#define SA_ATTR_SET_MEMBERS(S,I) (SA_ATTR_SET_P(S))->members[I]

#define SA_ATTR_BND_INFO_P(S) \

(SA_ATTR_VALUE(S)).tagged_union.binding

#define SA_ATTR_BND_AUTH_INFO(S) \

(SA_BND_AUTH_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_INFO_TYPE(S) \

(SA_BND_AUTH_INFO_TYPE(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_DCE_INFO(S) \

(SA_BND_AUTH_DCE_INFO(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_SVR_PNAME_P(S) \

(SA_BND_AUTH_SVR_PNAME_P(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEVEL(S) \

(SA_BND_AUTH_PROT_LEVEL(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC(S) \

(SA_BND_AUTH_AUTHN_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC(S) \

(SA_BND_AUTH_AUTHZ_SVC(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_NUM(S) \

(SA_BND_NUM(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_ARRAY(S,I) \

(SA_BND_ARRAY((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TYPE(S,I) \

(SA_BND_TYPE((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_STRING_P(S,I) \

(SA_BND_STRING_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_P(S,I) \

(SA_BND_SVRNAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_SYNTAX(S,I) \

(SA_BND_SVRNAME_SYNTAX((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_SVRNAME_NAME_P(S,I) \

(SA_BND_SVRNAME_NAME_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_P(S,I) \

(SA_BND_TWRSET_P((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWRSET_COUNT(S,I) \

(SA_BND_TWRSET_COUNT((SA_ATTR_BND_INFO_P(S)),I))

#define SA_ATTR_BND_TWR_P(S,I,J) \

DCE 1.2.2 Application Development Guide—Core Components 877

DCE Security Service

(SA_BND_TWR_P((SA_ATTR_BND_INFO_P(S)),I,J))

#define SA_ATTR_BND_TWR_LEN(S,I,J) \

(SA_BND_TWR_LEN((SA_ATTR_BND_INFO_P(S)),I,J))

#define SA_ATTR_BND_TWR_OCTETS(S,I,J) \

(SA_BND_TWR_OCTETS((SA_ATTR_BND_INFO_P(S)),I,J))

29.7.4 Binding Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold binding
information. The macros work with the ERA API data types and their equivalent
dce_attr_schdata types.

/*

* SA_BND_INFO_SIZE(N) - calculate the size required

* for a sec_attr_bind_info_t with N bindings.

*/

#define SA_BND_INFO_SIZE(N) (sizeof(sec_attr_bind_info_t) + \

(((N) - 1) * sizeof(sec_attr_binding_t)))

/*

* SA_TWR_SET_SIZE(N) - calculate the size required

* for a sec_attr_twr_set_t with N towers.

*/

#define SA_TWR_SET_SIZE(N) (sizeof(sec_attr_twr_set_t) + \

(((N) - 1) * sizeof(sec_attr_twr_ref_t)))

/*

* SA_TWR_SIZE(N) - calculate the size required

* for a twr_t with a tower_octet_string of length N.

*/

#define SA_TWR_SIZE(N) (sizeof(twr_t) + (N) - 1)

29.7.5 Schema Entry Data Structure Size Calculation Macros

The following macro is supplied to calculate the size of a
sec_attr_alc_mgr_info_set_tdata type.

878 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

/*

* SA_ACL_MGR_SET_SIZE(N) - calculate the size required

* for a sec_attr_acl_mgr_info_set_t with N acl_mgrs.

*/

#define SA_ACL_MGR_SET_SIZE(N) (sizeof(sec_attr_acl_mgr_info_set_t) + \

(((N) - 1) * sizeof(sec_attr_acl_mgr_info_p_t)))

29.7.6 Attribute Instance Data Structure Size Calculation Macros

The following macros are supplied to calculate the size of data types that hold attribute
information.

/*

* SA_ATTR_STR_ARRAY_SIZE(N) - calculate the size required

* for a sec_attr_enc_str_array_t with N sec_attr_enc_printstring_p_t-s.

*/

#define SA_ATTR_STR_ARRAY_SIZE(N) (sizeof(sec_attr_enc_str_array_t) + \

(((N) - 1) * sizeof(sec_attr_enc_printstring_p_t)))

/*

* SA_ATTR_BYTES_SIZE(N) - calculate the size required

* for a sec_attr_enc_bytes_t with byte string length of N.

*/

#define SA_ATTR_BYTES_SIZE(N) (sizeof(sec_attr_enc_bytes_t) + (N) - 1)

/*

* SA_ATTR_IDATA_SIZE(N) - calculate the size required

* for a sec_attr_i18n_data_t with byte string length of N.

*/

#define SA_ATTR_IDATA_SIZE(N) (sizeof(sec_attr_i18n_data_t) + (N) - 1)

/*

* SA_ATTR_SET_SIZE(N) - calculate the size required

* for a sec_attr_enc_attr_set_t with N members (uuids).

*/

#define SA_ATTR_SET_SIZE(N) (sizeof(sec_attr_enc_attr_set_t) + \

(((N) - 1) * sizeof(uuid_t)))

DCE 1.2.2 Application Development Guide—Core Components 879

DCE Security Service

29.7.7 Binding Semantic Check Macros

The following macros are supplied to check the semantics of entries in the
binding fields. The macros work with the ERA API data types and their equivalent
dce_attr_schdata types.

/*

* SA_BND_AUTH_INFO_TYPE_VALID(B) - evaluates to TRUE (1)

* if the binding auth_info type is valid; FALSE (0) otherwise.

* B is a pointer to a sec_attr_bind_info_t.

*/

#define SA_BND_AUTH_INFO_TYPE_VALID(B) (\

(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_none || \

(SA_BND_AUTH_INFO_TYPE(B)) == sec_attr_bind_auth_dce ? true : false)

/*

* SA_BND_AUTH_PROT_LEV_VALID(B) - evaluates to TRUE (1)

* if the binding auth_info protect_level is valid; FALSE (0) otherwise.

* B is a pointer to a sec_attr_bind_info_t.

*/

#define SA_BND_AUTH_PROT_LEV_VALID(B) (\

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_default || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_none || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_connect || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_call || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_integ || \

(SA_BND_AUTH_PROT_LEVEL(B)) == rpc_c_protect_level_pkt_privacy ? \

true : false)

/*

* SA_BND_AUTH_AUTHN_SVC_VALID(B) - evaluates to TRUE (1)

* if the binding auth_info authentication service is valid;

* FALSE (0) otherwise.

* B is a pointer to a sec_attr_bind_info_t.

*/

880 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

#define SA_BND_AUTH_AUTHN_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_none || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_secret || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_public || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dce_dummy || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_dssa_public || \

(SA_BND_AUTH_AUTHN_SVC(B)) == rpc_c_authn_default ? \

true : false)

/*

* SA_BND_AUTH_AUTHZ_SVC_VALID(B) - evaluates to TRUE (1)

* if the binding auth_info authorization service is valid;

* FALSE (0) otherwise.

* B is a pointer to a sec_attr_bind_info_t.

*/

#define SA_BND_AUTH_AUTHZ_SVC_VALID(B) (\

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_none || \

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_name || \

(SA_BND_AUTH_AUTHZ_SVC(B)) == rpc_c_authz_dce ? \

true : false)

29.7.8 Schema Entry Semantic Check Macros

The following macros are supplied to check the semantics of schema entry fields. In
the macros, S is a pointer tosec_attr_schema_entry_tand its equivalentdce_attr_sch
data type.

#define SA_TRG_BND_AUTH_INFO_TYPE_VALID(S) \

(SA_BND_AUTH_INFO_TYPE_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_PROT_LEV_VALID(S) \

(SA_BND_AUTH_PROT_LEV_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHN_SVC_VALID(S) \

(SA_BND_AUTH_AUTHN_SVC_VALID(SA_TRG_BND_INFO_P(S)))

#define SA_TRG_BND_AUTH_AUTHZ_SVC_VALID(S) \

(SA_BND_AUTH_AUTHZ_SVC_VALID(SA_TRG_BND_INFO_P(S))

DCE 1.2.2 Application Development Guide—Core Components 881

DCE Security Service

29.7.9 Attribute Instance Semantic Check Macros

The following macros are supplied to check the semantics of entries in the attribute
instance fields. In the following macros, S is a pointer tosec_attr_t. F is a
sec_attr_trigs_types_flags_t.

#define SA_ATTR_BND_AUTH_INFO_TYPE_VALID(S) \

(SA_BND_AUTH_INFO_TYPE_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_PROT_LEV_VALID(S) \

(SA_BND_AUTH_PROT_LEV_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHN_SVC_VALID(S) \

(SA_BND_AUTH_AUTHN_SVC_VALID(SA_ATTR_BND_INFO_P(S)))

#define SA_ATTR_BND_AUTH_AUTHZ_SVC_VALID(S) \

(SA_BND_AUTH_AUTHZ_SVC_VALID(SA_ATTR_BND_INFO_P(S))

#define SA_SCH_FLAG_IS_SET(S,F) \

(((S)->schema_entry_flags & (F)) == (F))

#define SA_SCH_FLAG_IS_SET_UNIQUE(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_IS_SET_MULTI_INST(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_IS_SET_RESERVED(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_IS_SET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_sch_entry_use_defaults))

29.7.10 Schema Entry Flag Set and Unset Macros

The following macros set and unset flag(s) in the schema entryschema_entry_flags
field. In the following macros, S is a pointer tosec_attr_schema_entry_t.

/*

* Macros to set the flags.

*/

#define SA_SCH_FLAG_SET(S, FLAG) ((S)->schema_entry_flags |= (FLAG))

#define SA_SCH_FLAG_SET_UNIQUE(S) \

882 DCE 1.2.2 Application Development Guide—Core Components

The Extended Attribute API

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_SET_MULTI_INST(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_SET_RESERVED(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_SET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_SET((S),sec_attr_sch_entry_use_defaults))

/*

* Macros to unset the flags.

*/

#define SA_SCH_FLAG_UNSET(S, FLAG) ((S)->schema_entry_flags \

&= ~(FLAG))

#define SA_SCH_FLAG_UNSET_UNIQUE(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_unique))

#define SA_SCH_FLAG_UNSET_MULTI_INST(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_multi_inst))

#define SA_SCH_FLAG_UNSET_RESERVED(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_reserved))

#define SA_SCH_FLAG_UNSET_USE_DEFAULTS(S) \

(SA_SCH_FLAG_UNSET((S),sec_attr_sch_entry_use_defaults))

29.7.11 Schema Trigger Entry Flag Check Macros

The following macros evaluate to TRUE if the requested flag(s) is set in
the schema entrytrig_types field. In the following macros, S is a pointer to
sec_attr_schema_entry_tand F is asec_attr_trigs_types_flags_ttype.

#define SA_SCH_TRIG_FLAG_IS_SET(S,F) \

(((S)->trig_types & (F)) == (F))

#define SA_SCH_TRIG_FLAG_IS_NONE(S) \

(SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_none))

#define SA_SCH_TRIG_FLAG_IS_QUERY(S) \

(SA_SCH_TRIG_FLAG_IS_SET((S),sec_attr_trig_type_query))

#define SA_SCH_TRIG_FLAG_IS_UPDATE(S) \

(SA_SCH_FLAG_IS_SET((S),sec_attr_trig_type_update))

DCE 1.2.2 Application Development Guide—Core Components 883

DCE Security Service

29.8 Utilities to Use with Extended Attribute Calls

The extended attribute APIs includes utilities to help programmers using the extended
attribute interfaces. These utilities are

• sec_attr_util_alloc_copy—Copies data from onesec_attr_tdata type to another.

• sec_attr_util_free—Frees memory allocated to sec_attr_t by the
sec_attr_util_alloc_copy()function.

• sec_attr_util_inst_free_ptrs—Frees nonnull pointers in asec_attr_t type.

• sec_attr_util_inst_free—Frees nonnull pointers in asec_attr_t type and the
pointer to thesec_attr_t itself.

• sec_attr_util_sch_ent_free_ptrs—Frees nonnull pointers in a
sec_attr_schema_entry_ttype.

• sec_attr_util_sch_ent_free—Frees nonnull pointers in a
sec_attr_schema_entry_ttype and the pointer to thesec_attr_schema_entry_t
itself. The utility also works with the equivalentdce_attr_schdata type.

884 DCE 1.2.2 Application Development Guide—Core Components

Chapter 30
The Login API

The login API communicates with the security server to establish, and possibly change,
a principal’s login context. A login context contains the information necessary for a
principal to qualify for (although not necessarily be granted) access to network services
and possibly local resources as well. Login context information normally includes the
following:

• Identity information concerning the principal, including its certificate of identity
(in shared-secret authentication, this is the TGT), its PAC, and registry policy
information such as the maximum lifetime of certificates of identity.

• The context state; that is, whether the authentication service has validated the
context or not.

• The source of authentication information. (It may originate from the network
authentication service, or locally, if that network service is unavailable.)

DCE 1.2.2 Application Development Guide—Core Components 885

DCE Security Service

30.1 Establishing Login Contexts

This section outlines the basic procedure by which a network login context is
established. See Chapter 24 for a detailed description of this process.

The procedure is as follows:

1. The client callssec_login_setup_identity()specifying the name of the principal
whose network identity is to be established. Memory is allocated to receive the
principal’s login context.

2. The client callssec_login_valid_and_cert_ident(), which does the following:

a. Forwards a TGT request encrypted with the user’s secret key and with
a random key, to the authentication service, which decrypts the request,
authenticates the principal, and returns a TGT for the principal.

b. The client’s security runtime then decrypts the TGT and forwards it to the
privilege service, which creates a PAC for the principal and encloses it in a
PTGT, which is returned to the client’s security runtime.

c. The runtime decrypts the message containing the PTGT and returns
information about the source of the authentication information to the API.
(If the authentication information comes from the network security server,
then the login context is validated.)

3. Finally, the client invokessec_login_set_context(), which enables child processes
spawned from the calling process to inherit the validated context.

In the walkthrough of user authentication in Chapter 24, we mentioned that one of
the functions ofsec_login_valid_and_cert_ident()is to demonstrate that a valid trust
path exists between the authentication service and the host computer on which the
principal is logging in. After setting up and validating a login context, any application
that sets identity information for local processes should check to be sure that the server
that provided the certificate of identity is legitimate in order to demonstrate that the
trust path between the client and the authentication service is valid.

886 DCE 1.2.2 Application Development Guide—Core Components

The Login API

30.1.1 Validating the Login Context and Certifying the Security
Server

Whereas a validated login context is one that is regarded as legitimate by the local
security runtime, a validated and certified login context is one that is not only regarded
as legitimate but also can be demonstrated to have been (in all likelihood, that is) issued
by a legitimate security server. Certifying that the security server is legitimate prevents
faked identity information from being propagated to local processes. For example, a
spurious server could collaborate with a dishonest user in order to obtain an identity
that conferred comprehensive permissions (for example, theroot identity). With such
an identity, the dishonest user could gain access to sensitive local objects, such as
key-storage files for server principals that run on the host. (Servers running on other
hosts would not trust this principal, however, because it does not know their keys.)
Of course, if a spurious server can return to the application a ticket encrypted with
the host’s secret key, it means the server has access to the host’s key; but, if this is
the case, network security has already been seriously undermined.

When an application needs to certify the originator of a certificate of identity, it
may call sec_login_certify_identity(). This routine makes an authenticated remote
procedure call to the local security validation service of thedced daemon in order
to acquire a ticket to the host principal. Ifdced succeeds in decrypting the message
containing the ticket, then the server that granted the certificate of identity must know
the host principal’s secret key; this evidence indicates that it is a legitimate security
server. Sincedced runs with the identityroot (in order to access the host’s key), the
process callingsec_login_certify_identity()need not.

The sec_login_valid_and_cert_ident()is similar to sec_login_certify_identity(),
except that it combines the validation and certification procedures (and therefore,
the password of the principal that is logging in must be known to the process
making this call). Thesec_login_valid_and_cert_ident()routine calls the security
server for a ticket to the host and attempts decryption. The process calling
sec_login_valid_and_cert_ident()must have access to the host’s secret key, and so
must run asroot.

Note: Because system login programs should not set local identities derived from an
uncertified context, all login API routines that return data from an uncertified
context issue a warning.

DCE 1.2.2 Application Development Guide—Core Components 887

DCE Security Service

30.1.2 Validating the Login Context Without Certifying the Security
Server

An application that does not use login contexts to set local identity information
does not need to certify its login contexts. Since an illegitimate security server is
unlikely to know the key of a remote server principal with which the application
may communicate, the application will simply be refused the service requested
from the remote server principal. If local operating system identity information is
assumed to be neither of interest nor of concern to an application, it may call
sec_login_validate_identity(), which does not attempt to verify the security server’s
knowledge of the host principal’s key.

The sec_login_validate_identity() routine does not acquire a PTGT, unlike the
sec_login_certify_identity()andsec_login_valid_and_cert_ident()routines. Instead,
the PTGT is acquired when the application first makes an authenticated remote
procedure call.

30.1.3 Example of a System Login Program

Following is an example of a system login program that obtains a login context that
can be trusted for both network and local operations.

Note: One of the function calls that appears in the following example,
sec_login_purge_context(), is described in Section 30.6.4.

if (sec_login_setup_identity(principal,sec_login_no_flags,

&login_context,&st))

{

...get password...

if (sec_login_valid_and_cert_ident(login_context, password,

&reset_passwd, &auth_src,&st))

{

if(auth_src==sec_login_auth_src_network)

{

if (GOOD_STATUS(&st)

888 DCE 1.2.2 Application Development Guide—Core Components

The Login API

sec_login_set_context(login_context);

}

}

if (reset_passwd)

{

...reset the user’s password...

if (passwd_reset_fails)

{

sec_login_purge_context(login_context)

...application login-failure actions...

}

...application-specific login-valid actions...

}

}

30.2 Context Inheritance

A process inherits the login context of its parent process unless the child process
is associated with a principal that has logged in and so established a separate
login context. The following subsections describe two additional aspects of context
inheritance:

• How the initial context is established.

• How a process may inhibit context inheritance.

30.2.1 The Initial Context

An application invokessec_login_setup_identity()so that it can then make other
authenticated RPC calls. However,sec_login_setup_identity()is itself a local interface
to an authenticated remote procedure call, and authenticated RPC needs a validated
login context in order to execute. For applications like system login, the daemon
dced supplies the validated context. However, a daemon that is started beforedced
is running on the host needs to be able to assume its host’s identity. The initial

DCE 1.2.2 Application Development Guide—Core Components 889

DCE Security Service

context is established at boot time withsec_login_init_first(), which establishes
the default context inheritance for processes running on the host. The routines
sec_login_setup_first()and sec_login_validate_first()then set up and validate the
context in a procedure like that used for user context validation.

30.2.2 Private Contexts

A process may inhibit context inheritance by setting a flag in
sec_login_setup_identity(). If the flag indicates that the login context is
private, then children of the calling process cannot inherit it. A child process can
neither set a private context (since it is the function ofsec_login_set_context()to
make the context inheritable) nor export it to any other process.

30.3 Handling Expired Certificates of Identity

For a dishonest principal to make use of an intercepted certificate of identity, it must
succeed in decrypting it. In order to make the task of decryption more difficult, a
certificate of identity has a limited lifespan; and, once it expires, the associated login
context is no longer valid.

Because this security feature may inconvenience users, an application may
wish to warn a user when the certificate of identity is about to expire. The
sec_login_get_expiration()routine returns the expiration date of a certificate of
identity. When a certificate of identity is about to expire, the application may call
sec_login_refresh_identity(), which may be used to refresh any login context.

Similarly, a server principal may need to determine whether a certificate of identity
may expire during some long network operation and, if the certificate of identity is
likely to expire, refresh it to ensure that the operation is not prevented from completion.
Following is an example:

sec_login_get_expiration (login_context,&expire_time,&st);

if (expire_time < (current_time + operation_duration))

{

890 DCE 1.2.2 Application Development Guide—Core Components

The Login API

if (sec_login_refresh_identity(login_context,&st))

{

...identity has changed and must be validated again...

}

else

{

...login context cannot be renewed...

exit(0);

}

}

operation();

Because sec_login_refresh_identity() acquires a certificate of identity,
refreshed contexts must be revalidated withsec_login_validate_identity() or
sec_login_valid_and_cert_ident()before they can be used.

The expiration date of a login context has no meaning with respect to local identity
information; for the same reason,sec_login_refresh_identity()cannot refresh a login
context that has been authenticated locally.

30.4 Importing and Exporting Contexts

Under some circumstances, an application may need two processes to run using the
same login context. A process may acquire its login context in a form suitable for
imparting to another process by callingsec_login_export_context(). This call collects
the login context from the local context cache and loads it into a buffer. Another
process may then callsec_login_import_context()to unpack the buffer and create its
own login context cache to store the imported context. Since the context has already
been validated, the process that imports it may use it immediately. (The CDS clerk is
an example of a context importer.)

These operations are strictly local; that is, the exporting and importing processes must
be running on the same host. In addition, a process cannot export a private context.

DCE 1.2.2 Application Development Guide—Core Components 891

DCE Security Service

30.5 Changing a Groupset

The sec_login_newgroups()routine enables a principal to assume the minimum
groupset that is required to accomplish a given task. For example, a user may have
privilege attributes that include membership in an administrative group associated with
a comprehensive permission set, and membership in a user group associated with a
more restricted permission set. Such a user may not want the permissions associated
with the administrative group, except when those permissions are essential to an
administrative task (so as to avoid inadvertent damage to objects that are accessible
to members of the administrative group, but not to members of the user group).

To offer users the capability of removing groups from their groupsets, an application
may use the login API as shown in the following example.

Note: Two of the function calls that appear in the following example,
sec_login_get_current_context() and sec_login_inquire_net_info(), are
described in the following section.

sec_login_get_current_context(&login_context,&st);

sec_login_inquire_net_info(login_context,&net_info,&st);

for (i=0; i < num_groups; i++)

{

... query whether user wants to discard any current group

memberships. Copy new group set to new_groups array ...

}

if (!sec_login_newgroups(login_context,sec_login_no_flags,

num_new_groups, new_groups, &restricted_context,&st))

{

if (st == sec_login_s_groupset_invalid)

printf("Newgroupsetinvalid\n");

...application-specific error handling...

}

892 DCE 1.2.2 Application Development Guide—Core Components

The Login API

Note that thesec_login_newgroups()call can only return a restricted groupset: it
cannot return a groupset larger than the one associated with the login context that is
passed to it. This routine also enables the calling process to flag the new login context
as private to the calling process.

30.6 Miscellaneous Login API Functions

The following subsections describe a few miscellaneous login API routines, some of
which have appeared previously in examples in this chapter.

30.6.1 Getting the Current Context

The sec_login_get_current_context()routine returns a handle to the login context
for the currently established principal. This routine is useful for several login API
functions that take a login context handle as input.

30.6.2 Getting Information from a Login Context

The sec_login_inquire_net_info() routine returns a data structure comprising the
principal’s PAC, account expiration date, password expiration date, and identity
expiration date. Thesec_login_free_net_info()frees the memory allocated to this
data structure.

30.6.3 Getting Password and Group Information for Local Process
Identities

Two calls,sec_login_get_pwent()andsec_login_get_groups(), are useful for setting
the local identity of a process. These routines return password or group information
from the network registry, if that service is available, or from the local files of password
and group information, if the network service is unavailable.

DCE 1.2.2 Application Development Guide—Core Components 893

DCE Security Service

30.6.4 Releasing and Purging a Context

When a process is finished using a login context, it may call
sec_login_release_context()to free storage occupied by the context handle.
When a process releases a login context, the context is still available to other
processes that use it. If an application needs to destroy a login context, it may call
sec_login_purge_context(), which also frees storage occupied by the handle. Since
a destroyed context is unavailable to all processes that use it, application developers
should be careful when usingsec_login_purge_context().

894 DCE 1.2.2 Application Development Guide—Core Components

Chapter 31
The Key Management API

Every principal has an entry in the registry database that specifies a secret key.
In the case of an interactive principal (that is, a user), the secret key is derived
from the principal’s password. Just as users need to keep their passwords secure
by memorizing them (rather than writing them down, for example), a noninteractive
principal also needs to be able to store and retrieve its secret key in a secure
manner. The key management API provides simple key management functions for
noninteractive principals.

While the key management routines themselves are relatively secure, it is up to the
application to ensure the security of the file or other device used to store the key. By
default, server principals that run on the same computer share a local key file; however,
the key management API also allows principals to specify an alternative local file.

When users change their passwords, they are free to forget their old passwords. When a
noninteractive principal changes its secret key, however, there may be clients with valid
tickets to that principal that are encoded with the old key. To save clients the trouble
of having to request new tickets to a noninteractive principal when the principal’s key
has changed, every key is flagged with a version number, and old key versions are
retained until all tickets that could have been encoded with that key have expired.

DCE 1.2.2 Application Development Guide—Core Components 895

DCE Security Service

Finally, if a noninteractive principal’s key has been compromised, it may be invalidated
(along with all the corresponding tickets held by any clients) by simply deleting it
from the local key storage.

Note: The key management API is for use only by applications using the DCE
shared-secret authentication protocol and the key-type DES.

31.1 Retrieving a Key

The key management API provides two functions for retrieving a key from the local
key storage. Thesec_key_mgmt_get_key()function returns a specified key version
for a specified principal. The meaning of specifying version 0 (zero) in this routine
may vary depending on the authentication protocol in effect. (If the protocol is DCE
shared-secret, the value 0 for the version identifier means the version that was most
recently added to the local storage.) In any case, a principal’s login is almost always
successful if the principal uses the version 0 key.

When there are valid tickets that are encoded with different key versions, an application
may need to retrieve more than one key version. In that case, the application
may call sec_key_mgmt_initialize_cursor()to set a cursor in the local storage to
the first suitable entry corresponding to the named principal and key type, and
then call sec_key_mgmt_get_next_key()to get all versions of that key in storage.
The application may then callsec_key_mgmt_release_cursor(), which disposes of
information associated with the cursor. Neither of the key-retrieval routines can return
keys that have been explicitly deleted, or that have been garbage collected after
expiring.

The two key-retrieval functions dynamically allocate the memory for the returned
key(s). To enable the efficient allocation of memory, an application may call
sec_key_mgmt_free_key(), which frees the memory occupied by the key and returns
it to the allocation pool.

31.2 Changing a Key

Thesec_key_mgmt_change_key()function communicates with the registry to change
the principal’s key to a specified string, and also places the new string in the local key

896 DCE 1.2.2 Application Development Guide—Core Components

The Key Management API

storage. Thekeydatainput argument for this call may be a new key that the application
specifies or a random key returned by thesec_key_mgmt_gen_rand_key()routine.
An application may callsec_key_mgmt_get_next_kvno()to determine the next key
version number that should be assigned to the new key so that it may reference this
key version when retrieving a key.

In some circumstances, a principal may need to change its key in the local key storage
but not immediately update the registry database. For example, a database application
may maintain replicas of a master database that are managed by servers running on
different computers. If these servers all provide exactly the same service, it makes
sense for them to share the same key (meaning that they share the same principal
identity). This way, a user with a ticket to the principal can be directed to whichever
server is least busy.

When the registry database obtains a new key for a principal, the authentication service
can immediately begin issuing tickets to the principal that are encoded under the new
key. However, suppose the master for a single-principal replicated service were to
call sec_key_mgmt_change_key(), and a client presented a ticket encoded with the
latest key to a replica that had not yet learned that key. In this case, the replica would
refuse service, even though the ticket was valid. Therefore, if an application employs
replicated servers that are also instances of a single principal identity, the application
should do the following:

1. Generate a new key by callingsec_key_mgmt_gen_rand_key(). This routine
simply returns a key to the calling process, without updating the registry or local
storage.

2. Disseminate the new key to all replicas.

3. Cause the replicas to callsec_key_mgmt_set_key(). This call updates the local
storage to the new key but does not update the registry database entry for the
principal. (The key version specified in this routine must not be 0 [zero].) The
replicas should notify the master when they have completed setting their local
stores to the new key.

4. Cause the master to callsec_key_mgmt_change_key()(here again, the key
version must not be 0) after all replicas have set the new key locally, thereby
updating both the master’s local storage and the registry database entry.

Of course, if the master and each replica has its own principal identity, each server
may call sec_key_mgmt_change_key()without coordinating this activity with any
others.

DCE 1.2.2 Application Development Guide—Core Components 897

DCE Security Service

31.3 Automatic Key Management

It is sometimes convenient for a principal to be able to change its key on a
schedule determined by the password expiration policy for that principal, rather than
to rely on a network administrator to decide when this should be done. In this
case, the application may callsec_key_mgmt_manage_key(). This function invokes
sec_key_mgmt_gen_rand_key()shortly before the current key is due to expire,
updates both the local key storage and the registry database entry with the new key,
and then callssec_key_mgmt_garbage_collect()to discard any obsolete keys. This
function runs indefinitely; it will never return during normal operation and so should
be invoked from a thread dedicated to key management. It is not intended for use by
server principals that share the same key.

31.4 Deleting Expired Keys

In order to prevent service interruptions, the key management API does not
immediately discard keys that have been replaced; instead, it maintains the keys, with
a version number and key-type identifier, in the local key storage. However, after a
key has been out of use for longer than the maximum life of a ticket to the principal,
it is no longer possible that any client of that principal has a valid ticket encoded with
that key. At this time, the key storage may have its garbage collected.

The sec_key_mgmt_garbage_collect()routine collects garbage in the local key
storage by deleting all keys older than the maximum ticket lifetime for the cell. The
garbage_collect_timeargument, which is returned bysec_key_mgmt_change_key(),
specifies when key-storage garbage is to be collected.

31.5 Deleting a Compromised Key

When a principal’s key has been compromised, it should be deleted as soon as the
damage has been discovered in order to prevent another party from masquerading as
that principal. Two routines delete a principal’s key:

• The sec_key_mgmt_delete_key()routine removes all key types having the
specified key version identifier from the local key storage, thus invalidating all
extant tickets encoded with that key.

898 DCE 1.2.2 Application Development Guide—Core Components

The Key Management API

• The sec_key_mgmt_delete_key_type()routine removes only a specified version
of a specified key type.

If the compromised key is the current one, the application should first change the
key with sec_key_mgmt_change_key(). It is not an error for a process to delete the
current key as long as it is done after the login context has been established, but it
may inconvenience legitimate clients of a service. The inconvenience may be justified,
however, if the application data is sensitive.

Since an application may have no means to discover that its key has been compromised,
the rgy_edit tool provides interfaces that callsec_key_mgmt_delete_key(),
sec_key_mgmt_change_key(), and sec_key_mgmt_gen_rand_key()so that a
network administrator, who is more likely to detect that a key has been compromised,
may handle a security breach of this kind. As an alternative, the application may
provide user interfaces to these routines.

DCE 1.2.2 Application Development Guide—Core Components 899

Chapter 32
The Access Control List APIs

As a rule, DCE Security Service interfaces are local client-side APIs only. The access
control list (ACL) facility includes this kind of interface, and some others as well, as
follows:

• The DCE client ACL interface,sec_acl_* (), is a local interface that calls a client-
side implementation of the ACL network interface. It enables clients to browse or
edit DCE ACLs.

• The DCE server ACL manager library,dce_acl_* (), enables servers to perform
DCE-conformant authorization checks at runtime. This ACL library provides an
implementation of the ACL manager interface and the ACL network interface. It
supports the development of ACL managers for DCE servers.

• The DCE ACL network interface,rdacl_* (), enables servers that manage access
control to communicate withsec_acl-based clients.

Figure 32-1 provides a schematic view of the relationships and usage of these
interfaces, as well as some relevant RPC interfaces. This chapter first discusses the
client API, and then the two server program interfaces.

DCE 1.2.2 Application Development Guide—Core Components 901

DCE Security Service

Figure 32–1. ACL Program Interfaces

Application Code

DCE Library

ServerClient

DCE Library

ACL

Store

Application Code

code

Resolver Code

ACL
Library

Backing
Store

Library

Cell
Directory
Service

sec_acl_xxx()

code
generated

IDL IDL
generated

32.1 The Client-Side API

The client-side API is a local interface consisting of a set of routines that are prefixed
sec_acl. This is the interface on which the default DCE ACL editor (the DCE control
program, ordcecp) is built. An application that needs to replacedcecp with a DCE
ACL editor or browser of its own calls this interface. The following subsections provide
specific information on the functionality that this API supports.

902 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

32.1.1 Binding to an ACL

Any operation performed on an ACL uses an ACL handle of typehandle_t to identify
the target of the operation. The handle is bound to the server that manages the object
protected by the ACL, not to the ACL itself. Since an object may be protected by more
than one ACL manager type (see Chapter 25), the ACL itself can only be uniquely
identified by the ACL handle in combination with the manager type that manages it.
ACL editing calls must also specify the ACL type to be read or otherwise manipulated
(the object, default container, or default Object ACL types).

An application callssec_acl_bind()to get an ACL handle. The handle itself is opaque
to the calling program, which needs none of the information encoded in it to use the
ACL interface. A program can obtain the list of ACL manager types protecting an
object and pass this data, along with the ACL type identifier, to another client-side
routine. The following two calls perform this function:

• sec_acl_get_manager_types()returns a list of UUIDs of the manager types.

• sec_acl_get_manager_types_semantics()returns UUIDs of the manager types,
and also the POSIX semantics supported by each manager type. The output of
this call is used by thesec_acl_calc_mask()routine when it calculates a new
mask_obj mask.

In the absence of CDS, an application may callsec_acl_bind_to_addr(); this call
binds to a network address rather than a cell namespace entry.

Once an application is finished using an ACL handle, it should call
sec_acl_release_handle()to dispose of it.

32.1.2 ACL Editors and Browsers

After obtaining a handle to the object in question (and using
sec_acl_get_manager_types() or sec_acl_get_manager_types_semantics()to
determine the ACL manager types protecting the object), editors and browsers use
the sec_acl_lookup()function to return a copy of an object’s ACL.

Once an object’s ACL is retrieved, the editor can callsec_acl_get_printstring()to
receive instructions about how to display the permissions of the ACL in a human-
readable form. This call returns a symbol or word for each permission (a character

DCE 1.2.2 Application Development Guide—Core Components 903

DCE Security Service

string), and also a bitmask, with a bit (or bits) set to encode the permission. In addition,
the print string structure includes a short explanation of each permission.

An ACL cannot be modified in part. To change an ACL, an editor must read the
entire ACL (the sec_acl_tstructure), modify it, and replace it entirely by calling
sec_acl_replace(). If the ACL manager supports themask_obj mask type, you can
use sec_acl_calc_mask()to calculate a newsec_acl_e_type_mask_objentry type.
This function is supported for POSIX compatibility only, for those applications that
usemask_obj with its POSIX semantics. Accordingly,sec_acl_calc_mask()returns
the union of the permissions of all ACL entriesother thanuser_obj, other_obj,
unauthenticated (and the pre-existingmask_obj). These correspond approximately
to what POSIX calls the ‘‘File Group Class’’ of ACL entries, although that designation
is not appropriate in the DCE context. In particular,sec_acl_calc_mask()works
independently of DCE DFS.

Use the sec_acl_get_manager_types_semantics()routine to obtain the required
POSIX semantics and determine if the manager to which the ACL list will be submitted
supports thesec_acl_e_type_mask_objentry type.

An ACL can occupy a substantial amount of memory. The memory management
routine, sec_acl_release(), frees the memory occupied by an ACL, and returns it to
the pool. This is implemented strictly as a local operation.

32.1.3 Errors

Although the ACL API saves errors received from the DCE RPC runtime (or other
APIs) in ACL handle data, it returns an error describing the ACL operation that failed
as a result of the RPC error. However, if an error occurs and the client needs to know
the cause of the ACL operation failure, it may callsec_acl_get_error_info(). This
routine returns the error code last stored in the handle.

32.2 Guidelines for Constructing ACL Managers

ACL manager names for all of DCE should follow the convention for namingdcecp
attributes. There is no architectural restriction involved in the guidelines shown here,

904 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

merely an attempt at consistency. The DCE control program will accept names outside
of this convention, but adherence to it will make usage of ACL managers easier.

The guidelines are as follows:

• Alphabetic characters in names must be lowercase only.

• Names should not contain underscores.

• Names should not contain spaces.

• Names should be no longer than 16 bytes, the defined value of
sec_acl_printstring_len.

• Names should be similar to object command names supported indcecpwhenever
possible. For example, the ACL manager nameprincipal refers to the object,/.:/
sec/principal , that contains registry information about principals. Note thatdcecp
allows abbreviations. For example, a user can specifyorg for the ACL manager
nameorganization.

• Names must be unique within a component’s ACL manager but not necessarily
within DCE. For example, the namexattrschemacan be used for a DCE extended
attribute configuration schema ACL object and for a security ERA schema ACL
object.

• The help string for an ACL manager must specify the component that owns or
manages the objects in question because this information cannot always be derived
from the ACL manager name.

32.3 Extended Naming of Protected Objects

The DCE ACL model supports extended naming so that ACL managers can separately
protect objects that are not registered in the cell namespace. This provides an
alternative to registering all the server’s objects with CDS. The server alone is
registered, and it contains code to identify its own objects by name. To achieve ACL
protection for these objects, the ACL manager must be able to identify the ACLs
in the same way the server identifies the objects. A resolution routine provides this
ability.

Figure 32-2 shows the example of a printer server that is registered with CDS,
with printers that are not. The ACL manager for the printer server uses the

DCE 1.2.2 Application Development Guide—Core Components 905

DCE Security Service

dce_acl_resolve_by_name()resolution routine to obtain the UUIDs of the several
printers that are supported. The administrator in charge of the printers can change the
printers, their names, and their ACLs without concern for registering them with CDS.

Figure 32–2. Protection with Extended Naming

Names in Printer Server

/3rd-floor/myopia

/letterhead

/4th-floor/janis

/pen-plotter

/3rd-floor/milhaus

/.:/servers/printer

CDS Registration

When the dce_acl_register_object_type() routine registers an object type, it
associates a resolution routine with the object type. The ACL library provides two
resolution routines:dce_acl_resolve_by_name()and dce_acl_resolve_by_uuid().
Other resolution routines can be easily written, as required.

To take advantage of extended naming, an ACL manager must register the server
name, object UUID, andrdaclif.idl interface with the CDS. (Refer to theDCE
1.2.2 Application Development Guide—Directory Servicesfor more information). In
addition, the ACL manager must register the object UUID andrdaclif.idl interface
with the RPC endpoint mapper (refer to the chapters concerning RPC in Part 3 of this
guide).

906 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

32.3.1 The ACL Network Interface

The ACL network interface,rdacl_* (), provides a DCE-common interface to ACL
managers. It is the interface exported by the default DCE ACL managers to the default
DCE ACL client (that is, thedcecp tool), and any other client based on the client
API.

The client API,sec_acl_* (), is a local interface that calls a client-side implementation
of the ACL network interface. The server side implementation of this interface must
conform to therdacl_* (3sec)reference pages. The DCE ACL library provides such
an implementation. Following is a summary of therdacl_ * () routines:

• rdacl_lookup()

Retrieves a copy of the object’s ACL.

• rdacl_replace()

Replaces the specified ACL.

• rdacl_get_access()

Returns a principal’s permissions to an object (useful for implementing operations
like the conventional UNIX system access function).

• rdacl_test_access()

Determines whether the calling principal has the requested permission(s).

• rdacl_test_access_on_behalf()

Determines whether the principal represented by the calling principal has the
requested permission(s). This function returns TRUE if both the principal and the
calling principal acting as its agent have the requested permission(s).

Note: The rdacl_test_access_on_behalf()routine is deprecated and should not
be used in new code. Delegation has removed the need for this routine.

• rdacl_get_manager_types()

Returns a list of manager types protecting the object.

• rdacl_get_printstring()

Obtains human-readable representations of permissions.

• rdacl_get_referral()

DCE 1.2.2 Application Development Guide—Core Components 907

DCE Security Service

Returns a referral to an ACL update site. This function enables a client that
attempts to modify an ACL at a read-only site to recover from the error and
rebind to an update site.

32.3.2 The ACL Library

The ACL library provides an implementation of the ACL manager interface and the
ACL network interface for the convenience of programmers who are writing ACL
managers for DCE servers.

The ACL library meets the following needs:

• It provides stable storage for ACLs.

• It implements therdacl_ * () interface, including support for multiple object types,
initial default Object ACLs, and initial default Container ACLs.

• It implements the full access algorithm, including masks and delegation.

• It provides DCE developers with a set of convenience functions so that servers
can easily perform common styles of access control with minimal effort.

32.3.2.1 ACL Library Capabilities

The ACL library provides simple and practical access to the DCE security model.

The library provides a routine that indicates in a single call whether or not a client
has the appropriate permissions to perform a particular operation. A server can also
easily retrieve the full set of permissions granted to a client by an object’s ACL.

The library provides the completerdacl_* () remote interface. Standard routines are
provided to map either a UUID attached to a handle or a residual name specified as
one of the parameters.

The combination of these capabilities means that most servers will not have any need
to use DCE ACL data types directly.

908 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

32.3.2.2 The ACL API

The ACL library API, dce_acl_* (), is a local interface that provides the server-side
implementation of the ACL network interface. The reference pages inDCE 1.2.2
Application Development Referencedescribe the library routines.

The ACL library consists of the following parts:

• Initialization routines, where the server registers each ACL manager type.

• Server queries, where a server can perform various types of access checks.

• ACL object creation, where servers can create ACLs without concern for most
low-level data type details.

• The rdacl_* () implementation and server callback, where the server mapsrdacl_
* () parameters into a specific ACL object. Two sample resolver routines are
associated with this part:

— dce_acl_resolve_by_name()

Finds an ACL’s UUID, given an object’s name.

— dce_acl_resolve_by_uuid()

Finds an ACL’s UUID, given an object’s UUID.

32.3.2.2.1 Initialization Routines

An ACL manager must first define the types of the objects it manages. For example,
a simple directory service would have directories and entries, and each type of object
would have a different ACL manager. On a practical level, if a server has different
types of objects, then the most common difference between the ACL managers
is the printed representation of its permission bits. In other words, although the
sec_acl_printstring_t values differ, the algorithm for evaluating permissions remains
the same.

The ACL library provides a global print string that specifies theread, write , and
control bits. Application developers are encouraged to use this print string whenever
appropriate.

DCE 1.2.2 Application Development Guide—Core Components 909

DCE Security Service

An ACL manager calls thedce_acl_register_object_type()routine to register an
object type, once for each type of object that the server manages. The manager print
string does not define any permission bits; they are set by the library to be the union
of all permissions in the ACL print string.

The server must register therdacl_* () interface with the RPC runtime and with the
endpoint mapper. See thedce_server_register(3dce)reference page.

32.3.2.2.2 Server Queries

The ACL library provides several routines to automate the most common use of DCE
ACLs:

• dce_acl_is_client_authorized()

Checks whether a client’s credentials are authenticated and, if so, that they grant
the desired access.

• dce_acl_inq_client_permset()

Returns the client’s permissions, corresponding to an ACL.

• dce_acl_inq_client_creds()

Returns the client’s credentials.

• dce_acl_inq_permset_for_creds()

Determines a client’s complete extent of access to an object.

• dce_acl_inq_acl_from_header()

Retrieves the UUID of an ACL from the header of an object in the backing store.

• dce_acl_inq_prin_and_group()

Inquires the principal and the group of an RPC caller.

32.3.2.2.3 Creating ACL Objects

The following convenience functions may be used by an application programmer to
create ACL objects in other servers or clients.

• dce_acl_copy_acl()

910 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

Copies an ACL.

• dce_acl_obj_init()

Initializes an ACL for an object.

• dce_acl_obj_free_entries()

Frees space used by an ACL’s entries.

• dce_acl_obj_add_user_entry()

Adds permissions for a user ACL entry to the given ACL.

• dce_acl_obj_add_group_entry()

Adds permissions for a group ACL entry to the given ACL.

• dce_acl_obj_add_id_entry()

Adds permissions for an ACL entry to the given ACL.

• dce_acl_obj_add_unauth_entry()

Adds permissions for anunauthenticated ACL entry to the given ACL.

• dce_acl_obj_add_obj_entry()

Adds permissions for anobj ACL entry to the given ACL.

• dce_acl_obj_add_foreign_entry()

Adds permissions for the ACL entry for a foreign user or group to the given ACL.

• dce_acl_obj_add_any_other_entry()

Adds permissions for theany_other ACL entry to a given ACL.

32.3.2.2.4 RDACL Implementation and Server Callback

The ACL library makes a complete implementation of therdacl_ * () interface available
to programmers writing servers, in a manner that is mostly transparent to the rest of
the server code.

The operations in therdacl_ * () interface share an initial set of parameters that
specify the ACL object being operated upon:

DCE 1.2.2 Application Development Guide—Core Components 911

DCE Security Service

handle_t h

sec_acl_component_name_t component_name

uuid_t *manager_type

sec_acl_type_t sec_acl_type

The sec_acl_typeparameter indicates whether a protection ACL, an initial default
Object ACL, or an initial default Container ACL is desired. It does not appear in the
accessoperations as it must have the valuesec_acl_type_object.

In order to implement therdacl_* () interface, the server must provide a
resolution routine that maps these parameters into the UUID of the desired ACL
object; the library includes two such routines:dce_acl_resolve_by_uuid()and
dce_acl_resolve_by_name().

The resolution routine is required because servers use the namespace in different ways.
Here are three examples:

• Servers that export only their binding information and manage a single object,
and hence use a single ACL, do not need the resolution parameters. DTS is an
example of this case.

• Servers with many objects in the namespace, with a UUID in each entry, will call
rpc_binding_inq_object on the handle to obtain the object UUID. They then use
this same UUID as the index of the ACL object. Many application servers will
be of this type. One ACL library resolver function,dce_acl_resolve_by_uuid(),
matches this paradigm. This paradigm is not appropriate if the number of objects
is immense.

• Servers with many objects will use a junction or similar architecture so that the
component name (also called theresidual) specifies the ACL object by name.
The DCE security server is essentially of this type. Another ACL library resolver
function, dce_acl_resolve_by_name(), matches this paradigm.

The following typedef specifies the signature for a resolution routine. The first four
parameters are the commonrdacl_ * () parameters mentioned previously.

typedef void (*dce_acl_resolve_func_t)(

/* [in] parameters */

handle_t h,

sec_acl_component_name_t component_name,

912 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

sec_acl_type_t sec_acl_type,

uuid_t *manager_type,

boolean32 writing,

void *resolver_arg

/* [out] parameters */

uuid_t *acl_uuid,

error_status_t *st

);

For situations in which neither of the ACL library resolver functions,
dce_acl_resolve_by_uuid() or dce_acl_resolve_by_name(), is appropriate,
application developers must provide their own.

The following two examples illustrate the general structure of the
dce_acl_resolve_by_uuid() API and dce_acl_resolve_by_name() API that
are supplied in the ACL library. They may be used as paradigms for creating
additional resolver routines.

The first example showsdce_acl_resolve_by_name().

A server has several objects and stores each in a backing store database. Part of the
standard header for each object is a structure that contains the UUID of the ACL for
that object. (The standard header is not intended to be an abstract type, but rather a
common prolog provided to ease server development.) The resolution routine for this
server retrieves the object UUID from the handle, uses that as an index into its own
backing store, and uses thesec_acl_typeparameter to retrieve the appropriate ACL
UUID from the standard data header.

This routine needs the database handle for the server’s object storage, which is
specified as theresolver_argparameter in thedce_acl_register_object_type()call.

#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }

dce_acl_resolve_func_t

dce_acl_resolve_by_uuid(

/* in */

handle_t h,

sec_acl_component_name_t component_name,

sec_acl_type_t sec_acl_type,

uuid_t *manager_type,

DCE 1.2.2 Application Development Guide—Core Components 913

DCE Security Service

boolean32 writing,

void *resolver_arg,

/* out */

uuid_t *acl_uuid,

error_status_t *st

)

{

dce_db_handle_t db_h;

dce_db_header_t dbh;

uuid_t obj;

/* Get the object. */

rpc_binding_inq_object(h, &obj, st);

STAT_CHECK_RET(*st);

/* Get object header using the object backing store.

* The handle was passed in as the resolver_arg in the

* dce_acl_register_object_type call.

*/

db_h = (dce_db_handle_t)resolver_arg;

dce_db_std_header_fetch(db_h, &obj, &dbh, st);

STAT_CHECK_RET(*st);

/* Get the appropriate ACL based on the ACL type. */

dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);

STAT_CHECK_RET(*st);

}

The next example showsdce_acl_resolve_by_name().

A server uses the residual name to resolve an ACL object by using
dce_acl_resolve_by_name(). This routine requires a DCE database that maps
names into ACL UUIDs. This backing store database must be maintained by the
server application so that created objects always get a name, and that name must be
a key into a database that stores the UUID identifying the object. Theresolver_arg
parameter given in thedce_acl_register_object_type()call must be a handle for that
database.

914 DCE 1.2.2 Application Development Guide—Core Components

The Access Control List APIs

#define STAT_CHECK_RET(st) { if (st != error_status_ok) return; }

dce_acl_resolve_func_t

dce_acl_resolve_by_name(

/* in */

handle_t h,

sec_acl_component_name_t component_name,

sec_acl_type_t sec_acl_type,

uuid_t *manager_type,

boolean32 writing,

void *resolver_arg,

/* out */

uuid_t *acl_uuid,

error_status_t *st

)

{

dce_db_handle_t db_h;

dce_db_header_t dbh;

/* Get object header using the object backing store.

* The handle was passed in as the resolver_arg in the

* dce_acl_register_object_type call.

*/

db_h = (dce_db_handle_t)resolver_arg;

dce_db_std_header_fetch(db_h, component_name, &dbh, st);

STAT_CHECK_RET(*st);

/* Get the appropriate ACL based on the ACL type. */

dce_acl_inq_acl_from_header(dbh, sec_acl_type, acl_uuid, st);

STAT_CHECK_RET(*st);

}

DCE 1.2.2 Application Development Guide—Core Components 915

Chapter 33
The ID Map API

In the multicell environment, the global print string representation of a principal
identity can be ambiguous, even though every principal and its native cell have unique
names in the form of UUIDs to which the print string representations normally resolve.
For example, all ACLs maintain UUIDs as the definitive representations of principal
and cell names. Theacl_edit tool, on the other hand, takes as input (and also outputs)
this same information as print strings. This string-to-UUID mapping is accomplished
easily enough when an ACL entry refers to a local identity; that is, a member of the
local cell. However, when a user adds an ACL entry for a foreign principal identity
such as/.../world/dce/rd/writers/tom, it is not evident to the ACL manager which
part of the name identifies the cell, and which identifies the principal within the cell.
The name/.../world/dce may refer to a cell containing the principal/rd/writers/tom ,
or the cell name may be/.../world/dce/rd and the principal name/writers/tom .

To parse the fully qualified principal name that the user types into its cell name and
local principal-name components, and for these components to be mapped to UUIDs,
ACL managers that support entries for foreign identities use the ID map API. For the
same reasons, many other kinds of servers in a DCE multicell environment need a
facility to parse global names and translate UUIDs into print string names.

DCE 1.2.2 Application Development Guide—Core Components 917

DCE Security Service

The ID map API provides a simple interface to translate a fully qualified name (that
is, the global representation of a name) into its components and back again. This API
consists of the following calls:

• The sec_id_parse_name()call takes as input a registry context handle and a fully
qualified principal name, and returns the principal’s print string name and UUID,
and the print string name and UUID of the principal’s native cell.

• The sec_id_gen_name()call translates a principal UUID and the UUID of its
native cell UUID into a cell-relative principal name, a cell name, and a fully
qualified principal name.

• The sec_id_parse_group()call is like sec_id_parse_name(), except that it
operates on group names.

• The sec_id_gen_group()call is like sec_id_gen_name(), except that it operates
on group names.

918 DCE 1.2.2 Application Development Guide—Core Components

Chapter 34
DCE Audit Service

Audit plays a critical role in distributed systems. Adequate audit facilities are necessary
for detecting and recording critical events in distributed applications.

Audit, a key component of DCE, is provided by the DCE Audit Service.

This chapter provides an introduction to the DCE Audit Service.

34.1 Features of the DCE Audit Service

The DCE Audit Service has the following features:

• An audit daemon performs the logging of audit records based on specified criteria.

• Application programming interfaces (APIs) can be used as part of application
server programs to record audit events. These APIs can also be used to create
tools that analyze the audit records.

• An administrative command interface to the audit daemon directs the daemon in
selecting the events that are going to be recorded based on certain criteria.

DCE 1.2.2 Application Development Guide—Core Components 919

DCE Security Service

• An event classification mechanism is used to logically group a set of audit events
for ease of administration.

• Audit records can be directed to logs or to the console.

34.2 Components of the DCE Audit Service

The DCE Audit Service has three basic components:

• application programming interfaces (APIs)

Provide the functions that are used to detect and record critical events when
the application server services a client. The application programmer uses these
functions atcode pointsin the application server program to actuate the recording
of audit events.

Other APIs are also provided which can be used to create tools that examine and
analyze the audit event records.

• audit daemon

Maintains the filters and the audit logs.

• audit management interface

Management interface to the audit daemon. Used by the administrator to specify
how the audit daemon will filter the recording of audit events. This interface is
available from the DCE control program.

34.3 DCE Audit Service Concepts

This section briefly describes the DCE Audit Service concepts that are relevant to
DCE application programming.

34.3.1 Audit Clients

All RPC-based servers, such as DCE servers and user-written application servers, are
potential audit clients. The DCE Security Service, DTS, and the DCE Audit Service

920 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

itself are auditable. That is, code points (discussed in Section 34.3.2) are already in
place on these services.

The audit daemon can also audit itself.

34.3.2 Code Point

A code pointis a location in the application server program where DCE audit APIs
are used. Code points generally correspond to operations or functions offered by the
application server for which audit is required. For example, if a bank server offers
the cash withdrawal functionacct_withdraw(), this function may be deemed to be an
auditable event and be designated as a code point.

As mentioned previously, code points are already in place in the DCE Security
Service, DTS, and DCE Audit Service. Code points and their associated events for
the DCE Security Service are documented in thesec_audit_events(5sec)reference
page. Code points and their associated events for the DTS are documented in the
dts_audit_events(5sec)reference page. Code points and their associated events for
the DCE Audit Service are documented in theaud_audit_events(5sec)reference page.

34.3.3 Events

An audit eventis any event that an audit client wishes to record. Generally, audit
events involve the integrity of the system. For example, when a client withdraws cash
from his bank account, this can be an audit event.

An audit event is associated with a code point in the application server code.

The termsaudit event, event, and auditable eventare used interchangeably in this
book.

DCE 1.2.2 Application Development Guide—Core Components 921

DCE Security Service

34.3.3.1 Event Names and Event Numbers

Each event has a symbolic name as well as a 32-bit number assigned to it. Symbolic
names are used only for documentation in identifying audit events. In creating event
classes, the administrator uses the event numbers associated with these events.

Event numbers are 32-bit integers. Each event number is a tuple made up of aset-id
and theevent-id. The set-idcorresponds to a set of event numbers and is assigned by
OSF to an organization or vendor. Theevent-ididentifies an event within the set of
events. The organization or vendor manages the issuance of the event ID numbers to
generate an event number.

Event numbers must be consecutive. That is, within a range of event numbers, no gaps
in the consecutive order of the numbers are allowed.

The structure and administration of event numbers can be likened to the structure
and administration of IP addresses. Recall that an IP address is a tuple of a network
ID (analogous to the set-id) and a host ID (analogous to the event-id). The format
and administration of event numbers are also analogous to IP addresses, as will be
discussed in the next sections.

34.3.3.2 Event Number Formats

Events numbers follow one of five formats (A to E), depending on the number of
audit events in the organization. The format of an event number can be determined
from its four high-order bits.

Format A can be used by large organizations (such as OSF or major DCE vendors)
that need more than 16 bits for the event-id. This format allocates 7 bits to the set-id
and 24 bits to the event-id. Format A event numbers with zero (0) as its set-id are
assigned to OSF. That is, all event numbers used by OSF have a zero in the most
significant byte.

Format B can be used by intermediate-sized organizations that need 8 to 16 bits for
the event-id.

Format C can be used by small organizations that need less than 8 bits for the event-id.

922 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

Format D is not administered by OSF and can be used freely within the cell. These
event numbers may not be unique across cells and should not be used by application
servers that are installed in more than one cell.

Format E is reserved for future use.

The event number formats are illustrated in Figure 34-1.

Figure 34–1. Event Number Formats

Format A
Format B
Format C
Format D
Format E

0 1 2 3 4 8 16 24 31
0 set–id event–id
1 0 set–id event–id
1 1 0 set–id event–id
1 1 1 0 event–id
1 1 1 1 reserved

34.3.3.3 Sample Event Numbers for DCE Servers

Following are examples of event numbers in the security and time servers, as defined
in a header file used by the security server and time server programs, respectively.

/* Event numbers 0x00000100 to 0x000001FF are assigned to the

security server. */

#define AS_Request 0x00000100

#define TGS_TicketReq 0x00000101

#define TGS_RenewReq 0x00000102

#define TGS_ValidateReq 0x00000103

...

/* Event numbers 0x00000200 to 0x000002FF are

assigned to the time server. */

#define CNTRL_Create 0x00000200

#define CNTRL_Delete 0x00000201

DCE 1.2.2 Application Development Guide—Core Components 923

DCE Security Service

#define CNTRL_Enable 0x00000202

#define CNTRL_Disable 0x00000203

...

34.3.3.4 Sample Event Numbers for Application Servers

The following is an example of the event numbers in a banking server application, as
defined in the application’s header file.

#define evt_vn_bank_server_acct_open 0x01000000

#define evt_vn_bank_server_acct_close 0x01000001

#define evt_vn_bank_server_acct_withdraw 0x01000002

#define evt_vn_bank_server_acct_deposit 0x01000003

#define evt_vn_bank_server_acct_transfer 0x01000004

34.3.3.5 Administration of Event Numbers

Organizations and vendors must administer the event numbers assigned to them
(through the set-id) to maintain the unique assignment of event numbers.

34.3.4 Event Class

Audit events can be logically grouped together into anevent class. Event classes
provide an efficient mechanism by which sets of events can be specified by a single
value. Generally, an event class consists of audit events with some commonality. For
example, in a bank server program, the cash transaction events (deposit, withdrawal,
and transfer) may be grouped into an event class.

Typically, the administrator creates and maintains event classes. For more details to
event classes, see theDCE 1.2.2 Administration Guide—Core Components.

924 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

34.3.5 Event Class Number

Each event class is assigned anevent class number. Like the event number, the event
class number is a 32-bit integer and is administered by OSF. Event class numbers are
discussed in more detail in theDCE 1.2.2 Administration Guide—Core Components.

34.3.6 Filters

Once the code points are identified and placed in the application server, all audit events
corresponding to the code points will be logged in the audit trail file, irrespective of the
outcome of these audit events. However, recording all audit events under all conditions
may neither be practical nor necessary.Filters provide a means by which audit records
are logged only when certain conditions are satisfied. A filter is composed offilter
guidesthat specify these conditions. Filter guides also specify what action to take if
the condition (outcome) is met.

A filter answers the following questions:

• Who will be audited?

• What events will be audited?

• What should be the outcome of these events before an audit record is written?

• Will the audit record be logged in the audit trail file or displayed on the system
console, or both?

For example, for the bank server program, you can impose the following conditions
before an audit record is written:

‘‘Audit all withdrawal transactions (the audit events) that fail because of access denial
(outcome of the event) that are performed by all customers in the DCE cell (who to
audit).’’

DCE 1.2.2 Application Development Guide—Core Components 925

DCE Security Service

34.3.6.1 Filter Subject Identity

A filter is associated with onefilter subject, which denotes to what the filter applies.
The filter subject is the client of the distributed application who caused the event to
happen.

For more information on the filter subject identity, see theDCE 1.2.2 Administration
Guide—Core Components.

34.3.7 Audit Records

An audit record has a header and a trailer. The header contains the common information
of all events; for example, the identities of the client and the server, group privileges
used, address, and time. The trailer contains event-specific information; for example,
the dollar amount of a fund-transfer event.

Audit records are initialized and filled by calling the audit API functions.

There are four stages in the writing of an audit record:

1. First, the code point registers an audit event. At this point, the audit record does
not yet have any form.

2. The audit record descriptor is built. This is a representation of the audit data that
is built by thedce_aud_start(), dce_aud_put_ev_info(), anddce_aud_commit()
functions. This is stored in a data structure in the client’s core memory until
the dce_aud_commit()function is called. This data is not IDL-encoded until the
dce_aud_commit()call.

3. The audit record is written to the log. This is stored as IDL-encoded data in the
audit log.

4. The audit record is transformed into human-readable form. This is a representation
built in a data structure in the core memory by calls to thedce_aud_next()and
dce_aud_print() functions. This is not an IDL-encoded representation.

926 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

34.3.8 Audit Trail File

The audit trail file contains all the audit records that are written by the audit daemon
or the audit APIs. You can specify either a central audit trail file or a local audit trail
file. The central audit trail file is maintained by the audit daemon. The local audit
trail file is maintained by the audit library. The termsaudit trail file and audit trail
are used interchangeably in this book.

34.4 Administration and Programming in DCE Audit

This section gives you an example of how auditing is accomplished using the DCE
Audit Service. Both the programmer and the administrator have to perform tasks to
enable the writing of audit records in the audit trail. This section looks at the life cycle
of an audit trail, from the time that audit events are identified in the server code, to
the time that they are filtered and recorded in the audit trail file.

A bank server example illustrates each stage of the life cycle. In this example, the bank
server program offers five operations:acct_open(), acct_close(), acct_withdraw() ,
acct_deposit(), andacct_transfer() .

34.4.1 Programmer Tasks

The programmer uses the audit APIs to enable auditing in the application server
program, as illustrated in the following:

1. The programmer identifies the code points in the bank server program. Because
each of the five operations (corresponding to an RPC interface) offered by the
bank server is a security-relevant operation, the programmer deems that all these
operations are security relevant, and assigns a codepoint to each operation. Each
code point corresponds to an audit event.

acct_open() /* first code point */

acct_close() /* second code point */

acct_withdraw() /* third code point */

acct_deposit() /* fourth code point */

DCE 1.2.2 Application Development Guide—Core Components 927

DCE Security Service

acct_transfer() /* fifth code point */

2. The programmer then assigns an event number to each audit event (corresponding
to each code point). For example, the programmer defines these numbers in his
header file as follows:

/* event number for the 1st code point, acct_open() */

#define evt_vn_bank_server_acct_open 0xC1000000

/* event number for the 2nd code point, acct_close() */

#define evt_vn_bank_server_acct_close 0xC1000001

/* event number for the 3rd code point, acct_withdraw() */

#define evt_vn_bank_server_acct_withdraw 0xC1000002

/* event number for the 4th code point, acct_deposit() */

#define evt_vn_bank_server_acct_deposit 0xC1000003

/* event number for the 5th code point, acct_transfer() */

#define evt_vn_bank_server_acct_transfer 0xC1000004

3. The programmer now starts adding audit API functions to the bank server
program.

In the initialization part of the server, the application programmer uses the
dce_aud_open()API to open an audit trail file for writing the audit records.
This function uses the lowest-numbered event as one of its parameters; in
this case,0xC1000000(evt_vn_bank_server_acct_open). Using the lowest-
numbered event enhances the performance of the filter search.

/* open an audit trail file for writing */

dce_aud_open(aud_c_trl_open_write, description,

evt_vn_bank_server_acct_open,

5, &audit_trail, &status);

4. The programmer invokes the following DCE audit APIs at each code point:

928 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

• The dce_aud_start()API, to initialize an audit record. This function assigns
the event number to the event represented by the code point. Thus, it uses
the event number corresponding to that code point as one of its parameters.

• The dce_aud_put_ev_info()API, to add event-specific information to the
audit record.

• Thedce_aud_commit()API, to commit the audit record in the audit trail file.

The use of these three APIs is illustrated in the following example of the bank
server program:

acct_open() /* first code point */

/* Uses the event number for acct_open(),

evt_vn_bank_server_acct_open */

dce_aud_start(evt_vn_bank_server_acct_open,

binding,options,outcome,&ard, &status);

/* If events need to be logged,

add trailer info (optional) */

if (ard)

dce_aud_put_ev_info(ard,info,&status);

/* If events need to be logged,

add header and trailer info */

if (ard)

dce_aud_commit(at,ard,options,format,&outcome,&status);

acct_close() /* second code point */

/* Uses the event number for acct_close(),

* evt_vn_bank_server_acct_close */

dce_aud_start(evt_vn_bank_server_acct_close,

binding,options,outcome,&ard, &status);

if (ard) /* If events need to be logged */

dce_aud_put_ev_info(ard,info,&status);

if (ard) /* If events need to be logged */

DCE 1.2.2 Application Development Guide—Core Components 929

DCE Security Service

dce_aud_commit(at,ard,options,format,&outcome,&status);

5. The programmer uses thedce_aud_close()API in the termination routine of the
application server. This API closes the audit trail file (and frees up memory) if
the applicaton server shuts down.

The coding of the application program to enable auditing is essentially complete
at this point.

34.4.2 Administrator Tasks

The following steps will be performed by the administrator to filter the audit events
and control the audit trail file.

1. The administrator obtains the event numbers corresponding to the events
represented by the code points in the bank server program from the programmer
or from the program’s documentation. These events and their assigned event
numbers are as follows:

acct_open() 0xC1000000

acct_close() 0xC1000001

acct_withdraw()
0xC1000002

acct_deposit()
0xC1000003

acct_transfer()
0xC1000004

1. The administrator decides to create two event classes: the
account_creation_operationsclass comprised ofacct_open()and acct_close(),
and the account_balance_operationsclass comprised ofacct_withdraw(),
acct_deposit(), andacct_transfer().

2. The administrator decides to create two filters: one for all users within the cell
(for the cell /.:/torolabcell), and the other for all other users.

The filter for all users within the cell has the following guides:

a. Audit the events in the event classaccount_balance_operationsonly, subject
to the next condition.

930 DCE 1.2.2 Application Development Guide—Core Components

DCE Audit Service

b. Write an audit record only if an operation in that event class failed because
of access denial.

c. If the first condition is fulfilled, write the audit record in an audit trail file
only.

The filter for all other users has the following filter guides:

a. Audit the events in both event classes, subject to the next condition.

b. Write an audit record if an operation in that event class succeeded or failed.

c. Write the audit record both in an audit trail file and the console.

The scenarios described here can be summarized as follows:

• The programmer identifies the code points in the distributed application
corresponding to the audit events.

• The programmer uses the audit API functions on those code points to enable
auditing.

• The administrator creates event classes that are used to group the audit events.

• The administrator creates filters to narrow down the conditions by which audit
records are written for the audit events.

Figure 34-2 illustrates the interactions among the audit client program, the audit API
functions (libaudit), the audit daemon (auditd), and the audit management interface
(available from the DCE control program,dcecp).

DCE 1.2.2 Application Development Guide—Core Components 931

DCE Security Service

Figure 34–2. Overview of the DCE Audit Service

(per machine)

audit API

trail files

filter updates

log to file

stat, read
read/write

read/write

Timestamps(filter files)

event table
filters

audit records

Event Class
Configuration

Files

stat, read

filter update notification

auditd

auditcp

filters

audit client

auditor

in–core copy
of filters

command i/f filter read/write

The audit management interface (accessed through the DCE control program) is used
by the systems administrator to specify who, what, when, and how to audit. This is
accomplished through the use of the filters. The audit daemon maintains the filter’s
information in its address space. The filters are also stored in local files so that the
filters can be restored when the machine restarts, and so that audit clients can read
the filter information from these files.

The audit clients are the users of the filter information. Using the audit APIs, the audit
client reads the information on filters and event class configuration. The audit client
reads these files only once, unless an update notification is received from the audit
daemon (which is triggered by an update initiated by an administrator using the DCE
control program).

932 DCE 1.2.2 Application Development Guide—Core Components

Chapter 35
Using the Audit API Functions

This chapter describes the use of the audit API functions to add audit capability to
distributed applications and to write audit trail analysis and examination tools.

35.1 Adding Audit Capability to Distributed
Applications

To record audit events in an audit trail file, the DCE audit API functions must be
called in the distributed application to perform the following:

1. Open the audit trail file during the startup of the application.

2. Initialize the audit records at each code point.

3. Add event information to the audit records at each code point. (This is optional.)

4. Commit the audit records at each code point.

5. Close the audit trail file when the application shuts down.

DCE 1.2.2 Application Development Guide—Core Components 933

DCE Security Service

Note that steps 2, 3, and 4 are repeated in sequence at each code point in the distributed
applcation.

The use of the audit API functions in each of these steps is illustrated with the bank
server example introduced in the previous chapter.

Five code points are identified in the bank server program:acct_open(), acct_close(),
acct_withdraw(), acct_deposit(), and acct_transfer(). Each code point has been
assigned an event number and defined in the application server’s header file as follows:

#define evt_vn_bank_server_acct_open 0x01000000

#define evt_vn_bank_server_acct_close 0x01000001

#define evt_vn_bank_server_acct_withdraw 0x01000002

#define evt_vn_bank_server_acct_deposit 0x01000003

#define evt_vn_bank_server_acct_transfer 0x01000004

35.1.1 Opening the Audit Trail

To open the audit trail file, the main routine of the application server uses the
dce_aud_open()function. With this function call, the audit trail file can be

• opened for reading or for writing.

• directed to the default audit trail file or to a specific file. Ifdce_aud_open()is
called without specifying an audit trail file, (by having NULL as the value of the
descriptionparameter), a default audit trail file is used. This is thecentral trail
file that is accessed by RPC calls to the audit daemon.

If an audit trail file is specified in thedce_aud_open()call, (through the
descriptionparameter), that file is opened directly by the audit library, bypassing
RPCs and the audit daemon.

In the bank server application, the function call is as follows:

dce_aud_open(aud_c_trl_open_write, &audit_file,

evt_vn_bank_server_acct_open,

5, &audit_trail, &status);

934 DCE 1.2.2 Application Development Guide—Core Components

Using the Audit API Functions

In this call, the audit trail fileaudit_file is opened for writing. The third parameter
(evt_vn_bank_server_acct_open)specifies the lowest event number used in the bank
server application. The fourth parameter (5) specifies the number of events defined.

The call returns an audit-trail descriptor (audit_trail) that will be used to append audit
records to the audit trail file.

35.1.2 Initializing the Audit Records

Audit records can be initialized by using thedce_aud_start_ * () functions. This
function has five variations, and the use of each variation depends on the available
information about the server. In general, if you have the RPC binding information about
the server, use thedce_aud_start()function. If not, use the other four variations of this
function, depending on the available information. The five variations are as follows:

• dce_aud_start()

For use by DCE RPC-based server applications.

• dce_aud_start_with_server_binding()

For use by DCE RPC-based client applications.

• dce_aud_start_with_ pac()

For use by applications that do not use DCE RPC, but use the DCE authorization
model.

• dce_aud_start_with_name()

For use by applications that use neither DCE RPC nor the DCE authorization
model.

• dce_aud_start_with_uuid()

For use by RPC-based applications that know their client’s identity in UUID form.

Thedce_aud_start_* () functions determine if a specified event must be audited based
on the subject identity and event outcome that were defined for that event by the filters.

If the event specifics match the event filters (that is, the event has to be audited), these
functions return a pointer to an audit record buffer. If it is determined that the event
does not need to be audited, a NULL pointer is returned, and the application can then

DCE 1.2.2 Application Development Guide—Core Components 935

DCE Security Service

discontinue any auditing activity. If it cannot be determined whether the event needs
to be audited (because the event needs to be audited based on a specific outcome(s)
but the outcome is not yet known) these functions return a non-NULL pointer.

When an audit record is initialized, the identification of the audit subject (that is, the
client of the distributed application) is recorded.

You can use thedce_aud_start_* () functions to specify the amount of header
information in the audit record. You can specify any or a combination of the following:

• Information on all groups and addresses

• Information on groups only

• Information on addresses only.

Using these functions, you can bypass the filter altogether and log the event to the
audit trail file or display it on the system console. This option is useful for applications
whose events require unconditional audit actions.

In our example, each of the bank server routines (acct_open() , acct_close(),
acct_withdraw() , acct_deposit(), acct_transfer())will make a dce_aud_start()
function call. In theacct_transfer() routine, the function call is made as follows:

acct_transfer()

dce_aud_start (evt_vn_bank_server_acct_transfer,

h, aud_c_evt_all_info,

aud_c_esl_cond_success, &ard, &status);

where h points to the RPC binding of the client making the call. The
aud_c_evt_all_infooption means that all information about the client’s groups and
addresses are included in the audit record header. Theaud_c_esl_cond_successevent
outcome means that the event completed successfully.

35.1.3 Adding Event-Specific Information

If the dce_aud_start()function returns an audit record descriptor to the audit record
buffer (meaning that the event needs to be audited), thedce_aud_put_ev_info()

936 DCE 1.2.2 Application Development Guide—Core Components

Using the Audit API Functions

function call can be used to add event-specific information to the tail of the audit
record.

You can opt not to use thedce_aud_put_ev_info()function if the information provided
by the audit record header is already sufficient for your auditing purposes.

If you elect to use this function, it can be called one or more times, the order of which
is preserved in the audit record.

The dce_aud_put_ev_info()function has two parameters: theard parameter, which
is the pointer to the audit record descriptor, and theinfo parameter, which is
a dce_aud_ev_info_t type data containing the event-specific information. The
programmer can specify thedce_aud_ev_info_tdata type to include all the audit
information that needs to be collected. For more information on the formats of the
audit record, see theDCE 1.2.2 Application Development Reference.

In the acct_transfer() code point of the bank server example, if you want to record
the account numbers of the parties involved in the transfer and the amount of each
transaction, the data type declarations and the function calls can be made as follows:

dce_aud_ev_info_t info;

/* account numbers and transfer amounts are all unsigned

32-bit integers */

info.format = aud_c_evt_info_ulong_int;

info.data = acct_from;

dce_aud_put_ev_info(ard, info, &status);

info.data = acct_to;

dce_aud_put_ev_info(ard, info, &status);

info.data = amount;

dce_aud_put_ev_info(ard, info, &status);

35.1.4 Committing an Audit Record

After the header and the optional tail information has been included in the audit record,
the dce_aud_commit()function call is used to write the audit record in the audit trail
file. This function uses the audit trail file previously opened by thedce_aud_open()
function.

DCE 1.2.2 Application Development Guide—Core Components 937

DCE Security Service

You can specify one of two options in the way the function writes the audit record in
the audit trail file:

• Return an error status if the storage or logging service is not available when an
attempt is made to write the audit record. This option can be used if the application
program can handle write failures in the stable storage.

• If the storage or logging service is not available, keep on trying until the function
is able to write to it. This option can be used if the audit record must be written
to stable storage before the routine can proceed safely to another task.

In the bank server example, the function call can be made as follows:

dce_aud_commit(audit_trail, ard, options, format, outcome, &status);

The audit_trail parameter is the trail descriptor returned in thedce_aud_open()
call made earlier. Theard parameter is the audit record descriptor returned in the
dce_aud_start() call (and used in thedce_aud_put_ev_info()function call). The
format parameter specifies a format version number of the event-specific information.
The initial version number should be zero, and be incremented when the format
changes. For example, the data type used for account numbers might change from 32-
bit integer to UUID. The event outcome must be provided in this call, even if it has
been provided in thedce_aud_start()call made earlier. If the event outcome (except
aud_c_esl_cond_unknown)is provided in both calls, the values must be the same.

35.1.5 Closing an Audit Trail File

The audit trail file must be closed using thedce_aud_close()function when the
application shuts down (because of therpc_mgmt_stop_server_listening()function
call or other exceptional conditions). For example, to close the trail, the bank server’s
main program can make the following function call:

dce_aud_close(audit_trail, &status);

This function flushes buffered audit records to stable storage and releases the memory
allocated for the trail descriptor.

938 DCE 1.2.2 Application Development Guide—Core Components

Using the Audit API Functions

35.2 Writing Audit Trail Analysis and Examination
Tools

The audit APIs can be used to write audit trail analysis and examination tools that
selectively review the following:

• Events that are invoked by one or more subjects, for example, principals, groups,
and cells

• Events that have a specific outcome

• Events that occurred during a specified time period

• Events that have specific event IDs

In its most basic form, an audit trail analysis and examination tool must perform five
functions:

• Open an audit trail file for reading

• Read the audit records into a buffer

• Transform the audit records into human-readable form

• Discard the audit record

• Close the audit trail file

These functions and the APIs that are used for each are discussed in the following
sections.

35.2.1 Opening an Audit Trail File for Reading

To open the audit trail file for reading, use thedce_aud_open()function and specify
aud_c_trl_open_readas the value for theflagsparameter. In this case, the values for
the first_evt_numberandnum_of_evtsdoes not affect the call. For example:

dce_aud_open(aud_c_trl_open_read, AUDIT_TRAIL_FILE,

0, 0, &out_trail, status);

DCE 1.2.2 Application Development Guide—Core Components 939

DCE Security Service

35.2.2 Reading the Desired Audit Records into a Buffer

After opening the audit trail file, you can use thedce_aud_next()function to retrieve
audit records. Audit records are stored in the audit trail file in binary form. The
dce_aud_next()function does not convert the file into readable form. You must use
the dce_aud_print() function to translate the audit record into readable form.

The dce_aud_next()function allows you to specify a criteria that will be used in
selecting the records that will be read from the file. This criteria is known aspredicates
and is expressed by setting the condition on the value of certain attributes. The
condition is set by using any of the following operators:= (equal to),> (greater
than), and< (less than).

Predicates can be expressed in any of the following forms:

• attribute= value

• attribute> value

• attribute< value

The following list summarizes these attributes and their acceptable values:

SERVER UUID of the principal that generated the record

EVENT Audit event number

OUTCOME
Event outcome of the record

STATUS Authorization status of the application client

CLIENT UUID of the client principal

TIME Time when the record was generated.

CELL The UUID of the application client’s cell

GROUP The UUID of the application client’s group or groups

ADDR The address (binding handle) of the client

FORMAT The format version number of the audit event record

Details of these attributes, their values, and the allowable operators are discussed in
the DCE 1.2.2 Application Development Reference.

940 DCE 1.2.2 Application Development Guide—Core Components

Using the Audit API Functions

For example, to have the function retrieve audit records that pertain to the event
number 0xC01000001 only, you can set the predicate to the following:

EVENT=0xC01000001

If the predicate parameter is set to NULL (that is, no criteria), the next audit record
is read. For example, to read the next audit record in a previously opened audit trail
file, the following call is made:

dce_aud_next(out_trail, NULL, &out_ard, status);

You can specify multiple predicates, in which case the predicates are treated as a
logical AND condition.

Thedce_aud_next()function returns a pointer to the record that was read. This pointer
is used by thedce_aud_print(), dce_aud_get_ev_info(), anddce_aud_get_header()
functions in transforming the audit records into ASCII format.

35.2.3 Transforming the Audit Record into Readable Text

After reading in the desired audit record by using thedce_aud_next()function, these
binary audit records must be transformed into human-readable form.

You can use any of the following three functions to transform the audit record
information to human readable form:

• dce_aud_print()

Formats the entire audit record (header and tail) into ASCII format.

• dce_aud_get_header()

Obtains the header information of the audit record and formats it into human
readable form.

• dce_aud_get_ev_info()

DCE 1.2.2 Application Development Guide—Core Components 941

DCE Security Service

Obtains the event-specific information in the tail of the audit record and formats
it into human readable form.

Thedce_aud_next()function returns the address of the audit record to these functions.
These functions then allocate memory for the ASCII-format buffer (usingmalloc())
and fills it with the ASCII representation of the audit record. The user must explicitly
release this memory (usingfree()) when all audit record retrieving and transforming
tasks have been accomplished.

35.2.4 Discarding the Audit Record

The dce_aud_discard()function frees the memory allocated to the binary version of
the audit record, that is, the structure returned by thedce_aud_next()function. The
dce_aud_discard()function does not free the structures allocated bydce_aud_print(),
dce_aud_get_header(), or dce_aud_get_ev_info().

35.2.5 Closing the Audit Trail File

Finally, the audit trail file from which the audit records were read must be closed
using thedce_aud_close()function.

942 DCE 1.2.2 Application Development Guide—Core Components

Chapter 36
The Password Management API

User passwords are the weakest link in the chain of DCE security. Users, unless their
choices are restricted, typically choose passwords that are easy for them to remember;
unfortunately, these memorable passwords are also easy for attackers to ‘‘crack.’’

The password management facility is intended to reduce this risk by providing the
tools necessary to develop customized password management servers, and to call them
from client password change programs. This facility enables cell administrators to

• Enforce stricter constraints on users’ password choices than those in DCE standard
policy

• Offer, or force, automatic generation of user passwords

The password management facility includes the following APIs:

• The password management interface,sec_pwd_mgmt_* (), which enables clients
to retrieve a principal’s password management ERA values and to request strength-
checking and generation of passwords.

DCE 1.2.2 Application Development Guide—Core Components 943

DCE Security Service

• The password management network interface,rsec_pwd_mgmt_ * (), which
enables a password management server to accept and process password strength
checking and generation requests.

Figure 36-1 provides a schematic view of the relationships and usages of these
interfaces, as well as some relevant security registry APIs. This chapter first discusses
the client API and then the network API.

Figure 36–1. Use of Password Management Facility APIs

RPC

Security Client

Security Server

Password Management
Server

(Enforce password validation policy in
password change/add program...)

sec_pwd_mgmt...()
sec_rgy_acct_passwd

rsec_pwd_mgmt_
gen_pwd()

rsec_pwd_mgmt_
str_chk()

.

.

.

.

.

rs_pwd_mgmt_setup
rs_acct_passwd

RPC

RPC

For information on how to administer password generation and strength-checking, see
the DCE 1.2.2 Administration Guide—Core Components.

36.1 The Client-Side API

The DCE control program,dcecp, and rgy_edit provide support for password
generation based on a principal’s password validation type ERA. However, if you

944 DCE 1.2.2 Application Development Guide—Core Components

The Password Management API

want to enhance your own password change program (such as the UNIXpasswd
program), you will need to use the client-sidesec_pwd_mgmt_* () API.

This API provides functions that retrieve a principal’s password management ERA
values and request password strength checking and generation from a password
management server.

The sec_pwd_mgmt_* () API is defined in thesec_pwd_mgmt.idlfile.

The general procedure for using the client-side password management API in a
password change program is as follows. Refer to Figure 36-1 as you read the following
steps:

1. The client callssec_pwd_mgmt_setup(), specifying the login name of the
principal whose password is being changed. The registry service returns the
pwd_val_type and pwd_mgmt_binding ERAs as well as the registry standard
(password) policy for the principal to the client’s security runtime, which is stored
in a password management handle (an opaque data type).

2. The client callssec_pwd_mgmt_get_val_type(), specifying the handle returned
by sec_pwd_mgmt_setup()in step 1. The value of the principal’spwd_val_type
ERA is extracted from the handle and returned to the client.

3. The client analyzes the principal’spwd_val_type ERA to determine whether
a generated password is required. If so, it callssec_pwd_mgmt_gen_pwd(),
specifying the number of passwords needed, and the handle returned by
sec_pwd_mgmt_setup. The client security runtime makes an RPC call to the
password management server, which generates passwords that adhere to the
principal’s password policy.

4. The client callssec_rgy_acct_passwd()(or some other form), specifying the new
password (either input by the user or generated bysec_pwd_mgmt_gen_pwd()).
If the principal’s pwd_val_type ERA mandates it, the registry service makes
an RPC call to the password management server, specifying the name of the
principal and the password to be strength checked. The password management
server checks the format of the password according to the user’s password policy
and accepts or rejects it.

5. The client callssec_pwd_mgmt_free_handle()to free the memory associated
with the password management handle.

DCE 1.2.2 Application Development Guide—Core Components 945

DCE Security Service

Following is an example of a password change program that calls the
sec_pwd_mgmt_* () API as previously described.

sec_pwd_mgmt_setup(&pwd_mgmt_h, context, login_name,

login_context, NULL, &st);

if (GOOD_STATUS(&st)) {

sec_pwd_mgmt_get_val_type(pwd_mgmt_h, &pwd_val_type, &st);

}

if (GOOD_STATUS(&st)) {

switch (pwd_val_type) {

case 0: /* NONE */

case 1: /* USER_SELECT */

... get password ...

break;

case 2: /* USER_CAN_SELECT */

... if user does not want generated password ... {

... get password ...

break;

}

case 3: /* GENERATION_REQUIRED */

sec_pwd_mgmt_gen_pwd(pwd_mgmt_h, 1, &num_returned,

&passwd, &st);

... display generated password to user - possibly

prompting for confirmation ...

break;

}

}

if (GOOD_STATUS(&st)) {

sec_rgy_acct_passwd(context, &login_name, &caller_key,

&passwd, new_keytype, &new_key_version, &st);

}

sec_pwd_mgmt_free_handle(&pwd_mgmt_h, &st);

946 DCE 1.2.2 Application Development Guide—Core Components

The Password Management API

36.2 The Password Management Network Interface

The password management interface,rsec_pwd_mgmt_* (), provides a DCE-common
interface to password management servers. It is the interface exported by the sample
password management server provided with DCE Version 1.1 (pwd_strengthd), and
it is the interface that application developers should use to write their own password
management servers. Developers should use the sample code provided as a base for
enhancements.

The API is defined in thersec_pwd_mgmt.idl file.

Implementations must conform to thersec_pwd_mgmt_gen_pwd(3sec)and
rsec_pwd_mgmt_str_chk(3sec)reference pages.

The rsec_pwd_mgmt_* () routines are

• rsec_pwd_mgmt_gen_pwd()

Generates one or more passwords for a given principal.

• rsec_pwd_mgmt_str_chk()

Strength checks a principal’s password according to policy.

DCE 1.2.2 Application Development Guide—Core Components 947

Chapter 37
The DCE Certification Service

The DCE certification service provides for the secure retrieval of public keys, stored
(through the DCE directory service) under the names of the principals with which
the keys are associated. It is a name-to-public key translation service intended to be
used both by DCE components and DCE applications. The keys are stored in data
structures called ‘‘certificates’’.

Rules that define which entities are trusted to create certificates for which principals
are embodied in policy modules, which have the job of retrieving, upon request, the
public keys from the certificates (and verifying the certificates themselves when doing
so).

DCE certification is a ‘‘secondary’’ facility, in that the service it provides is useful
only in the context of some other application activity. Essentially, it does nothing
but return public keys when presented with principal names (provided that the public
keys have been properly stored under the names in the first place). It is then up to the
application to do something useful with the keys.

This chapter is not intended to provide detailed guidance on how DCE applications
should use public keys, although some discussion of public key usage is included. It

DCE 1.2.2 Application Development Guide—Core Components 949

DCE Security Service

is mainly concerned with explaining how DCE applications can use the certification
service to store and retrieve the keys.

37.1 Who Needs to Use the Certification API?

The DCE certification service is intended to form one part of an implementation of
a public key based authentication (and data protection) service in DCE. Thus the
first-level users of the certification API will be various components of DCE itself;
for example, RPC. However, the certification service can also be (and is intended
to be) used by distributed applications that wish to use public keys for their own
authentication or data protection purposes. The high-level public key retrieval routines
are designed for this kind of use.

The low-level certification routines, on the other hand, are intended for applications
that wish to implement and add new policies and/or cryptographic modules. For
example, adding a new policy will involve the following development task(s):

• Implementing and registering a policy module (see below)

For example, a mail application that wished to institute its own model for
authenticating users by public key would need to have its own policy module.

• (Optional) Implementing and registering a cryptographic module (see below)

Cryptographic modules implement the various signature algorithms required to
allow policy modules to verify retrieved certificates. Policy modules are generally
concerned only with signature verification, and (due to licensing constraints)
signature generation functions are not supplied with the cryptographic modules
provided with the DCE reference implementation. Applications that wish to use
the public keys returned by the DCE certification facility will typically augment
the supplied verification functions with signature generation routines.

Other possible users of the DCE certification API might be developers who wish
to implement their own signature algorithms (cryptographic modules). (Signature
algorithms are specified in a field in the certificate; they are selected at the time
a certificate is created.) Only developers who wish to add to the available signature
algorithms, or who wish to add signature generation capability to a supplied algorithm,
will need to implement new cryptographic modules.

950 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

The low-level certification API is not intended to be accessed directly by run-of-the-
mill DCE applications.

37.2 Overview of DCE Certification

In the discussion that follows, note that the term ‘‘principal’’ does not necessarily
mean or imply ‘‘DCE principal’’. In a general sense, a principal is any name that
can be authenticated—that is, any name that has one or more associated key(s). A
DCE principal (one that is registered in the DCE registry) has DES key(s) maintained
within the registry, while a public key (PK) principal has one or more public keys
(generally stored within certificates). The only situation in which a PK principal has
to be a DCE principal is where an application is using the ‘‘registry retrieval’’ policy
(see ‘‘Direct secd Lookup: DCE Registry Lookup Policy Model’’ below), since this
policy retrieves the principal’s public keys from a its registry entry.

The DCE certification service provides for the secure storage and retrieval (by principal
name) of public keys. The keys are stored in the DCE directory service, under the
principal names with which they are to be associated.

Principals’ public keys are thus easily accessible through the namespace. However, in
order to be regarded as valid (certified), the public key information must be properly
‘‘signed’’ by the certifying authority (CA) authorized to deposit public key information
for the principal in question. The public key, with the signature of the CA that issued
it, is stored (together with various other data) in a format defined by the ISO 9594-8/
X.509 standard and called a ‘‘certificate’’. Just who the authorized certifying authority
for a given certificate is is defined by the trust policy model applicable to the subject
in whose name the certificate is issued.

The CA’s signature is in the form of a checksum on the public key encrypted with
the CA’s own private key, and verifiable by decrypting with the CA’s public key. The
certificates are thus secure from tampering by any entity but the authorized (according
to the defined policy model) CA, which alone possesses the private key required to
sign the data.

DCE 1.2.2 Application Development Guide—Core Components 951

DCE Security Service

37.2.1 Use of Public Keys

The DCE certification service stores and retrieves ‘‘public’’ keys. The important
characteristic of such keys is that they exist and operate as pairs. Messages encrypted
under one of the keys can be decrypted by means of the other (and vice versa); but
messages cannot be encrypted and decrypted by means of the same key.

Figure 37–1. How Public Keys Work: Part 1

B
Ke y

A
Ke y

text
decrypted

text
encrypted

text
clear

Figure 37–2. How Public Keys Work: Part 2

text

encrypted

still-
clear

text

encrypted

text

Ke y

A

Ke y

A

This asymmetric behavior of the public key-pair makes it ideal for network
authentication purposes. One of the keys can be freely publicized in the network, and
the other kept secret with, say, a server principal who desires to use it to authenticate
itself. The server does this, whenever it is contacted by a prospective client, by simply

952 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

encrypting a message under its secret key and sending it back to the client. The client
then attempts to decrypt the message using the public key it knows belongs to the
principal it wishes to contact. If it can decrypt the message, it regards the server as
having authenticated itself. The same procedure can be used to authenticate the client
(using a different key-pair).

An important detail in the above scenario is that the prospective client ‘‘knows’’
that the public key it uses to decrypt the server’s message really is that server’s
public key. The other (unmentioned) detail is that the client has to get the public key
from somewhere. The secure distribution of the public keys is the job of the DCE
certification service.

It is not desirable to have all the public keys indiscriminately accessible to everybody,
because then no one will have a reliable criterion for believing whose key is whose.
The public keys must be deposited in such a way that users can always be sure that
a given public key really ‘‘belongs’’ to the principal it is supposed to belong to;
otherwise entities will be able to impersonate each other simply by switching public
keys in the database they are retrieved from. Thus there needs to be some way to
make sure that only authorized entities have access to principals’ public keys.

The certification service ‘‘certifies’’ public keys by storing them with ‘‘signatures’’
generated by the distributors of the keys. The authenticating signatures on certificates
are themselves implemented by public/private key pairs. A signature is simply the
data of which the certificate consists, encrypted under the issuer’s private key. A
potential user of the certificate must possess the certificate issuer’s public key. The
issuer’s public key can then be passed (along with the certificate contents, including the
signature) to a library routine that will check whether the signature can be successfully
decrypted to produce the information in the rest of the certificate. If the signature thus
tested is found to be authentic, the user of the certificate can be certain that it was
issued by the entity whose public key it checked against the certificate signature —
namely, the principal that is supposed to have issued the certificate. The public key
signature thus ensures the authenticity of data that can be distributed (and thus easily
accessed) via the namespace.

A principal’s public key can also be used by entities to protect data being sent to the
principal. Data encrypted under the public key can be decrypted only by the possessor
of the private key.

DCE 1.2.2 Application Development Guide—Core Components 953

DCE Security Service

37.2.2 Contents of Certificates

The primary information that any certificate contains is the public key that is to
be associated with some principal name. ‘‘Issuance’’ of a certificate means that the
certificate is deposited into the name service, and attached (as a directory attribute)
to the principal name it is to be associated with. Certificates are issued by certifying
authorities (CAs); the CA’s signature on the certificate is what certifies the public key
information that the certificate contains.

A certificate contains the following information:

subject name
The name of the principal for whom the certificate was issued. This is
the name under which the certificate contents will be read by users.

issuer name
The principal name of the issuer of the certificate, a CA (certifying
authority) authorized to issue certificates for the subject.

version number
Identifies the X.509 format version of the certificate.

serial number
The certificate serial number, used to identify certificates in certificate
revocation lists (CRLs).

start time
The time from which the certificate’s contents are considered to be valid.

end time
The time until which the certificate’s contents are valid.

signature algorithm
An OID (object identifier) that identifies the algorithm used to encrypt
the certificate signature.

parameters
Any parameters necessary to pass to the signature verification algorithm.

signature
A checksum of the certificate data, encrypted under the certificate
issuer’s private key, successful verification of which, by means of the
issuer’s public key, constitutes authentication of the certificate.

954 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

subject key
The public key that is to be associated with the subject of the certificate
(named by ‘‘subject name’’).

subject UUID
(Optional) A UUID that identifies the certificate subject.

issuer UUID
(Optional) A UUID that identifies the issuer of the certificate.

The most important ingredients of a certificate are: the principal name which it is
stored under; the public key which it contains; and the signature of the CA that issued
it. These can be illustrated as shown in the following diagram:

Figure 37–3. The Essential Parts of a Certificate

Public Key of X

Signer = Certifying Authority n

X

37.2.3 Component Parts of the DCE Certification API

The DCE certification API is organized into four groups of routines:

• Routines for implementing and registering cryptographic modules

Cryptographic modules embody the signature algorithms that are used to sign
and verify certificates. Certificates are signed by certifying authorities (which
are usually invoked by system administrators or some other specially privileged
authority to create certificates), and are retrieved (and verified) by policy modules
(which are called by various applications seeking principals’ public keys).

• Low-level certificate access and manipulation routines

DCE 1.2.2 Application Development Guide—Core Components 955

DCE Security Service

These routines represent the primitive certificate access operations which are used
in the implementation of policy modules.

• Routines for implementing and registering policy modules

Policy modules embody the rules and mechanisms for finding the public keys that
are associated with some specific set of principals.

High-level routines for use by applications that wish to access the certification
service

The following diagram shows how these four groups of functionality are related to
each other and to their two main groups of user: namely, system administrators and
DCE applications.

956 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

Figure 37–4. Certification API Organization

implementation
signature algorithm

Certifying Authority’s

Crypto Module

Certifying Authority

System administrator

Low-level API

Policy Module

Certification API

DCE application

Note that certifying authorities merely create the certificates and deposit them in a
place from which they can be retrieved (the namespace); they play no part in the
retrieval process itself. In fact, this could be said to be the main reason for certificates
in the first place: they allow a facility such as the directory service to be used as the
distribution point for public keys (that is, they allow an application to not have to
arrange for getting its keys to prospective clients by some private mechanism), and
at the same time they assure users that the key information that they contain has not
been tampered with.

DCE 1.2.2 Application Development Guide—Core Components 957

DCE Security Service

37.2.4 High Level Certification API

The following certification API routines are intended for general DCE application use:

• pkc_get_registered_policies(3sec)

• pkc_init_trustlist(3sec)

• pkc_append_to_trustlist(3sec)

• pkc_init_trustbase(3sec)

• pkc_retrieve_keyinfo(3sec)

• pkc_get_key_count(3sec)

• pkc_get_key_data(3sec)

• pkc_get_key_trust_info(3sec)

• pkc_get_key_certifier_count(3sec)

• pkc_get_key_certifier_info(3sec)

• pkc_free_trustlist(3sec)

• pkc_free_trustbase(3sec)

• pkc_free_keyinfo(3sec)

• pkc_free(3sec)

Key retrieval consists basically of two operations:

1. Generating an ‘‘initial trust base’’—a starting point for future certification paths,
consisting of a list of principals and their keys. An application would normally
generate its initial trust base on startup.

2. Using the trust base to retrieve key(s) for a specified principal.

In outline, a typical pattern for an application’s use of the high-level API might proceed
according to the following series of calls:

1. pkc_get_registered_policies(3sec)

Called once for the lifetime of the application. It returns a set of OIDs, which
point to all currently installed policies.

2. pkc_init_trustlist(3sec)

958 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

The caller creates an empty ‘‘trust list’’ to hold the set of certificates it initially
trusts.

3. pkc_append_to_trustlist(3sec)

Called one or more times, to add certificates or keys which the caller trusts to its
list of trusted keys.

Steps 2 and 3 together build up the initial trust list.

4. pkc_init_trustbase(3sec)

Computes a trust base, given the initial trust list. The caller uses one of the OIDs
returned in Step 1, together with the list of trust items constructed in Steps 2 and
3, to access a policy and initialize a ‘‘trust base’’ containing all the certificates
initially trusted under the specified policy, given the initial list of trusted keys.

5. pkc_retrieve_keylist(3sec)

Called one or more times, for each individual’s public key that needs to be looked
up.

6. pkc_free_trustlist(3sec)

Frees storage allocated for the trust list.

7. pkc_free_trustbase(3sec)

Frees storage allocated for the trust base.

37.2.5 Policy Models

A policy model (or trust policy model) is simply some scheme or set of rules that
dictates which certifying authorities are authorized to issue certificates for which
principals. In other words, the policy model will prescribe whose signature is to be
regarded as a valid certifier for any given principal’s certificates. The policy module
which embodies these rules will use them in verifying the certificates it reads from
the namespace.

Since the certificates themselves are stored and accessed through the DCE directory
service (either GDS or CDS), one obvious policy model will be to organize the
certifying authorities’ reponsibilities according to the same hierarchies. However,
models that employ other certifying hierarchies, or no hierarchy at all, are also possible.

DCE 1.2.2 Application Development Guide—Core Components 959

DCE Security Service

37.2.5.1 Certification Paths

The mechanism that the certification service uses to embody more complex models is
certification paths. A certification path is implemented by a sequence of certificates.
Rather than immediately accessing a given principal’s certificate to determine its public
key, the user must access the beginning of a chain of certificates in order to get to
the final certificate that contains the desired principal’s public key. The intervening
certificates consist of a series of public keys of CAs, each certified by the next CA in
the chain.

The following diagram shows how a certificate chain might be used to find the public
key of a principal,X:

Figure 37–5. A Certificate Chain

Signer = Certifying Authority 3

X

Public Key of X

Signer = Certifying Authority 1

Public Key of CA2

CA2

Signer = Certifying Authority 0

Public Key of CA1

CA1

Signer = Certifying Authority 2

Public Key of CA3

CA3

In a policy model that uses certification paths, a given principal’s public key is found
by beginning with a certificate signed by a CA that is trusted by the entity requesting

960 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

the public key (in the above diagram, the trusted CA is CA0). This certificate contains
the public key of the next CA in the path, namely CA1. The policy module reads this
certificate, learns the key of the next CA, CA2, and so on, until the certificate for X,
the original target, is found.

The idea of certificate chains is to propagate authenticity via certifying authorities
while not propagating the authorities’ responsibility, thus reducing the effects of
the compromise of single authorities, wherever they may exist in the hierarchy of
authorities.

37.3 Implementing and Registering a Cryptographic
Module

The routines in an application’s cryptographic module make up the lowest level of
functionality in the certification mechanism. Each module consists of a set of (at most)
five routines, the most important of which are itssign() andverify() routines. (Note,
however, that thesign() routine is not mandatory.)

37.3.1 Contents of a Cryptographic Module

Cryptographic modules are registered in the form ofpkc_signature_algorithm_t
structures, which contain the entry points for the following developer-supplied
routines:

open() Opens the module

close() Closes the module

verify() Verifies a certificate signature

sign() Affixes a signature to a certificate

verify() andsign() are the routines that will actually call the encryption/
decryption functions appropriate to the algorithm.

name() Returns the algorithm name, a character string that can be used in
auditing or diagnostic messages.

The pkc_signature_algorithm_t structure also contains the following data fields:

DCE 1.2.2 Application Development Guide—Core Components 961

DCE Security Service

• a version number

Note that the version field of a cryptographic module is not the same thing as the
version number of a certificate. A crypto module’s version number is the version
of the certification API that it is designed for (which in particular specifies the
format of thepkc_signature_algorithm_t structure used to register the crypto
module).

• an object identifier (OID) identifying the signature algorithm

37.3.2 Accessing a Registered Cryptographic Module

Signature algorithms are identified by object identifiers (the character string returned
by name() is intended for use in diagnostic or auditing messages). Certificates contain
a field which identifies by OID the algorithm used to sign that certificate.

Policy implementors are recommended to access cryptographic modules mainly
through the following routines, which perform all locking necessary to make the
calls thread safe, and also transparently handle any context information that a given
cryptographic implementation may need.

• pkc_crypto_get_registered_algorithms(3sec)

Call this routine to get an OID set describing the currently registered algorithm
implementations.

• pkc_crypto_sign(3sec)

Call this routine to get data signed.

• pkc_crypto_verify_signature(3sec)

Call this routine to verify signed data.

• pkc_crypto_generate_keypair(3sec)

Call this routine to generate a pair of public/private keys.

Information about a cryptographic module may be obtained by calling
pkc_crypto_lookup_algorithm(3sec).

Data can also be signed and verified by looking up the desired algorithm (with
pkc_crypto_lookup_algorithm(3sec)) and then explicitly calling the module’s

962 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

(sign)() or verify() routine, although in this case the calling application must take
care to avoid multi-threading issues, and is also responsible for opening the crypto
module prior to use, and closing it afterwards.

A list of the OIDs of all currently registered cryptographic modules can be obtained
by callingpkc_crypto_get_registered_algorithms(). You can then access information
about a specific module by calling thepkc_crypto_lookup_algorithm() routine.
To sign data with a private key or to verify signed data with a public key, either
pkc_crypto_verify_signature() or pkc_crypto_sign() can be called.

In the low-level certificate interrogation API, theverify() routine is automatically
called by thepkc_crypto_verify_signature(3sec)routine.

37.3.3 Signature Algorithms Provided by DCE Certification

The signature algorithms provided with DCE 1.2.2 aremd2WithRSA and
md5WithRSA.

37.3.4 Registering a Cryptographic Module

Perform the following steps to register a cryptographic module:

1. Implement thename() and verify() functions. These two routines must be
implemented.

2. If your module needs to perform any initialization or finalization tasks, implement
open() and/orclose()routines for them. (These two routines are optional.)

3. Implementsign() and generate_keypair() functions if necessary. (These two
routines are optional.)

4. Create apkc_signature_algorithm_t structure containing the entrypoints of
the routines implemented in Steps 1 to 3 (useNULL for the entrypoint of
any unimplemented routines), and use this structure to register the algorithm
implementation.

DCE 1.2.2 Application Development Guide—Core Components 963

DCE Security Service

37.4 Implementing and Registering a Policy Module

A certification trust model simply prescribes which certifying authorities (CAs) can
legitimately issue (create and sign) certificates for which principals. A trust model is
implemented by a policy module. The ultimate purpose of the certification service is
to return public keys, and it is the job of the routines in a policy module to do this.
Looked at from this point of view, policy modules are mainly distinguished from each
other by the two following things:

• Which principals a policy module is willing to return keys for.

• Which CAs a module is willing to trust the signatures of on the certificates from
which it retrieves keys.

A principal’s certificates will be retrieved from a directory service entry (exactly what
entry depends on the policy used), and the policy module will only look for certain
signatures known to it on the certificates it retrieves. However, direct retrieval via the
subject’s directory entry name is only one trust model. There can be many others. For
example, see the discussion of certification paths above.

37.4.1 Policy Modules Provided with DCE Certification

Several certification policy modules are provided by DCE. These policies are described
in the following sections.

37.4.1.1 Direct secd Lookup: DCE Registry Lookup Policy Model

The registry lookup policy module simply looks up principals’ public keys in the DCE
registry, and returns them. These keys are not held in certificates, but are stored as
extended registry attributes.

If a caller of the high-level certificate retreival API has DCE credentials, then the
registry retrieval policy will authenticate the registry as part of the retrieval operation.
If no credentials are available, no authentication is possible. In this case, keys will
still be returned, but the certificate API will indicate to the caller that the keys are
untrusted.

964 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

37.4.1.2 DCE Hierarchical Trust Policy

The DCE hierarchical trust policy supplied with DCE 1.2.2 supports hierarchical cells/
DASS style trust paths. A trust path between principals A and B consists of zero or
more up links, followed by zero or one cross link, followed by zero or more down
links. The DCE hierarchical trust policy extension uses the DCE namespace certificate
store extension (NCSE) for certificate retrieval.

Each cell is assumed to operate as a certification authority (CA) for top level principals
registered within that cell. Thus, the CA for the cellover_cell is assumed to create a
certificate for, say, the principalfelix within over_cell, where the certificate signatory is
‘‘over_cell’’ and the certificate target is ‘‘over_cell/felix’’. If a cell employs structured
names for principals, each level is considered to act as a CA for its subordinate. For
example, if cell ‘‘over_cell’’ contains a principaladmin/JohnSmith, thenover_cell/
admin/JohnSmith is certified by two certificates, the first signed byover_cell and
certifying over_cell/admin, and the second signed byover_cell/adminand certifying
over_cell/admin/JohnSmith.

To avoid requiring that the cell’s root CDS directory be used for storing certificates for
the cell’s principals, the DCE NCSE provided in DCE 1.2.2 allows any directory (in
CDS or GDS) to be given an attribute (with OID1.3.24.9.15) that names a subdirectory
(of the directory to which the attribute is given) within which certificates are to be
stored. The value of this attribute is a string which will be appended to the name of
the directory to give the name of a new directory within which certificates will be
stored.

For example, if the root directory in the cellover_cell is the directory to which
this ‘‘certificate directory’’ attribute is attached, and the attribute contains the value
principals, the DCE NCSE will attempt to retrieve the certificate forover_cell/Pfrom
the CDS directoryover_cell/principals/P. If the ‘‘certificate directory’’ attribute is
missing or empty, the cell root directory will be searched for principal certificates.
(Note that the insertion of the ‘‘certificate directory’’ attribute value applies only to
locating certificates within the directory service; the above certificate would contain
the nameover_cell/Pas its actual subject.)

At most one ‘‘certificate directory’’ attribute is considered when looking for certificates
for a given name, according to the following algorithm:

DCE 1.2.2 Application Development Guide—Core Components 965

DCE Security Service

• Starting with the name for which certificates are desired, RDNs are removed from
the right of the name until either a directory is found that contains the ‘‘certificate
directory’’ attribute, or the namespace root is reached.

In general, CDS administrators should define the ‘‘certificate directory’’ attribute
within each CDS root directory, rather than storing certificates within the root directory.
As well as reducing clutter in the cell root directory, doing this has efficiency benefits
(terminating the search for the certificate directory at each CDS root), and also prevents
the definition of this attribute at a higher level within the DCE global namespace from
influencing the placement of certificates within a cell’s namespace.

37.4.1.3 PEM-like Policy

No explicit PEM-like policy is provided with DCE 1.2.2; however, the DCE
hierarchical policy may be used in a PEM-like fashion by specifying root CA keys as
the initial trust list, rather than keys belonging to the caller’s immediate CA.

37.5 The Low Level Certificate Manipulation API

The certificate manipulation API is a C++ interface. C++ must be used to retrieve the
certificates into trust lists and manilupulate them there.

The contents of the

/usr/include/dce/asn.h

and

/usr/include/dce/x509.h

header files define some of the basic types used by the low-level certificate
manipulation routines, including the actual structure of certificates. Following is a
list of the low-level certificate routines defined in the

/usr/include/dce/pkc_certs.h

966 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

file:

• pkc_add_trusted_key(3sec)

• pkc_lookup_keys_in_trustlist(3sec)

• pkc_lookup_key_in_trustlist(3sec)

• pkc_lookup_element_in_trustlist(3sec)

• pkc_check_cert_against_trustlist(3sec)

• pkc_revoke_certificate(3sec)

• pkc_revoke_certificates(3sec)

• pkc_delete_trustlist(3sec)

• pkc_copy_trustlist(3sec)

• pkc_display_trustlist(3sec)

37.5.1 Policy Module Implementation

Implementation of a policy module consists essentially of writing
establish_trustbase(), delete_trustbase(), retrieve_keyinfo() and delete_keyinfo()
routines, and associated interrogation routines. The module will find certificates for
principal names according to the rules set out for that module, verify their signatures,
and return the public keys found in them to the original callers.

37.5.1.1 Certificate Revocation Lists (CRLs)

Certificate revocation lists are lists of certificates whose contents are no longer to be
believed. Use of CRLs is policy-specific.pkc_certs provides objects for parsing and
manipulating CRLs, and for using them to invalidate portions of a trust list.

DCE 1.2.2 Application Development Guide—Core Components 967

DCE Security Service

37.5.2 Accessing a Registered Policy Module

Policy modules are registered in the form ofpkc_policy_t structures, which contain
the entry points for the following developer-written routines:

open() opens the module

close() closes the module

retrieve_keyinfo()
returns the public key for a specified principal name

name() Returns the name of the policy.

establish_trustbase()
Creates a trust base.

delete_trustbase()
Deletes a trust base.

delete_keyinfo()
Deletes akeyinfo handle.

get_key_count()
Returns the number of keys akeyinfo handle contains.

get_key_data()
Retrieves an individual key.

get_key_trust()
Returns the type of trust established for a specific key.

get_key_certifier_count()
Returns the number of certifiers in the trust path that certified a key.

get_key_certifier_info()
Returns information about a specific certifier of a key.

The pkc_policy_t structure also contains the following data fields:

• a certificate version number

• an object identifier (OID) identifying the policy module

Policy modules, similarly to signature algorithms (cryptographic modules), are
identified by object identifiers (the character string returned byname() is intended
for use in diagnostic or auditing messages).

968 DCE 1.2.2 Application Development Guide—Core Components

The DCE Certification Service

Also similarly to cryptographic modules, there are two ways in which cryptographic
modules can be accessed: either by a single call to which the identifying OID is passed
(this is the recommended method); or by callingpkc_plcy_lookup_policy(3sec)and
then (for example) the module’s(*retrieve_key)() routine to obtain the public key (a
list of the OIDs of all currently registered policy modules can be obtained by calling
pkc_plcy_get_registered_policies()).

37.5.3 Registering a Policy Module

You must implement the following routines in any policy module:

name() Returns the name of the policy.

establish_trustbase()
Creates a trust base, which is a policy-specific data structure based on
the initial set of trusted keys.

retrieve_keyinfo()
Given a trust base, returns a handle to keys for a specific principal.

delete_trustbase()
Deletes a trust base.

delete_keyinfo()
Deletes akeyinfo handle.

get_key_count()
Given akeyinfo handle, returns the number of keys it contains.

get_key_data()
Retrieves an individual key from akeyinfo handle

get_key_trust()
Returns the type of trust established for a specific key, and the purpose(s)
for which that trust applies.

The following policy routines are optional:

open()
close() These routines perform any initialization and/or finalization tasks

required by the module.

DCE 1.2.2 Application Development Guide—Core Components 969

DCE Security Service

get_key_certifier_count()
This routine is required only for policies that return
CERTIFIED_TRUST keys; it returns the number of certifiers
in the trust path that certified a key.

get_key_certifier_info()
This routine is required if the module implements
get_key_certifier_count(). It returns information about a specific
certifier with the certification path of a specific key. Certifier 0 is
the immediate certifier of the key; certifier 1 is the CA that certified
certifier 0, and so on.

Once you have implemented all necessary routines for you module, you must
create apkc_policy_t structure containing their entrypoints. Unimplemented routines’
entrypoints should be specified asNULL .

37.5.4 Registering the module

The module is registered by calling the registration function and passing it a
pkc_policy_t structure, which contains the entry points for the module routines
described above:

pkc_plcy_register_policy()

970 DCE 1.2.2 Application Development Guide—Core Components

Index

&, reference operator, 366

A
ACCEPT credential type

creating, 816
defined, 814

accounts, registry database, 836
ACF, 479, 654

attribute list, 654
body, 657
compiling, 654
cxx_delegate attribute, 417, 418
cxx_lookup attribute, 382, 383
cxx_new attribute, 374
cxx_static

attribute, 374
cxx_static attribute, 376
features, 654
file extension, 654
grammar synopsis, 697
header, 656
naming, 654
represent_as attribute, 414
sstub attribute, 374, 382
sstub attribute use, 371

structure, 655
table of attributes, 696

ACL, 310, 800, 801
access checking, 807
contents, 802
definition, 799
editor, 902
entries, 802
errors, 904
extended naming, 905
handle, 903
manager interface, 905
manager types, 800
names, 757
network interface, 907
permissions

for RPC control program,
289

action after a message, 113
Ada compiler

generating reentrant code, 196
additional parameter, 661, 669
address space association , 619
aliasing, 598, 600
allocating memory, 474, 606, 674
announcements, 56
API

access control list, 901
backing store, 139
definition of, 230
extended attribute, 841

DCE 1.2.2 Application Development Guide—Core Components Index–1

Index

extended privilege attribute, 819
ID map, 917
key management, 895
login, 885
password management, 943
registry, 831
security, 744
security services and facilities,

751
serviceability, 77

application
application, 228
Basic RPC tasks of, 229
messaging, 55
RPC code, 230
RPC thread, 296

Application Programming Interface ,
751

array, 585
array_declarator, 585
attributes , 568, 575, 588

first_is, 593
last_is, 592
length_is, 594
max_is, 590
min_is, 589, 590
size_is, 591

bounds, 586
conformant , 585
conformant and varying, 585
fixed, 585
open, 585
rules for, 595
varying, 585

array_attribute attribute, 575
array_declarator, 585
ASCII text strings

binary timestamps translated to,
708

asynchronous cancelability, 178

asynchronous signals, 190
at-most-once semantics, 272
attempt_rebind, 638
attempt_rebind_n, 638
attribute

code sets, 444
instance

access control, 846
defined, 843

schema
defined, 842

type
access control , 843
defined, 843

Attribute Configuration Language, 653
syntax, 653, 697

attributes
ACF, 654
array, 575
array_attribute, 575
code, 696
condition variable, 169
IDL, 548
ignore, 575
inherit scheduling, 168
mutex type, 168
object

creating, 165
definition of, 165
deleting, 165

out, 548
privilege, 802
scheduling policy, 166
scheduling priority, 167
stacksize, 168
thread, 166

audit, 919
APIs, 933

Index–2 DCE 1.2.2 Application Development Guide—Core Components

Index

adding audit capability
to distributed
applications, 933

adding event-specific
information, 936

closing an audit trail file,
942, 938

committing an audit
record, 937

dce_aud_close(), 943,
938

dce_aud_commit() , 937
dce_aud_discard(), 942
dce_aud_get_ev_info(),

942
dce_aud_get_header(),

941
dce_aud_next(), 940
dce_aud_open() , 934,

939
dce_aud_print(), 941
dce_aud_put_ev_info(),

937
dce_aud_start() , 935
dce_aud_start_with_

name(), 935
dce_aud_start_with_

server_binding()
, 935

dce_aud_start_with_
server_pac(), 935

dce_aud_start_with_
uuid(), 935

discarding an audit record,
942

initializing audit records,
935

opening an audit trail,
934

opening audit trail file for
reading, 939

reading audit records into
a buffer, 940

specifying amount of
header information,
936

transforming audit records
into text, 941

clients, 920
code point, 921
data type, 937
event, 921
event class, 924
event class number, 925
event name, 922
event number, 922

event-id, 922
format, 922
set-id, 922

record
criteria for selection, 940
predicates, 940
structure, 926

service, 919
components, 920
concepts, 920
features, 919

trail file, 927
life cycle of, 927
writing analysis and

examination tools,
939

authenticated RPC
access checking, 308
and DCE security, 305, 310
and RPC runtime, 305
authenticate, 296
authentication, 305

cross-cell, 306

DCE 1.2.2 Application Development Guide—Core Components Index–3

Index

authorization, 295, 296, 305
basic operations, 279
choosing a server principal name,

328
definition, 305
protection level, 305, 307
routines, 310
server principal name, 306, 311

authentication, 305, 306, 746, 759
commands, 765, 766
intercell, 795
mutual surrogates, 796
of applications that use GSSAPI,

793
protection level, 307
protocols, 764, 799
public key protocol, 767
server principal name, 306, 311
surrogates, 760
third-party, 775
user-to-user protocol, 791

Authentication Service, 760
authorization, 305, 308, 746, 799

certified, 310
DCE, 310
name-based, 309
options, 308
protocols, 799
with PACs, 310

authorization interface
authenticated RPC, 295

auto_handle attribute, 656, 659, 696
automatic binding, 659
avoiding

deadlocks, 198
nonreentrant software, 195
priority inversion, 196
race conditions, 197

B
backing store

closing, 145
creating a new, 145
deleting items from, 148
iterating through, 147
library, 139
locking, 148
opening an existing, 145
retrieving data from, 146
storing data into, 146
traversing the keys of, 147

backing store API
dce_db_close(), 145
dce_db_delete(), 148
dce_db_delete_by_name(), 148
dce_db_delete_by_uuid(), 148
dce_db_fetch(), 146
dce_db_fetch_by_name(), 146
dce_db_fetch_by_uuid(), 146
dce_db_inq_count(), 148
dce_db_iter_done(), 148
dce_db_iter_next(), 147
dce_db_iter_next_by_name(),

147
dce_db_iter_next_by_uuid(),

147
dce_db_iter_start(), 147
dce_db_lock(), 148
dce_db_open(), 145
dce_db_store(), 146
dce_db_store_by_name(), 146
dce_db_store_by_uuid(), 146
dce_db_unlock(), 148

backing store usage, 383
base class rpc_object_reference , 629
base type specifiers, 562
BIH, 708

Index–4 DCE 1.2.2 Application Development Guide—Core Components

Index

Binary Timestamps, 714
bind() by object name, 634
bind() by object UUID, 634
bind() and local objects, 411
bind() by binding handle, 398
bind() by name, 397
bind() by object binding handle, 635
bind() by object reference, 408, 635
bind() by UUID, 398
binding, 258

automatic, 659
context handle, 625
explicit, 661
handle, 261
implicit, 663
information, 261

binding attribute, 315
searches of, 332

binding by object binding handle, 398,
635

binding by object name, 397, 634
binding by object reference, 407, 635
binding by object UUID, 398, 634
binding_callout attribute, 656, 690, 696
BLISS compiler

generating reentrant code, 196
blocking system calls, 187
body, ACF, 657
boolean type, 571
Booleans, 560
boss/worker software model, 157
BOTH credential type

creating, 816
defined, 814

broadcast attribute, 565
broadcast attribute, 550, 566
broadcast semantics , 273
broadcasting, 565, 566
buffer decoding, 532
buffer-sizing routines, 436

buffering styles, 531
byte type, 571

C
C

compiler, 196
library interfaces, 755

C and C++ integration, 419
C Client for C++ Servers, 421
C++

generating from IDL, 628
optional parameters, 379

C++ and name conflicts, 376
C++ class via IDL interface, 364
C++ clients for C servers, 419
C++ DCE applications, 363
C++ delete operator, 390
C++ enhancement, 411
C++ features, 363
C++ new operator, 370, 387
C++ objects as parameters, 411
C++ output from IDL, 549
C++ overloading, 396
C++ reference operator, 366
C++ reference operator, &, 633
C++ scope operator, 389
C++ support in IDL, 628
call queue, 524
call thread, 297
calling

fork(), 187
UNIX services, 184

calls
registry database, 834
registry server, 832

DCE 1.2.2 Application Development Guide—Core Components Index–5

Index

cancel-timeout period, 301
canceled thread, 301
canceling a thread, 178
cancels

RPC
use of, 273, 301

CATCH statement, 202, 209, 210, 256
CATCH_ALL statement, 202, 209, 210
CDS, 396

and security namespace, 757
cell

and security, 761
name

RPC, 317
profile

RPC, 345
root

RPC, 318
RPC, 317

cell-relative name
RPC, 318

certificate of identity, 886, 890
character set, 424

compatibility evaluation, 429,
452

evaluation, 457
interoperability, 423
local, 428

characters, 560, 570
class hierarchies, 367
class hierarchy, 364
class libraries, 412
client, 654

and server components, 722
application thread

RPC, 297
authentication information, RPC,

296
binding handle

RPC, 268

binding information
RPC, 268

definition of, 228
exceptions, 665
memory, 609
memory management, 608

client proxy class, 630
client stub for servers, 376
client-local objects, 390
client-side password management API,

945
client_memory ACF attribute, 664
clients and distributed objects, 387
clients becoming servers, 479, 611
clients use server stub, 392
closing a backing store, 145
COBOL compiler

generating nonreentrant code,
196

code attribute, 656, 669, 696
code point, 921
code set, 425

array, 443
attribute, 444
compatibility evaluation, 429,

452
conversion

in RPC applications, 425
in RPC protocol, 425
method, 458
model, 459
operating system routines,

439
operating system routines

for, 431
stub routines for, 429,

436
stub support routines, 438

evaluation, 429, 457
exporting, 428, 444

Index–6 DCE 1.2.2 Application Development Guide—Core Components

Index

intermediate, 443, 458
interoperability, 423
ISO 10646, 443, 458
local, 428, 442, 451
network, 430
registry, 428
removing from the namespace,

444
supported, 428, 443
tags

ACF attributes, 434
operation parameters,

432
universal, 443, 458

combination software model, 158
comm_status attribute, 256, 479, 657,

660, 665, 696
commands

authentication , 765, 766, 782
idl, 654

communication failure, 256, 479
context rundown, 623
status attributes, 665

communications
protocols, 260
RPC protocol, 260

compatible
binding information

RPC, 263
programming language, 236

compilers
generating nonreentrant code,

196
generating reentrant code, 196

compiling
ACF, 654

complex types, 639
concurrency control

RPC, 302
condition variable, 172

attributes, 169
diagram of, 173
figure of, 174
signaling, 198

configuring a new server remotely, 30
conformance in dimensions other than

the first, 586
code example, 586, 587, 588

conformant array, 585
conformant and varying array, 585
connection-oriented RPC protocol, 260
connectionless RPC protocol, 260
constant declarations, 559
constant expressions, 559
constants

Booleans, 560
characters, 560
integers, 559, 560
nulls, 561
strings, 559, 561

constructed data types, 574
constructed type specifiers , 563
constructor, 630
constructors in C++, 372
ContactProvider

procedure, 725
remote procedure call, 722

context
login, 885

context handle, 606
resource recovery, 623

context handle, 619
and binding, 625
attribute, 619
creating new, 624
definition of, 486
usage rules, 625

context rundown procedure, 273, 623
context_handle attribute, 619

DCE 1.2.2 Application Development Guide—Core Components Index–7

Index

context_handle attribute, 550, 562, 565,
568, 620

conventions, 241, 242
conversion method, 458
conversion model, 459
Coordinated Universal Time, 708
creating

attributes object, 165
context, 624
files with jacket routines, 184
new backing store, 145
threads, 162

credentials
ACCEPT credential type, 814
and principal types, 813
BOTH credential type, 814
context initiators, 815
creating ACCEPT type

credentials, 816
creating BOTH type credentials,

816
creating credential handles, 816
creating INITIATE type

credentials, 816
default, 814
delegating, 817
gss_acquire_cred() routine, 816
GSSAPI, 813
INITIATE credential type, 814
portability of applications and,

814
registering principal names for,

816
types, 814
using defaults to accept a security

context, 815
using defaults to initiate a

security context, 815
cross-cell authentication, 306
cs_byte type, 435, 437

cs_char attribute, 434, 436, 657, 680,
696

cs_drtag attribute , 434, 658, 686, 696
cs_rtag attribute, 434, 658, 686, 696
cs_stag attribute, 434, 658, 686, 696
cs_tag_rtn attribute, 435, 436, 440, 656,

657, 688, 696
cstub attribute, 658, 696
customized handles, 618
cxx argument to -lang, 364
cxx_delegate, 656
cxx_delegate attribute, 417, 418, 696
cxx_lookup, 656
cxx_lookup attribute, 382, 383, 696
cxx_new attribute, 374, 693, 696
cxx_new attribute of ACF, 371
cxx_static attribute, 374, 376, 694, 696

D
data

encryption mechanisms, 764
thread-specific, 177

Data Encryption Standard, 764
data hiding, 412
database storage, 383
DCE

authorization protocol, 799
host services, 7
host daemon (dced), 8
Threads Exceptions

table of, 211
Threads signal handling, 191
XPG4 routines, 65

dce/utc.h header file, 716
dce_db_fetch_by_uuid(), 385
dce_db_open(), 385

Index–8 DCE 1.2.2 Application Development Guide—Core Components

Index

dcecp
rpcentry export, 380

dced services
configuring a new server

remotely, 30
dced services

binding to the services, 11
enabling and disabling, 36
endpoint mapper, 7, 10
entry lists for services, 13
entry lists for services, 18
host service data, 15
hostdata management, 7
key table management, 8, 38
remote control of servers, 29
remote host service data, 22
security validation, 8, 37
server management, 8
starting and stopping servers, 34

dced, DCE host daemon, 8
deadlock

avoiding, 198
debug messaging , 120
decode attribute, 656, 657, 678, 696
decrementing reference count, 390
default

authentication protocol, 752
authorization protocol, 799
pointer semantics, 598
profile, 324
profile element, 323

default credentials, 814
defining

epilogue actions, 207
delegation, 819

and GSSAPI credentials, 817
delegation for C++ objects, 417
deleting

attributes object, 165
condition variables, 199

items from a backing store, 148
threads, 164

derived interface, 631
DES, 764
destructor, 630
destructors in C++, 372
determining the identity of an encoding,

542
directional attributes, 569
directory pathname

RPC, 318
directory service

entries, 317
RPC server entries, 319

handle, 329
when to use, 268

disabling memory , 607
disabling services of a server, 36
distributed applications, 9
distributed objects, 363
distributed objects as parameters, 375
distributed-dynamic objects, 370
double type, 570
DTS

API routines, 737
relative time structures , 714
routines, 707
security dependencies, 756
synchronization algorithm, 734
time structures, 713, 714, 715,

716
dtsprovider files, 727
dynamic buffer encoding , 531
dynamic endpoint, 270
dynamic objects, 368
dynamically creating objects, 381

DCE 1.2.2 Application Development Guide—Core Components Index–9

Index

E
editor, ACL, 902
enable_allocate attribute, 657, 674, 696
enabling memory, 607
enabling services of a server, 36
encapsulated data, 367
encapsulated unions, 576
encapsulating RPCs, 629
encode attribute, 656, 657, 678, 696
encoding and decoding of data, 142
encryption mechanisms, 764
endpoint

attribute, 550, 554
map, 518
mapper service, 7, 10
register operation, 286, 350
role of within server address,

262
unregister operation, 286

endpoint map, 379
ENDTRY statement, 202, 209, 210, 256
entry point vectors in C++, 369
entry types, ACL, 802
enumeration, 580
environment variable

NSI, 331
epilogue actions, 207
error displays, 56
error_status_t type, 572, 669
errors, 256, 479, 657

ACL, 904
attributes, 657

evaluation routine, 457, 459
establishing, 452

event class, 924
event class number, 925
event points, 96
example program

prime number search, 215
exception codes, RPC exceptions, 480
exception-returning interface, 201, 215

invoking, 204
syntax for C, 202

exceptions, 479, 660
and definitions, table of, 211
attribute, 481, 550, 555
catching, 207
client, 256, 665
declaring and initializing, 205
defining a region of code to catch,

206
defining epilogue actions, 207
definition, 205
extern_exceptions attribute, 676
handler, 479
importing error status, 208
invoking the exception-returning

interface, 204
naming convention for, 209
operations on, 205
raising, 206, 256
rules for modular use of, 208
server, 256, 665

exceptions in C++, 369
execution semantics, 272
expiration age, 342
explicit binding, 661
explicit_handle attribute, 656, 661, 696
export operation, 278, 287
exporting code sets to the namespace,

428, 444
extended ACL entry type, 807
extended attribute

API, 841
extended naming, ACL, 905
extended privilege attribute

API, 819

Index–10 DCE 1.2.2 Application Development Guide—Core Components

Index

extern_exceptions attribute, 481, 656,
676, 696

F
failures, 479, 657, 660

attributes, 657
fault_status attribute, 256, 657, 665, 696
FIFO (First in, First out) scheduling,

166
file

extension, ACF, 654
IDL, 722
name, ACF, 654
reading/writing with jacket

routines, 184
filter, 925

subject identity, 926
FINALLY statement, 204, 209, 210
finding remote objects, 396
first_is attribute, 550, 593, 606
fixed array, 585
fixed buffer encoding, 531
float type, 570
floating-point numbers, 570
fork()

calling, 187
freeing memory , 606
freeing backing store memory, 146
freeing memory, 474, 674
full pointer, 600
fully bound binding handle, 263
function results, pointers, 605
functions generated by IDL , 633

G
general cancelability, 178
generating C++ files, 628
generating nonreentrant code, 196
Generic Security Service, 744
get_binding_handle() function , 639
global lock, 194, 195
Greenwich Mean Time (GMT), 708
group

RPC, 314
RPC attribute, 315, 333
RPC member, 322

GSSAPI, 744
about, 744
and delegation, 817
authentication and authorization,

746
authentication process, 793
context acceptor defined, 744
context initiator defined, 744
data integrity with, 763
Kerberos and, 746
per-message security, 763
protection levels, 763

H
handle, 567

ACL, 903
attribute, 550, 562, 606, 618
context, 619, 620
customized, 618

handle_t type, 572

DCE 1.2.2 Application Development Guide—Core Components Index–11

Index

handlers not provided with UNIX
signals, 191

header
ACF, 656

heap attribute , 657, 675, 696
host profile, 659
host service naming, 12
hostdata management service, 7
hyper type, 570

I
iconv routines, 431
ID map API, 917
idempotent attribute, 565
idempotent attribute, 550, 566
idempotent semantics, 272
identities

delegating, 819
IDL, 654

array, 585
conformant, 585
conformant and varying,

585
fixed, 585
open, 585
varying, 585

array attributes, 575
attributes, 548
basic data types, 569
boolean type, 571
byte type, 571
case sensitivity, 547
comments, 547
const declaration, 559
constant declarations, 559

constructed type specifiers, 563
constructed types, 574
customized handles, 618
data types, 548
declarations, 547
encoding services, 142
encoding services handles, 532
enumerations, 580
file, 722
grammar synopsis, 642
identifiers, 545
idl_macros, 563
import declarations, 550, 558
import statement, 400
interface definition body, 549
interface definition header, 549
interface definition structure,

548
international characters, 573
keywords, 545
lexical elements, 545
memory management, 474
named types, 561
operation declaration, 565
parameter declarations, 566
pipes, 581
predefined type specifiers, 564
punctuation characters, 546
special symbols, 544
static keyword, 372, 632
strings, 596
structures, 574
syntax notation, 544
Time-Provider process file, 726
type attributes, 562
types, 570
typography, 544
unions, 576
unsigned integer types, 570
user-defined exceptions, 481

Index–12 DCE 1.2.2 Application Development Guide—Core Components

Index

whitespace, 546
idl command, 654
IDL compiler

-lang cxx option, 364
-no_cxxmgr option, 368

IDL inheritance operator, 549
IDL support for C++ , 628
idl-generated class hierarchy, 629
idl-generated functions for C++, 633
idl_ macros, 563
idl_void_p_t type, 607
idl_void_p_t type, 607
ignore attribute, 575
ignore attribute , 550, 575
implicit binding, 663
implicit_handle attribute, 656, 663, 696
import declarations, 558
import operation

RPC, 278
import statement, 400
in attribute, 568
in attribute, 550, 569
inaccuracy, specifying ISO, 709
include in ACF, 377
include statement, 657
include statement in ACF, 374, 658
incremental decoding , 532
incremental encoding , 531
inherit an interface, 549
inherit scheduling attribute, 168
inheritance, 413
inheritance of interfaces , 631
inheritance operator, :, 400
initialization routines, one-time, 176
initializing object-oriented servers, 369
INITIATE credential type

creating, 816
defined, 814

input jacket routines, 184
instance

of an RPC server, 350, 521
distinguishing, 353
interchangeable instances,

319, 347
RPC UUID, 259

int type, 569
integers, 559, 560, 569, 570
interaction of attributes, 679
interface, 228

body, 657
C library, 755
checking if supported, 410
definitions, 240, 543, 548, 549

header, 549
exception-returning, 202
handle

RPC use of, 287
header, 656
interface, 228
password management facility,

755
registry database, 834
RPC identifier , 323
RPC specification, 284
RPC UUIDs, 238
security server, 751
security services and facilities,

751
UNIX security, 755
UUID, 240

RPC definition of, 238
RPC use of, 264

interface class, 367, 630
Interface Definition Language, 228, 654
interface inheritance, 400, 549, 631
intermediate code set, 443, 458
international characters, 425, 573

representing in .idl files, 432
International Organization for

Standardization , 709

DCE 1.2.2 Application Development Guide—Core Components Index–13

Index

International Time Bureau, 708
internationalized RPC, 423

ACF for, 434
application development steps

for, 431
client code, 451
evaluation routines, 457
execution model, 425
interface definition for, 432
server code, 442
setting locale in, 442
stub support routines, 429, 436

ISO format, 709
iterating through a backing store, 147

J
jacket routines, 184
join primitive, 176

K
KDC, 767
KDS, 760
Kerberos

available using GSSAPI, 746
Key Distribution Center, 767
key distribution service, 760
key management, 895
key management API, 895
key table management service, 8, 38

L
last_is attribute, 606
last_is attribute, 550, 592
leaf name, RPC, 318
length_is attribute, 606
length_is attribute, 550, 594
levels of protection , 762

authenticated RPC, 762
GSSAPI, 763

local application thread
RPC, 296

local attribute, 550, 557
local code set, 442
local type, 671
locale, 423, 451

setting, 442, 451
lock

global, 195
locking a backing store, 148
locking a mutex, 198
login context, 885, 886, 894

changing a groupset, 892
expiration, 890
importing and exporting, 891
inheritance, 889
validating, 887

logs, 56
long type, 570
lookup function for objects, 381
lookup operation

RPC, 278

M
major version number, 262, 264

Index–14 DCE 1.2.2 Application Development Guide—Core Components

Index

making backing store headers, 147
manager

RPC, 275
manager class, 367, 406
manager class for server, 631
manager class functions, 368
manager class header file, 367
manager implementation, 404
manager interface, ACL, 905
managing distributed objects, 368
managing several objects, 139
mapping string-to-UUID, 917
marshalling

RPC, 231
masks

ACL entry types, 806
max_is attribute, 550, 590
maybe attribute, 565
maybe attribute, 550, 567
maybe semantics, 273
memory

advanced management support,
608

allocating, 474, 606, 674
disabling, 607
enabling, 607
freeing, 474, 606, 674
heap attribute, 675
management, 474, 606

client, 608
server, 674
server threads, 478, 610
usage rules, 612

routines, 606
server threads, 478, 610
setting client, 608
setting for thread stack, 168
swapping memory, 609

memory management, 530
message

action attributes, 113
catalog, 56, 61, 78
filtering, 116
output routines, 64
prolog suppression, 113
retrieval routines, 65
routing, 105
severity, 103
table routines, 65
text format notation, 102

messaging
interface, 55
routines and internationalized

RPC , 424
methods, 369
min_is attribute, 550, 589
minor version number, 262, 264
models for multithreaded programming,

156
modular use of exceptions, 208
multiple interfaces, 400, 411
multiple managers, 404
multiple operations on a single IDL

encoding services handle, 542
multithreaded applications , 302
multithreaded programming, 197

introduction, 155
potential disadvantages, 159,

196, 198
software models, 156

mutex, 169
locking before signaling

condition variable, 198
type attribute, 168

mutual authentication surrogates, 796

DCE 1.2.2 Application Development Guide—Core Components Index–15

Index

N
name

domain, 834
name service and objects, 379
name-based authorization, 812
named objects, 368, 396

registering, 378
named types, 561
names, 241, 242

directory service entry, 326
server principal, 328

naming objects, 377
NDR, 262
nested remote procedure call, 513, 514
network

ACL interface, 907
address, 261
addressing information, 261
descriptor, 274
protocol, 260
type, 671

network code set, 430
Network Data Representation , 262
never_rebind, 638
new operator, 370
nil UUID

RPC, 264
no client stub exception, 377
no server stub exception, 392
nocode attribute, 656, 669, 696
nonencapsulated union, 579

code example, 579
nonreentrant code, 196
nonreentrant software, 159, 195, 196

using global lock to avoid, 195
nonterminating signals, 189
nonthreaded libraries, 194
NSI

attribute, 329
code sets, 444

attributes, 332
RPC, 315

binding attribute, 315
CDS ACL permissions, 289
directory service entries, 314

profile, 315
server entry, 314

directory service handle, 329
directory service names, 326
export operation, 287
group attribute, 315
import operation, 278
lookup operation, 278
object attribute, 315
operations, 278
potential binding, 286
profile attribute, 316
search operations , 321, 332
search path, 325
unexport operation, 279
usage models, 347, 352

null constants, 561

O
object

attribute, 315
managing several, 139
persistence of, 139
RPC, 275

use of, 264
UUID, 259

object creator function, 387, 693
object creator operation, 402
object hierarchies, 400

Index–16 DCE 1.2.2 Application Development Guide—Core Components

Index

object location transparency, 391
object lookup function, 381, 382, 696
object name in name service, 379
object not found exception, 381
object reference, 389, 630, 633
object references

local and remote, 396
object security, 636
object table, 379, 381
object UUID, 379
object-oriented servers

initializing, 369
objects

automatic rebinding, 637
creating dynamically, 381
delegation, 417
developing distributed, 363
library objects as parameters,

411
local and remote, 391
multiple interfaces, 407
naming, 377
persistent, 381
registering, 638
registering named, 378
representation, 414
swapping interfaces, 407

one-time initialization routines, 176
opaque pointer, 619
open array, 585
opening an existing backing store, 145
opening files with jacket routines, 184
operation

attributes, 566
declaration, 565, 567

operations, 565, 566, 567
NSI, 278
on exceptions, 205

optional parameters, 379
out attribute, 568

out attribute, 550, 569
output jacket routines, 184
overloaded functions , 633
overloaded operation, 396

P
PAC, 310
parameters, 566, 567, 568, 603
parameters and remote objects, 375
parent directory, 318
partially bound binding handle, 263
PASCAL compiler

generating reentrant code, 196
password management, 943

facility
interfaces, 755

network interface, 947
password management API

client side, 945
rsec_pwd_mgmt_gen_pwd(),

947
rsec_pwd_mgmt_str_chk(), 949
sec_pwd_mgmt_free_handle(),

945
sec_pwd_mgmt_gen_pwd(), 945
sec_pwd_mgmt_get_val_type(),

945
sec_pwd_mgmt_setup() , 945
sec_rgy_acct_passwd(), 945

path
for NSI searches, 325

PCS, 424
per-message security, 763
persistent object storage, 383
persistent objects, 381

DCE 1.2.2 Application Development Guide—Core Components Index–17

Index

pickling of data, 142
pipelining software model, 158
pipes, 581

out, 511
pointer levels, 603
pointer_default attribute, 550, 556, 598,

605
pointers, 597, 601, 620

array attributes on, 604
in function results, 605
opaque, 619

pointers to abstract classes, 389
polymorphism, 413
port, 554
Portable Character Set (PCS), 424
POSIX

sigaction service, 192
sigwait service, 192

potential binding
RPC, 286

preauthentication, 886
predefined type specifiers, 564
prime number search example, 215
principal

definition of, 760
priority

inversion, 196
of scheduling routines, 180

private data, 367
private key storage server (PKSS), 768
privilege

attributes, 802
privilege attribute certificate, 310
privilege service, 760
privilege ticket-granting ticket, 783
procedure declaration, 228
processes

Time-Provider, 735
profile, 315, 323, 325, 345

attribute, 316, 333

program responses, 56
programming with threads, 183
prompts, 56
protection levels, 305, 307, 762

authenticated RPC, 762
GSSAPI, 763

protocol
authentication and authorization,

746
DCE Authorization, 746
DCE authorization, 799
family, 554
for RPC communications, 260
name-based authorization, 812
sequence, 261

protocols
authentication, 764
authentication and authorization,

744
shared-secret authentication, 761
third-party authentication, 775
user-to-user authentication, 791

proxy, 375
proxy class, 367
proxy class for client, 630
PTGT, 782
pthread functions, 163, 195
ptr attribute, 575
ptr attribute, 550, 562, 577, 598, 600
public interface, 367
public key protocol, 767
public profile, 345

Q
query site, 831

Index–18 DCE 1.2.2 Application Development Guide—Core Components

Index

R
race conditions, 197
RAISE statement, 202
raising exceptions, 206
reading/writing files with jacket routines,

184
realm, 761
reentrant code, 159, 196
ref attribute, 562, 568, 575
ref attribute, 550, 598, 633
reference operator, & , 633
reference count decrement, 390
reference counting, 372
reference operator, &, 366
reference pointer, 598
reflect_deletions attribute, 550, 567
register_named_object(), 378, 379, 386,

397, 638
registering code sets in the namespace,

428
registering named objects, 378
registry, 831, 833, 837

database, 760
database accounts, 836
database calls and interfaces,

834
extending, 842
server, 832
service, 305, 760

relative time, 711, 712
remote

control of servers, 29
management

of endpoints, 9
of objects, 9
of servers, 9
of services, 9

serviceability interface, 128

remote and local object references, 396
remote and local objects, 391
remote objects as parameters, 375
remote procedure call, 228
remote-dynamic objects, 387
represent_as attribute, 414, 657, 671,

696
representation of C++ objects, 414
request buffer, 523
RERAISE statement, 202
resource model, 352
restrictions on handle use , 533
retrieving backing store headers, 147
retrieving data from a backing store,

146
routines

ACF, 672
context rundown, 623
error, 479
jacket, 184
RPC, 606, 607, 608, 609, 674

RPC
authenticated, 744
interface, 237

handle, 287
identifier, 323
specification, 284
UUID, 264
version numbers, 264

internationalized, 423
object, 264, 275
operations, 286
parts of application, 230
profile, 323, 345

definition of, 315
explanation of, 325

profile element, 323
protocol, 260

sequence, 261
version numbers , 262

DCE 1.2.2 Application Development Guide—Core Components Index–19

Index

public profile, 345
resource model, 352
runtime, 233

library, 723
routines, 286, 317

search path, 325
server instances, 353
thread, 298

RPC encapsulation, 629
RPC base class, 367
RPC_DEFAULT_ENTRY, 398, 635,

659
rpc_ep_register_no_replace(3rpc), 379
rpc_mgmt_set_server_stack_size()

routine, 601
rpc_ns_binding_export(), 380
rpc_object_reference base class, 629
rpc_x_no_client_stub exception, 377
rpc_x_no_server_stub exception, 392
rpc_x_object_not_found exception,

381, 386
RR (Round Robin) scheduling, 166
rundown, 623
running routines with fork(), 185
running Time-Provider process, 735
runtime, 620, 659

RPC library, 723

S
sams utility

and internationalized RPC, 424
sams utility for message catalog

generation, 56
sams utility for message catalog

generation, 78

saved server state, 619
scheduling, 167, 168, 180

policy attribute, 166
threads, 179

Schema, 842, 843
scope operator, ::, 389
search

operations, 321, 330, 332
path, 325

secure() function, 636
security

commands used in authentication
, 765, 766, 782

contexts
and delegation, 817

DTS dependencies, 756
for peer-to-peer applications,

744
risks, 745
server, 750

and cells, 761
interfaces, 751

service
namespaces, 757
RPC principal names,

328
services and authenticated RPC,

746
services and GSSAPI, 746
UNIX versus DCE, 745
validation service, 37
validation service, 8

security for objects, 636
sending and receiving messages on

sockets, 184
server, 228, 654

application thread, 297
binding handle, 262
binding information, 262
controlling remotely, 29

Index–20 DCE 1.2.2 Application Development Guide—Core Components

Index

distinguishing RPC instances,
350, 353

entry, 314
exceptions, 665
failure, 479
initialization code, 233
instance, 319
interchangeable instances, 347,

521
management service, 8
memory management, 674
messages , 77
state, 619
threads, 478, 610

server manager class , 631
server registration in C++, 369
server stub in clients, 392
servers use client stub, 376
service

model, 347
RPC, 239

serviceability
and the __FILE__ macro, 114
event points, 96
interface, 55

remote, 128
interface logs, 111

serviceability API
DCE_SVC_DEFINE

_HANDLE() , 97
dce_svc_printf(), 99
dce_svc_register(), 98
dce_svc_set_progname(), 98
dce_svc_unregister(), 98

services
authentication, 760
key distribution , 760
privilege, 760
registry, 760
ticket-granting, 760

SetRebind() function, 637
setting

client memory , 608
shared-secret authentication protocol,

761
short type, 570
signal handlers, 191
signals, 189
sigwait service, 192
size_is attribute, 550, 591
skeletal interface definitions, 240
small type, 570
spawning server threads, 478, 610
sstub attribute, 371, 374, 377, 382, 658,

696
stacksize attribute, 168
starting

threads, 162
starting and stopping servers, 34
state transitions, threads, 162
static function renaming, 392
static function specification, 694
static keyword, 565, 632
static keyword in IDL, 372
static member functions, 372, 390
status, 660

attributes, 657, 665
codes, 332

status codes, 525
status codes, 342
storing data into a backing store, 146
string

attribute, 550, 562, 565, 568,
575, 577, 596

bindings, 266, 268, 293
string-to-UUID mapping, 917
strings, 559, 561, 596
struct type, 574
structure member attributes , 574
stub, 230

DCE 1.2.2 Application Development Guide—Core Components Index–21

Index

stub support routines
for internationalized RPC , 429

supported code sets
establishing, 443
exporting to the namespace, 444

surrogates
authentication, 760
mutual authentication, 796

swapping client memory, 609
switch_is attribute, 568, 575
synchronization methods, 176
synchronization objects, 172, 198

mutex, 169
race conditions, 197

synchronous programming techniques,
193

synchronous signals, 190
system exceptions, 481
system profile, 346

T
tag-setting routine, 440

ACF attribute, 435
TDF, 709
terminating

threads, 163, 191
terminating signals, 189
TGS, 760
TGT, 765, 766
third-party authentication, 775
thread, 296

attributes, 166
avoiding nonreentrant routines,

159
canceling, 178

creating, 162
definition, 155
deleting, 164
example, 215
exception-returning interface,

201
exceptions and definitions, table

of, 211
memory management for, 478,

610
multithreaded programming, 159
priorities, 180
reentrant, 195
scheduling

priority attribute, 167
starting, 162
state transitions, 162
states, 162
terminating, 163
waiting for another to terminate,

163
thread-specific data, 177, 195, 196
thread-specific storage, 196
threads

scheduling, 166, 179
ticket-granting service, 760
ticket-granting ticket, 765, 766, 886
time

relative, 711
time differential factor, 709
time representation, 708
time structures, 707
Time-Provider

algorithm, 733
interface, 721
process, 735

time.h header file, 715
timeslice, 167
tm time structures, 715
TP stub, 723

Index–22 DCE 1.2.2 Application Development Guide—Core Components

Index

TPI, 721
TPI Control Flow, 722
trail file, 927
transfer syntax, 262
transmit_as attribute, 562
transmit_as attribute, 550, 639
transmit_as idl attribute, 601
transport errors and exceptions, 256
transport protocol, 260
traversing the keys of a backing store,

147
TRY statement, 202, 209, 210, 256
type

declarations, 561
declarators, 564
of a manager EPV, 285
specifiers, 562, 563, 564, 565,

568
UUID, 259, 282, 285

typedef declaration, 561
types, 639

IDL, 561, 618
of signals, 189

U
undefining jackets, 186
unexport operation, 279
union

nonencapsulated, 579
union type, 576
unions, 576
unique attribute, 575
unique attribute, 562, 598
unique pointers, 601

example, 602

universal code set, 443, 458
universal unique identifier, 238
UNIX

security interfaces, 755
services, 184
signals, 189

installing signal handlers
for, 191

UNIX signals
table of, 191

unmarshalling
RPC, 232

unsigned integer types , 570
unsigned32 type, 669
update site, 831
user-to-user authentication, 791
using a thread attributes object, 166
using jacketed system calls, 186
using signals, 189
using synchronization objects, 197
UTC, 708, 721
uuid attribute, 550, 552
UUIDs, 259

definition of, 238

V
varying and conformant array, 585
varying array, 585
version attribute, 550, 553
version numbers, 262, 264
void type, 571

DCE 1.2.2 Application Development Guide—Core Components Index–23

Index

W
wait_on_rebind, 638
waiting

for a thread to terminate, 163
warnings, 56
wchar_t type, 437
well-known endpoint, 270
work crew software model, 157

work queue variation of boss/worker
model, 157

X
xattrschema object, 843

Index–24 DCE 1.2.2 Application Development Guide—Core Components

